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Annorauns, B nacroanmel paBore noayuena Gopavaa g seemrcserng Qysr-
wan EoTHOCTH fo(X) PACTONHMA MEIAY ABYMA CayqaliHBME HCIQBHCHMBIMHE
TOURAMH, CAVIAHHOG W DARAOMEDHS RHODAHHEIMHE B OTDAHHYCHHOM BHITVKIOM
rene D. ®opuyia noznonaer walitn anmed suy dyrkumn nrorroctn fo(z) qug
Texa D ¢ M3RECTHHM PaCIIDEAEHCHHEM JUIHHE XODAH. B 9acTHOCTH, TIOXYHEHO
asmoe prpakenne aan fo{x) aaa crywaa mapa amawerpa d » RS,

MSEC2010 numbers: 60D05; 52A22; 53065,

Kurrouessie ciroBa: (y KNS DACTIDEAEIIONH ITHHLT X0D,/ TR KHHOMATIICCKAST MODa,
» R?; orpammiennce BRITYRIIOR TEJTO,

1. BBEABHKEE

B mpomom rexe memenkwi mateMarer B. Basmke edopvyeporas npobiemy
HCCTEAOBATIHS OTPAHFSEHNONG BRI KIOTO TEI BEPOSTHOCTHLIME MoToZaMe. B gacT-
HOCTH, MPOOIEMY DACTIORTABAHNS OTDAHNYCHHEIX BEITYKIILIX TOT 110 DACTIDE/ 0/ ICHHIO
JTUHEL X0pJel. B 9Toll ¢TaThe paceMaTpHBASTCS 305 T TPEXMEpPHETX 1o Pe-
syieTaT mas mockex obmacted om, B [11] m [12).

IIyers D - oTpanmaeHNEOR BRIIYKIIOE TEIG B TPEXMEPHOM €BKIIIOBOM IPOCTPAH-
erre R ¢ obmevom V(D) m maomaamio nonepsuoctr S(D). llyer Py u P - ame
TOYKH, RI}IGP&?HH}IG (’,@"‘?E;LI‘:H'H}INI (365)&’30}‘.7[ . HEBABHCHMO H ¢ DABIOMUPHBIM DACIIDOIE-
gerweM B D, MB co0upaescs walfiTH BEPOATHOCTE TOTO, w10 pacerosane p(Py, Po)
mMeskIy P11 Po paBHO WIH MEUBING X, TO €CTh MBI XOTCAH Ob1 HaliTe HYHKIMG pac-

mpegeaemma F,(z) paccrosmmsa o( P, B). o onpegememme mveem

dP1d P

« {Pi,PgeD : p(Pl,Pg)SG‘:}
1.1 F =P, PBecD . plP,B)<z)=
{ ) 0(55) ( 1,42 € P( 1s 2) 2 55) ff AP, dP;

{P,PeD}

Lpagora HEPROTO ARTOPA BHIONHEHA 1Pl dunancosol noepwne MKH MOH PA 8 pamkax
HAYUHOTO npoerTa 18T-1A252.
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H.T. ATAPOH{H, B. XAJIATAH

rae dP;, i = 1,2 - Mepa Jlebera B mpocrpanctBe R3. Tak kKak

(1.2) // dPydP, = V(D)

{P1, P,eD}

(3mech MBI UCTIOIB3YeM, 4TO TOYKN P u P, BHIOMPAIOTCA HE3aBUCUMO B D), MBI TIO-
JIydaem

1

~ V(D)
{P1,P2€D : p(P1,P2)<z}

3 BoIpakenusi 37€eMeHTa TIIOMAAA B CPEPUIECKON CrCTeMe KOOPAWHAT, TIe B Kade-

CTBe HaJYaJja KOOPAWHAT MBI BHIOMPAEM TOUKY P, mojgydaem

T =17rcosysind
y = rsinysinf

z=rcosf
TIe r - paccTosgHue MexXay P; m P, 1) - yron Mexay npoeknmeit otrpe3ka Py P, Ha
XOY u ocvio OX. 6 - 3ro yrom, obpazosanubiii ocbio OZ u orpesrkom Py P,. Takum

0o0pa3oM, UCMOIb3Ysl Mpeobpa30BaHne U3 JIEKAPTOBOI CHCTEMBI KOODAWHAT B chepu-

YEeCKYyI0 CHCTEMY KOOPIUHAT, IIOJIy4aeM

dPy = dzodys dze = 12 sin 6 dr df di.
Ucnons3yst 3TO BhIpazkeHne, Mbl UMeeM
(1.4) dPydPy = r? dr sin 0 df dip = 12 dr - dK,

rie dK - 37eMeHT KMHeMATHIecKoil Mepsl B R3.

Kunemarudgeckasi TIOTHOCTh B €BKJIHJIOBOM MPOCTPAHCTBE ObLTa BIIEPBbIE BBEJE-
na [lyankape. B coBpeMeHHO!H TepMHHOJOTHM 3TO Mepa Xaapa TDYTIbl JBUKEHUI
(cABUTOB M BpalleHuil), KOTOpas JelicTByer B mpocrpancTse. Ilycrs R® - eBKII0BO
TPeXMepHOe IIPOCTPAHCTBO, U dK - KuHeMaTu4YecKas JI0OTHOCTh, HODMUPOBAHHAS TaK,
4TO Mepa BCex 110J102KEeHUH OTHOCUTE/ILHO TOYKH pasHa 872, JIpyrumu cioBaMu, Mepa
Bcex nosoxkenuii Tesia D ¢ oobemom V' (D), miis Koroporo D cOnepKUT HEOABUKHY 10
Touky, pasna 872V (D).

Ucnonssys (1.4), mbr MmoxkeM nepenucarsd (1.3) B ciaefyromem Bue:

1 x
(1.5) Fp(7) = o577 r?K(D,r)dr
V(D) Jo
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PACTIPEJIEJIEHUE PACCTOAHUA MEYKJY ABYMSA CJAYUYAUHBIMUA ...

rae K(D,r) - kuHemMaTudeckash Mepa BCEX OPUEHTUPOBAHHBIX OTPE3KOB JJIMHBL T
sexkamux BHyTpu D. Takum 00pa3oMm, MBI OAYYaeM CBsI3b MEXKIY (DYHKIHUEH TIoT-
noctu f,(z) paccrosuus p(Pp, Py) u xunemarndeckoit Mepoit K (D, x):

_ 2’K(D,x)

(1.6) folz) = W

Cileyer orMeTuTh, 9TO MBI MOXKEM BBIYHCIMTH KHHEMATHYECKYIO MEPY BCEX HEODH-
EHTUPOBAHHBIX OTPE3KOB, KOTOPbBIE JiexkaT BHYTpu D, a 3aTeM YMHOXKHUTb Pe3yJbTaT
Ha 2.

IIycts S1 = M S - 06pa3 orpe3ka S npu eBKIUA0BOM aBuzkenwnn. M - rpyrmma Bcex
eBKIMIOBBIX JIBIKeHHH B TpocTpancTee R3. [l JOKaabHO KOMITAKTHON TpyThl M
CYIIECTBYET JIOKATHHO KOHEYHAS Mepa Xaapa, T. €. JOKAJIbHO KOHEYHas, He TOXKJe-
CTBEHHO paBHAas HyJI0 OOpE/IeBCKas Mepa, MHBAPUAHTHAA KAK CJI€BA, TAK U CIPaBa.
O1pe3ok S1 MOXKHO OLIPEJEUTh € IIOMOLIBIO ABYX Koopaunar (7,t), rue v € J (J -
IPOCTPAHCTBO BCEX MPAMBIX B %) cosmeps:KuT oTpesok S, a t - ofHOMEpHast KOOP/IH-
HATA IEHTPA OTpe3Ka S Ha mpamoii v. B mpocrpancrse M ompenenum mepy mo ee

3JIEMEHTY CJIeYIOIHIM 00pPa3oM:
(1.7) m(dSy) = dydt,

rae dvy - JIOKAJbHO KOHEYHAs] MEePa B MPOCTPAHCTBE J, MHBAPUAHTHAS OTHOCUTEIHHO
rpyutst M, a dt - onnomepuas mepa JleGera na . Mepa m(-) Ha3biBaercs KuHema-

TUIeCKOU Mepoit Ha rpytmme M.

