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APOBHOE NMHTEI'PUPOBAHUE B BECOBBIX
ITPOCTPAHCTBAX JIEBETA

K. ABETHCAH

EpeBaHxckmii rocyapcTBeHHBIH yHHBepCHTeT1

E-mail: avetkaren@ysu.am

AnHOTALMS. B crarbe msyvaerca geiicTBue oneparopa APOOGHOTO WHTErPUPO-
BaHUS B BECOBBIX JIEOErOBBIX KJIACCaX M IPOCTPAHCTBAX CO CMENIAHHON HOPMOMN
B eIuHUYHOM Iape u3 R™. Mbl yTouHsieM u 0600I1[aeM HEKOTODBIE PE3yJIbTaThI
Xapnu, JInrtasyna u @aerra.

MSC2010 number: 26A33; 26D10.

KuarodeBble ciioBa: apobHOE MHTErpupoBaHue; ApobHoe muddepeHnpoBanme; Be-
coBbIe MpocTpaHcTBa Jlebera; mpocTpaHCTBa CO CMEIAaHHONH HOPMOIA.

1. BBEJEHUE U OBO3HAYEHUSI

ITepBble pe3yabTATHL O JAEHCTBIN ONEPATOPOB JPOOHOTO MHTEIPUPOBAHUS B JieGero-
BBIX KJIaccax BocxogaT K Xapau u Jlurrasyay [1], [2], [3]. B gactaocTn, onun mokasa-
JIN HACKOJIbKO JpOOHBIH uHTerpas D~ f "pyume" camoit dyuknun f € LP, numento,

orieparop apobuoro marerpupoBanus D~ (0 < a < 1) orpaHudeHHO jeiicTByeT U3

p
l1—ap

upocrpancrsa LP (1 < p < 1/a) B npocrpancrso L4 (q = ) Xapmu u JlurTi-
Byz [1], [2], [3] yeranoBuin Takke pasHOOGPA3HBIE BECOBBIE AHAJIOTH, B TOM HHCJIE 15
roaoMopdHbIX (yuknuit. Pazmuansie 0600mmenns MOXKHO HaiiTn B paborax PierTta
[4], [5], Kapanersinnia u PyGuna [6]. B HacTosieil crarbe Mbl HAMEPEHbI BBISICHATH
JlefiCcTBUE OIIEPATOPOB JPOOHOI0 MHTEIPUPOBAHUS HA BECOBBIX IIpOcTpaHcTBax Jlebera
co cMemmanuoii mnopmoit L(p, ¢, a).

ITycte B = B,, — OTKpHITHIH eauHndHblil map B R™ (n > 2) u S = dB — ero
rpanuna, eauHndHas cdepa. VaTerpasibhbie cpegnue nopsaka p byskuun f(z) =

f(r¢) na cdepe |z| = r obosHavaloTCs Tepe3

My(fir) = 1F ) sy 0ST <1, 0<p< o0,

1HaCTo::m_Lee HCCJIeJOBAHUE BBITIOJIHEHO Ipu noaepxkke [lenrpa Maremaruyeckux VccienoBanuit
Epesanckoro 'ocynapcrBennoro YHusepcurera
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K. ABETUCAH

rae do — (n — 1)-mepHag noBepxHocTHas Mepa Jlebera Ha S, HODMUPOBaHHAS TaK,
qro o(S) = 1.

ITo oupemesieHnI0 POCTPAHCTBO €O cMemmaHuoi nopMmoit L(p, g, a) (0 < pg <
00, € R) €CThb MHOXKECTBO TeX (PYHKIUH f, M3MEPUMBIX B €IUHUYHOM Inape B,

IS KOTOPBIX KOHEYHa HOpMa (KBA3UHOPMA)
1/q

1
(/ (1—7“)aq_1Mg(f;r)dr) , 0<qg<oo,
1 2pg,0) = 0

esssup (1 — r)*M,(f;r), q = 0.
0<r<1

WNuorma O6ymem obparmarbesd K 9yTh Oojiee oOIeil BepCUM CMENTAHHOW HOPMBI TIPU
g<oomvyeR

1 1/q
/0 (1—7“)“‘1_1Mg(f;7“) rYdr = Hr'Y/quL(

Toukn B R™ Gymem mpencrasisits B Buge & = r¢, tne ¢ € S, || = r. Cumsossr

1z p.gs05m7 dry == p.q,a)’

C(a,B,...),Cq u T.11. GyayT 0603HAYATH PABJIUUHBIE TIOJIOKUTEIHHBIE TIOCTOSHHBIE,
3aBUCAIIIE TOJBKO OT yKa3aHHBIX IIAPAMETPOB. YcaoBuMcs depe3 N 0603HaYaTh MHO-
JKECTBO II0JIOXKUTEJILHBIX [EJIbIX YUCes, & Yepe3 (o] — HaunboJbliee 1ejioe 9uciio, He
npeBocxofsiee o € R, T.e. 1ejiyio 4acth ducia «. s BelecTBeHHbIX BhIpaXKeHui A
u B, cumBout A = B o3nadaer aycroponnee HepaseHCTBO ¢1]A| < |B| < ¢3]A| ¢ Heko-
TOPBIMUA HECYIECTBEHHBIMU TIOJIOKUTEILHBIMUA TOCTOSAHHBIME ¢ ¥ Co, HE3aABUCUMBIMU

OT Yy4aCTBYIOIIUX II€PEMEHHBIX.

Ounpepnesnienue 1.1. (poGhviii unmeepas u npoussodnas Pumana-JTuyeusns)
as pynruuu f(r) oonoti nepemennots r € [0,1), onpedesum

r

r @ 1
D7) = g [ =0 0= g =t
Df(r)i= (5) SO0 D) = DD, D
2de a>0, meN m—1<a<m.

Ounpenenienne 1.2. (Apobrwiii unmezpan u npousdeodnas Pumana-JTuysuans na

R™ n > 2) Jas 3adannot gynkyuu f(x) 6 edunuunom wape B onpedeaum
D7 f(2) = D@ f(w) s=r~ @20 pafyn/2t f(g) | —

1

1
_ _ pa—1 ” n/2—1
| a0 e e

D f(z) = D f(z) ::r_("/Q_l)DO‘{ra+"/2_1f(x)}, r=lz|, a>0.
i
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Hocnennsisa Bepcus paguaabHOll 1pobHOI npousBoaHoil Ha R™ 6blia BBeseHa B [7] 1
IIO3BOJIAET prOCTI/ITb ee IIpI/II\/IeHeHI/Ie B BECOBBIX HpOCTpaHCTBaX. OIIpeﬂeJ’[I/IM TaK>Ke

qyTh OoJiee oDt ApoOHBI nHTEerpas Ha R™.

Onpenenenne 1.3. /s o> 0, v € R, onpedeaum

(1.1) Do f(z) == T—(a+’7+n/2—1)D—a{T’Y+n/2—1f($)}

n,y

1

1
- - _ poa—1 T y+n/2—1 )
F(a)/o (1— ) ' f(tz) t dt

Kak Bujnwm, Dn & ornmvaerca or DT M HeCyMmecTBeHHBIM MHOXKATE M 17
B [OZBIHTErPAJLHOM Bbipakenuu. MoxkHO nostoxkurs y + n/2 > 0. OueBuuHO, 9TO

@;z =D %mn @;%|f(x)| < D% f(x)], ecm v > 0. U3 obrueit dopmyibt

@mf(x) —(n/2-1) Y om [Tm71+n/2 f(],‘):|, m e N,

orm
ITOJIE3HO $IBHO BBIPA3UTH JAPOOHBIE TTPOU3BOIHBIE TIEPBOTO W BTOPOTO IOPSIIKOB
of
1.2 Dl =
(1.2) f(x) = f g
of O*f
- (13) 30521+
f(@) t3) gl@r2(lg)rg+rgs

XOopoITo M3BECTHO, HACKOJIBKO COBEPIIIEHHO IeHCTByeT apobHoe mHTerpomudde-
PEHIUPOBAHKE B BECOBBIX IIpoCcTpaHcTBax beprmana B equaundHoM Kpyre D = Bs, T.e.
BECOBBIX KJIACCAX [OJIOMODPMHBIX (Miid rapMoHuYecKux) (yHKIMHA, HHTEIPUPYEMBIX

o 1Ioma . B gacTHOCTH,

(13) HDgﬁfHL(p,p,a—B) < C(pva)Hf”L(p,p,a)a a > 6 > 07 0< p < 00,

11t Beex rosioMopdubix dbyHKImit B Kpyre (cm., Hanpumep, |2, Teop.8|, [5, Teop.6]).
O6paTHOE HEPaBEeHCTBO TAaKKe BEPHO. 1109TOMy MOXKeT II0Ka3aThes HECKOILKO CTPaH-
HbIM, 4TO HepaseHcTso (1.3) mpu p = 1 Hapymaercs Jijist OOIIUX U3MEPUMbIX (DyHK-
umit. leficrBuTensno, Boibepem dynkumio ho(z) = ho(r) :== ' (log %)72 ,0<r <1,

ImocduTaeM U ONE€HUM HOPMBbI

1 . 1 (1 _ ,r)ocfl
lhollL(1,1,0) = / (1 =7)*"ho(r)dr = / ——T dr < +o0, 1e. hg € L(1,1, ),
0 o r(log2)
(1 —r)*" p-1

| Dy h0||L(11a 5 >C/ Tdr:+oo, re. Dy ho & L(1,1,a — f).

DTOT 2Ke KOHTpIpuMep hg IPUMEHUM, KOT/Ia PACCMATPUBAIOTCS IIPOCTPAHCTBA CO CMe-

manHoi HopMmoit L(p, 1,a), 1 < p < oo, Bmecto L(p,p, ) B (1.3).
5



K. ABETUCAH

esb Hacrogimeil craThbu — MOJYIUTh HepaBeHcTBa THia (1.3) ¢ Apo6GHBIM HHTErpH-
poBaHMeM Ha mpocrpaHcrBax Jlebera co cmemanHoit Hopmoit L(p, ¢, ). Pazinanbre
JIPOOHBIE OIIEPATOPHI, BECOBbIE (DYHKITUU U MHIEKCHI BO3MOXKHO MPUBEAYT K PA3HBIM

pe3yibTaTaM.

2. HEPABEHCTBA @DJIETTA U UX CJIEACTBUS

ITpuseieM HEKOTOPBIE HepaBeHCTBa Tula Xapu, nostydenssie Puerrom [4, p.490-
491], [5, p. 758].

JIemma A. (4], [5]) danl <g<oo, a> >0, A<1— %, U UBMEPUMOT PYNKUUU

h(r) > 0, umeem mecmo HepaseHcmeo
1 p 1
(2.1) / (1= 7)ot y90=9) (D=Fp(r) ) ar < c/ (1= )29~ 9 B9 (r) dr,
0 0

20e C' = C(q,a, B, ), u bosee npocmoe HepaseHcmseo

1

(2.2) /0 (1 e (D=%h(r))" dr < Clg,0, ) /0 (1— )" h(r) dr.

Sameuanue 2.1. Hepaserncmesa (2.1), (2.2) moocho cuumams 0600UeHUAMU U3~
secmnux Hepasenems Xapou (em., nanpumep, [3]) na cayuwat dpobrwx unmezpanos
npoussoavrozo nopadka. Ipu = 1 nepasencmeo (2.2) xax pas ceodumcs % 00-
HOMY U3 Kaaccuveckux nepasencms Xapou. Tem ne menee, nepasencmsa (2.1), (2.2)
BNOAHE MOYM OBLMD YMOUHEHDL U YAYUUWEHDL O HECKOALKUM Hanpasienuam. Hanpu-
Mep, 0as Gosee 0OWUT 6eco8LIT GYHKUUT (MaK HA3BIEAEMBLT HOPMANLHYL HYHKUUT)
nepasencmea muna (2.1), (2.2) 6o noayuenv 6 (8], [9].

C dpyeoti cmoponwl, nepasercmeo (2.2) npu g = 1 moorcno 06obuwums do mootc-
decmea. Kpome mozo, Hac uMmepecyem 603MONCHOCTIL 3a.MEHBL ONepamopa dpobHo2o
unmezpuposanus D8 na dpyeoti. Imu u nexomopwie dpyzue ymowrenus codepicam-

CA 6 Humecneﬁymmeﬁ AEMME.

JIemma 2.1. (i) IIpu ¢=1, a > >0, vy € R, n > 2, cnpasedausv. mosicdecmsa

1 B 1
(2.3) /O (1) P D Ph(r)dr = F(I‘f(a)ﬂ) /O (1) h(r)dr,

(2.4)
1 _ 1
/ (1- r)o‘_’B_l pPtytn/2-1 D;@h(r) dr = M / (1- r)a_l pyn/2-1 h(r)dr,
0 0



JPOBHOE MHTETPUPOBAHUE B BECOBLIX ITPOCTPAHCTBAX ...
(ii) Feaul<g<oo,a>B>0, A<1—-1/q, y€R, n>2, h(r) >0, mo

1
[ et (5500 ar <
(2.5) 1
<C(g,a, 5, )\)/ (1- T)aq—l paA+y+n/2-1) R (r) dr,

0

1
/ (1- r)(afﬁ)qfl ra(B+y+n/2-1) (iﬁgh(r))q dr <
0
(2.6) 1
= clead) / (1= p)ea=tpaGrtn/2-0) par) gy,
0

B wacmmocmu, ecaul < g < 0o aubo 1 < g < oo, n >3, mo
1

1
(2.7) /0 (1- r)(a*ﬁ)q*1 (Qfﬁh(r))q dr < C’(q,a,ﬁ)/o (1 — 7)1 pa(r)dr.

JHoxazameavcmeo. (1) Teopema @ybunu u 3amena nepemennbix r—t = £(1—t), 1—

r=(1-1t)(1— &) nupusogar x
/01(1 —r)* P L D Bh(r) dr = /01(1 S Lﬂ(lﬂ) /07‘(T — )P~ h(t) dt] dr =
- /01 [/tl(r _ 4P (1 - )i dr} h(t)dt =

INGE))
:L 1 _ pa-—1 1 B—1 _ a—pB—1 _
F(B)/o (-1 UG &g df] h(t) dt
_M ' _ pa—1
T T /0 (1 =1)"" h(t) dt.

Towxectso (2.3) nokazano. daree samernm h(r) ma r7+7/2=1 h(r) 5 (2.3) u nosrynm

(2
ToxK1ecTBo (2.4),

F(OZ - 6) ' —r afl,rh/+n/271 r)dr =
et [ aen () dr =

1
_ / 1- T)a—ﬁ—l pBryFn/2=1  —(B+y+n/2-1) D—B{T’Hn/?—l h(r)} dr =
0
1 ~
= /0 (1 —r)a Bt phtrin/2=1 D;gh(r) dr.

(ii) Jos noxasaresnbersa (2.5) u (2.6) mocrarouno samenuts h(r) ma rY /271 p(r)
B (2.1) u (2.2), coorBeTcTBEHHO.
B uwactHOM ciiygae 1 < g < oo 6o 1 < g < 0o, n > 3, MOXKHO BBIOpATb 7y =

0, A\=—=(n/2—-1) <0 u nmoxyants (2.7). O
7
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Bameuanue 2.2. Moowcro donycmums ynpowatouiee obosnavenue s := q(\ + v +

n/2 — 1) u nepenucams (2.5) 6 sxsusaseHmHOM Bude

(2.8) /01(1 —p)l@=Bla—lys (f);ﬁh(r))q dr < C’/Ol(l — )t pe(r) dr,

s+1
q

C(q,a, B,7,8,n) 3a8ucum moavko om YKa3aHHOUL NAPAMEMPOS.

ecau moavko s < q(y +n/2) — 1 uau v > — 5. IIpu smom nocmosanmnas C =

3. TIOJYIPYMIIOBBIE CBOMCTBA ONEPATOPOB D*® 1 D.5

B sTom pazzese MBI BBIBEIEM HECKOJBKO BCIIOMOTATENBHBIX (DOPMYJI THUTA TIOJIY-
IPYIIIOBBIX MJIH KOMMYTAIIMOHHBIX JIsI JIPOGHBIX omeparopos DT u D;)‘;. Hekoto-

pbl€ TOXKJIECTBA TAKOIO THUIIA yKe ObLId HaMu ycTaHosJeHsl B [10] npu n = 2.

JIemma 3.1. Jlas m € N u docmamouno eaadxot gynruuu f(x) 6 edurnuurnom wape

B umerom mecmo caedyrouue "noayepynnosuvie” popmyao:

(3.1) D f = PD DAL =D aDAS, o, B>0,
(3.2) DDA f = APl A AL = DD g, a>B>0,
(3.3) rfD=e (P f} =D %, a>0, 3R,
(3.4) DDA f = DIy fl B>a>0,
(3.5) Do f = pm=ip=(m=o)pmfp=(m=3) f1 0<6<m,
(3.6) Dy =D, {(5 S Df+ ®1f], 0<d<1,
(3.7) DD f = DD O, a>0.

Lloxaszameavcmeo. IlooduepeiHo JIOKaXKeM BCe CEMb TOXKJIECTB, COXPAHIT UX HyMepa-
TIHIO.

(3.1) Cormacuo Onpenenenusy 1.1-1.3 omeparopos D+, DEe @io‘, HOJTY IaeM
.Dfozfﬁf _ T*(a+5+n/271)Dfa7ﬂ{Tn/Zflf(l,)} _
— p—(a+B+n/2-1) p—a |:T[3+n/2—1r—([3+n/2—1)D—[3{Tn/Z—lf(m)}:| _
=r P [7"'8 @‘ﬁf(x)} =
1
/0 (1=t "D f(ta) t7 2 dt = D% DP f ().
(8.2) Ucnonnzys dopmymsr obpamenns i DT, a raksxke (1.1) u (3.1), moaydaem
st o > >0

Dfa@ﬁf — @*(a*ﬁ)*ﬁpﬁf — T*B@*(a*ﬁ){rﬁD*BDﬁf} —
8



JIPOBHOE MHTET'PUPOBAHUE B BECOBBIX ITPOCTPAHCTBAX ...
_ . —Bp—(a— _ H—(a=5)
=P B){Tﬁf}—DmB I

(3.3) AnasornunbiM 06pazoM,

1 ~
rID L fla)} = ﬁ / (L= )" (tr)? flta) /21 dt = D% f(a):

(3.4) Ipumensia Gopmyant obparenust u Oupenesnenns 1.1-1.3 ¢ § > «a > 0,

HOJTy 9aeM
.th)z@ﬁf _ Tf(aJrn/Qfl)Dfa{rn/Qflﬂﬁf} —
- r—(a+n/2—1)Dﬂ—aD—ﬁ{r"/Q—lpﬁf} =
— T—(a+n/2—1)D,8—ar,H+n/2—l D—B{T—(n/Q—l)rn/2—1®,6’f} —
_ Tf(a+n/271)D,Bfa{Tﬁ+n/2fl f} _ ,r,faDﬂfa{T,af}7
YTO JOKA3bIBAET TOKIECTBO (3.4).
(3.5) Jdna nokasaresnbcrBa ToxecTBa (3.5) mocrarodno B (3.4) 3aMeHHTH [ HA
m, TakKe o Ha m — 9, a 3arem dynxmmio r™ 0 f(x) na f(x).
(3.6) IIpeo6pazyem
1. —(1-6 no (-6 1( . —(1—6
DHr ( )f}:§r =9 f4rD {r ( )f}:
= grf(lfé)f +r [— (1—68)r =9 f 4 Tf(lf‘;)le} =
— = (1=9) [(5 + g - 1) f+ rle} = p=(1-9) [(5 —1)f+ 931f].
Orcrona MOCPEICTBOM yIKe JOKA3AHHBIX TOXKAECTB (3.5) u (3.3) mpuxomum K
®5f _ 7,176@7(175)@1{7,7(175)]0} _
— Tl—ﬁ.D—(l—(s)T—(l—(;) |:(6 _ 1) f + .le:| — @;’(61:15) [(5 _ 1)f T le:| ,
9T0 U TpebOBAIOCD.

(3.7) Buauase mokaxkem 6osiee 1pocTyio hOpMyIry KOMMYTAIIUN

(3.8) D™D f(x) = DT {r" D" f(z)}, x=r(.

