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concepts: conditional moments of the random chord length and conditional
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the body. Also in this article the relations between the concepts are found.
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1. INTRODUCTION

Geometric tomography (the term introduced by R. Gardner in [7]) is a field of
mathematics engaged in extracting information about a geometric object from data
on its sections or projections to reconstruct the geometric object. The reconstruction
of convex domain using random sections makes it possible to simplify the calculation,
since mathematical statistics methods can be used to estimate the geometric charac-
teristics of random sections. The integral geometric concepts such as the distribution
of the chord length, the distribution of the distance between two random points in
a convex body and many others carry some information about the body. In this
article for a d-dimensional convex body D we define two new integral geometric
concepts: conditional moments of the chord length distribution of a convex body
and conditional moments of the distribution of the distance of two random points
in D. Also in this article we find the relation between the two concepts.

By R? (d > 2) we denote the d-dimensional Euclidean space, by S9! the unit
sphere in R? centered at the origin. Let Ly be the Lebesgue measure on R?. For
w € 891 by e, we denote the hyperplane containing the origin and orthogonal to
w. Let N be the set of nonnegative integers. Let G¢ be the space of all lines in
R?. We use the usual parametrization of a line g = (w, P), where w € S9! is the
direction of g and P is the intersection point of g and e,. By [D] we denote the
set of lines intersecting D. In G? we consider the invariant measure (with respect

to the group of Euclidean motions) p(-). It is known that the element dg of the
3
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measure, up to a constant, has the following form (||, [I], [3])
(L.1) dg = dwdP,

here dw and dP are elements of the Lebesgue measure on S%~! and the hyperplane,

respectively.

Definition 1.1. Let D be a compact convez set in R® below we call D a convex body.
We consider the random line g with normed invariant measure (ﬁ, here u([D])
is the invariant measure of lines intersecting [D]). For a random line g intersecting
D by X(g) we denote the length of the chord D N g. The conditional n-th moment
of the distribution of the chords length (with respect to condition X > u > 0) we

define as:

1 nge
(1.2) In, = M([D])/X(g)>uX(g) dg, 1,2,...

Lemma 2.2 (below) gives the explicit formula for u([D]). In the sequel by Fx (t)

we denote the distribution function of X (g).

Definition 1.2. For two independent uniformly distributed points QQ1,Q2 in a
conver domain D we denote the distance between the points by r = |Q1 — Qa|.
The conditional n-th moment of the distribution of the distance (with respect to
condition v > u > 0) we define as:

1 n
(1.3) I = Ld(D)Q./ 1_Q2|>ur dQ1dQ2
here Lq(D) is the volume of D, dQ; (i = 1,2) is the usual Lebesgue’s measure in
RA. Also, in the sequel by F,(u) we denote the distribution function of the distance
of two uniformly distributed points Q1, Q2 in a convex body D.

In the following theorem we obtain relation between the conditional moments of
the distribution of the distance of two random points in D and the conditional

moments of the distribution of the chords length.

Theorem 1.1. Let D be a convexr domain and v > 0. For anyn € N
(1.4)

Jn,u =

m+d+ D) ntd mtdntdrD)

Li—1(0D) Lq—3 (S%72) [ I utdt! B I u e Intaviu
La(D) (d— 1) |

The moments of the distribution of the chords length and the distribution of the
distance between two independent uniformly distributed point in a convex domain
was considered in [8] and [6].
For the planar case d = 2 was proved in [4].
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For the distribution function of the distance between two independent uniformly

distributed points in a convex body in R?% we have

Theorem 1.2.
(L.5)

F,(u):l—Jo,uzl

LD (d— 1) B

~ Lia (0D) L2 (S472) [ Io,u®t  Lou® Iy
d+1 d " dld+ 1)

2. PRELIMINARY RESULTS

To prove Theorem 1.1 we need to prove the following lemmas. Let D C R be a

convex body.

Lemma 2.1. For the invariant measure of the lines intersecting D we have
Lg_q (8D) Lg_o (Sd_2)

(2.1) u(D) = 1)

Proof. By definition we have
(2.2)

1 1
u([D]):/ dg= [ dwdP = f/ dw/ dP:f/ La1 (Do) dw,
(D] (D] 2 Jga-r Jp, 2 Jga—1

where D,, is the orthogonal projection of D onto hyperplane e,,. For £ € S%~1 we
denote by s(€) the point on D the outer normal of which is €. In [6] ( see also [2])

was proved that

1 —
(2.3) Lo 1 (Do) =+ / | cos (o, &) dse,
2 Jop

where dsg¢ is the element of (d — 1)-dimensional Lebesgue’s measure on 9D and

—

(w, &) is the angle between two directions w and £. Substituting (2.3)) into (2.2)) and

using the Fubini’s theorem we obtain

(24) p( / / | cos ( w,f |dsgdw = / / | cos ( w,§ |dwdse .
sdi-1.JaD oD Jsd—1

For any ¢ € S%~! we have (see [2])

— 2Lg_o (S92
(2.5) / lcos (00| = a2 (57%)
gd—1 d—1
Finally substituting (2.5)) into (2.4]) we obtain
Ly (Sd_Q) Lg_1 <8D) Ly (Sd_z)
2. D = =
@0 (D) =55 [ ds o

Lemma 2.1 is proved.
Now we consider a pair of points (Q1, Q2) in R%. There are two equivalent representations

of (Qla Q2)

1. A pair of points @1, Q2 can be determined by the usual cartesian coordinates.
5
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2. A pair of points Q1,Q2 can be determined by the line ¢ = (w, P) passing
through the points and pair of two one dimensional coordinates (t1,t2) which

determine )1 and Q2 on the line g (for 3-dimensional case see [§]). Thus
(27) (QlaQQ) = (gatlatQ) = (waPat1;t2)~

Note that as a reference point on g one can take the point P on g.
Lemma 2.2. The Jacobian of that transform (2.7) is

(2.8) dQ1dQy = |t; — to|tdtdtadwdP.

Proof. For a fixed ()7 we represent Q2 by polar coordinates with respect to Q1. It

is known that
(2.9) dQo = r*drdw

——
where r = |@1 — Q2| and w is the direction of the vector Q1Q2. For a fixed w the
point @, can be represented by P and ¢;. Thus

(2.10) dQ, = dt,dP

and by multiplying (2.9) and (2.10) and taking into account that r = |[t; — t2], we
get

(2.11) dQ1dQy = |t1 — to|*rdt1dtrdwdP.

Lemma 2.2 is proved.
In the sequel also, we use the following lemma. For a random line g intersecting a

convex body D € R? we have the following lemma.

Lemma 2.3. Let X(g) be the length of the chord D N g. We have
Ly(D)Lg_y (8971
(2.12) /[D X(g)dg = (D) La—1 ( )

2

Proof. By definition we have (g = (w, P))

(2.13) > /Sd ldw/ X (w

For any w € S?~! it is obvious that X (w, P)dP is the element of d-dimensional
volume of D, hence the integrating by dP over D,, we get Ly (D).

(2.14) /[D]X( /Sd ldw/ X (w, P)dP =

-  La(D) Loy (5771)
- 2 /Sd_l v 2

6
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3. PROOF OF THEOREM 1.1

Let @1, Q2 are two independent uniformly distributed points in a convex body
D. For a random line g intersecting D we denote by X (g) = |gND| the length of the
intersection. For v > 0 using , ) and taking into account r = |Q1 — Q2| =
|t1 — t2| we have

1
3.1 Jn,uzi/ P1 — Po|"dQ1dQs =
(381) La(D)? J| Pz\>u| 1~ Pl e

1 / / d-1
— |t1 — t2|n+ dtldtgdg.
Ld(D>2 X(g)>u J|t1—ta|>u

Consider the internal integral of (3.1]). For two points ¢; and ¢5 chosen at random,

independently with uniform distribution in a segment of length X > u we have.

X—u X
(3.2) / |ty — to|" T4 Yt dty = 2/ dty / (ty —t1)" Tty =
[t1—t2|>u 0 ti+u

n+d n+d
Substituting (3.2)) into (3.1) we get

_, / B S e 2( urtdL Xntdtl
0 (

(3.3)
pntatl X(g)u”+d X(g)”+d+1 dg
e Ld X(g (n+d+1 n+d (n+d)(n+d+1)
_ Lg (6D) Lg—s ( Tpuum Iyt N Intdtiu
N Ly(D)? (d — 1) (n+d+1) n+d (n+d)(n+d+1)

Theorem 1.1. is proved.
Not that for u > Diam(D), both sides of (3.3) are 0.

Corollary 3.1. Foru=0 and d =2 from (3.1)) for a convex domain D we get the

following well known formula (see [§])

_ 214 (3D) I, 3,0
(3.4) Tno = Ly(D)? ((n + 2)+(n + 3)) .

Corollary 3.2. Forn =0 we get
55) o, L1 OD) Laa (5072) <Io,uud+1 L' i )

M Le(D)2(d—1) d+1  d d(d+1)
Taking into account

1
(3.6) Jou =

oL /| o, 121 =1 B )

we get the following theorem.

n+d+1) n+d + (n+d)(n+d+1)

)
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4. A REPRESENTATION FOR I, ,

Now we are going to find a representations for Iy v, I1 4, Ld+1,u-

1. For Iy, we have

2(d — 1)

(4.1) IO,u = Ld—l(aD) Ld_2(5d72)

| =P (x(g)> )=
X(g9)>u

(1-P(X(g) <u))=1-Fx(u).

Here Fx (t) is the chord length distribution function.

2. For the derivative of I; ,, we have

/ dg
dg . fu<X( )<u+AuX(g) ([D])
4.2 Iu’z/ X(9) —7p | = lim ’ . -
@2) (ha) ( e )u([DD> 2o Au
. uP(u< X(g) <u+Au)
- dim, A T

here fx (t) is the density function of the chord length distribution of X (g).
It follows from Lemma 2.3 that

_ ([@d=DLa(D)La 1 (S
(4.3) Lo = La—1(0D)Lq—_o(S%2)

Integrating (4.2) and taking into account (4.3]) we get

_ (@=DLaD)Lar(S™Y) "
(4.4) UR Lg1(0D)Lq—2(8972) /0 Fofe)dv

3. By the same way (see (4.2)) for the derivative of Iq11, we have

(4.5) (Igs10) = (/X(gqu(g)dH u(c[l%])> = —u fx (u).

It follows from (3.3)) that

(d — 1)d(d + 1)Lg(D)?
Ld_1(8D)Ld_2(Sd_2) '

(4.6) Tit10=

Integrating (4.5) and taking into account (4.6)) we get

W e S

Finally substituting (4.7), (4.4), (4.1) into (3.5) we obtain the following relation

between the distribution function of the distance of two uniformly distributed points
of D and the chord length distribution function of D.
8
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Theorem 4.1. Let D be a convez body in R? Foru>0
(4.8)

w4

Fofw)=1— La—1(0D) L5 (S972) (ud+1 (d—1)Lq(D)Lg_1(S*)

La(D)2(d—1) d+1 dLg_1(8D) Ly_5(S42)

(d-DLuD)  u’ [ L
Lq—1(0D) L:_Q(Sd_Q) - 7/0 Fx(v)dv + g/o ”UdFX(v)dv) .

For the planar case d = 2 (4.8]) was proved in [5] (see also [4]).
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number of zeros of similar functions. It is interesting that there is a version of
the principle (for real functions) similar to the classical Nevanlinna deficiency

relation (in complex analysis).
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1. THE PRINCIPLE

In this paper we present a general method permitting to give bounds for the
number of zeros of “enough smooth” real function. The method was found in 1970s,
presented first in the book [1], see item 5.3.2.

Below we give some modifications of this method and apply them to establish a
result for real function which is an analogue of the classical Nevanlinna deficiency

relation (in complex analysis).

Consider a real function f(t), t € [a,b] with continuos f” (i.e. f(t) € C?[a,b])
and denote by N, 3 (f = 0) the number of zeros of f(t) in [a, b]; here we count in
N5 (f = 0) each possible interval, where f = 0 as one zero.

Further, we take an arbitrary function ¢(t) € C?[a,b] satisfying ¢(t) > 0 and
¢'(t) > 0fort € [a,b] and compose the following function F(f(t)) = f(t)+ie(t) f(t),
where ¢ is the complex unit. (Obviously F(f(t)) is a complex function of one real

variable ).

Theorem 1.1 (principle of zeros of real functions). For an arbitrary function
f(t) € C?[a,b] we have

(L.1) N[a b] (f= ‘ rg F (f(t)|dt + 1.

Notice that the inequality is true also when N, (f =0) =00

The inequality is sharp; see below.
10
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Applying (1.1) with ¢(t) = ¢t — a (i.e. for function F(f(t)) = f(t) +i(t — a)f(t))
we get
b

1 f” Hf B+ 2 ()
(1.2) Ny (f=0) < */ e a)f’(t)]2dt + 1.

™

2. AN ANALOGUE OF NEVANLINNA SECOND FUNDAMENTAL THEOREM FOR REAL

FUNCTIONS

We aren’t going to present here Nevanlinna theory and mention here just what
we need for our purpose. The famous deficiency relation (following from the second

fundamental theorem) asserts that

> da,w) <2,

where d(a,w) is the deficiency (at the complex point a) of meromorphic function
w in the complex plane and the sum is taken for all complex values a. This implies
the following amazing consequence: deficiencies of all values a are equal to zero
(6(a,w) = 0) except not more that a countable set of values a.

Below we present a result of similar nature for real functions f(t) € C?[a,b] of
one variable, which deals with the number N,y (f = A) of zeros of f — A (i.e.
solutions of f — A = 0) for different real values A.

Denote

1
Epap = sup f/
’ —1<A<1 T

a

b
Hyuyy = / 1)L dt.

Notice that the last magnitude represent the total length of projections of the curve
f(t), t € [a.b] (in the (¢, f)-plane) on the axis f.

The following result represents an analogue of Nevanlinna second fundamental

and denote

theorem for real functions.
Theorem 2.1. For an arbitrary f(t) € C?[a.b] and an arbitrary finite set of values
A1, Ag, . Ay € [-1,1], ¢ > 2, we have

q
2
(2.1) Niap) (f = A) < Elap) + Hiap) + 2,
A

v=1

where A = ming,; |Ar — A4,

11
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3. AN ANALOGUE OF NEVANLINNA DEFICIENCY RELATION FOR REAL FUNCTIONS

Here we follow ideas of Nevanlinna theory. Assume f(t) € C?[0,00), (t € [0, 0)),
Ep ) — oo and H[a’T]E[_a,lT] — 0 when T — oo. The class of similar functions
denote by D. Define deficiency d(A, f) of value A for function f(t) as

. Nor(f=4
(A, f) = llTrrilor(l)f[’f]?[(O)T]).
Theorem 2 implies the following assertion resembling Nevanlinna deficiency relation.
Theorem 3.1 (deficiency relation for real functions). For an arbitrary f(t) €

D we have
(3.1) > A<
A

here in the sum we count all values A € [—1,1].
From (3.1) immediately follow the following Nevanlinna type consequence:

for all values A € [—1,1] except not more than a countable set of values A we

have 6(A, f) = 0.

4. PROOFS

Proof of Theorem 1.1. Consider the curve 7 determined by =z = f(t), y :=
o(t)f(t), t € [a,b] and denote by t; the set of points a < t1 < to... < tx < b, where
u=1v=0. Since f(t), ¢(t)f(t) € C*[a,b] we have at each point ¢t € [a, b]

Q) = [0 + [ FO)] = [FOF + (¢ OF@) + e O]
Notice that Q(t) > 0 in each point ¢ € (¢;,t;4+1). Indeed Q(t) can be equal to
zero only when we have simultaneously f(¢) = 0 and f/(t) = 0 (since we assumed
that ¢(t) > 0 and ¢'(¢) > 0). This cannot happen for ¢t € (¢;,¢;11) (since due to
definition f(t) # 0 in this interval). Due to well known result (see [2], theorem on
page 13), Q(t) > 0 implies that the curve is locally topological for ¢t € (t;,t;41);
consequently has no singular points for any t € (¢;,%,11).

Now we consider occurring in Theorem 1 complex function F(f(t)) := z + iy :=
f(t) +ip(t) f(t) which obviously represents the same curve 7. For a given point ¢*
denote by 5(t*) the tangential angle at the point t* € (¢;,¢;41) (that is the angle
formed by the tangent to v at the point F'(f(¢t*)) and real axis y.

Since 3(t) = arg £ F(f(t)) we have for its derivative

%arg %F(f(t)) = % arctan W -
o) F O] () = £ (1) [e() £ (1))
Q*(t) '

12
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It follows that the derivative of 5(t) exists and finite for ¢ € (¢;,t;41).

Further, since for each j we have F(f(¢;)) = 0 we conclude that the part of
the curve F(f(t)) corresponding to the interval (¢;,t;41) is a closed curve with
continuos tangent which starts and ends at the origin of the complex plane (z,y),
where x = ReF(f(t)) and y = ImF(f(t)). It follows that

Now we assume that the number N of zeros is finite; denote N by N, (f = 0).
Summing up by j we obtain that the number of all possible intervals (¢;,¢;41)

cannot exceed

— F .
/ ’ arg = F (7 (1) ‘ ’ arg - dt (t))'dt
t;

Taking into account that the number of these intervals is equal to the number of
their endpoints (i.e. Ny, (f =0)) minus 1 we get (1) when N (f =0) < o0
The last two inequalities imply that (1) is true also when Njg ) (f = 0) = o0

To derive (1.2) (from (1.1)) it is enough to notice that for F'(f(t)) = f(¢t) +i(t —
a) f(t) we have

i d PO+ 2070
— arg — dt = .
@ = O O+ -0 P O

Sharpness of the principle. Denote the positive integers by n. Take a (small)

number € > 0. Assume f(t) = —1on (n+¢e,n+1—¢) for odd n and f(t) =1 on
(n+e,m+1—¢) for even n. Then we connect the point (n 4+ 1 — e, —1) with the
point (n+1+¢, 1) by the segment of a straight line. Make similar connections for all
integer (odd and even) points in a given segment [a, b]. By rounding off smuttily all
similar connection points we can get a function f.(t) defined on [a, b] which belongs
to C?[a,b]. Take a function a monotone functions ¢(t) (very) close to 1 with ¢'(t),
¢"(t) (very) close to 0 and compose the function F. ,(f(t)) = f-(t) + ip(t) f-(t).
Notice that for any n we have exactly one point t,, € (n,n+1) where F; ,(f(t)) = 0.
Consider behavior of the curve F; ,(f(t)), t € (tn,tn+1) for odd n. We can divide
the curve onto three parts: part 1 of the curve starts at the point 0, moves very
closely to the segment connecting (0,0) and (1.1); part 2 of the curve make a turn
around the point (1,1); part 3 of the curve returns very closely to the segment
connecting (1,1) with the point (0, 0).
13
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It is easy to see that the variation of the tangential angle of the curve F; ,,(f(t))
on each interval (n,n + 1) tends to m when ¢ — 0 and ¢(t) — 1. Since the angle is
arg %pr(f(t)) we obtain for each n that

n+1
]
m
n

tends to 1 when ¢ — 0 and ¢(t) — 1. Now we consider function F; ,(f(t)) on the

s L0

segment [n + n*], where n* is a positive integer. Due to above arguments we have

n+n*

-/

n

d d .
pn arg thE S(,(f(rf))‘ dt - n

and noticing that in each interval (n,n + 1) we have exactly one zero of F; ,,(f(?))
we obtain that N, .+ (f = 0) = n*. Taking n* — co we see that the ratio of the
left and the right sides of (1) tends to 1; what means that The inequality (1.1) is
asymptotically sharp.

Proof of theorem 2.1. By analogy with a-points in complex analysis we will
refer the solutions of f(t) = A in [a,b] as A-points. For a given A, we can meet
some sets (or chains) ¥.(4,), (t = 1,2,...,®,(A,)) which we define as follows:
the chain W, (A,) consists of A,-points t1(A,), t2.+(Av),,tk(r4,),r(A,) such
that K(7,A,) > 2 and f(t) cannot be equal to another A,, p # v, on the set
[t1,7(AL), Lk (r,4,),7(Av)]. Applying inequality (1) for function f(t) — A, on the set
[t1,7(Av), tic(r,a,)7(A0)] we get

Nty (A tre a4 (f = Av) <

L (r,Ay),(Av)
1 / ‘darng(f(t)—Ay) dt + 1.
t1,7,(Ay)
Denoting by N[Z,b]_ (f = A,) the total number of all A,-points taken for all
possible chains ¥, (A, ) and summing up the last inequality for all 7 = 1,2, ..., & (A,)
and for all v = 1,2, ...,q we get

q
Y NGy (f=4,) <

v=1

trcir ay o (A
q <I>7-(Au) K(1,Ay), ( )

>y [ [

t1,+(Ay)

14



A PRINCIPLE RELATED TO ZEROS ...

Taking into account that U, U, [t1 +(A.), tx(r,4,),-(Av)] C [a,b] we get

q>7—(Ay) tK(T,A,,) T(A )

q
Z ’ arg (f(t) = Ay)|dt < B
v=1l 7=1 t1,r,(A

so that obtain

q q ®-(A)

(4.1) Ny (f=A) < By +> 1.

v=1 v=1 7=1

Then we notice that for each chain ¥, (A,) we have either an interval (t,¢; -(A,)),
which don’t involve any A, -point meantime f(¢~) = A, # A, or we have an interval
(tx(r,a,),7(Av),tT), which don’t involve any A,-point meantime f(t*) = A, # A,.
Consequently we have either Hj;- 4 (a,) > A or Hityeiooany (A 4] 2 A. This
implies that for the number of all possible chains taken for all v we have

q ®-(A)

(4.2) DD D Hab +1.

v=1 7=1

Further we consider the lonely A,-points, i.e. those points ¢}, where f(t;‘) =A,
and which don’t involved in any chain; in other words at the closest to ¢ point ¢;11
(from the right side) and ¢;_; (from the left side), where we meet another solution
of f(t) = A, we should have A, # A,.

