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Ahstract. In this paper, the existing results concerning difference operator sharing two sets have
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1. INTRODUCTION, DEFINITIONS AND RESULTS

Through out the paper. the term “meromorphic (resp. entire) "will always mean
meromorphic in the whole complex plane C which are non-constant, unless specifically
stated otherwise. We shall adopt the standazd notations of the Nevanlinna's value
distribution theory of meromorphic hunetions from ([9, 16]). For sach a meromorphic
function f and o € C=:CU {0}, each z with f(z) = a will be called a-point of f.
We dencte C* by C* :=C ~ {0},

In 1926, Newvanlinna first showed that a non-constant meromorphic function on
the complex plane C is uniquely determined by the pre-images, ignoring multiplicities,
of five distinet values (including infinity). The beauty of this result les in the
fact that there is no counterpart of this result in the real function theory. A few
years latter, he showed that when multiplicities are taken into consideration, four
points are enough and in that case either the two functions coincides or one is the
bilinear transformation of the other one. Clearly these results initinted the study
of uniqueness of two meromorphiec funetions f and g. The study becomes more
interosting if the function g is related with f.

Iffora € CU{co}, f and g have the same set of a-points with same multiplicities
then we say that f and g share the value ¢ CM (Counting Multiplicities). If we do
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not take the multiplicities into account, f and g are said to share the value a IM

(Ignoring Multiplicities).

Definition 1.1. For a non-constant meromorphic function f and any set S C C,

we define

E;(S) = U {(z,p) € Cx N: f(2) = a, with multiplicity p},

EsS) = {(2,1) eCx{1}: f(2) :a}.

If B4 (S) = E,(S) (Ef(S) = E4(S)) then we simply say f and g share S Counting
Multiplicities(CM) (Ignoring Multiplicities(IM)).

More formally it can be explained as follows.

Definition 1.2. [3] If f is a meromorphic function and S C C then if 29 € f~1(S),
the value of E;(S) at the point zq is denoted by Ef(S)(20) : f~'(S) — N and is
equal to the multiplicity of zero of the function f(z) — f(zo) at zo i.e. the order of
the pole of the function (f(z) — f(z0))™! at 2o if f(20) € C (resp. of the function
f(2) if 2q is a pole for f).

Evidently, if S contains one element only, then it coincides with the usual
definition of CM (I M) sharing of values.

In 2001, an idea of gradation of sharing known as weighted sharing has been
introduced by Lahiri [11, 12] which measure how close a shared value is to being
share CM or to being shared IM. So for the purpose of relaxing the nature of
sharing the sets, the notion of weighted sharing of values and sets, has become an
effective tool.

Recently, the definition have been reorganized by us [3] as follows.

Definition 1.3. [3] For k € N and 29 € f~1(S), let us put that E(S,k)(z0) =
min{E;(S)(z0), k + 1}. Given S C C, we say that meromorphic functions f and g
share the set S up to multiplicity k (or share S with weight k, or simply share (.5, k))
if f71(S) =g¢7(S) and for each 29 € f~1(S) we have E¢(S, k)(z0) = E4(S, k)(20),
which is represented by the notation E¢(S,k) = E4(S, k).

As we proceed through the literature of the shift and difference operators of a
meromorphic function f, we feel that there should be a streamline in the definitions.
This is one of the motivations of writing this paper. To this end, below we are

providing several definitions in a compact and convenient way.
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In what follows, ¢ always means a non-zero constant. We now define the shift

and difference operator in the following manner.

Definition 1.4. For a meromorphic function f, let us now denote its shift I.f

and difference operators A.f respectively by I.f(z) = f(z + ¢) and A.f(z) =

(Ie =1)f(2) = f(z+¢) = f(2).
Next we define ASf := AS~1(A.f),Vs € N— {1}.

For the purpose of generalizing the above definitions, we now propose the definition

of linear shift operator £,(f,I) as follows.
Definition 1.5. For a meromorphic function f and a positive integer p, we define
(1.1) Lo(f, 1) = aple, f(2)+ap_1le,  f(2)+...4+aole,f(2)

= apf(z+cp) +...+ar1f(z+c1) +aof(z+co),
ap(#0),...,a1,80 € C, ¢p,...,c1,¢0 € C.

In particular, for suitable choice of ¢;, say ¢; = jc, for j € {0,1,...,p}, we call

L,(f,I) as a linear c-shift operator £,(f,I.) as follows.

Definition 1.6. For ¢ € C* and a positive integer p, we define

(1'2) [’p(fa Ic) = aplpcf(z) =+ ap—ll(pfl)cf(z) ot aOIOf(Z)
apf(z+pc) +ap-1f(z+(p—1)c) +... +aof(2).

Analogous to the definitions 1.5 and 1.6, we now introduce the definitions of
linear difference operator £,(f, A) and linear c-difference operator £,(f, A.) in the

following manner.
Definition 1.7.

(1.3) Ly(f,A) =apAc, [(2) +ap_18c,  f(2)+ ...+ a0 f(2) =

p
apf(z+ )+ +arf(z+c)+aof(z+co)— [ Y a; | £(2)
j=0

= L,(f,1) =D _a; | f(2),
j=0

Definition 1.8. For ¢ € C*, a positive integer p, putting ¢; = je, j € {0,1,...,p},
in (1.3) we define

(L4) L£o(f,A) = 0y (2) + ap1 Agnyef (2) + ... +

p
a1 A f(2) + aolof(2) = Ly(fi 1) = | Y a; | £(2).
j=0

5



A. BANERJEE, M. BASIR AHAMED

For the specific choices of the constants as a; = (—1)P~7 <p), where 0 < j < p,
J

in the expression £, (f, A.), one can easily get that £, (f,A.) = Alf.
For the sake of convenience, we are now going to introduce linear c-difference
odd operator L9(f,A.) as follows:

Definition 1.9. For ¢ € C*, putting ¢; = (2j + 1)¢, j € {0,1,...,p}, in (1.3) we
define,

(1.5) Ly (f, A) = apApi1yef(2) + ap-1A@p-1)ef(2) + ... +a1A1 f(2) +
+aOAcf(Z)'

Henceforth unless otherwise stated for a # 0, throughout the paper, we denote,
for n € N, by 87 = {a,ab,ab?,...,a0" "'}, where § = exp (22), and Sp = {oc}.

Recently a number of papers ([6, 8, 21] etc.) have focused on the value distribution
in difference analogues of meromorphic functions.

In this perspective, many researchers have become interested to deal with the
uniqueness problem of meromorphic function that share values or sets with its shift

or difference operators. Below we are mentioning few of them.

Theorem A. [21] Let ¢ € C*, and suppose that f(z) is a non-constant meromorphic
function with finite order such that E;(Sy',00) = Er, (8], 00) and Ef(Sz,00) =
Er,(S2,00). If n > 4, then I.f =tf, where t" = 1.

The following example shows that Theorem A is not valid for ‘infinite ordered’

meromorphic function.

Example 1.1. Let ¢ € C* and f(z) = exp (sin (LCZ)) It is clear that I.f =

exp (— sin (LZ)> . It is easy to verify that E; (ST, 00) = Er, f(S7', 00) and Ef(Sz,00) =
c

Ep, (82, 00) for any value of n € N but the conclusion of Theorem A ceases to

hold.

Example 1.2. Let ¢ € C* and f(z) = exp (exp (mz)) It is clear that I.f =
¢

exp (— exp (mz)) It is easy to verify that E¢(S7, 00) = Er, (ST, 00) and Ef(S2,00) =
C

Ep,;(Sa,00) for any value of n € N but the conclusion of Theorem A ceases to

hold.

The next examples show that for n =1 or n =2 Theorem A is not true.

eB% 4 gin? (222) —
sin? (2%2) -1

that E;(Sf,00) = By, #(S1,00) and E¢(S2,00) = Ep,¢(Sa2,00) but I.f # f.
6
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exp (T2) — exp (—Z2) a2
Example 1.4. Let f(z) = p( 2e ) ﬂ'p ( 2c ) , where a is a non-zero constant.
ia
It easy to verify that E;(S?,00) = Ey,#(S7,00) and E¢(S2,0) = Ey, ¢(S2,00) but

I.f # 1.

By replacing I.f by A.f in Theorem A, Chen - Chen [5] obtained the following

result.

Theorem B. [5] Let ¢ € C* and S and Sy be defined as in Theorem A. Suppose
that f(z) is a non-constant meromorphic function with finite order such that E;(S),2) =
En, f(S2,2) and E¢(Sz,00) = Ea,f(S2,00). If n > 7, then A f =tf, wheret™ =1
with t # —1.

In this direction, Banerjee - Bhattacharyya [4] successfully reduced the weight
of the sets as well as the lower bound of n in Theorem B, by obtaining the following

two results.

Theorem C. [4] Suppose that f is a non-constant meromorphic function of finite
order such that E¢(S]',2) = Ea,¢(S],2), where b" = a € C* and Ef(S2,0) =
EA,£(52,0), and n > 6. Then there is a constant t € C such that A.f =tf, where
t"=1andt # —1.

Theorem D. Suppose that f is a non-constant meromorphic function of finite
order, S' be defined as in Theorem C, and such that E¢(SJ',1) = Ea, (S, 1) and
Ef(82,0) = Ea,f(S2,0), and n > 7. Then there is a constant t € C such that
A.f=tf, wheret” =1 and t # —1.

The following examples show that the condition ‘finite orderedness’ of the function

f is not necessary in Theorems B, C, D.

Example 1.5. For a complex number ¢ (# —1), let

exp (% log(t% + 1))

( <2m'z) )
exp | exp c -1

It is easy to verify that APf = ¢f, for all positive integer p. As ¢ is a complex
constant satisfying ¢ = 1, it follows that (A2 f)"—1 = f"—1. Hence Exr (S}, 00) =
E(S1',00) and Eap(S2,00) = Ef(S2,00).

f(z) =

In the same manner more examples can be formed as follows:

exp (% log(t% + 1)) sin (222)
exp (sin (2%)) —1
7
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exp (2 log(t? + 1)) cos (222)
exp (cos (2”)) -1

c

Example 1.7. Let f(z) =

exp (f log(t% + 1)) exp (2kriz)

( ( 2miz ) >
exp | exp —1
c

Recently, in this direction Deng - Liu - Yang [7] obtained the following result.

Example 1.8. Let f(z) =

Theorem E. [7] Let ¢ € C* and S, So be defined as in Theorem A. Suppose that
f(2) is a non-constant meromorphic function such that E;(S}, k) = Ea,;(SZ, k)
and E¢(Sz,00) = Ea,¢(S2,00). If n > 7, when k =1 orn > 5, when k > 2, then
A f =tf, where t" =1 with t £ —1.

Remark 1.1. We know that all the lemmas and hence the corresponding results so
far obtained based on the lemmas related to a function and its shift I.f or A.f are
for finite ordered meromorphic functions only, so we have a strong doubt about the

validity of Theorem E for the case of “infinite ordered"meromorphic function.

For the purpose of further improvements as well as extensions of Theorems B,

C, D, E, we propose the following questions.
(i). Can we replace the difference operator A.f by a more general setting
Ly(f,Ac) in Theorem B, C, D, E ?
(ii). Isit possible to relax the nature of sharing (Sz, 00) in Theorems B, E further
by (S2,0) ?
In this paper, we have answered the above questions affirmatively. Followings

are the main result of this paper.

Theorem 1.1. Let n, p € N, and f be a non-constant meromorphic function of
finite order such that E¢(S;',1) = E_(r.a.)(Si, 1) and Ef(S2,0) = Ez (5,a.)(S2,0).
If n > max<{p+4, 77, then there exists a constant t € C such that L,(f, A:) =tf,
where t" =1 and t # —1.

Theorem 1.2. Let n, p € N, and f be a non-constant meromorphic function of
finite order such that Ef(Sy,2) = Er,(r,.a,)(Si,2) and Ef(S2,0) = E (5,a,.)(S2,0).

If n > max {er 3, 6}, then the conclusion of Theorem 1.1 holds.

Remark 1.2. Since I.f, A.f and L,(f,1.) are the very special forms of £,(f, A.),
so it is clear that Theorem 1.1 and Theorem 1.2 improved and extended the

Theorems B, C, D and F in a large extent.
8
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Let us denote by P, as the field of periods ¢ (# 0) of meromorphic functions
defined in C. That means

P. = {g : g is meromorphic and g(z + ¢) = ¢g(z), Vz € C}.

From Theorem 1.1 and Theorem 1.2, we can now easily deduce the following

Corollaries:

Corollary 1.1. Let n, s € N, and f be a non-constant meromorphic function of
finite order such that E;(ST',1) = Eps (S, 1) and Ef(S2,0) = Eps¢(S2,0). If
n > max< s+ 4, 7}, then there exists a constant t € C such that A, f = tf, where
t"=1andt # —1.

Corollary 1.2. Let n, s € N, and f be a non-constant meromorphic function of
finite order such that Ef(S7',2) = Eas§(S7,2) and Ef(S2,0) = Eps¢(S2,0). If

n > max {s + 3,6}, then the conclusion of Corollary 1.1 holds.

Remark 1.3. From FEzamples 1.1 and 1.2, we see that Corollaries 1.1 and 1.2
are not valid for ‘infinite ordered’ meromorphic functions for the case s =1, a; =1,

(10:0.

Corollary 1.3. Let s, where 1 < s < 3, be an integer and f be a non-constant
meromorphic function of finite order. Suppose E;(S7,1) = EAif(Sf7 1) and E¢(S2,0) =
Eas§(82,0). Then there exists a constant t € C such that ALf =tf, where t” =1
and t # —1.

Corollary 1.4. Let s, where 1 < s < 3, be an integer and f be a non-constant
meromorphic function of finite order. Suppose E;(S?,1) = EAif(Sf, 1) and E4(S5,0) =
Exs §(82,0). Then there exists a constant t € C such that ALf =tf, where t® =1
and t # —1.

From the following three examples we see that the conclusion of Corollary 1.3

and Corollary 1.4 actually occurs for the case s =1, s =2 and s = 3.

2miz .
2
Example 1.9. Let f(2) = (1+ C)Z/C P e ) p2( ) , where ( = exp <m>
exp( ”C”) -1 7
2mi

(CZGXp( 6 . Clearly Ef(SI,l) = EACf(SZ,l) (Ef(S?,Q) = EACf(Slﬁ,Q))
and Ef(SQ,O) = EACf(SQ,O) and Acf = Cf

) , where ( = exp (2;72)

.
(= e (52)). Clearty BAST1) = Bas(ST1) (By(S%.2) = Ba.s(sh2)
and Ef(S2,0) = Ea27(82,0) and AZf = (f.

9
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/c 2z .
Example 1.11. Let f(z (1 + fw) M where ¢ = exp (27m>

(2mz)
(c=exo (25°))- Clearty E/(ST.1) = Eas(SL1) (B/(S.2) = Bas(st.2)
and Ef(S2,0) = Easf(82,0) and A2 f = (f.

Remark 1.4. We note that the linear difference equation

(1.6 8L = Y (1) fe e =1 1)
i=0 !
where t* = 1, t # —1, can be solved in terms of linear combinations of exponential

functions with coefficients in P.. In fact, if f be a finite ordered meromorphic

function satisfies the relation ASf =tf, then f(z) must assume the following form
f(z) =ms_1()as_ | + ...+ mo(2)as,

where all 7; € P., and «; are roots of the equation » (—1)°7/ ( ) 2 =t.
0

= j

Following example shows that in Theorems 1.1 and 1.2 the term ‘finite order

meromorphic functions’ can not be removed for a special class of linear c-difference

odd operator, where a; = (—1)7 <p> 2P~3. We note that in this case (1.5) takes the
J

form L3(f, A Zajfz+ (25 + 1)e).
7=0
TZ
Example 1.12. For ¢ € C*, we suppose that f(z) = exp (cos (—)) We choose
c

m(z+ (25 + 1)c)

L,(f, M) as L3(f, A,). Since cos ( ) = —cos (%) and it follows

that £0(f,A.) = exp (— cos (72))7 so f satisfies all the conditions of Theorems
c
I1.1and 1.2 but L)(f,A.) Ztf.

However, unfortunately, we were not succeeded to find any counter example for
general linear c-difference operator.
The next example shows that the set S; in  Corollary 1.8 simply can not be

replaced by an arbitrary set.

a a

a
- =0, —
\/(;70.)’ 7w\/aa

is any non-zero complex number, w is non-real cube root of unity,

1 1
f(Z) = exp (Elog(w% + 1)) m, .

Example 1.13. Let S¥ = {a, aw, a w} and Sy = {00}, where a

where p (1 < p < 4) be an integer.
It is easy to verify that Er(S¥,1) = Ear;(S¥,1) and E¢(S2,0) = Ear;(S2,0)
but neither AZf = f with " = 1 nor f has the specific form as above.
10
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Though the standard definitions and notations of the value distribution theory

are available in [9, 16], we explain here some of them which are used in the paper.

Definition 1.10. [13] For a € CU {cc}, we denote by N(r,a; f| = 1) the counting
function of simple a-points of f. For a positive integer p, we denote N(r,a; f| <
p)(N(r,a; f| = p)) the counting function of those a-points of f whose multiplicities
are not greater (less) than p where each a-point is counted according to its multiplicity.
N(r,a; f| < p)(N(r,a; f| > p)) are defined similarly, where in counting the a-

points of f we ignore the multiplicities.
Definition 1.11. [11] We denote by Na(r, a; f) the sum N(r,a; f)+N(r,a; f| > 2).

Definition 1.12. |20, 18] Let f and g be two non-constant meromorphic functions
such that f and g share the value 1 IM. Let zy be a 1-point of f with multiplicity
p, a 1-point of g with multiplicity . We denote by N1(r, 1; f) the counting function
of those 1-points of f and g where p > ¢, each point in this counting function is

counted only once. In the same way we can define N (r,1;g).

Definition 1.13. [6, 9] Let f, g share a value IM. We denote by N.(r,a; f,g) =
N.(r,a;9, ) and N.(r,a; f,g) = Np(r,a; f) + Np(r, a; 9).

Definition 1.14. [14] Let a,b € C U {oo}. We denote by N(r,a; flg = b) the
counting function of those a-points of f, counted according to multiplicity, which

are b-points of g.

2. SOME USEFUL LEMMAS

In this section, we are going to discuss some lemmas which will needed later to

prove our main results. We define, for a non-constant meromorphic functions f,

o Fo (1) o= (GU20Y
a a
Associated to F and G, we next define H and ¥ as follows:
‘F’// 2‘7/ g// 2g/
22 H_<F’_f—1)_(g’_g—1>’
and
! /
(2.3) v = a - g

F(F-1) GG-1)
Lemma 2.1. [6] Let g be a meromorphic function of finite order p, and let ¢ € C*
be fixed. Then for each ¢ > 0, we have

11
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Lemma 2.2. Let F and G be given by (2.1) satisfying E.(1,m) = E;(1,m),
0<m< oo with H#0, then

N (T’ ]—‘1—1) Y (T, . ! 1) < N(H) +S(r,F) + S(r.0).

Proof. Since £, (1,q) = E,(1,q), so it is obvious that any simple 1-point of F
and G is a zero of H. The construction of H implies that, m(r, H) = S(r, F)+S(r, G).
By the First Fundamental Theorem, we get

1 1 1 1
NE) (r, 1 1) :NE) (r, G_ 1)

N (r,i{) <N H)+ S, F)+ S(r,G).