JL71s1 3TOrO packpoeM ee, MoJIb3ysCh OYEBUIHON hOpMYJIOit aa%”m fird) =tm % f@re),

PO () = 1S {F(la) /01(1 — 1) () /2 dt} -

_L ' _ pHa—1 ™ om o n/2—1 — DafpmpDM (g
i a0t [ g | et e om0},

4T0 coBrazaer (3.8).
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Awnamoruano dopmynam (1.2) mua m = 1,2, reneps mjist npoussosabHoro m € N
HafiryTest moctostHEbIe ¢ = c(n) > 0 (k=0,1,2,...,m — 1), 3aBucAIINE TOJBKO OT

N TakKue, 9To
(3.9) D" f(x) = r~ 2N DML (@)} =S " ork DR f ().
k=0
Torna nocpencreoM (3.8) u (3.9) mosyvaem
DD~ f(x) = Z et DD f(2) = D~ Z ekt DR f(x) p = D7D f(x).
k=0 k=0
Jlemma 3.1 IOJTHOCTBHIO JOKa3aHa. O

4. JIPOBHOE MHTEI'PUPOBAHUE B JIEBEIOBBIX ITPOCTPAHCTBAX

CO CMEIIIAHHON HOPMOMH B IIIAPE

ITocKOIbKY MBI 3aMHTEPECOBAHbLI B BOIIPOCAX JPOGHOI0 MHTEIPUPOBAaHUs Ha (DYHK-
IUSIX, THTEIPUPYEMBIX C BECOM B IIape, TO HaM HeoOXOAUMbI TOYHbIE OIeHKH HEKOTO-
PBIX 3TAJOHHLIX HHTErpaJsos. lHTerpan B HEXKeC eIy omeil JeMMe XOPOIIO U3BECTeH,
B YaCTHOCTU U3 TEOPHUM THIepreoMmerpudeckoil dpynkuuu laycca, 1 Mbl HyZKJIaeMCsI
B JIBYCTODOHHE(l ONEHKe 3TOro murerpaja. 11ono6Hble oreHKn MOXKHO Haditu B [11,
Jlem.3.1], [12, JIem.6.1,6.3], [13]. 3mech MBI nasmM HHOE MPSIMOE U CAMOJIOCTATOTHOE
JIOKa3aTeIbCTBO HEPABEHCTB, OCHOBAHHOE JIMIIL Ha HHTEIPAJLHBIX ONEHKAX 6€3 IpH-

BJIEYEHUs] TEOPUH CIEIUAJBHBIX (DYHKITUIA.

Jlemma 4.1. Ipu o, A > 0, f € R umerom mecmo deycmopornue ouerxy

1
7_7 /8>a’
tptgoget U
41 G St B PO S ) <a, 0<r<1,
(1) /0 1) fa sre
2
log——, fB=q,
1—r

20e yvacmeyrowue (HO A6HO HE ynasam—tme} NoCcMmoAHHBLE 3ABUCAN AUWD 0T O, B, A

Jokasameavemeo. Bee nepaserncTsa B (4.1) Tpusnasbhsl, ecian 0 < r < % [TosTomy
JI0CTATOUHO JIoKa3aTh (4.1) Toabko npu 3 < r < 1 wm r — 17. Buauaune, nosaras
B > a > 0, ouenum unrerpai (4.1) ceepxy

1 -1 _ pfa—1 T gA—1 _ pa—1 1 -1 _ pfa—1
/ 11— 1) dt:/ 11— 1) dH/ Pt
0 0 r

(1—rt)8 (1—rt)8 (1—rt)8

T (1 —)e! 1 b 1
< -1 —pe- —
_/0 TR dt+(1fr)ﬁ/r Tl -t dt
10
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" A1 1 ! A—1 1
= dt T (1 — ) dt.
fﬁ T— s '*(1——rw3J( =1

BBuny nByx acUMITOTHYECKMX COOTHONIEHUH mpu r — 1~

/r 0 dt ! /1 A -t dt 1 (1—r)®
o (L—t)t+ho (B—a)(l—mr)p=e’ r o ’

3aKJIFOYAEM, ITO

AL (1 — gyt 1 1
Y o n< - - < .
/0 (1_,r,t)3 dt—c(a7ﬁ7>‘)(l_r),@_aa B <r<l1
Ob6patHo,
1 t)\fl (1 _ t)afl 1 t)\fl (1 _ t)afl C)\ 1
P S A > > _ Oé*l —
e e e e e A
Ch C 1
= — — @ > - _—
ol —rp L 1 2 55 Ty

Cayuait 8 > « > 0 nokasan. [lepexoms Teneps K ciaydaro 5 < «, nmojoxuMm 0 < 8 < «

7 OTIEHUM

1 -1 _ p\a—1 1 -1 _ p\a—1
/ Mdtg/ Mdt:B()\,a—B),
0 0

=) =07
AT -t b a1 g o
A e ﬁzét (1— 11 dt = B\ a),

rue B(:,-) — 6era-dynkuua Ditnepa. B ciaygae S < 0 10Ka3aTILCTBO AHAJIOTUIHO.

Haxkomerr B TperbeMm citydae [ = « 3aMeTUM, ITO 11:;;

< 1 m 3aMeHUM IIepeMEHHYIO
B MHTErpaJe
1a-1 a—1 1 oa—1 & 1 oa—1
t 1-—t t 1-—t t
/ # dt = / — ] dt< / dt =
0 (1 —rt) o L—rt \1—1rt o L—rt
1 r oa—1

re 01—7777 Ogl—r

opu r — 1.

Orum JIOKa3aHa BEPXHAA OICHKaA. ,ZLHH JOKa3aTeJIbCTBa HU2KHEN OII€HKN BOCIIOJIB3Y-

1—¢
eMcsl MOHOTOHHBIM yObIBanueM (yHKIUU 1—; 1O ¢,

1 -1 a—1 1 -1 e roA—1 ey
t 1-—t t 1—1t t 1—1t
/#dt:/ - dtZ/ dt >
0 (1 —rt)> o L—rt \1—rt o L—rt \1—rt
A A (A 1 1
2/ ) dt> = dt ~ — log
o 1—rt \1—1r2 2« Jo 1—7t 20 1—r

npu 7 — 17. Drum Jlemma 4.1 nokazana. 0

Hastee, Ham noTpeOYIOTCS TOYHBIE OIIEHKU MHTErpaJsoB, cxoxux ¢ (4.1). B ciaenyio-
et JeMMe Mbl yTOYHSIEM OIEHKHU HEKOTOPBIX WHTErPaJjIoB, paCCMOTPEeHHBIX PjreTToM

4, (15.3),(15.4)].
11
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Jlemma 4.2. Ilpu a € R, b,c > 0, cnpasedauswv, dsycmoponnue oueHKy
(4.2)

rb+c—1
1 Na—b’ > b7
Tttt (1 =r)e? '
J1:<]1(7') ::/ Wdt% rb+c_17 a<b7 (O<7’<1)7
0 _
2
rbte=log 1 , a=b,
- T
(4.3)
(1 o p)bJrCfl -b
s a>b,
1 b—1 c—1 P
t— 1—-1t
J2 = Jg(p) = / ( p) ta< ) dt ~ (1 — p)l)"_c_l7 a < b7 (0 < P < 1),
p

L2
(1—=p)*log=, a=b,
p
206 HEABHO BOBAEUEHHDLE TOCTNOAHHDLE 3ABUCAI, AUUD O A, b, C.

Loxazameavcmeo. Ilepsorit maTErpas J; HEMEIJIEHHO OIEHUBAETCS 3aMEHON Iepe-

MEHHOIO ¢ = 771,

Ji = /T (Gl M dt = rbte-t /1 (L=t dn
0 (L=t) o (L—rn) 7

¢ manbHelmuM npumeneaneM Jlemmer 4.1. Bropoit maTerpasn Jo cBomures x J; 3ame-

HOlt mepemerHbx 1 —t=n(l—p) u r=1—p. O

Ha ocnoBe mokazanubix Jlemm 4.1 n 4.2 MBI A3 JM TOYHBIE OIEHKH WHTETPAJIOB

(2.1) m (2.2) npu ¢ = 1, u Tem cambiM yTounuM Jlemmy A Qurerra.

JIemma 4.3. (i) IIpu A < 0 < B < «, cnpasedausa 08ycmopornsis ouerka
(4.4) /01(1 — 7')0‘7671 pr—h D*Bh(r) dr ~ /01(1 — r)afl r h(r)dr.
(ii) B npedeavhom caywae A =0 < f < a, umeem

(4.5) /01(1 — ) P D P h(r) dr ~ /01(1 — )L h(r) log % dr.

Joxazameavemeo. U3 aByx noxoxux oneHok (4.4)-(4.5) mokazkeM TOJIBKO BTOPYIO
(4.5). Ipu A = 0 mo reopeme @y6unu u (4.3) mias omeparopa D;B = rADP

BBIBOIVM

1
/ (1- r)o‘_ﬁ_l rh D_ﬁh(r) dr
0

1 1 I
_ _ pja—B-1,-8 )81 . —
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- ﬁ /01 [/tl Glld it ilﬁ_ D ] iy ar ~

! 2
z/ (1—t)t logzh(t)dt,
0

9T0 U TPeOOBAJIOCH. O

[Tepeiimem Kk HOpMYIUPOBKE U TOKA3ATEIBCTBY OCHOBHOI'O PE3yJIbTaTa HACTOSIIEH

CTaTbH.

Teopema 4.1. IIpu 1 < p,q < 0o cnpasediusv, caedyrougue namo ymeeporcoenud,
nputem 6 KadHcooM U3 HUL NPEONOAAZAEMCA, WIMO HOPMA 6 NPABHIT YACMALT HEPA-
sencme (4.6)—(4.11) xoneuna.

(i) Jas scex a > > 0 cnpasedauso nepasercmaeo

(46) 19y < C(@: 0 B i

3a uckamouenuem cayuas ¢ = 1, n = 2, xoeda nepasencmeo (4.6) napywaemcs.

(ii) Jas ecer 1 < g < oo, a> >0, v <4 —1 cnpasedauso nepaserncmeo

(47) ||‘Diﬂf||L(p7q7a_,g;7.~{dr) < C(q, a, ﬂv 7)||f||L(p,q,a;T’Yd7")'

B wacmnocmu, npu q =1, n =2, umeem

48) D27 f s pirary < C@ BN L raman, 7 <0<a<p.

(iii) Ipu mobvix o > >0, £ > % — 5 cnpacedauco

(4.9) 195271 sy < (a0 B Ol g

(iv) Bcauw 0<a<d<k j<é(jkeN), mo

(410) ”@ijL(p,q,é—a) < C(Qa a, 5»ja k)|‘®kf||L(p7q7k_a)

das ecex docmamouno eaadkux dynkyui f 6 B.

(v) Ecau O<a<5§[a]—|—1<5+g—§, mo

(4.11) |D° ) < Cla, 0 )P g

f||L(p7q7§—a [a]+1-a)

oas ecex docmamouno eaadxux Pynrkuyul f 6 B.

Jokasameavemeo. (i) Caydwait ¢ = oo. Iomaras, aro f(x) € L(p, o0, a), mo onpe-

JIEJIEHUIO UMEEM

(412) (1 - T)aMp(f;r) < ||fHL(p,oo,a)7 0<r<l.
13
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HocnenoBarenbHo npuMensis HepaBeHcTBo Munukosckoro u (4.12), noxygaem

1 1
M,(D=Pf;r) < —/ (1 — )P~ M, (f;tr)dt <

03
Loyt g
< Wbt 5 J, e S OO GRS

A

Caenosarensio | DA f|l1pooa—p) < ClfIL(p,0o.a), KaK 1 TPeGOBAIOCH.
Cayyait 1 < g < oo. a1 < g < oo, mubo 1 < g < oo, n > 3, 10 HEPABEHCTBY

Muskosckoro u (2.7) mosydaem

H’D_ﬂin(p,q,afﬁ) =
1! e
—/ (1 =)= ftrO) V2 dt

1
= (1 —_ r)(afﬁ)qfl
/0 F(ﬁ) 0 Lr(S;do)

1 1 1 q
< /0 (1 - r)@=B)a-1 (F(B) /0 (1-t)f ||f(tr()||Lp(S;dﬂ)t"/z_ldt> ar —

1
:(/’<1—vow-ﬂﬁ-1<D-ﬂanqu»qdrs
0

dr <

1
< ClaBan) [ (=1 sy dr = ClAL 0

Hapymenue (4.6) npu ¢ = 1, n = 2 carenyer u3 (4.5), Win 2Ke B 9TOM MOXKHO yOeIUTHCST
IpUMEHNB KOHTpHpuMep hg n3 Beenenms.

(ii) Temeps npumenunm Gosiee obinee HepaseHCTBO (2.8) ¢ v = 0, a Takke Hepa-
BeHCTBO MUHKOBCKOTO W OIEHUM AHAJIOTMYHO TIpeIbIayeMy yTeepxkaennto (i). B

pe3ybTraTe moJIyYuM

Hwﬁﬂmmw%Mh<0/ L= )Y £ ) 17 dr = O g i

B wactuocTn, npu ¢ = 1, n = 2, umeem v < 0.
(iii) Caywuaii 1 < ¢ < co. BHOBB 110 HepasercTBY MuHKOBCKOTO U (2.8), yIUTHI-

B&H£>*—*

5, HOJIy9aemM

1
HD fHL(pqa B = /(1_7“)((y Ble- 1( nZHfHLP(S) dr <
1
< ClaBatm) [ (=0T s e = Ol 0

B wacraOCTH, IpU ¢ = 1, N = 2, moJy4aem H@Z_’?J‘HL@’LQ 8 < Clfllepi,a), £>0.
14
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Cay4ait ¢ = oo. Io onpenenermio mmeem (1 —7)*My,(f;7) < ||fllLp,00,0) TPH

0 < r < 1, npeamomnaras uaro f(z) € L(p, 00, a). Hust onenkn npumvensiem Jlemmy 4.1,

~ 1 1 B o
My(D, 7 f;r) < F(B)/o (1 =) IM,(f;tr) /2t <
1 ! (1 — t) l+n/
>~ ||fHL(p7oo7a) 1—\(5) /0 (1 — ’I“t) t +n/2— 1dt <

< cm,w,mm, a>p>0.

TaxuM o6paszoM, H'D;ngL(pm’a_ﬁ) < Cla, B,4,0) fllL(p,o0,a); 9TO 1 TPEOOBATIOCH.
(iv) Hua pocrarouno ruaakux GyHKoumi u obbix 0 < a < §, 1 < j < 4§ <

k (j,k € N), onenmsaewm, ciexys dopmyse obpamerns f = D~*DF f u bopmyram

(3.7), (32), (4.9),
”Djf”L(pq §—a) = ||Dj®_kaf||L(p,q,6—a) = ”‘D_ijDkf”L(p,q,é—a) =
k—
= D25 Dl sy < CID* Fllipaimatiopy < CID* Lran-a-
(v) Caywuaii 1 < ¢ < co. O6oznaunm m =[]+ 1, Tak ut0 0 < a<d<m =
[a] +1 <6+ g — —, IIpeo6pazyem m-yio npoussomuyio B (3.5) ¢ UCHOIb30BAHUEM
q
pazsioxkenus (3.9) u upasuia nuddepennuposanus Jleiibuuna,
@m{rf(mfé)f(x)} _ rf(n/271)Dm |:T5+n/271 f(:L'):| _

m

_ ..—(n/2-1) m) DM S+n/2-1 Dif=
=r i T =
(7)1 |
= <m>0(6 n,j)rt " DS =
j=0 N/
= (m=9) Z (6,m,n,j) TJD]f+rmDmf
7=0

)

i e B Gostee TouaHOi hopme B TepmuHax DF,

(4.13) rm=0 P L= (M=) f(g)} = ZC (6,m)DIf +D™f.
7=0

Teneps npeobpasyem mpoussoyio DO f ¢ momontwio (3.5), (4.13), (3.3),
'D(;f(l‘) — ,rmfzSDf(mfzi) [Dm{rf(mfti)f(x)}} —

m—1

= 0D M=y (= I N Cy(5,m) DI f + DT f| =
j=0
15
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m—1
(4.14) =D, NN G m)DIfF D, 0<F<m <o+ 1.
7=0
IepefimeM K CMEMIAHHBIM HOPMaM, KOTOpBIE oreHuM ucnosb3ys (4.14), (4.9), (4.10)
u ycjoBue 6 —m > %—%7
5 _ gt |5 m
HD f”L(p,qﬁ—a) - 7L5 m Z 6 ’ITL Djf+D f
=0 L(p,q,6—c)
m—1 )
<C|> Ci(6,m)DIf+D"f
§=0

L(p,q,m—c)

m—1
<C Z C;(6,m HDJfHL(p’q,mfa) + HDmeL(p,q,mfa)
§=0

< C"H‘D’meL(pq7 )’

rae nocaeaass nocrogunaa C = C(q, o, 0, M, n) 3aBUCUT OT YKA3aHHBIX [APAMETPOB.
Hokazan cay4gaii 1 < ¢ < oo mepasencrsa (4.11).
Cayyaii ¢ = oo aHaJOrWYeH, JIeTajau JOKA3aTeJhCTBa OmycKaeMm. leopema 4.1

ITIOJTHOCTBIO JTOKa3aHa. O

Abstract. The paper studies the action of a fractional integration operator in
weighted Lebesgue classes and mixed norm spaces on the unit ball of R™. We sharpen

and generalize some results of Hardy, Littlewood and Flett.
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Abstract. In the paper, we have exhaustively studied about the uniqueness of meromorphic
function sharing two values with its k-th derivative counterpart. We have obtained a series
of results each of which will improve and extend a number of existing results relevant with

the content of the paper. We have also pointed out some gaps in one theorem in a paper due
to Chen et. al. (Pure Mathematics, 8(4)(2018), 378 - 382 (in Chinese)) and rectifying those

gaps presented the corrected form of the same in a compact manner. Thus we have been able

to streamline all the results in this particular section of literature.

MSC2010 numbers: 30D35.

Keywords: meromorphic function; uniqueness; weighted sharing; derivative.

1. INTRODUCTION AND DEFINITIONS

Let C = CU{oo}, C* = C\ {0} and N = N U {0}, where C and N denote
the set of all complex numbers and natural numbers respectively and by Z we
denote the set of all integers. In this paper by any meromorphic function f we
always mean that it is defined on C. We use standard notation of Nevanlinna
theory as stated in [5]. For any non-constant meromorphic function h(z) we define
S(r,h) = o(T(r,h)),(r — oco,r ¢ E) where E denotes any set of positive real

numbers having finite linear measure. We recall that T'(r, f) denotes the Nevanlinna

characteristic function of the non-constant meromorphic function and N (r, fia) =
N(r,a; f) (N(r, ﬁ) = N(r,a; f)) denotes the counting function (reduced counting
function) of a-points of meromorphic function f. When a = oo, we use N(r, f) =
N(r,00; f) (N(r, f) = N(r,00; f)) to denote counting (reduced counting) function
of poles of f.

1, ifk=1

k+1, if k>2.

Now we give the following definitions which are used throughout the paper.

Let us define x, =

Definition 1.1. [6] For a € CU {oo} we denote by N(r,a;f |= 1) the counting
function of simple a-points of f. For a positive integer m we denote by N(r,a; f |<
18
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m)(N(r,a; f |> m)) the counting function of those a-points of f whose multiplicities
are not greater(less) than m where each a-point is counted according to its multiplicity.
N(r,a; f |< m)(N(r,a; f |> m)) are defined similarly, where in counting the
a-points of [ we ignore the multiplicities.
Also N(r,a; f |< m),N(r,a; f |> m),N(r,a; f |[< m) and N(r,a; f |> m) are

defined analogously.

For a constant value a, we denote the set of all a-points (counting multiplicities
or CM) of f by E(a, f), and all distinct a-points (ignoring multiplicities or IM) of
f by E(a, f). As per Ozawa [12], the notation E(a, f) C E(a,g) means if z, is a

zero of f — a of order v(n), then z, is also a zero of g — a of order at least v(n).

Definition 1.2. [5] For two non-constant meromorphic functions f and g, we
say f and g share the value a CM, if E(a,f) = E(a,g). On the other hand, if
E(a, f) = E(a,g) we say f and g share the value a IM.

Definition 1.3. [7] Let k € Z* U {c0}. For a € CU {cc} we denote by Ex(a; f)
the set of all a-points of f where an a-point of multiplicity p is counted p times if
p<kandk+1 timesif p>k. If Ex(a; f) = Ex(a;g), we say that f,g share the

value a with weight k.

We write f, g share (a,k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a, k) then f, g share (a,!) for any integer [ such that 0 <1 < k.
Also we note that f, g share a value a IM or CM if and only if f, g share (a,0) or
(a, 00) respectively.

In the beginning of nineteenth century R. Nevanlinna inaugurated the value
distribution theory with his famous Five value and Four value theorems which were
the bases of uniqueness theory. In [13], Rubel and Yang first investigated about
the uniqueness of non-constant entire function f and f sharing two values. This
investigation was very important as it first exhibited that in the uniqueness theory,
the number of sharing values can be reduced from 5 to 2, for the special class of

functions. They proved the following result.

Theorem A. [13] Let f be non-constant entire function. If f and f/ share two
distinct values (a,00), (b,00), then f = f .

The following example shows that in the above theorem the two CM value sharing
can not be relaxed to one CM value sharing even if the function share the value
CM with all its k& th derivatives.
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Example 1.1. Consider f = Ae?* + %, where A and B be two non-zero constants

and 0 is the root of the equation z* = 2. Then f and f* share (B, 00), but f # f*).

In 1979, Mues and Steinmetz [10] relaxed the sharing condition in Theorem A
from CM to IM. Their result is the following.

Theorem B. [I0] Let f be non-constant entire function. If f and f' share two
distinct values (a,0), (b,0), then f = f .