Consider the following two possibilities. (1) The next point ¢;1; is also a lonely
point (what means ¢;;1 := t],,), consequently we deal with the interval (¢7,%},4),
where both these points are lonely; denote by N[mb]. (f = A,) the number of all
similar lonely points. (2) The next point ;11 belongs to a chain, (say chain ¥, (A4,,),
7=1,2,..,9,(A,)), consequently we deal with the interval (¢},#1,-(A,)); denote
by N, [%z,b]. (f = A,) the number of all similar lonely points. This means that for each
of the mentioned possible lonely points we have corresponding intervals either of
the type (¢},t;,,) or of the type (¢},t1,-(A,)). For each (¢},t;,,) or of the type
(t7,t1,7(Au)) we have H(t;,t;“) > A or H(tj,tl,T(Au)) > A. It follows

q q
D Npw (F=A)+> Niy (f=4)) <
v=1 v=1

1 1
A {Z H(t]* ) T ZH(t;,tl,,(A,L))} < EH[a.b];

here in the first sum we count all point ¢; which involved in the segments [t7, 7]
and in the second sum we count all point ¢7 which involved in the segments
5t (Au)]-
Notice that above we considered all possible lonely points but possibly the last
lonely point (if there is such a point). It follows that for the number N, (f = 4,)
15
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of all lonely A,-points we have
q
0k 1
(43) ZN[GJJ]. (f = Au) < ZH[a.b] + 1.
v=1
Since
q q q
ZN[a,b] (f=4)= ZN[’;,b]‘(f =A)+ ZN[*;b]‘ (f=4)
v=1 v=1 v=1

we obtain from (4.1)-(4.3) inequality (2.1) of Theorem 2.1.
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1. INTRODUCTION

The uniqueness problem and reconstruction of coefficients of series by various
orthogonal systems has been considered in a number of papers. Uniqueness theorems
for almost everywhere convergent or summable trigonometric series were obtained
in the papers [I] and [4], under some additional conditions imposed on the series.
Results on uniqueness and restoration of coeflicients for series by Haar and Franklin
systems have been obtained, for instance, in the papers [3], [6], [7] and [1T]-[14].
Here we quote a result by G. Gevorkyan [3] on restoration of coefficients of series
by Franklin system.

Specifically, in [3] it was proved that if the Franklin series Y ay fn(2) converges
a.e. to a function f(z) and
Jm (Ao € 0,17 sup 5] > 2)1) =0,

where |A| denotes the Lebesgue measure of a set A and

k
Si(z) =Y a;f;(x),
=0

then the coefficients a,, of the Franklin series can be reconstructed by the following

formula X
a, = Alim [f(x)} /\fn(:r)d:c,
—00 0
where
) @), i [f(z)] S A
@]y = {o, it f(x)] > A
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Similar result on uniqueness is also obtained for the Haar system (see [5]).
Afterwards Gevorkyan’s result was extended by V. Kostin [12] to the series by
generalized Haar system.
Consider the d-dimensional Franklin series

Z n fn(X),

neNg
where n = (ny,---,n4) € Nd is a vector with non-negative integer coordinates,
No =NU{0}, x= (21, -+ ,2q4) €[0,1] and

Ja(X) = fo, (1) - frg(@a)-
The following theorem for multiple Franklin series was proved in [7].
Theorem A.([7]) If the partial sums
Ok (X) = Z an fn (X)
n:n; <2k i=1,.-- d

converge in measure to a function f and

lim <)\m qx €[0,1)% : sup |oor (x)| > )\m}|) =0
k

m—r oo

for some sequence \,,, — +00, then for any n € Ng

an = lim [f(x)]Am fa(x)dx.
m—o0 [071]d

In this theorem instead of the partial sums oqx(X) one can take cubic partial sums
04, (x), where {qgi} is any increasing sequence of natural numbers, for which the
ratio qx11/qr is bounded. The following theorem is proved in [13].

Theorem B.([13]) Let {g;} be an increasing sequence of natural numbers such
that the ratio gx+1/qx is bounded. If the partial sums o, (x) converge in measure

to a function f and there exists a sequence A, — 400 so that

lim <)\m {x € 0,1 : sup oy, (x)| > )\m}> =0,
k

m—r oo

then for any n € N¢

an = lim [f(x)]km fa(x)dx.
m—oo 0,14

Note that similar questions for series by Franklin system was considered by K.
Keryan in [11].

In this paper we generalize the Theorem A for multiple Ciesielski series.

We are concerned with orthonormal spline systems of order k£ with dyadic partitions.
Let £ > 2 be an integer. For n in the range —k+2 <n <1, let Sr(Lk) be the space of
polynomials of order not exceeding n+k — 1 (or degree not exceeding n+ k —2) on

the interval [0,1] and { f,sk)}lz_ k4o be the collection of orthonormal polynomials
18
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in L? = L?[0,1] such that the degree of £ isn+k—2. Forn > 2, let n = 2V + j,
where v > 0, 1 < j < 2”. Denote

0, —k+1<i<0

. A, 1<i<2j

)5, 2+1<i<n-—1
1, n<i<n+k-1,

[\

and let 7, be the ordered sequence of points s, ;. Note that 7, is obtained from
Tn—1 by adding the point s, 9;—1. In that case, we also define S,(Lk) to be the space
of polynomial splines of order k with grid points 7. For each n > 2, the space S;Lk_)l
has codimension 1 in S,gk) and, therefore, there exists a function f,gk) € S,(,k), that
is orthogonal to the space Sflk_)l and || fflk) |l = 1. Observe that this function f,(lk) is
unique up to the sign.

The system of functions { f,(lk) ne_ 4o 1s called the Ciesielski system of order k.
Let us note that the case k = 2 corresponds to orthonormal systems of piecewise
linear functions, i.e., the Franklin system.

Let d be a natural number. Consider the d-dimensional Ciesielski series

(L1) > anfalx),

neAd

where n = (n1,---,nq) € A% is a vector with integer coordinates,
A={ne€Z|n>-k+1}, x= (21, -+ ,24) €[0,1]¢ and

fa(x) = fo, (1) - frg(@a)-
Denote by oau (x) the cubic partial sums of the series (1.1) with indices 2/, that is

(1.2) oon(x) = Z an fn(X).

n:n; <24 ,4=1,--- ,d

The main result of this paper is the following theorem:

Theorem 1.1. If the partial sums oou(x) converge in measure to a function f and
(1.3) lim <>\q |z e [0,1)¢ : sup |oon (x)] > )\q}|> =0

q—ro0 w
for some sequence \; — +oo, then for any n € A4

(1.4) an = lim [f(a:)]/\qfn(a:)daz.

77 JI0,1]¢

19
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2. PROPERTIES OF B-SPLINE FUNCTIONS AND AUXILIARY LEMMAS

We define the functions (N,;)7"~*, 41 to be the collection of L°°-normalized

B-spline functions of order k corresponding to the partition 7,. The functions
(N,”)f::lk 41 form a basis for Sy(Lk). Those functions are non-negative and are
normalized in such a way that they form a partition of unity, i.e.,

n—1
Npi(x) >0 and > Nypg(z)=1 forall € [0,1].
i=—k+1

Moreover

1 .
On,i :=Supp Npi = [8n,i, Sn,itk) and / Ny i(x)de = —>
0

The L'-normalized B-spline functions M,, ; in Sr(bk) are given by the formula

k
Mn,i(m) = |5 V‘Nn,i(x)y

and satisfy the inequalities

Let n = 2" 4 j, with ;1 > 0, 1 < j < 2. Clearly we have that N,,_1 ;(z) = N,, ;(z),
if —k+1<i<2j—k—2and Ny_1,(2) = Nyiy1(z), if 2j — 1 < i <n—2. B6hm
formula (see [15]) gives us the following relationship between the B-splines N,, ; and
Ny1,if2j—k—1<i<2j—2

(21) anl,i(x) = an’iNn7¢($) + (1 — anﬁHl)Nn’Hl(x).

Later we shall mostly deal with the n = 2#, so let us introduce the following notation

N (z) i= Now i(x), MY (2) = Mo 3(x), 6 = 6o .

K2

For any natural p we set
Ay ={-k+1,--- 2"}

It is clear that

oou(x) = Z an fn(X).

d
nEA“

For any vector i = (i1, ,iq) € Aﬁ denote
() . s(w) (1)
AP =0 o gt

N.(”)(x) = Ni(“)(Ih C LX) = Nz'(f)@l) e 'N(M)(xd)-

i 14
Obviously
supp(Ni(”)) — Ai('u)'
20
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Let us notice that

d
(1) — (M) — u) -
o N (x)dx = o N (x)dx = H " NlJ (xj)dz; = U

Hence for M*) (x) we have
d

0< MM (x) < x € [0,1]%

A (M)|

To prove Theorem 1 we will need the following two lemmas.

Lemma 2.1. Let Px(x) be a polynomial of degree k defined on
A= [ay,b1] X -+ X [ag,bq], d €N, then

maxyxea | Pr(X)] |A|
: > - 7 > .
HX €4 [BRI= 2d = (4k2)d

This lemma is a generalization of Corollary 3.1 from [9] and the proof of one
dimensional case can be found in [8].

Proof. The proof will be carried out by induction. The case d = 1 coincides with
Corollary 3.1 ([9]). Suppose that lemma is valid for dimension d, and let us prove
it for dimension d + 1.

Let the function Py(x) be defined on A := [a,b1] X -+ X [aq4, bq] and let |Py(x)]
attains its greatest value at the point (o, - - , @g41). The function Py (aq, - - - , aq,x),

T € [ad+1,ba+1], satisfies the assumptions of Corollary 3.1 from [9]. Therefore

1
(22) {JS S [ad+17bd+1] : |Pk(0[1,"' y X, T )| > 5 x€aX|Pk( )|}‘

2

S b1 — Gd+1
- 4k2
For a fixed « € [ag41,b4+1], the function

Pk('r17"' ,J}d,.’]?), (-Tla"' 7xd) S [a/labl] X X [ad;bd]

satisfies the induction assumption. Therefore

Pilag, - ,aq,x
{(an ) s € s P g )] 2 PO o0l

(b1 —ay)---(bqg — aq)
- (4k2)
It follows from relations (2.2) and (2.3) that

(2.3)

maXy P.(x
‘{(xlv"’ >xdaxd+1):xi€[alv } ‘Pk(xla"' 7xd7xd+1)233+|1k()|}‘
S (b1 —a1)---(bg — aq)(bay1 — ad+1)
= (4k2)d+1
The proof is complete. O
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Repeatedly using Bohm formula (2.1) one can proof the following lemma (see

[9]), which is the generalization of Lemma 2 from [8].

Lemma 2.2. ([9]) There exist agf) >0 so that
outl_q
Mz(#) (.23) = Z O{iij(MJrl)(l‘), with Q4 >0 Zﬁ (SJ(-M+1) C (5Z(H)
j=—k+1

Lemma 2.3. There exist oj > 0 so that
M (x) = 3" ogMP TV (x), with o3>0 iff ATV c AP
jead

This lemma is the generalization of the previous lemma (for d-dimensional case).

3. THE PROOF OF THE MAIN THEOREM

Let the partial sums (1.2) converge in measure to a function f and the series (1.1)
satisfy the condition (1.3). First let’s prove that for an arbitrary po and iy € AZO,

the following statement is true:

(3.1) / 00 (x) M) (x)dx = lim [F(x)], M (x)dx.
[0,1]¢ =2 Jjo,1¢ ‘

Denote

E,:={x¢€ supp(Mi(O““)) = Ai(gm) :sup |ogun (X)| > Ag}-
“w
Let € be an arbitrary positive number. Under the conditions of the theorem, one

can take the natural number gy such that the following inequalities hold:

(3.2) 25d . gpod , p2d Ag - |Eql <&, when ¢ > qq,
and

1
(3.3) |Eq| < 584 gad |Ai((fm)\7 when ¢ > qo.

Suppose p > . We set

. a1 iqg tqg+1 (10)
Qu-—{A-A—[QW 5 }x [2#, o }, A C supp(M;)™) ¢

Notice, that if for some A € Q,,, > po, the inequality

1
(3.4) |E, N Al < CWTE |A]
holds, then
(3.5) |oau (x)| < 29N, for x € A.

Let suppose that A € Q, and for some point x" € A the inequality (3.5) does not
hold, i.e.
|oau (x')] > 290,
22
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According to the Lemma (2.1), we obtain that

A
‘{X cA: ‘O’Q#(X)‘ > )\q}‘ > ﬁ,

which contradicts (3.4). From (3.3) we have

|A.(ILO) 1

(36)  |EnAl< o | = gaa ad

534 j3d |A|, when A€ Q.

Now let’s define by induction the families €, and Q7, > po. If j1 = pug, then we
set
1
Q}LO = {AE Quo : [ANEy| > 93d . j2d |A|}7 Quo = U A,
AeQ]
and
O ={AcQ,:AZQu}, Pu,= |J A
Aeq?
10

From (3.6) we have, that Q,, = 0 and the closure of P, is the supp(Mi(O“")). Now
suppose we have defined the sets Qi,, 0?2, Qv and P, for all p/ < p.

s
Let’s denote

1

(3.7) Q) = AeQH:\AmEq|>W-\A| and A¢ | Qu ¢,

w<p

Qu=J A Q={4cq,:A¢ |JQv;. P.= | A

AeQ, w<p AeQ,
Thus we have defined the families ), Q2 and the sets Q,, P, satisfying to the

w

following conditions

Q, CQ. Q) CQ,,
(3.8) supp(Mi(O”O)) =P, U U Qul, P.nN U Qu | =0,
w<p w<p
(39) Q;Uf/ m Qll” = @, 1f HJI # HJH,

Next, it follows from (3.7) and (3.9) that

(3.10) U Qu| < 2% k*|E,|, forany p> puo.
w<p

For any p > po denote

L={ieAl: AW NQ,#0 and AW c P},
and observe that if i = (i1, ,iq4) € I, then, for any set B, B C Ai(”), B € Q, the
following inequality holds:

(3.11) |E,NB| < IB].

1
4d . 2d
23
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Indeed, if for some B the inequality (3.11) is not satisfied, then for a cube D € Q,,_1,
with B C D, we would have

1

1D,
because
|D| =2%-|B.
Then, it follows from (3.12) that
DcC U Qu, therefore B C U Qs and Ai(“)ﬂ U Qu | #0,
w<p W<p W<p

which contradicts the condition Ai(“ ) ¢ P,_; and the relation (3.12).

Therefore
(3.13) loan (x)] <242 2,, if xe AW ic 1,

Similarly, we can obtain that if Ai(“ ) P,, then
1

(1) (1)
(3.14) ’Eq A < gaa gz 1A )
therefore
(3.15) loan (%) <2722, if xe AW C P,

)

Now by induction we define expansions 1),, for Mi(ou 9/ satisfying the conditions:

7

. . = = (oD . —+ A RS

3.16 MI(ONO) wu En) Ml(") Bl(M)Ml(M)
n=po icl, i?Ai(H>CPH
where
Iz
(3.17) Y Y a3 g =1 o™ >0, 85 0.
n=po iEIH i:Agﬂ)CPH

Since P,, = supp(Mi(O“O)), then v, = Mi(om’). Assuming that 1, satisfying the
conditions (3.16), (3.17), is already defined, we define 9,,;1. By Lemma (2.3), we

have
(3.18) M = S VI BN O P
i1A-(“+1>Csupp M

Inserting the expressions (3.18) in (3.16) and grouping similar terms, we obtain

pt1
(ko) (n) 3 r(n) (p+1) 5 r(p+1)
(3.19) M; ™ = thugr = Z Z o M+ Z o M
n=po i€l, EAGHDCp,
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Since the integrals of all functions Mi(” ) are equal to one, from (3.19) we obtain

pt1
Y Yalt Y o1 el zoal 20

n=po i€, i:Ag“+1)CPH+1
Thus, the possibility of representation (3.16) with coefficients satisfying (3.17), is
proved.
Suppose we are given a number p > po and p = (p1,- - ,pa) such that max;{p;} >
2#. Then, according to the definition of functions f, and M*, we get
(for, M) = / fo(x)M" (x)dx = 0, for any i€ A
[0,1)4
Therefore, for any n > p and for all i € AZ one can write
(02"’Mi(u)) = Z ap(fvai(H)) = Z ap(fp7Mi(#)) = (02“aMi(H))-
peAd pPEA]
Taking into account (3.16), for n > pg we can write

(02#0 : Mi(ouo)) _ /

rano (M ()x = [ o (MU ()i
[0,1]4 .

A.IO
10

"
=3 S oo, M)+ ST B (0, M) = Ly + Lo

n=po icly, AW cp,
For 1,1 we will have the inequality
10 p
L] < ) (ggn, M™)| < 297 () M (x)dx.
Leal € 30 D aloom M <2 D D g™ [ M (x)dx
n=po i€l, n=po i€, i
Denote
n
(3.20) D= |J Ua™.
n=po i€l,

From the definition of the set I,,, it follows that
1A N Q> k~IAf™M.

The last relation and (3.9), (3.10) imply

(3.21) |D,| < k.23 k20| E, .
We obtain
1
3220 > Y o e M™(x)dx < /D M) (x)dx < || M ||oo| Dyl

n=po i€l,

It is clear that

(3.23) Lal <242 - 1M || D,
25



A. KHACHATRYAN

Hence, from (3.23), (3.21) and (3.2), we obtain

d d
k .kd.23d.k2d.|Eq|§g.<k> .
|A(M0) 2

io

(3.24) L] <2400, -

For I, » we will have the representation

Lo= (o2, > BPYMM)= (00 - 115, oM

AP, A cp,
() q )y .
+([fy,, D BMY) = s+ L.
AW cp,
Denote
Ho= |J A" and T,={xe Al |f(x)] >}
AW cp,

It is clear that T, C E,, therefore |Tj,| < |E,|. From (3.2) we get

g

(325) |Tq‘ < 25d . Quod . f2d . )\q.

Next from (3.15) we have |ogu (x)| < 2% - )\, for x € H,,, and hence

(3.26) loon (x) — [f(x)] )\q| <(27+1)- ), for x€H,.

It is clear that

(3.27) 113 < (loan(x) — [f(x)]/\q|, Z ﬂi(M)Mi(u))
A cp,

H,

< / o2 (x) = [£ ()], 1M () e < 200 / o2 (x) = [£(x)],,, ldx
HH

m

—2ot | [ Joan) = G, o+ [ o) - [0, Jax
H\T, H,NT,
From (3.25) and (3.26) for the second integral on the right-hand side of (3.27), we
have
2ot [ jow ) - [£00], i < o2
H,NT,
From (3.26) we have that the |ogu(x) — [f(x)])\q| is bounded on H,, and it tends

to zero in measure outside the set T, since
o3 (%) = [£()] | = loan(x) — F(x)| on TL.
q

Hence

/ logn (x) — [f(x)]/\q\dx ;H—oo> 0.
H\Tqy
26
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Therefore, for sufficiently large p we have

(3.28) I15] < g
For I, 4, from (3.16) we have
m
(3.29) Ia=([f] )\q,Mi(O#O)) —([f] A Z Z ai(n)Mi(n))
n=po i€l,
_ ([f]/\q7Mi(()”°)) 1,5

The relations (3.2),(3.21),(3.22) imply that
o\ ¢
(3.30) Lsl<e (=) .

Therefore by (3.24), (3.28), (3.29), (3.30) we get

/ O2ro (X)Mi(ouo)(x)dx — / [f(x)]A Mi(om’)(x)dx < Ck,q-€ for ¢ > qo.
[0,1)¢ [0,1)¢ !

Now let’s prove that for any n € A% the coefficient a, can be reconstructed by
(1.4). First let’s fix a number p satisfying maxj<;<qn; < 2. Since fn € Sov and
the system of functions {Mi(“ )}ie Ad is a basis in the space Sau, then one can find

numbers f;, i € A, such that

w
fax) = 3 BiMP ().

ieAd
ieAy

Therefore

an = (02, fa) = Y Biloze, M) = 3" f; lim [F()], M (x)dx

q—0 d q
3 d i d [071]
1EAM 1€AM

= lim [f(X)])\ In (x)dx,

q—o0 [071]{1 q

which finishes the proof of Theorem 1.1.
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1

AHHOTALWMSA. Vccnemyercs MHOrOMEpHOE MHTErpaJbHOE YPDaBHEHHUE TUIIA CBEPT-
KU C BOTHYTOM HEJIMHEHHOCTHIO. Y Ka3aHHOE ypaBHEHUE BOZHUKAET B MaTeMaThde-
CKOIl Teopuu reorpauieckoro pacnpocrpatenus snugemun. CoyeTanue u3BecT-
HBIX METOZ0OB MHOI'OMEPHBIX OIIEPATOPOB M METOOB IIOCTPOEHUS MHBAPUAHTHBIX
KOHYCHBIX OTPE3KOB JIJII TaKUX OIepaTOpPOB C METOJAMU TEOPUU HMHTErDAJIbHBIX
OIIepaTOPOB THUIIA CBEPTKHU U IPEJEJIbHBIX TEOPeM TeOpUu (PYHKIUH ITO3BOJISIOT
JOKa3aTh CyIIeCTBOBAHUE IOJIOYKUTEIbHBIX OIPAHUYEHHBIX PElIeHUH JJIs TaKuX
ypaBHeHuii. Takke u3yd4aeTcs aCUMITOTUYECKOE ITOBE/IEHIE IIOCTPOEHHBIX Pellle-
HUil. B KOHKpeTHO BBIOPAHHOM KOHYCHOM OTPE€3Ke JOKAa3bIBAETCS TAKXKe €JIMH-
CTBEHHOCTb pellleHust. [I[puBOAsSTCS KOHKPETHbIE IIPUKJIAIHBIE IIPUMEDHI YKa3aH-
HBIX YPaBHEHHUN.