N

The proof is complete. O

Lemma 2.3. [10] Let f be a non-constant meromorphic function of finite order
and ¢ € C*. Then

N(r,0; f(z+¢)) < N(r,0; f(2)) + S(r, f(2)),
N(r,00; f(z +¢)) < N(r,00; f(2)) + S(r, f(2)),
N(r,0; f(2 +¢)) < N(r,0; f(2)) + S(r, f(2)),

) )

N(r,00; f(z+ ¢)) < N(r,00; f(2)) + S(r, f(2))

Lemma 2.4. Let g be a meromorphic function of finite order p, and let ¢ € C* be
fized. Then

T(r,g(z+c)) =T(r,g(z)) + S(r,9).
Proof. The lemma can be proof in the line of the proof of [6, Theorem 2.1]. O

Lemma 2.5. Let f be a transcendental meromorphic function of finite order, then

S(r, Ly(f, Ac)) can be replaced by S(r, f).

Proof. In view of Lemma 2.4, we have

p
T(r, L,(f <Y T fz+c) +T(r, )+ OQ) < (p+1) T(r, f) + O(1),
j=1
with this the lemma follows. O

Lemma 2.6. [19] Let f be a non-constant meromorphic function and Q(f) =

Zaifi, where a; € C with a,, # 0. Then T'(r, Q(f)) =nT(r, f) + O(1).
i=0
12
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Lemma 2.7. [15] If N (r,O;f(k)|f #+ O) be the counting function of those zeros of
) which are not the zeros of f, where a zero of f*) is counted according to its

multiplicity, then
N (1,0, /01f #£0) < EN(r,00; f) + N(r,05 f] < k) + KN (1,0 f| > k) + (1, /).
Lemma 2.8. Let F and G share (1,t), 1 <t < oo and (c0,0), then
_ 1 (— _ 2 __

. < . . . .
N*(T71’f7g) ~ t+1{N(T707F)+N(T7O7g)} + t+1N(T7OO"‘F)+S(T7f)

Proof. In view of Lemma 2.5 and 2.7, one must have

N.(r,1;F,G) Np(r,1;F)+ Nr(r,1;G)

N(r,1;F| >t+2)+ N(r,1;G| >t +2)

A {veoFIF 204 NG 0g1g 20

N

/N

/N

1 _ . _
M{N(r,o;}‘) + N(r,0;G) 4+ 2N (r, oo;f)} +S(r, f).

This completes the proof of the lemma. O
Lemma 2.9. Let F and G share (1,t), 1 <t < oo and (c0,0), then
N.(r, 1, F,G) < 1{N(r,0;]—') + N(r,oo;]—')} + S(r, F)+ S(r, f).
Proof. In view of Lemma 2.7, we have

~+ | =

N(r,0; F'|F =1).

We omit the details since rest of the proof follows the line of the proof of Lemma
2.8. O

Lemma 2.10. For a meromorphic function f, we suppose that F and G be given
as in (2.1) and U £ 0. If f and L,(f,A.) share (00, k), where 0 < k < oo and F,
G share (1,t), then

{n(k—i— 1) — 1}N(r,oo;f| >k+1)

t+2
t+1

X

(N0 4 F0£,1. 80 | + 2 V00 1) 4 500,).

Proof. It is clear that F and G share (oo, nk) since f and £,(f, A.) share (oo, k).
Let 2o be a pole of F of multiplicity ¢(> nk + 1), then z; must be a pole of G of
multiplicity r(>= nk + 1) and conversely. Again one may note that there is no pole
of F and G of multiplicity ¢, where nk < ¢ < n(k+1). Next by using Lemmas 2.5,

13
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2.6 and 2.8, we get from the definition of ¥ that

{nk+n1}N(r,oo;f| >k+1) < N(r,0;9) < N(r,o0; ¥) + S(r, F) + S(r,G)

N

N(r,0; F) + N(r,0;G) + N.(r, 1; F,G) + S(r, F) + S(r,G)

< N0 )+ N0 L (80 + o { V00 + F 005 80)

—|—2N(r,oo;f)} + S(r, f)

W00 + N0 80 4 g

This completes the proof of the lemma. O

N(r,00; f) + S(r, f).

~

Lemma 2.11. [17, 20] If F and G share (00,0) and ¥ =0, then F =G.

Lemma 2.12. [18] Let H =0 and F, G share (00,0), then F and G share (1,00),

(00, 00).

Lemma 2.13. [1] Let F, G be two meromorphic functions sharing (1,2) and (oo, k),
where 0 < k < 0o. Then one of the following cases holds.
(i). T(r,F)+T(r,G) <2{Na(r,0; F) + No(r,0;G) + N(r,00; F)+
+N(r,00:G) + Nu(r,1; F,G)} + S(r, F) + 8(r, G).
(ii). F=g.
(iii). FG=1.
3. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1.1. Let F and G be given by (2.1).

Now we discuss the following two cases.
Case 1. Let us suppose that H # 0. Then in view of Lemma 2.11, we have ¥ # 0.
Since Ey (S, 1) = Er,(5,a.)(Si; 1) and Ef(S2,0) = Ez (5,a.)(S2,0), it follows that
F and G share (1,1) and (c0,0) . By the Second Fundamental Theorem, we get
T(r,F)+T(r,G)
N(r,1;F)+ N(r,0;F) 4+ N(r,00; F) + N(r,1;G) + N(r,0;G) + N(r, 00; G)
—No(r,0; F") — No(r,0;G") + S(r, F) + S(r,G).

N

Using Lemma 2.6 and Lemmas 2.1, 2.2, 2.3 of [2, p.384], we get
1) {Tr0) + 700,180}

< 4{N(r,0;f) + N (r,0; L, (f, Ac))} + 6N (r,00; f) —2 (t N 2) Nlr 137,6)

+S(r, F) + S(r,G).
14
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Applying Lemma 2.8 with t =1 and Lemma 2.10 with t = 1, k = 0, we get
from (3.1) that

(3.2) n{To«, £+ T(r Lo . Ac»}
< z{N(r,O;f) + N(r,0; L,(f, Ac))} + TN (r,00; f) + S(r, f) + S(r, L,(f, AL))
< (54 5mg) {000+ R0 L0804 500+ 50.£,(7,80)
< (54 gy ) {7 DT LR AN | 4501 + 50 £,1,80)
which contradicts n > 7.

Case 2. Let us suppose that H = 0.
On integration twice, we get
_AG+B
CG+D’
where A, B,C,D € C such that AD — BC # 0.
We now discuss the following two cases.
Case a. Let AC # 0. We thus see that A # 0 and C # 0.
It follows from (3.3) that

(3.3)

A BC—-AD
3.4 F-=_—_7"
(3-4) C C(CG+D)
Clearly it follows from (3.4) that all the zeros of F — A corresponds from the
poles of G. We also see from our hypothesis that F and G share (00, 0), so from
A

(3.3) we see that oo is an e.v.P of G. In other words F omits the value %.

By the Second Fundamental Theorem, we get
nT(r,f) < N(r,0;F)+ N(r,00; F) + N (r, ?;.7—“) + S(r, F)
= N(r,0;f)+S(r, f) <T(r, f)+S(r, f),
which contradicts n > 7.
Case b. Let AC = 0. This shows that one of A and C is zero, otherwise for A =0 =C

leads the function F to be a constant and which would be a contradiction.
Subcase b.1. Let A # 0 and C = 0. Then,

(3.5) F=aG+p,
B

where o = % and 8 = D

If 7 has no 1-points, then by Second Fundamental Theorem, we get

nT(r, f) < N(r,0; F) + N(r,00; F) + S(r, F) < 2T(r, f) + S(r, ),

which contradicts n > 7.
15
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If 7 and G both have some 1-points, then we have oo+ 5 = 1.

If 3 =0, then a = 1. So we have F = G. Thus we have £, (f,A.) = tf, where
=1 with ¢ # —1.

Next, we suppose that 8 # 0. So it is clear that F — 8 = aG. By Second

Fundamental Theorem, we get

nT(r,f) < N(r,0;F)+ N(r,00; F) + N(r, 3; F) + S(r, F)
< N(,0;f)+ N(r,00; f) + N(r,0;G) < (p+ 3)T(r, f) + S(r, f),

which contradicts n > p + 4.
Subcase b.2. Let A =0 but C # 0. Then we have

1

where v = % and § = %

If F has no 1-points, then proceeding exactly same way as done in Subcase b.1,
we arrive at a contradiction.

If 7 and G have some 1-points, then it follows from (3.6) that v+ = 1.

We now see from (3.6) that

1

T e
We note that as C # 0, v # 0. Suppose d # 0. So v # 1. Since F and G share

(00, 00), so from (3.7), we see that F and G omit oo.

(3.7)

By the Second Fundamental Theorem, we get

1
) 1 _ ,_y
< N0 f) + N(r,0:G) + S(r, f) < (p+2) T(r, f) + S(r, ),

nT(r, f) =T(r,F) < N(r,0; F) + N(r,00; F) + N (r ;f) + S(r, F)

which contradicts n > p + 4.
Next we suppose that 6 = 0. Therefore v = 1. Then we get FG = 1, i.e.,

I (Lp(f,Ar)) = 0a?, where 0" =1
Ep(fv Ac)

Next since F and G share (00,00), so we have N (r, f) = N(r,0; f)

and so in view of Lemma 2.1, we get

fa?

T f2> +8(r, f)<T (7“, WA)) +S(r, f)

f
'Cp(fa AC)

< N(rvf) +S(Taf) <N(7",O;f)+5(’l",f) <T(r,f)+5(r,f),

which is a contradiction.

2T(r, f) < T(

This completes the proof of Theorem 1.1. O
16
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Proof of Theorem 1.2. Let F and G be given by (2.1) and ¥ # 0, since otherwise
the proof follows from the Lemma 2.11. Again Since E¢(S;,2) = Ez,(s,a.)(Ss,2)
and Ef(S2,0) = Er,(1,a.)(S2,0), so it follows that F, G share (1,2) and (c0,0).
Let if possible (i) of Lemma 2.18 holds. Then with the help of Lemma 2.6, one

must have

38 {70+ 10 (00

< W00+ W04, 80) |} + 681,001 ) + 500, 7) 4 5(1.6).
Now with the help of Lemma 2.10 with ¢t = 2, k = 0, we get from (3.8)

n{T(r, )+ T(r, Ly(f, Ac))}

< (44 5o ) {7 D) + T 8D b+ 8011+ 5040880

which contradicts n > 6.

Now the rest of the proof follows from the line of the proof of Theorem 1.1. O

4. PROOFS OF THE COROLLARIES

Proof of Corollary 1.1. Let us suppose that 7 = f™ and G = (AZ)“ Then,

following the same procedure as adopted in the proof of Theorem 1.1, we obtain
(4.1) A, =tf.

Proof of Corollary 1.2. The proof can be carried out exactly the line of the proof
of Theorem 1.2 and that of Corollary 1.1.

Proof of Remark 1.4. Since the distinct roots of Z(fl)sfj (S> 2 =t are

i=0 J
0t2mij
2

1
a;j=1+1t"e

solution of the relation A f =t f will be of the form

, where —m < 6 <7, j=0,1,...,s — 1, therefore the general

F(2) = me1(2)ai_; + ...+ mol2)ag .

Verification:
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<(S))f z + sc) <>f(z+(s1)c)+...+(1)s<z>f(z)

- (Ot

G){m 1(z+ (s = 1Deo)a E—lai:}+---+7ro(z+(s—1) )040048 1}
(>( 1)8{%1(Z)a§ 4+ mo(2)a O}

.
{( > G) o .+ (j)(—l)s}wsl(z)asl
e {(0> %~ G) ot @ (1)5}%(2)@5

= (a1 = 1) me1(z)ag_y + ...+ (a0 — 1) mo(2)ag
s = o-+oi z
5 ) ms—1(z)al |+ .. <|t|se E ) mo(2)a§ =

{wsl P mo(z)a Z}—tf()

z

Z Z
Te—1(2 + sc)as_ 1a§)_1+...+770(z+sc)a5a8}

V)

5. CONCLUDING REMARKS
In this section, we have the following observation.

Observation 5.1. A non-constant finite ordered meromorphic function satisfying

the relation
(5.1) Ly(f,Ac) =tf
must assume the following form
flz)= 7Tp<Z)Oé§ +...+ 71'1(z)oz1%7

where 7;(z), (j=1,...,p) € Pc,and aj (j =1,...,p) are the roots of the equation

apw? + ap_wP 4+ 4 agw — Zaj +t ] =0.
j=1

al +t
ay

)i

For p =1, we have L1(f, A.) =t f, which implies that f(z+4c¢) = <

Clearly, in this case the general solution of (5.1) is

ook

a; +1 ©
10 =m() (M) = mal.
aj
where 1 is a root of the equation ajw — (a3 +t) = 0.

18
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Verification:

Li(f, ) = arf(z4¢) = (a)f(2)

m{wﬂv+dmaf}—m{wﬂdaf}

= {alal —al}m(z)ozli = tm(z)af =t f(2).

For p = 2, we have Lo(f,A.) =t f, which in turn implies that

asf(z+2¢c) +arf(z+c¢)— (a1 +az+1t)f(2) =0.
Let aq, as be the roots of the equation
a2w2 +aw — (a1 +az +t) =0.

Then

—ay + /a} + daz(ay +ag + 1)
aq, O = 2a2 .

In this case the general solution of (5.1) is

z

—a1—|—\/a%—|—4a2(a1+a2—|—t) —al—\/af—l—élaz(al +ag +1) ’
+ m2(2)

o

2 = m) ( 7 -
= 771(2’)0[1% —|—7r2(z)a2%.

Lets verify the above fact.

Lo(f,Ac) = azf(z+2c)+a1f(z+¢) — (a1 + a2) f(2)

— ag{m(z F20)N2AT + oz + 20))\3)\5}
+a1{7T1(z + c))\l)\f + ma(z 4+ c))\2)\2zf~}
—(a1 + CL2){7T1(Z)/\1§ + WQ(Z))\E}
= {azx\f +arA — (a1 + az)}7r1(z)/\1'z + {a2)\§ +aidg — (a1 + ag)}ﬂz(z))\;c

= twﬂ@Af+twﬂ@A§:t{wﬂ@Af+wﬂ@A§}:tf@)

So we conjecture that, the general solution of the relation (5.1) is

Z
c

f(2) = mp(2)as + o1 ()i g + .+ m(2)af

where m;(2) (j =1,...,p) € P.,and a; (j =1,...,p) are the roots of the equation

P
apw? +ap_1wp*1 + ...t aw— Zaj +t] =0.
j=1
But unfortunately we have not succeeded to prove it.
19



A. BANERJEE, M. BASIR AHAMED

An open question. What would be the general meromorphic solution of the

difference equation £,(f,A) =t f ?
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1. INTRODUCOTION

The general Heun eguation is the most general second order linear Fuchsian
ordinary differential equation with four regular singular points in the complex plane
12, 3. 4, 5. Although it s a genaralization of the well-studied Gauss hypergeometric
sguation with three regular singularities, it is much more difficult to investigate
properties of the Heun functions. The additional singularity causes many complications
in comparison with the hypergeometric case (for instance, the solutions in general
have no integral representations involving simpler mathematical functions). There
also exist confluent Heun equations (see [3, 4]) which have rregular singularities.
There are many studies on the properties of solutions of the Heun equations from
different perspectives {see. for instance, 16, 7, 8. 9, 10, 11, 12, 13, 14, 15, 16, 17|
anel the references therein). The Heun functions (and their confluent cases) appear
extensively in many problems of mathematics, mathematical physics, physics and
engineering {e.g.. [18. 19, 20]}). An extensive hibliography can he found at [1].

The general Heun equation is given by the following equation:

d?u ~ ) g du aflz —q
a2 (‘* +—>E+z(z_1)(z_t)

z z—1 =z-t
where the parameters satisfy the Fuchsian relation

{1.1) uw=0

?

(1.2) l4+a+B=v+d+c
21
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This equation has four regular singular points at z = 0, 1, ¢ and oo. Its solutions,
the Heun functions, are usually denoted by uw = H(¢, ¢; «, 8, 7, d; z) assuming that
¢ is obtained from (1.2). The parameter ¢ is referred to as the accessory parameter.

It is well-known that the derivative of the hypergeometric function 5 F} is again
a hypergeometric function with different values of the parameters. However, for
the Heun function it is generally not the case. The first order derivative of the
general Heun function satisfies a second order Fuchsian differential equation with
five regular singular points [7, 8, 12]. It can be verified by direct computations
that the function v(z) = du/dz, where u = u(z) is a solution of (1.1), satisfies the

following equation:

(1.3)
d?v y+1 o041 e+1 af dv f(z) 0
dz? ( z +z—1 z—t_ozﬂz—q>dz z(z—l)(z—t)(a,@z—q)v_ ’

where f(z) = 2(aBz —2¢)(aB+v+d+¢e)+ (¢ +q(y+t(y+ ) + &) — aByt). We
see that an additional singularity at z = ¢/(«8) involving the accessory parameter
is added.

It is known that in some cases equation (1.3) reduces to a Heun equation (1.1)
with altered parameters [8]. Indeed, we can observe that in four cases when ¢ =
0, ¢ = aff, ¢ = aft and af = 0 the additional singularity in (1.3) disappears and
we obtain the Heun equation (1.1) with different parameters [8]. The equation for
the derivatives of the Heun functions allows one to construct several new expansions
of solutions of the Heun equations in terms of various special functions (e.g.,
hypergeometric functions) [7]. Similar results hold for confluent cases [12].

This paper is organized as follows. In Section 2 we give a list of all confluent Heun
equations together with linear second order equations for the derivatives of the Heun
functions. In Section 3 we briefly describe the theory of isomonodromy deformations
of linear equations and show how the famous Painlevé equations appear in this
context. Next, in Section 4 we present our main results. In particular, we will
compare linear equations for the Heun derivatives with linear differential equations,

isomonodromy deformations of which are described by the Painlevé equations.

2. CONFLUENT HEUN EQUATIONS AND EQUATIONS FOR DERIVATIVES OF

CONFLUENT HEUN FUNCTIONS

The general Heun equation is given by (1.1) together with (1.2) and the linear
equation for the derivative of the Heun functions is (1.3).
22
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The confluent Heun equation is written as

d?u 1) du az —q
2.1 — —_— —u=0
(2.1) d22+< + - +5) -+ o
and the linear equation for the function v = du/dz is given by
d*v v+1 §+1 @ dv g(2)
2.2 - S R N )
(22) d22+( P az—q) dz z(z—l)(az—q)v ’

where g(2) = (a +¢)(az? —2¢2) + (¢> — (Y + 35 — €)g + av).

The double-confluent Heun equation is

d*u v o6 du az—gq
2.3 — + - — =0
(2:3) dz2+<22+z+6> T
and the linear equation for the function v = du/dz is given by
d*v v o042 a dv h(z)
24 - 4+ — — 24 =0
(2.4) d2+<2+ PR az—q)dz+22(az—q)v ’

where h(z) = (a +¢)(az? — 2¢2) + (¢* — 6q — avy).

The bi-confluent Heun equation is

d?u v du az—q
: R
(2.5) i z+6+sz LT u=0
and the linear equation for the function v = du/dz is given by
d*v v+1 Q dv k(z)
2.6 — ) -4+ ——v=0
(26) szJr( Totes z—q) dz+z(ozz—q)v ’

where k(2) = (a +€)z(az — 2q) + (¢* — 6qg — a).
The tri-confluent Heun equation is

d*u

dz?

and the linear equation for the function v = du/dz is given by

o ) dv pz)

az—q) dz  (az—q)

d
(2.7) + (v + 62 +¢e2?) CTZ +(az—qu=0

(2.8) i

v+(’y+52+522— =0,

dz?
where p(2) = (a +¢)(az? — 2¢2) + (¢* — §q — a).