2. OCHOBHAS ®OPMVYJIA

B sTom pa3zene npuBenena ocaoBHas (GpopMysa /1Jisi BBIYUCIEHUS KWHEMATHIeCKON
Mmepbl K(D,z) B TepMuHax (bYHKIUM DacrpeeseHus ImHbI xopasl Texa D. Kaxk
uzBecTHO (cM. [1] - [3] mwum [10]), pemeHue 3aJa9u O HAXOXK/ICHHN KUHEMATHIECKO
mepbl K (D, x) 0Tpe3KOB NOCTOSHHON JJIUHBL X, IEJIUKOM JiesKanmx B D, HepocToe u

cymiecTBeHHO 3asucutr or ¢popmbt D. Q4ueBuino, 410
K(D,r)=0, ecmur > diam(D)

rae diam(D) - muamerp D, r.e. diam(D) = max{p(z,y) : x,y € D}, tae p(z,y) -
paccrostaue Mexk 1y Toukamu  u y. CaeaoBarenbHo, TOIhKO cay4ail 0 < r < diam(D)

paccmarpuBaercs B crarbe. Q4UeBUIHO, 9TO B YKA3AHHOM CIIy9ae

(2.1) ko= [ [ da= [ -t
[ x(v)—r)

D] t€(0,
5



H.T. ATAPOH{H, B. XAJIATAH

rae [D] ={y € J:yND # @} - muoxkecTBo npsambix B R3, nepecekaromux Temo D,
x(v)=vND -xopra® D, a

+_Jo ecm x <0

v z, ecim x > 0.
WUssecrno, aro (cm. [1] unu [4])
(2.2) [xay=2avo),  [ay=3s)
IO3TOMY,
@3) KO = [ xt)dv-r [ =22V (D)-G)-r FSD) - For)]

x(y)>r x(y)>r

rue
2.4 G(x) = d
(2.4) () / X

u Fp() - dyukuus pacupeznesenus JMHbl XOp/bl Teaa D, onpeeisemMas Kak

(2.5) Fp(y) = FS?D) '/( - dry

(rak Kak f[ D] dy =% - S(D)). Teneps nokazem cieyiomyio dpopmyiy:

(2.6) G(z) = gS(D) /0 “ fp(u) du,

rae fp(x) - dysknus mrorHocTH AnuHLL Xopasl Tena D, 1. e. fp(x) = FL(x) - nepsas
nupoussoanas GyHKuua pacupenenenusd. Tenepp BbMUCIUM NPOU3BOAHYIO GyHKIMM
G(z). Nmeem

G(z + Az) — G(z) 1 /
- d
Az vl x(y) dvy
_ T Fp(x + Az) — Fp(x)
= (z + 0Ax) 5 S(D) A .

Torna, npennomnaras, uro dbyHukuus pacupenenenus Fp(x) obiagaer mioTHOCTHIO

fp(z), mpn Az — 0, nomyuum G'(z) = §S(D) x fp(x), orkyma crenyer

(2.7) G(z) = G(0) + gS(D) /0 “ fo(u) du = gsw) /0 “ fp(u) du,

nockoabKy G(0) = fx(7)<oX(’7) d~y = 0. Tenepn npeobpasyem dopmyiy (2.7) myrem
HHTEIrPUPOBAHUA 110 IaCTAM:
™

(2.8) G(z) = 2S(D) /Owufp(u)du = —gS(D) /Owud[l — Fp(u)]

= —ng(D) [1— Fp(z)] + ~S(D) /0 £[1 — Fp(u)] du.



PACTIPEJIEJIEHUE PACCTOAHUA MEYKJY ABYMSA CJAYUYAUHBIMUA ...

Hakoner, noacrasiss (2.8) B dbopmyny (2.3) maa K(D,r), nupuxoaum K OCHOBHOM
dopmyie:
(2.9) K(D,7) = 2xV/(D) - 5 8(D) / [l — Fp(u)]du.

0

Teopema 2.1. /[as arboz0 meaa D 6 R

K(D,r) = 2rV (D) — gS(D) /0 [ Fp(w)du.

Taxkum obpaszom, ecaiu 3aj1aHa sisHast bopma dyakmmn Fp(u) aus rena D, 10 MOXK-
HO BBIBECTHU ABHOE BbIPazkeHue /I KuHeMaTndeckoil Mepet K (D, r) ¢ noMorupio (2.9).
Dopwmysia (2.9) ObLia MOJIyYeHa /s HEOPUEHTUPOBAHHBIX OTPE3KOB. [Ijig oprueHTHpo-
BaHHBIX OTPE3KOB 3Ty GopMyIty ciaeayer yMHOKNUTE Ha 2. Ilogcrasus (2.9) B (2.3) (n
YMHOXKHB Ha 2), HOJIy9HM OCHOBHYIO (DOPMyITy 9TOi cTaThu:

(2.10) 1) = AnV (D)r* + 7r2S(D) [, Fp(u) du — r37 S(D)
V(D)

TMonyuennas dpopMysa MO3BOMSIET pacCUnTaTh KNHEMaTnueckyto Mepy K (D,r) ¢ mo-

MOIIBIO (DYHKIIUU PaCIPeIesIeHns JIUHBI XOPIbI.

3. CJIVUAM IIAPA B R?

B ciyuae mapa D = By ¢ amamerpom d, V(Bq) = twd®, S(By) = wd?*. Iosromy,

WCTOIb3ys Teopemy 2.1, mosydaem

273 242 pr 272
(3.1) K(Bg,r) = md +Z d / Fp(u)du — rmd .
3 2 /o 2

Hmuaa xopapl OyHKINS pacupeeeHus JIUHbI XOPAbI JJd mapa By nMeeT cliemyro-

it sug (em. [6], [7] niu [8]):

0, ecsim y <0
(3.2) Fgp,(y) =< (y/d)?, ecrm 0 <y <d
1, ecau y > d.

CrenoBarenbho, noacrasiss (3.2) B (3.1), nomydaem
n2d® w3 rnld?
5 76 2
IMoncrasnss sror pesyabrar B (1.6), moxyanm HyHKINIO IIOTHOCTH PACCTOSHAS MEXK-

(3.3) K(Bg,r) =

JIy IBYyMsI TOYKAMHU, BEIODAHHBIE B IIape IUaMeTpoM d

24x% 1225 3623
f/)(x): d3 + dﬁ - d4 .

IIpumenenne aBHOi dbopmbl f,(x) (wmm Fp(z)) nna mekoroporo Tena D naer mam

BO3MOZKHOCTb MCIIOJIb30BaTh 31U GopMbl B Kpucraiiorpaduu (cm. [9]).
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H.T. ATAPOH{H, B. XAJIATAH

Abstract. In the present paper a formula for calculation of the density function
fo(z) of the distance between two independent points randomly and uniformly chosen
in a bounded convex body D is given. The formula permits to find an explicit form
of density function f,(z) for body D with known chord length distributions. In
particular, we obtain an explicit expression for f,(z) in the case of a ball of diameter
din R3.
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Abstract, One of the main problems in prediction theory of second-order stationary
processes, called direct prediction preblem, is 1o describe the agymplotic behavior of
the best linear mean squared one-step ahead prediction error variance in predicting
the value X(0) ol a stationary process X(t) by the observed past of finite lengthn
as 1 goes to infinity, depending on the regularity nature (deterministic or non-deter-
ministic) of the underlying observed process X(¢). In this paper, we obtain sullicient

conditions for hyperbolic decay of prediction ervor variance for deterministic stationary
sequences, generalizing a result obtained by M. RBosenblatt {Some Purely Deterministic
Processes, J. of Math. and Mech,, 6(6), 801-810, 1957).

MSC2010 numbers: 60G10, 60G25, 62M15, 62M20(.
Keywords: prediction problem; deterministic stationary process; singular spectral
density; Rosenblatt’s theorem.

1. INTRODUCOTION

1.1. The prediction problemn. One of the main problems in prediction theory of
second-order stationary processes, called direct prediction problem, is to describe
the asymptotic behavior of the best linear mean squared one-step ahoad prediction
error variance in prediciing the value X (0) of the stationary process X (2) by the
ohsorved past of finite longth n as n goes to infinity, depending on the regularity
nature {deterministic or nondeterministic} of the underlying observed process X (2).

Let X(2), ¢t € Z = {0,£1,...}. be a wide sense stationary stochastic sequence
with spectral function F'(A) and spectral density function f(A), A € A = [—7, 7).
Denote hy o2 (F) the best linear mean squared one-step ahead prediction error
variance in predicting the random variable X (0) by the past of X (¢) of finite length
n X(t)., —n < ¢ < —1, and let ¢%(F) = 02 (F) be the prediction error variance
of X(0) by the entire infinite past: X(2), ¢t < —1. Define the relative prediction
error 8, (F) = o2(F) — ¢*(F), and ohserve that it is nonnegative and tonds to
zero as 1 — oo. The direct predietion problem is to describe the rate of decrease
of 3, (F) to zero as n — co, depending on the regularity nature (deterministic

9
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or nondeterministic) and on the dependence structure of the underlying observed
process X (t).

Notice that the aforementioned prediction problem goes back to the classical
works by A. Kolmogorov, G. Szegé and N. Wiener, and later for different classes
of stationary models has been considered by many authors. The problem has been
studied most intensively for nondeterministic processes, that is, in the case where
the prediction error is known to be positive (¢2(F) > 0) (see Baxter [2], Devinatz
[9], Doob [10], Golinski [14], Grenander and Rosenblatt [17], Grenander and Szegd
[18], Helson and Szegé [19], Hirshman [21], Ibragimov [23], Ibragimov and Solev
[25], Kolmogorov [27], [28], Pourahmadi [29], Rozanov [32], Wiener [34] and others
(more references can be found in Bingham [5] and Ginovyan [13]). This is not
surprising because from application point of view the nondeterministic models are
more realistic and represent great interest.