MSC2010 number: 45G05; 92D30.

Kuro4deBble cjioBa: smmIeMust; BOTHYTOCTh; CXOAUMOCTD; €IMHCTBEHHOCTD; ITOCIET0-
BaTeIbHBIE TTPUOJIMKEHISI.

1. BBEJIEHUE

PaCCMOTpI/IM C.He,ﬂyIOHII/II;'I KJIaCC MHOT'OMEPHBIX HEJIMHENHBIX HHTErpaJibHbIX YypaB-

HeHWiT Ha MHOXKecTBe (—00,T] X R™ :

t
(1.1) u(t,x) = / /A(t —7,%,y)9(u(r,y))dydr, te€ (—o0,T], x€R"”
oo Rn
OTHOCHTENBHO UCKOMOH byHknn u(t, X).
VYpasuenwe (1.1) nmeer HEMOCPEICTEEHHOE TPUMEHEHNE B MATEMATHIECKON TEOPUH

reorpaduyecKoro pacnpoCTpaHeHus IUJIEMUM, TJIe
(1.2) S(t,x) = Spe "X Sy = const

1I/ICCJ'Ie,[L0Ba,HI/Ie BBIIIOJIHEHO 3a c4eT rpadTa Poccuiickoro maygsnoro donzga (npoekt No. 19-11-

00223)
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IpecTaBaseT coboit MIOTHOCTL BOCIPUUMYHBLIX JIMI, B MOMEHT BPEMEHH ¢ B TOYKE
x:= (21,%2,...,2n) € R™ (cem. [1]-[4]) .

DOyukius A(7,X,y) uMeer BepoaTHOCTHBIA cMmbici: A(T,X,y)drdy upencrasisier
c0o00il BEPOATHOCTL TOTO, YTO BOCHPUUMYUBLIN YeJIOBEK B Touke X € R™ mpuobpeTa-
er nHbeKImo 0T NHOUINPOBAHHBIX JIUII, HAXOJAINXCS B Mapajuienenunene (y,y +
dy), y € R™ u 3apaKeHHbIX B MOMEHT BpeMeHHU u3 unrepsaJa (7 — dr, 7).

CooTBercTByIOIIEee OJJHOMEPHOE yPaBHEHNE UCCIIEI0BAIOCh B padorax [1]-[3] B ciy-

qae, Korja MYHKIMs A JTOIMyCcKaeT CJepyIoliee MpeCcTaBIeHue:

(1.3) A(r,z,y) = H(t)v(z —y), =,y €R,

rae

(1.4) H(t)>0,7€[0,400), [ H(r)dr =1, | TH(7)dT < +00,
[roe=]

(1.5) v(—z) =v(z) >0, x€]0,+00), / v(z)dr =1

7 QYHKIUS v UMEET KOHEIHBI MOMEHT OIIPEJIEJICHHOTO MOPSIIKA.
B wactHOCTH, B padore [1] npu mOMOJIHUTEIBHBIX OrpaHnveHusx Ha H, v u g mo-
CTPOEHBI BOJHOBBIE (DPOHTHI JIJIs CJIEJLYIONIEr0 OJHOMEPHOrO (110 KOOpAUHATE) HeJI-

HeﬁHOFO I/IHTera.JII)HOFO ypaBHeHI/IH:
t
(16)  ult,z) = / H(t—7) / o(@ — y)glulr,y))dydr, (t,2) € (~00,T] x R.
—00 R

B pabore [3] mocTpoeHbI 3HAKOIEpEMEHHBIE MOHOTOHHBIE (¥ 110 BPDEMEHHU, U MO KOOD-
JuHaTe) U OrpaHUYeHHbIe pemienus g ypasuenus (1.6). B paborax [1]-[2] ocoGoe
BHUMAaHHUE YJIEJIEHO CJIydaro, Korja byHKims g(u) JOMYyCKAeT CIIeyIoIee IPeCTaB-

JICHUE:
(L.7) glu) =71 —-e"), u=0, y>1,

rje vy — YHUCJIOBOIl Iapamerp. YcjoBue y > 1 Ha3bIBAETCs IIOPOIOBBIM YCJIOBHEM.
IMocneaaee o3navaer, 9ro npu 7y < 1 HEBO3MOXKHO OCTaHOBUTH nHMekmo (cMm. [1]-
21).

B muOromepHoMm (n-mepHoM ) ciydae Korma, dyHkius A(7,X,y) IpeincraBiisercs
B CJIEJLYIOIEM BHJIE:

(1.8) A(r,x,y) = H(T)V(x —y) o (x,y),
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rae

II) V(z) — gernaa dbysxuus 10 KaxkjaoMmy aprymenty, t.e. V(z) = V(|z1], |z2],
o )zal),

II) V € Cy(R™) u cxomares unrerpanst: [ ulj(u)du < 400, j =1,2,3,...,n,
0

Ty (u) = 7

To(u) ::/.../V(zl,u,23,...,zn)dzld23...dzn,

rje
oo
. Vu,za,...,2n)d2s ... dzy,

oo

(1.10)
T (u) ::/... V(z1, ..oy 2n—1,u)dzy ... dzp_1,

a Cpy(R™) — mpocTpancTBO HENPEPHIBHBIX U OMPAHUYEHHbIX (byHKIWmii Ha R"™,
IV) V| [0,4+00) mo z; ma j =1,2,...,n,
A) 1> )\0(X, y) > max{ﬂl(‘yﬂ)a /‘2(|y2‘)7 e ,/4Ln(|yn|)}’ X,y € an
0<d; <pj(u)<1l,uel0,+00), p;(u)1]0,+00)mou,
ull)r_{loo,uj(u) =1, 1-—p; €Li(0,+0), j=1,2,...,n,
B) o € C(R?"), No(x,y) #1, x,y €R™,
ypasaenne (1.1) usyuanoces B HenasHeit pabore A.T. Cepreesa u aBropa (cM. [4]).
BameruMm, 4ro B TOM ciydae, Korga Ao(X,y) = 1 (KoHcepBaTHBHBIN ciydail) u
dynxius g(u) momyckaer npejcrasienue (1.7), ypasrenue (1.1) ¢ ssapom (1.8) obuia-

JIaeT JBYMsl TPUBUAJIBHBIMU (BAKYYMHBIME) DEIIECHUSIMU:

I7Ie HCJIO 1) SIBJISIETCS OJIOXKHUTEIbHBIM KOPHEM yPaBHEHUST
y1l—-e"") =u.

Kak m3BecTHO, BOIIPOC O MOCTPOEHWM HETPUBHAJIBHBIX M OTPAHUYECHHBIX PEIIeHU

2

mexkty Bakyymamu ul = 0 u u? = n B n-mepHom ciayuae (n > 1), Korya B TIpeji-

crasiennn (1.8) dyuxmus Ao = 1 1o cux nop ocrapasicst OTKPLITEIM (eM. [1]-[3]).
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Puc. 1

Hacrosimas pabora nocBsAIeHa HCCIIEI0BAHAIO HEJTMHEHHOTO N-MEPHOI0 HHTEIPAJIb-

Horo ypasHenus (1.1) B cirydae, Korja
(1.11) A(r,x,y) = H(1)V(x—y) x€R" yeR",

rie Gyukiun H u V' ynosiersopsttor coorBercTBeHHO yeousiM (1.4) u I) — I11).
Ipenonaraercs, aro g(u) — BorHyTas Ha HeKoTOpoM orpeske [0, 7] dyHkuums, ymao-

BJIETBOPSIIOIIAST CJIE/YIOMUM YCJIoBUsM (cM. puc. 1):

a) cymecryer npoussoguas 1 < ¢'(0) < +oo Takasi, 910
g9(u) < g'(0)u, we[0,n],

b) g(u) T o u na [0,7], g(0) =0, g(n) =,
¢) cymecTByior ducia € > 0 u ¢ > 0 Takue, 4ro

g(u) > g/(O)’U, - Cu1+€a u € [Oan]

B nacrosimeit pabore MbI 3aiiMeMcsl TIOCTPOEHHEM OIPDAHMYEHHOI'O U HETPUBHAJIb-
HOro penienus Mexky BakyyMamu O u 7) a1 ypasuenus (1.1) ¢ sapowm (1.11), a rakxke
HCCJIeIOBAaHIEM HEKOTOPBIX KavdeCTBEHHBIX CBOMCTB IMOCTPOEHHOIO pelieHust. B KoH-
KPETHO BBIODAHHOM KOHYCHOM OTPE3KE JOKAYKEM TAKKe ¢IMHCTBEHHOCTD pemenus. B
KOHIIE IIPUBEJEM KOHKPETHbBIE IIPUKJIAHbIE IpuMepbl ypasHerus (1.1), 1j1s KOTOpbIX

BBITIOJTHSIIOTCST BCE YCJIOBUs C(OOPMYIUPOBAHHBIX TeopeM. Cile/lyeT OTMETUTh, 9TO U3
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JIOKA3aHHBIX PE3YJIbTATOB, KAK YACTHBIN ciydail, mosmydaercs Teopema O. lukmana

(em. [1], Teopema 6.1) 0 BosTHOBBIX DpOHTAX MJIst OFHOMEpHOrO ypasHeHus (1.6).

2. OBO3HAYEHUS 1 BCIIOMOI'ATEJIbHBIE ®AKTHI

2.1. ®yukuua Jukmana. Paccmorpum coepyromue dynkuuu Jukmana (em. [1]):

oo

(2.1) L;(A) == 4'(0) / fj(x)efmdx, Ae€f0,+00), j=1,2,...,n,
rre
o0
(2.2) /H (x—6;p)dp, z€R, j=1,2,...,n
0
Bzmecy 0; >0, j =1,2,...,n — YUCIOBBIE IapaMeTPhl (HIPAIOT POJIb BOIHOBBIX CKO-

pocreii (eum. [1])), a q)yHKuHH {T};}}—; sanatorea cormacuo dopmymam (1.10).

Huxe mepedncinM HEKOTOpbIe OCHOBHBIE CBOICTBa siiepHbIx dynkuuii {7} (z)

{Tj }?:15

n
j:17

(2.3) Tj(—z) =Tj(z), z € [0,+00), Tj(u) >0, ueR, / T;(u)du =1,
(2.4) Tj(u)ZO,ueR, /fj(u)duzl,jzl,Q,...,n

Otu cBoiicTBa cpasdy cienyoT u3 npejacrasienuit (1.10) u (2.2) ¢ yuerom yesosmit 1)

u IT). U3 (2.3) u ycnosus II1) crenyer Takke, 9ro

(2.5) /uTj(u)du:O, i=12...,n
BameruMm, a0 B cuiy (2.4), (2.5) u yenosuit a),I), I1T), (1.4) umeror MecTo ciieyio-

e COOTHOIIIEHUA:

L;(0) =¢'(0) / Ty(x)dz > /:Fj(x)dx =1,
dLC;A(O) =—¢'(0) / T;(x)xdr < 0

n6o
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:/H(p) /(ij—|—7')Tj(T)d7'dp:Oj/pH(p)dp>O, i=12,...,n.
0 —o0 0

Od4eBuIHO TaKKeE, 9TO
LN _ o [ 22T (e .
e Y (0) / z"Tj(x)e”**dx > 0, (Moxker GbITh 1 +00), j=1,2,...,n.
“o0
13 stux coobparkeHuit HEMEJIEHHO CJEIYeT, ITO
e L;(\) | mo X\ B HekoTOpBIX OKpectHOCTsX Hyns [0,7;], j = 1,2,...,n coor-

BETCTBEHHO,
o dbynkmu {L;(\)}7_, semykisr (Buu3) ma [0, +00) (cm. puc. 2).

Puc. 2

B nanbuetiniem, eciin He 6yIeT OrOBOPEHO NMPOTUBHOE, OyIeM CIUTATH, ITO
(2.6) Li(r;) <1, j=12,...,n.

Torma cormacuo Teopeme Bosmpnamo-Kommu, cymecrsyior wncia o; € (0,7;) Takue,

4q9TO

(27) Lj(O’j):l, j:172,...7n.
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%_y caenyer, aro wncma {0;(\)}}_; onpenens-

13 monoronnoctu dynkmumit {L;(A)} 7

FOTCSI €JIMHCTBEHHBIM 00pa30M.
Yunresasa MonororrocTb (ynkmmit {L;(A)}}_;, a Tarxcke bopmymsr (2.6) n (2.7)

MOZKEM yTBEPXKAATE, 4To Jist Beex 0; € (0,7 — ;) UMEIOT MeCTO HepPaBEeHCTBA
(2.8) Li(6j+0;)<1, j=12... n

Pacemorpum coenyronue BenomoraTenbable GyHKImu (eM. [1]):

(2.9) L;(x) := max{ne”® — MeWiteidT oV zeR, j=1,2,...,n,

rje

(2.10) M >n, §; €(0,min{r; —oj,e0,}), j=12,...,n,

— YHUCJIOBBIEC IIapaMeETPBhI.

U3 onpenenenus ynkuuii {L;(x)}7_; cpasy cremyer, 4To

1
(2.11) Lj(x)ZOHpI/IxZCS—jln%, i=1,2,...,n,
(2.12) L;“'E(az) <plteeliten)r g eR j=1,2,...,n

2.2. IlocienoBaTesbHbIE NPUOJINKEHUsI JJII OJHOMEPHBIX BCIIOMOTAaTEJIb-
HbIX ypaBHeHuil. Hapsiny ¢ ypasaerneMm (1.1) paccMOTpUM CJieyIoIpe OJHOMED-

Hble HeJIMHeiHble NHTer'PaJIbHbIe YDABHEHU THUIIa CBEPTKHU Ha BCell IPAMOIt:

o0
(2.13) ®,(z) = /T}(m—t)g(il)j(t))dt, zeR, j=1,2,...,n,

oo
OTHOCHTEJIbHO MCKOMBIX ynknuit {®;(r)}7_;, rie anpa {fj(x)}?:l 38/JIAI0TCS CO-
riacuo dopmysie (2.2). PacemorpuM cieyiomue nocseaoBaTesbHble IPUOIMKEeHNst

Huxmana (cm. [1]) post ypasaennit (2.13):

<I>§.m+1)(x):/fj(x—t)g(q)y”)(t))dt, m=0,1,2,..., j=1,2,...,n,

rIe B KAUeCTBE HYJIE€BOTO MPUOJIMKEeHNs OepyTCs CIeAyIoIue (OyHKITAN:

;N _ | m 20,
(214) q)] (l’)— { neajm, $<0,~T€Ra j:1a27""n'

TToBTOpSIst AHAIOTHIHBIE pAcCyKIeHus KaK B pabote (1], MoKHO yGeanuThest B JOCTO-
BEPHOCTH CJIEIYIOMNX YTBePK IeHMIIL:
1) <I>§-m)(x) lmom, j=1,2,...,n,

2) /™ (z)tmozmaR, m=012..., j=12..,n
35



X. A. XauarpsH, A. C. ITerpocsau

3) o™ c CR), m=0,1,2,..., j=12...n,
4) upu 5]' € (Oamin{Tj - aj,aaj}) u

1+e
cn' e L (05 + a;)
M > max {”7 2% { g(0)(1 — L;(5; + ;)

UMEI0T MECTO CJeAYIoIne HEpaBEeHCTBa:

o™ (x) > Lj(x), re€R, j=12...,n, m=012...,n

Takum obpaszom, u3 1) —4) cielyer, 9T0 HOCJIEI0BATEIHLHOCT HEIIPEPBIBHBIX (DYHKIUI

{@;m) (2)}°_g, = 1,2,...,n nUMeeT MOTOYEIHBIN IPeJIes IpU m — 00: lim @gm) () =
m—r oo
®;(z), j = 1,2,...,n. Cornacro npezesnbHoii Teopeme B. Jlesu (cm. [5]) dynkuum

{@;(z)}j—; aBrsmoTca pemennavu ypasrennit (2.13), mpiaem u3 1),2) u 4) cenyer,

q9TO0
(2.15) Li(x) < j(z) <@V (2), zeR, j=12...n
(2.16) ®;(z)t mozr maR, j=1,2,...,n.

Tak Kak cBepTKa CyMMHPYEMOW W OTPAHUIEHHOW (PYHKIUI ABJISIETCS HEIPEPHIBHON

dyuximeit Ha R (em. [6]), To B cuity (2.15), (2.4) u3 (2.13) 3akmouaeM, 410
(2.17) ;e CR), j=1,2,...,n.

13 (2.15) u (2.9) crexyer, uto

(2.18) lim ®;(z)=0, ®;€Li(—0,0), j=1,2,...,n.
r—r—00 :
Teneps Haitnem npesenst bynxuumit ®;(z), j =1,2,...,n, korga © — +o0.

B cumy (2.15)—(2.17) MoxKkeM yTBEPXKIATD, YTO CYIIECTBYIOT

lim &;(z)=1; <
x_lf_’r_loo jz) =1; <n,
npudeM I; >0, j =1,2,...,n.
ITocsie nmepexoma k npejeny B obeux gacrax (2.13), korga © — 400, ¢ ydeTom

M3BECTHOTO MPEJIEIbHOTO COOTHOIIEHNST B onepaln ¢cBepTKa (cM. [7]) mosryanm

lj:g(lj), j:1,2,...,n, lj€(0,77j}.

B cuimy ycioBuit a) — ¢) mocisiefiee BO3MOXKHO TOJIBKO TOLJQ, Korga l; = 1, j =
1,2,...,n. Utak, MBI TOJyYIUIN, 9TO

2.19 lim ®;(z) = =1,2,...,n.

( ) Zy oo J( ) m, J < ’
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CoBepiriasi aHAJJOTUYIHBIE PACCYKIICHUS KaK B JOKA3aTEIbCTBE JIEMMBI 2 U3 pabOThI

[8], moxkHO y6eauThCst, ITO
(2.20) n— @, € L1(0,400), j=1,2,...,n.
3. PABPEIIMMOCTB YPABHEHUA (1.1) ¢ aapom (1.11)

3.1. ITocsaenoBaresbHble IpubINKeHUs a5 ypaBHenus (1.1) ¢ sapowm (1.11).

Pacemorpum caenyronue urepanun jgist (1.1) ¢ siapom (1.11):

(3.1)
U7,L+1(t71'1, .. 71771) =
t
= [H@t—7) [ V(i =1, Zn — Yn)9(Um (T, Y1, - -, Yn))dys - . . dyndr,
—00 Rn
n
2% e (@itht), mpu x; +60;t <0, i=1,2,....n
uo(tax17"'7$n) = Jj=1
n, [PU OCTAIBHBIX  (t, L1, ..., Tp)-
CuepBa JIOKaXKeM, ITO
(3.2) 0 <upm(t,z1,...,2,) 4 1wo m.

JleiicTBuTe IbHO, yYUTHIBast TOT (HAKT, UTO

(3.3) g’(o)/Tj(x — )00 (2)ds < 00(2), zeR\RY, j=12..,n

R
(mokazaresnbeTBo (3.3) OCYIIECTBISIETCsT IPSMON [IPOBEPKOM, paccMaTpUBasi CJLydan
z>0u z < 0), oueBugnoe nepaserctso 0 < ug(t, x1,...,x,) < 17, C yIETOM yCJIOBUS

a) u3 (3.1) mas z; + 0t <0, j =1,2,...,n GygeMm umers

t
!/

up(t, 1, ..o, 2p) < 910 / H(t—71)x
n

/V(acl — Y1y Ty — yn)(égo)(yl +60i7)+...+ <I>7(10) (Yn + 0n7))dy; . .. dypdr =
]R'n.

t

(0

— % / H(t—T)/Tl(.’El —yl)@go)(yl +91T)dy1d’7'+
—o00 R

9'(0) ~ N 0) _
= p Hit—71) | To(xn — yn)®P),’ (Yn + 0n7)dyndr =
—0o0 R

! 0 :
_ % / 3 (2) / H(t — 7)Ti(21 + 617 — 21)drdz1+

R —o0
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t

9/(0) 0
- /(I)gl )(zn) / H(t — 7)Th(xpn + 007 — 2p)drdz, =
R —0o0
(0 - (0 -
- 97(1 ) /<1>§0>(21)T1(x1+91t_zl)dz1+. : .+97(1 ) /@5?>(zn)Tn(zn+ont_zn)dzn <
R R
1

< 5(@5(” (21 +01) + ...+ B (2, + O,1)) = wo(t, 21, ..., Tn).

Heorpunareasnocrs dbyukimu uy (¢, 21, ..., &,) Cpa3y ClelyeT U3 HeOTPUIATEIHHO-

ctu dynakuuit H,V u g(ugp).