3. [ISOMONODROMIC DEFORMATIONS OF LINEAR EQUATIONS AND THE PAINLEVE

EQUATIONS

In this section we briefly review the theory of isomonodromic deformations of
linear second order differential equations following [21, 22, 23]. We shall use notation
similar to [22].

The isomonodromic deformations of linear second order differential equations of
the form

d?v

dv
dz? =)y

7 + pa(2)v =0,
23
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with p1, p2 being rational functions of z and parameters of deformation ¢, ..., ¢,,
are governed by a completely integrable Hamiltonian system of partial differential
equations with respect to the parameters. When there is one parameter of deformation,
t, the Painlevé equations P; — Py ; appear as the compatibility condition of the

extended linear system consisting of equation (3.1) and equaton

(3.2) % = a(z,t)% + b(z, t)v.

The Painlevé equations P; — Py are nonlinear second order differential equations
with the so-called Painlevé property. They have many interesting properties and
appear in many areas of mathematics. See, for instance, [24, 25, 21] and numerous
references therein. The completely integrable Hamiltonian system is then equivalent
to a Painlevé equation for one of the variables. Below we shall present necessary
formulas for equations P;; — Py .

To get the sixth Painlevé equation one chooses

17/&04_17!41 1-46 1

(3.3) pi(z,t) = > 21  a—t z2-X\

B K t(t—1)Hyr AN =D
(34) p2(27t) - Z(Z—l) z(z;—l)(z—t) - Z(Z_ 1)('2_)\)7
where
t(t - 1)HV[ = )\(/\ - 1)(/\ - t)/’LQ

Lo = DA =)+ kA — 1) + (0 — DA — D+ w(A — 1),

Then the compatibility between (3.1) and (3.2) with certain a(z,¢) and b(z,t) (see
[21, 22, 23] for details) leads to the Hamiltonian system

d\ _9Hy; du  9Hy;

dt o T dt oA
and by eliminating the function p one can get the sixth Painlevé equation
U O IS S S W 20 S S SR B B2\
2 2\A A—1 X—t) \dt t t—1 Xx—t) at
AA=1)(A=1) t t—1 tt—1)
3.5 _ — ]
(3.5) + 2 —1) 046"'/86)\2“"76()\71)2"' Sopz)
where
1 1 1 1
016=§Hgoa [362—5’137 7625/@%’ 5625(1_92)

and

1 1
KZ:Z(I{0+I€1+9*1)2*1K/§O.
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To get the fifth Painlevé equation one chooses

_ 1— ko nt 1-0 1
(3.6) pi(z,t) = > +(271)2+271_Z*)\,

B K tHy AA=Dp
(3.7) pa(zt) = 2z-1) z2(z-1)2 " 2(z—1(z-\)
where

tHy = A\ — 122 — {ko\ = 12 + 0N\ — 1) — nt\ b + s(A — 1).

Then similarly to the previous case the corresponding Hamiltonian system with the

Hamiltonian Hy leads to the fifth Painlevé equation

d2\ 1 1 dA\\? 1dx  (A—1)2 Bs
o2 - (- ) (2) 22, AT A4+ 22
dt? (2>\+)\1)(dt> T (0‘5 +>\)
A AA+1)
. — 40—
(3.8) +75t+5 N1
where
L o L o L
a5 = Shoo, P = —5K0, V5= (1+0)n, 65 = 3"
and
1 1
KR = Z(HO + 9)2 — Zﬁlgo
To get the fourth Painlevé equation one chooses
1—ko 2z+4+2t 1
(39) pist) = —R-E
1 Hrv Ap
3.10 ) = =60, — 7
(3:.10) p2(2t) 2 2z * z2(z =)
where

Hyy = 227 — (0 4 2t + 260 it + O\
Then the corresponding Hamiltonian system with the Hamiltonian Hjy leads to
the fourth Painlevé equation
(3.11) 6572 - % (2)2 + %)\3 F A2 1 2(£2 — ag)h + %,
where
ay = —ko+200+1, By= 7253.
The standard third Painlevé equation is given by

2 1 2 9 2
However, for our purpose it is more convenient to consider an equation which can be
obtained from (3.12) by changing A(t) — A(t?)/t and by renaming the new variable
7 =12 as t again. This equation is given by
A1 [d\\® 1d\x  asA?2+3A3 B3 O3
( ) Tia T T e Twtan
25
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Equation (3.13), which will be denoted by Pj;;, appears in the result of isomonodromic

deformations of the linear equation (3.1) with

_omt 1= 1
(314) pl(zat) - ZQ + P Moo . — )\7
Noo(f0 +0o0)  tHpp; A
3.15 t) = _
(3:15) po(2,1) 2z 2 T 2(z—=N)’
where

1
tHy = N p® — {NooA? + 0o\ — mot b + 57700(90 +000)A

and the parameters are related by
a3 = _477009007 63 = 4770(1 + 90)a Y3 = 477207 63 = _477(2)

Finally, the second Painlevé equation

d2\ 3
(3.16) e 207 +tA + an
appears in the result of isomonodromic deformations of the linear equation (3.1)

with

1
(317) P1 (Z, t) = —222 —t— m7
(3.18) pa(zt) = —(20m+ 1)z — 2H + %
where
1 1 1
(319) H[]:§/,L2— ()\Q—Ft)ﬂ/— <a2+2) A

4. MAIN RESULTS

In this section we compare equations for the derivatives of the Heun functions
with the linear differential equations whose isomonodromy deformations are governed
by the Painlevé equations P;; — Pyy.

Let us consider the equation for the derivative of the general Heun function (1.3).

By choosing parameters

1
af = ko + K1 +0+k, 515@2%0*1*/40*/’»1*9)7
Y = —Ko, 5:7H13 5:703 q:aﬂ)‘a

we can calculate that the resulting equation is the same as equation (3.1) with (3.3),
(3.4) and the expression for Hyr provided that
- Ko K1 0
SRS U T
If now A and p are viewed as functions of ¢, substituting this condition into the

Hamiltonian system leading to the sixth Painlevé equation, we find that X\ satisfies
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the Riccati equation

d\ kot = (1+ ko + (ko + K1)t + 0N+ (1 + Ko + K1 + 0)N?
dat t(t—1)

and kg + k1 + 60+ k = 0. This gives classical solutions of the sixth Painlevé equation

provided that kg = £ko — 0 — k1 — 1. However, with this additional condition on
the parameters we have a8 = 0 and ¢ = 0.

In the equation for the derivative of the confluent Heun function (2.2) we first
make the change of variables v(z) — (1 — z/(z — 1))°v(z/(z — 1)), renaming the

new independent variable as z again, then put

Y= —kKo, 6 =ro+0+20, €=—in,
1 A 1
U:_i(ﬁoi"ioo"i_a)v q= )\a 1’ az*tn(2+"€0i"€°0+9)’

The resulting equation is the same as equation (3.1) with (3.6), (3.7) and the

expression for Hy provided that
_ ko tn . 0 — ko £ Koo
FE N "0-02 7 2000

Substituting this condition into the Hamiltonian system leading to the fifth Painlevé

equation, we see that A satisfies the Riccati equation
dA
taimm)ﬁ—(iﬁo@—mo—tn)—ﬁo =0

and 7(2+ ko £ koo +60) = 0. Again, with this additional condition on the parameters
we have « = 0 and ¢ = 0.
In the equation for the derivative of the bi-confluent Heun function (2.6) we take
0o +1 1

= — 6:—t = )\ = = ——,
Y R0, y 4 aA, « 2 , € 2

The resulting equation is the same as equation (3.1) with (3.9), (3.10) and the

expression for Hyy provided that

p=1t+ £o + i
A2
Substituting this condition into the Hamiltonian system leading to the fourth
Painlevé equation, we find that A satisfies the Riccati equation

% = A2+ 2\ + 250
and 0., + 1 = 0. Again, with this additional condition on the parameters we have
a=0and g=0.

In the equation for the derivative of the double-confluent Heun function (2.6) we

take

1
v=tn, 6=—1-0) q=a, a=§noo(90+9<>o+2), €= —Too-
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The resulting equation is the same as equation (3.1) with (3.14), (3.15) and the

expression for Hj;; provided that

Substituting this condition into the Hamiltonian system leading to the modified
third Painlevé equation Pj;;, we find that X satisfies the Riccati equation
dA
ta = 7700/\2 + (00 + 2))\ - tno
and 7s0 (6o + 0o +2) = 0. Again, with this additional condition on the parameters
we have @« = 0 and ¢ = 0.

In the equation for the derivative of the tri-confluent Heun function (2.8) we take
y=—t, 6=0, g=a), a=1-2ay, ¢=-2.

The resulting equation is the same as equation (3.1) with (3.17), (3.18) and the

expression for Hy; provided that
=222 +1.

Substituting this condition into the Hamiltonian system leading to the second
Painlevé equation, we see that A satisfies the Riccati equation

2% =2)\% + ¢
and 2as = 1. Again, with this additional condition on the parameters we have
a=0and g =0.

Hence, we see that in all cases we can reduce equations for the derivatives of the
Heun functions to certain linear equations, isomonodromy deformations of which
lead to the Painlevé equations with an additional constraint on A and u. However,
in order to get classical solutions of the Painlevé equations we need an additional
constraint on the parameters. Therefore, those linear equations isomonodromy
deformations of which are described by classical solutions of the Painlveé equations
cannot be obtained from the equations for the derivatives of the Heun functions.
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Abstract, In this paper we prove the Noether theorem with the multiplicities described by
PD operators. Despite the known analog versions in this case the provided conditions are
necessary and sufficient. We also prove the Cavley-Bacharach theorem with PD multiplicities.
As far as we know this is the first generalization of this theorem lor multiple intersections,

MSC2010 numbers: 41A05, 41A63, 14H50.

Keywords: polynomial interpolation; n-independent set; PD multiplicity space;
arithmetical multiplicity.

1. INTRODUCTION

Let TT be the space of all bivariate polynomials. Let also TI, be the space of

hivariate polynomials of total degree at most n:

I, = Z agjrty’

i+i<n
We have that

2
(1.1) A (“; )

Consider a set of s lincar operators (functionals) on II,, :
Le=AL1,..., L}
The problem of finding a polynomial p € [, which satisfies the conditions
(1.2 Lip = ¢, = T i 8,
is called the Lagrange interpolation problem with operagors.

In our paper we consider lnear operators L which are partial differential operators

evaluated at points:
a d

Lf =p (a: a_y> f‘(ﬂ‘:o,yo)’

where p € [I. We say that L has degree d, where d = degp.

Definition 1.1. A set of operators L, is called n-correct if for any data {e1,. .., e}
there exists a unique polynomial p € 11, sazisfying the conditions {1.2).
30
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A necessary condition of n-correctness of L is: |£5] = s = N.

A polynomial p € II, is called an n-fundamental polynomial for an operator
Ly € Xy if

Lip=0y, i=1,...,s,

where ¢ is the Kronecker symbol.

We denote the n-fundamental polynomial for L € L; by pj = pj . Sometimes
we also call fundamental a polynomial at which vanish all operators but one, since
it is a nonzero constant times the fundamental polynomial.

The following is a Linear Algebra fact:

Proposition 1.2. The set of operators Ly, with |[Ln| =N = (”;2), is n-poised if
and only if the following implication holds:

pell, and Lip=0, i=1,....,N=p=0.

1.1. n-independent and n-dependent sets. Next we introduce an important

concept of n-dependence of sets of operators:

Definition 1.3. A set of operators L is called n-independent if each operator has

a fundamental polynomial in II,,. Otherwise, £ is called n-dependent.

Clearly fundamental polynomials are linearly independent. Therefore a necessary
condition of n-independence of the set £ is |£| < N.

Suppose A is a point in the plane. Consider the operator L) defined by L) f =
f(A). We say that a set of points X is n-independent (n-correct) if the set of
operators {Ly : A € X'} is n-independent (n-correct).

Suppose a set of operators L is n-independent. Then by using the Lagrange
formula:

p= cipi e cr=LIp,
Lel

we obtain a polynomial p € II,, satisfying the interpolation conditions (1.2).

Thus we get a simple characterization of n-independence:
A node set L, is n-independent if and only if the interpolation problem (1.2) is
n-solvable, meaning that for any data {ci,...,cs} there exists a (not necessarily
unique) polynomial p € II, satisfying the conditions (1.2).

Now suppose that L, is n-dependent. Then some operator L;,, ig € {1,...,s},
does not possess an n-fundamental polynomial. This means that the following

implication holds:

pEHn, Llop:OVZG{l,,S}\{Z0}2>me:0
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Let ¢ be a line. We say that p € II vanishes at A € ¢ with the multiplicity m if
(Da)'p|, =0, i=0,...,m—1,

where al|¢ and D, is the directional derivative.

The following proposition is well-known (see, e.g., [6] Proposition 1.3):

Proposition 1.4. Suppose that ¢ is a line and a polynomial p € 11,, vanishes at

some points of £ with the sum of multiplicities n + 1. Then we have

(1.3) p = lr, where r € Il,,_;.

Note that this relation also yields that the mentioned n 4+ 1 conditions are

independent, since dimIl,, — dimIl,,_y =n + 1.

1.2. Multiple intersections. Let us start with the following well-known relation
for polynomial R and functions g and f (see, e.g., [3], formula (16)):
1 . .
(1.4) R(D)[gf] =D 9" R (D)f.
£~ glg!
i,7>0
Here we use the following notations

0o 0 - ¥ a\' [ 0Y
R(D) = R(5, @)’ R) .= DUIR .= (53:) <8y> R.

Notice that to verify (1.4) it suffices to check it for R being a monomial, which
reduces (1.4) to Leibniz’s rule.

To simplify notation, we shall use the same letter p, say, to denote the polynomial
p and the curve given by the equation p(z,y) = 0. Thus the notation A € p means
that the point A belongs to the curve p(z,y) = 0. Similarly p N ¢ for polynomials
p and ¢ stands for the set of intersection points of the curves p(z,y) = 0 and
q(z,y) = 0.

Below we bring the definition of multiplicities described by PD operators (see

(81, [4], [7]):

Definition 1.5. The following space is called the multiplicity space of the polynomial
p € II,, at the point A € p:

Mi(p) = {h €Il: D*h(D)p(A) =0 Va € Z% } .
Denote by Zy = pNgq the set of intersection points of curves (polynomials) p and q.

Definition 1.6. Suppose that p,q € Il and A € Z;. Then the following space is

called the multiplicity space of the intersection point A :

Mi(p,q) = Ma(p) N Mi(g).
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We have that (see [4]) the spaces M (p, ¢) are D-invariant, meaning that

0 0
(1.5 f e Myp.a) = 5 and e Myp.o)

The number dim M (p, q) is called the arithmetical multiplicity of the point .

Denote

AEZo
We say that f € IIj vanishes at M (p, q) if h(D)f(A) =0 Vh € Mx(p,q).

We say also that the polynomials p and ¢ have no intersection point at infinity

if the leading homogeneous parts of p and ¢ have no common factor.

Theorem 1.7 ([4], Theorem 3). Suppose that polynomials p,q € II, degp =
m, degq = mn, have no intersection point at infinity. Then the number of the
intersection points, counted with the arithmetical multiplicities, equals mn :
(1.6) > dim M (p,q) = mn.
AEZ
Let us bring the formulation of this result in the homogeneous case. Let 119 be
the space of trivariate homogeneous polynomials of total degree n. In analog way

we are defining the multiplicity space M$ (p, q).

Theorem 1.8 ([4], Corollary 3). Suppose that polynomials p € 110, q € TI2 have
no common component. Then the number of the intersection points, counted with
the arithmetical multiplicities, equals mn :

Z dim MS (p, ¢) = mn.

AEZ,

2. THE NOETHER THEOREM

Suppose that p,q € II, degp = m, degg =n, and pNgq:={A1,...,As}. Let us
choose a basis in the space My, (p,q) in the following way. Let {LF ... Lk, }

be a maximal independent set of linear operators with the highest degree m := my.

Next we choose {L¥ _;,...,L* _,} to be a maximal independent set of linear

m—1iy,

operators with the degree m — 1. Continuing similarly for the degree 0 we have only

one operator Lf;.

k

It is easily seen that the above operators L;, form a basis in the linear space

M., (p, q). Denote
LHp.q) =LY, q) =Lk, Lp9) =L D 9)-
N k

Notice that, according to Theorem 1.7, we have that |£(p, q)| = mn, provided that

p and ¢ have no intersection point at infinity.
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Lemma 2.1. The set of linear operators L(p,q) is vyo-independent for sufficiently
large ~g.

Proof. Consider the set of the linear operators of fixed node A, = (x0,y0) of
degrees up to v, i.e.,

S kg 1= U Lﬁ‘;

usv
Let us first find a fundamental polynomial p* for an operator of the highest degree

v, say, for L*9 within S, x,. We seek p* in the form
pry) = > ay@—z0)(y — o)
i+j=v
. k .
Then we readily get that Lﬂgp* =0, if 4 < v — 1. Now suppose that

LS =ps (;;, 88y> P
where ps(z,y) = >, <, bi; (r—20)*(y—v0)’. Then the conditions of the fundamentality
of p* reduce to the following linear system:
LEp™ = > aygbilj! =65, s=1,... i,
itj=v
The linear independence of highest degrees of the operators L*, means the independence
of the vectors {bf;}i1;=,. Hence the above system has a solution.

Now notice that to complete the proof it is enough to obtain a fundamental
polynomial of Lf; over the set S, x, U Uy, £5(p, ). To this purpose for each
ke{l,...,s}\{ko} consider my, lines passing through Ay, and not passing through
Ak, - Then by multiplying p* by the product of these lines we obtain, in view of the
formula (1.4), a polynomial which is a desired fundamental polynomial. (I

Next, we are going to prove the Noether theorem with the multiplicities described

by PD operators.

Theorem 2.2. Suppose that polynomials p,q € 11, degp = m, degq = n, have no
intersection point at infinity. Suppose also that f € 1 vanishes at Mx(p,q) for
each A € pNq. Then we have that

(2.1) f = Ap+ By,
where A € llg_,,, B € Ili_,.

Note that the inverse theorem is true. Indeed, if (2.1) holds then f € II; and,
in view of the formula (1.4), we have that and f vanishes at M,(p,q) for each

AEpNng.
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Proof. Step 1. Suppose that k > kg = max{m+mn,~y}, where 7 is chosen such
that the set of linear operators L(p, q) is yo-independent.

Consider two linear spaces
V={fe€lly : f vanishes at Mx(p,q) YA € pNngq},

W:{AP+BQ : Aelly_,,, BEHk,n}.

In view of the formula (1.4) we have that W C V. To prove the relation (2.1) we
need to verify that YW = V. To this end it suffices to show that dim W = dim V.

Since the set of linear operators L(p, q) is vyp-independent we obtain readily that
the set is also k-independent, where k > ~q.

Hence, in view of Theorem 1.7, we have that

dimV = dimII; — |L(p,q)| = (k ;_ 2> —mn.

Denote
Wy ={4p : Acly_nn}, Wa={Bq : Bellj_,}.
Since p and ¢ have no common component we conclude that

WiNWy={Cpq : Ce€llj_p_n}.

Now we readily obtain that

(2.2) dimW = dim(W; + Ws) = dim W + dim W, — dim(W; N Ws)
_ (k—m+2) N (k:—n—i—Z) B (k:—m—n—i—Q)
2 2 2
k+2
- ( : ) .
The last equality here holds since k& > m + n (actually it holds for k > m +n — 2).

Step 2. n+m < k < kg.

Let us apply decreasing induction with respect to k. The first step k& = kg was
checked in Step 1. Assume Theorem is true for all f with deg f = k and let us prove
that it is true also for all f with deg f =k — 1.