In 2000, Li-Yang [8] obtained the following result which settled the conjecture
of Frank [3]

Theorem C. [§] Let f be non-constant entire function. If f and f*) share two
distinct values (a,0), (b,0), then f = f*).

Earlier in 1983, Mues-Steinmetz [11] and Gundersen [4] independently investigated
about the uniqueness of non-constant meromorphic function, when f and f l sharing

two values CM.

Theorem D. [4, [11I] Let f be non-constant meromorphic function. If f and f,

share values (a,0), (b,00), then f = f .

Thus Theorem D improves Theorem A.
After that there was a long recess in this perspective. In 2006, Tanaiadchawoot

[14] proved the following result.

Theorem E. [I4] Let f be a non-constant meromorphic function, a,b be nonzero
distinct finite complex constant. If f and f share (a,00), (b,0) and N(r,f) =
S(r, f) then f = f .

Chundang-Tanaiadchawoot [2] found similar type of result for f and f/ share

one value CM and another value IM. The result is the following.

Theorem F. [2] Let f be a non-constant meromorphic function let a,b # 0
be distinct finite complex constants. If f, f share the values (a,0), (b,0) and
N(r,b;f/| > 2) = S(r, f), then f = f', where N(r,b; fl\ > 2) is the counting

function which only includes multiple zero of f'(z) —b.

Considering the example f(z) = (% - @itan(%iz))i Mues-Steinmetz [10]
showed that for a non-constant meromorphic function two IM value sharing is not
sufficient enough to make a meromorphic function identical with its derivative. So
additional condition is required. In this direction Li [9] obtained the following result.
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Theorem G. [9] Let f be a non-constant meromorphic function such that N(r, f) <
AT (r, f), where A € [0, 35), and a, b be two distinct finite values. If f and f share
(a,0), (b,0), then f = [ .

However, without any additional suppositions, Frank [3] (see also [8]) investigated
the uniqueness of a meromorphic function f and its k th derivative f(*) sharing

two values CM. Below we recall the result of Frank.

Theorem H. [3| Let f be a non-constant meromorphic function. If f and f*)
share distinct finite values (a,00), (b,00), then f = f*).

Recently in 2018, Chen et. al [I] investigated Theorem H under IM shared values.
They proved the following two results.

Theorem I. [I| Let f be a non-constant meromorphic function and k be a positive
integer. If N(r, f) < T(r, f)/(3k+1), f and f*) share two different non-zero values
(a,0),(b,0), then f= f*).

Theorem J. [I] Let f be a non-constant meromorphic function, and k be a positive
integer. If N(r,f) < T(r,f)/(3k* + 4k + 2), f and f*) share (0,0),(1,0) and
B(0,f) C E(0, f®), E(L, f) C EQ1, f¥), then f = f*).

Remark 1.1. Unfortunately there is a drawback in the statement as well as in the
proof of Theorem 1. In the proof of Theorem I, (p. 380) Chen et. al. [1] uses the
following two inequalities

N (rfla) +N (rflb) <T(r,f)+EkN(r, f)+ S(r, f),

m(r,fia> +m(r, fl—b) <m(r, f(lk)) + S(r, f)

to deduce the inequality

T(r,f) <m (r, f(lk)> +kN(r, f) +S(r, f).

But this is true only when f and f*) has only simple a, b points. That means a
restriction has to be imposed on a(b)-points of f and f*). Consequently Theorem

I cease to be hold for general meromorphic functions.

Remark 1.2. In Theorem J (p. 379 of [1]) the authors assume the conditions f

and f*) share (0,0), (1,0) together with E(0, f) C E(0, f®)), B(1, f) C E(1, f®).

From Taylor series expansion it can be easily verified that FE(0, f) C E(0, f*)

implies the multiplicity of the zeros of f is always < k — 1. In particular, if k =1,

then as f and f share (0,0), we see that 0 is a Picard exceptional value of both f
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and f/, which means f and f/ practically share (0,00). So for k = 1, the sharing
conditions of Theorem J actually reduces to f and f share (0,00), (1,0) together
with E(1, f) C E(l,f'). But we see that Theorem G is proved under far weaker

sharing hypothesis and so for the case k = 1 Theorem J is redundant.

We have already seen that the problem initiated by Rubel-Yang has a long
history and as the time progressed several elegant results were obtained in different
directions. As per the knowledge of the authors till date to find the relation between
f and f®) the researchers have only studied the effect of two extreme sharing
conditions namely CM and IM or sometimes with some additional restrictions on
the sharing values like [I]. Naturally in view of the sharing conditions adopted
by Chen et. al. [I], it will be interesting to deal the situation under a systematic
manner of gradation of sharing namely weighted sharing. The prime motivation
of writing this paper is to improve all the results by well organizing them under
relaxed sharing hypothesis.

It is to be noted that the uniqueness problem of f and f(*) yields the following

differential equation

(1.1) F¥(2) - f(z) =0.

We observe that all solution of the above differential equation is of the form

n

(1.2) fz) = cie"*

i=1

where ¢; are complex constants and a; are the k-th roots of unity. For the last few

decades, in this particular theory, researchers have been exhaustively involved to
determine sufficient conditions under which solutions of exists.

Now we are going to state our main theorems. First of all, in Theorem|[1.1]we give

the corrected forms of Theorem I, where as in Theorem [I.9 we investigate Theorem

J under a different sharing condition in a convenient way.

Theorem 1.1. Let f be a non-constant meromorphic function satisfies N(r, f) <
N (r, f). If f and f*) share two distinct non-zero values (a,k — 1), (b,k —1) and
0 <A< g then f= ),

Remark 1.3. We see that, Theorem improves Theorem G for a.b # 0.

Theorem 1.2. Let f be a non-constant meromorphic function such that f, f*)
share the value (0,%, — 1) and a non-zero value (b, k — 1) and satisfies N(r, f) <

)\T(?",f), 0 S A< m, then fE f(k)

Remark 1.4. Theorem[1.1] together with Theorem[1.9 improve Theorem G.
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In the next two theorems we shall show that Theorems [I.1 and [7.4 can further

be improved at the expense of different weighted shared values.

Theorem 1.3. Let f be a non-constant meromorphic function such that f and f*)
share two distinct non-zero values (a, k), (b, k) and satisfies (k+2)N(r, f) < T(r, f),
then f = f*),

Theorem 1.4. Let f be a non-constant meromorphic function such that f, f*

share the value (0,k) and a non-zero value (b, k) and satisfies (kH N(r, f) <
T(r, f), then f = f*).

Corollary 1.1. If f and f*) share two distinct values (a, k), (b,k) and satisfies
N(r,f) < XT(r, f), where 0 < X < (k%)g then f = f®) . In particular, when k = 1
if £, f share two distinct values (a,1), (b, 1) and satisfies N(r, f) < XT(r, f), where
O§>\<i, then f=f .

In the next two theorems we have fixed one shared value to be 0 and the other to

be non-zero and investigated the uniqueness of f and f*) under different conditions.

Theorem 1.5. Let f be a non-constant meromorphic function such that f, f®*)
share the values (0,00), (b,k — 1) and satisfies N(r, f) +N(r, b fR > k + 1) <
T(r, f), then f = f*). In particular, when k > 2 and ﬁﬁ(r, f) <T(r,f), then
f=1®.

Theorem 1.6. Let f be a non-constant meromorphic function such that f, f&)
share the values (0,00), (b,k — 1) and satisfies N(r, f) < XT'(r, f), where 0 < X <
ﬁ, then f = f).

Example 1.2. In [15] Zhang considered the following example

2A
f(z) = 1_Be-22

It is easy to see that f and f/ share the values (0,00) and (4,0) but f # f/. Here
N(r,00; f) ~ 2T(r,e*). So for the case k = 1, when the condition in Theorem

is mot satisfied the conclusion cease to be hold.

A#0, B 0.

In our last two theorems, in this section, we have paid our attentions to the
uniqueness of f and f®*) sharing two distinct values with weight < k — 2 and
thus included the case of IM shared values for the case k > 2 which were never

investigated earlier.

Theorem 1.7. Let f be a non-constant meromorphic function such that f, f*)
share two non-zero values (a,1), (b,1) where 0 <1 < k—2 and satisfies the condition
(1+ 25N ) + 2SNk, 0f) < T(r f), then f = fO)
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Theorem 1.8. Let f be a non-constant meromorphic function such that f, f*)
share (0,1), (b,1) where b # 0, 0 < 1 < k — 2 and satisfies the condition (1 +

Z%)N(r, )+ (k+1)N(r,0;f) + H%Nk(r,o; f) <T(r, f) then f = f*).

2. LEMMAS

Lemma 2.1. Let f be a non-constant meromorphic function such that f and f*
share (a,0), (b,0) where a # 0 and satisfies N(r, f) < XT(r, f) + S(r, f), where
A€ [0,1),k€Z". Then

() TG ) < N f)+N(r 5 b)+N( f(k)lia)—N( f(k1+1)+5( I}

where Ny (7‘, ﬁ) is the counting function of those zeros of f 1) which are not
the zeros of f*) —q

(i) F(rsmy) > g T +50.0)

Proof. (i) can be obtain from Milloux inequality (see Theorem 3.2 of [5]) just
taking f — b in the place of f and f*) — ¢ in the place of ¥ — 1. And (ii) follows
from Lemma 2.1 of [9] by taking f — a in the place of f — 1.

Remark 2.1. The sharing conditions for a, b are no longer required for proving
(i) of Lemma[2.1] That is this part is independent of sharing.

Lemma 2.2. Let f be a non-constant meromorphic function. For a non zero
constant a and k € ZF, if f and f*) share (a,0),(0,0) then,

T(r.f) < N )+ e+ DN (0:0) + N (r =) = No (70 ) + S0,

N
where N®( (k+1>> denotes the counting function of those zeros of f*+1 which

are not zeros of f as well as f*) — 1.

Proof. Note that as f and f*) share (a,0), (0,0) then multiplicity of zeros of
f is at least k + 1. Not only that the zeros with multiplicities p > k + 2 will be
counted p—k — 1 times in NV (T, ﬁ) Also the multiplicities of a points of f is at

most k& and multiple zeros of f*) — q of order t(> 2) are all zeros of N (r, ﬁ)
of order ¢ — 1. Then invoking (i) of Lemma [2.1]for b = 0 we get

T(r.f) < Nr£)+ e+ DN 0 )+ (n 57— = N (v 7e55) + 501
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3. PROOFS OF THE THEOREMS

Proof of Theorem[I.1. Suppose f # f%® . As f and f*) share the values (a, k — 1)
and (b, k —1), it follows that the a (or b)-points of f are of multiplicity < k. If z; is
a zero of f —a (or f —b) with multiplicity p < k — 1, then z; is also zero of f*) — f
with multiplicity exactly p. If z3 is a zero of f —a (or f — b) with multiplicity k
then z, is also zero of f*) —a (or f(*) —b) with multiplicity k + j, where j > 0. So
2y be zero of f(¥) — f with multiplicity equals to min{k,k + j} = k. Thus in both
the cases multiplicity of zeros of f —a (or f —b) is same as the multiplicity of zeros
of f(*) — f. This implies N(r,a; f) + N(r,b; f) < N(T,O;f — f(k)), using this fact

and the First Fundamental Theorem we have
(3.1) N (r,a f9) + N (. f9) < Nras f) + N, bi )
N (r,0:f = f®) <T(r, f = f9) + 50, )
m(r, f = fB)+ N(r, f = fP) + S(r, f)
f(k) _
{7 f(1= 55 ) ) + N0 D)+ BN G )+ 50 f)

m(r, f) + N(r, f) + kN (r, f) + S(r, f)
< T(r f)+ kﬁ(n f)+S(r, f).

IN

IN

IN

Noting that
1
m(?",(l;f) +m(r,b,f) S ’ITL(T, m) +S(T7f)7
from (3.1) in view of the First Fundamental Theorem we get

(3.2) T(r, f) < m(r, ﬁ) +EkN(r, f) + S(r, f).

1 — 1 1
N(r, 7]"(’“) — a) — N(r, 7]0(16) — a) + N|r, 7]"(’“) - b)

— 1 1
N (T’ = b) = N<T’ f(k+1))’

Again as

from (3.1) we have

1 1

<TG, f)+ kNG )+ N(r, ﬁ) +S(r. f).
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Note that

1 1 1 1
m(r,w) +m<r,f(k)a> —|—m<r, f(k)b> < m(r, m) +S(r, f).
So from we have

1 1 1
) 201 00 <)

1 1 1
+m<r, 7 =5 b) +N<r, T —a a) +N<r, 7 b b)

T(r, f) + T(T, ﬁ) +kN(r, f) +S(r, f)

T(r, f)+ m(r,f(k+1)) + N(r,f(kJrl)) +kN(r, f) + S(r, f)

A k k
f(k)> +m(r,f( )) + N(?“,f( ))

+ (K+1)N(r f)+S(r f).

IN O IA

IN

Using (3.2)) in the above inequality we get

(3.4) T(r, f¥) < 2k + N (r, f) + S(r, ).
Combining and we have
(35) T(.f) < m(rggs) BN L) + S0 )

IA

T(r, f) + kN(r, f) + S(r, f)

< @Bk+1)N(r, f)+S(r, f).
Now 1) contradicts the given condition. Therefore f = f(¥). (]

Proof of Theorem[1.4 For the case k = 1, we refer to [9]. So we consider the case
k > 2. Clearly f, f*) share the value (0, %) and a non-zero value (b,k — 1). Let us
assume f # f). Without loss of generality we assume that b = 1. Consider the
function

f(k)(f(k) — f)

(3.6) U =1

Note that if 2y is a pole of f with multiplicity p then z; is also a pole of U with
multiplicity 2k. Now

(3.7 m(r,U) = m(r, (f;k) - 1) ff(k)1>
< m(r, ffic)l) er(r,ji(:)) = S(r, f).
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By l| we get that U(f2 — f) = f*) (f(k) - f) Differentiating both side we get

(38) U= H+UEH =)= 0D (£9 )+ fO (500 - 1),
Let z; be a 1-point of f. As f and f*) share (1,k — 1) then f(z;) = f®)(z) = 1.
Using it in we get,

FE () = L+ U (21)-

Now we consider a function

(000 = 1+ 0)f ) (59 = 1)
f(f=1) '
Note that m(r,o) = S(r, f) and pole of f is also pole of o with multiplicity 3k + 1.

g =

As f and f*®) share (0,k) so multiplicity of zeros always > 2k + 1, then it is easy

to see that zeros of f will not contribute any poles of o. Thus
I(r,0) = N(r,0) + S(r, f) < 3k + YN(r, f) + S(r. f).

As f and f*) share (1,k — 1), the multiplicity of zeros of f — 1 is always < k. If
21 is a zero of f — 1 with multiplicity p < k — 1, then z; is also zero of f*) — f
with multiplicity exactly p. If z5 is a zero of f —1 with multiplicity & then z5 is also
zero of f(*) — 1 with multiplicity k + j, where j > 0. So 2 be zero of f*) — f with
multiplicity equal to min{k,k + j} = k. Thus in both the cases zeros of f — 1 will
f(;:f' Note that the zeros of f — 1 must be
a zero of (f(kH) —(1+ U)f') of multiplicity at least one. Thus 1-points of f must

not contribute to the zeros or poles of

be the zeros of . So

39) N(r ﬁ) < N(r, é) < T(ro) < (3k+ )N ) + S(r, f)
< AGk+ DT(r f) + S(r ).

By Lemma[Zd] we have

(3.10) N ﬁ) > %T(r, £)+ S0 ).

Combining (3.9) and (3.10) we get

1—A 1
3.11 —— < ABk+1) = A> 5.
(3:11) pr1 < AGREL ~ 3K+ 4k 1 2

Clearly (3.11) contradicts the given condition. Therefore f = (). |

Proof of Theorem[T.3. Suppose f # f*). As f and f*) share the values (a, k) and
(b, k), it follows that the a (b)-points of f and f*) coincides in location as well as

in multiplicity < k. So f*) will not have any a (b)-points of multiplicity > &k + 1.
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In other words f and f*) share the values (a,00) and (b, c0). Similar as (3.2) we
get
(3812)  N(ras /@) + N(rbif®) < N(af)+Nrbif)
T(r,f) +kN(r, f) + S(r, f).

N

Consider

’

B f(k+1) f’ B f(/c-‘rl) f
G Ve e T me i

First suppose both V =0 and V; = 0. Then integrating we get
(f® —a) = Ci(f —a), (f¥ = b) = Ca(f — ),

where C1,Cy are two non zero constants. If either of Cqy = 1 or Cy = 1, then we

are done. If C; # 1 and Cy # 1, then from the above two equations, after simple

calculations we get
(Cl — Cg)f(z) = Cla - Cgb + b—a.

If Cy # C5, then f is a constant, a contradiction. Therefore C; = C5 and hence
C1(a—0b) = (a—b). As a and b are distinct, we have C; = Cy = 1 and so f = f*.
Next, we will take one of V', V1 is equivalent to 0 and other is not equivalent
to 0. Without loss of generality, we assume V' = 0 and V; # 0. Then from

integrating the first equation we get
[ —a=0C(f -a).

If f has a pole at z; of multiplicity p then z; is also pole of f*) of multiplicity
p—+k, but this contradicts the last equation. So f does not have any pole. Thus f is
entire. Now if C; = 1 then f = f*). So we assume C; # 1. Noting the fact that f
and f*) share (b,00), from f*) —a = Cy(f — a) we can conclude C; = 1, which is
a contradiction. Thus b is a Picard exceptional value of f and f*). It follows that
Vi does not have any pole. As f and f*) share (a,00), an elementary calculation

yields a-points of f are zeros of V;. So by the First Fundamental Theorem we get

N(r, ﬁ) <N(r, Vil) < T(r, Vi) + O(1) = m(r, Vi) + N(r, Vi) + O(1) = S(r, f).

Next using the Second Fundamental Theorem we obtain

T(r.£) < N )+ N (52 ) + N (ri55) + S0.) = S5,

a contradiction.
So we assume V # 0 and V7 # 0.
From (3.13)) it is clear that
m(r,V) < S(r, f*) + S(r, f) = S(r, f)-
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Since f and f*) share the values (a,c0) and (b, 00), we note that
N(r,V) < N(r, f) + S(r. f).

Now
(3.14) m(nﬁ) < m(ﬁ%) +m(“%)
m(r, %) + m(’"v f(k)(;((:i)é;lz)f - b)) * m<T’ (f—aj)c(f—b)>
) (I - )+ £)
+ m(“bfa{fla_flb}) +0(1)

< T(r,V)+8(r,f) < N(r, f) + S(r, f).

IN

IN

Similarly we can write

(3.15) m(n -

Using (3.12)), (3.14), (3.15) and the First Fundamental Theorem we get

N(r’fia)—'—N(T’fib)—i_m(r’ﬁ)

20(r, f) + O(1)

+ mr ﬁ) £ 0(1) < T(r f) + KN(r, f) + 2N(r f) + S(r, f)
= T )+ (k4 2N f) + S0 ),

which yields

(3.16) T(r f) < (k+ DN f) + 5(r, f).

It is clear to see that (3.16) contradict the given condition. Therefore f = f*). O

Proof of Theorem[I.J) Let us assume f # ) Without loss of generality we
assume that b = 1. As f and f*) share the values (0,%) and (1,k), it follows
that the zeros of f are of multiplicity > 2k + 1 and as usual f and f(*) share
(1,00). We consider the function

Ff = 1%
(3.17) W = W
Note that

m(r,W) = 5(r, f)
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m(r,%) <m (r’VlV) +m (r, (W)) +S5(r, f)
()l

m (r, vlv> + S0 f).

Let zp be a zero of f with multiplicity p > 2k + 1 then zg is also a zero of W

and

A

IN

with multiplicity p — (k 4+ 1). The 1-point of f will not contribute to any zero or
pole of W. If z; is a pole of f with multiplicity ¢ then z; is also a pole of W with
multiplicity (k + 1).

Considering above we get

(3.18) NG, %) (k + N (r, %) <N (r %) + S0 )
1 1
o) mle ) e
< Nr,W)+m(r,W)— m(r, %) +S(r, f)
< (K+1)N(r, f)+m(r,W) — m(r, %) + S(r, f)
< e+ ONG ) —m(r, %) +S(r,f)
Therefore by
319 Ty = 7(r %) +5(r 1)
< (h+1)N(r, %) + (b )N (r, £) + 50, f):
Next consider W = % -7

It is clear that Wy # 0 otherwise f = f*). As f and f*) share (0, k), it follows
that f has no zeros of order < 2k and f*) has no zeros of order < k. Thus by

simple calculation we get
(320) kN (r0:7 > 2k +1) < N(r. oo ) <N J) + S(r ).
> < W) =

Combining (3.19) and (3.20) we get

kE+1—
(3.21) T(.f) < N )+ (E+ DN )+ S, )
E+1)2—
= "N+ 500,
Clearly 1' contradicts the given condition. Therefore f = f(¥). (]

30



ON TWO SHARED VALUES PROBLEM ...