Ipeanonarast, 910 U, (t, 1, ..., Tn) > 0 1 U (E, 21, .., Tpn) < Up—1 (L, T1, ..., Tp)
npu HeKOTOPoM m € N, u3 MOHOTOHHOCTH (DYHKIMK ¢ U HEOTPHUIATEIbHOCTHU S/ I€PHBIX
dbyuxnuit H u V 6ynem nmersb

t
Um41(t, T1y ooy Ty) < / H(t—7)x

/V(x1 =Yty T — Yn) g Um—1 (T Y1, -+ s Yn))AY1 -+ . dYndT = U (t, 21, ..., Tp).
RTL
Tenepb goKaxkeM, 4TO

1 n
(3.4) U (t, 1, T2, - - -, T —Z (x;+0;t), m=0,1,2,...,

3

rje QyHKIUU {<I> }i_y ABIAIOTCA pemenmAMu ypasHennit (2.13) m obmazaior cpoii-
crBamu (2.15), (2.16), (2.17), (2.18) u (2.19), (2.20).

Hepasencrso (3.4) oueBuiubivM o6pa3oMm BeimoJssercs upu m = 0, ubo umeer
Mmecto (2.15). Ipeanosaras, aro (3.4) BBIIOJHSETCS IIPH HEKOTOPOM HATYPAJbHOM
m € N u yuursiBas nepasencrso Vencena st Boruyroit yHKuu g, B cuiy (2.2),

(2.13) u3 (3.1) nosyunm
U1 (61, ey 2y) > / H(t—71)x

n

1
/V(xl—yl,...xn—yn)g ﬁzq)j(yj—’—eﬂ) dyi ...dy,dr >

Jj=1

1
> - / H(th)/V(xl — Y1, Tp — Yn)g (P1(y1 + 017)) dys . . . dypdT+
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t

1
+ﬁ / H(t—T)/V(l’l—y1,~--$n—yn)g(%(m+92T))dy1---dynd7'+
— 0o Rn

n

t
1
e = /H(t—T)/V(zl—yl,...zn—yn)g(‘bn(yn—|—¢9n7))dy1...dynd7:
— 00 R"
t

— ;_4 H(t — T)]R/Tl(l'l — yl))g ((I)l(yl + 91,7_)) dyldT+

1
+— [ H(t—17) | Ta(z2 — y2))g (P2(y2 + 027)) dyadr + - - - +
o]

1 t
+— H(t - T) Tn(xn - yl))g ((I)n(yn + 9117—)) dyndT =
! [

1 ~ 1 -
= ﬁ /Tl(ﬂﬁl+91L‘—Z1)g(‘1’1(21))d21d7'+' : +ﬁ /Tn(x7L+9nt_Zn)g((I’7z(Zn))danT =
R R

1 n
= Zq>j(xj +0;t).
Jj=1

Urak, u3 (3.2) u (3.4) mosy4aeM IOTOYEUHYIO CXOJMMOCTD IIOCJIEI0BATEIHLHOCTH
{um (t, 21, @) 50 g mlgnoo U (E, 1, .oy ) = u(t, @1, ..., 2y,), IPUIEM TPEIETH-
nas bynkmus u(t, 1, . . ., T,) coracuHo Teopeme B. JleBn ymoBreTBopsieT ypaBHEHUIO
(1.1) ¢ sapom (1.11). U3 (3.2) u (3.4) cieayer TakKe JBYCTOPOHHsISI OIEHKA sl

IIOCTPOEHHOTO PEIEHUS U :

1 n
o Z(I)j(.’lfj + Hjt) < u(t,xl, R ,.Tn) < uO(T,xl, R ,.’I}n),
j=1

(3.5)
te (—oo,T], (z1,22...,7,) € R™

Tak kak u € M ((—o00, T|xR™), H € L1(RT) uV € L1 (R™) (3mecs M ((—oc, T] x R™)

— IPOCTPAHCTBO OrpaHUYeHHbIX DYHKIWMI Ha MHOXKecTBe (—00, T] x R™), To u3 (1.1)

u (1.11), B culy HEPEPBIBHOCTH CBEPKW CyMMUPYEMBIX M OTDAHMYEHHBIX (DYHKIIHIT

clIefyeT, uTo
(3.6) u € C((—o0,T] x R™).
B (3.5) BMecTo nepemenHoii ¢t B3siB t = T, mosayInm

1 n

- Z Pi(x; +60,T) <u(T,xi1,...,2,) <ug(T,z1,...,2,),

Jj=1
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u3 gero B cuy (2.19) u (2.14) cienyer, aro

(3.7) lim  lim ... lim w(T,z1,...,2,) =7.

x1—+00 r2—+00 Ty —+00

Tak kak t € (—o0,T], T < +00, To u3 (2.18) u (2.14) crexnyer, 1UTO

(3.8) lim lim ... lm w(t,z,...,z,)=0.

T1——00 Tg—>—00 T, —>—00
B cuy (3.7) u (3.8) u3 (2.18) u (2.20) MOXKeM yTBEPXKIATH TaK¥Ke, UTO

(3.9)
n—u(T,+o0,...,+00,2;,+00,...,400) € L1(0,400),
u(t, —o0, ..., —00,2;, —00,...,—00) € L1(—00,0), t € (—00,T], j=1,...,n.

I/ITaK, Ha OCHOBE€ BBIIIENU3JIO2KECHHOT'O CIIpaBeIJINBa CJICAYIOIIasad

Teopema 3.1. Iycmo svnoanaromea ycaosus (1.4), I) — IIT), (2.6) u a) — c).
Tozda ypasuenue (1.1) ¢ adpom (1.11) obaadaem nosostcumesvHvmM HEMPUBUAALHBIM
oeparuernvim u Henpepuerom Ha (—oo, T| x R™ pewernuem u(t, x1,...,x,). Boaee

mozo, dannoe pewenue obaadaem donosnumesvhumu ceoticmeamu (3.5), (3.7)—(3.9).

3ameuanue 3.1. Caedyem ommemums, wmo meopema 1 donoansem meopemy cy-
weemeosanua, dokazannot 6 pabome [4]. Jeao 8 mom, wmo e pabome [4] Pyrrxyus

Ao ydosaemeopaem CusbHOMY o2paruderuto: Ag Z 1.

Sameuanue 3.2. Hempyodno ybedumves, wmo 6cecosmoictvie cosuzu pewenus u(t,
Z1y...,&y) (N0 nepemernvim (T1,...,Ty)) MAKIHCE ABAAOMCA PEULEHUAMU YPABHE-
nus (1.1) ¢ adpom (1.11). Jdedicmeumenvno, us (1.1) u (1.11) ¢ nomowwpio samervs

nepemennot 6ydem umemon

t
/H(t*T)/V($1*2179€2*Z27~~~7$n*2n)g(u(77 21481,y 20t Bn))dzr - dzpdT =
— 00 Rn

t
= /H(th)/V(I1+ﬂ1*y1,$2+ﬂ27y2,...,xn+ﬂn7yn)><
0o Rn

xg(u(T,y1, -, yn))dyr - . . dyndT = u(t,z1 + B1, ..., Tn + Bn).

Taxum 06paszom, Mot NOAYUAEM N-NAPAMEMPUYECKOE CEMETCMBO Pewenull uda

ug, . g (1, ) = u(t, X1 4 B, T+ Ba),

20e u(t,x1,...,x,) — ocnosnoe pewenue ypasnenus (1.1) ¢ adpom (1.11), nocmpo-
ennoe npu nomouyu nocaedosamenvroir npubausicenut (3.1), a Bi,...,Bn — npous-

60NDHBLE BEWECTNBEHHDIE NAPAMEMPDBL.
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3.2. EAMHCTBEHHOCTH pellleHus] B ONIPe/IeJIEHHOM KOHYCHOM OoTpe3ke. BozHu-
KaeT eCTeCTBEHHBIN BOIIPOC: ABJIFAETCHA JIX €IMHCTBEHHBIM DeEIlleHNe ’l,L(t7 X) YpaBHEeHUA

(1.1) ¢ aapom (1.11) B KOHyCHOM OTpE3Ke
1 n
E Z CIDj(:cj + Hjt), Uo(t,l’l, veny Zn)

Jj=1

OTBer Ha 3TOT BOIIPOC JaeT CJIeayronad TeopeMas

Teopema 3.2. IIpu ycaosusax meopemvi 1 ypasrerue (1.1) ¢ adpom (1.11) ne moorcem

UMEMD 6osee 00H020 PEULEHUS 8 CACOYIOUEM KAGCCE HENPEPLLEHIT PYHKUUL:

M :={ue C((—o0,T] xR") :

n

1
Ezq)j(xj +0jt) < u(t,ml,...,xn) < UO(t,l‘l,...,J}n)
j=1

Hoxka3zareascrso. [Ipenmnonoxum obparnoe: ypasuenue (1.1) ¢ sapom (1.11) 06-
Jazaer ayMs pemenuayu u, @ € M. CrepsBa, yIuThIBast CJIELyIONIHE IIPOCTHIE HEPa-

BEHCTBA!
L;(z) > ne®’® — Melitoi)e, Li(x) >0, z€eR, j=1,2,...,n,
OIIEHUM Pa3HOCTh

(<I>§»O) (zj +0;t) — @;(x; + Gjt)> e~ (@00 +es) <

J

- ne~@it0i% _ pe=(it0i0% L M ecom xj + 0;t < +In -, -
= | ne(@it0it)(0;+a5) ecm zj + 0;t > - 1n -
J
M, ecmn zj + 0t < 5 In 4%, M 1+5t
< ~Gite) ’ <1n max <> = A,
ne % M, ecim x; + 0t > 5% In - Isjsn A7)

6o ‘
M\
max () ’ > M.
1<j<n \ 71}
Wrak, MBI IOJIy9nIN CJIELYIONIYIO AllPUOPHYIO OLEHKY CBEpPXY:
(0) —(z;+0;1)(8;+0;
(310) (q)] (.’IJ]’ + 9jt) — (I)j({L'j + 9]t)) e (2 +0;t)(95+05) <A< +o0,
T eR, 9j >0, te (—OO,T], j=12,...,n.
Tak xak u, & € M, To B cuiy (3.10) umeem

. LS (040,065 40,
|U(t,.’171,. .. ,.fL'n) — u(t,xl .. 7l‘n)‘ < EAZ@(QCJ"F@]”((SJ‘HTJ)’
Jj=1
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13 KOTOPOTO CJIEAYET, ITO
-1

. sup 3N |
(311) (t,@1,.yTp ) E(—00, T]XR™ e
lu(t,z1,. .. xn) — Gt z1,. .., 25)|} < — < 4o00.
n

C 1pyroit cTOpoHbI, IOCKOJIBKY KOHYCHO# oTpe3ok [0, 7] B cebe comepKuT

1 n
E Z(I)j(l’j + ejt), Uo(l’l, ,IIZ‘n)

i=1
u dyukuusa g obaagaer cpoiictBamu a) — ¢) (cM. puc. 3), To mud u, @ € M umeer

MeCTO CJie/Iyrolnee HepaBEeHCTBO:

(3.12) lg(w) — g(@)] < g (0)]u — @
Py =g
PP S S y=1u
gla@) =" : |
gu(@) §-f -~ A  v=o)
X 5 i a<f =
A Jo(u(a)) — gl ,
1 1 : th[— ) — il étgﬂ:g(o)
- o A\l | [u(x) — a()] .
u(z)  ulx) n

Puc. 3

Takum obpasoM, yuurbiBast (3.11), (3.12), u3 (1.1) u (1.11), 6yxem nmers
¢
ult.ar, o n) =itz <9 0) [ H=r) [Vieylulry)-ry)dydr <
— 00 Rn

n

¢
< ag (0) / H(th)/V(:cl — Yl Ty fyn)Ze(ijrejT)(‘st”’j)dyl...dyndT:

Rn Jj=1

J=1_0

n t
=ag (0> / H(t—T) /Tj(xj — ;)N Wit0im) gy dr —
R
2

4



O PABPEHIMMOCTU OJHOI'O KJIACCA MHOT'OMEPHBIX ...

=ag (0)) / H(t—T)/Tj(xj — 2j +0;m)e 0t dzdr =

J=1h
2/6(6 i+05)z; /H mj +9 t— ij)dpdzj =
i=1g 0
=ayg (O)Z/T(%Jr@ it — 2j)el0itoidy; =
jle

—ag (@3 / (1) ton @00 g~ (Ostoli g —
R

n n
= aZe(‘str”f)(wﬁaft)Lj((; +0;)<a max Li(6; + 0 Ze (03+05)(@;+6;¢)
=1 == i=1
W3 mosy9eHHOI OIeHKH CJIe/IyeT, YTO

(3.13) a<a max L;(6; + o).

<j<n
Tak xak d; € (0, min{eo;,r; —o;}) mus Beex j = 1,2,...,n, T0
(3.14) pi= 113]a<XnL (0; +0j) <1

U3 (3.13) u (3.14) nomygaem, aro o = 0. CiregoBaresnbHo,
u(t,x1,. .., xpn) =0(t,x1,...,2,), t € (—00,T), (x1,...,2,) € R™

Tem cambIM, TeopeMa OJHOCTHIO JOKA3AHA.

Bameuanne 3.3. Caedyem ommemums, wmo ecau nepsvie momermos adep {1 (x)} "

j=1
OMPUYAMEADHDL U CYULLCTNBYIOM WUCAQ T1, T2, ..., Ty (F; >0, 7 =1,2,...,n) maxue,
Ymo Lj(—fj) <1, 7=1,2,...,n, mo mozada cnepsa npu MOMOWYU CACIYOWUL NO-
CAEA0BAMEABHBLT NPUOAUINCEHUTL:
(oo}
o\ (z) = / Tj(x —t)@\™ (t)dt, j=12,...,n,
—00
, ecau r < 0,
o0 (ay=4" =" m=0,1,2,...
ne= %%  ecau x > 0,
(ede Lj(—65) =1, 7 =1,2,...,n) cmpoamca 02paHruverHble PEUEHUA OOHOMEPHBIL

ypasnernud (2.13) (@gm)(a:) > Li(—z), z € R, m = 0,1,2,..., j = 1,2,...,n),

3aMem ONAMYb ¢ NPUMeHEeRUEM UMmepayuornozo npovecca (3.1) dan ypasnernus (1.1)
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(¢ adpom (1.11)) doxaswvieaemcsa cywecmeo8aHUE 02ZPAHUNEHHO20 NOAOHCUMEADHOZO
nenpepvisnozo na (—oo, T) X R™ pewenua u(t, x1,. .., Ty). Jannoe pewerue obaadaem

CACOYOUUMU CBOTICTNEAMU

1) % E ‘i)j(l‘j +(9jt) S u(t,xl,...,xn) S
7j=1

S|

=0

> @ (s + 0,0),
Jj=1

te (—oo,T], (x1,...,2n) €R", 6, >0, j=1,2,...,n,

2de ®;(x) := lim q)(m)(x), i=1,2,...,n,

m—oo 7

2) lim lim ... lm w(T,z1,29,...,2,) =1,
T1——00 To—r—00 Ty —r—00

3) lim lim ... lm wu(t,x1,22,...,2,) =0, Vt € (—o0,T],
xr1—+00 r2—+00 Ty —+00

4) n—u(T,—o0,...,—00,L;j, —00,...,—00) € Li(0,+00),

u(t, +00,...,400,2j,+00,...,400) € L1(—00,0)
no x; dan ecext € (—oo,T), j=1,2,...,n,

5) Pewenue eduncmeenno 6 caedyrouem kaacce dynwryud: IMM* =

Zl (igo) (.Tj + Gjt)}
i=

S|

{u € C((—o0, T] x R™): L1 3~ Di(z; +0;t) <ult,xy,...,xz,) <
j=1

Sameuanue 3.4. Cosepuas aHAN02UNHBIE PACCYAHCOEHUS KAK NPU D0KA3AMENDCMEE
meopemovi 2, dasn nocaedosamenvivix npubausicenud (3.1) moorcrno noayuwums caedy-

WY OUEHKY:

(3.15) O < Qe1p, m=1,2,...,
20e
-1
n
Q1= sup e_(‘sj'i“’jt)(wj-l-@jt) %
(t,21,5ee0Tn ) E(—00, T xR™ =
[ 1 (6,21, oy Tn) = U (b, 21, )]

a wucao p < 1 3adaemesa coenacro (3.14).

U3 onenku (3.15) MeTomoM MareMaTHYECKOW UHILyKIMH JIETKO MOXKHO JIOKAa3aTh,

91O
(3.16) am < app™, m=12....

Takum obpazom, B cuiry (3.16) MOKEM yTBEPKAATH, 4TO MOCIEI0BATEIHLHOCTH (DYHK-

it
-1

e~ 05 toi)(@;+05t) U (t,x), x=(T1,...,2,), m=1,2,...

Qum(t,x) =

<.
i M:
I

SIBJIAIOTCS. PABHOMEPHO CXOJSIIUMUCS Ha MHOXKecTBe (—00, 1] X R™.
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Sameuanue 3.5. 3amemum, wmo npu ycaogusr meopemuv, 1 ypasnenue (1.1) ¢ a0-
pom (1.11) 6 caedyrowem Kaacce HENPEPLIEHOIT PYHKUUT:

o= { s 0<

inf £,%) < f(t,x) <, t € (—00,T], x € R"
e F00 S ) S e (o, T) xR

umeem moavko 00Ho mpusuasvhoe pewerue u(t, x1,...,xT,) = 1.

Zleticmeumenvho, ecau 0003HaHUMDb “epe3d

= inf u(t,x) > 0,
(t,x)€(—o0,T]xR™

mo u3 ypasnernus (1.1) ¢ yuemom (1.11), (1.4), (1.9) u monomonrocmu Gyrrkyuu g

na ompesxe [0,m] 6ydem umems

t
w(t, X1,y Ty) > / H(t—7) / V(x1—y1, 22—Y2, - - s Tn—yn)g(a)dys ... dy,dr = g(a),

omxyda, 6 wacmmocmu, caedyem, wmo « > g(a). Ho, ¢ dpyeoli cmoponvl, 6 cuiy

goenymocmu PyHKyuu g u ceolicms a) — ¢)
gla) > a

uoo a € (U,n]). Caedosamenvro, gla) = «. 1lak kax o € (U, u g — 602Hymaa
01 0 Caed Tt 0

bynryua na ompesxe [0,n], mo o = n. pamoti nposepkoti moxrcho ybedumves, wmo
u = 1 ydosaemeopsem ypasruenuto (1.1). Taxum obpasom, ecau u € P u asasemcs

pewenuem ypasuenua (1.1), mo u = n.

4. TIPMJIOXKEHUE

Hike npuseem npukiiaanbie TpuMeps! saepubix dynknuit H, V' u neauneitHoCTH
g, JJ1sl KOTOPBIX BBIIOJHSAIOTCH BCE YCJIOBUA JIOKAZAHHBIX TEOPEM.

B MaremaTnueckoii Teopun reorpaduyecKoro pacipocTpaHeHUs SIUICMAN BO3HH-
KaloT HeJUHelHble nHTerpaibible ypasuenus suga (1.1) ¢ aapom (1.11), B KoTOpBIX
dyuxun H u V' ponyckaer caemyronue npejacrasiaenust (em. [1]-[2]):

—aT 1 —(z2+z2)
(41) H(r)=ae ", 720,a>0, n=2, V(z1,20) = —e ¥17%2) 2z 29 € R,
™
a HeJIMHEeHHOCTDb g(u) UMeeT BUL:
150 —u
(4.2) gluy=—0—-¢€e""), u>0, >0, Sy>0.
a
B Teopun reorpaduueckoro pacupocTpaHeHHs SIUAEMUNA HEPABEHCTBO
a
(4.3) — <1

wSo
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HA3BIBAETCS TIOPOTOBBIM YCJIOBAEM: 9TO KPUTUIECKOE TUCJIO 3aParKEeHHBIX JIUI, BHIIIE
KOTOPOTO 3IHIEMUIO HEBOZMOYKHO OCTAHOBUTD.
Ha sTom mpumepe ybeaumest, 9TO BCe YCJIOBAS TEOPEM 1 M 2 BBIOJHSATOTCSI.
OueBuanbiM 06pa3oM npuBeeHHble GyHKIun H 1 V' yIoBIeTBOPSIOT yCIOBHAM
(1.4), I)—11I). 13 noporosoro yciosusi (4.3) cpasy cielyer, 9410 it GyHKIMU BUIA
(4.2) cymecrByer

¢ wSo
g0)=y=—>1
a
Yoeaumcest, 9TO
S
g(u) < i} , u>0
a
JleiicTBUTEIHHO, TIOCIEHEE HEPABEHCTBO CPa3y CJELyeT U3 CJIEAYIOIEr0 N3BECTHOTO
1 S
HepageHncTBa: e % > 1—wu, u € R. Tak kak ¢ (u) = B0 e 0, To dyukuus g(u)
a

Gyaer Boruyroii. g dyakuuu suga (4.2) 1poBepuM Terepb HEPABEHCTBO

(4.4) glu) > g/ (0)u — cul™ u>0,
ITocnennee paBHOCUILHO HEPABEHCTBY
S S
(4.5) M(1 —e ") > 20, cute, u>0.
a a
Ilpue=1, c= ”S 0 JaHHOEe HePaBEHCTBO IPUMET CJIeLyIOMuil B
u?
(4.6) 1—6_“2u—?, u > 0.