Suppose that fy is an arbitrary polynomial with deg fo = k — 1. Choose a line
lo such that

(i) oNpng=10, and

(ii) £y intersects ¢ at n points, counted also multiplicities, i.e., it does not intersect
q at infinity.

We have that deg foly = k. Also, in view of the formula (1.4) and (1.5), i.e., the

D-invariance of M (p, q), we have that fofo vanishes at M(p, ¢) for each A € pNg.
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Hence, in view of the induction hypothesis, we get
(2.3) Jolo = Ap + By,
where A € Ily_,,, B € II;_,.

We have that ¢y intersects ¢ at n points, counted also multiplicities. In view of
(2.3) these (multiple) points are also zeros of A since p differs from zero there.

For every polynomial Cy € II_,,,—,, we have also that
(2.4) folo = (A — Coq)p + (B + Cop)g.

Consider arbitrary £k —m —n + 1 points A1, ..., Ag—m—n, in £y \ ¢. Choose Cj €
k1 —n such that A—Cyq is zero at these points. For this, according to Proposition

1.4, we just solve an independent interpolation problem
A(N)
a(Ni)’
Note that the common n (multiple) zeros of ¢y and ¢ also are zeroes of A — Cygq.

Thus, altogether we have that A — Cygiszeroat k—m—-n+14+n=k—m+1

Co(N\i) =

1=0,....k—m—n.

points in £g. Thus, in view of Proposition 1.4, £y divides A — Cyq € II;_,,. From
(2.4) we readily conclude that ¢y divides B + Cyp.
Finally by dividing the relation (2.4) by ¢, we get that

(2.5) folo = A'p + B'q,

where A’ € Ij_,—1, BE€lp__1.

Step 3. k<n+m—1.

Let us again apply decreasing induction with respect to k. The first step k& =
m +n — 1 was checked in Step 2. Assume Theorem is true for all f with deg f =k
and let us prove that it is true also for all f with deg f =k — 1.

Suppose that fj is an arbitrary polynomial with deg fy = k£ — 1. Choose a line £,
in the same way as in Step 2. Then we get the relation (2.3) where the polynomial
A € IIy_,, has n zeros in £y, counting also the multiplicities. In this case we have
that k —m < n — 1. Thus, in view of Propositionl.4, ¢, divides A. From (2.4) we
readily conclude that ¢y divides also B. Finally by dividing the relation (2.3) by ¢y
we complete the proof as in Step 2. (]

At the end let us bring the formulation of Theorem 2.2 in the homogeneous case.

Theorem 2.3. Suppose that p € 112, and q € 11 have no common component.
Suppose also that f € 119 vanishes at MS(p,q) for each A € p N q. Then we have
that
f=Ap+ Bgq,
where A € Hg_m, B e H%_n.
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It is known that the set Zy := pNgq, where p and ¢ are polynomials, of degree m
and n, respectively, is (m + n — 2)-independent, provided that |Zy| = mn. Below

we prove this result without the last restriction (cf. [4], Corollary 1).

Corollary 2.4. Suppose that polynomials p,q € I, degp = m, degq = n, have no
common component. Then the set of linear operators L(p,q) and consequently the

set Zy are (m + n — 2)-independent.

Proof. Let us assume first that p and ¢ have no intersection point at infinity.
Then we have that |£(p,q)| = mn. By using the evaluation (2.2) in the case k =

m + n — 2 we obtain

n m m+n
~(2)+ (5) o= (") e

Thus we have that dimIl,,,_2 —dim W = mn. This means that the set of linear
operators L(p, q) and consequently Zy is (m + n — 2)-independent.

Now assume only that p and ¢ have no common component. Let us use the
concept of the associate polynomial (see section 10.2, [9]).

Let p(z,y) = Z'L+j§m ai;z'y? and degp = m. Then the following trivariate
homogeneous polynomial is called associated with p :

p(z,y,2) = Z aijriyl 28
it+j+k=m
Evidently we have that
P = p1p2 < P = P1P2.

It is easily seen from here that polynomials p and ¢ have no common component if
and only if p and ¢ have no common component. By applying Theorem 2.3 to the
polynomials p and g we get that the set of linear operators £°(p, q) is (m +n — 2)-
independent. Therefore its subset corresponding to the finite intersection points,

ie., to Zy, is (m 4 n — 2)-independent, which implies the desired result. O

3. THE CAYLEY-BACHARACH THEOREM

The evaluation (2.2) in the case k = m + n — 3 gives

(3.1) dim W = dim(W1 + WQ) =dimW; + dim W5 — dim(W1 N Wz)

_ <n21>+(m21>0 <m+2nl)(mn1).

Thus we have that dimIl,,;,—2 —dim W = mn — 1, i.e., out of mn linear operators

in L(p, q) only mn — 1 are linearly independent.
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According to the Cayley-Bacharach classic theorem (see, e.g., [1], [5]), i.e., in the
case | Zy| = mn, where Z, := p N ¢q, we have that any subset of Zy of cardinality
mn — 1 is (m + n — 3)-independent. This means that no point from Z; has a
fundamental polynomial of degree (m + n — 3), i.e., for any point Ay € Z; the

following implication holds:
P € Upmyn-3, p(A) =0VA € Zo\ {Xo} = p(A) =0 VA € 2.

In this section we are going to study the situation in the general multiple
intersection case. Suppose p € II,,,
p(z,y) = Z aijxiyj-
i+j<m
Denote the kth homogeneous part of p by p{¥}, ie.,
p(z,y) = Z aijr'y’.
itj=k
We accept a very common restriction from the theory of intersection. Namely, we
assume that the two polynomials p and ¢ have no common tangent line at an

intersection point A € Zy. This means that the lowest homogeneous parts of the

polynomials have no common factor at this point.

Theorem 3.1. Suppose that polynomials p,q € 11, degp = m, degq = n, have
no intersection point at infinity and A € Zy. Suppose also that p and q have no
common tangent line at \. Then we have that the set of linear operators L (p, q)
contains only one operator of the highest degree: L. Suppose also that f € Il,, 1 pn_3
vanishes at L(p,q) \ {L}. Then we have that f vanishes at all L(p, q).

Proof. Assume, without loss of generality, that A = 6 := (0,0). Suppose that p
and q are bivariate polynomials having ny and mg-fold zero at the origin, respectively,
ng,mg > 1 :

p(z,y) = Z agz'y’,  qla,y) = Z bija'y’.
mo<i+j<m no<i+j<n
Suppose also that p and ¢ have no common tangent line at the origin, i.e., pt™o}
and ¢t} have no common factor.

Let £ :={Li,..., L.} be a maximal independent set of linear operators with the
highest degree in the space My(p, q).

Assume that f € I1,, 4,3 vanishes at L£(p,q) \ £. We are going to prove that f

vanishes at L(p, q).
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This shall complete the proof of Theorem. Indeed, as was verified above, there
are mn — 1 linearly independent operators in the set of mn linear operators L(p, q),
which clearly implies here that s = 1.

Let ¢ be any line passing through 6. By using the formula (1.4) withg=¢, f = f
and R € L(p,q), we obtain that the polynomial ¢f vanishes at L(p,q). Therefore,
since deg {f = m +n — 2, we get from Theorem 2.2 that

(3-2) tf = A(Op+ B(l)g,

where A(¢) € II,,_2, B(¥) € I,,,_5. Assume, without loss of generality, that my <
ng. Assume also that mg > 2. If mg = 1 we go to the final part of the proof. Now

we are going to prove that

(3.3) A = ¢A, | k=0,...,n0—2,
where A),_,,€IIY_,, do not depend on ¢, and

(3.4) B =¢B, | k=0,...,mo—2,

where Bj,_,,€ II?_,, do not depend on /.

First let us prove (3.3) for k < ng—mo—1. Let us apply induction on k. Consider
the case k = 0. Then we get from the relation (3.2) that A(¢){0}plmo}l = pglmo—1}
Thus we have z f{"0—1} = ¢;plmo} and yfimo—1} = ¢ypimo} where ¢; and ¢, are
constants. Therefore we have that (cox — cyy) fFimo—1 =0, i.e., fimo—1} = 0. Thus
A% =0 = ¢-0. Assume that (3.3) is true for all k£ not exceeding s and let us
prove it for k = s + 1. We readily get from the relation (3.2) that

(3.5) A(e)tsttiplimod o g(p)tstpimotit ooy A(p){0hptmotst1} — ppimotsti}

We have that all terms above except possibly the first have factor . Hence we get
that A(¢)1st1} = ¢ A’ In fact we have this relation for all £ except mg tangent lines
of p at 6. Then by a continuity argument we get the relation for all /.

Next, by dividing (3.9) by ¢ we see that A/, does not depend on /.

Now assume that ng — mo < k < ng — 2. Here we are going to prove (3.3) for
k and (3.4) for k — ng + mo. Let us again apply induction on k. Consider the case
k = ng — mg. We get from the relation (3.2) that

(3.6)
A(e)tro=molplmot 1 g(py{no—mo—1hplmottl oy g(g)10dplno} 4 B ()10t glno}

_ gf{no*l}_
Now let us use ¢ = ¢; which is a tangent line of ¢ at 6, i.e., ¢t™} = ¢1§, where

gell,,—1.
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We have that all terms in (3.6) except possibly the first have factor ¢;. Hence
we get that A := A(fy){ro—mob =47 .

Meanwhile, let us verify also that if {1 = y — kyx is a factor of multiplicity p of
g7} then it is a factor of multiplicity at least p in A. Assume that

A=C4 H(y —a;x), q{”‘)} =Cs H(y — b;x).

Assume also ¢ is given by an equation y — kx = 0. By setting in (3.6) y = kx, and
by using the induction hypothesis, we obtain
(3.7) Cipt™d (a, ka) [ [(k — ai)x = CoB(0) (2, k) [ [ (k — bi)z.
Consider both sides of (3.7) as polynomials on k. Now k; is a root of the right
hand side of multiplicity at least u. On the other hand k& = k7 is not a root of
p{mO}(ac, kz) since p and ¢ have no common factor. Thus we get that k = k; is a
root of multiplicity at least p in "0} (z, kx), i.e., y — kyz is a factor of multiplicity
at least u in ¢{"o}(z, y).

Next, we have that

(3.8)  A(f)tro=mod = A(gy)tno=mod 4 A(f — gy)tno=mol

= CAL o1+ (= )AL g+ AL — £y)trommod
- EA;LO*WO*l — (k- kl)xA;mfmoq — (k- kl)A(x){”()—mo}

- €A’no_m0_1 — (k= k1) [mA;zo—mo—l - A(;U){”O*mo}} )

We have that A(¢){"0="0} contains all factors of Qno- Thus the polynomial of degree
ng — mo in the square brackets contains all factors of ¢,, except possibly ¢, in
all ng — 1 factors. Hence this polynomial is identically zero and A(¢){mo—mo} =
AL o1

Similarly by using tangent lines of p we get that B(£){% =0=¢-0.

As above we readily conclude that Aj, _,, _, does not depent on .

Now assume that (3.3) is true for k not exceeding s and (3.4) is true for k not
exceeding s+mg—ng. Let us prove (3.3) for k = s+1 and (3.4) for k = s+mo—no+1.
We get from the relation (3.2) that

(3.9)  A(){sHUplmol 4 g(p)tstplmotid Lo A(p) {0} plmots+1}
+ B(f){s+m0_n0+l}q{n0} + B(e){s—l—mo—no}q{no—&-l} 4ot B(é){o}q{m0+s+l}
= ¢flmots+i}
Here, in the same way as above, by using tangent lines of p and ¢ at 8, we complete

the proof of this part.
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Now let us go to the final part of the proof. Let us choose a line ¢, whose
intersection multiplicity with p at 8 equals to mg. We also require that ¢y intersects
Z only at . We have that outside of 0 the line ¢y intersects p at m — mg points,
counting also the multiplicities. We deduce from the relation (3.2), with ¢ = /g,
that these m — mg points are roots for B({y), since g does not vanish there. Then,

in view of the relation (3.4), we have that

m—2 m—2
B(ty) =Y B = Y B (k).
=0 i=mo—1

Thus, by assuming that ¢y = y — kox, we see that the trace of the polynomial B({)

on the line ¢y has the form

m—2 m—mo—1
§ i mo—1 § 4
B(fo)(.’)&‘, kioa'}) = bﬂ? =" bi+m0,1l‘ .
i=mo—1 =0

On the other hand this polynomial vanishes at m — mg nonzero points, counting
also the multiplicities. Hence, in view of Proposition 1.4, we conclude that B({p)
has a factor £y. Now we readily get from the relation (3.2), with £ = ¢y, that A(¢p)
also has a factor £y. Then by dividing the relation (3.2) by ¢y we get that

f=Ap+ By,

where A € I1,,_3, B € Il,,,_3. Finally from this relation we readily conclude that f
vanishes at L(p, q). O

At the end let us consider a simple example. Let p(z,y) = 2™ and ¢(x,y) = y™.
Then we have that

L(p,q) = Lo(p,q) = {a'y :i<m—1, j<n—1}.

It is easily seen that in this set there is only one operator of the highest degree:

m—1 n—1
i=(2 LA
Ox oy
Also for this operator we have that the set of the operators £(p, ¢)\{L} is (m-+n—3)-
independent. Moreover, only the operator L € L(p, ) has this property.
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majorant of partial sums satisfies 1o a necessary condition, then the coeflicients
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1. INTRODUCTION

It is well known that there are frigonometric series converging almost everywhere
t0 zero and having ag least one non-zero coefficient. This also applies to the series
in other clagsical orthogonal systems, for instance, to the series in Haar, Walsh and
Franklin systems,

The wmiqueness problem and reconstruction of coefficients of series by various
orthogonal systems has been considered in a number of papers. Unigueness thecrems
for almost everywhere convergent or summable trigonometric series were obtained
in the papers [1] and [4], under some additional conditions imposed on the series.
Results on uniqueness and restoration of coeflicients for series by Haar, Franklin and
generalized Haar systems have been obtained, for instance, in the papers [3].]6].17]
and [9]-]12] .

In: this paper we will consider series by Franklin system,

The orthonormal Franklin system consists of piecewise linear and continuous functions.
This system was constructed by Franklin 2] as the first example of a complete
orthonormal system, which is a basis in C[0,1].

Let n =2* 4 v, p >0, where 1 < v < 2% Donote

. tr, for 0<i< 2y,
(L1) &, 5o g Or O MG BE Sl

» i—v

o, for 2w<i<n
By &, we denote the space of functions that are continuous and piccewise linear
on [0,1] with nodes {s,:}i¢. that is f € 8, if f € C[0,1], and it is lincar on cach
closed interval [sp, ;_1,8n3],¢ = 1,2,--- ,n. It is clear, that dim 5, = n+ 1, and the
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set {5} is obtained by adding the point s, 2,1 to the set {s,_1;}"=, . Hence,
there exists a unique function f,, € S,,, which is orthogonal to S,,_; and || f,||2 = 1.
Setting fo(z) = 1, fi(x) = v/3(22 — 1) for x € [0,1], we obtain an orthonormal
system {f,,(2)}52, which was defined equivalently by Franklin [2].

Here we quote a result by G. Gevorkyan [3] on restoration of coefficients of series
by Franklin system.

Specifically, in [3] it was proved that if the Franklin series > a, fn(z) converges
a.e. to a function f(z) and

lim ()\~ {z € 0,1] :21611N)|Sk<x)| > )\}|> =0,

A—00

where
k
S(w) = a;f;(x)
=0

then the coefficients a,, of the Franklin series can be reconstructed by the following

formula,
1
Ap = Ahm [f(l')})\fn(l')dﬂﬁ,
—o0 Jo
where
_ Jf@), it [f(@)] < A
@]y = {0, it |f(z)] > A

Similar result on uniqueness is also obtained for the Haar system (see [5]).
Afterwards Gevorkyan’s result was extended by V. Kostin [10] to the series by
generalized Haar system.
Consider the d-dimensional Franklin series

Z an fn (%),

neNg

where n = (ny,---,nq) € N& is a vector with non-negative integer coordinates,
No =NU{0}, x= (21, -+ ,74) €[0,1] and

fo(x) = fo, (1) oo frg (Ta)-

The following theorem for multiple Franklin series was proved in [7].
Theorem A. If the partial sums
O2k (w) = Z anfn(m)
nn; <2k i=1,.-- d

converge in measure to a function f and

lim <)\m Hzeo,1]¢: s%p |ogr (z)] > )\m}|) =0

m—r oo
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for some sequence \,, — +oo, then for any n € N¢

ap = lim [f(x)]kmfn(x)dx.

oo Jo0,1)4
In this theorem instead of the partial sums o,k (x) one can take square partial
sums o4, (x), where {g;} is any increasing sequence of natural numbers, for which
the ratio gi4+1/qx is bounded. The following theorem is proved in [11].
Theorem B. Let {q;} be an increasing sequence of natural numbers such that the
ratio qi+1/qr s bounded. If the sums o4, (x) converge in measure to a function f

and there exists a sequence \,, — +0oc so that

lim ()\m Hzeo,1]¢: Sl;p log, ()] > )\m}> =0,

m—r oo

then for any n € N¢

an = lim [f(x)]/\m fa(x)dx.

m=o0 Jio,1]4
2. LEMMAS AND THE MAIN RESULT
Let functions h,,(x) : [0,1] — R, satisfy the following conditions:
1) 0<hi(@) < ho(@) S < (@) - lim h(a) = oo,
there exists dyadic points
0=tmo <tmi<tm2<-<tmn, =1,
so that the intervals
I = [t k=1, tm k), k=1, nm,

are dyadic as well, i.e. I}”* is of the form

(T it N
D_{|:2j32j),0§2§2_1,.720}

and the function h,,(z) is constant on those intervals,

ho@) =N, I, k=1 m.
Moreover
(2.2) ing/ ho(x)dz = in£ [T A >0,
m, I m,
AR A
(2.3) sup < n]f + | <400
mhk \ARLL AL
and
1
(2.4) sup < ot | < +o00.
mk \ Ll [
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In other words, for any function h,, the interval [0, 1] can be partitioned into dyadic
intervals, so that the values of the function on neighbouring intervals are equivalent
to each other and so are the lengths of neighbouring intervals. The following theorem
is proved in [9].

Theorem C. Let h,,(x) be sequence of functions satisfying conditions (2.1) —(2.3).

v

If the partial sums oov = Zizo an fn converge in measure to a function f and
lim hm(x)dz =0,
Mmoo Jlze0,1]; sup,|ow(2)|>hm ()}

then for any n € Ny

1
a, = lim [f(l‘)] hm(w)fn(z)dxa

m—r oo 0

where
~J f@), i [f(@)] < M),
@]y = {o, it |f(2)] > ).

Now we are in position to state the main result of this paper.

Theorem 2.1. Let h,,(x) be sequence of functions satisfying conditions (2.1) —
(2.3), and {gi} be an increasing sequence of natural numbers such that the ratio
Gk+1/qx is bounded. If the partial sums oy, (x) converge in measure to a function f
and
(2.5) lim hm(x)dz =0,

M0 J{z€(0,1]; supglog, (2)[>hm ()}

then for any n € Ny
1

(2.6) ap = lim [f(a:)]hm(z)fn(x)dx.

m—o0 0

To prove Theorem 2.1 we will need the following two lemmas.