The case of deterministic processes, that is, when o?(F) = 0, represents mostly
theoretical interest. However, it is also important from application point of view.
For example, as it was pointed out by M. Rosenblatt [31], situations of this type
arise in Neumann’s theoretical model of storm-generated ocean waves. Also, such
models are of interest for meteorology, because the meteorological spectra often
have a gap in the mesoscale region (see Fortus [11]).

There are only few works devoted to the study of asymptotic behavior of prediction
error for deterministic processes. It goes back to the classical work by M. Rosenblatt
[31], where using the technique of orthogonal polynomials and Szegd’s results, M.
Rosenblatt has investigated the asymptotic behavior of the prediction error variance
0, (F) = 02 (F) for discrete-time deterministic processes in the following two cases:

(a) the spectral density f(\) is continuous and vanishes on an interval,

(b) the spectral density f(A) has a high order contact with zero.

Later the problem (a) was studied by Babayan [3], [4], Davisson [8], and Fortus
[11], where some generalizations and extensions of Rosenblatt’s result have been
obtained.

In this paper we consider the case (b), that is, when the spectral density f(\) has
a high order contact with zero, and obtain sufficient conditions for hyperbolic decay
of prediction error variance, generalizing the corresponding result of Rosenblatt [31],
obtained in this case.

Throughout the paper we will use the following notation. The letters C, ¢, M and
m with or without indices are used to denote positive constants, the values of which

can vary from line to line. For two functions f(A) and g(A), A € A, we will write

10



ON HYPERBOLIC DECAY OF PREDICTION ERROR ...

~ . fO N
) N g(A) if imyx, S5y = ¢ ¢ # 0, and f(X) N

notation we will use for sequences: for two sequences {a,, > 0,n € N={1,2,...}}

g(A) if ¢ = 1. A similar

and {b, > 0,n € N}, we will write a,, = b, if lim,,_, ‘g—: =¢, c#0, and a, ~b, if
c=1.

The paper is organized as follows. In the remainder of this section we introduce
the model of interest - a stationary process, recall some key notions and results
from the theory of stationary process, and state the infinite prediction problem.
In Section 2 we state the finite prediction problem, present a formula for finite
prediction error in terms of orthogonal polynomials on the unit circle, and state
the Kolmogorov-Szeg6 theorem. Section 3 is devoted to the asymptotic behavior
of the finite prediction error for nondeterministic processes. Here we briefly review
some important known results. Section 4 is devoted to the asymptotic behavior of
the finite prediction error for deterministic processes. Here we state and prove a

number of new theorems.

1.2. The Model. In this subsection we introduce the model of interest - a stationary
process, recall some key notions and results from the theory of stationary process
(Kolmogorov’s isometric isomorphism theorem, spectral representations of the
covariance function and the process, etc.)

Let {X(t), t € Z} be a centered, real-valued, discrete-time, second-order stationary
random process defined on a probability space (2, F, P) with covariance function
r(t), that is, E[X(t)|? < oo, IE[X(t)] = 0, 7(t) = E[X(t)X(0)], t € Z, where [E[/]
stands for the expectation operator with respect to measure P.

By the well-known Herglotz’ theorem (see [33], p. 421), there is a finite measure y
on (A,B(A)), where A = [—7, 7] and B(A) is the Borel o-algebra on A, such that for

any t € Z the covariance function r(t) admits the following spectral representation:

(1.1) r(t) = /7r e M du(N).

—T

The measure g in (1.1) is called the spectral measure of the process X (t). The
function F(A\) = p[—m,A], A € A, is called the spectral function of the process
X(t). If F(X) is absolutely continuous (with respect to Lebesgue measure), then
the function f(\) = dF(\)/d\ is called the spectral density of the process X (t).
Notice that f(A) > 0 and f(\) € L'(A). The set Ef = {e™* : f(\) > 0} is called
the spectrum of the process X (t).

We assume that X (t) is a non-degenerate process, that is, Var[X (0)] = E| X (0)|? =
r(0) > 0. Also, to avoid the trivial cases, we will assume that the spectral measure

11
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w1 is non-trivial, that is, u has infinite support. We write

A
(1.2) PO = pac) + s = [ flu)du+ s,

so f(X) is the spectral density and ug is the singular part of u, that is, us =
usc + ppp, where i = pac + psc + ppp is the Lebesgue decomposition of p into
an absolutely continuous (with respect to Lebesgue measure) part (pac), a singular
continuous part (usc), and a pure point part (upp). The same representations we
have also for spectral function F'(\).

By the well-known Cramér theorem (see [33], p. 430), for any stationary process
{X(t), t € Z} with spectral measure u there exists an orthogonal stochastic measure
Z = Z(B), B € B(A), such that for every ¢t € Z the process X (¢) admits the
following spectral representation:

(1.3) X(t) = /7r eMNdZ(N).

Moreover, IE [|Z(B)[?] = u(B) for every B € B(A). For definition and properties of
orthogonal stochastic measures and stochastic integral in (1.3) we refer, e.g., [33],
Chapter VI.

Given a probability space (€, F, P), define the L?-space of random variables

{=¢(w), E[]] = 0:

(1.4 2(P) = {&: 6P = [ le@iPir() < o}

Then L?(P) becomes a Hilbert space with the following inner product: for &7 €
L*(P)

(15) (€)= Bfer] = [ 6P,

For a,b € Z, —00 < a < b < 0o, we define the space H’(X) to be the closed linear
subspace of the space L?(P) spanned by the random variables X (t,w), t € [a, b]:
(1.6) H(X) =3p{X(t), a <t <b}r2(p).-

Observe that the subspace H2(X) consists of all finite linear combinations, Y, _; cx X ()
(a <t <b, k,n €N), as well as, their L?(P)-limits.

Definition 1.1. The space H(X) = H>_(X) is called the Hilbert space generated
by the process X (t), or the time-domain of X (t).

Consider the weighted L2-space L2(u) of complex-valued functions ¢()\), A € A,
defined by
(1.7 20 = {000+ 1ol = [ 1eIPau(3) < oo}

—T

12
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Then L2(u) becomes a Hilbert space with the following inner product: for ¢, €
L?(p)

(1.8) o= [ " VBN,

For a,b € Z, —00 < a < b < oo define the space H’(u) to be the closed linear
subspace of the space L?(u) spanned by the exponents e, t € [a, b]:

(1.9) HY(p) = sp{e™, a <t < b}z

Definition 1.2. The Hilbert space H () := H>_ (1) is called the frequency-domain
of the process X (t).

Kolmogorov’s Isometric Isomorphism Theorem states that for any stationary process
X (t) with spectral measure p there exists a unique isometric isomorphism V between
the time- and frequency-domains H(X) and L?(u1), such that V[X(t)] = €** for
any t € Z. In particular, we have

1. For any random variable Y € H(X) there exist a unique function ¢()\) € L?(u),

such that Y admits the spectral representation
(1.10) Y = w(N)dZ(N),

where Z is the orthogonal stochastic measure in the spectral representation (1.3)
of X (t), and for any function ¢(\) € L?(u) the stochastic integral (1.10) defines an
element Y € H(X).

2. For any Y; € H(X) and ¢;(\) = V[V;] € L*(pn), i = 1,2,

(1.11) (Y1,Y2) = (1, 92) -

3. Any linear problem in the time-domain H(X) can be translated into one in
the frequency-domain L?(p), and vice versa. This fact allows to study stationary

processes using analytic methods.

1.3. The infinite prediction problem. Observe first that since by assumption
X(t) is a non-degenerate process, the time-domain H(X) of X (¢) is non-trivial,

that is, H(X) contains elements different from zero.

Definition 1.3. The space H}_,(X) is called the finite history, or past of length
n and present of the process X (u) up to time ¢. The space H;(X) = H! (X)) is
called the entire history, or infinite past and present of the process X (u) up to time

t. The space
(1.12) H_ (X)=nH" (X)

is called the remote past of the process X (u).
13
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It is clear that
H o(X)C---CcH. (X)cH'I(X)C---Cc H(X), TeN.

The Hilbert space setting provides a natural framework for stating and solving the
problem of predicting future values of the process X (u) from the observed past
values. Assume that a realization of the process X (u) for times u < t is observed
and we want to predict the value X (¢ 4+ 7) for some 7 > 1 from the observed
values. Since we will never know what particular realization is being observed, it is
reasonable to consider as a predictor X (¢, 7) for X (¢+7) a function of the observed
values, g({X (u),u < t}), which is good “on the average”. So, as an optimality
criterion for our predictor we take the L?-distance, that is, the mean squared error,
and consider only the linear predictors. With these restrictions, the infinite linear
prediction problem can be stated as follows.