Hoxkaxxem nepasencrso (4.6). Paccmorpum dynkiumio
w2
X(u)zl—e‘“—u—!—?, u > 0.
Bamerim, aro x(0) = 0, x (u) = e —14u > 0, u > 0. Ciegoparensuo, (4.4)
BBIIIOJTHACTCS.
ITpoBepum Tenepsb BbinoHEHUE yeaoBus (2.6) s saepubix dyunkimit Buga (4.1).

Bo-nepsoix 3amernym, uro Torga Gyuxmuu {71 (x)},=1,2 UMEIOT clemyomuii BUm;

1 2
Tl(l') = TQ(I) = ﬁeim , T € R

U, cJleoBaTesbHo, B cuity (2.2) umeem

L;(\) = g (0) / Tj(z)e  dx = 150 / e /H (x —6;p)dpdx =
a
—oo —00 0

SO /e*“p / e~ (z=6;p) e NMdxdp = L/e (a+X0; pdp/ —F oAz,
7T \f
0 0
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[ee]
_ So \2/4 —(HN2? g, S0 324
_(a+)\9J)\/7?e ¢ Z_a+>\9j6 ’
,USOQ/\ /4
Badukcupyem napamerpst {0;}j—1,2, i, a, Souucciaegyem bynxmun Lj(\) = PSR
J
S dL;(\ Soe /4 (aX + A\20; — 26,
j = 1,2. Bamernm, uro L;(0) = % >1m d)(\ ) — H=oc <Z+—;0 )
—a — ,/a2+892 —a+ ,/a2+892
Crenosarensuo, dyukuuu L;(A) | mo A ma
\/a 2_q
j=1L2mur;:= %iej SIBJISTIOTCS TOUKaMy MEHUMyMa QyHknumit L;(A), j =1,2.

Teneps wucia {6;},=1 2 BoIOEpeM TaK, ITOOLL
Lj(Tj) <1, 5=1,2

Wcnonp3ys caemyioliee MpocToe HEPABEHCTBO:

<1/a2+89§—a>2
e <el/

46

nmMeemM

21Spet/?
a+/a?+ 867

1/2 172 _
9j>¢“506 (’“\@S‘)e 9 o1,

u6o 1Sy > a (CM. IOPOroBOe YCJIOBHE).

Lj(?”j)< <1

pu

B komnIe npusesiem ene oJuH npuMep HejauneitnocTu g(u), UMEoIeil IpuIoKeHre

B TeOpHHU reorpaduuecKoro pacipoCTpaHeHNsl I IeMUN:
g(u) = yu -y, uw>0,
rige v > 1 — uucnoBoil mapaMerp.

O4eBHIHO, YTO €CJIM B 3TOM CJIydae B KadecTBe 7) BbIOpaThb 1) = %71, To g 1 Ha
[0,7], g(0) = 0, g(n) = n, g — BormyTas dbyukuusa ma orpeske [0,7], ¢'(0) = v >
1, ¢ =1, € = 1. 3nech TaxkxKe BOJIHOBBIE cKOpocTd {6} =12 MOXKHO OHOOpaTh TaK,
9TOOBI BBIIOJIHSIINCE ycyioBus (2.6).

Bripaxkaem 6,1aromapHOCTh PEIEH3EHTY 38 MOJIE3HbIE 3aMEIAHNS.

Abstract. A multidimensional integral equation of the convolution type with concave
nonlinearity is investigated. This equation meets in the mathematical theory of the

geographical spread of the epidemic. The combination of well-known multidimensional
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methods and operator methods for constructing invariant cone segments for such
operators with methods of the theory of integral operators of convolution type and
limit theorems of function theory allow us to prove the existence of positive bounded
solutions for such equations. The asymptotic behavior of the constructed solutions is
also studied. In a concretely chosen cone segment, the uniqueness of the solution is

also proved. Specific applied examples of these equations are given.
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Abstract. In this paper, the boundedness and compactness of embedding from Campanato
spaces L, » into tent spaces Tp, s(u) are investigated. As an application, we give a characteri-
zation for the boundedness of the Volterra integral operator J; from L, \ to general function
spaces F(p,p — 1 — A, s). Meanwhile, the operator I, and the multiplication operator My from
Ly to F(p,p—1— X, s) are studied. Furthermore, the essential norm of J; and I from L, »
to F(p,p—1— A, s) are also considered.

MSC2010 numbers: 30H99; 47B38.

Keywords: Campanato space; Volterra integral operator; Carleson measure.

1. INTRODUCTION

Let D denote the open unit disk in the complex plane C and JD its boundary.
Let H(D) denote the space of all analytic functions in D. For 0 < p < oo, the Hardy
space HP is the set of all f € H(D) satisfying (see [I])

191 = swp [ 17GOPdC < oc.
0<r<1.Jap
For 0 < p < oo and a > —1, the weighted Bergman space, denoted by A%, consists
of all f € H(D) such that

1A%, = (e + 1)/D|f(2)|”(1 — |2*)*dA(2) < oo,

where dA is the normalized Lebesgue area measure in D such that A(D) = 1. When
a =0, AP is the Bergman space, denoted by AP. As usual, H*° denotes the space
of bounded analytic function.

In 1996, Zhao [26] introduced the general family of function spaces F(p,q, s).
Namely, for 0 < p < 0o, =2 < ¢ < 00, 0 < s < 00, the space F(p,q, s) consists of

1This work was supported by NNSF of China (No. 11801250, No.11871257), Overseas
Scholarship Program for Elite Young and Middle-aged Teachers of Lingnan Normal University,
the Key Program of Lingnan Normal University (No. LZ1905), and Department of Education of
Guangdong Province (No. 2018KTSCX133).
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functions f € H(D) satisfying
£ 1.0y = [FOF +sup [ [f(2)P(L—|2*)9(1 — |oa(2)]*)*dA(2) < o0,
P4 aeD JD

where 0,(2) = {== is a Mdbius transformation of I interchanging a and 0. It is

known that, for p > 1, F(p, ¢, s) is a Banach space under the above norm. Also, it
is known that F'(p, ¢, s) contains only constant functions if s + ¢ < —1. Thus, it is
natural to study F(p, g, s) spaces under the assumption that s+ ¢ > —1. F(p, p,0)
is just the Bergman space. When p = 2 and ¢ = 0, it gives the Q5 space (see [22]).
Especially, Q1 is the BMOA space, the space of analytic functions in the Hardy
space whose boundary functions have bounded mean oscillation. When s > 1, Q;
is the Bloch space, denoted by B, which is the space of all f € H(D) for which

1flls = 1f(0)] + Slelg(l — 2P)If' ()] < o0.

The little Bloch space By, consists of all f € B such that lim|,_,;(1—|z[?)|f'(z)| = 0.
See [I3] 26] for more results of F(p,q,s) spaces.

Let I be an arc of 9D and |I| be the normalized Lebesgue arc length of I. The
Carleson square based on I, denoted by S(I), is defined by

S(I)z{z:reieeD:1—|I|§r<1,ew€I}.

Let 0 < p < 00,0 < s < oo and p be a positive Borel measure on D. The tent space

Tp,s () consists of all y-measurable functions f such that

1
flz :up—/ F(2)Pdu(z) < oco.
17150 = 00 o [ 15t

Let p > 1 and 0 < A < oo. We say that an f € HP belongs to the analytic

Campanato space L,y if (see [25])
1
11, =110+ (s s [170 - 5P D) < o,
where
fi= [#@5 rcom.

When p = 2, the space L,y is called the Morrey space, which was studied by Wu
and Xie in [20]. When A =0, £, o is just the Hardy space H?. L, 1 is the BMOA
space. Recently, some fundamental function and operator-theoretic properties on
L, » have been investigated in [5] [10, 14} I8, 19, 20, 21}, 24| 25]

Let f,g € H(D). The Volterra integral operator J, and the integral operator I,
are defined by

Jof(2) = /OZ g (w)f(w)dw, I,f(z)= /OZ g(w) f'(w)dw, zeD,
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respectively. The multiplication operator M, is defined by M, f(z) = g(2)f(2), f €
H(D), z € D.

The operator J, was introduced by Pommerenke in [I2]. Pommerenke showed
that J, : H> — H? is bounded if and only if g € BMOA. Furthermore, in [3],
Aleman and Siskakis proved that J, : H? — HP is bounded if and only if g €
BMOA. In [4], Aleman and Siskakis showed that J, : AP — AP is bounded if and
only if ¢ € B. For more information on Volterra integral operators, see [2] - [9],
[11), 14} 15, 23] and the references therein.

Recently, Li, Liu and Lou in [5] proved that J, : Loy — L2 x is bounded if
and only if ¢ € BMOA. In [I8|, Wang generalized the result in [5] and proved
that Jy : L, x — L21-2/p(1—») is bounded if and only if g € BMOA under the
assumption that 2 < p < co and 0 < A < 1. An interesting and nature question is

to find an analytic function space X for which
Jg 1 L, — X is bounded if and only if g € B.

In this paper, we prove that J, : £, x to F(p,p—1—A\,s) is bounded if and only
if g € B. Moreover, we show that the identity operator i : £, x — T, () is bounded
(resp.compact) if and only if p is a s — A + 1-Carleson measure(resp. a vanishing
s — A+ 1-Carleson measure) under the assumption that 2 < p < 00,0 < A < 1 and
A < s < 0o. The essential norm of the operator J is also investigated. Furthermore,
we study the boundedness and compactness of the operators I, and M, from L, »
to F(p,p—1—\,s).

Throughout this paper, we say that A < B, if there exists a constant C' such
that A < CB. The symbol A =< B means that A < B < A.

2. EMBEDDING FROM £, y TO TENT SPACES

An important tool to study function spaces is Carleson type measure. For s > 0, a

positive Borel measure p on D is said to be an s-Carleson measure if sup;c 5p (lsll(f)) <

oo. For s = 1, we get the classical Carleson measures (see [I]). If 4 is an s-Carleson

measure, then we set

S(I
lalle = sup A5
cop |

p(S(ID)
1l

known (see [25]) that u is an s-Carleson measure if and only if

sup/D(l_m'Q)sd,u(z) < 0.

aeD Jp |1 —az|?s

If lim7) 0 = 0, then g is called a vanishing s-Carleson measure. It is well

o1
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Moreover,

(2.1) sup U(S(SI)) xsup/ wdu(z).

rcon || acD Jp |1 —az|?*

Now we are in a position to state and prove the main results in this section.

Theorem 2.1. Let 2 < p< o0, 0 <A<, A\<s < oo and u be a positive Borel
measure on D. Then the identity operator i : L, x — Tp.s(1) is bounded if and only

if wis a (s +1— X)-Carleson measure.

Proof. Assume that ;1 is a (s + 1 — A)-Carleson measure. Let I be any arc on 9D

and a = (1—|I|)e®, where €% is the midpoint of I. Let f € £, 5. From [I8, Lemma

2.5], we get
|f(a/)| < ||fH£p,)\ — Hf”frpA .
T—la) g
Then
1 » 1 1
d < Pq - Pq,
T fo FOPE) S e [ r@Pan) + g [ 156 = St
=M+ N.
It is obvious that
< B(S)

LA S S P P
S TR £z, S 1Az,

Now we turn to estimate N. The estimate will be divided into two cases.

Case 1: s — \ > 1.

By the assumed condition and Theorem 7.4 in [27], we know that the identity
operator i : A” |\ | — LP(dp) is bounded. Then

[ e f@r,
NA/S(I) 1 —az|* dp2)

ey [ HE - f@Pa Py
<oy f |1iaz|3,m du(2)

f(z)— )P(L—|a
|a| 1 )\/| 1 |3(A+5 |p| ) dp,(Z)
—GZ

P

S )P — sA—
g 1 )\/ | Z |1 a2|3( >\+s|a| ) (1 o |Z|2) A 1dA(Z)
5 1 )\/ |f |1 ~ |:§|14_ |a| ) dA(Z)

= (1 - [ / 1 0 0a(w) — f(a)PdA(w)
S [ Ifoa(O) - f@Pdc < I, , < .
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The last second inequality is come from [25] Theorem 1].
Case 2: 0 <s—A<1.

Since H? C A? |, we have
NPy [ 1) - f@Pdute)
S(1)
_ P _ 2\2
= (1 _ |a|2)2—s/ |f(Z) f(a’>| (1 ‘a’| ) du(z)
S(I)

|1—(_zz|4
|a| / |f ai|4 ‘a’| ) (1_|Z|2)s—>\—1dA(Z)

(1= lal) / |f 0 ga(w) = f(@)P(1 — |oa(w)|?)* " dA(w)
< (1= laf?)'=2 /D |f 0 ga(w) = fl@)P(1 —[w]*)* " dA(w)

S~ laf)™ /6D |fooa(C) = fla)[PdC S I fIIZ, , < oo
Combining the estimates M and N, we conclude that the identity operator 7 :
Ly x — Tps(p) is bounded.
Conversely, suppose that the identity operator ¢ : £, x — Tp.s(1t) is bounded.
For a € D, let

A—1
(L~ a5
2.2 ()= A D.
(2.2 @)= ST e
By [18, Lemma 2.3|, we have that f, € £, x with sup,cp [|fallz,» S 1. Fixed an

arc I C OD. Let €? be the center of I and a = (1 — |I|)e*®. Then
[1—az|=<1—a| = |I|, |fa(2)I" =<M"Y,

whenever z € S(I). So

u(S(I 1 ]
|1|(+()) BTiE /sm [fa(2)Pdu(z) < N fall7, ) < o0

Consequently, p is a (s + 1 — A)-Carleson measure. O

Theorem 2.2. Let 2 <p <00, 0 <A< 1, A<s < oo and p be a positive Borel
measure on D such that point evaluation is a bounded functional on T, s(u). Then
the identity operator i : L, x — Tp (1) s compact if and only if v is a vanishing

(s — A+ 1)-Carleson measure.

Proof. Assume that p is a vanishing (s — A + 1)-Carleson measure. It is clear that
wis a (s — A + 1)-Carleson measure. Hence i : £, x — T, s(p) is bounded. For

0 <7 <1, let x{z:|z|<r} be the characteristic function of the set {2 : |2 < r}. From
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[6] we see that lim, .y || — ptr||s—xq1 = 0, where dpr = X{z:)2)<rdp- Let {fi} be a
bounded sequence in £, 5 such that {fx} converges to zero uniformly on compact
subsets of D. We have

]. P ]- z p z i P P i 5
IS/SU)M Pdu(z) < |I/ 1(2) dur()+|l|s/5(])|fk( Wi — 1)(2)
1

< T/ () Pdpr (2) + 1 = pells— 2l Fellz,
1l° Jsm *

1
T

as 7 — 1 and k — oo. Therefore, limy o || &7, () = 0, which means that the

/ Fr(2)Pdpin(2) + I — tirloonss = O,
S(I)

identity operator i : £, x — T s(p) is compact.

Conversely, suppose that the identity operator ¢ : £, x = T, s(1t) is compact. Let
{I},} be a sequence arcs with limy_, |I;| = 0. We denote the center of I}, by €%
Set ax = (1 — |Ix|)e?* and

(1— a5

It is easy to check that { f;} is bounded in £, » and { f } converges to zero uniformly

z € D.

on compact subsets of . Then limy o || f&||7, . (u) = 0 by the assumption. Since
A1 A1
[fe(2)] = (1= lax) 7 = L] 7,
when z € S(Ii), we obtain

/’L(S(lk)) 1 / D p
= f du(z) <||f y 0, k— oo,
|Z-k|5,,\+1 “—kls S(Ik)| k(2)| ( ) || kH

which implies that p is a vanishing (s — A 4+ 1)-Carleson measure. O

3. BOUNDEDNESS OF Jg, I; AND M,

In this section, via the embedding theorem (Theorem, we provide a characterization
for the boundedness of Volterra integral operator J, from £, 5 to F(p,p—1—\, s).
We also study the boundedness of the operators I, and M,.

Theorem 3.1. Let 2 < p <00, 0 <A< 1and A < s < 0. If g € H(D), then
Jg: Ly — F(p,p—1—M\,s) is bounded if and only if g € B. Moreover, ||J4| =< |95

Proof. Let g € B. Using the equivalent norm of Bloch function (see [26]), we obtain

lglls = Sup/ |9 ()P (1 = [2[)P72(1 = |oa(2)[?)* 1 dA(2)

ag s—A+1
—sup [P R () aa

az|?

pg(S(1))

- 1 / 2\p—1+s—X\ -
< sup et [ SO PP AR = o EESE,

1com |1*
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which implies that dpuy(z) = |¢'(2)[P(1 — |2|2)P~ 57 AdA(2) is a (s — A+ 1)-Carleson
measure. By Theorem the identity operator i : £, x — Tp, s(11g) is bounded. Let
f € L, x. We deduce that

1o W =500 [ FGIPIG P 227120 = o)A ()
a€D JD

a2\ ¢
=swp [ 7P P - (1) dac)
1 p
= sup oo / )

WAIE- oy < Nitgllsoria 712, = NgIBIAIE, | < oo.

That is, J, : L, x = F(p,p —1— A, s) is bounded and ||J4|| < |95
Conversely, suppose that J, : £, — F(p,p —1 — A, s) is bounded. For any

a €D, let f, be defined as in (2.2)). Then f, € £, x and ||fallz, , S 1. Thus,
g fall Po.p—1-x8) < N gl [ fallz, n S [ Tgll-
By Lemma 4.12 of [27], we have
ool [ 1 p Ct 2 0 a2 o)A
allF(pp—1-x S) = g | az|p a
(1= JaPpr (1 = a2y
dA
/ l9'( [1 —@z|2stPp (2)
1— 2\p—1+A+s 1— 2\p—1—XA+s
o[ ()‘,x ot e
D(a,r) |]' —CLZ| stp
Z 19" (@)P(1 = |a?)P.
Hence, for any a € D,
9'(@)|(1 = |a]*) S g fallppp1-29 S 1]l
which implies that g € B and ||g|[5 < || J4]]- O

Theorem 3.2. Suppose that 2 <p <00, 0<A<l<s<xoorp=2,0<A<1
and A < s < oo. If g€ HD), then I, : L, x — F(p,p—1— A, s) is bounded if and
only if g € H*®. Furthermore, ||I4|| < ||g|| e

Proof. Assume that I, : £, x — F(p,p — 1 — A, s) is bounded. For any a € D, set

-1
hy = % It is easy to see that h, € £, x and sup,¢cp [|hallz, » S 1. Hence

a(l—az) P~

Hghall ppp-1-x.5) < gl 1Pallz, » < [Hgll-
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Lemma 4.12 of [27] gives

I h P > p(]‘ — |a|2)p+>\—1 1— |22 p—1-—X 1— 2544
|| g aHF(p,pflf)\,s) ~ D'-g(z)‘ |1—@Z|2p ( |Z| ) ( |J¢l(z)| ) (Z)

p<1_|a‘2)p+A_1 _ 22 p—1-X/q _ o (2 2\s p
2 [ o e (T o)) AG)

Z lg(a)l”,
which implies that g € H* and ||g||g~ < ||14]|-

Conversely, suppose that ¢ € H*. First we consider the case 2 < p < o0,
0<A<1l<s<oo. Let fe L, Then by [18, Lemma 2.4],

11z,

If'()IF < W.

Combined with Lemma 3.10 of [27], we have

T / PP = 2P A1 = Jou(2)?) dA(2)

éHm@mHﬂ%ngwp/fl—vaﬁa-qaaaﬁydA@)
acD JD

(1= |eP)*2
11—z

< Nl 111, , sup(1 = faf)* [ dA:) (s>1)
acD D

< llglty 112, ..
Thus, I, : Ly » = F(p,p—1— A, s) is bounded and ||I,|| < ||g|| e

When p=2,0< A< 1and A < s < co. From above, we have

o s < ol sup [ 170 = 220 = o) P dAC)
< Nl sup [ 7GR 22 = ()P dAG)
acD JD

1
S llgllFre sup ﬁ/ IF' ()P = [21*)dA(2) < llgllzr I F11Z, .-
rcan 11 Jp

The proof is complete. O
Using Theorems |3.1] and we get the characterization of the boundedness of
the multiplication operator M, : £, x — F(p,p—1— X, s).

Theorem 3.3. Suppose that 2 <p <00, 0 < A<I<s<xorp=2,0<A<1
and A < s < oo. Then My : L, x — F(p,p — 1 — X, s) is bounded if and only if
ge H™.

Proof. Assume that M, : £, x — F(p,p —1 — A, s) is bounded. Let h € F(p,p —
1—X,s) and b € D. We have (see [26])
||h||F(P’p717)\,s)
(1= [p2) 5
56
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and hence

1Al F(pp—1-x,s
[h(b)] S =,

(1 —1[o]*)"7
For any a € D, let f, be defined as in (2.2). Then {f,} is bounded in £, . By the

assumption we see that M, f, € F(p,p—1— A, s). Hence

|M f (Z)| < ||Mgfa||F(p7P—1—>\75) < HMQH ||faH£p,>\ < ”Mg”
gla\Z)I S > [ESRIN
(1—1z?)> (1—=1[z)> (1—=12?)