Lemma 2.1. Let 0 = tg < t1 < - <tp, =1 and h(z) =X, if x €I =
[tk—1,tx) and Iy € D, when k=1,--- ,n. Moreover v >0
1 A
(2.7) —g—kgy, whenk=1,--- ,n—1,
Y Akt1
then there ezists points 0 =ty < &1 < --- < ts = 1 such that h(z) = S\l, rel =

[ti_1,t;) €D, 1 =1,---5. Besides that

1 |4
27 7 D4
1A
(2.9) - < A <~, whenl=1,--- ,s—1,
Y A
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(2.10) mlin hp(z)dr = Ink}n/ hm(x)dz > 0.
I; Iy

The proof of the Lemma 2.1 can be found in [9], but we present it here for the
sake of completeness.
Proof. Denote

c:min/ hom(2)dz = min A\ |I],
ko Jr, k

and let 1 < ko < n such that Ag,|Ik,| = c¢. From definition ¢ follows that for any 4,
—ko +1 <1 <n— kg there exists n; > 0 such that

(2.11) 2" e < Ao til I i| < 2™ e

Suppose that ng = 0 and denote

|Ik0+i|
2mi

tivj = tk0+i71 + j7 When j = Oa e 727“7

Ii,j = [ti7j_1,ti7j), and )\1;7]' = )\i, when j = 1, s 72711‘_

Therefore
/ h(z)dz = ¢ < / hon(x)dx = X 5|1 ;| < 2c.
Ion Lij
From the definition ¢, I; ;, (2.11) and (2.7) follows that
2c 2¢
i | = Li 1] < < T < 29| Li—y gmi-a ],
)‘ko-‘ri >\k‘0+i—1
similarly we obtain
c c 1
L =L+ > > > — |l oni-1].
Higl = ] 2 Meg+i  VAkoti=1 27' 2|

From the last two inequalities follows that the ratio of the lengths of intervals
I; ; with common endpoint is not greater than 2. By renumbering the intervals
{Lij;—ko+1<4i<n-—kyl<j<2"} in increasing order with respect to the
left endpoint, we obtain the intervals I;,l =1, - - - ,Z?::kzo“ 2™ which satisfy the
condition (2.8). From the definition I; it follows that the function hy,(z) is constant,

hm(CL‘) = 5\1, T € I~l

and from (2.7) we get (2.9), so :\5‘1 =1 or there exists k, such that
141

N\
S\H-l )\k-&-l.

O

Lemma 2.2. Let h,,(x) be sequence of functions satisfying conditions (2.1) — (2.3),
then there exists dyadic points 0 = Em,O < Em,l < e < fm,ﬁm = 1 so that the
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intervals f,Z" = [tmk—1,tmr) € D, k = 1,-++ iy, are dyadic as well and the

function hp,(x) is constant on those intervals,

hm(z) :5\}?7 if x€f£n7 k=1, npm
and the conditions (2.2) — (2.4) are satisfied.

3. THE PROOF OF THE MAIN THEOREM

Let {sp,i}1, be the points given in (1.1), s,,,—1 = 0 and $,, ,+1 = 1. Let us define

the function N*(z) as follows. It is linear on intervals (s, ;_1, Sn ], 7 =1,2, -+ ,n,
and
1, if i=4j,
N (snj) = j=0,1,--- n.
0, if ¢ #j,

Let {g } be an increasing sequence of natural numbers and M be a number satisfying
the inequality

4L < M for all k € N.
qk

For any j € {0,1,--- ,q,} denote

AY = [sq,,j-1, 5¢,.5+1];
N (x) )
j‘-]”(ac) = N;” = 1AV Jq”(a:).
N7 (2l [AY]
Obviously
4
(3.1) <lar <=,

E qv
1
supp M = AY and / M (z)dx = 1.
0
Recall that

oq, (z) = EV: an fn ().

n=0
Let’s denote

0" (z) = sup |og, (z)],
v

and prove that for any jo, vy the following statement is true:

1 1
/0 g, (€)M (2)dz = lim [f(x)]hm(z)Mfo”"(x)dx.

m—00 0
For any m € N denote
En:={z€ supp(M;-IO”O) =AY 0" (x) > hyp ()}
From (2.3),(2.4) it follows that there exists v > 0 such that
>\m m m Im m m
(3.2 E g <op ana B <y <o,
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Denote

go = inf hom(2)dz = inf NI > 0.
m,k I;n m,k
Let € be an arbitrary positive number. Under the conditions of the theorem a

number mg can be chosen to satisfy
2"TM / x)dx < e, m > mg.

Take
o< P,
0
Let M; be a number such that

hm (z) > My, for all x € [0,1], when m > my,

then
M |E,,| < / B (2)dz < ﬁ,when m > max(mg, my) =: Ma.
Therefore
€
E,| <
| B < 27MM
let’s take
My =14
Hence from (3.1) we obtain
22 1 A
(33) |Em‘ < € _ < | Jo

2"Mgq,,e  2°Mgqy,, ~ 24M°
Let’s fix a number m > ms and prove that

'
4 E,NI" k=1 - nm.

(3 ) | n k | < 8M ) ,

Suppose that there exists kg, such that
E,,NI"| > |I,?;\
B O T 2 8M’

therefore

m|rm m m € €0
€0 S Ako‘lk()' S 8M)‘k:0|E’m ﬂ[k0| S 8MA hm(x)da: S ? S 7’}/ < €0,

which is a contradiction.

Note that for any J € D, which can represented in the form Ui:l I?, from (3.4)

we get
1
|JnEm\—;|fk N Bl < MZ|fk|—8—M|J|
therefore
17| T
(3.5) [T Ey| < 53p for any J=|JIyen.

k=l
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It is clear that if J € D and J D I}, then J = (Ji_, I, when [ <k < j.
Suppose v > vy. We set

Qy = {A A= [Squ,j—hsqy,j] and A C A;’g .

Obviously

1 2
— < JA| < —, forall A€Q,.
2qy qv

If v = 1y, then we set
1
1 . =
Quo = {AE Quo : |AﬂEm| > 8]\4|A|}’ Qvo - U A’
Aeq}
and

Q?/o:{AEQVOIA¢Qvo}’ PVOZ U A.

AeQd,
From (3.3) we have, that

QVU - 07 a‘nd PVO = Supp(MJqOUO)

Now suppose we have defined the sets Q1,, Q2,, @, for all v/ < v. Let’s denote

v v

1
1 _ . _ ’
(3.6) Q, = {A €O |ANE,| > 3 |A] and A ¢ Qv },

v'<v

Q=4 @2=4eca,:a¢ JQ . P=J A

AeQ} v/ <v AeQ?
Thus we have defined the families Q1, Q2 and the sets Q,, P, satisfying to the
following conditions,

Qlca,, 2ca,

(3.7) Supp(M;-IO”O) =P, U U Q, |, PN U Q. | =0,
v/ <v v/ <v
(3.8) Q. NQur =10, if v #+ v,

From (3.6) and (3.8) we obtain

U Q| < 8M|E,,|, for any wv.

V<
Now let us prove that for any A € QL, v > vy, there exists k such that A C .
Otherwise, there exists ko such that A D Ij7. Since A = Ui:l Il <k <4,
therefore from (3.5) we get |[AN E,,| < |A|/8M, but A € QL. For any v > 1y
denote
Jo={i:AYNQu #£0, AYC Py,
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Now let us prove that
(3.9) log, (2)] < 3hm(z), if xe Al jeJ,.
Suppose A € Q, with A C AY, therefore A C I} for some I. Let’s prove that
(3.10) AYC LUy, when k=I0-1 or k=1
Without loss of generality suppose that AY O I},. From (3.2) we get

24| = |AY] > |1y > U

Al = |AS] > I | = ——,
Y

therefore

go < I[P < 29]AIN < 16YM|AN Ep |\ < 16'yM/ hom (z)dz
Em

16yMe < 16 - 23yeq
2TM T 27y

= €0,

which is a contradiction.

Let Ay and Az be respectively the left and right halves of the interval A7, Ay C AY,
Ay C AY. From (3.10) we get, that there exists Iy, [y such that Ay C I[", Ay C I}V,
it is clear that |l; — lo| < 1. Therefore

(3.11) h(z) = A, w€A;,j=1,2.

Since A1, Ay C AY C P, 1,(j € J,), then there exists Al,Ag € Q,_1, so that
A;CA,CP,q,i=1,2 we get that

12 1A
. < )
8M qv—1 4QV -2

Suppose that « € Ay, (the case x € Ay is considered similarly). Since oy, (z) is a

<

N 1 -
(3.12) [AiNEn| <|A;NE,| < 8—M|Ai| <

linear function on Ay = [a, 8], we have set
Ii={te Ay :|og, (t)] <A}

is an interval. From (3.11) and (3.12) we get

1
(313) U=t € At log, (0] < hn(0} > |1 N EG| > S]Au]
Since o, (t) is linear, then
/ 2" AN
3.14 o, (t)| < L = L.
(3.14) 0 01 < T = 5

From (3.14) we get

4N —
no B 0423)\?1’
08—« 2 !

similarly we obtain

log, (B)] < 3A7.
51



K. KERYAN, A. KHACHATRYAN
Using the last inequalities and (3.10), we get
log, ()] < 3hp(t), t€[a,f]=A.
Similarly we obtain (according to definition of P,), that if AY C P, then
log, (2)] < 3hp(z), if z€AYCP,.

Now let’s define by induction expansions v, for M ;10”0,

qu, v n
B1) M e =X XM Y M
v<njeld, JIATCP,
where
616 Y Y et Y aj=1 alzoa)z0
v<n jeJ, J:ATCP,

Since P,, = supp(M fﬂ”"), then t,, = M ;-10”0. Suppose we have defined expansions
Yooy, Un, satisfying (3.15) and (3.16). Clearly for any A”? C P,, we have
(3.17) M (z) = > By M+ (x), B, >0.
v: AT Csupp M}Z"
Note that if A} C P, and Ap*T! C supp MJ" = A, then either AJ™' N Qpp1 # 0
and, therefore v € J,,1, or A" C P,,;. Therefore, inserting the expressions
(3.17) in (3.15) and grouping similar terms, we obtain
vy __ _ n+1 7 rqv n+1 1 rdn+1
M =tny1 = ) Z ap M+ > et
v<n+1j€eJ, FATTIC Py
Since the integrals of all functions M j‘?“ are 1, we get that
+1 +1 _
> et > at=n
v<n+ljed, jiA?+lCP,L+1
therefore for any n
qv v n
(anijUO):Z Zag,j(aqu]q )+ Z a;l(o'qn7M_;1 )
v<njed, JARCPy

Note that

1
(fp,qu”):/ folx) M} (z)dz =0, if v>uv and p>gq,.
0

Therefore

(3.18) (ananqu) = Zap(fpanqu) = Zap(fpanqu) = (UQWMJ('IU)-
p=0

p=0

Hence we have

(3.19) /O Tavg (VML (t)dt — /0 [FO)] My ()t = (oq, — [f], M)
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:ZZ@ZJ(UQU—U]}L M) + Z af(og, = [f], M) = I+ 1.

v<njed, j:A;LCPn

Using (3.9) and (3.18), for I} we will have the estimate

=YY al(og, — [£],, - M)| < S ap(log, | + b, M)

v<njed, v<njeJ,
<4 > au (b, M) =A(hm, 3 Y ap M),
v<njed, v<njed,
By
v qu,
DD an M < M,
v<njeJ,
we have
Il <4 / i () M2 (1)
U u av
v<nj€Jy
Denote

Jy={jed,: 3k st. A CI'}, J =0\ J,

“UUan me=UUar

v<njeJl v<n jeJ?2
It is easy to notice that

| < ( /A (8 M0 (£)dt + /B i (£) M2 (t)dt) <cC < /A B (£)dt + /B hm(t)dt>

=: C(I3 + I,).
From (3.10) we get that for any j € J2 there exists k, such that
AY C LU LT,
and the definitions Q! and Q,, we obtain that for any k there exists (v(k),j(k))
pair, such that
j(k) € J2 and AV C I UIE,.
Applying (3.2) we get
- m v(k
I3 < 3 OR + A DIATGE < (v + 1) ZA ol
and from (3.6) we get

v(k)
A% < 20Quu NI VIR <2 | Qun (I U I,

v<n
Therefore
I <2(y+1) me Ue.nm +72/\k+1 U e nni,
v<n v<n
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MNm,
=2(y+ 1)) A | Q| = 2(y+1)°I5.
k=1

v<n

Using (3.6) we can estimate I3 as follows,

L<8MY M ERn | Q| NI <8M Y A |En NI :SM/ B (£)dt
k=1 v<n k=1 Em
< 8Me €
2TM 247

If j € J! ,then there exists k, such that AY C Ii", therefore
|AY] < 2[AF N Q|
from the last inequality we get,

An NI <2l | Qun il

v<n
Therefore
= [ =Y xpianngp <2y el U @onp| =2
A, k=1 k=1 v<n
So
(v+1)2% 2 Ce(1+ (v +1)?)

Now let us estimate I2. Since
n dn qv
E aij SM]-OO, then

j:A;‘CP71

BI< (o0, - [, 5 s [ o0 [F0)],, M5 0

m
]’:A;1 CPp,

An
JATTCPp
<¢ [ - (0],
JA?CPnA;L
Denote
Co= |J A'NE. D.= |J APNELN{tlog, ()~ f()] <e),
JATCP, JIATCP,
Fo= |J ATNE,N{t]og, (1) — f(t)] > e}
JATCP,

It is clear see that
C,UD,UF,= |J A} and |f(t)| < hm(t) a e, when t€ D, UF,C Ej,.
JATCP,
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Therefore

1< ([ oo - 15, glt+ [ low = ol [ .0~ solar)

= OIS+ 17+ IY).
Ift € Cp, then
04, (8) = [FD], | < 100, DI+ I[FD], | < 40 (®),
2%¢ €
hm (t)dt < 4 ho (B)dt <

I <4 / < S =
c., B, 2TM  25M
From definition of D,, it follows that if ¢ € D,,, then

and

<eE.

|0q.. (t) — f(t)| < e, therefore IT < / e<e.
D,

Since o4, (z) converge in measure to the function f, then there exists n such that

{t,]oq, (8) = F(O)] > e} <

€
max{h.,(t), t € [0,1]}’

and
100 (8) = FO)] < low, (O] + |F(®)] < dhm(t), fora e., te FyC EF,.
Therefore
< 4/F hon(£)dt < Amax{hm (t), ¢ € [0, 1]} - [{t |00, () — F(O)] > £} < 4e.

n

So |I%| < 6e, therefore by (3.19) and (3.20), we get

1
(O—q'fo ’ M;IOVO) o /0 [f(t)] hm(t)MJ('IOVO (t)dt = C’Yg'

Now let’s prove that for any n € Ny the coefficient a,, can be reconstructed by (2.6).
Take arbitrary n and choose v so that ¢, > n, then f, € S, . Taking into account

that the system of functions {MJ‘?” }i€{0,1,-- ,q,} 18 @ basis in the space S, , one can

“squ

find number B;,j € {0,1,--- ,¢,}, such that

= Y BM ().
j€{0717”'1qu}
Therefore
1

qv qv
an = (0q, Ja) = 3 _By(o0, M) = 3 B lim | [f(@)],,, M (@)da
j=0 j=0

= lim [f(;v)]hm(ﬂ)fn(x)dx.
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1. INTRODUCOTION

Were Young [15], Boas 1], and then Haywood [3] who have studied the mtegrahility

of the formal series

{1.1) g(z) = Z Gy, 8N T
n=1

and

{1.2) flz) = an COB NT
n=1

imposing cerfain conditions on the coeflicients a, and b, respectively (we denote
Ay, oither a,, or b, )

Their results deal with above mentioned trigonometric series whose coefficients
are monotone decreasing. Lagely, the monotonicity condition on the sequence {A,}
was teplaced by Leindler [5] to a more general ones {A,} € R BVS.

A sequence ¢ == {c,} of positive numbers tending to zero is of rest bounded

variation, or briefly R BV S, if it possesses the property

o0

{1.3) Z lon — cng1| < K(o)om

n=m
for all natural numbers m, where K () 1s a constant depending only on e
Later on, Németh [8] considered weight functions more general than power
one and ohtained some sufficient conditions for the integrability of the sine series
with such weights. Namely, he used the so-called almost increasing (decreasing)
SEQUENCes.
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A sequence v := {~,} of positive terms will be called almost increasing (decreasing)
if there exists a constant C := C(v) > 1 such that

Cvn 2 Ym  (Yn < Cym)

holds for any n > m.

Here and in the sequel, a function 7(z) is defined by the sequence v in the

following way: v (%) := 7,, n € N and there exist positive constants C; and C
such that C1y, < v(x) < Covypyq for x € (nLH, %)
In 2005 S. Tikhonov [11] has proved two theorems providing necessary and sufficient
conditions for the p—th power integrability of the sums of sine and cosine series with
weight ~. His results refine the assertions of such results presented earlier by others
which show that such conditions depend on the behavior of the sequence .

We present Tikhonov’s results below.

Theorem 1.1 ([11]). Suppose that {\,} € RfBVS and 1 < p < cc.

(A) If the sequence {7y, } satisfies the condition: there exists an 1 > 0 such that

the sequence {y,n"P~1%€1} is almost decreasing, then the condition

(1.4) D PN < 0o

n=1

is sufficient for the validity of the condition
(1.5) Y(@)lg(x)” € L(0, 7).

(B) If the sequence {v,} satisfies the condition: there exists an e3 > 0 such that
the sequence {y,nP~1752} is almost increasing, then the condition (1.4) is

necessary for the validity of condition (1.5).

Theorem 1.2 ([11]). Suppose that {\,} € RfBVS and 1 < p < oco.

(A) If the sequence {7, } satisfies the condition: there exists an €3 > 0 such that

the sequence {y,n~17%3} is almost decreasing, then the condition

(1.6) D mnP 2N < 0o

n=1

is sufficient for the validity of the inclusion

(1.7) V(@) f(@)|P € L0, ).

(B) If the sequence {~,} satisfies the condition: there exists an 4 > 0 such that
the sequence {y,nP~1=%1} is almost increasing, then the condition (1.6) is
necessary for the validity of condition (1.7).
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Some new results pertaining to related problems, with those we mentioned above,

one can find for example in [12] when

{Mn} € {{Ck} : i ek — k| < K (c) Cn} :
k=m

in [13] when

2m—1 [am]
C
el fat: D lan—anl <K@ Y ]j
k=m k=[m/a]

for some ¢ > 1, in [2] when

{An} € ¢ {ert: Z lek — cpt1] < K (¢) m?-1 Z %

k=m k=[m/a]

for some a > 1 and 6 € (0, 1], in [10] when

o0 o
_ Ck
{An} e {e}: Z ek — Crgr| < K (¢)mP1 Z 70
k=m k=[m/a]

for some a > 1 and 0 € (0,1] and r € N, in [4] when

[e’e) 2m—1
Dt € {{ck}: S Hlex — epl < DTS k|ck—ck+2|}7
k=m

m
k=2m

where K (c) is a positive constant depending only on a nonnegative sequence ¢ =

{ex}
Now, for further investigations we recall an another class of sequences. Namely,

was again Leindler [6] who introduced a new class of sequences which is a wider
class than the class R§ BV'S.

Definition 1.1. A sequence ¢ := {cx} of nonnegative numbers tending to zero
belongs to RBVS_T;(S, if it has the property

o0 m
K(c
E lek — cpr1] < ﬁ E e,
k=m n=1

for all natural numbers m, where r,6 € R and K(c) is a positive constant depending

only on the sequence c.

As is pointed out by Leindler [6], if 0 < § < 1 and ¢ € RjBVS, then ¢ €
RBVS:F"s also holds true. Indeed,

m
em <mt e, < K(c)m*“l*‘S E n e,
n=1
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Subsequently, the embedding relation Rar BVS C RBVSQ(; holds true as well.