The infinite linear prediction problem. Given a “parameter” of the process
X (u) (e.g., the covariance function r(t) or the spectral function F()\)), the entire
history H! (X)) of X(u), and a natural number 7 € N, find a random variable

~

X(t,7) such that

~ ~

a) X(t,7)is linear, that is, X (¢,7) € H. (X)),
b) )?(t, 7) is mean-square optimal (best) among all elements Y € H! __(X),

that is, X (¢,7) minimizes the mean-squared error || X (t + ) — Y||2L2(P) :

(113) X4 7) = RO ey = i X7 = Yy

The solution - the random variable X(tﬂ') satisfying a) and b), is called the best
linear T-step ahead predictor for an element X (t + 7) € H(X). The quantity

(L14)  o®(r) = [|X(t +7) = X (&, 7)l[Z2(py = IX(E+ DLz (p) — 1X(E D2

which is independent of ¢, is called the prediction error (variance).
The advantage of the Hilbert space setting now becomes apparent. Namely, by
the projection theorem in Hilbert spaces (see [29], p. 312), such a predictor exists,

is unique, and is given by
(1.15) X(t,7)=PX(t+71),
where P, := P(_ ) is the orthogonal projection operator in H(X) onto H' _(X).

Remark 1.1. The reason for restricting attention to linear predictors is that
the best linear predictor )A((t,r), in this case, depends only on knowledge of the
covariance function r(¢) or the spectral function F'(X\). The prediction problem

becomes much more difficult when nonlinear predictors are allowed.
14
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1.4. Deterministic and nondeterministic processes. From prediction point of
view it is natural to distinguish the class of processes for which we have error-free
prediction, that is, 02(7) = 0 for all 7 > 1, or equivalently, )?(t,T) = X(t+ 7) for
all t € Z and 7 > 1. In this case, the prediction is called perfect. It is clear that a
process X (t) possessing perfect prediction represents a singular case of extremely
strong dependence between the random variables forming the process. Such a process
X(t) is called deterministic or singular. From the physical point of view, singular
processes are exceptional. From application point of view it is of interest the class
of processes for which we have o2(7) > 0 for all 7 > 1. In this case the prediction
is called imperfect, and the process X (¢) is called nondeterministic.

Observe that the time-domain H(X) of any non-degenerate stationary process
{X(t), t € Z} can be represented as the orthogonal sum H(X) = H1(X) ®
H_(X), where H_(X) is the remote past of X (¢) defined by (1.12), and H;(X)
is the orthogonal complement of H_.,(X). So, we can give the following geometric
definition of the deterministic (singular), nondeterministic and purely nondeterministic

(regular) processes.

Definition 1.4. A stationary process {X (¢), t € Z} is called
o deterministic or singularif H_.(X) = H(X), thatis, H. __(X) = H* __(X)
forall t,s € Z,
e nondeterministic if H_ (X)) is a proper subspace of H(X), that is, H_.(X) C
H(X),
e purely nondeterministic (PND) or regular it H_(X) = {0}, that is, the
remote past H_o,(X) of X(¢) is the trivial subspace, consisting of the

singleton zero.

The next result, known as Wold’s decomposition theorem (see [1], p. 65), provides
a key step for solution of the infinite prediction problem in the time-domain setting,
and essentially says that any stationary process can be represented in the form of a
sum of two orthogonal stationary components, one of which is perfectly predictable
(singular component), while for the other (regular component) an explicit formula

for the predictor can be obtained.

Theorem 1.1 (Wold’s decomposition). Every centered non-degenerate discrete-

time stationary process X (t) admits a decomposition
(1.16) X(t) = Xs(t) + Xr(t),

where
15
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(a) the processes Xr(t) and Xg(t) are stationary, centered, mutually uncorrelated
(orthogonal), and completely subordinated to X (t), that is, H' _(Xg) C
Ht (X)) and H' __(Xs) C H' _(X) for all t € Z.

(b) the process Xs(t) is deterministic (singular),

(c) the process Xg(t) is purely nondeterministic (reqular) and has the infinite

moving-average representation:
(1.17) Xp(t) =Y becolt — k), Y |bx|* < o0,
k=0 k=0

where go(t) is an innovation of Xgr(t), that is, eo(t) is a standard white
noise process, such that H' __(Xgr) = H' (g0) for all t € Z.
(d) the representation (1.16) is unique.

The next theorem contains spectral characterizations of deterministic, nondeterministic

and purely nondeterministic processes (see [24], p. 35-36, [32], p. 58, 64)).

Theorem 1.2. Let X (t) be a discrete-time non-degenerate stationary process with
spectral function F(X) = Fr(\) + Fs(\) = fi‘w fuw)du + Fg(X). The following
assertions hold.

(a) (Kolmogorov-Szegé alternative). Either

H° _(Fgr) = H(FR) & log f(\) d\ = —c0 & 0*(f) = 0 & X (t) is deterministic,

—T

or else

us

H° (FRr) # H(FR) < log f(A) d\ > —c0 & d*(f) > 0 < X(t) is nondeterministic.

(b) The process X (t) is reqular (PND) if and only if it is nondeterministic and

Remark 1.2. The condition

(1.18) /Tr log f(A\) dA > —o0

is called Szegd condition. Observe that (1.18) is satisfied if and only if log f €
LY(A), since log f(A) < f(\) and f(\) € L'(A). Also, the Szegd condition (1.18)
is connected with the character of zeros of the spectral density f(\), and does
not depend on the differential properties of f(\). For example, for any o > 0
the function f(A\) = exp{—|\|~} is infinitely differentiable, for oo < 1 the Szegd
condition is satisfied, and hence a stationary process X (t) with this spectral density
is nondeterministic, while for & > 1 the Szeg6 condition is violated, and X (t) is
deterministic (see [30], p. 151, [29], p. 68).

16
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Remark 1.3. A stationary process X (t) is deterministic if either it has pure
discrete spectrum, or pure singular spectrum, or the Szegé condition is violated:
log f ¢ L'(A). Thus, for X(t) to be nondeterministic, its spectral density f(\)

cannot be zero too often (see [29], p. 68).

2. THE FINITE PREDICTION PROBLEM

In practice we never will have the observed entire infinite past, instead will be
available only the finite past.

Suppose we have observed the values X(—n),...,X(—1) of a centered, real-
valued stationary process X (t) with covariance function r(¢) and spectral function
F()), the one-step ahead finite prediction problem in predicting a random variable
X (0) based on the observed values X (—n), ..., X (—1) is: find the orthogonal projection
X,.(0) = Pr_,,,—11X(0) of X(0) onto the space H, (X) = H-N(X) =sp{X(t), —n <
t < —1}, that is, find constants é, = &, k = 1,2,...,n, that minimize the one-

step ahead prediction error variance o2 (F) = o2(1, F):

n 2
2 _ : 2 .
OAF) = min IX(0) ~l7a(p) = min| X(0) = e X (k)
k=1 L2(P)
n 2
(2.1) = HX(O)—ZékX(—k) =[1X(0) = Xa(0)[[Z2(p)-
k=1 L2(P)

If such constants ¢; can be found, then the best linear 1-step ahead predictor )?n(O)
of a random variable X (0) based on the observed finite past: X(—n),..., X(—1)

can be computed by

(2.2) Xn(0) =Y X (=k), & = xn,
k=1

2

and the mean-squared prediction error o;

(F) can be computed by formula (2.1).
Using Kolmogorov’s isometric isomorphism V' : X(t) <+ e between the time-

and frequency-domains H(X) and L?(F), in view of (2.1), for o2 (F) we can write

= min 1-— ckefi“
{Ck} [W Z

L2(P) k=1

2 2

0%(F) = min dF()\)

n {Ck}

min/
{Ck} —T

where Q,, = {qn : qn(2) = Xj_y k2™ ¥, co = 1} stands for the set of polynomials

X(0) = > exX(—k)
k=1

n
ezn)\ _ § ckei(n—k)A
k=1

(2.3)

2
dF(A\) = min / n e 2dF A),
( ) {gn€Q.} 77r|q ( )| ( )

of degree n with coefficient of the leading term equal to 1.
17
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Thus, the problem of finding o2(F) becomes to the solution of the following
minimum problem:
(2.4) / Tl (@2AF(A) = min, gn(2) € On.
The polynomial p,(z) = p,(z, F) that solves the minimum problem (2.4) is called
the optimal polynomial for F(X) in the class Q,,. This minimum problem was solved
by G. Szego (see [18], Section 2.2) by showing that the optimal polynomial p,(z, F)
exists, is unique and can be expressed in terms of orthogonal polynomials ¢, (z),
n € Zy ={0,1,2,...}, on the unit circle T = {z € C : |z| = 1} with respect to
F(N).