Proof of Theorem[T.5. Let us assume f # f®*). Without loss of generality we
assume that b = 1. According to the condition of the theorem 0 is an exceptional

value of Picard for both f and f*). We consider a function

f(k+1) f’

(3:22) C T Fw o G-
B f(k) f(k+1) f(k+1) f’ f’
T(f<k>_1 T f® )_ (f—l _7)'
From it is clear that
(3.23) m(r,¢) = S(r, f).

If ¢ = 0 then integrating (3.22) we get f(¥) —1 = C(f — 1), where C is non
zero constant. Now counting the order of poles of f(¥) —1 and C(f — 1) we get a
contradiction. Therefore ¢ Z 0. We can write (3.22)) as

1 f(kJrl) f’
fz@(ﬂw—l_f—l)
It is clear that
(3.24) m(r, f) < m(r, l) + S(r, f).

¢

Note that the 1-points of f*) with multiplicity > k + 1 are the only poles of ¢ and
if zg is a pole of f with multiplicity p then zq is a zero of ¢ with multiplicity p — 1.
Then

(3.25) N(r /)= N(r.f) < N r,% + S0 f)
1 1
< T( ,a —m(r,$>+5(r,f)

IA
S
=
s
!
3
3

IN

m(r,0) + N(r.6) = m(r, 2) + 5(.1)

< )+ N1 O] 2 k4 1) = m(r, ) + S0 )

Now using (3.23)), (3.24) in (3.25)) we get

(3.26) T(r, f) <N, )+ N(r1; f®) > k+1) + S(r, f),

a contradiction and hence f = f(¥.
Next consider k& > 2. Suppose
fE

_W—?.
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As f is non entire meromorphic function then 1 # 0. As f and f*) share 1 with
weight k — 1 then 1-point of f(*) are zeros of 1. Thus by simple calculation for
k > 2 we get

(327) (k—1)N (r,l,f Pl > k+1) < N( ;) < N(r, f) + S(r, f).
Combining ([3.26)) and ( -

(3.28) T(r, f) < %N(r, f)+S(r f).

Clearly (3.28) contradicts the given condition. Therefore f = f(*). |

Proof of Theorem[1.6 Let us assume f # f*). Without loss of generality assume
that b = 1. Consider the function

[k
b= T
If f has a pole at z, of any multiplicity, then z., is also a pole of p with multiplicity
k. Note that m(r, ) = S(r, f). Thus

T(r,p) = N(r,n) + S(r, f) < kN(r, f) + S(r, f).

It is clear that 1-point of f is also 1-point of u. So

(3.29) N(r, L)

F—1 N(T’

! 1) <T(r,p—1)

EN(r, )+ S(r, f).

IN

We note that as f, f*) share (0,00), 0 is an exceptional value of Picard for f and

%) So from Lemma and (3.29) we have

(330) T(nf) < N(nf)+N(n1: f(k))—N®(r,ﬁ)+S(r, 5
< N f)+N(r,1; f)+ S(r, f)
< N f)+EN(r, f) +S(r, f)
< (k+ )N )+ S0, f).

It is easy to see that (3.30) contradicts the given condition. Therefore f = f*). O

Proof of Theorem[1.73. Let us assume f # f*). As f, f(*) share (a,l) and (b,1) for
0<1<k-—2,s0 from (i) of Lemmawe can write

(3.31) T(r,f) < N(r,f)—kN(r,ﬁ)—i—N(r,ﬁ)—No(r,ﬁ)
+ S(r,f) < N(r, f)+N(ra'f)+N(ra'f(k))+S(T,f)
< N(r,f)+N(ra; f) + N(r,a; f) + S(r, f).
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Let us consider

T= S
fR)
Let zp be a-point of f with multiplicity py such that [ 4+ 2 < pg < k, then zy will

be an a-point of f*) with multiplicity at least I + 1 and so it will be counted in

kpo

the counting function of 7 — a at most 7%

times. Thus by the first fundamental
theorem we get

k &)

. : <

(332)  N(raf) < ;& N (r, o ®
k )
< v L
< V) + 86

l—|— 1 [Nk(rao;f) +kN(Taf)] +S(Taf)
Now together from and we get
— k —
(3:33)  TO.) S N )+ g N 0:0) + KN, )] + 50, f)

) < T ) + 50, )

<

< (14 ZVFe )+ N0 )+ S ).

I+1 I+1
Note that we can find same result if we apply the above method using b-points

instead of a-points. Now it is clear that (3.33)) contradicts the given condition.
Therefore f = f(*), g

Proof of Theorem[1.8 Let us assume f # f*) . For non zero constant b and 0 <
| < k —2 we have f, f*) share (0,1) and (b,1). From Lemmawe get

(3.34) T(r,f) < W(T,f)+(/€+1)W(r=0;f)+ﬁ(raﬁ)

— Ng (7“, ﬁ) + S(r, f).

Now similar as in the proof of Theorem we can write

335)  N(nmm—p) < mg e(n0:0) + KNG ] + 50 ).

Combining (3.34) and (3.35) we get

2

(3.36) T(rf) < (14 7 )N + (k+ )N 0: )
k
—N ; .
+ I+1 k(T‘,O,f)-'—S(T,f)
Thus one can see that (3.36) contradicts the given condition. Therefore f = f().

O
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Abstract. We study uniqueness problems in terms of shared values or shared sets for a large
class of entire functions representable as Dirichlet series in some right half-plane. In this article,
we obtain a result that extends a recent result due to Oswald and Steuding [Annales Univ. Sci.
Budapest., Sect. Comp., 48 (2018), 117-128|. Our result is also a variant of a result of Yuan-Li-Yi
[Lithuanian Math. J., 58 (2018), 249-262|, and a result of the present authors [Lithuanian Math.
J., 60 (2020), 80-91] for the said class of functions.
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Keywords: Dirichlet series; entire function; shared set.

1. INTRODUCTION, DEFINITIONS AND RESULTS

Suppose that f and g are either meromorphic or entire functions in the complex
plane C. Let ¢ € C U {o0}. The functions f and g are said to share the value
¢ IM (ignoring multiplicities) if f — ¢ and g — ¢ have the same set of zeros, or
equivalently, if f=(c) = g~!(c), where f~!(c) denotes the set of preimages of ¢
under f, defined as f~1(c) := {s € C : f(s) — ¢ = 0}. Moreover, f and g are
said to share the value ¢ CM (counting multiplicities) if f and g have the same
set of zeros and the multiplicities of the corresponding zeros are also equal. In
connection to the shared values one must recall a much celebrated result due to
R. Nevanlinna (known as Nevanlinna’s five value theorem or uniqueness theorem)
which tells that two nonconstant meromorphic functions are identical whenever
they share five distinct values IM; the number “five” is the best possible, as shown
by Nevanlinna (see |5l [I1, [19]). Besides Nevanlinna’s uniqueness theorem Pélya’s
theorem [I3] can be mentioned as another fundamental result and a forerunner
of the above theorem. In [I3], the author showed that four distinct shared CM
values are required for the uniqueness of entire functions of finite order. For any set
S C CU {oo}, we define

E¢(S) := U{s eC: f(s) —ec=0},

ceS

IThe first author is supported by UGC-NFSC scheme of research fellowship.
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where each zero of f — ¢ is counted with multiplicities, that is, E;(S) is a multi-set.
Also, by Ef(S) we mean the collection of distinct elements in E¢(S). If E¢(S) =
E,(S), we say f and g share the set S CM; if E(S) = E4(S), we say that they share
the set S IM. Clearly, sharing a singleton set and sharing a value have the same
meaning by all means. There are meromorphic functions which have importance
in number theory, and so their value distribution is also valuable. During the last
decade, shared value problems related to these functions, such as zeta functions
and more generally the Selberg class L-functions have been studied extensively (see
[3, 18, 10l 16, [18]).

In [I6], Steuding investigated on the possible number of shared values for the
Selberg class functions. A function of the said class generally means a Dirichlet

series £(s) = 3,5, ar(;l) with coefficients a(n) < n¢ (for each € > 0) which has a

meromorphic continuation of finite order to the entire complex plane C with only
possible pole at s = 1, satisfies a Riemann type functional equation, and also might
have an Euler product over primes (see [15] [I6] for precise definition).

In view of Gross’s question for two sets (see [4]), Yuan, Li and Yi [20] asked:
What can be said about the relationship between a meromorphic function f and an
L-function L of Selberg class when they share two finite sets? The authors [20] also

resolved this question by proving the following theorem.

Theorem A. Let f be a meromorphic function having finitely many poles in C,
and let L be a nonconstant L-function of Selberg class. Let S = {a1,aq,...,q},
where ay, ag, ..., o are all distinct roots of the algebraic equation w?+aw?—+b = 0.
Here l is a positive integer satisfying 1 <1 < p, p and q are relatively prime positive
integers with p > 5 and p > q, and a, b, ¢ are three finite nonzero constants, where
c#ajy for1 <5 <1 If f and L share S CM and c IM, then f = L.

Recently, in [14], the present authors proved an IM analogue of Theorem A, as

shown in the following result.

Theorem B. Let f be a meromorphic function having finitely many poles in C, and
let £ be a nonconstant L-function of Selberg class. Let S = {a1,aa,..., a1}, where
a1, Qa, ..., o are all distinct roots of the algebraic equation P(w) = wP+awi+b = 0.
Here l is a positive integer satisfying 1 <1 < p, p and q are relatively prime positive
integers with p > 4k +9 and k = p —q > 1, and a, b, ¢ are three finite nonzero
constants, where ¢ # o for 1 < 57 < 1. If f and L share S IM and c IM, then
f=L
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In [12], Oswald and Steuding considered a more general class of functions, namely
the class of entire functions of the form

(1) L) =3 L0

ns '’
n>1

which are representable as Dirichlet series in some right half-plane. Here the coefficients
are given by an arithmetical function f : N — C. For such functions the authors

[12] proved the following result.

Theorem C. Let L(s; f1) and L(s; f2) be two entire functions of finite order so
that each of them has a convergent Dirichlet series representation of the form (1.1)

in some right half-plane. If L(s; f1) and L(s; f2) share two distinct complex values
a and b CM, then L(s; f1) = L(s; f2).

As Theorem C deals with only the shared values, it would be desirable to explore
the problem on the shared sets for the same pair of functions. Moreover, it becomes
interesting to investigate how far the conclusions of Theorem A and Theorem B

hold for these functions. We prove the following theorem in this regard.

Theorem 1.1. Let L(s; f1) and L(s; f2) be two nonconstant entire functions having
convergent Dirichlet series representations of the form in certain right half-
plane, and one of them is of finite order. Let S = {aq, aa, ..., 01}, where oy, ag, ...,
oy are all distinct roots of the algebraic equation P(w) = wP+aw?+b = 0. Herel is
a positive integer satisfying 1 <1 < p, p and q are relatively prime positive integers
with p > 2 and p > q, and a, b are two finite nonzero constants. If L(s; f1) and
L(s; f2) share S IM and they assume a common complex value ¢ (# o) (1 < 5 <1I)
for some sg € C, then L(s; f1) = L(s; f2) in some right half-plane.

It is assumed that the readers are accustomed with Nevanlinna theory, and so
with its standard notations for a meromorphic (entire) function f, such as T'(r, f)
(the Nevanlinna characteristic function), m(r, f) (the proximity function), N(r, f)
(the counting function) and N(r, f) (the reduced counting function) (for details, we
refer the reader to [5], [7], [19]). The notion S(r, f), often used in this theory, will
mean any quantity that equals O(log(rT(r, f))), (r — 00) except possibly a set of
r of finite Lebesgue measure. In particular, if p(f) < +oo (p(f) denotes the order
of f), then S(r, f) = O(logr), (r — o0) holds without any exceptional set.

2. LEMMAS

The following results are important for the proof of our main theorem.
37



S. HALDER AND P. SAHOO

Lemma 2.1. [0, Satz 12| Let F(s) be a function represented by a Dirichlet series

F(s) = Z fT(:)

n>1

, convergent and non-vanishing in some right half-plane Re s > og.

1
Then its reciprocal also obeys a Dirichlet series representation m = g(f) m
s n

n>1

the same half-plane Re s > oy.

Lemma 2.2. [7, p. 5] Let g,h : (0,+00) — R be monotonically increasing real
functions such that g(r) < h(r) outside an exceptional set M of finite linear measure.

Then, for any k > 1, there exists ro > 0 such that g(r) < h(kr) for all v > r.

Lemma 2.3. |21, Lemma 8] Let p(> 0) and q be two relatively prime integers,
and let a be a finite complex number satisfying a? = 1. Then the expressions wP —1

and w? — a have a unique common zero.

Lemma 2.4. [0, Lemma 2.7] Let P(w) = wP 4+ aw? + b, where p and q are positive
integers satisfying p > q, a(# 0) and b(# 0) are finite complex numbers. Then the
following cases occur:
(i) The algebraic equation P(w) =0 has no root of multiplicity > 3.
(ii) If
P y (=1)Pq?(p — q)P~ 4
aP pP

(2.1)

)

then the algebraic equation P(w) = 0 has exactly p distinct roots which are all
simple, and no multiple root exists.
(iwi) If
W4 (=1)Pgi(p — q)P4

(2.2) — = o

)

and p and q are relatively prime, then the algebraic equation P(w) = 0 has ezxactly

p — 1 distinct roots which include p — 2 simple roots and only one double root.

Lemma 2.5. Let L(s; f1) and L(s; f2) be two entire functions of finite order so
that each of them has a convergent Dirichlet series representation of the form
in some right half-plane. Let R(w) = 0 be an algebraic equation with [(> 1) distinct
roots, where R(w) is a monic polynomial. If L(s; f1) and L(s; f3) share S = {w :
R(w) = 0} IM and they assume a common complex value ¢ for some sy € C such
that R(c) # 0, then R(L(s; f1)) = R(L(s; f2)) for all sufficiently large Re s.

Proof. Suppose that F(s; f1) = R(L(s; f1)) and F(s; f2) = R(L(s; f2)). Since
L(s; f1) and L(s; f2) share S IM, then F(s; f1) and F(s; f2) share 0 IM.
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We now need an explicit form of R(w) to proceed further. Suppose that R(w) has
the form: R(w) = (w — 1)1 (w — 72)2 ... (w — &), where ; € C are all distinct,
S2*_, 1, =1, and I; € N. Therefore

F(s; fi) = (L(s; fi) = )" (L(s; fi) = 2)"2 o (Ls; i) — w)'™, i =1,2.

Let us define a function € : N — C by

if 1
e(n) = {0, if n>

1, ifn=1

so that € = p * u as a Dirichlet convolution of the Mdébius p-function p with the
function u (see [, p. 31]). Here u is the arithmetical function defined as u(n) =1
for all n > 1. Then L(s; f;) —v; = L(s; fi — vje) for i =1,2; j =1,2,... k.

Now from the uniqueness theorem for Dirichlet series (see [I, p. 227], [I7
p. 309]), it follows that any convergent Dirichlet series is non-vanishing in another
right half-plane, and hence L(s; f;) —v; (¢ =1,2;5 =1,2,...,k) is also a zero-free
Dirichlet series for all s with sufficiently large Re s. Therefore, for the shared value
zero, we see that there exists a suitable right half-plane in which each of F(s; f1)
and F'(s; fa) is zero-free. Moreover, F(s; f;) is an entire function as L(s; f;) is so.

Let
_ F(sifi)

F(s; f2)
Then for all s with sufficiently large Re s, W is an entire function without any
zeros. Note that the orders of both F(s;f1) and F(s; f2) are finite. If j =max
{p(F(s; f1)), p(F(s; f2))}, then by Hadamard Factorization Theorem (see [2], p. 384],
[I7, p. 250]), W(s) must take the form
_Es ) e

F(s; f2) 7
for some polynomial P;(s) with deg(Py(s)) < p.

W (s)

(2.3) W (s)

Since L(s; f2) —; is a zero-free Dirichlet series for all s with sufficiently large real
part, using Lemma we have for all these s with large Re s, [L(s; fa) — ;]! =
[L(s; fa — vje)] 7 = L(s; g), where (fa — 7je) * g = €. As the set of Dirichlet series

is closed under multiplication, in view of Dirichlet convolution *, we obtain

L(s;fi) = _ ;. . i
m = L(s; fi — v;€)L(s;9) = L(s; hy),

where h; = (f1 —;¢) x g for j =1,2,..., k. This implies

L(si 1) =% \" _ (e nyls — (s
(L(S;fz)—%) = [Lls;hs)[7 = Lsi by),
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where izj =hjxh;*...xh; (I; times) for j = 1,2,..., k. Therefore, if x = Ry * ho *
Lk ﬁk, then

F(si fi) o L z(n) 2(n)
F<Saf2) B H L(S’hj)iL((%x)iZ ns - 72 Fa

where m; is the minimum of all n € N such that z(n) # 0. From (2.3) we have

Pi(s) = log Z xr(;b)

n>mi

(

— g 2 Ly,
mq®

1+ )

n>mi

z(n) )
z(m1) \ n '
Clearly, the series on the right-hand side is convergent for all sufficiently large Re

s. Since P (s) is a polynomial, the series must be identically zero and so

(2.4) Py(s) = log {“”f’fb’“)} = —slogmy + log{x(m1)},
1
which means P;(s) is a linear polynomial or constant. Now for s = o + it, we can
write
(2.5) Re Pi(0 +it) = A(t)o + B(t),

a polynomial in o with A(t), B(t) being polynomials in ¢t. We now show that A(t) =
0. For this, we first note that limy,_ 1o F(s; f1) = d1 and lim, 4o F(s; f2) = do
for some nonzero constants di,dy € C as F(s; f1) and F(s; f2) are non-vanishing
and convergent for all sufficiently large Re s. Therefore we get

F(s; fr)

im

o—+oo F(s; f2)
where d3(#£ 0) € C. Again, from (2.3) and (2.5) we obtain that
'F (s;./1)
F(s; f2)
If we assume that A(tg) > 0 for some ¢y € C, then from (2.6 and (2.7), it follows

that for the limit o — +o00 and ¢ = t¢, |d3| = oo, which is a contradiction. Similarly,

(2.6) = dg,

_ AWMT+B()

2.7)

if we suppose that A(t;) < 0 for some t; € C, then we get |d3| = 0 as 0 — 400,
that is, a contradiction. Therefore A(t) = 0 and so from we obtain
(2.8) ‘F(Sfl) _ B,

F(s; f2)
Since P is independent of o, it has the same value for any arbitrary o. Taking
o — 400, we see from that the left-hand side of is |ds| for any value of

t and hence eZ() = |d3|. Therefore, we have |I€Ei£;| = |d3|, which implies that the
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function 24571 is 4 constant. Therefore, from ([2.6) we get

F(s;f2)
F(s; f1)
2.9 = ds.
(29) F(s;f2)
Since L(s; f1) and L(s; f2) assume the common value ¢ at some s = so with R(c) #
0, by (2.9) we deduce that d3 = 1. Therefore F(s; f1) = F(s; f2). This completes

the proof of the lemma. O

3. PROOF OF THE THEOREM

Proof of Theorem 1.1. Let F(s; f1) = P(L(s; f1)) and F(s; fa) = P(L(s; f2)). Then
F(s; f1) and F(s; f2) share 0 IM. We first show that p(L(s; f1)) = p(L(s; f2)). In
view of Lemma we know that P(w) = 0 has at least p — 1 distinct roots, say
Qq, g, ..., 0, 1. Since the entire functions L(s; f1) and L(s; f2) share S IM and
p > 2, we get by Nevanlinna’s second fundamental theorem that

(p=2)T(r, L(s; f1)) < N (r,a5; L(s; f1)) + O(logr +log T'(r, L(s; f1)))

i

ASEERARN
I
-

= N (r,a5; L(s; f2)) + O(log 7 +log T'(r, L(s; f1))),
1

<.
I

Therefore

(1) 701055 1) < BT, Lss f2)) + Olog r + g T(r, L(s; /1)

as r — oo and r € M, where M is a set of positive real numbers of finite linear

measure.
Similarly,
32 T0L(sf2) < P T L £) + Ollogr +10g (1. Lisi f2)

asT — oo and r & M.

Using Lemma we can remove the exceptional set in and and thus
the inequalities hold for all r > rg for some rg > 0. Therefore, we get p(L(s; f1)) <
p(L(s; f2)) and p(L(s; f2)) < p(L(s; f1)). Consequently, we obtain that both the
orders of L(s; f1) and L(s; fo) are equal and finite as well. Therefore, by Lemma
23l it follows that

(3.3) LP(s; f1) — LP(s; f2) = —a(L(s; f1) — L(s; f2)),
and so

Gi —
(3.4) L7905 f2) = —a gy,
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L(s;f1)
L(s;f2)
entire function for such s. Now in the common right half-plane of F'(s; f1) and

for all s having sufficiently large real part, where G =

is a non-vanishing

F(s; f2), we consider the following two cases:

Case 1: Suppose that GP = 1. Then LP(s; fo) = LP(s; f1). Substituting this in
, we obtain Li(s; fo) = L%(s; f1). Applying Lemma we have L(s; f1) =
L(s; f2).