1—X
P

which implies that

1—|af

(1-az)"t 5

P I7A
I
P

(o) g —IMall
P 0

By the arbitrariness of z,a € D, let a = z, we obtain that g € H* and ||g||lg~ <
[[Mg]|.
Conversely, assume that g € H*. It follows from Theorems [3.1] and [3.2] that

Jg: Loy = F(p,p—1—A\s) and I;: L, — F(p,p—1—A,s)
are bounded. So by the following relation
Jof +1f = Myf — f(0)g(0),

we see that My : L, x — F(p,p—1— A, s) is bounded. a

4. ESSENTIAL NORM OF J, AND I,

In this section, we give an estimation of the essential norm of J, and I,. First,
let us recall the definition of the essential norm of a operator. Let X and Y be
Banach spaces and T : X — Y be a bounded linear operator. The essential norm
of T: X =Y, denoted by ||T||c,x—v, is defined by

ITlle.xoy = iréf{HT — Sllx>y @ S is compact from X to Y}.
Lemma 4.1. [I7] If f € B, then

limsup(1 — |2[*)|f'(2)| = limsup [/ = fr|s.
r—

|z|—1

Here f(2) = f(rz), 0 <r <1,z € D.

Lemma 4.2. Let 2 <p<o00,0<A<land A<s<oo. If0<r<1andgcé€DB,
then Jg, : Lpx — F(p,p—1— X\, s) is compact.
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Proof. Let {fx} be a bounded sequence in £,  such that {f;} converges to zero

uniformly on compact subsets of D and supy, || fx|lz, , < 1. Then

A —

1o il pm1-,0) < 5D /D fe(2)Plan()[P(1 = 212712 (1 = |oa(2)[?)*dA(2)

3 @”gnﬁgzyai‘éB/D )P (L= [P 72(1 = foa(2) ) dA(2)

S gl [IAGIP0- =Rpaa

p p
AT

< (1_742),)/]1)(1— |2[*)P2dA(2).

By the dominated convergence theorem, we get the result. ([l

Theorem 4.1. Let 2 <p<o00,0<A<1and A < s <oo. Ifg € HD) such that
Jg: Ly — F(p,p—1—\,s) is bounded, then

”Jg||e,£p,,\—>F(p,p—1—)\,S) = limsup(l - \z|2)|g’(z)|
|z]—1

Proof. By Lemma .2} J, : L, — F(p,p—1— A, s) is compact. Hence

||Jg||e,£p,xﬁF(p,pflf>\,8) < ||J9 - JngEP,A%F(p,pflfk,S)
= ”']g—gr”Ep,x—)F(p,pflfA,s) = Hg - gTHB'

Using Lemma we have

[ glle.cp P @p—1-xs Slimsup|lg — g.ll5 < limsup(l — |2/*)[g'(2)]-
r—1 |z]—1
Next we prove that
1 Tglle, 2y 3= F(pp—1-2,8) 2 limsup(l — |z[*)|g"(2)].
|z]—1

Let {ay} be a sequence in D such that limy_, « |ax| = 1 and fj, be defined as in (2.3).
Then {fi} is bounded in £, x and converges to zero uniformly on each compact
subset of D. For any given compact operator S : £, x — F(p,p —1— A, s), by [16]

Lemma 2.10] we have limy_.oo [|S x|l p(p.p—1-1,5) = 0. Then
lJg = Sllc, rsFpp-1-2s) 2 lilrcﬂ sup [|(Jg — S) frllP(p.p—1-x.5)
— 00

Ztimsup (17, fell 0130 = IS Fellrp1-2.0)
—00

=

> lim sup ( / )Pl ()P = |27 - |aak<z>|2>SdA<z>)

k—o0

>limsup(1 — |ax|?)|g’ (ar)|,

k—o0
which implies the desired result. [
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Using Theorem 4.1 and the well-known result that 7': X — Y is compact if and

only if [|T'||e,x»y = 0, we easily get the following corollary.

Corollary 4.1. Let 2 < p<oo, 0 <A< 1land A < s < oo. If g € HD), then
Jg: Lpx— F(p,p—1—A,s) is compact if and only if g € Bo.

Theorem 4.2. Suppose that 2 <p <00, 0<A<1l<s<xoorp=20<A<l1
and A< s<oo. Ifge HD) and I, : L, x — F(p,p—1— X, s) is bounded, then

Mglle.cpn—Fpp—1-25) = 1gllme=-
Proof. First, Theorem [3.2] gives

Hglle.cpn—rp-1-29) = WE g = Sz, s s r@p-1-25) < MHglle, s r@p-1-25) S 9l
Now we prove that

HI_l]||e,£p,>\—>F(p,p—1—)\,s) 2 ||g||H°° .

Let {ax}, {fx} and S be defined as in the proof of Theorem Since S : Ly —
F(p,p—1-=X, s) is compact, by [16, Lemma 2.10] we get limg o0 | S fe|| F(pp—1-2,5) =

0. Hence,
11y = Sllz, xsFpp—1-rs) 2 msup[[(ly = S) fell ppp—1-x.9)
k—o0

Z timsup (gl o120 = 1S il ppm1-3.)
—00

= limsup ||y full F(p.p—1-2,5)-
k—o0

Similarly to the proof of Theorem [3.2) we get |1y fi |l F(p.p—1-x,s) = |9(ax)|, which
implies the desired result. O

Using Theorem 4.2, we easily get the following corollary.

Corollary 4.2. Suppose that2 <p < oo, 0<A<Il<s<ooorp=2,0<A<1
and A < s <oo. If g€ HD), then Iy : Ly — F(p,p—1— A, s) is compact if and
only if g = 0.

Remark. We conclude the article with a remark. There is a class of Mobius
invariant spaces that are closely related to the Bloch space and BMOA, namely,
the Qs space. Let 2 <p<o00,0< A< 1and0< s < 1. An interesting and nature

question is to find an analytic function space X for which

Jg 1 Lpx — X is bounded if and only if ¢ € Q.
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OPERATORS IN ANISOTROPIC WEIGHTED SPACES IN R"
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Abstract. We study the Fredholm property of semielliptic operators in anisotropic
weighted spaces in R™. In this paper necessary conditions are obtained for fulfillment
of a priori estimates for such operators. Necessary and sufficient conditions are obtained
for the Fredholm property of semielliptic operators with variable coefficients that have

certain rate at infinity.

MSC2010 numbers: 35H30; 47A53.
Keywords: Fredholm property; semielliptic operator; a priori estimate; anisotropic
weighted space.

1. INTRODUCTION, BASIC NOTIONS AND DEFINITIONS

This paper studies the Fredholm property of semielliptic operators with variable
coefficients in anisotropic weighted Sobolev spaces in R™. The class of semielliptic
operators is a special subclass of hypoelliptic operators which contains elliptic,
parabolic, 2b—parabolic operators, etc. (see [I]). The analysis of the Fredholm property
of semielliptic operators in Sobolev spaces in R™ has certain difficulties related to the
facts that Fredholm theorems for compact manifolds cannot always be used in this
case and characteristic polynomials of semielliptic operators are not homogeneous
as in elliptic case. The Fredholm property of such operators has been a subject of
interest for many authors.

The Fredholm property of elliptic operators in special weighted spaces is studied
in the works of L.A. Bagirov 2], R.B. Lockhart, R.C. McOwen [3] 4], E. Schrohe
[5] and others.

L.A. Bagirov [6], G.A. Karapetyan, A.A. Darbinyan [7] and A.A. Darbinyan,
A.G. Tumanyan [8, @] studied the Fredholm property of semielliptic operators in
anisotropic weighted spaces. In G.V. Demidenko’s works [10, 1] the isomorphism
properties are obtained on the special scale of weighted spaces for quasi-homogenous

semielliptic operator with constant coefficients.

IThis work is supported in part by Science Committee of Ministry of Education and Science
of Armenia and Russian Foundation of Basic Research under Thematic Program no. 18RF-004.
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In this work necessary and sufficient conditions are obtained for the Fredholm
property of semielliptic operators with special variable coefficients acting in anisotropic
Sobolev spaces with certain weight functions. The classes of considered operators

and the weight functions are extended compared to the ones from the works [8] [].

Definition 1.1. A bounded linear operator A, acting from a Banach space X to a
Banach space Y, is called an n—normal operator, if the following conditions hold:
(1) the image of operator A is closed (Im(A) = m> ;
(2) the kernel of operator A is finite dimensional (dim Ker(A) < 00).
An operator A is called a Fredholm operator if conditions 1-2 hold and

(3) the cokernel of operator A is finite dimensional
(dim coker(A) = dim Y/ Im(A) < o0).

The difference between the dimension of the kernel and the cokernel of operator

A is called index of the operator:
ind (A) = dim Ker(A) — dim coker(A).

Definition 1.2. For a bounded linear operator A, acting from a Banach space X to
a Banach space Y, bounded linear operator Ry : Y — X and Ry : Y — X are called
respectively left and right regularizers if the following holds: RiA = Ix +T1, ARy =
Iy +1T5, where Ix, Iy — identity operators, Ty : X — X and Ty : Y — Y are compact

operators.

Definition 1.3. For a bounded linear operator A, acting from a Banach space X
to a Banach space Y, bounded linear operator R : Y — X is called a regularizer for

operator A, if it is left and right reqularizer.

Let n € N and R" be Euclidean n-dimensional space, Z'}, N" be the sets of
n-dimensional multiindices and multiindices with natural components respectively.

Consider the differential form

(1.1) Pz, D)= Y  aa(z)D",

(a:v)<s
where s € Nya € Z%,v € N* (a:v) = $L + .-+ 92, D% = Di* ... Dpn, Dj =
ifla%j, x=(x1,...,2n) € R" a,(x) € C(R™).

Denote

(1.2) Pi(x,D)= Y aq(x)D*

(a:v)=s
the principal part of P (z,D), and
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(1.3) Py (z,6) = aq (x) &%
the symbol of P; (z,D).

Definition 1.4. The differential form P (x,D) is called semielliptic at point xg €
R™, if the following is satisfied:

P, (0, &) # 0,V¢ € R™, |¢] #0.

Definition 1.5. The differential form P (xz,D) is called semielliptic in R™, if P (x,D)

is semielliptic at each point x € R™.

For £ € R™ denote by
n 1/2
€l, = (Z&EW) :
i=1

Definition 1.6. The differential form P (z,D) is called uniformly semielliptic in
R™, if there exists a constant C > 0 such that:

|Ps (z,8)] > C[¢],, Yz € R", ¥ € R™.

For k € R,v € N" denote by H*¥(R") the space

H* (R") := {u € S : 1 — function, ully,, = (/ @ (&) 1+ |£|y)2k dg) 3 B OO} |

S’ is the set of tempered distributions, @ is the Fourier transform of function .
For r € Z,v € N™ denote

cmr (R™) = {a : DPa(z) € C(R™), sup |DPa(z)| < 00,YB8 € ZT s.t. (B:v) < r},
TER™

Q:={geC(R") :g(z)>0,VreR"},

rv o . n 1 l9(x) — g(y)|
Q" = {g € Q: DPg(z) € C(R") and 9@ = 0,y7‘£rl_zz>|(§1 T =0,

|Dg(x)]

g(x)lw:u)30When|f|%oorvﬁ€Z"70<(ﬁ:v)Sr}.

Let vpae = 1121_2? v;. The examples of weight functions from Q™" include polynomial
<i<n

functions as well as special exponential functions, for example:

o 1
(1+ |a[,)" 1> 0,exp (1 + |z],) 0<o<—.
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For k € Zy,v € N", g € Q and domain Q C R" denote by H}"(R™) and H}* ()

respectively the spaces of measurable functions {u} with norms

Hu”k,mq = ||u||H§=V(]Rn) = Z ||DOéu : qk_(azy)”LQ(R") < o0,
(a:v)<k
||u||H§="(Q) = Z HDau : qki(my)”Lz(Q) < o0.
(e:v)<k

Let k € N,k > s,q € Q and the coefficients of differential expression P(z,D) of
the form satisfy the following conditions:
(1.4)

|DPag(2)] < Cop q(ax)>~ @)+ B (Vo,BeZ (a:v)<s,(B:v)<k—s).

Then P(x,D) generates a bounded linear operator, acting from HF(R™) to
Hécfs,u(Rn).

In the paper [§] the fulfillment of special a priori estimate and the Fredholm
property of semielliptic operators are studied in anisotropic Sobolev spaces. The

following theorem is proved:

Theorem 1.1. Let the differential form P(x,D) with some constant C' > 0 satisfies

the following estimate:
(1.5) ullkwg < C (1Pullk—s,g + lull o) s Yu € Hy (R™).

Then P (z,D) is uniformly semielliptic in R™.

It is easy to check that in the case ¢ = 1 inverse statement is true with some
smoothness conditions on the coefficients of the principal part of the differential
form. In this paper it is proved that under the special conditions on the weight
function and coefficients of the differential form P(z,D) uniform semiellipticity in
R™ does not imply the fulfillment of a priori estimate of the form and stronger
conditions are necessary for it. The results related to a priori estimates are further
used to establish necessary conditions for the Fredholm property of the considered
class of operators.

In this work necessary and sufficient conditions are obtained for the Fredholm
property of semielliptic operators with special variable coefficients acting in anisotropic
spaces H)" (R™).

2. MAIN RESULTS
Let k,s € N,k > s. Consider the differential form
(2.1) Px,D)= Y aaq(x)” ") D,

(av)<s
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where a, — some constant numbers, ¢ € Q*~*" and denotations from (1.1} are
used.

For N > 0 and zg € R” denote
Kn(zg) :={x e R" : |z —xo| < N}, Kn:=Kn(0).
Theorem 2.1. Let P(z,D) be the differential form (2.1) and k € N,k > s,q €

QF=*¥. Let the differential form P(x,D) with some constant k > 0 satisfies the

following estimate:

(2.2) [ul

kg < K ([Pulli—sg + lullLa@ny) ,  w € H"(R).

Then there exists a constant § > 0 such that

Y aaXTEE > A+ L)%, £ ERMAS 0.
(av)<s
Proof. Let M > 0, xp; € R"\ Ky, ¢ € Cg°(R™), suppy C Ki(2nr), [|olln,@mn) =
. 1
1 and ¢ € R™. Consider the function ii(x) = 2@V &) ().,
Since lim max M = 0, then for any r > 0 the following inequality is

o]0 lz—y[<1 AW

fulfilled

(2.3) lq(2)" = qlea)"| < er(M)g(zn)"s @ € Ki(zn),

where ¢,(M) — 0 when M — oo.

Using (2.3)) and the fact that suppu C K;(zas) it is easy to see that there exists
a function (M) such that (M) — 0 when M — oo and the following inequalities
hold:

(2.4) @

kg = (1 —e(M))||a

k,v,q(za)s

(2.5) 1Ptllk—s,0,g < (1 +&(M)) [ Pullg—s

,q(za )

Taking into consideration the definition of function 4 one can check that for any

a €7, (a:v) <k with some constant C; = C1(p) > 0 the following holds

~ —(a:v o -1
ID]|y emya(ear) =) > 1€ ol Lymya(@an)® — Co(L+ [€]0) a(@ar) ™ 7mes .

Using previous inequality and the fact that ||¢||z,®») = 1 we get that with some
constant Cy = C2(¢) > 0 the following holds
- 1
(26) Nl = Y 16 al@n)® — Co(1 + [€],)Fq(zar)*~ mar .
(a:v)<k
For g € Z%,(B : v) < k — s with some constant C3 = C3(P) > 0 we have the

following estimates
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(2.7)
HDﬂ(P(m, D)a) ||L2(Rn) q(zar
+||D? ((P(z,D) — P(xM,ID)))ﬂ)||L2(Rn) q(zar)F=s— B

yEmsm ) Yh—s=(8)

< ||DB(P(xM,D)ﬂ)||L2(Rn) q(x

<|I YD aaglen) @D )t
(a:v)<s Lo(®™)
+ Cs Z HDﬁ ((q(x)s*(a:u) _ q(mM)s*(a:l/))Daﬂ)’ i q(x )k s—(Bv)
(av)<s

Taking into account ¢ € Q*~*¥, inequality (2.3), the definition of function @
and the fact that suppu C K;j(zps), then for all o, 8 € Z, such that (o : v) <
s, (B :v) < k— s with some constants Cy > 0,C5 = C5(p) > 0 we get the following

estimate
DB (( s—(av) —(a: ll)) )‘ (B:v)
|07 ((ata) oy 4E30)
< s—(av) 5 (a:v) Dﬂ+a~ k—s—(B:v)
< | (o) a(aar) =) o 4E)
§ Dﬁ ¥ ( s (v ) DYtey k—s—(B:w)
+ G H Lo (R™) (@u)

0<y<B

<7 (M)(1+ €] q(xan)* + Cs(1 + [€],)Fqlan)*~ 7mar

where 7(M) is such a function that 7(M) — 0 when M — oc.
Similarly, using the definition of function %, with some constant Cg = Cg(P, ) >

0 we can get

(29) Z a,aq(xM)s_(ail’)Da'f‘ﬁa Q(IM)k_S_(ﬁ:V)

(e:v)<s La(R)

<1 Y aat?| €8 alann)® + Col1l + [€],) Pa(anr) ™ 7mas .

(a:v)<s

Then from (2.7), (2.8) and (2.9), with some constant C7 = C7(P, ¢) > 0 we get
(210) HDB(P(xv]D)ﬂ)HLQ(Rn) q(xM)kisi(B:u)

< Y aag| |€°) qlans) +o (M) (1+[EL) )+ Cr(1+E]) Fg(aar) 7mer

(a:v)<s

where w(M) is such a function that w(M) — 0 when M — oo.
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Therefore, with some constant Cg = Cs(P, ) > 0 the following holds

(211) ||Pﬂ’Hk—s7y,q(z1\4) S Z |£ﬂ| Z aaé'a q(xM)k

(B:v)<k—s (a:v)<s

+ Cs(1+ |€,) q(anr)" 7 +G(M)(1 + [€].) q(zn)",

where ©(M) — 0 when M — oc.

From (2.2)), according to inequalities (2.4))-(2.6)), (2.11)) and the definition of the

function @ we get

(1—e(M)) Z 1€%] q(ar)® — Co(1 + |£\y)kq(xM)k_m

(e:v)<k

<kl@ren) | S ] Y ant®|alzan)®

(B:v)<k—s (av)<s
+ Cs(1+ [¢]) q(war)* " 7mer +G(M)(1 + [¢],) q(wan)® | + 1

From the last inequality, according to the facts that ﬁ = 0 when |z| — oo and
e(M) — 0,&(M) — 0 when M — oo, dividing by (¢(xas))* and tending M — oo

we get

D, Elsm DL Il D aat?)s

(Bv)<k (B:v)<k—s (a)<s

Since k,s € N,k > s,v € N”, then there exist the constants d1,ds > 0 such that

212) Y ez aa+lE)t YD €< a0+ g, geRm

(av)<k (a:v)<k—s

Then with some constant § = 3—512 > 0 we get

D aal®| = 8(1+ €)%, EeR™

(a:v)<s
Let A > 0. By substituting £ € R™ in the last inequality with Ai = ( S ) ,
v AL Avn
it is easy to get the following estimate:
> aaA T > 5(A+[E],)5, EER™, A>0.
(a:v)<s
O
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Let k,s € N, k > s. Consider the differential form P(z,D) (see (1.1))), which is

expressed in the following way:

(213)  P@D)= 3 aa(@)D*= Y (ag(x)q(x)#(awwba(x)) De,

(a:v)<s (a:v)<s

where a, () = al(z)q(z)*~ @) + b, (x), ad(z) € C*~*¥(R"),q € Q*~*" and

DP(bo(2)) = o(q(x)*~ @) TEY)Y when |z] = 00, (a:v)<s, (B:v)<k—s.

Theorem 2.2. Letk,s € N,k > s, ¢ € Q%" and P(x,D) be the differential form

(2.13) with the coefficients that satisfy ‘ l‘im ‘ malx lad (z)—al(y)| = 0 fora € Z7,
z|—o0 |z—y|<L1

(a:v) < s. Let there exists a constant k > 0 such that:

(2.15) lullewg < & (1 Pulli-sug + lullLo@n) Vo € Hy" (R).

Then there exist constants § > 0 and M > 0 such that

> ad (@)X TN > SN+ [€],)°, VE € R™ A > 0, x| > M.

(a:v)<s

Proof. Let M > 0,z € R"\ Ky, € C5°(R"),supp ¢ C Ki(2ar), [|¢ll Lo@n) =
1 and £ € R™. Consider the function a(z) = ei(q(“f)%f’”)go(x).