Recall that the system of orthogonal polynomials {¢,,(2) = ¢, (2; F), z = e, n €

Z.} is uniquely determined by the following conditions:

(i) pn(z) = Kn(F)z™ 4 lower order terms
is a polynomial of degree n, in which the coefficient x,, = k,(F) is real
and positive;
(ii) for arbitrary nonnegative integers k and j

1 [" — o |1, fork=j Y
o ﬂ%ﬁk(z)%(z)dF(A)cskg{ 0 fork£j ¢

Theorem 2.1 (Szegd theorem). The optimal polynomial for F(\) in the class Q,,,
that is, the polynomial p,(z) = pp(z, F) that solves the minimum problem (2.4) is
given by p,(2) =k, (F)pn(2), and the minimum itself is equal to r, 2(F). Thus,
we have

(2.5) 02(F)= min / |qn(ei’\)|2dF(>\):
{an€ln} J 1«

_ [ Ipn(e™, F)|* dF()) = K;2(F).

Remark 2.1. Denote Q;, = {qn : gn(2) = > j_y k2" ¥, ¢;, = 1}. Then we have
(see [18], Section 3.1):

. 4 i 2 g /i 2
20) oi(F)= min [ |aNdF0) = [ e B ap),

where p (2) = pn(z, F) is the optimal polynomial for F()\) in the class QF.

Remark 2.2. From the obvious embedding Q;, C Qy, 1, it follows that the sequence
{o2(F), n € N} is non-increasing in n: o2 | (F) < o2(F). Also, it follows from (2.5)

that o2 (F) is a non-decreasing functional of F(\):

(2.7) 02(F)) <o02(Fy) when Fi(\) < Fy()\), AEA.
18
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Indeed, by the definition of optimal polynomials p,,(z, F1) and p,,(z, F3), corresponding
to spectral functions F and Fb, respectively, we have

o2(F) = / pa(e, F) Py (N) < / pn (e, Fy)|” dFy (M)

—T —T

< /W |pn(e”,F2)|2dF2(A) = 0%(F).

The finite prediction problem is to describe the asymptotic behavior of o2 (F)
as the length of the observed past increases (n — oo). The problem was solved by
G. Szegb in 1915 in the special case where F(\) is pure absolute continuous, that
is, Fs(A) = 0, and by A. Kolmogorov in 1941 in the general case (see, e.g., [18],
p. 44 or [22], p. 49). The solution is given in the theorem that follows, known as

Kolmogorov-Szegd theorem.

Remark 2.3. If F()\) is purely absolutely continuous, that is, dF'(\) = f(\)dA,

then instead of 02 (F) and 0%(F) we will write 02 (f) and o2(f), respectively.

Theorem 2.2 (Kolmogorov-Szegd theorem). For any non-trivial spectral function

F(X\) the following limiting relation hold:
(2. lim 02 (F) = 0*(F) = o*(f) = 26G(),

n—oo
where f(\) is the spectral density, that is, the derivative of the absolutely continuous
part of F(\), and G(f) is the geometric mean of f(\), given by
1T . 1
29) Gf) = exp{% ™ log F(A) dA} if logfe L'(A)
otherwise.

Define the relative prediction error 6, (F) to be
(2.10) 5u(F) := 02(F) — o?(F).

Observe that 0, (F) > 0 and 6,(F) — 0 as n — oo. Note that if the underlying
process X (t) is deterministic, then §,(F) = o2 (F).

The problem of interest is to describe the rate of decrease of relative prediction
error 0, (F) to zero as n — oo, depending on the regularity nature (deterministic
or nondeterministic) and the dependence (memory) structure of the model X ().
This problem we discuss in Section 3 for nondeterministic processes and in Section

4 for deterministic processes.

3. ASYMPTOTIC BEHAVIOR OF THE PREDICTION ERROR VARIANCE FOR

NONDETERMINISTIC PROCESSES

In this section we study the asymptotic behavior of the finite prediction error

for nondeterministic processes, and review some important known results.
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We assume that the model process X (t) is regular, or equivalently, is purely
nondeterministic (PND), that is, X (¢) has a non-trivial spectral function F()\) =
f:\ﬂ f(u)du + Fs(X\) with dFs(\) = 0 and In f(\) € L*(A), and describe the rate
of decrease of relative prediction error 4, (F') to zero as n — oo, depending on the
dependence (memory) structure of the model X (¢) and the smoothness properties

of its spectral density f(A).

3.1. Asymptotic behavior of §,(f) for short-memory processes. Recall that
a short memory processes is a second order stationary processes possessing a
spectral density f(A) which is bounded away from zero and infinity, that is, there
are constants m and M such that 0 < m < f(A) < M < oco. A typical short memory
model example is the stationary autoregressive moving average (ARMA)(p, ¢) process
X (t) defined to be a stationary solution of the difference equation: ¢,(B)X (t) =
84(B)e(t), t € Z, where 9, and 6, are polynomials of degrees p and g, respectively,
B is the backward shift operator defined by BX (t) = X(t — 1), and {&(t),t € Z} is
a discrete-time white noise, that is, a sequence of zero-mean, uncorrelated random
variables.

We first give a result that contains a necessary and sufficient condition for exponential
rate of decrease to zero for 0, (f) = o2 (f)—o?(f). Notice that the first result of this
type goes back to the paper by Grenander and Rosenblatt [17]. The next theorem
was proved by Ibragimov [23] (see also Golinskii and Ibragimov [15]).

Theorem 3.1. A necessary and sufficient condition for
(3.1) Sn(f)=0(q"), q=e* b>0, n— oo

is that f(X\) is a spectral density of a short-memory process, and 1/f(\) € A,
where Ay is the class of 2m—periodic continuous functions p(\), A € R, admitting

an analytic continuation into the strip z = A + iy, —0o < A < 00, |u] < b.

Observe that (3.1) will be true for all b > 0 if and only if the analytic continuation
of f()) is an entire function of z = A + ip.
Thus, to have exponential rate of decrease to zero for 0, (f) the underlying model
should be short-memory process with sufficiently smooth spectral density f()).
Now we give a result that contains a necessary and sufficient condition for

hyperbolic rate of decrease to zero for d,,(f):
(3.2) n(f)=0(n7"), >0, n—oc.

Bounds of type (3.2) with v > 1 for different classes of spectral densities were
obtained by Baxter [2], Devinatz [9], Geronimus [12], Grenander and Rosenblatt
20
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[17], Grenander and Szegd [18], and others (see [13] and references therein). The
most general result in this direction has been obtained by Ibragimov [23]. To state
Ibragimov’s theorem, we first introduce the Hoélder class of functions.

For a function ¢(A) € LP(A), we define its LP-modulus of continuity by

(3.3) wp(p;d) = sup |lp(-+1t) — ()|, d>0.
0<|t|<s

Given numbers 0 < a« < 1, r € Zy :={0,1,2,...}, and p > 1, we put v := 71 + «.
The Holder class of functions, denoted by H)(y), is defined to be the set of those
functions ¢()\) € LP(A) that have r-th derivative (") ()\), such that ¢ (\) € LP(A)
and w,(¢(";8) = O(3%) as § — 0.

Theorem 3.2. A necessary and sufficient condition for
(84) 6,(f)=0(n7), vy=2(r+a)>1;0<a<l,re€Zi,asn— o0
is that f(\) is a spectral density of a short-memory process belonging to Ha (7).

Remark 3.1. It follows from Theorem 3.2 that if 6,(f) = O(n~7) with v > 1,
then the underlying model X (t) is necessarily a short-memory process. Moreover,
as it was pointed out by Grenander and Rosenblatt [17] (see, also, Devinatz [9], p.
118), if the model is not a short-memory process, that is, the spectral density f(\)
has zeros or is unbounded, then, in general, we cannot expect 0,,(f) to go to zero

faster than 1/n as n — co. This question we discuss in the next subsection.

3.2. Asymptotic behavior of §,(f) for long memory and antipersistent
processes. Recall that a second order stationary process X (t) is said to be anti-
persistent if the spectral density f(A) vanishes at frequency zero: f(0) = 0. And,
we say that X (¢) displays long memory or long-range dependence if the spectral
density f()\) has a pole at frequency zero, that is, it is unbounded at the origin.

A well-known example of processes that displays long memory or is anti-persistent
is an autoregressive fractionally integrated moving average ARFIMA (p, d, q) process

X (t) defined to be a stationary solution of the difference equation:
Up(B)(1 — B)'X(t) = 0,(B)e(t), d<1/2,

where B is the backward shift operator, €(¢) is a discrete-time white noise, and v,
and 6, are polynomials of degrees p and g, respectively. The spectral density f(\)
of X (t) is given by

(3.5) FO) =11 =e ?[2h(N), d<1/2,
21



N. M. BABAYAN, M. S. GINOVYAN

where h()) is the spectral density of an ARMA (p, q) process. Note that the condition
d < 1/2 ensures that ffﬂ f(A)dA < oo, implying that the process X (¢) is well defined
because E|X (t)> = [T f(A)dA.