Case 2: Suppose that GP # 1. Since p and q are relatively prime positive integers,
we get by Lemma that the numerator and the denominator of right-hand side
of has exactly one common zero. Therefore, the zeros of the denominator (if
exist) produces p — 1 distinct poles of LP~9(s; f3) on the left hand-side of .
Since LP~9(s; f2) has no pole, p > 2, and that a nonconstant entire function can
possess at most one Picard exceptional value, then it follows that G should have
p — 1 Picard exceptional values. Thus G is a constant and so from we get that
L(s; f2) is constant, which is clearly a contradiction.

This completes the proof of Theorem O
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Abstract. In this paper, we consider the entire solutions of nonlinear difference equation
2+ q(2)Af = p1e®1% + pae®2?, where q is a polynomial, and p1,p2, a1, s are nonzero constants
with a1 # ag. It is showed that if f is a non-constant entire solution of p2(f) < 1 to the above
equation, then f(z) = eleale + 626%, where e and ez are two constants. Meanwhile, we give

an affirmative answer to the conjecture posed by Zhang et al in [18].
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1. INTRODUCTION AND MAIN RESULTS

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. In order to prove the main results, we will employ
Nevanlinna theory. Before to proceed, we spare the reader for a moment and assume
his/her familiarity with the basics of Nevanlinna’s theory of meromorphic functions
in C such as the first and second fundamental theorems, and the usual notations
such as the characteristic function T(r, f), the prozimity function m(r,f) and
the counting function N(r,f). S(r, f) denotes any quantity satisfying S(r, f) =
o(T(r,f)) as 7 — o0, except possibly on a set of finite logarithmic measure(see
e.g., [16, [I'7]). We also need the following definition.

Definition 1. The order p(f), hyper-order ps(f) of the meromorphic function f(z)
are defined as follows:
p(f) = limsup 7log1T(r, f), p2(f) = limsup loglog T'(r, f) .
r—00 ogr r—00 logr
Characterizing complex analytic solutions of differential equations has a topic

of a long history (see e.g., the monograph [7]). It seems to us that Yang firstly

IThe research was supported by Guangdong Basic and Applied Basic Reserch Foundation
(No0.2018A0303130058), NNSF of China (Nos. 11601521, 11871379), Funds of Education
Department of Guangdong (2016KTSCX145, 2019KZDXMO025) and the Fundamental Research
Fund for Central Universities in China Project(No. 18CX02048A).
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started to study the the existence and uniqueness of finite order entire solutions of

nonlinear differential equation of the form

L(f)(2) = p(2)["(2) = h(z), n = 3,

where L(f) is a linear differential polynomial in f with polynomial coefficients, p
is a non-vanishing polynomial and A is an entire function. Recently, the difference
analogues to Nevanlinna theory was established by Halburd and Korhonen [3] [4],
Chiang and Feng [2], independently. With the help of this tool, many scholars have
studied the solvability and existence of meromorphic solutions of some non-linear
difference equations (see e.g., [1, [, [], [8] — [15]).
In 2010, Yang and Laine [15] considered the following difference equation.
Theorem A. A non-linear difference equation
obiz _ p—biz
R

where q(z) is a non-constant polynomial and b,c € C are nonzero constants, does

fs(z) +q(2)f(z+1) =csinbz =¢

not admit entire solutions of finite order. If q(z) = q is a nonzero constant, then
the above equation possesses three distinct entire solutions of finite order, provided
that b = 3nm and ¢® = (—1)"T1c227/4 for a nonzero integer n.

The follow-up research on this aspect was done by Liu and Lii et al. In [I2], they

considered the following more general difference equation
(1.1) f"(2) + q(2)Af(z) = p1e®'” + p2e™??,

where n is a positive integer, Af(z) = f(z+ 1) — f(2), ¢(z) is a polynomial, and
p1, P2, 1, Qo are nonzero constants with ay # ay. More specifically, Liu and Lii et
al. proved the following.

Theorem B. Let n > 4 be an integer, q be a polynomial, and p1,ps, a1, s be
nonzero constants such that ay # as. If there exists some entire solution f of finite
order to , then q(z) is a constant, and one of the following relations holds:
(D). f(z) = cre v, and ci(exp 5+ — 1)q = p2, a1 = nag,

(2). f(z) = coe v, and ca(exp 22 —1)q = p1, o = nay, where c1, ¢y are constants
satisfying c¢; = p1, 3 = pa.

The study for the case n = 3 was due to Zhang et al. [I8], who obtained the
following result.

Theorem C. Let g be a polynomial, and p1,ps2, a1, s be nonzero constants such

that aq # a. If [ is an entire solution of finite order to the following equation:
(1.2) 24 q(2)Af = pre®® 4 pye®?*,

then q(z) is a constant, and one of the following relations holds:
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(1) T(r.f) = No(r, §) + 5(r.1),

(2) f(2) =

(3) f(z) = cae’ %, and ca(exp 2 — 1)g = p1, as = 3oy,
where Nyy(r,

=cie 5, and ci(exp G — 1)g = p2, a1 = 3ay,

) denotes the counting function corresponding to simple zeros of f |
and c1, co are constants satisfying c; = p1, 3 = pa.

Remark 1. For the cases (2) and (3) in Theorem C, it is easy to see that 0 is
a Picard value of f and N(r,1/f) = 0. So T'(r, f) # Ny(r, %) +S(r, f) = S(r, f).
It is natural to ask whether the case (1) occurs or not. The answer is positive. It is
showed by the following example, which can be found in [I8].

Example 1. Consider f(z) = e™* + e~ ™ = 2isin(miz). Then f is a solution of

the following equation:
3 3miz —3miz
) + *A ’ =e + e .

Obviously, T'(r, f) = Nyy(r, %) + S(r, f). So, the case (1) occurs.

In Theorem C, it seems that the case (1) is unnatural. Meanwhile, Zhang et al.
observed that oy + o = 3mi + (—37i) = 0 in Example 1. This observation leaded
Zhang et al. to pose the following conjecture.

Conjecture. If oy # ag, a1 + as # 0, then the conclusion (1) of Theorem
C' is impossible. In fact, any entire solution f of must have 0 as its Picard
exceptional value.

Remark 2. The conjecture has been studied by many researchers (see [I} 9]).
In 2017, Latreuch in [9] has gave an affirmative answer to the conjecture. However,
when a3 + a2 # 0 does not hold, Latreuch did not give the specific form of the
meromorphic solution of . In Example 1, we further observe that f(z) = e™* +
e~ ™% = 2jsin(miz). In [I], one can not get m(r, \2f —n2f") = O(logr) in the proof
of Theorem 1.1 directly. This leads us to ask whether any entire solution of the
equation always is this form when Case (1) occurs. In the present paper, we

focus on the problem and give an affirmative answer by the following theorem.

Theorem 1.1. Let q be a polynomial, and p1, p2, a1, as be nonzero constants such
that an # ag. If f is an entire solution of pa(f) < 1 to the equation , then
q(2) is a constant, and one of the following relations holds:

(1) f(z) = e1e 3 +ege 5, where e and ey are two nonzero constants satisfying
e3 =p1, €3 =py (orel =pa, €3 =p1), 3e1ea—2¢ =0, a; +as =0 and e = —1;

(2) f(2) = c1e™ 5, and ¢y (exp & G —1)g = p2, a1 = 3ay;

(3) f(2) = c2e” %, and cyexp ¢ —1)g=p1, a2 =3a1.
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Remark 3. Clearly, Example 1 satisfies Case (1) of Theorem 1.1, where oy =
3mi,ap = —3mi; e = e = 1,p1 = po = 1; ¢ = 3/2. Next we give two examples to
show Cases (2) and (3) indeed occur in Theorem 1.1

Example 2. Consider the function f(z) = €™, which is a nonconstant entire

solution of the following equation
1 _ .
fB(Z) _ §Af(z) — 6371'12 4 ewzz’
where ay = 3mi = 3an, ¢c1 = 1,¢ = —1/2,ps = 1. Thus, the case (2) occurs.
Example 3. Consider the function f(z) = 3™  which satisfies the following
equation
1 ) )
fS(Z) _ iAf(z) — eS‘n'zz + egmz)
where ag = 9mi = 3ay, ca = 1,qg = —1/2,p; = 1. Therefore, the case (3) occurs.

By Theorem we get an immediate conclusion as follows.

Corollary 1. Let q be a polynomial, and p1,p2, a1, s be nonzero constants such

that an # ao. If f is a nonconstant entire solution of pa(f) < 1 to the equation
, then q(z) is a constant, and
gz

f(z) = ele% +ege 5,

where e1 and ey are two constants.

At the end, we turn attention to the question: What will happen if we replace
the function f3 by f? in the equation (1.2). After studying this question, we derive

some similar results to Theorem C as follows.

Theorem 1.2. Let q be a polynomial, and p1,p2, a1, s be nonzero constants such

that a; # ag. If [ is an entire solution of pa(f) < 1 to the following equation
(1.3) 2+ a(2)Af = pre®® + pe™®?,

and satisfying N (r, %) = S(r, f), then q(z) is a constant, and one of the following
relations holds:

(1) f(2) = c1e” %, and ¢ (exp G —1)g = p2, a1 = 2ay,

(2) f(2) = e 3, and ca(exp G — 1)qg = p1, az = 21, where ¢y, cy are

constants satisfying ¢? = p1, c3 = pa.

We below offer an example to show that the condition N(r, %) = S(r, f) is
necessary in Theorem
Example 4. Consider the function f(z) = —2—+/2e™*4+/2e~™%* which satisfies
the equation
2(2) — 2Af(2) = 2€2™% 4 2e7 272,
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A calculation yields that T'(r, f) = 2r(1 4 o(1)) and N(r,1/f) = 2r(1 + o(1)).
Clearly, N(r, %) # S(r, f) and f does not satisfy any conclusion of Theorem

2. SOME LEMMAS

Before to the proofs of main theorems, we firstly give the following result, whcih

is a version of the difference analogue of the logarithmic derivative lemma.

Lemma 2.1 ([]). Let f(z) be a meormorphic function of p2(f) < 1, and let

c € C\{0}. Then
f(Z+C))_0( T(Taf) )
f(z) - frlfpz(f)*f ’

outside of an exceptional set of finite logarithmic measure.

m(r,

In addition, by applying Lemma 2.1 and the same argument as in [8, Theorem
2.3], we get the following lemma, which is a version of the difference analogue of

the Clunie lemma. The details are omitted here.

Lemma 2.2. Let f be a transcendental meromorphic solution of pa(f) < 1 to the
difference equation

H(z, [)P(z f) = Q(z, f),
where H(z, f), P(z, f), Q(z, f) are difference polynomials in f such that the total
degree of H(z, f) in f and its shifts is n, and that the corresponding total degree of
Q(z, f) is <n. If H(z, f) contains just one term of maximal total degree, then for
any € >0,

m(r, P(z, f)) = S(r, f),

possibly outside of an exceptional set of finite logarithmic measure.

3. PROOF oF THEOREM [L.1]

Suppose that f is an entire solution of pa(f) < 1 to Eq (1.2). Obviously, f is a
transcendental function. By differentiating both sides of (1.2)), one has

(3.1) 32+ (q(2)Af) = crp1e™® + aopre®??.
Combining and (3.1)) yields
(3.2) oo f? + agqAf = 3f%f = (¢(2)Af) = (ag — a1)p1e™*.

By differentiating (3.2)), we derive that
(3:3) Baaf’f' + as(gAf) = 6f(f")* = 312" — (¢(2)Af)" = ar (g — a1)pre™*.
It follows from (3.2)) and (3.3) that

(3.4) fe=T(z[),
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(3.5) ¢ =ajazf?—3(ar +a2)ff +6(f) +3ff",

T(z, f) = —a102gAf + (a1 + a2)(qAf) — (qAf)".
Note that T'(z, f) is a differential-difference polynomial in f of degree 1. Then by
applying Lemma to the equation , one has m(r,¢) = S(r, f). Further,
T(r,0) = m(r,) = S(r, f), since ¢ is an entire function. It means that ¢ is a small
function of f.
Suppose that ¢ = 0. Then ajasf? —3(ay +ao)ff/ +6(f")%+3ff" = 0. Rewrite

it as fTH = (fT,)’ + (fT/)?, which yields a Riccati equation

t/ + 3t2 — (Oél + Oég)t + 041042/3 = O,

where t = fT/ Clearly, the equation has two constant solutions t; = «1/3, ts = as/3.
We assume t # t1,t5. Then we have
1 t/ t/
t1—t2 t—11 t—1to

Integrating the above equation yields

)= 3.

=3(t2 —t1)z + C,

where C' is a constant. Therefore,
=t _ aa—t)ste,
t—to

This immediately yields

lo —t _r

t: t2 + 63(t27t1)z+c — 1 - f )

Note that the zeros of e3(*2=11)2+C _ 1 are the zeros of f. If zy is a zero of f with
the multiplicity &, then
!
k= Res[fT,zo] = Res[ta + %,zo] = %,
which is a contradiction. Thus, either t =t; = a1 /3 or t = t2 = a2/3.
If t =t = a1 /3, then f(z) = c1e3 %, Substituting the form f(z) = ¢ * into
the equation , we obtain

@ aqg

Be® feyg(z)e® F(ed — 1) = pre™® + pye??,

which implies that ¢§ = py, clq(e%1 —1) = ps and a3 = 3as.

az

Similarly as above, if t = t2 = a9/3, then we can derive that f(z) = cqe=

satisfying ¢3 = pa, 02q(e%‘2 —1) =p; and a3 = 3a;.
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In the following, based on the idea in [I0, Theorem 1.1], we will consider the case
@ # 0. By Theorem C, one has

(3.6) T(r, f) = Ny (r, %) +5(r ).

Differentiating yields

(3.7) ¢ =a@an2ff =31 + ) (ff"+ (f))+12f [+ 3f " +3ff".
From and (3.7), we can obtain that

(3.8) flAof + Auf + Ao f" + As f"] = f'[BLf + Baf"],

where
Ag = ajany’, Ay = =3¢ (a1 + a3) — 2paias,
Ay =3¢ +3p(a1 + az), Az = =3¢,
By = —3p(a1 +az) — 6¢', By = 15¢.
Obviously, all A; (i =0,1,2,3), B; (j = 1,2) are small functions of f.

Suppose that zg is a zero of f, not a zero of ¢. It follows from that
6(f)%(z0) = ¢(20) # 0, which implies that z is a simple zero of f. Then by
, we have

Bi(20)f'(20) + B2(20) f"(20) = 0.
Set
_ Bif' + Baf”
7 .

We claim that A is an entire function. Clearly, all the simple zeros of f are not
poles of f. Suppose that by is a multiple zero of f. By (3.5), we get by is also a

multiple zero of ¢. So, by is a zero of B; and a multiple zero of By. Note that by

(3.9) A

is a pole of fTI and fTH with multiplicity one and two, respectively. Thus, by is not
a pole of BlfT/ and BngH, which implies that by is not a pole of A. Thus, A is an

entire function. The claim is proved. Furthermore,

7(r,4) = m(r, 2LEEL) 50 ),

Hence A is a small function of f. We consider two cases below.
Case 1. A=0.
Then, By f' + Baf” = 0. Rewrite it as
f/l B Bl B 1 2 S0/
F B, Mt
By integrating the above equation, we have
() = pediertear,
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where 8 is a small function of f. Obviously, a; + as # 0. Otherwise, T'(r, f')

T(r,B) = S(r, f), a contradiction. We below consider two subcases.

Subcase 1.1. ¢’ = 0.
The equation By f' + Bof” = 0 yields
" B _1

A

By integrating the above equation, we derive that f'(z) = Hies(@1ta2)z where H;

is a nonzero constant.

Integrating the function f’ yields

F(2) = kyeblertons 4 gy,

where k1(# 0), ko are two constants. Obviously, k2 # 0. Otherwise, f has no zeros,
which contradicts with (3.6)). Substitute the form of f into the equation (|1.2)) yields

age%(a1+az)z 1 gges(artaz)z

1
+ ales(oq-‘raz)z + k;’ _ plealz +p2€azz,

where a1, a0,a3 are small functions of f. Then, the above equation yields that

ke = 0, a contradiction. Hence Subcase 1.1 can not occur.
Subcase 1.2. ¢’ # 0.

By differentiating f’ one and two times respectively, we have

1 1
f// _ ]{265(041+o¢2)z7 f/l/ — ngs(aﬁ»ag)z,

where Hy and Hj are two small functions of f. The equation (3.8) implies that

Aof + Arf + Ao f" + Asf" = 0.

Furthermore,
f _ 7A1f' + AQfN + A3f/” _ Hoe%(alJraQ)z
Ap ’
where Hy is a small function of f. So,
1 1
N(T, ) = N(Ta 7) < T(rvHO) = S(T,f),

f Hy
which contradicts with . Thus, Subcase 1.2 can not occur.
Case 2. A #0.
By and , one has
Aof + A f' + Ao f" + Asf” A
7 )

which yields that
(3.10) Aof + (A1 — A)f + Ao f”" + Az f" = 0.

Rewrite (3.9) as
Af = Bif' = Baf" = 0.
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Differentiating the above equation as

(3.11) A'f+ (A= BY)f — (By + By "~ Bof" =0.
Combining and yields

(3.12) Cof +Cif + Caf” =0,

where

Co=AoBas + A'A3, C1=(A; —A)By+ A3(A— B}), Cy= AsBy — A3(B1 + Bj).

Obviously, C; (i = 0,1,2) are small functions of f.

We consider two subcases again.

Subcase 2.1. C5 = 0.

It follows that Cy = C7 = 0. Otherwise, without loss of generality, suppose that
Cy # 0. By , we have that C; # 0. Assume that wy is a simple zero of f. Then

wp is a zero of Cy. Furthermore,

T(r, f) = Nyy(r, }) 4 S(r. f) < N(r. C%) 1+ S(r f) < T(r,C1) + S(r. f) = S(r. f),

a contradiction. Thus, Cy = C; = 0.
The fact Cy = 0 leads to

(3.13) 20" + p(ag + az) = 0.

If a; + ag # 0, then ¢ = H46*01J2rm2 # where Hy is a nonzero constant. Therefore,

we have
| ajtag |

m(r,p) = —2—r(1+o(1)),

m(r,e*?) = %r(l +0(1)),

m(r,e*??) = @r(l + 0(1)).

Note that ¢ is a small function of f. So e*1#, e*2# are also two small functions of
f- Rewrite as
£ = —a(2)Af +pre®™® + ppe®.
Therefore,
3T(r, f) = T(r, f?) = T(r, —q(2) Af + pre®* + pae®2*)
<T(r,Af)+S(r, f) <T(r, )+ S(r, f),

a contradiction.

Hence a; +a9 = 0. Then, reduces to ¢’ = 0. It implies that ¢ is a constant

and Ag = ¢’ ajas = 0. Together with Cy = 0, it is easy to deduce that A’ = 0 and A
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is also a constant. Therefore, By and By become two constants. Then the following

equation reduces to a constant coefficient homogeneous linear differential equation
Af — B1f — Bof’ = 0.

Suppose that the characteristic equation BoA? + BiA — A = 0 has two distinct
roots A1, Ag. Clearly, Ay, Ao are nonzero constants. Then, by solving the above

equation, one derives
(3.14) f(2) = e1eM* + ege??.

Clearly, ejes # 0. Otherwise f has no zeros, a contradiction. Substitute the form f

into (1.2)), we have
(3.15) e3e3MF pededher 36%626(2)\1+)\2)Z + 3616%6(A1+2)\2)z
3.15
+ ger(eM — 1)eM? + gea(e? — 1)er2* = pre®? 4 pye2?,

Suppose that A1 + Ay # 0. Observe that A\; # Ao, So 3A1, 32, 2X1 + A2, A1+ 2X2
are distinct from each other. Furthermore, by (3.15)) and Borel’s Theorem, we easily

get the following two sets are identity
{3A1, 3A2, 2A1 + A2, A1+ 2X2} = {1, A2, a1, az}),

which implies that 3As = A and 3A\; = Ag. It is impossible. Thus, A1 + Ay = 0.
Rewrite (3.15)) as

6‘:1363)\12 + 6%63)\22 4 qle)\lz 4 q26)\2z — plealz —l—erO‘QZ,

where ¢ = 3e2ey + gei(eM — 1), qo = 3ede; + gea(e?? — 1) are two polynomials.

Then, it follows from the above equation that ¢; = go = 0. Meanwhile, one has
3)\1 = Qq, 3>\2 = Q2

or
3)\1 = (9, 3)\2 = Q1.
Furthermore, we obtain that ef = p; and e3 = py (or €3 = py and €3 = p;). Note
that
_ 2 Al _ — 2 >\2 —_—
q1 = 3ejes +qer(e™ —1) =0, g2 = 3eser + gea(e™? — 1) = 0.

By the above two equation, A\; + Ay = 0 and a calculation, we deduce that e’ = —1
and ¢ reduces to a constant satisfying 3eje; — 2¢g = 0.

Now, we suppose that ByA? + ByA — A = 0 has a multiple root, say As3. Then,

f(2) = (e3 + eqz)e***. Therefore, f just has one zero, a contradiction.
Subcase 2.2. Cy # 0.