Moreover, it is clear that for a nonnegative sequence {c;} and m € N

1 - 1 - 1 -
r+1 d2—01 Z r+1 Z r+1
o 2 :k Ck < mrH1+os (m) ke < mrH1+os ke,
k=1 k=1 k=1

when 65 < d1, r € R and

m m

R o T A Sy s U o R P B
mritite k= yritits k= yratite k>
k=1 k=1 k=1

when r, <71, § € R. Hence

RBVST™ C RBVSY® (8, < 61)
and

RBVS™® C RBVS  (ry <71).

Therefore in this paper we are concerned about finding the necessary and sufficient
conditions on the sequence {\,} € RBVS:F’(S so that ~v(z)|f(x)|? € L(0,7) and
~v(x)|g(z)|P € L(0, ), which indeed is the aim of this paper.

To achieve this goal we need some helpful statements given in next section.

2. AUXILIARY LEMMAS

Lemma 2.1 ([7]). Let A\, >0 and a, > 0. Then

00 n p %) ) P

S, (z ) <3N (zxy) R
n=1 v=1 n=1 v=n

Lemma 2.2 ([9]). Let A\, > 0 and a,, > 0. Then

oo %) p oo n p
S, (z) <Y AT (ZM) e
n=1 v=n

n=1 v=1
3. MAIN RESULTS

At first, we prove the following.

Theorem 3.1. Suppose that {\,} € RBVSTS, r>0,0<d<1andl <p< 0.
If the sequence {v,} satisfies the condition: there exists an €1 > 0 such that the

sequence {v,n " P} is almost decreasing, then the condition

(3.1) Z ApnPCO72)NP < 5o

n=1

is sufficient for the validity of the condition

(3-2) 7 (@) g () |7 € L(0,).
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Proof. First we denote

Dy (z) = Zsink‘w, n €N,
k=1
Using Abel’s transformation, \, — 0, and the well-known estimate |D,,(z)| =

O(1/z) we have

o] N-1
Z Apsinne = A}im < Z (A — Ant1)Dn(x) + AnDy(z) — )\m+1Dm(x))
n=m-+1 = n=m-+1
= Z ()‘n - )‘n+1)l~)n(x) - Z ()‘n - )‘n+1)l~)m(x)~
n=m-+1 n=m-+1
Whence, for x € (n+1’ n} since |sinnz| < nz, | Dy, (z)| < €. and {\,} € RBVS:"S

we obtain

lg(z)] < C( Zk)\k+n2|)\k_>\k+1>
C<1Zk’\ +szr+1 )
n & BT e —
( Zk/\k+ Z )ngmk
k=1 k=1

IN

IN

Here and elsewhere, C' denotes positive constant, which may be different in different

cases. So, we get

[Fmarae 5[ onsors <5 (£

The use of Lemma 2.1 implies

/0 v(@)|g(2)[Pdx < CZ( 2+5p) (nAn)” (:_On k;ﬁs;;) ’

Since {mal_ép_lvm} is almost decreasing sequence, then we get
oo
V& Z In
k2+5p k1+§p €1 k1+51 — n1+§p €1 k1+61 — n1+§p'
k=n k=n
Thus, we obtain
s o0
| r@lg@prs <0 Ym0,
0 n=1
The proof is completed. O

Theorem 3.2. Suppose that {\,} € RBVS ,r>0,0<d<1landl <p< co.
If the sequence {~,} satisfies the condition: there ezists an €2 > 0 such that the
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sequence {y,nP~17%2} is almost increasing, then the condition

e}
(3.3) Zvnnp‘;_Q)\fl < 400

n=1

is necessary for the validity of condition (3.2).

Proof. Let us show first that g (x) € L(0,7). Namely, if 1 < p < +oo and
p + q¢ = pq, then applying Holder’s inequality, we get

Aﬂqu¢ns([fvumgunmm)”p(Aﬂvu»-wmm)wf

Now using the estimation (see [11], page 440)

([werM<a

/Oﬂ lg(x)|dz < C (/Oﬂ y(x)|g(x)|pdx)”p e

Let p = 1. Then we can set up that {~,} is almost increasing, and whence

we have

s o0 1 %
[l < 3o [T s@le@les
0 n—=1 Tn HLH
1
<

—_— z)|g(x)|dr < +o00.
& | "@lsta)

Therefore, for all p € [1,+00) we showed that g (z) € L(0, 7). Using this fact we

can integrate the function g (z) so that we have

r > r Sl nx
F(x) := / t)dt = )\n/ sinntdt = 2 20 sin? =,
@)= [ o= x | 3 e

n=1

Denoting

™

d, = /V lg(z)|dx, v eN,
ey
and taking into account that {\,} € RBV S%°
TN, /2 C &
> n (2) 2 2
F(r/m) > cn; - (m) — > A

n=1

C & 1 i

—+1 _ o—1 r+1

mr2 > n T =Cm oL D_on
n=1 n=1
Cmo ! & Cmo=1\,

> — > - -7

Y

then
Ay < Cn'=°F(m/n) < Cn'~° Z d,.

v=n
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So we have

[e%e] [e’e) [e'e) p
I:= Z*ynnp‘sd/\fl < C’X:'ynnp*2 (Z dy>
n=1 n=1 v=n

The use of Lemma 2.2 gives

I<C’Zd” AP~ 2 <Z'y P~ 2)

The sequence {7, npfl’”} is almost increasing, by assumption, which implies

P
2 P)/VVP 1-e2
I < anl diy (™ (Z ==
o n 1 p
_o\1—p _1—e
< ¢ Z dfl (V"np 2) (’YTLHP e Z y1—62>
n=1 v=1
< Oy () () < O dhyan® Y,
n=1 n=1
Now, if 1 < p < 400 and g = , then applying Holder’s inequality, we easily get
Ed p Ed
& = ( / |g<w>|dw> <cntt [* g
EEay i

Subsequently, we obtain that

C’Z’yn/ x)|Pdx

n+1

CZ/ z)|g(x |pdx<c/ z)|Pd.

For p = 1, we also have

I<CZ%d <c/ v (x)|g(x)|dx.

n=1

1

IN

IA

The proof is completed. a

Theorem 3.3. Suppose that {\,} € RBVS ,r>0,0<d6<1landl <p< co.
If the sequence {v,} satisfies the condition: there exists an €3 > 0 such that the
sequence {v,n°*"1} is almost decreasing, then the condition (3.1) is sufficient for

the validity of the condition
(34) v (@) |f (x) [P € L0, m).

Proof. Similar as in the proof of Theorem 3.1, we have

zn:)\k coskx| + i A cos kx
k=1

k=n-+1
> X+ DI = Mg | [D(@)] + A [Dn ()]
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where

= icoskx, n € N.

Hence, for = € <n+1, 1} since | Dy, (z)] < € and {\,} € RBVS:;(5

n

f@)] < C <Z Ak +nz Ak — )\k+1|>
o(Snt ke zww)
C <Z M + Z k15/\k> <C zn: k'O
k=1 k=1 k=1

IN

IA

Therefore

/ z)|f (@ V’da:Z/ 2)|f(@)Pdz < CZ% <Zk1 Mk)p.

Using Lemma 2.1 and the fact that {m®~1v,,} is almost decreasing sequence, we

obtain similar as in the proof of Theorem 3.1 that

k=n

n 1— B e ksgfl p
(%) p(ﬂl 5/\n)p (Z 7]]:/,1-1-53 >

=N

IA
Q
NE

IA
Q
M8

< C’i (ln)l—p (nha/\n)p (%nﬂ)p < Ciwnnp(275)72>\ﬁ’

n=1 n=1

This ends our proof. O

Theorem 3.4. Suppose that {\,} € RBVSQ’&, r>0,0<d<1landl<p<oo.
If the sequence {v,} satisfies the condition: there exists an €2 > 0 such that the
sequence {y,nP~17%2} is almost increasing, then the condition (3.3) is necessary
for the validity of condition (3.4).

Proof. Similar as in the proof of Theorem 3.2 we can show that the condition

(3.4) implies f (z) € L(0, 7). Integrating the function f, we write

/ f@)dt= 2 sinna.
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Now, we prove if {\,} € RBVS_T;‘S then {22} € RBVSQ(;. Suppose {\.} €
RBVS7°. Then for m € N

< W”H—lki [ A% _/\k+1|+,§nk(kl+1)§|)\l — Ayl
= m2+r+5 Zl A, + Z A= A Z 2
n
< mlgpls Zl i+ Z A= A
n= I=m
% Ti:lnml)\n < (1 ‘:niﬂr& z?ib: ?n’

whence {22} € RBVSQ‘S.
Applying Theorem 3.2 to the function H we obtain

T

S I < C / o (2) |H ()" dz,

n=1 0
where {v}} satisfies the following condition: there exists ¢ > 0 such that the
sequence {v;n?~17¢} is almost increasing. For v, = ~,,n?, this condition is obviously
satisfied. Then

I = Z’y nPo- 2)\”*27 nPnP°~ 2<)\ )

n=1

= Zv nPo=2\P <C/ z)|P dx

1)
. sora) o
=

+

IN

CZ/H

p

< oY | [ir@iar| =€ 3
n=1 0 n=1

Denoting

[f @)l dt

1M
A\c\a

fv:/\f(t)ldt veN

v+1

and using Lemma 2.2 we get

1<CY 3n™ 2 (fa).
n=1
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Now, if 1 <p < +o00 and ¢ = then applying Holder’s inequality, we easily get

pl’

s p s
= ( | If(:c)ld:c> <ctn [ |fapda,

n+1 n+1

Subsequently, we obtain that

CZ%L/ (x)|Pdx

+1

OZ/ 2| |”dx<C/ (2)|Pd.

For p = 1, we also have

I<Cnynd <C/ x)|dz,

and the proof is completed. O

1

IN

IN

Remark 3.1. Since R:{BVS’ C RBVSQI, then Theorem 1.1 and Theorem 1.2 are

consequences of our results.

Remark 3.2. We know that the class of zero monotone decreasing sequences is a
subclass of the class R(J{BVS. Whence, our results also hold true when condition
{\} € RBVS:‘S is replaced with condition {\,} € M :={c: ¢, | 0}.

4. CONCLUSIONS

The integrability of functions defined by trigonometric series has been attractive
for lots of researchers during last six decades. The questions of integrability with
weight of such functions, whose coefficients of their trigonometric series belong
to various classes of sequences such as the decreasing sequences [3], the power-
monotone sequences [8], the quasi-monotone sequences [14] and the general monotone
sequences which is very important class for such questions, see [5], [2], [10], [12] and
[13], are of the great interest. Here, in the present paper, we go one step further,
finding the necessary and sufficient conditions for the power integrability with a
weight of the sum of the sine and cosine series whose coefficients belong to the
RBVSTs, r > 0, class and in the same time covering the results proved previously

by others. In our results, 0 < § < 1, we assume that the quantities

o0 oo
Z AunPP=0=2)P  and Z VPO T2NP
n=1 n=1

are finite, which both coincide, 6 = 1, with finiteness of the famous quantity

oo

-2
g P TEND
n=1
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Among this, we have showed as well the embedding relation

RBVST™ C RBV S}, when 0 < §; < §; < 1.

The RBVS:_"S class seems to be considered here for the second time since it has

been introduced and employing it, especially in the proof of our findings, shows

that it could also be useful in other topics similar to this already considered here.

(1]
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COCTOATEJIBHOCTB H3BBITOYHOI'O PHCKA B
POBACTHOM OHNEHHBAHWHW TAYCCOBCKOI'O CPEOIHETO

AL MHHACSHH

Epenamncrmit TocyaapeTReHTLIT YImmepenTeT
E-mail  arsh.minasyan@gmail. com

Axnorauss. B aampoll pabote M RROIEM HOHATHE H3DLITOYHOIS PHCKA A3
OUEHKH CDEAHETS BERTOPA [ayCCoRCROrS pacipeeneHns, KOrRa nabinonens ne-
rasens smfnocanin. Msrecrno, wroe ambopousoe CREACTRO TEPIET CROH XODOTITHE
CROHCTBA B IPHCYTCTBHH BuSpocos |5, 61 Kpome roro, aawe BRBOpoHAA MERH-
AHA BEONTHMAJRHA B MEMHEHHMAKCHOM CMBICEE CHRODOCTh OTFFHMASRHAA B MHO-
roMepHonM cayerae, (JHeHRA JOCTHTARNIAN OTTTHMATERON MEAHMARCHOH CRODOCTH
Bria yeranosiaen B (1L Oauako A0Ke HTH PEIYALTATH CIITHMAILHOCTH MHRH-
MAKCHON CROPOCTH HE AT KOIHUECTBEHHON ONEHKH TOT0, HACKOIBRG BHCTPO
BATPIIHEHHAS MOAEHL TPHOURASTCH K PHCKY B HE3AIDAZHEHHON MOXEHN, KOTHA
CRODOCTE BATDASHEHH A CTPEMHTCH K HYI0. JAHHAS CTaThi AeaeT neprudl nar B
JATFOAHCHEHR 37070 IDOBEIA, HOKATHBAL, YT0 CYLISCTRYET GIICHRKA ¢ MO TOuHREM
PHCKOM, CTPEMANIEMCE K HYIN, KOLAX NPonopiis ambpocon npabinasics K
HYHIO,

MSC2010 number: 62F35.

Kmouessie craoBa: miuTouneil prek; pobacTHoe ONEHABAHNES] CPEIHEE HOPMATE-
HOPO PACHPOACICEHS,

1. BBE/EHIR

B mocneqsme TOABl MBI CTANHE CBHISTEIAME BOZPOMJICHHAN BHTERCCA K CTATHCTH-
TECKHAM METOZAM, KOTOPER MOTyT shderTtupso paboTats ¢ BEalopaMu JAEELIX, CO-
Jepamme BEOpocsl. B wactHoCTH, B Moo sarpaamenua Xy0epa B 380950 OTIEHKH
CPEIHOTO BOKTODA HOPMAJBHOTO DACTIpeeiteHns |1| yeTaHOBMI ONTHMATEHYIO MUHHN-
MaKCHYIG CKOPOCTT M MOKAZAT, 9ITO OHa JOCTHTACTCS B CYYac MUOTOMEDHON MeT-
AHEL, FIBCCTHAA Kax Meqmana Teokwm. Bomee toro, [2]| paspaborar obogyo Teopno
JUIA TOIYSOENA MEHAMARKCHON CROPOCTH {Bep}(??ﬂ A H HEKIN ?‘E)E;I,H—i’i?ﬁ:ﬂ) B IIFEPOROM
KIIACCR CTATHCTHIRCKTN MOTRJeH, 9TH z)aﬁo’.rbl OPHECHTHDOBMILI H CTATHCTHIOCKYIO
CAOKHOCTE OTIPHOK, He 00DAIas BHAMANAS Ha BHYACTUTCILHYIO CI0KHOCTE. Brrme-
THTCTREAS (FOKTOCTE OTICHOR OB a,pecoBar B 4] 1 |3, xoTopie npoamammmpoRam
PHCK BLIYHCTAMLTR ONenok. Humepeeno, 970 pesyasTars!, JOKasalmine B 9THR pabo-
Tax, OORCTIOMHBAIOT TONBKO TIOPSI0K MHFAMAKCHOH CKOPOCTH, HO HIETO HO TOBOPST
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0 TOM, HACKOJIBKO OBICTPO PUCK B 3arpsS3HEHHON BLIOPOCAMU MOJENN CTPEMHUTCH K
pucky 6e3 BEIOPOCOB.

B 3roit crarbe MbI BBOAMM MOHSTHE W3OBITOYHOIO PHUCKA, KOTOPOE OIMpPeIeser-
Cd KaK PA3HUIA MEXKIy PUCKAMWU B MOIEISX C BhIOpocamu u 6e3. 3aTemM MbI Tpe-
CTaBJIgeM aHAJU3 3TOrO PHUCKA JJjisd MPOIEAyPbl, KOTOPYO Mbl Ha3Basu “‘group hard
thresholding”. 910 Takke MOXKHO paccMaTpPUBAThL KAK BEPCHUIO YCEUEHHON CpeaHeit
oneHku. Haill rraBHbIi pe3ysibTar MOKAa3bIBAET 9TO ITOT U30bITOYHBII PUCK CTPEMUT-
Cs K HYJTIO, KOTJIA YPOBEHDb 3arpsi3HEHUs] CTPEMUTCS K HYJTIO.

Boiee hopmasbaO, maBaiiTe mpeamnoIoKuM, YTO Mbl HAOTIOZAEM 7 CIy YAHHBIX BEK-

TopoB Y71,...,Y, in RP, KOTOpBIE yAOBIETBOPAIOT
id

B mepxweii dbopmysie, (1 HEM3BECTHBIH TTapaMeTp, KOTOPYIO MbI XOTUM OIEHNTH, {6;}
9TO [IPOU3BOJIbHBIE JIETEPMUHIPOBAHHDIE BEKTODbI, yKa3bIBAMONIUe Kakue n3 HabJIo 1e-
HUI ABIAI0TCA BbIOpocaMu u &, CIydaifHbli myM. B 9Toil crarbe, MBI Ipe/IIOTIaraeM,
aro @ = [0, ... 0, yceuennas mo cronbaM marpuna. Bee HAGTIONEHNS € HHIEKCAME
i€ 0 ={l:]0|2 > 0} aBasirorCcst BHIOPOCAMH, B TO BpeMsi, KaK OCTaJIbHBIE IPUXO/SAT

u3 N(p, I,). Iycrs

o= Card(0), u e=—.
n

IIpeanonaraercs, 9To HapaMerp € MeHbIne 1/2, KOTOPBIl UIpaeT BaxKHYIO POJIb B
pobACTHOM OLlEHMBAHWK. B acrHOCTH, U3BECTHO 4TO MUHMMAKCHAA CKOPOCTb OLEHKHU
B Mozenu (1.1) mmeer nopsiiox £ + g2,

B 370it crarbe MBI paccMoTpuBaeM 00Jiee TOYHYIO MEPY TOYHOCTHU OIEHKW, W30bI-

TOUHBIH pucK. HAIIOMHEM, YTO PHCK OLEHKH 1 [i OHpeIeseTca Kak

~ O] — -~ 211/2

R[fi, u; ©] = [Ey,ol|fi — pll3]'/2.
Bnech n nasnee B cTarhe obosnadenue [, gh] o3nataer Maremarnueckoe OKUIAHIE
no pacupezesnenuto {Y7,...,Y,} kak oupeznesneno B (1.1) (Mbl HesiBHO mpe/iiosiaraem,
gro h 3aBucur or Habmoxeruii {Y7,...,Y,}). 1o xopomo ussecTHbI daKT, YTO B

ciIydae, rfe HeT BBIOPOCOB, T.e. Korga ® = 0py, PHCK yJOBIETBOPAET PABHAACTCA

\/p/n. ®opmasbHO,

(1.2) inf sup R[fi, p;0] = sup R[V,,p:0] = /7,
K peRP HERP n

LOnenxa sBnsieTca m06oi w3MepuMOil dyuxnua or (RP)™ o RP
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v 1<
rne Y, = & > iy Y; aBisercs BHIOOPOUHBIM CPEHUM HAb/II0aeMbIX JaHHbIX. Onpe-

JeIM
n

1©]lo.2 ==Y 1(||6ill2 > 0).
i=1
Basupysco na (1.2), onpenesum u30bITOUHBIN PUCK ONEHKH [i B XY/IIEM CJIy4ae CJie-

AyToIm|M 00pa3oM
~ ~ p
E(msn,p,e) = sup Rlp, p; ©] — \/>
HERP;[|®[|o,2<en n

MunuMaKCHBIH W30BITOYHBIN PUCK OIPEIETISIeTCsT TAKUM 00pa30oM
&(n,p,e) = inf E(1,n,p, €),
I

re nHdUMyM 6EepeTcs 1Mo BCEBO3MOKHBIM OIMEHKAM fi. 3AMETUM, 9TO COTJIACHO OIpe-
JICJICHUIO, PACCMATPUBAIOIIMECH OLEHKM BbILIE MOI'YT 3aBUCETb OT N, P U € = 0/n.
OCHOBHBIM PE3yJBTATOM 3TOH CTATBU SIBIISIETCSI TO, 9TO H30OBITOYHBIA PUCK HAIIeH
OIIEHKW, BBEIEHHBIN B CIIEAYIOMIEM pa3esie CTPEMUTCS K HYJII0 Korma € = &, — 0 u

n — 00, IPHU TAKOM P = Py, 9TO P, /T OIPAHUYEHA CBEPXY KOHCTAHTOM.