Observe that for 0 < d < 1/2 the model X (¢) specified by (3.5) displays long-
memory, for d < 0 it is anti-persistent, and for d = 0 it displays short-memory. For
d > 1/2 the function f(A) in (3.5) is not integrable, and thus it cannot represent a
spectral density of a stationary process (see Brockwell and Davis [7], Section 13.2).

The following theorem was proved by A. Inoue (see [26], Theorem 4.3).

Theorem 3.3. Let f(\) have the form (3.5) with 0 < d < 1/2, where h(\) is the
spectral density of an ARMA(p,q) process. Then
d2

(3.6) 6n(f)~; as n — 0.

Another well-known example of processes that displays long memory or is anti-
persistent is the Jacobian model. We say that a stationary process X (¢) is a Jacobian
process, and the corresponding model is a Jacobian model, if its spectral density

f(A) has the following form:
(3.7) FO) =h) I e — e |72%,
k=1

where h()) is the spectral density of a short-memory process, the points Ay, € [—, 7]
are distinct, and di, < 1/2, k=1,...,m.

The asymptotic behavior of 4, (f) as n — oo for Jacobian model (3.7) has been
considered in a number of papers (see Golinskii [14], Grenander and Rosenblatt
[17], Ibragimov [23], Ibragimov and Solev [25].)

The following theorem was proved in Ibragimov and Solev [25].

Theorem 3.4. Let f()\) have the form (3.7), where h()) is the spectral density of a
short-memory process, the points A\ € [—m, 7| are distinct, and d, < 1/2 (dy, #0),

k=1,...,m. If f(\) satisfies the Lipschitz condition with exponent o > 1/2, then

(3.8) 5n(f) ~ % a8 n — oo,

More results for this case can be found in Ginovyan [13] and in the references

therein.

4. ASYMPTOTIC BEHAVIOR OF THE PREDICTOR ERROR FOR DETERMINISTIC
PROCESSES

4.1. Background. In this section we discuss the asymptotic behavior of the predictor

error for deterministic processes. We assume that the process X (t) possesses a
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spectral density f(\) and the Szegd condition (1.18) is violated. As it was mentioned
in Introduction, this problem was first studied by M. Rosenblatt [31], where using
the technique of orthogonal polynomials and Szegd’s results, M. Rosenblatt has
investigated the asymptotic behavior of the prediction error 6, (f) = o2(f) in the

following two cases:

(a) the spectral density f(\) is continuous and vanishes on an interval,
(b) the spectral density f(A) has a high order contact with zero, so that the

Szeg6 condition is violated.

For the case (a), in [31] M. Rosenblatt proved the following result.

Theorem 4.1. Let the spectral density f()\) of a discrete-time stationary process

X (t) be positive and continuous on the interval (1/2 — a,7/2 + a), 0 < a < m,

2

and zero elsewhere, then the prediction error o,

(f) approaches zero exponentially

as n — 0o. More precisely, the following asymptotic relation holds:

2n+1
(4.1) Su(f) == 02(f) = (sin%) as n — oo,
implying that
: in _ o &
(4.2) nh_)rréo(an(f)) =sin .

Later this result has been generalized by Babayan [3], [4] to the case of several
arcs, without having to stipulate continuity of the spectral density f(\) (see also
Davisson [8]). To state the corresponding result we first introduce the concept
of a transfinite diameter of a set (see, e.g., Goluzin [16], Chapter 7). Let E be
a bounded closed set in the complex plane. Denote by T),(z, E) the Chebyshev
polynomial which deviates least from zero on the set E in the uniform metric. We
set C,(E) = max.cp [Ty (2, E)|. Then lim, o (C,(E))Y/" =: 7(E) exists and is
called the transfinite diameter (or Chebyshev constant, or capacity) of the set E.

Remark 4.1. Notice that the transfinite diameter of the unit circle T is equal
to 1 (see Goluzin [16], Section 7.1), and the transfinite diameter of an arc of T
of length 2o (0 < a < ) is equal to sin(a/2) (see Rosenblatt [31]). Thus, the
right hand side of (4.2) is the transfinite diameter of the closure of the spectrum
Ef={e?: X\ € [r/2— a,7/2+ a]} of the process X (t).

Using some results from geometric function theory, in [4] was proved the following

theorem, extending Theorem 4.1.

Theorem 4.2. Let the spectrum E¢ = {e** : f(\) > 0} of the process X (t) consist

of a finite number of arcs of the unit circle. Then the following asymptotic relation
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holds:
(4.3) lim (o, ()™ = 7(Ey),

n—oo

where E¢ is the closure of Ey.

Remark 4.2. It follows from Theorem 4.2 and Remark 4.1 that if the spectral
density f(\) vanish on an interval, then the prediction error o, (f) decreases to
zero exponentially, that is, o,(f) = O(e7®"), b > 0 as n — oo. Conversely, a
necessary condition for o,(f) to tend to zero exponentially is that f(\) should

vanish on a set of positive Lebesgue measure.

Concerning the case (b), in [31] M. Rosenblatt proved that if the spectral density
f(X\) of a stationary process X (t) is positive away from zero, and has a very high
order contact with zero at A = 0, so that the Szeg6 condition (1.18) is violated,
then the prediction error 6, (f) = o2(f) decreases to zero hyperbolically as n — oc.
More precisely, in [31] was considered a deterministic process X (t) with spectral
density f,(\) given by formula:

e(2A=m)e(N)
(1.4) 1) = S

where ¢(\) = § cot A and a is a fixed positive parameter.

fa(fA):fa()\)a OS)\S'K»

It is easy to show that
(4.5) Fa(A) ~ exp {—2‘77;'} Isin(\)| as A — 0,

so that f,(\) has a very high order contact with zero only at A = 0.
In [31], using the formula (2.5) and the technique of orthogonal polynomials on

the unit circle, M. Rosenblatt proved the following result.

Theorem 4.3. For a process X (t) with spectral density fo(\) given by (4.4) the

following asymptotic formula for prediction error 8, (f) = o2(f) holds:
2y )
— ~ —a —a
(4.6) On(fa) = 0:(fa) = percaral S/ as n — oo.
In the next subsection we extend Theorem 4.3 to more broad class of spectral

densities.

4.2. The main results. In this subsection, we analyze the asymptotic behavior
of the prediction error in the case where the spectral density f(\) of the model has
a high order contact with zero, so that the Szegd condition (1.18) is violated.
Based on Rosenblatt’s result for this case - Theorem 4.3, we can expect that
for any deterministic process with spectral density possessing a zero of type (4.5),
the rate of prediction error o2(f) should be the same as in (4.6). However, the
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method applied in [31] does not allow to prove this assertion. Here, using a different
approach, we extend Rosenblatt’s theorem to more broad class of spectral densities.
To this end, we first examine the asymptotic behavior of the ratio o,,(fg)/on(f)
as n — oo, where g(\) is some nonnegative function, such that the product f(\)g(})
is a spectral density, that is, fg € L*(A).
To make the approach clear, we first assume that f()) is a spectral density of
a nondeterministic process, in which case the geometric mean G(f) is positive (see

(2.8) and (2.9)). Then, in this case, we can write

(4.7) i Tnlf9) _ 0% (f9) _ Glfg) _ Glo).

n=ee an(f)  0%(f)  G(f)

It turns out that under some additional assumptions imposed on functions f and g,

the asymptotic relation (4.7) remains valid also in the case of deterministic process,
that is, when o2 (f) = 0, or equivalently, G(f) = 0.

To state the corresponding results we need some definitions.

Definition 4.1. A sequence of numbers {a,, n € N} is said to be slowly decreasing
if
(4.8) AL

n—oo  Ap

It is easy to check that the following simple assertions hold:

1. If {a,, n € N} is a slowly decreasing sequence, then for any v € N

(4.9) lim 27—,

n—oo Gy

2. If {an, n € N} is a sequence such that a, — a # 0 as n — oo, then {a,} is a
slowly decreasing sequence.

3. If {an, n € N} and {b,, n € N, } are non-zero slowly decreasing sequences, then
can,c#0, 1/ay, aﬁ, k € N, a,b, and a,/b, also are slowly decreasing sequences.
4. If {a,, n € N} is a non-zero slowly decreasing sequence, and {b,, n € N} is a

sequence such that

(4.10) lim b _ c#0,

n—o0o @,
then {b,, n € N} is also a slowly decreasing sequence.

5. If {a,, n € N} is a slowly decreasing sequence of nonnegative numbers, then

(4.11) lim (an)"/" = 1.

n—oo
Remark 4.3. It follows from assertion 2 that the notion of slowly decreasing
sequence is more significant in the case where a,, — 0 as n — oo. Also, it follows
from assertion 5 that if {a,, n € N} is a slowly decreasing sequence of nonnegative

numbers such that a,, — 0 as n — oo, then it converges to zero slowly than the
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geometric progression {¢", n € N} for any ¢, 0 < ¢ < 1, that is, ¢" = o(a,) as

n — o0.