Combining (3.9) and (3.12)) yields

(BQCO -+ ACQ)f -+ (ClBQ — Blcg)fl =0.
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Suppose that Cy By — B1Cy # 0. It folllows BoCy + ACs # 0. Assume that og is a
simple zero of f. By the above equation, one has oy is also a zero of C1 By — B1Cs.
Then,

1 1
T(r, f) = Nyy(r, ?) +8(r, f) < N(r, CiBy — BiCs

<T(r,CiBy — B1C) + S(r, f) = S(r, f),
a contradiction. The above discussion forces that C1 By — B1Cy = 0 and ByCy +
AC5 = 0. By the definitions of Cy, Cy, By, Bs, a calculation leads to

)+5(r, f)

(3.16) 8AY' — b A’ = —[4pA(a1 + a2) + 25a1a2p¢]
and
(3.17) 150A = [6(a1 + a2)? — 25a100]0? — 21 (0 + o)y’ + 24(¢")? — 150"
Suppose that §y is a zero of ¢ with multiplicity s. The equation implies s > 2.
Furthermore, &y is a zero of ¢? and oy’ with multiplicity 2s and 2s — 1, respectively.
Suppose that the Laurent expansions of ¢ at dg is as follows

0(2) = ps(z = 00)° + prsra(z — G0)* ' 4+,
where ps(#£ 0), ps41 are constants. Then, a calculation yields
24(¢")? — 159" = [24(11s)*s* —15(ps5)*s(s = 1) (2= 00)** ™+ 051 (2 =80)** " 4+ -,
where 6551 is a constant. Obviously,

24p2s% — 15p2s(s — 1) = p?s[9s + 15] # 0,

which implies that dy is a zero of 24(¢’)? — 15¢¢"” with multiplicity 2s — 2. Suppose
that dg is a zero of A with multiplicity {. Then, comparing the multiplicity of both
side of equation at point dg, we have s +1=2s —2. So, s =1 + 2.

Assume that [ = 0. Then, s =2 and A(dy) # 0. Rewrite (3.16) as

(3.18) 8Ap' = bpA' — [4pA(ay + ag) + 25a1azpy’].

Clearly, dy is a simple zero of Ayp’. However, d is a multiple zero of 50 A’ —[4p Aoy +
ag) + 2501 az¢9¢’], a contradiction. Therefore, [ > 1.
Furthermore, dg is a zero of 4pA(ay + ag) + 251 aapp’ with multiplicity 21 4 2.

Suppose that the Laurent expansions of A at Jg is
A(2) = vz — 60) + vep1(z — 6o) 4
Then,
8AY — 5 A" = v o[8(1 4+ 2) — 5] (2 — 60)* ! + Eorpa(z — 6) 22+,

where ;15 is a constant. Then, d is a zero of 8Ayp’ —5p A’ with multiplicity 2741,
since vy 42[8(1 + 2) — 5l # 0. So, the point g is a zero of the left side function
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of with multiplicity 2/ + 1. On the other hand, dq is a zero of the right side
function of with multiplicity at least 2] + 2, which is impossible. Therefore,
© has no zeros.

If ¢ is not a constant, then, we can assume that ¢ = ¢e“(*), where ¢ is a
constant and w(# 0) is an entire function. Then, the same argument as in Subcase
2.1 yields that e“** and e*?* are two small functions of f. Furthermore, we can
derive a contradiction. Thus, ¢ is a constant. Plus , one has that A is also
a constant. Furthermore, it follows from that a1 + ag = 0. Similarly as the
above discussion, we can deduce the desired result.

Thus, we finish the proof of Theorem

4. PROOF OF THEOREM

Suppose that f is an entire solution of p2(f) < 1 to the equation (1.3)). Obviously,
f is a transcendental function. By differentiating both sides of (1.3)), one has

(4.1) 2"+ (a(2)Af) = a1p1e™* + agpre™?*
Combining (1.3]) and (4.1]) yields
(4.2) azf? + aaqAf = 2f ' — (q(2)Af) = (az — a1)p1e®**

By differentiating (4.2]), we derive that
(4.3)  2a9ff' +a2(qAf) = 2(f) = 2f " — (q(2)Af)" = ar(aa — an)pre™
It follows from and ( . ) that

(44) Y1 = Tl (Zv f)7
where
(4.5) o1 =onaof? —2(o1 + o) ff + 2 +2(f)?,

Ti(z, ) = —naeqAf + (1 + a2)(qAf) — (gAf)".

If 1 # 0, then

1 1 f/ f/l fl
F = S01(041&2—2(0&1'1-062)'](, +27+2(f) )
By -, and Lemma 2.1, we have
46 mE)=mr ) =500 f) and mlr, 2 = S ).

f f e
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Combining N(r, $) = S(r, f) and (4.6), we obtain

2T(r, f) = 2m(r, l) + S(r, f) = m(r, ﬂ) + S(r, f)

f f?
< m(r,%) + m(r, é) +S(r, f)
< T(rye1) + S(r, f) =m(r, 1) + S(r, f)

m(r, %) +m(r, f) + S(r, f) = T(r, f) + S(r, f),

which implies T'(r, f) = S(r, f), a contradiction.

If o1 = 0, then by the similar reasoning as in Theorem 1.1 we can obtain
the conclusions (1) and (2). Below, we give the details. By ¢1 = 0, one has the
differential equation ajasf? — 2(ay + o) ff' + 2ff" + 2(f)? = 0. Plus the fact

fTH =( fTI)’ + (fT/)Q, we can rewrite the above equation to a Riccati equation
t 22 — (a1 + ao)t + anae/2 =0,

where t = fT, Clearly, the equation has two constant solutions t1 = a1 /2, to = aa/2.
Suppose the solution t # t1,t5. Then
1 ( t/ t
t17t2 tl*tQ t17t2
Integrating the above equation yields
t—1t
n
t—to

where C' is a constant. Therefore,

)= —2.

1

=2(t2 —t1)z + C,

-t _ eQ(tg—tl)z—i-C
t—ty '
This immediately yields

- log — 11 _f
t = t2 + 62(t2—t1)z+07_ 1 — 7

Note that the zeros of e2(t2=%1)2+C _ 1 are the zeros of f. If zg is the zero of f
with the multiplicity k, then

f/ to —t1 1
k= ReS[?Zo] =Reslts + e ol = 5

It is a contradiction. Thus, either t =t; = a1 /2 or t = to = /2.
If t =t = /2, then f(z) = cie 2 %. Substituting f(z) = cie® * into (1.3), we

obtain

e+ erg(2)e T (€T —1) = pre™7 ot
Moreover, we have ¢? = p1, clq(e% —1) = po and a1 = 2as.
Similarly, if ¢ = to = ag/2, then we have f(z) = Coe 57 satisfying ¢3 = po,
a2
caq(e® —1) =p; and ag = 2.
Thus, we finish the proof of Theorem [1.2
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AnHoTtAnus. MseecrHa cienyrmomssa treopema ApruHa 06 ajJbTEepPHATUBHBIX JIH-
HENHBbIX aJaredbp Ompee/IEHHBIX HA KOMMYTATHUBHOM, ACCOIMATUBHOM KOJIBIE C
eJMHULeH: B aJTepHATUBHON JMHelHON asrebpe, ecau (a,b,c¢) = 0, To noxaJ-
rebpa MMOpPOXKIEHHAs 3JIeMeHTaMu a, b, ¢ — accoruaTuBHa. B JaHHOI crarbe MbI
npejJjiaraeM IIMUPOKOe ODOOIIEHNE ITOTO KJIACCHYECKOI'O Pe3yJIbTaTa, UCIIOJb3Ys
KOHIIEIIINU CBEPXTOXK/IECTBA U KOTOXK1ecTBa. COOTBETCTBYIOIIME YHUBEPCAJILHBIE
anrebpbl MbI HA3bIBAEM g-ajredbpaMu.

MSC2010 number: 03C05; 03C85; 16D10; 17A01; 17A30.

KuroueBbie ciioBa: CBEpXTOXKIECTBO; KOTOXK/IECTBO; aJbTEPHATHBHOCTD; CBEPXACCO-
[IMATUBHOCTD; CBEPXAJIbTEPHATUBHOCTD; ¢-ajredpa.

1. g-AJITEBPHI. BBEIEHUE

BBoanTtcs mrOro06pasue g-aaredbp, siBASIONIAICT MHOTO0OOpa3neM MYITHOIEPATOP-
ubix -rpynn crnenuasbaoro tuna [1, 2, 3, 19].

XopoIo u3BecTHa CJEAYIONIdAs TeopemMa ApTuHa 00 aJbTePHATHBHBIX JIMHEHHBIX
ajrebpax OIpee/IEHHBIX Ha KOMMYTATHBHOM, aCCOIMATHBHOM KOJIBIIE C €IMHUTICH: B
AJNTepPHATUBHON JIMHEHHON asrebpe, ecan (a,b,c) = 0, TO mopaIredpa MOPOXK AEHHAST
ssieMeHTaMu a,b, ¢ — acconuarusaa [2, 4]. B manHoil crarbe Mbl Ipejjiaraem Imv-
POKOe 0D0DIIEeHre TOT0 KJIACCHIECKOT0 PE3yJIbTaTa, UCIOIb3Ysl MOHATUS CBEPXTOXK-
JiectBa U KOTOXKIecTBa. COOTBETCTBYIONIME YHUBEPCAIbHBIE aJareOPbl Mbl HA3BIBAEM

g-arebpaMu.

Onpepenenne 1.1. ITycmo @ - accoyuamusnoe, KOMMYMAMUBHOE KOABUO € edu-
HUYHOM aaemenmom 1. Mnoowcecmeo A nazwvieaemces g-anrzebpoti Had xoavuom D,
ecau cywecmeyem cmpykmypa yrumaprozo ®-modyas onpedeaénnozo na A u cy-

WECTNBYEM, MHOAHCECTNEO OUHAPHHLT Onepayuts X onpedeséHhur Ha A, c8a3aHHBIT C

1HaCTo::m_Lee uccjaegoBaHue JacTudHo noggepkano locynapcrBenubiM Komurerom Hayku Pec-
myGuuku Apmenust, rpanTs: 10-3/1-41, 18 T-1A306.
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MOC)y./LbeLMU onepayuAMU C/lCiC)yTO’UJ,UMU paserncmeamu.:

(1.1) X(a+b,c) =X(a,c)+ X(b,c),
(1.2) X(a,b+c) = X(a,b) + X(a,c),
(1.3) a(X(a,b)) = X(aa,b) = X(a,abd),

oas ecex a,b,c € A u dasa ecex a € ®, X € 3. Muw ob6osnauum g-anrzebpy A nad
roavom P wepes A(+, %, @) uau, xpamxo, A.

IIpumep 1.1. IlpuBeném nmpumep g-aareopol. Ilycts Z — KobIlo niesbix qucest, X, Y
— npousBoJibHble abesebl rpynnbl u M = Hom(X,Y) — coorBercByomas abejiesa
rpymma. st kaxzoro snementa v u3 Hom(Y, X) mbl onpenensiem va M cieryroniyo
OUHAPHYIO OIEPAITNIO:

(a,b) défao*yob—bo*yoa7
rae a,b € M u o - obbruHas cymneprnosuiius orobpaxkenuit. Obo3Havuas depe3 X =

{7y € Hom(Y, X)}, mb1 nosygaem g-anrebpy M (+,3%, Z).

IIpumep 1.2. Ilycrs P — nmosie, n — HaTypajbHOE 9ucjo, P™*™ — MHOXeCTBO BCeX
KBaJIPATHBIX MATPUIL C PA3MEDPHOCTBIO 1L U € djIeMeHTaMu u3 P, 4+ u - ecTb ciioxkeHune u
yMHazkenne Marput,. OupegenuM HOBYIO OMHAPHYIO oneparuio Ha P"*"™ cjemyronmm
obpazom:

AoBdéfAT-B,

e A, B € P*". Torma P"*"(+,{-, 0}, P) - g-aure6pa.
AHaJIOrIIHO, OIpEEIAs ONEPAIHIO O KaK

AoB™ BT . A

MBI OIISITH MOJIYYIUM ¢-ajredpy.

W3BecTHBI IPUIIOKEHNS TAKUX OIEPAIUil B TEOPETHUIECKOH aCTPOHOMMUH.

Ounpenenienne 1.2. ITyemo A(+,%,P) — g-aneebpa, B C A. Iodmmnoosicecmeo B
nazwveaemces nodanzebpoti g-anzebpor A(+,%, @) ecau 0Ho 3aMKRYMO OMHOCUMEABHO

MOOYNLHOIT ONePpayutl U OUHAPHBLE onepayutd u3d 3.

Ham HE0OX0aMMBI MOHATHS CBEPXTOXKIECTBA W KOTOXKAecTBa. g dopmyrr mep-
BOIl ¥ BTOPOIi crymeHn (U sI3BIKOB [IepBOii U BTOpoii crynenu) cmorpure [5] - [9]. Ha-

HOMHUM, 9TO cBepxToxkKecTBo [10] - [17] (mmm V(V)-Toxkmectso) — dopmyma Bropoii
59



0. M. MOBCUCHH, M. A. EJTYAH

CTyneHu CJIeIyIomero Bujaa:

(%) VX1, o, XV, .o 2y (W = wa),
rje wi, wy - CI0Ba (TepMbl) B ajdasure (QyHKIMOHAIBHBIX [IEPEMEHHBIX X1, . .., X,
U [IPEIMETHBIX IEPEMEHHBIX X1, - . . , Lp. CBEPXTOXKIECTBA OOBIYHO 3aIMCHIBAIOTCs 0e3

YHUBEPCAJIBHBIX KBAHTOPOB: W1 = wy. CKayKeM, 9TO CBEPXTOXKIECTBO W = Wa BBITOJI-
ugercs B airebpe (Q; X) eciim 910 PABEHCTBO UMEET MECTO IIPH 3aMEHE IIPEIMETHBIX
[IEPEMEHHBIX T1, . . . , Ty JEOOBIMU 3jIeMEeHTAMU 13 () U PYHKIIMOHAJIBHBIX [I€PEMEHHBIX
X1,...,X,, JTIOOBIMHA OMEPAIASIMEI U3 Y COOTBETCTBYIOIINX apHOCTEH. Bo3MOXKHOCTD

TaKOfI 3aMEHBI Hpe,ZLHOJIaI‘aeTCH, TO €CTh.:
{Xals - [ Xl C{A A€ X} =Tiox) = Ty,

rzie |S| apuocts S, u T((;x) HasbiBaercsa apudmerndecknM TuioM (Q; ). T-anre6pa
- aarebpa ¢ apudmermyeckuMm tumom 1 C N. Kiacc anredbp HasbIBaeTCsl KJIACCOM
T-anrebp, ecau Kazk1as ajredpa u3 3TOro KJacca - 1-aarebpa.

Koroxnecrso (win (3)V-roxkaecrso, cm. [11] - [18]) — dopmysa BrOpoit cryneHu
CJIEJIYIOIIEro BUJIA:

3.’171, .. .,anXl, N ,Xm(wl = U.}Q).

KoroxnecrBa 00brdHO 3anmcbiBaioTcs 6€3 KBAHTOPOB: w1 = we. CKaxkeM, 9TO KO-
TOXKJIECTBO W] = ws BBINOJHsETCS B anredpe (Q;X), ecau CyIECTBYIOT 3HAYEHUS
MIPEJIMETHBIX MEPEMEHBIX X1, . . ., Ty, U3 MHOXKECTBa () TaKue, 9TO PABEHCTBO Wi = Wa
“MeeT MeCTO IIpU 3aMeHe (DYHKIMOHAJBHBIX IIepeMEeHHBIX X1, . . . , X, JII0ObIMHE Ollepa-
[USAME U3 Y COOTBETCTBYIONIMX apHOCTEH (BO3MOXKHOCTD TaKOil 3aMEHbI TaKKe IPe-
nostaraercs). OOBIYHO, B 3aIUCH KOTOXKIECTBA Wi = Wy, UPEIMETHBIE IEPEMEHHbIE
3aMEHSIIOTCsI COOTBETCTBYIONUME (DUKCHPOBAHHBIME 3HAYEHUIME 13 ().

KoroxpaecrBa mMoryT OBITH OIpeeseHbl TaK:Ke, Kak (GOPMYJIbl BTOPOU CTYIIEHU

CJIEJIYIONIEro BUJIA:

VXl, “es ,Xm(wl = (,UQ).

IIpumep 1.3. B raxkoit MysbTHONEPATOPHOI {)-TPYyIIe BBIMOIHSETCS CJIEIyIOIIee

KOTO2K/IeCTBO:

JJIsI BCEX N € T(Q), TJie BCe IpeJIMEeTHbIC IIepeMEeHHbIe 3aMEHEHbI HYJIEBBIM 3JIEMEHTOM

Q-rpymmst 1, 2, 3, 19].
60



OBOBUHIEHUVE TEOPEMBI APTUHA

IIpumep 1.4. (J. von Neumann) ITycrs L(+, -) Momaynsipras pemerka, a, b, ¢ € L.
Iloxpemnterka penreTku L, TOpOXKIeHHAs dJIeMEHTAMHA @, b, ¢, TUCTPUOYTUBHA TOT/IA, U
TOJIBKO TOTJA, KOT/Ia CJIEMYIOIIee KOTOXK/IECTBO JIEBON JUCTPUOY TUBHOCTU BBIMTOJTHSI-

erca B pemerke L(+, -):

X (a, Y (b, ) = Y (X(a, b), X(a, ¢)).

CBepXTOXKIAECTBO (*) HA30BEM HETPUBUAJIBHDBIM, €CJIM 1M, > 1, U TPUBUAJILHBIM, €CJIH
m = 1. Hucsio m HazbiBaeTcsi (DYHKIIMOHAIBHBIM PAHIOM JIAHHOTO CBEPXTOXKIECTBA.

Anrebpa (Q;X) ¢ GuHApHBIMU OlIEpAIUsAME HA3bIBAETC OMHAPHON ajreGpoit. Aui-
rebpa (Q, X) HasbBaercst g-anrebpoit (e-anrebpoii) ecm cyrmectsyer onepaiust A €
rakas 4r0o (Q(A) — kBasurpynna (rpyumnous ¢ eaununeii). Bunapuas anrebpa (Q,X)
Ha3bIBaeTCsl (DYHKIMOHAJIBHO HETPUBUAJIBHOM, ecsm || > 1. UseectHo (cm. [11, 12], a
takke [13, 20]) 4To eciam accoIMATHBHOE HETPUBHAIBHOE CBEPXTOK/IECTBO BBIIOJIAET-
sl B DYHKIMOHAJILHO HETPUBUAJIBLHON g-asrebpe (e-anrebpe) Torga hyHKHUOHAILHBII
PAHT 9TOTO CBEPXTOXKIECTBA MOXKET ObITH PABEH TOJHKO JIBYM U 9TO CBEPXTOXKJIECTBO

nMeeT OIHY M3 CJIEIYIOMNX BUIIOB:

(ass)1 X(‘T7Y(yaz)> ZY(X(.Z‘7y),Z)7
(ass)z X(2,Y(y,2)) = X(Y(z,9), 2),
(ass)s Y(z,Y(y,2)) = X(X(2,9), 2).

Bouiee Toro, B Kiacce g-airebp (e-aiaredp) cBepxXToxKAeCTBO (aSS)3 BIEIET CBEPXTOXK-

JIeCTBO (aSS)2, KOTOPOE BIEIET CBEPXTOKIECTBO (ASS)1.

Onpenenienne 1.3. Bunapnas anzebpa (Q;X) Hazweaemces c8epraccoyuamuehot

ecau 8 Hell 8bINOAHAENCA, nepeoe ceepa:mowc&ecmeo accoyuamueHocmuy (CLSS)l.

CitetoBaTeIbHO, CBEPXACCOIMATUBHBIE AJITeOPBI — 9TO aJIrebphI C Oy TPy IIIOBBIMEI
onepanusamu. CBepxaccoruaTuBable aiaredpbl 10J HazBanueM [-mosyrpymm (ramma-
MOJIYTPYIIN) WJINA JIOMIEJIBIONYTPYIII PACCMATPUBAIOTCS B paboTax Pa3HBIX aBTOPOB

[21]-[32].

ITpumep 1.5. Ilycts A, B HemycTble MHOMKECTBA, Y. MHOYKECTBO BCEX OTOOPasKeHUit
u3 B B A u (Q mHO)KecTBO Bcex orobpaxkennii uz3 A B B. Torma KaxXplil 3j1€eMEHT
@ € ¥ MBI MOXKEM PACCMOTPETh KaK OMHAPHYIO OIepanuto Ha (Q:

ala,b) =a-a-b,
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rie a,b € Q u a-«-b oberanas cyneprosunust orobpaxkenuit. B pesysibrare, Mbl mOJTy-
JaeM cBepxacconuaTuBHyo anrebpy (Q;X). Boaee Toro, eciim A = B, MbI mostydaem

ajrebpy BTOpoii crenenu (Broporo mnopsizka) (Q; X;-) B cmbicie [33].