2. I'PymmmoBoOn »KECTKHUI IIOPOT

B sTOM paszesne Mbl ONpeaensieM OUEeHKY Ly, HasbiBaemyto group hard thresholding,
U OKA3bIBAEM, UTO MU ITOU OIEHKe W3OBITOYHBIN puck crpemutcsa K 0, Korma m10-
ng BBIOPOCOB ¢ crpemutcsa K 0. T'py6o roBopst, ey ABISETCS CPemTHUM apudMu-
THYECKAM BEKTOPOB Y7,...,Y, 3aMuHssd BCE BEKTOPA C OOJIBINNM DPACCTOSHUEM OT

IIOKOOP/IMHATHON M€IUaHbI €10 2K€.

Bonee dopmanbHO, MycTb fyeq := Med(Y71,...,Y,) ecTh MOKOOPAUHATHAS MeIN-
ana BeiOopku {Y7,...,Y,}. g dbukcuporanHoro mopora A > 0 u KaxKaoro i €
{1,...,n}, nosoxum
(2.1) 0; = HI\(Y; — Hytea) = (Yi — Batea) 1([Ys — Bageall2 > A)

. 1O ~ ~
(2.2) Heur = Z(Y@ —0;):=L,(Y - ©).

i=1
Hanee MBI chOpMyTIUPYEM OCHOBHYIO TEOPEMY CTAThU, TTOKA3BIBAMOIIYIO, ITO W3-

OBITOYHDBIN PUCK HAINEH OIMEHKHW CTPEMUTCH K HYJIIO, €CJU J0Jisi BBIOPOCOB € = &,

/4

1
crpemutca K 0 Tak, 9TO €,p, Takxke crpemurcd K (0. 3aMeTwM, 9TO 3TO YCJIOBHE

BBINOJIHEHO IpU (PUKCHPOBAHHOM P, HO MOJIENb TaKKe IO3BOJIAET PA3MEPHOCTDH ObITh
1/4 _
OECKOHEYHOCTBIO, T.€. P = P, — OO TPU OrPAHUYECHUN snpn/ 1og1/2 e,! = o(1) korma

pa3mep BBIOOPKHU 7 CTPEMHUTCs K OECKOHEIHOCTH.
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Teopema 2.1. /g figyr onpedeaennvim 6 (2.2) u A\?> = p+84/ploge~1+16loge™!

Mbl, UMEEM

lim E(BgHT> N Prs€n) = 0,

n—oo
ecau enpy log'? e = o(1) u p, = O(n) Kozda n — co.
JHoxazameavemeo. Tlycts s; = 1(||Y; — Hyeallz < A) 1 6 = lygeq — p*- Ucnonssyst

toT bakt, uTo Y = pl,! + © + E, MOKHO HAIIHCATH CJIEIyIONee COOTHOIICHHE
Heur — 4= Ln(© + E - ©)
1 n
2.3 =— 4+ T T T:
(23) 2 26+ Tiln) + Tan) + Talo),

rue

n

Tin) = 2 Y &=, Tolw) = o (1 s0),
=1 ]

1
Tg(n) = E Zﬂisi.

i€O
st mpocToTh 0b03HadeHHi 0003HaYNM Ly HOpMO#t BekTopa V' ciemyommum 00pa3om

1/2

IV, = (E[IVII3])
3ameTnM, 9TO JIOCTATOYHO MOKa3aTh, uro T;(n) — 0 xorga e — 0 qyist 4 € {1,2,3}. B
caMoM JIede,

2
_Pp
L, ™

1 n
;;a

Torna,
E(p;n,p,e) < || Ti(n) + Ta(n) + T3(n)||L,
<N Ti(n)l|, + 1T2(n)]lL, + [1T3(n)(|L, -

MoOzKHO TPOBEPUTH, UTO CJIEAYIONIEEe OTHOITEHNE BBITIOJTHEHO ¢ HEKOTOPOM KOHCTAHTOI

C

(2.4 18], < c\/ﬁ(;ﬁ v ) — o(pY)
(2.5) &L, = E(ngj) —3ptplp—1) < (p+ 1)

j=1
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Cuauasa Mbr orparnanm ceepxy E[1 — s;] myst Beex ¢ € O°. Nmes (2.4), MbI Oy yaeMm
16]]2 = op(p'/*) u, cenoparemmsHo,

E[l - si] = P(si = 0) = P(|Yi — Bagealls > X*) = P([|0 + &[5 > A?)
(2.6) <P > V(1 -0(1) S Vi€,

rJIe TOCJieqHee HEPABEHCTBO CJelyeT OT KOHIEHTPAIM! CIIy4YaiHON BeJIMYMHBI X127 u

soI6opa A2, Jlna Ty (n), ucnonbsysa (2.5), Mbl uMeeM

il < |1 3 €0 i ea-s

1€0° €O

= Oy + Hlesiu

i€O

Lo

Lo
C apyroii croponsl, mepaBerncTBo Kommu-IITsapia-Bynsakosckoro gaer

Z&(l—si) <Y (1-s) Zse Zss

i€ 2 jeo i€ i€

<n5

W3BecTHast BepxHss ONEHKA IS OMEPATOPHOI HOPMbI MATPHUIIBI C HOPMATbHBIMHA dJIe-

menTamu (cMm. Jlemma 9 B [4]) maer

Zg 1_81

1€0

< 3ne(p+ ne +4).

Lo

CutetoBaTesibHO,

(2.7) 1T ()L, S Vpe* + = /pe’+ Vep/n+e=o(l).

Hust orpanuuenus csepxy ||T2(n)||L,, Mbl ucnonb3yem nepasencrso Kowmu-IIsapua-

\/NEP + ne
n

Byusxkosckoro Bmecre ¢ (2.4) u (2.6), 9T00bI HOTYIUTD

6 n

ol = | 3300 5| < Bl S,
(2.8) = “me)(m +n(1 —e)e?) = eo(p'/*) = o(1),

r7le Ha TpeTheMm mare Mbr orpanmanin |1 — sillL, = EY4[1 - 5] < 1 gma i € O
u |1 —sllL, < &% anai € O° Jaa nonydenus Bepxueii omenku Lo wopmbr T5(n)

3aMeTHM, 9TO KOTJIa §; = 1, TOTJa Y HAC eCTh BepXHsst OleHKa s ||6;||2. PopmaibHo,

HepaBeHcTBO ||0; + 8 + £;||2 < A skBuBasenTHO $; = 1, caenoBaTETBHO
1/2
(2.9) 16ill2 < 2[10]l2 + 2ln:| + (A2 — 1I€;113) )" + (2167 &)2,

JUTsl CTAHJAPTHBIX HOPMAJIbHBIN CJIyvaiiHbix Besmaun 1); nys ¢ € {1,...,n}.
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Ucnonn3ys mepaBencTBO Leibiepa MOXKHO MOKA3aTh, 9TO
1/4 1/4
Sl < et { SlaTel | - e elo)
i€0 i€0 i€0
< (ne)* 1811y €0 a5,
rae ||£OH§.{,2 CIIEKTPAJIbHAS HOPMa MATPUIIbI [OJIyYeHHON u3 BeKTopoB &; s i € O.

2
Orcrona cireayer, 9To

> 18T

€O

1/2 1/2
< (ne)** |8l €011

Lo

= O((ne)/4(/2pM/ ) (ne) /4 + 1))

= O(nsp1/4 + (n€)3/4\/@).

MoskHO moKa3aTh, 4TO

E[(X* — [[€]3)+]) £ Vploge™! +loge™ < \/p loge™

Wcnons3yst HEpaBeHCTBO TPeyroibHUKA /jist Lo HOPMBI, TIOJTyYaeM
1
IT5 (). < > 116:1(si = V),
i€0
S (16, +1) +ept/Hog 2 e 4 ept/ 4 3/ 1pH 21/
< 8p1/4 10g1/2 o1 +5p1/4 —|—55/4p1/4.

IMockonbky €, = 0o(1) u Enp}/4 log'/?e;1 = o(1), nonyuaem, uro || T5(n)||L, = o(1) u

JOKa3aTeJIbCTBO TEOPEMBI CJIEIYyeT.

Abstract. In this work we introduce the notion of the excess risk in the setup of
estimation of the Gaussian mean when the observations are corrupted by outliers. It is
known that the sample mean loses its good properties in the presence of outliers [5, 6].
In addition, even the sample median is not minimax-rate-optimal in the multivariate
setting. The optimal rate of the minimax risk in this setting was established by [1].
However, even these minimax-rate-optimality results do not quantify how fast the
risk in the contaminated model approaches the risk in the uncontaminated model
when the rate of contamination goes to zero. The present paper does a first step in
filling this gap by showing that the group hard thresholding estimator has an excess

risk that goes to zero when the corruption rate approaches zero.

QZ[JIS{ NIPOCTOTHI MBI PACCMATPUBAEM CJIydail Korga n—1/2 < én.

73



A. T. MUHACHAH

CHUCOK JINTEPATYPBI

[1] M. Chen, C. Gao and Z. Ren, “A general decision theory for Huber’s e-contamination model”,
Electron. J. Statist., 10:3752-3774 (2016).

[2] M. Chen, C. Gao and Z. Ren, “Robust covariance and scatter matrix estimation under Huber’s
contamination model”, Annals of Statistics, 46(5), 1932 — 1960 (2018).

[3] Y. Cheng, I. Diakonikolas and R. Ge, “High-dimensional robust mean estimation in nearly-
optimal time”, arXiv:1811.09380 (2018).

[4] O. Collier and A. S. Dalalyan, “Rate-optimal estimation of p-dimensional linear functionals in a
sparse gaussian model”, Electron. J. Statist., 13(2), 2830 — 2864 (2019).

[5] P. J. Huber, “Robust estimation of a location parameter”, The annals of mathematical statistics,
35(1), 73 — 101 (1964).

[6] P.J. Huber, “A robust version of the probability ratio test”, The annals of mathematical statistics,
36 (6), no. 1, 753 — 758 (1965).

ITocrynuna 14 nosabpsa 2019
ITocne mopaborku 19 suBaps 2020
[Ipunsita k nybsukamuu 06 despass 2020

74



Haneorma HAH Apsersmmn, Maresmatara, Tow 55, o 3, 2020, crp. 75 — 84
SOME UPPER BOUND ESTIMATES FOR THE MAXIMAL
MODULUS OF THE POLAR DERIVATIVE OF A POLYNOMIAL

A MIB, M. IBRAHIM SHEIREH

University of Kashmir, Srinagar, India
Pusan National University, Busan, Republic of Korea
E-mails:  mabdullah  mir@ychoo.coin;  ibrahimsheikh@pusan. ac ke
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1. INTRODUCTION

T
Lot P, denote the space of all complex polynomials P(z) := > a,27 of degree n
7=0
and P/ (z) is the derivative of P(z). A famous result known as Bernstein’s mequality

{for reference, see [3]) states that if P € P, then

{1.1) max|P’(z)| <

|z|=1 |z|=

where as concerning the maximum modulus of P(2) on the circle |2/ = R > 1, we

have (for reference see [11)),
(1.2) ma \P )| <Rn‘m‘ax|P(z -
= o
Both the ahove inequalities are sharp and equality in each holds only when P(z) is
a constant multiple of 2.

It was ohserved by Bernsten [3] that (1.1) can be deduced from (1.2), by making
use of Gauss - Lucas theorem and the proof of this fact was given by Govil, Qazi
and Rahman [4].

I we restrict oumselves to the class of polynomials P € P, with P(z) # 0 in

|z| < 1, then {1.1) and (1.2) can be respectively replaced

(1.3) lmafﬂP’(z)\ <=
and
s i +1
{1.4) R>1|P( )| < lmli:i‘P(zﬂ
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Inequality (1.3) was conjectured by Erdds and later proved by Lax [8], where as
inequality (1.4) was proved by Ankeny and Rivlin [1], for which they made use of
(1.3).
Inequality (1.1) can be seen as a special case of the following inequality which is
also due to Bernstein [3].
Theorem A. Let F € P, having all its zeros in |z| < 1 and f(z) be a polynomial
of degree at most n. If | f(2)| < |F(2)| for |z| = 1, then for |z| > 1, we have
(1.5) FE)] < |FE).
Equality holds in (1.5) for f(z) = e"F(z),n € R.
Inequality (1.1) can be obtained from inequality (1.5) by taking F'(z) = Mz", where
M = |I£1|%>§| f(2)|. In the same way, inequality (1.2) follows from a result which is a
special case of Bernstein-Walsh lemma ([10], Corollary 12.1.3).
Theorem B. Let F € P,,, having all its zeros in |z] < 1 and f(z) be a polynomial
of degree at most n. If | f(2)| < |F(2)| for |z| = 1, then

|f(z)| < |F(z)|, for |z| > 1,
unless f(z) = e"F(z) for some n € R.
In 2011, Govil et al. [5] proved a more general result which provides a compact
generalization of inequalities (1.1), (1.2), (1.3) and (1.4) and includes Theorem A
and Theorem B as special cases. In fact, they proved that if f(z) and F(z) are as
in Theorem A, then for any 8 with |3| <1 and R > r > 1, we have

(1.6) ’f(Rz) —Bf(rz)| < ‘F(Rz) — BF(rz)|, for |z| >1.

Further, as a generalization of (1.6), Liman et al. [6] in the same year 2011 and

under the same hypothesis as in Theorem A, proved that
R+ 1\n
[£(R2) = B2y +o{ (F ) = 181} 1 02)]

r+1
(17) < |F(Re) - 572 +4{ (F5) " - 181} ),

for every 8,7 € C with |5] < 1,|y] <1land R >r > 1.

For f € P, the polar derivative D, f(z) of f(z) with respect to the point « is
defined as

Do f(2) == nf(z) + (a = 2)f'(2).
Note that D, f(z) is a polynomial of degree at most n— 1. This is the so-called polar

derivative of f(z) with respect to o (see [9]). It generalizes the ordinary derivative

im { 2HE ),

a—r 00
76
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uniformly with respect to z for |z| < R, R > 0.

Recently, Liman et al. [7] besides proving some other results also proved the following
generalization of (1.6) to the polar derivative D, f(z) of a polynomial f(z) with
respect to «, |af > 1.

Theorem C. Let F € P,,, having all its zeros in |z] < 1 and f(z) be a polynomial
of degree m(< n) such that |f(z)| < |F(2)| for |z| = 1. If o, 8,y € C be such that
lal > 1,]8| <1 and |\| < 1, then for R>r > 1 and |z| > 1, we have

‘z [(n - m){f(Rz) - 5f(rz)} + Do f(Rz) — 5Daf(rz)}
+ "ol - 0){7(R2) -~ B162) )|

(1.8) < Z{DQF(RZ) - BDQF(TZ)} + %A(m - 1){F(Rz) - ﬁF(rz)} ]

Equality holds in (1.8) for f(z) = e"F(z),n € R.

While making an attempt towards the generalization of the above inequalities,
the authors found that there is a room for the generalization of (1.6) to the
polar derivative of a polynomial which in turn induces inequalities towards more
generalized form. The essence in the papers by Liman et al. [7] and Govil et al. [5]

is the origin of thought for the new inequalities presented in this paper.

2. MAIN RESULTS

The main aim of this paper is to obtain some more general results for the
maximal modulus of the polar derivative of a polynomial under certain constraints
on |z| and on the functions considered. We first prove the following generalization
of inequalities (1.6) and (1.7) and of Theorem C.

Theorem 2.1. Let F € P, having all its zeros in |z| < 1 and f(2) be a polynomial
of degree m(< n) such that

|f)| < |F ()|, for |2 =1.

If a, 8,7, A € C be such that |a] > 1,|8] < 1,|v| <1 and |\| < 1, then for R >r > 1

and |z| > 1, we have
’z [(n - m){f(Rz) + Tﬁf(rz)} + D, f(Rz) + 1/1Daf(rz)}
+ 2ol - D{7(R) + 410}

(2.1) < ‘z{DaF(RZ) + wDaF(rz)} + %)\(|oz\ - 1){F(Rz) + wF(rz)}

)

7
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where

¥ =(R.7.8,7) :v{(fjf)" - 5|} -5

The result is sharp and equality in (2.1) holds for f(z) = e"F(z),n € R.
The following result immediately follows from Theorem 2.1.

Corollary 2.1. If f € P,,, and f(z) does not vanish in |z| < 1, then for every
o, B,7v, A € C such that |« > 1,|8] < 1,|v] <1 and || < 1, we have for R >r >1
and |z| > 1,

{ Daf(R2) +9Daf(r2)} + "2 (0] = D{7(R2) +7(r2)}|

22 <[o{DaQ(ra) + 90.000) b+ ol - Df () + 000} |
).

Equality holds in (2.2) for f(2) = €"Q(z),n € R. Taking A = 0 in Corollary 2.1,

we get the following result.

where Q(z) = 2" f(

NI =

Corollary 2.2. If f € P,,, and f(z) # 0 in |z| < 1, then for every |a| > 1,|5] <
LIV <L,R>r>1and|z| > 1,

Daf(B2) = 8Daf (=) +9 (T )" = 181) Daf(02)
23 < [DaQR) - 8D.Q0=) +((Tg) " - 181) Dar2)]

where Q(z) = 2" f(2).

=

Inequality (2.3) should be compared with a result of Liman, Mohapatra and
Shah ([6], Lemma 2.3), where f(z) is replaced by D, f(z),|a| > 1.

Taking r = 1 in Corollary 2.2, we get the following generalization of a result due
to Aziz and Rather [2].

Corollary 2.3. If f € P,, and f(z) does not vanish in |z| < 1, then for every
a, B,y € C with |a| > 1,|8] <1 and R > 1,
R4 1\n
|Daf(R2) = 8Daf(2) +((75=) " = 18) Dat(2)]

2
< [Da@(R2) — Da@(2) +4((F52)" ~ 181) Dat2()

, Jor [z =1,

where Q(z) = z"P(1).

If we take 8 = 0 in Theorem 2.1, we get the following.
78
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Corollary 2.4. Let F € P,,, having all zeros in |z| < 1 and f(2) be a polynomial
of degree m(< n) such that

|f(2')| < |F(Z)|, for |z| = 1.

If a,y, A € C be such that |a| > 1,|v| < 1 and |A| < 1, then for R > r > 1 and

|z| > 1, we have

2| n = m){ s (k=) +

(B

Hl)"f( 2)} + Daf (R2) +19

1 Daf ”}
7)) T
(2.4)
Z{DQF(RZ) + y(ﬂ)"DaF(m)} + 712—)\(|04\ —D{F(R2) + (R+ 1)”F(m)}].

r+1 r+1
Equality holds in (2.4) for f(z) = e"F(z),n € R.

H+

R

(|oz|—1{ F(R2) +

Remark 1.1. For v = 0, Corollary 2.4 reduces to Theorem C.