Similar to the proof of Theorem[2.1]it is easy to check, that there exists a function
g(M) such that (M) — 0 when M — oo and the following inequalities hold:

(2.16) [@llk,v.q = (1= e(M)l[llk0,qn)

(2.17) [Pullk—svqg < (1 +e(M))[|Ptllk—s,v.q)-

Taking into account the definition of the function @ one can check that with some

constant C1 = C1(¢) > 0 the following holds:

~ __1
(2.18) il vgteny = D 1% a(@an)®* = Ca(L+ [€]u) q(war) ™ 7mee.
() <k
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Forany s €Z%,(B:v)<k—s

(219) [|D? (P2, D)) 1, gy alrar) ") <

< Y ad(zan)glan) @ DG g(ay)F s )
(aw)<s La(E™)
bt e
+ Z ‘DB z)D%u) HL (Rn)q(xM)k_S_(Bw)-
(a:)<s
Since ad(z) € C*=**(R"), lim max |ad(z) —ad(y)| = 0 and ¢ € Q* ", it is

|z]| =00 |z—y|<1
easy to check that for 5 € Z7, 0 < (5 : v) < k—s there exist functions &; (M), & (M)

such that &;(M),&(M) — 0 when M — oo and some constant Cy = Co(P) > 0
that the following inequalities hold

ag (x)q(z)*~ ") — af (war)q(zar)*~ ")
< [ (@) — o (@an)| a(2)= ) + ad (@ar) (a(@)* @) = glarr)* )]

< &(M)q(xn)*~ ™)V € Ki(wnr),

(2.20)

(2.21) ‘D’B (ag(x)q(x)s_(a:V)>‘ < gz(M)q(xM)s—(a:u)-&-(ﬁ:u)
+ C2q($M)s*(a:V)+(5:V)*umlaw Vo € Kl(Z’M)

Taking into account that DP(b,(x)) = o(q(x)*~ (@) +(F¥)) when |z| — oo and
the definition of function @, for multiindices o, 8 € Z7 such that (a :v) < s,(8 :
v) < k — s with some constants C3 > 0,Cy = C4(P, ) > 0 we get the following

estimate

(2.22) [ DP (ba(2)DW)|[ gy < C5 D D7 (bal@))D 0]
0<~y<B

< S(M)(1+]€],) @I E (0 E) L Oy (14|, ) @ TED) g ()5 V)= ez

where 6(M ) is such a function that §(M) — 0 when M — oo. Then from the
estimates with some constant Cs = C5(p, P) > 0 we get

(223) Pl g < 2o 1P| D al(@a)é®| qlean)®

(B:v)<k—s (a:v)<s

+ Cs(1+ |, q(@nr)" " 7 + G(M)(1 + [€].) q(zn)",

where @(M) is such a function that &(M) — 0 when M — oo.
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From the estimate (2.15)), according to (2.16)—(2.18)), (2.23)) and the definition of

the function u, we get

(A=) [ D [ alean)* = CLt+[€l)* | alan)* 7
(B:v)<k

<wl@re@n) [ >0 [P D0 (@) alean)

(B:v)<k—s (a:v)<s
k k——1— ~ k k
+ Cs(1+ [€ln)"q(war)" 7mee + O (M) (1 + [§]0)"q(zar)” | +1

From the last inequality, taking into account that ﬁ = 0 when |z| — oo,

G(M) — 0,e(M) — 0 when M — oo, dividing by (g(zar))*, we get

S —rna e < S 18 S allaanel| .

(B)<k Br)<k-s  |(aw)<s
where 7(M) is such a function that 7(M) — 0 when M — oc.
From the last estimate, using inequalities (2.12]), we get
(0% 6 S T M S
(224) Y e = 21+ jel) - T8 (1 4 g,

(av)<s Kb 02

Since 7(M) — 0 when M — oo, then there exists My = My(P, ¢, §1, 02, k) > 0 such
that for any M > M, with some constant 6 = d(k,d1,d2) > 0 the following is true

D ad ()€™ > 6(1+ [€],)°, VE € R™, |2 > M.

(av)<s
Similarly to the proof of Theorem 2.1 from the last inequality it is easy to get the

following

D ad @] = 5+ [€],)°,VE € R A > 0, [a] > M.

(a:v)<s

O

Theorem 2.3. (see [14], theorem 7.1). Let E, F and Ey be Banach spaces such
that E is compactly embedded in Ey. Let A be a bounded linear operator acting from
E to F. Operator A: E — F is an n—normal if and only if there exists a constant
C > 0 such that

lzlle < C(|Az|F + [lzl|E,), =€ E.

Applying the previous theorem for operator P(z,D), acting from H, 57” (R™) to
Hj=s" (R™), we get
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Theorem 2.4. Let P (x,D) be differential form (1.1). Then operator P(z,D),
acting from H(’;’” (R™) to H,f‘s”’ (R™), is an n—normal if and only if there exist

constants Kk > 0 and R > 0 such that the following holds
lullkwg < & (1Pullk—spg + lullLagrny) s we HY” (R™).

Corollary 2.1. Let k,s € Nk > s, ¢ € Q¥*Y and P(x,D) be the differential
form (2.13)) with the coefficients that satisfy | l‘im ‘ mal)il |al (z) — al(y)| = 0 for
z|—oo |z—y|<

aeZt, (a:v) <s. Let operator P(z,D), acting from H}" (R™) to HF =" (R"),
be a Fredholm operator. Then there exist constants 6 > 0 and M > 0 such that

> @A e > 5(A+1€,)Y, EER™, A>0, |z > M.
(ev)<s
Proof. Since operator P(x,D), acting from H}*" (R") to H¥~*¥ (R"), is a Fredholm
operator, then it is an n—normal operator. From Theorem we get that there
exist such constants x > 0 and R > 0 that the following estimate holds

lullwg < & (1Pulli-sq + 1l Lain) < 6 (1Pulli-spg + lullLo@n) , u € Hy"(R™).

From last estimate and the conditions on the coefficients of P(x,D) using Theorem

we obtain that there exist constants § > 0 and M > 0 such that

> ab@N T > 5N+ €))7, EER™, A >0, [a] > M.

(a:v)<s
(]

Theorem 8.5.14 from [I2] can be formulated in the following equivalent way:

Theorem 2.5. Let A be a bounded linear operator acting from a Banach space X

to a Banach space Y. Then the following holds:
(1) if operator A has left reqularizer, then kernel of operator A in X is finite

dimensional;

(2) if operator A has right reqularizer, then the image of operator A is closed
m'Y and cokernel is finite dimensional;

(3) operator A has left and right regularizers if and only if A is a Fredholm

operator.
It is easy to check that the following proposition holds:

Proposition 2.1. Let k,s € N,k > s,q € Q¥ P(x,D) be the differential
expression of the form (L1.1) with the coefficients that satisfy conditions (1.4]) and
v € C(R™). Then operator
Tu := P(up) — ¢Pu, wu€ H(f’”(IR")
71



A. TUMANYAN
is a compact operator acting from H}" (R™) to HF=" (R™).

Theorem 2.6. Let k,s € Nk > 5, € Q¥ and the differential form P(x,D)
(see (2.13)) be semielliptic in R™ with the coefficients that satisfy

lim max |ad(z) —ad(y)| =0, a€Z}, (a:v)<s.
|z[—o0 |z—y|<1

Then the operator P(x,D) : HF (R™) — HF~**(R™) is a Fredholm operator if and
only if there exist constants § > 0 and M > 0 such that

(2.25) > ad@NTeMe = 5(A+ €))%, EERY, A>0, [x] > M.
(@) <s

Proof. Let’s first prove sufficient part.

Let 09 > 0,p(x) € C§°(R™) be such that 0 < ¢ (z) < 1 for all z € R™ and
p(x)=1forxz € Ks,, p(x) =0 for |x| > dp and ¢ € C§°(R™) such that supp C
Ko, and ¢(z) =1 Eor x € Ks,. Let w > 0 be such that wy/n < dy. Let’s denote
{Zm }5°_o points on the lattice in R™ with a side equals to w.

Denote

pm () = (= 2m) (Z oz — Zz)) » o Um() = —zm), mE Ly
1=0

Then {p,,}3°_, is a partition of unity that satisfies the following condition:

(i)  max |z —y| < do,
,YESUPP Pm
(i) there exists r € N such that for any number ¢ there are no more than r
functions ¢;(x) such that supp ; Nsupp ¢; # &;
(iii) for any o € Z} there exists some constant C, > 0 such that [D%pp,(z)| <
Co,nyx € R meZ,.

Denote W,,, = supp@m, m € Zy. Let x,, € W, and mg € N. For m < my

denote

P™(z,D) = (Vm(2) (aa(z) = aa(Tm)) + aa(zm)) D

(a:v)<s
For m > mg denote
P (z,D) :=
> (vm@) (abh@al@) ™) = ad@m)a(@n) ™) + b (wn)alzm)* =) D*.

(a:v)<s

Since ¢ € Q¥ *¥ and lim max |a%(x)—al(zy,)| = 0, according to Theorem
M—00 |z = |<

2.2 from [7], we can choose mq big enough such that for m > mg operator P™ :

H}Y(R™) — HJ~5(R") has the inverse operator R™ : HF~*¥(R") — H}"(R").
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For m < mg consider

€1,
L+ )P (2m, €)

Since P(x,D) is semielliptic in R™, then using Lemma 4.3 from work [I3] we get

Ry = F!

that for a small enough Jp from condition (i) the following holds
(2.26)
Ry'P™(z,D) = R{'P™(, D) + RS (P™ (2, D) — P (2, D)) = I + T7" + 135",

where T : H*V(R™) — H**+V(R") with some number o = o(v) > 0 and operator
o . HRV(R™) — HRY(R™) satisfies || 75" < 1.
For m < mg let R™ := (I + T3")"' Ry*. From (2.26) we have

(2.27) R™P™(z,D) =T+T™,

where T™ : H**(R") — Hk*Tov(R"™) with some number o = o(v) > 0. Denote

Rf =) wiR'(auf). f € Hy " (R").

1=0
Since holds one can check that the norms of operators R, acting from
Hé“fs”’ (R™) to Hé‘“” (R™), are uniformly bounded. From this fact, taking into
account that ﬁ = 0 when |z| — oo and properties (i)—(iii) of the functions
{om 00 {¥m }2_,, it is easy to check that R is a bounded linear operator, acting
from H}~5" (R™) to H}" (R™).
For P(z,D) and RP(z, D), taking into account (2.13), and definitions of

the functions {@m}2°_ o, {¥m}2_,, we have the following representations
oo
P(z,D)u = Z omP(z,D)(¢Ymu)
m=0

=3 o P (2, D) )+ Z CmP™ (2, D) () + Z ¢mL(z,D)($mu),
m=0

m=mg+1 m=mo+1

(2.28)
RP(z,D)u =YY R (oipm P (Wmu)+Y . > bR (010mP™ (¢mu))
=0 m=0 =0 m=mgo+1
+ > D B (e P W)+ Y Y R (1 pm P ()
l—m0+1 m=0 l=mo+1 m=mo+1
+Z Z GR (prpmLWmu) + Y > R (@rom L(thmu)) ,
=0 m=mo+1 l=mo+1 m=mo+1

where u € Hj" (R™).
73



A. TUMANYAN

For m,l € Z, such that | < mg and m < mg, based on the definitions of
P™(x,D) and the functions {©m, }5°_o, {¥m}55_,, the following holds:

o1pm P (2,D) (Yrmu) = @rpm Pz, D) (Ymu) = Qpl@mpl(%ﬂ)) (Ymu) .

From the last equality, using (2.27)) and the fact that o, (), (x) = @m(z) for all
xr € R" and m € Z4, we get

SO R (rom P () = Y Y iR (@1om P ()
=0 m=0 =0 m=0
= Z Z 1/1lRlPl(<Pl<Pm¢mU) + Z Z %0131 (‘Pl‘pmpl(d)mu) - Pl(@l@mwmu))
=0 m=0 =0 m=0
=D @emut > BT (prpmu)
=0 m=0 =0 m=0
)Y R (rpm P (hmu) — P(@1omtbmu)) ,
=0 m=0

where u € H[’;”’(R"). Consider

Ty=> Y 0T (@om) + Y > iR (romP () — PHpromtbm?)) -
=0 m=0 =0 m=0

Using Proposition we get that ;R (cplcmel(wm) — Pl(cplcpmwm)), acting
from H(’;?”(R") to H(’;’”(R"), is a compact operator. Similarly, since T* : H*(R") —
Hk+ov(R™) with some ¢ > 0, it is easy to check that operator 1, T (¢1¢m"), acting
from HF(R™) to HF(R") is a compact operator. As the finite sum of compact

operators 77 is a compact operator, acting from H;“”(R") to H(’;’”(R"). So we get

mo Mo mo Mo

SO R (@rpm P (mu) =YY wrpmu+ Thu,u € HyY(R?),

1=0 m=0 1=0 m=0
where T7 : H(’;’”(R") — Hé“”’(R") is a compact operator.
For m,l € Z, such that | < mg and m > mg, based on the definitions of
P™(x,D), L(x,D) and the functions {©m, }5°_q, {¢m}55_g, the following holds:

C1om P™ (2,D) (Ymu) = @1pm (P(z,D) — L(z,D)) (¢mu)
= @1om P! (2,D) (Ymu) — rom L(z, D) (Ymu) .

From the last equality we get

(229) > Y R (@em P (Wmu) =Y > R (o1om P (¥mu))
=0 m=mo+1 =0 m=mo+1
- Z Z ¢1Rl (@l@mL(l‘7D) (’l/)mu)) YU € Hécyy(qu
=0 m=mo+1
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Now consider

S Y uR (@emP (vm:) .-
=0 m=mo+1

Using (2.27) and the properties of the functions {wm, }5°_g, {¢m}2_, we can check
that the following holds:

mo o0 mo oo
Z Z d’lRl (‘Pl@mpl(d)mu)) = z Z Prpmu + Tou,u € H;C’V(Rn)
=0 m=mo+1 =0 m=mo+1
where
mo o0 mo o0
=Y > T owm)+Y, Y, GR (aemP (n) = Poromibm:))
=0 m=mo+1 =0 m=mo+1
mo mi mo mi
= Z Z wlTl(WIQDm') + Z Z ¢1Rl (‘F’l‘PmPl(wm') - Pl(‘ﬂl‘ﬂmd}m')) )
=0 m=mo+1 =0 m=mo+1
where

mo
= : m .
my = max {m : supp g ) (lL_JO supp <pz> # @}
Since T5 contains the finite number of terms for which ¢;¢,, # 0, similarly as for

operator 717, we can show that 75 is a compact operator, acting from Hg*”(R") to
kv (Ton
Hpv(R™).
For m,l € Z, such that | > mg and m < mg, based on the definitions of
P™(x,D), L(x,D) and the functions {0, }5°_q, {¢¥m}55_,, the following holds:

1pm P (2, D) (Pru) = ‘Pl‘PmP (2, D) (Ymu) + @rom L(z, D) (Ymu) .

Analogously, from the last equality and the fact that for I > mg operators R' :
H}=s7(R™) — HF"(R™) are the inverse operators of P! : HF"(R™) — HF~¥(R™)

we get

030) 3 S UR (i P ) = S0 S R (erom P ()

l=mo+1m=0 l=mo+1m=0
[ee] mo
+ Y Y iR (prpm L@, D) (dmu)) ,
l=mo+1m=0
(2.31)
o] mo oo mo
S > bR (@emP Wmu) = Y > prpmu+ Tsu, u € HPY(R™)
l=mo+1m=0 l=mo+1m=0
where

mo

Z Z ¢1Rl @l@mPl(wm ) - ((Pl(pm@[]m')) =

l=mo+1m=0

> > iR (@1om P (Yme) — P(@1omtbm-)) »

l=mo+1m=0
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mo

my —max{l supp ¢; N USUPP% # o}
7=0

As T3 contains the finite number of terms for which ¢;¢,, # 0, taking into account
Proposition we get that operator T3 is a compact operator, acting from H, 57”(]13&”)
to H, é“"’(R”).

For [ > mg and m > my, based on the definitions of P™(z,D) and the functions

{SDWL}%?:Oa {wm}?r?:o, we have:
C1emP™ (2,D) (Ymu) = @rom P (2, D) (bmu) .

From the last equality and the fact that for m > mg operators R™ : Hé“*s”’(R") —
H}"(R™) are the inverse operators of P™ : H¥"(R") — HF~%"(R™) we get

o D> R (pipm P ($mu)) Z Z OR (o19m P (hmu))

l=mo+1 m=mop+1 l=mo+1m=mo+1
= > Y wemut > Y R (remP (Ymu) — PL1omtmu)) ,
l=mo+1m=mo+1 l=mo+1 m=mo+1

where u € HF7(R™).
Taking into account (2.13), the definitions of P!(z,D) and the properties of
functions {¢m }oo_g, {W¥m }oe—y, for I > mo and m > my with some constant C; > 0

we get
H‘pl@mpl(wmu) - Pl(@l‘ﬁmwmu)”k—s,u,q

< Z Z ag(x)Dﬁ(qpmu)pvwwm)q(z)sf(a:u)

(@) <s fr=a, |71 >0 R

D (1 u)q(@) )

k—s,v,q

<a| Y > @)D (eipm)
(o) <s B+vy=a,|y|>0

L s
q(x)rv)

1
a(x)
properties (i)—(iii) of the functions {@m, }5°_ o, {¥m }5°_, and the conditions on the

coefficients {a® (x)} (see (2.13)) we get

From the last inequality, taking into account that = 0 when |z|] — oo,

(232) ||@l(pmpl(¢mu) - Pl(@l@?nwmu)Hk—b v,q < w(m0)||uHH§>V(Wanm)~

where w(myg) is such a function that w(mg) — 0 when my — oo.

Since holds the norms of operators R', acting from H} =" (R™) to H}"" (R"),
are uniformly bounded. Using this fact, inequality , the properties (i)—(iii) of
the functions {@m }oo_o, {¥m oo_g, it is easy to check that for a big enough myg
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operator

Ty := Z Z 'l,/JlRl [(Pl@mpl(wm') - Pl(‘pl@mwm')] ’

l=mo+1m=mo+1

acting from H,;“”’(R”) to Hé“”(R”), satisfies ||Ty| < %

Similarly for remained terms from (2.28)), (2.29) and (2.30)), taking into account
that D? (b () = o(q(x)*~ (@) *+(B¥)) when |z| — oo, (a:v) <s,(B:v)<k-—s
(see (2-13), (2.14)), for a big enough mg we get that the operator

Ts = Z DR (1om L(thm)) — Z Z iR (prom L))
1=0 m=mo+1 =0 m=mo+1
+ Z Z wlRl (@l@mL(wm')) )
l=mo+1m=0

1
acting from H¥"(R") to H¥(R™), has a norm that satisfies || T5|| < 7

Denote

1

T =T+ T+ T3, T =Ty +Ts.
From the representation (2.28) we get

oo o0

RPu = Z Z promu + Tiu + Tou+ Tsu + Tyu + Tsu = u + T u+ THU,
=0 m=0

where u € HFV(R™), T H}Y(R™) — HF(R™) is a compact operator and for
operator T : H(’;’”(R") — Hé“”’(R") we have |7 < 1.
Therefore
(I+T”)_1RP — I+ (I+T”)_1T’,

1 1 ’
where T := ([+ T ) T : HPY(R™) — HPY(R") is a compact operator. So we

get that operator (I + T”>_1 R: H} =(R") — HF"(R") is a left regularizer.

Analogously we can construct a right regularizer.

Since right and left regularizers exist, applying Theorem [2.5] we obtain the
Fredholm property of operator P(z,D) : HF*(R™) — HE~*"(R").

Necessity of condition for the Fredholm property of P(x,D) : H, gvy(R”) —
H}=¥(R") follows from Corollary O
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Abstract. In this paper we consider the concept of statistical causality in continuous time
between filtrations associated with stopping times, which is based on Granger’s definition of
causality. Especially, we consider a generalization of a causality relationship “H is a cause of E
within F” from fixed to stopping time. Then we apply the given concept of causality to strongly
orthogonal stopped martingales. We show the equivalence between the given concept of causality

and orthogonality of stopped local martingales, too.

MSC2010 numbers: 60G44; 60HO7; 60H10; 62P20.

Keywords: filtration; causality; stopped local martingales; stopped orthogonal
martingales.

1. INTRODUCTION

We consider causality in continuous time which unifies the nonlinear Granger’s
causality with some related concepts. Here, the concept of causality is analyzed
using the tool of conditional independence among the o-fields.

The Granger causality is focused on discrete time stochastic processes (time
series). But, in many cases, for example in economy and finance, it may be difficult
to capture relations of causality in discrete-time model and it may depend on the
length of interval between each sampling. So, continuous time models become more
and more frequent in econometrics (see, for example, [I] - [6]). In this paper we will
consider the continuous time processes. The continuous time framework is fruitful,
not only for the internal consistency of economic theories but also for the statistical
approach to causality analysis between stochastic processes that rapidly evolve (see
)}

The paper is organized as follows. After Introduction, in the Section 2 we present
a generalization of a causality concept “H is a cause of E within F”, which involves
prediction in any horizon in continuous time. This concept is based on Granger’s
definition of causality (see [3]). The concept of causality in continuous time associated
with stopping times with some basic properties is introduced in [§]. In this paper

IThis work was financially supported by Serbian Ministry of Science and Technology
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we give some new properties of causality concept between stopped filtrations and
between stopped processes.

The given concept of causality can be connected with the stable subspaces
of H? (see [9]) and with the orthogonality of martingales (see [I0]). Also, weak
solutions and local weak solutions of the stochastic differential equations driven
with semimartingales, as well as solutions of martingale problem can be expressed
using the given concept of causality (see [6, [IT]). The preservation of the martingale
property is directly connected with the concept of causality (see [12]).

The Section 3 and Section 4 contain our main results. The Section 4 relates
the given concept of statistical causality in continuous time to the orthogonality of
stopped martingales and stopped local martingales. Also, we investigate the case
when the processes are stopped by the different stopping times.

Some applications in finance are given in the Section 5. More specifically, we
showed that the given concept of causality is strongly connected with the question

of locally risk minimization strategy for defaultable claims.

2. PRELIMINARIES AND NOTATION

Causality is, in any case, a prediction property and the central question is: is it

possible to reduce available information in order to predict a given filtration?
A probabilistic model for a time-dependent system is described by (Q, F,F, P)
where (Q, F, P) is a probability space and F = {F;, t € I, I C R™} is a “framework”
filtration that satisfies the usual conditions of right continuity and completeness.
Foo = Vier Ft is the smallest o-algebra containing all the {F;}. An analogous
notation will be used for filtrations H = {H¢}, G = {Gi} and E = {&}. It is said
that the filtration G is a subfiltration of H and written as G C H, if G; C H;
for each t. Given a stochastic process X we denote by {F;*} the smallest o-algebra
for which all X, with s < ¢, are measurable and FX = {FX ¢ € I} is the natural
filtration of X. The natural filtration FX is the smallest filtration that makes X to
be adapted.