Ounpepenenue 1.4. Bunapras aszebpa (Q; %) Hasvsaemes A€601 C8EPLabMEPHA-
mueHol, ecalt 8 Hel BHINOAHAENCA CAedYIoULEE CBEPTMONHCIECTNEO AEGOT, GADMEPHA-

(alt); X(z,Y(2,y)) = Y (X(2,2),9).

Ounpenesienne 1.5. Bunapras anzebpa (Q;X) nazwvieaemces npasoti ceeprasvmep-
HAMUBHOT, ECAU 8 HeTl BBINOAHACTNCA CAEIYIOULEE CBEPTMONCICCTNBO NPABOT AALMED-

(alt), X(z,Y(y,9) =Y (X(2,9),9)-

Omnpegesienne 1.6. Bunaphas anzebpa (Q;X) Hagwieaemces c6eprasbmepHamuehot,

E€CAU OHA ABAAETNCA npaeoﬁ U 2e80U csepxa./meepHamueﬁoﬁ.

Omnpegesnienue 1.7. g-aaeebpa A(+,3, D) nasweaemesn ceeprassmepramuehot, ec-

au bunapras anrzebpa(pedyxm) (A; ) — ceeprasvmepHamusHa.

IIpumep 1.6. Ilycrs A(+,-, P) anbrepraruBHas airebpa U ¢ 9JIEMEHT U3 spa aj-
re6per A ([34, 35, 4]), To ecrs:

(-c)-y=x-(c-y),

st Beex x,y € A. OupenesiuM HOBYIO OMHAPHYIO OIEPAIAI0 HAJ A:

def
Toy = x-c-y.

Torma A(+,{-, 0}, P) 6yuer cBepXaJbTepHATUBHOM g-aJreGpoii.

Onpenesnienne 1.8. g-anzebpa A(+, %, ®) nasweaemea ceepraccouyuamusnotl, ecau

bunapras aszebpa (A;X) — ceepraccoyuamuena.

Ecsn B npumepe 1.6 Mbl Bo3bMEM accoruaTuBHyo airebpy A(+, -, P), rorma mnody-
vyennas g-anrebpa A(+, {-, o}, P) Gyer cBepxaccoruaTuBHOM jis KazxKJI0ro 9JIeMeHTa,
ce A

IIycts A(+, X, @) — g-aurebpa. O6oznaqanm (z,y, 2) x,v = X(z, Y (y,2))-Y (X(z,y), 2),
e z,y,2 € A, u X,Y € X. Torua yenosust (alt), (alt), ausa (A; ) moryt 6eITh 3a-
MIUCAHBI CJIELYIOMM 06pa3oM

(1.4) (z,2,9)x,y =0;Va,y € A VXY € %,
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(15) (x7y7y)X,Y:O;vx7yeA7VX7Y€Z'

Ormerum takxke, 9to g-anrebpa A(+, 3, P) cBepxacconuaTuBHa TOIJIA U TOJLKO TO-

118, KOTJIa BBINIOJISICTCS CJICLYIONIee YCIOBHUE:
(z,y,2)xy =0,Vz,y,2 € A,VX,Y € %.
JIemma 1.1. ITyemov A(+,3,®) — g-aszebpa. Tozda:
(a1a + aod, Brc + Pad, yie+ 72 f)xy =
(a1fim)(a, c,e)xy + (1fiy2)(a, ¢, f)x,y + (a1f2m1)(a, d, €) x,y +
(1B2v2)(a,d, f)xy + (a2f171) (b, ¢, e)x v + (2B172) (b ¢, flx v+

(a2B2m1) (b, d,e)x )y + (2f2v2)(b,d, f)x,v,
Ya,b,c,d,e, f € A VNay,as, 51, P2,71,72 € P,VX,Y € 3.

Jloxasamenvcmso.
(a + agh, Brc+ fad, y1e + 72 f)xy =

X(ara+agh, Y (Bre+Bad, yiet+vaf)) =Y (X (ara+aob, Bic+ PBad), vie+72 f)
(a1B1m)(X(a,Y (¢ €)) = Y(X(a,c),e)) + (a1 f172) (X (a, Y (¢, f)) = Y(X(a,c), )+
(a182m)(X(a,Y(d,e)) — Y (X(a,d),e)) + (a18272) (X (a, Y (d, f)) = Y(X(a,d), f))+

(2B171)(X (b, Y (c,€)) = Y(X(b,¢), €)) 4+ (a2f172)(X (b, Y (¢, f)) = Y (X (b, o), f)+
(a2B271)(X (b, Y (d,e)) — Y(X(b,d), €)) + (azB272) (X (b, Y (d, f)) = Y (X(b,d), f)) =
a11m)(a, ¢ e)xy + (1 fire)(a, ¢, fxy + (a1fem)(a, d,e) x,y +

Na,d, fxy + (a2B171) (b, ¢, €)x,y + (a2B172) (b ¢, f)x,y+
(28271) (b, d, €) x,y + (2B272) (b, d, f)x,v -

(1.1)=(1.3)

(
(a1B272
O

JIlemma 1.2. ITycmo A(+,%, @) — ceepraavmepramusnasn g-aseebpa. Toeda evino-

ASNOMCA CAEOYIOULUE YCAOBUMA:

(1.6) (@, 9, 2)x,y =0,

(1.7) (r,y,2)xy = —(,z,2)x.vy,
(1.8) (z,y,2)xy = —(2,4,7)x v,
(1.9) (z,9,2)xy = —(2,2,9)x,v,

oas ecex x,y,z € A u dan ecex X, Y € X,
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JIemma 1.3. ITycmo A(+,%2,®) — g-anzebpa. Tozda evinossemcs caedyrowee Ycao-

eue:
(Z(.’E, y)7 Z, t)X,Y - (1’7 X(yv Z), t)Z,Y + (.’E, Y, Y(Z, t))Z,X -
Z(.’L‘, (yv 2, t)X,Y) + Y((-T7 Y, Z)Z,X) t)7
oas ecex x,y,z,t € A u das scex X,Y,Z € 3.

IIycts R(+,%,®) — g-anrebpan A, B,C C Ru X,Y € . O6osnavas (A, B,C)xy =
0 Gymem mmers BBUny (a,b,¢)xy = 0,YVa € A,Vb € B,Ve € C. CraxeM IOIMHO-
xectBo A C R #-MHOXKECTBO, €CJIM JJId JIOObIX a1,as € A u r € R BbInojserca
caenyonee koroxaectso: X (a1, Y (az,7)) = Y (X (a1, az2),7), Te.

(110) (A,A7R)X1y =0,VX,Y € %.

Ou4eBUIHO, YTO €CJIU HEKOe *-IIOJIMHOYXKECTBO ¢-ajreOpbl R Takxke mojgajrebpa g-
airebper R, Torga sra nomasiredbpa ceepxacconmarusaa. Ecin R — cBepxajibrepHaTUB-

Has g-anrebpa u A C R — s-MHOXKecTBO, Torja u3 yeiosuil (1.7) — (1.9) BeITekaror

CJIeJIyTOIIMe KOTOXKIeCTBa JJist JIFOObIX a1,a02 € A ur € R:

X(a1,Y(r,a2)) =Y (X(a1,7), az2), X(r,Y(a1,a2)) =Y (X(r,a1),a2),

T.€.
(111) (A,R7A)X’y =0;VX,Y € %,
(112) (R,A,A)X’y =0;VX,Y € X.

JIemma 1.4. IIyemv R(+, %, ®) — ceeprasvmepramusnasn g-aszebpa u A C R sa6as-
emces x-nodmmootcecmeom. Tozda nodanzebpa g-anzebpo. R, nopostcdénnas nodmmo-

otcecmeom A, maxotce 6ydem *-MHOHCECTNEOM.
2. OCHOBHOH PE3VJIbTAT
CdopmyaupyeM OCHOBHOU pe3yJIbTAT CTATHH.
Teopema 2.1. ITycmov R(+,%, @) — ceeprasvmepramushas g-aseebpa, a A, B,C C

R — nodaneebpor u x-mmoorcecmea dannotl g-anszebpo. R. Ecau das awobvxr a € A,

b€ B, c € C swnoansemes caedyrowee xomooicdecmeo 6 (R;X):
X(a,Y(b,c)) =Y (X(a,b),c),

m.e. (A,B,C)x,y =0, daa scex X,Y € X, mozda nodarzebpa g-aszebpo, R noposic-

dénnan A, B u C' — ceepraccoyuamusHta.
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Loxazameavcmeo. PaccMoTpum ciiemyroinee mOIMHOXKECTBO g-aareOpol R:
D={deR|(AB,d)xy=(BC,d)xy=(C,Adxy=0VX,Y € 3}

OueBuiHO, TO D — HEIIyCTOE MHOXKECTBO, TAK KaK:

(2.1) AUuBUCCD.

Corunacho ycsosusim (1.1) — (1.3), MHOKeCTBO D 3aMKHYTO OTHOCUTEIHHO MOJLYJIbHBIX
omeparuii, T.e. 11t Bcex di,do € D u 3,7 € ® umeem Bdy + yds € D.

Ilokaxkem ciemyrorue BKIIOYEHUSI:

(2.2) X(d,d),X(d,a"), X(¥',d), X(d,b), X (c,d), X(d, ) € D,
mast Beex d € D,a’ € AV e B,d e C, X € X

Boszemém a € A,b € B u ¢ € C, nosyanm:

(Z(a,a),d,b)x.y — (a, X (d',d),b) 2y + (a,a’, Y (d, b)) z.x "2

Z(a, (d',d,b)x.y) +Y((a,d,d)zx,b) "=

(a,b,X(d/,d))zy = 0;Ya € A,be BY,Z €%,
(Z(a,a'),d,c)xy — (a, X(d,d),¢) 2.y + (a,d’, Y (d, ) z.x "2
Z(a,(d',d,c)xy)+Y((a,a',d)z x,c) (1-9)(1.10)
(a,¢,X(a,d))zy =0;Vae€ A,ce C\Y,Z €,
(Z(b,a'),d,c)xy — (b, X(d',d),c) gy + (b,a,Y(d,¢)) z.x “ 2"
Z(b, (' d,c)x.y) + Y((b,d',d)z.x,c) "I
(byc,X(a',d))zy =0;Vbe B,ce C,Y,Z € %.
Canenoparenbro, X (a/,d) € D.

Hamee, umeem:

(Z(b,d),d,a)x.y — (b, X(d,d'),a)zy + (b,d, Y (a,a)) z.x "2
Z(b, (d,a’,a)x.y) + Y ((b,d,a') z.x,a) P2
(a,b,X(d,a))zy =0;Va € Abe B,Y,Z € %,
(Z(c,d),ad’ a)xy — (¢, X(d,a'),a)zy + (¢,d, Y (d',a)) 7 x
Z(e,(d,d' a)x.y) + Y ((,d,a) zx,a) PR
(a,¢,X(d,a"))zy =0;Va€ A,ce CY,Z €,
(Z(b,d),d' ) xy — (0, X(d,d'),¢) 7y + (b,d, Y (d,¢))z,x "2

Z(b,(d,d, ) x.y) + Y((b,d,a)zx,c) FPILOD
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(bye, X(d,a"))zy =0;¥b€ B,c€ C,Y,Z € %.

Takum obpaszom, X (d,a’) € D. Ocrasbhbie cilydan [I0KA3bIBAIOTCA AHAJOIHYIHO.

O6osnaunm uepes (A, B, C) nomanrebpy R, nopoxaéunyio nogaiarebpavu A, B u
C, r.e (A, B,C) ectb HanMeHbInas nojajredbpa g-ajiredbpol R, comeprkaiiast momasires-
pot A, B, C.

IIycrs (A;X) — 6unaphas aarebpa, aj,....a, € A un Xi,....X,1 € X. Tepm
a1a3...0y, A€ CKOOKM m onepanun X1, ..., X,, 1 PaCUpeeseHbl HEKAM 00pa3oM, Ha-
3LIBAETCS IIPOU3BEICHUEM WA N-IIPOU3BEICHUEM JIEMEHTOB a1, ..., 0, B OTHOIICHUN
oneparuii X7, ..., X,,—1 (WM 1pocTo N-IPOU3BEICHUEM ).

PaccMoTpuM Terneps ciejyroriee MoJAMHOKECTBO g-arebpsl R: P = {fiw; + Sows +
o + Brwp|n € N, B; € ®,w; ecrb k;-npoussenenue (k; € N) snementoB uz AU B U
C,ie€{l,2,..,n}}. OueBunno, aro P comepxur A, B,C u P C (A, B,C). C apyroii
CTOPOHBI, P 3aMKHYT OTHOCHTEJIHLHO MOJYJILHBIX Olepamyii 1 OMHAPHBIX OIeparnit
uz %, t.e. P — nomganredpa g-anaredbpot R comepxamast A, B u C, ciieoBaTesbHO,
P=(A,B,QC).

IIyctsb w ects n-nipousseienue smementon n3 AUBUC. CkaxkeM, 9TO W — HOPMAJIBLHOE
npoussejienne, ecau n = 1 wim g Beex k (n > k > 2) kaxugoe k-npousseienue,
KOTOPOE €CTh YaCTh [IPOU3BEJIEHNUsI W, IPEJICTABIIAET U3 cebs TPOM3BEIEHNE YJIEMEHTA
u3 AU B U C n uekoroporo (k — 1)-nponsseieHusi.

CornacHo yeaosusim (2.1), (2.2), KarxK10e HOPMAJIBbHOE IPOU3BEEHNE W IPUHAIE-

xut D, T.e.

(2.3) (A, B, w)X7y = O,
(2.4) (A,C,w))gy = 0,
(2.5) (C7B7U))X,Y = 0,

ansg Bcex X, Y € 3.

[Tokaxkem, 9TO MpOWM3BEJICHNE HOPMAJIHLHBIX MPOU3BEJICHUN IPEICTABUMA B BHJE
CyMMBI HOPMAaJIbHBIX ITpom3Beennii. JlocTaTtouno moka3arh, 9T0 IPOU3BEIEHUE IBYX
HOPMAJIBHBIX [TPOM3BEEHMII MIPEICTABUMA B BUJIE CYMMbI HOPMAJIBHBIX ITPOU3BEIE-
uuii. JTokaxkeM 310 depe3 MHIYKITHIO.

HYCTB N-IpoUu3BeJCcHUC UV U k—HpOI/IBBeﬂeHI/Ie W — HOPpMaJIbHbIC IIPOU3BEICHNULA.

(1) Iyers n = 1, o ectb v € AUBUC u cnenoBarennio, X (v, w) — HOpMaIbHOE

npousBejeHne st aoooro X € X;
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(2) Hycrp X (v1,w;) ecTh CyMMa HOPMAJIbHBIX HPOU3BEJEHUI Jist KaXKJ0ro n’'-
npousBejienust v1 U k'-pouspesenus wi, vae n > n';
(a) v=X(,a), tne a € A. Umeem:
Y(0.0) = Y(X(,0),0) = X0, Y (@) - (v 0, w)xy 2
X' Y(a,w))+ (v, w,a)xy =
X(U/7 Y(CL, w)) + X(U/v Y(w7 a)) - Y(X(U/7 U)), CL)
(b) v = X(a,v"), rne a € A. Nmeem:

Y (v,0) = Y (X(a,0'),w) = X(a, Y (v, w)) — (a,0', ) xy =

X(CL,Y(U,/LU)) + (U’,(I,’LU)XA/ =
X(a,Y(v' w))+ X, Y(a,w)) =Y (X, a),w)
Cayqan v = X(v',0) m v = X(b,v'), v = X(v',¢) n v = X(¢,v'), tne
b € B,c € C, noka3bIBaIOTCS aHAJOTUIHO.

Kazxxnoe n-nponsseenne smemeraoB u3 A U B U C' — HOpMaJibHOE TIPOU3BEJICHUE
WJIN eCTh IPOU3BEJIEHNe HOPMAJIBHBIX Tpou3Beiennii ajpementos u3z AU BUC, ciejo-
BaTEJIbHO, dj1eMeHThl nojaredbpel (A, B, C) upeacraBuMbl KaK CyMMa HOPMAJIbHBIX

npousBeernii. CrpaBejIuBbl CJIEIYIOIIHe YCJIOBUSL:

(26) (a7 v, w)X,Y = 0;
(27) (b,’l},w)X,y = 0,
(2.8) (c,v,w)x,y =0,

rJie N-TPOU3BeIeHNe U U k-TIpou3BeieHne w — HopMaJibHbIe ITpousseieaus u a € A, b €
B,ceCuX,)Y e X

TTokaxkem, 9TO
(2.9) (u,v,w)xy =0,

rme X,Y € ¥ u n-nipousBejieHUE U, M-TIPOU3BEeHUE v, k-TIPOU3BEJIEHNE W — HOP-
MaJIbHBIE IIPOU3BEICHHS.

Hokaxem ycnosue (2.9) maayknueit no n. [lpu n = 1 10Ka3aTeIbCTBO CIeIyeT u3
yeqosmit (2.6), (2.7), (2.8);

IIycrs (v, v, w')x y = 0 s moboro n'-npoussenenus u’, m/-npoussenenus v’ u

k’-npoussenenus w’', tae n > n';
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(1) u=Z, a), te a € A. Nmeem:
(Z(W a),v,w)xy — (v, X (a,v),w)zy + (v,a,Y (v,w))z x =

Z(W, (a,v,w)xy)+Y((u,a,v)zx,w) (1.7),(19),(2.6)

(u,v,w)x,y = 0.

(2) u=Z(a,u), rue a € A. Unmeem:
(Z(a,u),v,w)xy — (a, X (v, 0),w)zy + (a,u, Y (v,w)) 7z x =

Z(a, (v ,v,w)xy)+Y((a,u,v)z x,w) (17),(19).(26)

(u,v,w)x,y = 0.

Caywqan v = Z(v',b), u = Z(b,u'), u = Z(u',¢) w u = Z(c,u'), tne b € B,c € C,
JIOKA3bIBAIOTCS AHAJIOTHIHO.

Urak, kaxaplii snement us (A, B,C) npeicraBuM B BUjie CyMMBl HOPMAJIBHBIX
NPOM3BEJICHNUN, CJIEJIOBATEILHO, COMTACHO yCIoBUIO (2.9), momyunm, 9To mogairebpa

(A, B, C) — cBepxacconyuaTuBHa.
O

3. CIEACTBUA

Canencrue 3.1. ITycmv R(+,%, D) - ceepraavmepramusnasn g-aseebpa v A, B C
R nodaneebpo. u x-nodmmooicecmea. Toeda nodaszebpa (A, B) dannoti g-aneebpv. R

noposcdénnotll nodaszebpamu A u B — ceepraccoyuamuena.

CuaexncrBue 3.2. IIyemo R(+,3, ) — ceeprasvmephamusras g-ai2ebpa u 04t Hexo-

mopux anemenmos a, b, c € R swnoansemes caedyrowee komoowcdecmeo 6 (R; X):
X(a,Y(b,c)) =Y (X(a,b),c),

m.e. (a,b,¢)x,y =0 daa scex X,Y € X. Tozda nodanreebpa g-areebpo. R, nopootcoén-

HAA dNEMEHMAMU A, b, C — ceepraccoyuamusHra.

CanencrBue 3.3. I[Iycmv R(+, %, ®) — ceeprasvmepnamuenas g-anzebpa u a,b € R.
Tozda nodanzebpa g-anrzebpo. R, nopootcdénmnas ssemenmamu a, b — ceepraccoyuamus-

Ha.
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OTKPBITAS IIPOBJIEMA

Jokazarh Teopemy THna Kesm 115 cBepxXaccolaTuBHbIX (CBepXalbTepHATUBHBIX )

g-anreop.

Abstract. The following Artin theorem for linear algebras defined on commutative
and associative ring with unit is well known: In the alternative linear algebra any
two its elements generate an associative subalgebra; moreover if (a, b, ¢c) = 0 then the
subalgebra generated by the elements a, b, ¢ is associative. In this paper we suggest a
larger generalization of this classical result, using the concepts of hyperidentity and

coidentity. The corresponding structures we call g-algebras.

CHHUCOK JINTEPATYPHI

[1] P. J. Higgins, “Groups with multiple operators”, Proc. London Math. Soc. , 6, 366 -— 416 (1956)
(Pycckuii nmepeson B ¢6. Maremaruka 3, Ho. 4, 55-106. (1959)).

[2] A. G. Kurosh, Lectures on General Algebra, Chelsea, New York, (1963).

[3] A. G. Kurosh, “Multioperator rings and algebras”, Uspekhi Mat. Nauk, 24:1(145), 3 — 15 (1969);
Russian Math. Surveys, 24:1, 1 — 13 (1969).

[4] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov and A. I. Shirshov, Rings that are Nearly
Associative, Pure and Applied Mathematics, 104, Academic Press, Inc., New York-London (1982).

[5] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag (1981).

[6] C. C. Chang and H. J. Keisler, Model Theory, Nort-Holland, Amsterdam (1973).