In what follows we consider the class of processes for which the sequence of
prediction errors {o,(f)} is slowly decreasing. Moreover, in view of Remarks 4.2
and 4.3, it is reasonable to consider deterministic processes except those for which

the spectral densities vanish on an interval.

Definition 4.2. We define the class A to be the set of all nonnegative, Riemann
integrable functions h(\), A € A. Also, define A, = {h € A: h(\) = m > 0},
A= ={he€A: h(A\) <M < oo}, and AT = AL NA".

Now we are in position to state the main results of this paper.
The following theorem describes the asymptotic behavior of the ratio o, (fg) /o (f)

as n — oo for the class of above described processes.

Theorem 4.4. Let the spectral density f(\) be such that the sequence {o,(f)} is
slowly decreasing, and let g(\) = h(\) - L) here h(X) € AL and t1()), t2(N) are

t2(A)’
nonnegative trigonometric polynomials. If f(N)g(\) € A, then
2
(4.12) im 22U _ i,

we 02(])

where G(g) is the geometric mean of g(\).
The next theorem extends Rosenblatt’s Theorem 4.3.

Theorem 4.5. Let f(\) = fo(N)g(X\), where f,()\) is defined by (4.4) and g(\)

satisfies the assumptions of Theorem 4.4. Then

a+1
(4.13) Su(f) = o2(f) = W n~*~n"% as n— oo,

where G(g) is the geometric mean of g(\).

4.3. Auxiliary lemmas. To prove the theorems, we first establish a number of

lemmas.

Lemma 4.1. Assume that the sequence o, (f) is slowly decreasing, that is,
(4.14) fim 22t

n— o0 o’n(f)
Then for any nonnegative trigonometric polynomial t(\) we have

2
t

(4.15) imint 7208 S 6,

n—oc o7 (f)

where G(t) is the geometric mean of t(\).
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Proof. Let the polynomial ¢(\) be of degree v. Then by Fejér-Riesz theorem (see
[18], Section 1.12), there exists an algebraic polynomial s, (z) of degree v in z € C,
such that

(4.16) t) = s, (€M, s,(2) #0, |z < 1.

Observing that In|s,(2)|? is a harmonic function, we have

1 [ .
In |s, (02 = g/_ﬂln|s,,(e”‘)|2d/\,
implying that
(4.17) s, (0)]2 = G(t) > 0.

Let p#(z, ft) be the optimal polynomial of degree n for f(A\)¢(\) in the class QF
(see formula (2.6)). We set

Pz ft)s0(2)

(4.18) Tnaw(2) = 5 (0) ,
and observe that r,,(z) € Qy ,,, and
(4.19) [ traesleNEIO0 = [ e DRI

Therefore, in view of (4.16), (4.18) and (4.19),we can write

= [ @, ORI = [ (e, Fys, (€M) F(N)dA

—T

=500 [ [rasn(€™PFN)AA > IsV(O)Izl P4 (€, HIEFN) AN = |5,(0) P07, (F),

—T

which, in view of (4.17), implies that

an(ft)
4.20 lim inf —* > 15, (0)> = G(t).
(4.20) mint S > 1, O = 0(0)
Now, taking into account (4.14) and (4.9), from (4.20) we obtain (4.15). O

Lemma 4.2. Let the sequence o, (f) satisfy (4.14), and let t(\) be a nonnegative
trigonometric polynomial such that the function f(\)/t(\) € A. Then the following
inequality holds:

on(f/t)
4.21 lims n < G(1/¢t).
(4.21) s = (1/1)
Proof. Let the polynomial s,(z) be as in (4.16), and let p%(z, f/t) be the optimal
polynomial of degree n for f(A)/¢(A) in the class Q} (see formula (2.6)). For n > v

we set

_ (2 f)su(2)

B 5,(0) ’
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and observe that r,(z) € QF. Therefore, we have

T

2 = / P2 FIOIRFON/E (N A < / ()2 £ /EA) AN

= G L N D F O = ()

which, in view of (4.17), implies that

on(f/1) 1
4.22 lim sup —= < = G(1/¢t).
(422 PP () S e~ 9
Finally, taking into account (4.14) and (4.9), from (4.22) we obtain (4.21). O

Lemma 4.3. Let h(\) be a function from the class A_. Then for any ¢ > 0 a
trigonometric polynomial t(X) can be found to satisfy the following condition:
(4.23) |h—t||, = / [h(A) = t(A)|dA < e.

Moreover, if m and M are the constants from the Definition 4.2, then the polynomial
t(\) can be chosen so that for all X € [—m, 7] one of the following inequalities is
satisfied:

(4.24) m—e < t(A\) < h(A),
(4.25) h(A) <t(A) < M +e¢.

Proof. We first prove the inequalities (4.23) with (4.24). Without loss of generality,
we can assume that h(—7) = h(m). Otherwise by changing one of these values we
can make them equal as follows: h(—m) = h(m) = min{h(—=), h(7)}.
Let {\;} (—m = Xo < A1 < --- < A\¢ = m) be a partition of the segment [—m, 7],
and let s be the Darboux lower sum corresponding to this partition:
k
= AN, ; = inf A= Nic1, ], A= — Ao, i=1,... k.
S i:Zlmz )\z; m; /\IEnAi h()\)a % [)\z 17)\1]7 )\z )\z )\1 1, ) 7k
On the segment [—m, 7] we define a step-function ¢ (A) corresponding to given

partition as follows:

m;, if )\E(Ai_l,)\i),izl,...,k)—l,
er(A) =4 min{m;_1,m;}, it A=\,
my (= my), if X=Xy or A=\

It is clear that such defined function ¢ () satisfies the following conditions:

(4.26) or(N) < h(\), A€ [=m 7] and / " o (\dA = 5.

Since the function h()) is integrable, for an arbitrary given € > 0 a partition of
the segment [—7, 7] can be found so that the corresponding Darboux lower sum
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satisfies the condition:
U v

(4.27) B(A)IA — 5 = / () — o] = 17— @il <

—T —T 3

€

Now using the function ¢x(A) we construct a new continuous function. To this
end, we connect all the adjacent segments of the graph of ¢ (\) (the steps) by line
segments as follows: for each interior point of the partition \;,i =1,...,k — 1, the
endpoint of the lower step with abscissa \; we connect with some interior point of
the adjacent (from the left or from the right) upper step, the abscissa AF of which

satisfies the condition:
(4.28) [Ai — Af| < e/(3kM).

Then, we remove the part of the upper step lying under the constructed slanting
segment. The obtained polygonal line is a graph of some continuous piecewise linear

function, denoted by hy(\), satisfying the condition:
(4.29) BV < (N BO) <M, A€ [-m,7].

Taking into account that the functions hx(A) and ¢ () coincide outside the segments
[Ai, AT] (or [Af, Ai]), in view of (4.29) and (4.28), we can write

T A;
@30)lpx ~ el = | o) = i

—T

k—1
[0k (A) = hi(N)]dA =D
=1

<<
3

Next, according to Weierstrass theorem (see, e.g., [18], Section 1.9), for function

hi(\) a trigonometric polynomial ¢(A) can be found so that uniformly for all A €

[_Wa 7‘—]7
(4.31) () -0 < =

' 127 > F 127
Setting t(\) = t(\) — 157> from (4.31) we get
(4.32) 0< he(N) —t(A) < —.

6

Therefore
(4.33) I =t = [ ) = e)dr < £

Combining the inequalities (4.27), (4.30) and (4.33), we obtain
1h = tllx < [[h = erlls + lloe — hells + 1he =t <,
and the inequality (4.23) follows.
Now we proceed to prove the inequality (4.24). Observe first that the second
inequality in (4.24) follows from (4.32) and (4.29). To prove the first inequality in
(4.24), observe that by construction of function hj(\), we have

(4.34) hi(A) > min{mq,...,mg} > m.
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Next, in view of (4.32), we get
(4.35) ) > hi(\) — 61 > he(\) — e
Y5

Combining (4.34) and (4.35), we obtain the first inequality in (4.24).

The proof of inequalities (4.23) with (4.25) is completely similar to that of (4.23)
with (4.24). The only difference is that now instead of Darboux lower sum should
be used the upper sum and in the construction of function hx()), the endpoints of
the upper steps of the function ¢y (\) should be connected with the interior points

of the adjacent lower steps. O

Lemma 4.4. Let h(\) € AL and let the sequence o, (f) satisfy (4.14). Then the
following asymptotic relation holds:

2
AV
n—oo 02(f)
Proof. Observe first that together with h(\) the function 1/h(\) also belongs to
the class A7 :

(4.36)

= G(h).

(4.37) m<h(A) <M and 1/M <1/h()) <1/m.