The intuitive notion of causality in continuous time formulated in terms of
Hilbert spaces is given in [5]. We consider the analogous notion of causality for
filtrations using the conditional independence between sub-o-algebras of F (see
[13] and [14]).

Definition 2.1. (see [2] and [5]) It is said that H is a cause of E within F relative

to P (and written as E H; F; P) if €5 C Foo, H C F and if £ is conditionally

independent of {F;} given {H,} for each ¢, i.e. Eoc L Fi|H; (ie. &, L Fi|Hs holds
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for each t and each u), or
(2.1) (VA€ &y) P(A|F) = P(AH:).

Intuitively, E|< H;F; P means that all information about £, that gives {F;}
comes via {H;} for arbitrary t; equivalently, {H:} contains all the information
from the {F;} needed for predicting €. We can consider subfiltration H C F as a
reduced information.

The definition similar to Definition was first given in [4]: "It is said that H
entirely causes E within F relative to P (and written as E|< H;F;P) if E C F,
H CF and if & L Fi|H; for each t". Instead of £, C F this definition contains
the condition E C F, or equivalently & C F; for each ¢, which does not have
intuitive justification. Since the Definition is a more general than the definition
given in [4], all results related to causality in the sense of the Definition [2.1| will also
be true in the sense of the Definition from [4] (pg.3), when we add the condition
ECF.

It should be mentioned that the definition of causality from [4] is equivalent to
definition of strong global noncausality as given in [I]. So, the Definition is a
generalization of the notion of strong global noncausality. The equivalence between
the statistical causality concept and the concept of adapted distribution given by
Hoover and Keisler in [I5] is proven in [16].

If H and F are such that H K H; F; P we shall say that H is its own cause (or,
self caused) within F (compare with [4]). It should be noted that the statement
“H is its own cause” sometimes occurs as a useful assumption in the theory of
martingales and stochastic integration (see [12]). The concept of being “its own
cause” is equivalent to the hypothesis (#) introduced in [I2]. It also, should be
mentioned that the notion of subordination (as introduced in [I7]) is equivalent to
the notion of being "its own cause"as defined here.

If H and F are such that Hk H; H\/ F (where H\/ F is a family determined by
(H\/ F); = H;\/ F;), we shall say that F does not cause H. Now, it is clear that
the interpretation of Granger—causality is that F does not cause Hif Hk H; H\/ F
holds (see []). Without difficulty, it can be shown that this term and the term "F
does not anticipate H"(as introduced in [I7]) are identical.

These definitions can be applied to stochastic processes if we consider corresponding
induced filtrations. For example, {F;}-adapted stochastic process X; is its own

cause if {F;¥} is its own cause within {F;} i.e. if

FXk FX;F;P.
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Process X which is its own cause is completely described by its behavior with
respect to its natural filtration FX (see [10] ). For example, process X = {X;,t € I}
is a Markov process with respect to the filtration F = {F;,t € I} on a filtered
probability space (2, F,F, P) if and only if X is a Markov process with respect to
FX and if it is its own cause within F relative to P. As a consequence, Brownian
motion W = {W,,t € I} with respect to the filtration F = {F;,¢ € I} on a filtered
probability space (Q, F,F, P) is its own cause within F = {F;,t € I} relative to
probability P.

In many situations we observe certain systems up to some random time, for
example up to time when something happens for the first time. So, it is natural
to consider causality in continuous time which involves stopping times, a class of
random variables that plays essential role in the theory of martingales (for details
see [18] and [19]).

If 7 is a stopping time with respect to the filtration F = {F;}, the associated
o-algebra F, = {A € F: An{r <t} € F forall t € R} is a set of events
that occur up to time 7. For a process X, we set X;(w) = X (w), whenever

7(w) < +00. We define the stopped process X7 = {X;a-,t € I} with

X/ (W) = Xipr(w) (W) = Xexge<r) + XoX{tzr)-

Note that if X is adapted and cadlag and if 7 is a stopping time, then the stopped
process X7 is adapted, too. The family of o-fields F™ = {F;\,} is a stopped
filtration (for details, see [13]).

The generalization of the Definition from fixed to stopping time is introduced
in [§].

Definition 2.2. ([8]) Let F = {#}, H = {H:} and E = {&},t € I, be given
filtrations on the probability space (2, F, P) and let 7 be a stopping time with
respect to filtration E. The filtration H” entirely causes E™ within F” relative to
P (and written as E" K H™; F7; P) if E” CF7, H” C F” and if &; is conditionally
independent of {Fia,} given {Hia,} for each t, ie. £ L Finr | Hinr for all ¢, or

(22) (Vt S I)(VA S 57—) P(A | ]:t/\'r) = P(A | Ht/\r)-

The concept of causality given in the Definition[2.2)is defined up to some specified
stopping time 7. It includes the stopped filtrations. The relation does not
consider the causality up to infinite horizon, so it does not imply .

Compared to the Definition 2.1} in the Definition [2:2] we have reduced the amount

of information needed for predicting some other filtration.
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3. SOME PROPERTIES OF THE STOPPED CAUSALITY

Some basic properties of the concept of causality characterized with the stopping

time are given in (|8]). We now prove that some new properties holds.

Theorem 3.1. Let F = {F}, H={H:} and E = {&:} be given filtrations on the

measurable space (0, F) and let T be a stopping time with respect to E. Let P and
d

Q@ be a probability measures on F satisfying QQ < P with —Q as (E;)-measurable.

dP
Then

E"kKkH;F"; P implies ETKH;F;Q.

Proof. Let Ep and Eg be a conditional expectation for the measures P and Q)
respectively, and I parametric set. Since Q < P, the right regular version of the

density process Lia-, where

Linr = LeX{i<ry + Lex(t=r)

d
is the cadlag modification of Ep(Le | Finr) where Lo = d—g is the Radon-

Nykodim derivative. Obviously, since L, is £&--measurable, we have
(31) Lt/\T = EP(Loo | ]:t/\’r) = EP(LOO | Ht/\T)'

Let E7 |< H™;F7; P holds. Because of causality, process Min, = P(A | Fiar),
for all A € &, is (Hinr, P)-martingale. Now, we proove that (ML) is a (Fiar, P)-

martingale. For s <t < 7 and F € Fsa- we have

d
/ My LipsdP = / Mo, T2 0P = / MiyprdQ; = / ManrdQs
' ' F F

4o,
/ Mo 29 qp — / Mops LonrdP,
F F

(3.2) =

and for 7 < ¢t < r, by the Optional Sampling Theorem for F' € F;,, and due to

(13.2), we have
_ _ _ dQ
Mt/\TLt/\TdP - Mt/\‘rL‘rdP - Mt/\‘rLth - Mt/\‘ridP
F F F F dp
= / Mip-dQ :/ Mp-dQ :/ Mp7 LyprdP.
F F F
Therefore,

(3'3) MinrLinr = E(M;L; | ft/\‘r)~
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According to Lemma 6.6 in [18], equalities (3.1) and (3.3), (VA€ &) (Vt € I) it
follows that

Mt/\TLt/\T = P(A ‘ ‘Ft/\T)Lt/\T = EP(XA ‘ -FtAT)EP(Loo ‘ ]:t/\T)
d
= Bp(Xaloe | Fine) = Bo(xade | Fine) = Eol(xa | Fonr)
= Q(A | ft/\'r)'

Due to 1) forall A€ &, and Lo = % we have

d
QA | Finr) = Eqlxa| Fine) = Ep<xAd—f§ | Fors)
= Ep(xa|Hirr)Ep(Loo | Hinr) = Ep(xaLoo | Hinr)
= EQ(XA | Hmr) = Q(A | Hmr)-

The result is proved. (I

Theorem 3.2. Let F = {F}, H = {H,}, E = {&} and G = {G,} be given
filtrations on the probability space (2, F, P) and let T be a stopping time with respect
to E. Assume that ET CF7, H™ C F™ and G™ C F7. Then, the following assertions
hold:

(i) EKH;F;P — E" CH",

(i) EKH,,F;P NEEKG,F;,P = E KH AG");F"; P.

Proof. (i) Let the Y;», be (cadlag process) {€;n- }-measurable. Then Y;,, is, also,
E-measurable since Enr C Eqonr = &;. According to E™ K H™; F7; P follows that
for all Yip,

(34) E(Y;EAT | ft/\‘r) = E(Y;S/\T | Ht/\r)-

Since Einr C Finr, it follows that Yia, is {Fiar}-measurable, too. According to
(3.4) we have Yinr = E(Yinr | Hinr), 80 Yinr is {Hiar p-measuarble for all ¢, and
the assertion holds.

(ii) Let E™ |< H;F; P and E” |< G™;F7; P hold. From E” |[< H™;F™; P we
have &, C F,, H" CF" and &, L Finr | Hinr,t €1, 1. VAEE,

(3.5) P(A | Hinr) = P(A | Finr).

Also, from E™ < G™;F7; P we have G C F™ and &, L Finr | Ginr,t € I, ie. for
all A e &,

(3.6) P(A | Ginr) = P(A | Finr)-
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The intersection of two o-algebras is also g-algebra, so Hinr N Ginr = Hinr A Giar-
Therefore, because of (3.5) and (3.6]), for all A € £, we have

P(A|Hinr NGinr) = E(xal|Hinr NGinr) = E(E(xa | Hinr) | Ginr)
= E(E(xa | Finr) | Ginr) = E(xa | Finr 0 Ginr)
= E(xal|Ginr) = E(xa | Finr) = P(A| Finr)
so, it follows that E™ kK (H” A G™); F7; P holds. O

Lemma 3.1. If &, C H, holds, then from HT |[< H™;F7; P it follows that ET |<
H™;F"; P holds.

Proof. The result follows directly from & C H, and H" |[< H™; F7; P, since (for
all A€ &) P(A| Finr) = P(A | Hinr). 0

4. CAUSALITY AND ORTHOGONALITY OF STOPPED MARTINGALES

The orthogonality of local martingales is considered in [I0]. We now consider the
orthogonality of stopped martingales and stopped local martingales in the sense of
the Definition [2.2] Also, we consider the case when the processes are stopped by
the different stopping times.

Let us briefly recall some basics about orthogonal martingales and properties
which will be used later (see [19, 20} 21]).

Definition 4.1. ([I9]) Two martingales X and Y are said to be weakly orthogonal
if BE(XooYs) =0.

Definition 4.2. (JI9]) Two martingales X and Y are said to be strongly orthogonal

if XY is a martingale.

If X and Y are strongly orthogonal martingales they are weakly orthogonal, too.
However, the converse is not true.

The definition of orthogonal local martingales is slightly different.

Definition 4.3. (J2I]) Two local martingales X and Y are called orthogonal if

their product XY is a local martingale.

The equivalence between the concept of causality from the Definition [2:2] and

strongly orthogonal stopped martingales is given in the following theorem.

Theorem 4.1. Let 7 be {FX} and {F} }-stopping time and let X™ = Xin, and
Y™ = Yiar be two independent F™ = {Fin; }-stopped martingales. Processes X7
and Y7 are strongly orthogonal if and only if each of them is its own cause within
{Firr}, ice. if FX K FX.F7: P and FY kK FY " ;F7; P hold.
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Proof. Let X;n, and Y\, be two strongly orthogonal and independent {F;a-}
stopped martingales. Then (XY)™ = (XY ), is a stopped martingale, too.

According to Theorem 6 in [8], each of the processes X™ = Xynr and Y7 = Yn,
is its own cause within F7 = {F;a, }, i.e.

F¥ KFY,F;P and FY kKFY,F;P

hold.

Conversely, let the processes X7 and Y7 be its own cause within {Fia;}, i.e.
(4.1) vAe FY  P(A|FR,) = P(A|Fn),
(4.2) VBeFY P(B|F..) = P(B|Fir)

Now, from independence of X™ and Y7, we have

Xt/\TY;S/\T = P(A | ‘Ft)/(\T)P(B ‘ ‘th\r)
- P(A|J_'.t/\7-)P(B‘ft/\T):P(AB‘,Ft/\T)

Due to Theorem 3 in [I2], from causality it follows that the filtration F™ = {Fia, }
is generated by processes X7 = X;n, = P(A | F,). Therefore, since xa is
FX-measurable indicator function of the set A € FX (B € FY, so xp is FY-

T

measurable) we have

E(XLYL | Fins) = E(P(A|FX)P(B|F))| Firr)
= E(E(xa | FY) | Finr)E(E(xg | FY) | Finr)
= E(XA | ft/\T)E(XB | ft/\‘r)

So, from causality it follows

E(XLYL | Fine) = El(xalFin)E(xs | Fin) = PA| Fi)P(B|FL,)
= Xt/\‘rY;t/\T'

Thus, (XY)™ = (XY):a- is a (stopped) martingale with respect to {Fia-} and X7
and Y7 are two strongly orthogonal stopped martingales. O
The concept of causality from Definition [2.2| can be applied to martingales which

are stopped at a different stopping times 7 and o.

Proposition 4.1. Let 7 be a {F;X}-stopping time, o be a {F} }-stopping time,
TVo = max(r,0) and processes X™ = (Xipr) and Y7 = (Yiny) be two independent
F7Vo = {F™V9}_stopped martingales. Processes X™ and Y are strongly orthogonal
if and only if each of them is its own cause within {F™V°}, i.e. if FX kK FX . FTVo, p
and FY" < FY":F™V7; P hold.
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Proof. Suppose that the processes X7 and Y? are two independent, strongly
orthogonal {F7V}-stopped martingales. Here we have to consider the following
two cases: 0 < 7 and 7 < 0. In the first case, 0 < 7, we have 7V o = maz(o,7) =7
and F7V?9 = F7. So, the process X7 is its own cause within F”, and according to
Theorem 6 in [8] the causality relation FX’ < FX";F7; P holds. Similary we can
prove that the process Y7 is its own cause within F7, i.e. F¥" kK FY";F7; P holds.
Conversely, let the processes X7 and Y? be two independent {F7}-stopped
martingales, for which FX" k FX";F™; P and F¥" kK FY";F"; P holds, i.e

VBeFY  P(B|Fin)=PB|F",)

Then, for all A € FX and for all B € F we have

T

E(X:Yy | Finr) = E(P(A|Fir,)P(B| Flho) | Finr) = E(xaxs | Finr)
= P(A| Finr)P(B| Finr) = P(A| FX,)P(B | Fl,)
= Xt/\T}/t/\a-

So, the processes X7 and Y7 are strongly orthogonal stopped martingales.
The proof is similar in the second case if 7 < o. O
The Theorem can be extended to a larger class of processes, the stopped

local martingales.

Theorem 4.2. Let 7 be a {FX} and {F} }-stopping time and let X™ = Xyr, and
Y™ = Yinr be two independent { Fipnr }-stopped local martingales. Processes X™ and

Y™ are orthogonal if and only if each of them is its own cause within {Fins}, i.e.
if FX K FX",F7; P and FY kK FY";F7; P hold.

Proof. Suppose that X7 and Y7 are two orthogonal, independent {F;,,}-stopped
local martingales. Then, there exists a sequence of {F7%_} stopping times {,,} —
00, such that process Xiarar, 18 { Fiar f-martingale (every martingale is local martingale,
but converse is not true). As a consequence, this process is {F7x,} martingale.
Therefore, E(X;nr, | Fing) = E(Xrar, | Finr) for all X a., (which are {FX . }-
measurable). According to previous equality, it follows that FX "™ <« FX™;F7; P
holds. Due to invariance of causality under convergence (for details see Theorem
3.5 in [22]), and by Theorem 4.1, we have that FX~ k FX™;F7; P holds.

Similarly, for a sequence of {F}, } stopping times {o,,} — oo, we obtain that
FY kK FY";F7; P holds.
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Conversely, let the causality relations hold. Then, due to Theorem 6 in [§],

processes X and Y7 are independent {F7 }-stopped martingales. Then
E((XY); | -Ft/\‘r) = E(Xgo | ft/\T)E(Y(; | -Ft/\‘r) = Xt/\T}/;f/\T = (XY)t/\T~

So, XY is stopped martingale (at the same time it is a stopped local martingale)
and according to Definition X7 and Y7 are two orthogonal stopped local

martingales. O

5. EXAMPLE

The concept of causality can be applied to the problem of local risk-minimi-
zation, that has become a popular criterion for pricing and hedging in incomplete
markets (see [23] - [20]).

The time horizon T' € (0, o) is fixed. The random time of default is represented
by a stopping time 7 : Q@ — [0, 7] U {400} defined on a probability space (2, F, P).
For default time 7 is introduced the associated default process H, given by H; =
1{r<¢y and (FH) is its natural filtration. Let W and B be two one-dimensional
independent Brownian motions and G, = F}V VFE, where {F}V} and {FP} denotes
the natural filtrations of the processes W and B.

The risky asset price S is represented by a stochastic process on (2, F, P) whose

dynamics is given by
dS; = ,U,tStdt —+ UtStth, So=50>0

where o; > 0 a.s., u, o are F-adapted processes and X; an unobservable exogenous

stochastic factor satisfying
dXt = btdt + at(det + v 1-— deBt), XO =29 € R.

Let F = {F;}, t € [0, T] be the filtration given by F; = G;VFH = FVvVFEVFH.
Investors do not have a complete information on the market, they cannot observe
neither the stochastic factor X nor the Brownian motions W and B which drive the
dynamics of the pair (S, X) and as a consequence they cannot observe the F-hazard
rate. At any time ¢, they may observe the risky asset price and know if default has

occurred or not. The available information is given by
F=FSvFl ¢ F=gvFil.=FVvFBvFH

A defaultable claim is a triplet (£, Z, 1), where promissed contigent claim ¢ is
the promised payoff received by the owner at maturity T, Z is the recovery process,

which is paid at the default time if default has happened prior to or at time T', 7
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is the default time. Process N = Ny, t € [0, T] models the payment stream arising

from the defaultable claim
T
(5.1) Ne=Z.I, = / ZydHg, 0<t<T, Ny =&l >7, t="T.
0

By assumptions in [23] the hedging stops after default, hence is considered the
stopped interval [0, 7 AT]. If M is an (G, P)-martingale the stopped process M™ =
Min- is a (F, P)-martingale ({G;} is increasing and subfiltration of {F;}, see Lemma
5.1.6 in [27]). The stopped processes W™ and B™ are (F, P)-Brownian motions. The

risky asset price ST is a (F, P)-semimartingale with decomposition

tAT tAT
ST = s0 —|—/ S;',uudu—I—/ Syo(u,Sy,)dW,, tel0,T],
0 0

tAT
Mf:/ STo(u, ST)dW].
0

Risk-minimization approach is introduced in [25].

The risky asset process S is martingale, ¥ = (6,7) is an admissible strategy,
V(¢) := 0S5 + n its value process, and the cost process: Cy(¢)) := Vi (v) — fot 0,dS,,.
An admissible strategy such that Vp(¢) = £ is risk-minimizing if minimizes the
risk process: E[(Cr(v) — Cy(1))?|F:]. Process 6* is given by the Féllmer-Schweizer
decomposition of ¢ (see [24]) ¢ = E[¢] + fOT 0:dS, + Ar, P — a.s. where A is a
martingale strongly orthogonal to S.

Strategy ¢* is mean-self-financing and Ci(¢*) = E[¢] 4+ As.

In the semimartingale case such a strategy does not exist, hence Schweizer
(in [26]) introduced the weaker concept of locally risk-minimizing strategy (under
suitable assumptions it is equivalent to pseudo optimality).

This approach in the case of a defaultable claim and in partial information
framework is considered in [23]. Here is assumed that hedging stops after default.
This allows to work with hedging strategies only up to time T'A 7.

The cost process C(¢) of a (F, L?)-strategy (resp. (F, L?)-strategy)p = (6, 7) is
given by

t
Cili) = Ne+ Vil) — [ udST,t € (0.7 A7,
0
where N is defined in (5.1)).

Due to Definition 3.3 in [23], ¢ is mean-self-financing if its cost process C(y) is
a (F, P)-martingale (resp. (F, P)-martingale).

Theorem 1.6 in [26], defines local risk minimization and formulates its equivalent
characterisation. The extension of the local risk-minimization approach to payment
streams requires to look for admissible strategies with the 0-achieving property,
that is Viar(¢) =0, P —a.s.
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Due to Definition 3.5 in [23] about the stopped Follmer-Schweizer decomposition
of random variable ¢ € L?(Fr, P) and Theorem we can say that a random
variable ¢ admits a stopped Follmer-Schweizer decomposition if it can be written

as
T
C:C0+/ 07 dST + AF..., P—a.s.,
0

and if each of processes A7 and M; ,t € [0,T A ] is its own cause within F, where
M is the martingale part of S7.
Adapting the results proved in [23] (see Proposition 3.6) to the concept of causality

between stopped filtrations (Theorem 4.1) we get the following characterization.

Proposition 5.1. Let N be the payment stream associated to the defaultable claim
(¢, Z,7). Then, N admits an (FS, F)-locally risk-minimizing strategy o* = (0*,1%)
if and only if there exists a process 87 € ©7 7 a square integrable (F, P)-martingale,
which is its own cause within {F,}, null at zero such that the martingale part of S™

is its own cause and

T ~
Nrar = Ny +/ 07°dST + AL P — as.
0
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