[7] A. Church, Introduction to Mathematical Logic, Princeton University Press, 1 (1956).

[8] A. I. Mal’tsev, “Some questions of the theory of classes of models” [in Russian|, Proceedings of
the IVth All-Union Mathematical Congress 1, 169 — 198 (1963).

[9] A.I. Mal’tsev, Algebraic Systems, Berlin-Heidelberg-New York, Springer-Verlag (1973).

[10] K. Denecke and J. Koppitz, M-Solid Varieties of Algebras, Springer (2006).

[11] Yu. M. Movsisyan, Introduction to the Theory of Algebras With Hyperidentities [in Russian]|,
Yerevan State University Press (1986).

[12] Yu. M. Movsisyan, Hyperidentities and Hypervarieties in Algebras [in Russian|, Yerevan State
University Press (1990).

[13] Yu. M. Movsisyan, “Hyperidentities in algebras and varieties”, Russian Math. Surveys, 53(1),
57 — 108 (1998).

[14] Yu. M. Movsisyan, Hyperidentities and Related Concepts, I, Armen. J. Math., 2, 146 — 222
(2017).

[15] Yu. M. Movsisyan, Hyperidentities and Related Concepts, II, Armen. J. Math. 4, 1 — 85 (2018).

[16] Yu. M. Movsisyan, A. B. Romanowska and J. D. H. Smith, “Superproducts, hyperidentities,
and algebraic structures of logic programming”, J. Combin. Math. Combin. Comput., 58, 101 —
111 (2006).

[17] L. A. Skornyakov(ed.), General Algebra 2 [in Russian|, M., Nauka (1991).

[18] Yu. M. Movsisyan, “Coidentities in algebras”, Reports of NAS RA, 2(77), 51 — 54 (1983).

[19] B.I. Plotkin, Automorphisms Groups of Algebraic Systems [in Russian|, Moscow, Nauka (1966).

[20] Yu. M. Movsisyan, “Hyperidentities and hypervarieties”, Scientiae Mathematicae Japonicae, 54,
595 — 640 (2001).

[21] W. E. Barnes, “On I'-rings of Nobusawa”, Pacific J. Math., 3, 411 — 422 (1966).

[22] V. D. Belousov, “Systems of quasigroups with generalized identities”, Russian Math. Surveys,
20, 73 — 143 (1965).

[23] N. Kehayopulu, “On regular duo po-I'-semigroups”, Math. Slovaca, 6(61), 871 — 884 (2011).

[24] J. Luh, “On the theory of simple I'-rings”, Michigan Math. J., 16, 65 — 75 (1969).

69



0. M. MOBCUCHH, M. A. EJTYAH

[25] N. Nobusawa, “On a generalization of the ring theory”, Osaka J. Math., 1, 81 — 89 (1964).

[26] S. K. Sardar, S. Gupta and K. P. Shum, “I’-semigroups with unities and Morita equivalence for
monoids”, European Journal of Pure and Applied Mathematics, 6(1), 1 — 10 (2013).

[27] M. K. Sen, “On I'-semigroup”, In: Algebra and Its Applications (New Delhi, 1981), Lecture
Notes in Pure and Appl. Math., 91, 301 — 308 (1984).

[28] M. K. Sen and N. K. Saha, “On I'-semigroup”, I. Bull. Calcutta Math. Soc., 78, 180 — 186
(1986).

[29] M. K. Sen and S. Chattopadhyay, I'-Semigroups, A Survey, In Book: Algebra and Its
Applications (2016).

[30] A. Seth, “I'-group congruences on regular I'-semigroups”, Int. J. Math. Math. Sci., 15(1), 103
~ 106 (1992).

[31] A. V. Zuchok, Relatively Free Doppelsemigroups, Potsdam University Press (2018).

[32] A. V. Zuchok, Y. V. Zhuchok and J. Koppitz, Free Rectangular Doppelsemigroups, J. Algebra
Appl. (2019).

[33] Yu. M. Movsisyan, “Biprimitive classes of algebras of second degree” [in Russian],
Matematicheskie Issledovaniya, 9, 70 — 84 (1974).

[34] R. H. Bruck and E. Kleinfeld, “The structure of alternative division rings”, Proceedings of the
American Mathematical Society, 2, 878 — 890 (1951).

[35] I. R. Hentzel and L. A. Peresi, “The Nucleus of the free alternative algebra”, Experimental
Mathematics 15(4), 445 — 470 (2006).

Iloctynuna 19 masa 2020
[Tocne mopaborku 21 uross 2020

IIpunsra ¥ nydsmkamuu 16 cenrsiopst 2020

70



Uszsecrust HAH Apmennu, Maremaruka, Tom 56, u. 2, 2021, crp. 71 — 79.

NON-REAL ZEROS OF POLYNOMIALS IN A POLYNOMIAL
SEQUENCE SATISFYING A THREE-TERM RECURRENCE
RELATION

I. NDIKUBWAYO
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Abstract. This paper discusses the location of zeros of polynomials in a polynomial sequence
{Pn(2)}52, generated by a three-term recurrence relation of the form P,(z) + B(z)Pn—1(2)+
+A(2)P,,_k(z) = 0 with k > 2 and the standard initial conditions Py(z) = 1,P_1(z) = ...
= P_p4+1(2) =0, where A(z) and B(z) are arbitrary coprime real polynomials. We show that

there always exist polynomials in {Py(2)}>2; with non-real zeros.

MSC2010 numbers: 12D10; 26C10; 30C15.

Keywords: recurrence relation; hyperbolic polynomials; discriminant.

1. INTRODUCTION

For decades, a popular topic of studies in mathematics is related to three-term
recurrence relations subject to natural restrictions on their coefficients. By Favard’s
theorem [I], such recurrences generate orthogonal polynomials and these are of great
interest since they are frequently used in many problems in the approximation
theory, mathematical and numerical analysis, and their applications (for example,
least square approximation of functions, difference and differential equations, Gaussian
quadrature processes, etc.), see [2].

In general, the zeros of polynomials P,(z) generated by recurrences do not
exactly lie on a particular curve but are attracted to a curve (which in this paper
we shall call the limiting curve) as n — oo. Such a limiting curve is explicitly
described in [3L[4]. Recently, K. Tran in [5] 6] has proved cases where the polynomials
P, (z) generated by three-term recurrences have all their zeros (for all or sufficiently
large n) situated exactly on the said limiting curve. We begin with the following

conjecture.

Conjecture A ([5] ). For an arbitrary pair of polynomials A(z) and B(z), all zeros
of every polynomial in the sequence { P, (2)}5% satisfying the three-term recurrence

relation of length k

(1.1) P, (z) + B(2)Pp-1(2) + A(2) Pp—(2) =0
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with the standard initial conditions Py(z) =1, P_1(2) = ... = P_j41(2) = 0 which
do satisfy A(z) # 0 lie on the algebraic curve I' C C given by
B*(2) ko (B (2) k"
1.2 R =0 d 0<(-1)"R < .
a2 () =0 ma 0w (53) <

Moreover, these roots become dense in I' when n — oo.

In the same paper, the above conjecture was proven for k = 2,3, 4. In [6], K. Tran
settled Conjecture A for polynomials P, (z) with sufficiently large n. The problems
around this area of study have most recently received substantial interest and a
number of studies have been carried out, see for example the papers [0] - [1I]. In

[8], the authors proved the following theorem.

Theorem 1.1 (see [8]). For an arbitrary pair of polynomials A(z) and B(z), all
the zeros of every polynomial in the sequence {Pn(2)}22, satisfying the three-term

recurrence relation of length k
P, (2) + B(2)Pr—¢(2) + A(2)Pr—i(2) =0
where k and £ are coprime and with the standard initial conditions Py(z) = 1,

P_1(2) = ... = P_x11(2) = 0 which satisfy the condition A(z)B(z) # 0 lie on the

real algebraic curve C given by
B*(2)
1.3 =21 =0
- °(F
The above theorem completely settles the first part of Conjecture [A] There has
been an initial attempt to obtain the exact portion of the curve C where the zeros
of the polynomials lie by providing in addition to (1.3]), an inequality constraint

satisfied by the real part of the rational function iz((j)) This has been proven for

specific cases namely, (k,¢) = (3,2) and (4,3) respectively and the details of the

proofs can be found in [I0]. In the same paper based on numerical experiments,

k
a more general conjecture for the real part of if((.:)) has been proposed for this

problem.

In the present paper, it is of interest to determine where in complex plane the
zeros of every polynomial in the sequence { P, (2)}$2_; generated by (1.1) are located.
In a particular case of k = 2, the author in [7] characterizes real polynomials A(z)
and B(z) to ensure that all the generated polynomials P, (z) are hyperbolic. This
paper is a sequel of [7] but for k > 2. We aim at proving whether or not it is possible

to generalize the former.

Problem 1. In the above notation, consider the recurrence relation

(1.4) P, (z) + B(2)Pp-1(2) + A(2) Pp—(2) =0
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where k > 2 with the standard initial conditions,
(L.5) Py(z) =1,P_1(2) = ... = P_p41(2) =0,

where A(z) and B(z) are arbitrary real polynomials. Characterize A(z) and B(z)

(if possible) such that all the P,(z) are hyperbolic.

To formulate our main result, we need to look at the curve defined by the first
condition in . We shall view CP! as CU{cc}, the extended complex plane and
RP! as the extended real line.

Let f : CP! — CP?! be the rational function defined by f(z) = % where A(z)
and B(z) are real polynomials. Denote by I' C CP! the curve given by S(f(z)) = 0,
that is I' = {z € CP' : 3(f(2)) = 0} = f~1(RP).

For real polynomials A(z) and B(z), define the curve I' by the condition (T.2).
It is clear that I C T

In the remaining part of this section, let us remind the reader of some basic
definitions and facts about rational functions. For further details, see [7].

For a non-constant rational function R(z) = %, where P(z) and Q(z) are
polynomials with no common zeros, the degree of R(z) is defined as the maximum
of the degrees of P(z) and Q(z). A point z9 € CP? is called a critical point of R(z),
(and R(zp) a critical value) if R(z) fails to be injective in any neighbourhood of zy,
that is, either R'(z9) = 0 or R'(z9) = oo (i.e, at the zeros of Q(z)). The order of a
critical point zy of R(z) is the order of zero of R'(z) at z.

Given a pair (P(z),Q(z)) of polynomials, we define their Wronskian as the
polynomial W(P,Q) := P'Q — Q'P where P’ and Q' are derivatives of P and
@ with respect to z respectively. If P and @ have no common zeros, then the zeros
of W(P, Q) are exactly the critical points of the rational map R(z). In fact if « is
a multiple zero of R, then « is a zero of the Wronskian.

We call a non-zero univariate polynomial with real coefficients hyperbolic if all its
zeros are real. In [12] §3.1], we find that the zeros of two hyperbolic polynomimals
P(2),Q(z) € R[z] interlace if and only if |deg P - deg Q| < 1 and W(P, Q) is either
nonnegative or nonpositive on the whole real axis. Notice that to say that the zeros
of P and () interlace means that each zero of @) lies between two successive zeros of
P and there is at most one zero of @ between any two successive zeros of P, [13].

More information about the Wronskian can be found in [14].

Remark 1.1. For the rational function f(z) =

(
() = BUIEFRARB ) = BA'() _ WIB*(:), AR)
A2%(2) A2(z) :
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We observe that the critical points of f(z) are the zeros of the Wronskian W(B*(z), A(2))
or the poles of f(z). In particular, if A(z),B(z) € R[z] are coprime polynomials
where B(z) is hyperbolic with distinct zeros, then all the zeros of B(z) are real

critical points of f(z) each with multiplicity k — 1.

Let P(z) be a univariate polynomial of degree n with zeros z1, . .., z, and leading
coefficient a,,. The ordinary discriminant of P(z) denoted by Disc, (P(z)) is defined

as

Disc, (P(z)) = a?" 2 H (z; — x;)2.

1<i<j<n
Generally, the discriminant of a polynomial connects with the ratio of its zeros
in the sense that the discriminant is zero if and only if the polynomial has multiple
zeros. In particular, the discriminant of a polynomial vanishes whenever there exist
at least a zero with multiplicity greater or equal to 2. For more details on the

ordinary discriminants, see [15].
Example 1.1. For coprime 1 < /{ < k, discriminant of a trinomial
P(z) = az® + bz* + ¢
is given by kFcF=1aF = + (1)1t (k — 0)k—fctm bR a1 In particular,
(1.6)  Discy(a" + Bx+ A) = AF 2 (K" A+ (-1)F 1k — 1)F ' B¥).

The expression (1.6)) will be of interest later in this work.

The main result of this paper is as follows.

Theorem 1.2. In the above notation of Problem || for k > 2, there always exist

polynomials in the sequence {Pp(2)}22, with non-real zeros.
2. PROOFs
Lemma 2.1. For k > 2, consider the recurrence relation
(2.1) P,(2) + B(2)Pr-1(2) + A(2)Pr—r(2) =0
with the standard initial conditions,
Py(z)=1,P_1(2) =... = P_py1(2) =0,

where A(z) and B(z) are arbitrary polynomials. If f(z) = %, then the zeros of

Pi(z) and Py(z) are critical points of f(z).
Proof. Substitution of the initial conditions in the recurrence relation

P,(z) + B(2)Pr-1(2) + A(2)Pr—k(2) =0
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for n = 1 gives P;(z) = —B(z). Similarly since k > 2, repeating the same process
gives Py(z) = B?(z). The zeros of P;(z) and P»(z) are the zeros B(z). The conclusion
that the zeros of P;(z) and P»(z) are critical points of f(z) follows from Remark

i O

Remark 2.1. For the recurrence (2.1) to generate a sequence of hyperbolic poly-
nomials, B(z) must be hyperbolic by Lemma ,

Let us briefly discuss some facts about the limiting curve T'. Let P(X,z) =
A 4+ B(2)\ + A(z) be the characteristic polynomial of the recurrence and
A1(2), A2(2), ..., Ak(2) be its distinct non-zero characteristic roots. For ¢ # j, let
T;;:={aecC: | (a)] =]|)(a)|} be the equimodular curve of P(), z) associated
to the characteristic functions A;(z) and A;(z). For a fixed a € C with ¢ # j, we
have |A;(a)] = |A\j(a)| if and only if there exists an s € C such that |s| = 1 and
i) = sAj(a).

For each i # j, let w = w(z) := A\;j(2)/A;(2) and define

Py(\, 2) = P(w), 2) = w*\F + B(2)w + A(z).

Then it is clear that A;(z) is a common solution of both P(A, z) = 0 and P, (A, z) =
0. A necessary and sufficient condition for P, (X, z) and P(\,z) to have a non-
constant common factor is that their resultant p(w,z) vanishes as a function of
z. By Lemma 3 [16, §3], p(w,2) = A(z)(w — 1)*Aj(w,z) where Ay(w,z) is a
reciprocal polynomial in w of degree k(k — 1). In addition, Ag(1,2) is a multiple
of Discy(P(A, 2)), the discriminant of P(), z). In the same paper, it is proved that

the reciprocal polynomial A (w, z) can be written as
Ap(w, z) = wFE=D/2y(t, 2)

where t = w + w~! + 2. The equimodularity condition |w| = 1 corresponds to ¢

being in the real interval 0 < ¢ < 4. In particular,

(2.2) v(4,z) = Ag(1, z) = £ Discy(P(), 2)).

Lemma 2.2. Let A(z) and B(z) be as defined in (T.4) and R(t,z) = t* + B(2)t +
A(z). Further, let U := {z : Disc;(R(t, 2)) = 0} and T be the curve defined in (L.2)).
A point zg € C is an endpoint of T if and only if zo € U and A(zp) # 0.

Proof. Let E=U\ {z € C: A(z) = 0}. We observe that z; € F if and only if
Disct(R(t,29)) = 0 and A(zg) # 0. This is equivalent to v(4, zg) = 0 and A(z) # 0
by (2.2). But by the results proved in [I6] §5], v(4,20) = 0 and A(zo) # 0 if and

only if zg is an endpoint of segments of I". The proof is complete. O
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Remark 2.2. For the recurrence (2.1)) to generate a sequence of hyperbolic polynomials,

it is a necessary condition that the zo € C mentioned in Lemma[2.9 is real.

We now state the following theorem about the behaviour of analytic functions
near a critical point. This will be used in the proof of the main result. For details
of the proof, see [17].

For § > 0 and 7 € C, we define Ds(z2p) := {2 € C: |z — 20| < }.

Theorem 2.1. Let g(z) be a non-constant analytic, function in a region, Q C C.
Let zg € Q, wo = g(20), and suppose that g(z) —wo has a zero of order p > 2 at z.
The following hold;

(a) There are €,§ > 0 such that for every w € Dc(wg) \ {wo}, there are exactly p

distinct solutions of

(2.3) 9(z) =w

with z € Dg(z0). Moreover, for these solutions, g(z) — w has a simple zero.
(b) There is an analytic function, h, on Da/»(0) with h(0) = 0,h'(0) # 0, so that
if w € Dc(wo) and

w = wy + 7€, 0<7<e60<6<2r

then the p solutions of are given by
z:Zo+h(7'1/pe(i(9+2“j)/p)), ji=0,1,...,p— 1.

(¢c) There is a power series, > -, bpa™, with radius of convergence at least €, so

the solutions of are given by

o0

z=2zy+ an(w —wo)"/p

n=1
where (w — wo)'/? is interpreted as the pth roots of (w —wy) (same root taken

in all terms of the power series).
Let us finally settle the main result of this paper.

Proof of Theorem 1.2. Suppose that B(z) is hyperbolic, otherwise the theorem
follows from Lemma Additionally, let zyp be a zero of B(z) with multiplicity
p > 0. Then z( is a zero of both Pj(z) and P2(z) by Lemma By Remark
20 1s a real critical point of f(z). Moreover, zg € T by . Theorem implies
that in the neighbourhood of zg,

B BF(z) _ »
1) = ) = = P hace)
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where ¢(z) is analytic at 2o and ¢(z9) # 0. Pick a §; > 0 such that ¢(z) is non-
vanishing in Ds, (o). In this neighbourhood, there exists an analytic function ¢ (2)

such that ¢1(z) = "/q(z). Take ¢1(z) as a branch of ”/q(z). Define u(z) :=
(z — 20)q1(2). Then we have

f(z) =u(2)P*, where wu(z) =0, qi(z0)=v(z) # 0.
Thus for a small positive € € R, the equation f(z) = +e is equivalent to
(2.4) (z — 20)P*q1 (2)PF = +e.

Let h(z) be the inverse function to w(z). Then by applying Theorem to (2.4)
where the left side of this equation has a zero z = zy with multiplicity pk, we obtain

solutions of the form

2= 20 + h(eM/PRBT/PR)Y  or 5 = 25 4 h(e(/PR) lint2mii)/pR))

where (1/P%) is the pk-th roots of . Using the fact that pk > 2 and h has a simple
zero at 0, we deduce that has pk solutions z and these cannot be all real.

Denote by p = # Then, by Theorem 2 [7], the zeros of P, (z) are contained
inT = f71([0,p]) or T = f=1([—p, 0]) when k is even or odd respectively, and these
zeros are dense on I' as n — oo. Now for [0,e] C [0, p] and [—&,0] C [—p,0], it
follows that

fH0,e) cT or f([~e,0) CT.

For all the polynomials P,(z) to be hyperbolic, we require I' to consist only of
intervals on the real line in C. From the solutions of , it is clear that neither
F71([0,€]) nor f=1([—¢,0]) is a subset of only real intervals. Thus there will always
be at least one non-real curve through zo on which non-real zeros of P, (z) will be

located. The conclusion follows. O

3. EXAMPLES

In this section we present concrete examples using numerical experiments. In
these examples, we consider the sequence of polynomials {P,(z)}%2, generated by

the rational function

oo . 1
(3.1) ;Pn(Z)t T 1+ Bt + A(2)tF’

where A(z) and B(z) are coprime real polynomials. We plot a graph showing
(i) a portion (black curves) of the curve I' given by (ik((zz))) =0;
(ii) the zeros (circles) of one of the polynomials P,(z) in (3.1)) (of our choice)

described by specifying k, A(z), B(z) and a positive integer n. These are

located on T
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(iii) the points z* € C which are endpoints of the curve I' (indicated by black
dots). Such points are the elements of the set E defined in Lemma

Example 3.1. Forn="71,k=3,A(z) =23 —22-52+7 and B(z) = 2% — 2 — 6,
we obtain Fig. [1

(5]
T
1

Puc. 1. The rational function is given by f(z) = 1/(1+ (2% — 2z —
6)t + (23 — 22 — 5z + 7)t3).

Example 3.2. Forn =150,k =5, A(2) = 2> + 2 — 4 and B(z) = 22 + 2 — 2, we
obtain Fig.[3

Puc. 2. The rational function is given by f(z) = 1/(1+ (2% + 2z —
2)t + (22 + 2 — 4)t°).
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4. FINAL REMARKS

Problem 1 has been settled in the negative in the sense that it is not possible to

generate a sequence of hyperbolic polynomials using the recurrence ((1.4)) with the
given initial conditions (|1.5)).
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