Theorem 2.2. Let F' € P,,, having all its zeros in |z| <1 and f(z) be a polynomial
of degree m(< n) such that

‘f(z)‘ < |F(z)], for |z|=1.
If a, 8,7, A € C be such that |«| > 1,|58| < 1 and |y| < 1, then for R >r > 1 and

|z| > 1, we have

o[ =m){s(R2) + 0 (r)} + Daf (R2) +vDaf(r2)|
+ 5 (lal = D|F(R2) + wF(r)

2
25) < |{DaF(R2) + 9DaF(r2) }| + T(lal = D|F(R2) +wf (r2)],
where 1 is defined in Theorem 2.1.

Equality holds in (2.5) for f(z) = ¢ F(z),n € R.

From Theorem 2.2, we have the following;:

Corollary 2.5. If f € P, and f(z) does not vanish in |z| < 1, then for every
o, B,v, A € C with || > 1,|8] <1,|y] <1, we have for R >r > 1, and |z| > 1,

|#{Daf(B2) + ¥Daf(r2) }| + 2 (0l = D|Q(R2) +4Q(2)|
< | PaQ(R2) +D2Q(r2) }| + S (lal = V[ £(B2) + v f(r2)].

where Q(z) = 2" f(L). and 1 is defined in Theorem 2.1.

Remark 1.2. For v = 0, Corollary 2.5 reduces to a result of Liman et al. [7].
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3. LEMMAS

We need the following lemmas to prove our theorems. The first lemma is due to
Liman, Mohapatra and Shah [6].

Lemma 3.1. Let f € P, having all its zeros in |z| < 1, then for every R > r > 1,
R+1
|f(Rz)|>< ) |f rz ’, for |z] =1.

Lemma 3.2. Let f € P, having all its zeros in |z| < 1, then for every a with
laf > 1,

2|2Da f(2)] > n(lo] - 1)|/(2)

for |z| =1.

The above lemma is due to Shah [12].

Lemma 3.3. Let f € P,,, having all its zeros in |z| < k, then for |a] > k, the polar

derivative

Daf(z) :=nf(z) + (a = 2)f'(2),

of f(z) at the point a also has all its zeros in |z| < k.

The above lemma is due to Laguerre ([9], p.49).

4. PROOFS OF THEOREMS

Proof of Theorem 2.1. If F(z) has a zero on |z| = 1, then the result is obvious,
so we assume that F(z) has no zeros on |z| = 1. Since |f(z)| < |F(z)]| for |z| = 1,
therefore, for every 6 € C with |§| > 1, we have |f(z)| < |0F(z)|, for |z| = 1. Also
all the zeros of F'(z) lie in |z| < 1, it follows by Rouche’s theorem that all the zeros
of g(z) = f(2) — §F(2) lie in |z| < 1. Now by Lemma 3.1, we have in particular

lg(rz)| < |g(Rz)|, for |z| =1 and R>r>1.

Since g(Rz) has all its zeros in [z| < & < 1, a direct application of Rouche’s theorem
shows that the polynomial g(Rz) fﬁg(m) has all its zeros in |z| < 1 for every 5 € C
with |3] < 1. Again by using Lemma 3.1, we have

|9(Rz) — Bg(rz)| = |g(Rz)| — |Bl[g(r2)]

= {(E50)" - atflacal,

for |z|=1 and R>r>1.

80
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That is

{(fill)n - |ﬂ}\9(7"2)| < |9(Rz) — By(r=)

for |z2]=1 and R>r>1.

)

If v is any complex number with || < 1, then it follows by Rouche’s theorem that

all the zeros of T'(z) := g(Rz) — Bg(rz) + ’y{ (fill)n - |5|}9(7‘3)

lie in |z| < 1. Using Lemma 3.2, we get for every « € C with || > 1 and |z| = 1,
2|2DoT(2)| = n(la| — 1)|T(2)|.
Hence for any complex number A with |A| < 1, we have for |z| = 1,
2|2DaT(2)| > n|A|(Jo| — 1)|T(z)].
Therefore, it follows by Lemma 3.3, that all the zeros of
W(z) :=22D,T(z) + nA(la] — 1)T(z)
(4.1) =22Dog(Rz2) + 22¢0Dyog(rz) + n/\(|a| — 1) (g(Rz) + wg(rz))

lie in |z| < 1.
Replacing g(z) by f(z) — 0F(z) and using definition of polar derivative gives

W(z) = 22 [n{ F(R2) — 6F (R2)} + (o — R2){ f(Re) - 5F(Rz)}l}
+ 229 [n{f(rz) — 6F(7“z)} + (o — rz){f(rz) - (5F(’I“Z)}/:|
+nA(lal = D{F(R2) = SF(R2)} + naw(lal = ){f(r2) = 6F(r2)
which on simplification gives

W(z) = 22 {(n — m)f(Rz) + mf(Rz) + (a — Rz)(f(Rz)) — 6{nF(7‘z) ¥ (a—72) (F(Rz))/}}

+ 2290 [(n = m)f(r2) +mf(rz) + (@ =) (f(r2) = 8{nF(r2) + (@ = 1) (F(m))’}}
+ (o] - 1){f(Rz) - 5F(Rz)} + (|l — 1){f(rz) - 5F(7‘z)}

- 22{(n —m)f(Rz) + Daf(Rz) — 6DQF(Rz)}
+ 2z¢{(n —m)f(rz) + Daf(rz) — 5DQF(TZ)}
+nA(lal = D{F(R2) = SF(R2)} + na(lal = ){ f(r2) = 6F(r2) |

= 2:{(n— M) f(R2) + (n — m) [(r2) + Daf(R2) + ¥Da f(r2)}
+ (ol = Df(R2) + n(la] = 1)f(r2) — 6{2:DaF(Rz2) + 22:Da F(r2)

(4.2)

+ nAb(lal = DF(R2) +ndu(la] = 1)f(r2)}.
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Since by (4.1), W(z) has all its zeros in |z| < 1, therefore, by (4.2), we get for

2] > 1,

o= { s + 05690} + g + 0001 02) | + el = {50 + w50}
(4.3)

Z{DQF(Rz) + wDaF(rz)} + %)\(|a| — 1){F(Rz) + ’(/JF(TZ)}’

<

To see that the inequality (4.3) holds, note that if the inequality (4.3) is not true,

then there is a point z = zg with |z > 1, such that

20 [(n —m) A+ D, f(Rz) + wDaf(rzo)} + %)\(\04 -1) A‘

44) > zo{DaF(Rzo) + wDaF(rzo)} + %)\(|a| - 1){F(Rz0) + 1/}F(rzo)}

)

where A = f(Rz) + ¢ f(rzp). Now, because by hypothesis all the zeros of F(z) lie
in |z| < 1, the polynomial F(Rz) has all its zeros in |z| < % < 1, and therefore,
if we use Rouche’s theorem and Lemmas 3.1 and 3.3 and argument similar to the

above, we will get that all the zeros of
Z(D,IF(RZ) + ¢DQF(TZ)) + %)\(|a| - 1){F(Rz) + wF(m)}
lie in |z| < 1 for every |a| > 1,|A\| <1 and R > r > 1, that is
Z(DQF(RZO) + 1/)DaF(rzo)) + %A(|a| - 1){F(Rz0) + wF(rzo)} £0

for every zo with |z > 1.

Therefore, if we take

20 [(n —m)A+ D, f(Rz) + wDaf(rzo)} + "7)‘(\04 -1)A
5=

2 (DaF(Rzo) ¥ wDaF(rzo)) + (o] — 1){F(Rzo) + wF(rzo)} ’

then § is a well-defined real or complex number, and in view of (4.4) we also have
|6] > 1. Hence, with the choice of §, we get from (4.2) that W(zp) = 0 for some
20, satisfying |zg| > 1, which is clearly a contradiction to the fact that all the zeros
of W(z) lie in |z| < 1. Thus for every R > r > 1,]a| > 1,|A\] < 1 and |z| > 1,
inequality (4.3) holds and this completes the proof of

Theorem 1.1.

Proof of Corollary 2.1. Since the polynomial f(z) does not vanish in |z| < 1,

therefore, all the zeros of the polynomial Q(z) = 2"f(1) € P,,, lie in || < 1 and
|f(2)| = |Q(2)| for |z| = 1. Applying Theorem 1.1 with F(z) replaced by Q(z), the

result follows.
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Proof of Theorem 2.2. Since all the zeros of F'(z) lie in |z| < 1, for R > r >
1,18] <1, |y| <1, it follows as in the proof of Theorem 2.1, that all the zeros of

R+1

m>n _ |5|}F(m) = F(Rz) + ¢ F(rz)

h(z) = F(Rz) - BF(rz) + 7{ <

lie in |z| < 1. Hence by Lemma 3.2, we get for |a| > 1,

2|2Dah(2)| > n(|al — 1)|h(2)

, for |z| > 1.

This gives for every A with |A\| < 1 and for |z| > 1
n|A|

(4.5) ;

(lo| = 1)|F(Rz) + ¥ F(rz)| > 0.

Z{DQF(Rz) + wDaF(rz)}‘

Therefore, it is possible to choose the argument of A in the right hand side of (4.3)
such that for |z| > 1,

z{DaF(Rz) + zpDaF(rz)} + %)\(|a\ - 1){F(Rz) + wF(rz)}’

_nAl
2

(4.6) - (Jof — 1)]F(Rz) + ¢F(rz)’.

Z{DQF(RZ) + wDaF(rz)}’

Hence from (4.3), we get by using (4.6) for |z| > 1,

= m{ ey + wse) | + Do)+ wDas2)|

- @(lal —D|f(R2) + ¢ f(r2)]

47 < z{DaF(Rz) + wDaF(m)H - @

(la] — 1)‘F(Rz) + 1/)F(rz)|

Letting |A\| — 1 in (4.7), we immediately get (2.5) and this completes proof of
Theorem 2.2 completely.

Proof of Corollary 2.5. By hypothesis, the polynomial f(z) has all its zeros

in |z| > 1, therefore, all the zeros of the polynomial Q(z) = z"f(%) € P,, lie in
|z| <1 and |f(2)] = |Q(z)] for |z| = 1. Applying Theorem 2.2 with F(z) replaced
by Q(z), the result follows.
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Ahgtract. This note is framed in the field of complex analysis and deals with some types
of interpolating sequences for Lipschitz functions in the unit disk. We introduce recursion
between each point of 4 sequence and the next. We also add interpolation by the derivative,
finking its values to those that the function takes. On the supposition that the sequences
are quite contractive and lie in a Stolg angle, we relate the interpolating ones for each type

to the uniformly separated sequences.
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1. INTRODUCTION

We denote by D the disk in the complex plane C and by Lip the Linschitz class,

that is, the space of all analytic functions f on D, continuous on D and such that

M — sup PO = ]
z#w |z — w|
It is well-known that f € Lip if and only if f/ € H° (the space of hounded analytic
functions on ). We put A = (A,,) for bounded sequences of complex numbers and
[*° for their space (|A]e = sup,, |A.|}. We denote by Z = (z,) any sequence in D
satisfying the Blaschke condition >, (1 — |z|) < co. We write 7(z,w) = %
so that |7(2, w)| is the pseudo-hyperbolic distance hbetween 2z and w. We put B for
the Blaschke product in I with zervos at 7, that is,
Zn
B(z) = H o T(2n, 2),

n
and By ;  for the Blaschke product with zeros at 7\ {#,..., 2, }

We recall that a sequence 7 is called k-contractive if there s a constant 0 < kb < 1
such that

|2ma1 — 2m| < k2w — 2m 1|, m2>2.
We also recall thag a sequence 7 is called uniformily separated {(wo will abbreviage
hy writing u.s.} if
|Brilzm)| 26 >0, mel.
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Carleson’s theorem ([1]) ensures that the u.s. sequences are the interpolating ones
for H> (it means that given any A € [°°, there is f € H* such that f(z,) = A,
for all n).

First, we bring up two types of interpolating sequences for Lip.

Definition 1.1. Z is called an interpolating sequence for Lip if given any sequence

(wy) satisfying
(1.1) sup lwi = wj|
i#i 17— 7l

there exists f € Lip such that f(z,) = w, for all n.

< o0,

Definition 1.2. Z is called a double interpolating sequence for Lip if given any
sequences (wy) satisfying (1.1) and (\,) € 1*°, there exists f € Lip such that
f(zn) =wpn and f'(z,) = A\, for all n.

Both types are characterized in the following two Theorems, but only when the

sequence Z is in a Stolz angle, that is, when for some ( € D and 1 < p < oo,
lzn = ¢l < (1 —]zn|), neN.

For example, the radial sequence (1 —27") satisfies the Blaschke condition, is (1/2)-

contractive and lies in a Stolz angle (¢ = 1).

Theorem 1.1. ([2], [3]). A sequence Z in a Stolz angle is interpolating for Lip if

and only if Z is the union of two u.s. sequences.

Theorem 1.2. ([3]). A sequence Z in a Stolz angle is double interpolating for Lip
if and only if Z is u.s.

The interpolation by Lipschitz functions for a closed set in D has also been
studied (see [4]).

Our purpose is to introduce some new types of interpolating sequences for Lip.
For that, we modify the above Definitions for the case that a recursive relationship
of the interpolating function in two consecutive points of the sequence is required.
On the other hand, we impose a rather natural ligature between the interpolating
function and its derivative, also adding a recursive relationship for the derivative.
We are interested in knowing if doing this, we have to restrict ourselves to some sort
of sequences to obtain the same results as if recursion is not considered. Recursive
interpolating sequences for the space H* have already been addressed in [5], and
in this note, we check the effect of introducing recursion in a space of functions that
are regular up to the boundary of the disk.

Specifically, we introduce the following sequences.

86



A NOTE ON RECURSIVE INTERPOLATION FOR ...

Definition 1.3. We say that Z is a recursive interpolating sequence for Lip if
given any o € C and A = (\,,) € I°°, there exists f € Lip such that f(z1) = « and

recursively, for each n € N,

J(Znt1) — f(2n)

Zn+1 — Zn

(1.2) = An.

Note that all quotients in (1.2) are bounded, because f € Lip.

Definition 1.4. If we include f'(z,) = A\, in Definition 1.3, we say that Z is a

double and recursive interpolating sequence for Lip.

In this Definition, the requirement for the derivative is added to relate its value
in a point to a difference quotient of the function in that point. Finally, taking into
account that if g € H*°, then

l9(2) — g(w)| < e|7(z,w)]

for a constant ¢ > 0, we can state:

Definition 1.5. We say that Z is an interpolating sequence in a general sense for
Lip if given any a, 8, n € C, there exists f € Lip such that f(z1) = «, f'(z1) =

and, recursively, for each n € N,

"y ) = f(zn+1) — f(zn)
(1.3) fzn) = Znyl — Zn
f/(ZnJrl) = f/(zn) +07(2n, 2nt1)

Note that these two equalities can be interpreted as a certain system of recurrence
equations. The next section is devoted to examining these types of interpolating

sequences.

2. Statement and proof of results

We will use the following two Lemmas.

Lemma 2.1. ([3]). If a function f € Lip vanishes on a sequence Z, then for each
m € N,

[f(2)] < My |z = zm| [ B (2)]-

Lemma 2.2. If Z is a k-contractive sequence and k < ko < 1/2, then given any
integer p > 2,
[Zm+1 — Zm| < Ko |Zmtp — 2m|, mEN,
where Ko = (1 —ko)/(1 — 2ko + kF).
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Proof. By the triangle inequality and since Z is k-contractive,
[Zm+1 = Zml| < [Zmap = 2m| + [2mip = Zmap-1l + -+ |2mr2 — Zmaa
<|zmtp = Zm| + (B + - 4 F)|2mg1 — 2m.
Since k < ko < 1/2, then kP~' 4 ... 4+ k<K' 4 ... + kg < 1, and
1
L— (kB 4+ + ko)
The proof is complete. O

|Zm41 — 2m| < [Zmtp — Zm| = Ko |2m4p — 2ml.

Our results are the following ones.

Theorem 2.1. Let Z be a sequence in a Stolz angle and k-contractive for some
k < ko < 1/2. Then, Z is recursive interpolating for Lip if and only if Z is the

union of two u.s. sequences.

Proof. Suppose that Z is recursive interpolating for Lip. Take o = 0 and for a

fixed m € N, let A be defined by: A, = ~F2 = Zm+l y o — 1and A, = 0,
Zerl — Zm
otherwise. Because Z is k-contractive, we have |\,,,| < k and then, ||A|l. = 1. Since

the operator given by the quotient on the left in (1.2) is linear and surjective, by
the open mapping theorem there is a function f,, € Lip and a constant ¢ > 0 such
that My, < cl||Alloc = c¢. We have fp,(2m) = 2Zm+1 — 2m and fp,(2,) =0, if n # m.
Applying Lemma 2.1 to Z \ {2z},

[fm(2)] < €|z = zmsr| | Bmm+1(2)],

and evaluating at z,,,

|Zm41 — Zm| = |fm(zm)| < C|Zm — Zmy1| ‘Bm,mﬁ-l(zm)‘v

that is,

(2.1) | Bm,m+1(2m)| = ¢

This condition (2.1) implies that Z is the union of two u.s. sequences (see [6], p.
1202).
Reciprocally, to meet the requirement in (1.2) we look for f verifying f(z,) = vn,

where v, = « and for each n > 2,
Yo =a+A(z2 —21) + -+ Ao1(2n — 2n1)-
Suppose i > j. Taking into account that Z is k-contractive,
v =il = iz — 25) + - + Aica (2 — 2im0))|
< J[Alloo (l2j41 = 25| + -+ 4 2 — zi-1])

< JAlloo (k4 + K7 2540 = 2l
88



A NOTE ON RECURSIVE INTERPOLATION FOR ...

If i« > j+ 1, then by Lemma 2.2,

11—k
1—2ko + ki
The existence of the desired interpolating function f follows from Theorem 1.1. [J

1vi — Vil < [[Alloo |zi — z;].

Theorem 2.2. Let Z be a sequence in a Stolz angle and k-contractive for some
k <ko < 1/2. Then, Z is double and recursive interpolating for Lip if and only if

Z 18 u.S.

Proof. The necessity for the sequence Z to be u.s. is a consequence of the
requirement that the function f/ in H° must interpolate the sequence A in [
(Carleson’s theorem). As for sufficiency, take (A,) € [°°. By Theorem 2.1, there is
g € Lip verifying (1.2). It is proved in [3] that if Z in a Stolz angle is u.s., then
given any sequence (a,) € [°°, there is a function h € Lip such that h(z,) = 0
and h'(z,) = ay, for all n. Taking a,, = A\, — ¢'(2y), it follows that the function
f = g+ h performs (1.2) and f'(z,) = A, for all n. d

Theorem 2.3. If Z is a sequence in a Stolz angle and k-contractive for some
k < ko < 1/2, it verifies the condition

(2.2) Z |7(2n, 2Znt1)| < 00

n

and is u.s., then Z is interpolating in a general sense for Lip.

Proof. Equivalently, instead of looking for a function f € Lip that verifies (1.3),
we look for it so that f(z,) = v, and f/(z,) = 7/,, where
71 = Q, 7220é+ﬁ(22—21)7

n -2
Yo =+ Bz —2) 0y (Z T(zm,zm+1)> (21— z-1), n=3;

Suppose i > j. By (2.2), there is a constant ¢ > 0 such that

i -2
e =l <1811z — 2l +0 Y ( |T(Zm72m+1)> |2t — 211
1

I=j+1

m=

<1Bl1zi =zl +en D |z -zl
I=j+1
As in the proof of Theorem 2.1, if ¢ > j + 1, then
1— kg
Yi =yl < | 1Bl +en————= | |2 — %l
= <|| 1_2k0+,€0j> ;
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On the other hand, (7)) € I* by (2.2). So, the existence of the interpolating
function f follows now from Theorem 1.2. (I

The sequence (1 —27™) is also an example for the condition (2.2).
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