By Lemma 4.3, for a given small enough ¢ > 0, we can find two trigonometric

polynomials ¢ () and t2(\) to satisty the following conditions:

(4.38) Ih=tilh <e  F<ti(h) <A,
1 1
Now in view of (2.7) and Lemmas 4.1, 4.2, to obtain
on(fh) on(ft1)
4.4 lim inf -2 > liminf 2 > Gt
(440 mint 5y 2 mind ey = 6,
and
on(fh) on(f/t2)
4.41 li u <l 2 < G(1/t).
Al TP G S ey <O

Next, it follows from (4.37) — (4.39) that
I = 1/ta]ls = [|h/ta(ts = 1/h)|l < 2M7e,
ltr = 1/t2lly < It = Al + 1 = 1/t2]l1 < e(1 +2M%).

Hence, in view of (4.37) and (4.39), we can write

G(t) | _ Ry n )
G(/t)| ~ In[G(t1)G(t2)]| = ’/W 1n[t1()\)t2()\)]d/\’ < LW [t (M) t2(X) — 1]dA

‘ln

1
= |[t2(t1 — 1/t2) |1 < EHtl —1/ta]h < —(1 +2M3).

30
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Thus, the quantities G(t1) and G(1/t2) can be made arbitrarily close. Hence, taking
into account that G(t1) < G(h) < G(1/t2), from (4.40) and (4.41) we obtain
(4.36). O

Taking into account that G(h) > 0, from (4.10) and (4.36) we obtain the following

result.

Corollary 4.1. If the sequence o, (f) is slowly decreasing and h()\) € AL, then the

sequence o, (fh) is also slowly decreasing.

Lemma 4.5. Let the sequence o, (f) be slowly decreasing, and let h(\) € A~. Then

(4.42) lim sup 7u(fh) < G(h).

oo 03(f)

Proof. Observe that the function hc(\) = h(X) 4 € belongs to the class A7 . Then

we have the asymptotic relation (see, [18], Section 3.1 (d)):
(4.43) !1_1?% G(he) = G(h).
Hence, using (2.7) and Lemma 4.4, we obtain

on(fh) on(fhe)

lim sup — < lim 22—

noee 03(F) ~ noe 02 ()
Passing to the limit as € — 0, and taking into account (4.43), we obtain the desired
inequality (4.42). O

As an immediate consequence of Lemma 4.5, we have the following result.

= G(he).

Corollary 4.2. Let the sequence o,(f) be slowly decreasing, and let g(\) € A~
with G(g) = 0. Then o,(fg) = o(on(f)) as n — co.

Lemma 4.6. Let the sequence o, (f) be slowly decreasing, and let h()\) € Ay. Then

(4.44) lim inf 72

n—oo ap(f)
Proof. Let h;(\) denote the truncation of h(\) at the level [ € N:

BV, B\ <1
fu(A) :{ z,( : R > 1.

Then by Monotone Convergence Theorem of Beppo Levi (see [6], Theorem 2.8.2),

> G(h).

we have
(4.45) lim G(h;) = G(h).
l—o0

Next, by Lemma 4.4 we get
2 2

noo R (f) T nmee a2 (f)
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Hence passing to the limit as [ — oo, and taking into account (4.45) we obtain the
desired inequality (4.44). O

As an immediate consequence of Lemma 4.6, we have the following result.

Corollary 4.3. Let the sequence o,(f) be slowly decreasing, g(\) € Ay with
G(g) = o0, and let fg € A. Then o,(f) = o(on(fg)) as n — oo.

4.4. Proof of main results. In this subsection we prove the main results of this

paper - Theorems 4.4 and 4.5.

Proof of Theorem 4.4. We have

(4.46) on(fg) _ on(fhti/ts) _ op(fhts/tz) on(fhtr) op(fh)

o (f) o (f) on(fhtr) o (fh)  on(f)

Next, by Lemma 4.4 we have

a2m)
02 (F)

This, in view of Corollary 4.1, implies that the sequence o2(fh) is also slowly

(4.47)

= G(h) > 0.

decreasing. Therefore, by Lemma 4.1, we have

o (fhty)
Hminf = my = G-

On the other hand, since ¢;(\) € A~, then according to Lemma 4.5, we get

: op(fht1)
llflrisotip 2(fh) < G(t1).
Therefore
2
(4.48) im 22U ey S

n—oc o2 (fh)
This implies that the sequence o2(fht;) is also slowly decreasing. Hence we can
apply Lemma 4.2, to obtain
lim sup 707% (thtl/b)
n—oo  02(fht1)
Next, it is easy to see that 1/t; € A, . Hence, according to Lemma 4.6, we obtain

oo (fhty/ts)
bt = e

< G(1/ta).

> G(1/t).

Therefore

lim on(fhty/ts)
n—oo o2 (fhty)

Finally, combining the relations (4.46) - (4.49), we obtain
2

n—oo g2 (f)

(4.49) = G(1/ts).

= G(1/t2)G(01)G(h) = G(hty /t2) = G(g).

Theorem 4.4 is proved. [
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As an immediate consequence of Theorem 4.4, we have the following result.

Corollary 4.4. If the sequence o,(f) is slowly decreasing and g(\) satisfies the

conditions of Theorem 4.4, then the sequence o,(fg) is also slowly decreasing.

The proof of Theorem 4.5 immediately follows from Theorems 4.3 and 4.4.
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Abstract. For some large classes of differendial equations of the fist order we give
bounds for Ahlfors-Shimizu characteristics of meromorphic solutions in the complex
plane of these equations. The considered equations largely generalize algebraic ones
for which the obtained results imply the known Goldberg theorem. Characteristics
of meromorphic solutions in a given domain weren’t studied at all. We consider
solutions in a given domain of some {large) equations and give bounds for Ahllors-

Shimizu characteristic for these solutions.
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1. INTRODUCTION

In this paper, we consider complex differential equations of the first order in two
cases: for meromorphic solutions in the complex plane and in a given domain.

For algebraic equations, there is the classieal Goldberg theorem related to meromorphic
solutions in the complex plane. We study much larger equations; respectively our
result implies as a particular case the mentioned Goldberg theorem.

Characteristics of meromorphic solutions in a given domain weren’t stuclied.
Recently G. Barsegian started similar studies; these studies were presented during
his lectures in Guangzhou university in 2017, His aprroaches based on some new
results relafed to arbitrary meromorphic functions in a given domain, see [4].

In this paper, we consider solutions in a given domain of some equations and

give bounds for Ahlfors-Shimizu characteristic for the solutions.

2. MEROMORPHIC SOLUTIONS IN THE COMPLEX PLANE
We consider the following equation

Yhe first author was supported by the Visiting Scholar Program of Guangzhou University
funded his position of leading vigiting professor in the university. The second author was supported
by NSF of China (11701111}, NSF of Guangdong Province {(2016A030310257}. The third auther
was supported by the NSF of China {1127109%0) and NSFs of Guangdong {2015A030313346).
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(+) oz, w) (W)™ + b1 (z,w) (W)™ 4 P (2,w) =0,

where ¢;(z,w) = 22821 M) (2)Xipey(w) for i = 0,1,2,...,m and u(i) =
1,2,...,n(i). Obviously we should exclude the case ¢(z,w) = 0, since then the
degree m reduces.

We put the following restrictions: all coefficient x; ,(;)(w) are meromorphic in
C, all coefficients 7; ,;)(z) with i # 0 are entire functions and all coefficients
N0,u(0)(2) are polynomials. The equations () with similar restrictions we will refer
as (Fy™(C)).

Note that algebraic differential equations of the first order (see related studies
in [8]) are particular cases of equations (F;"™(C)) when all mentioned above entire
and meromorphic functions are polynomials.

For meromorphic function w in C we make use of classical Ahlfors-Shimizu

= A(r,w _ 1 P o
A(r) = A(r,w) = 7T//D(r) (1+\w|2)2d )

where D(r) = {z : [z] < r}; for entire functions 7; ,;) we denote Mi“(i)(r) =

characteristic

max,coD(r) |77i,,u(i)(z)|'

Theorem 2.1. For any equation (F5™(C)) with meromorphic solution w(z) in the
complex plane we have
] 2/4
(2.1) A(r) < Ki7? max [maXMZ-“(z) (r)} , forr =00, r¢ E,
1<i<m | p(d)
where K1 < 00 is a constant independent of w and E is a set of finite logarithmic

measure.

Corollary 2.1 ([7]). Meromorphic solutions (in the complex plane) of algebraic

differential equations are of finite order.

Indeed, in this case all Mf(i)(r) have polynomial growth so that Corollary 2.1
follows from (2.1). Thus Theorem 2.1 generalizes widely this old result in [7].

3. MEROMORPHIC SOLUTIONS IN A GIVEN DOMAIN

Let D be a simply connected domain with smooth boundary 9D of finite length.

Consider again equation (x) by assuming that w(z) is its meromorphic solutions

in the closure D = D U dD. In this case we assume that all Ni,u(i)(2) are regular

functions in z € D and all x; ,;)(w) are meromorphic functions in w € w(D). In

addition we assume that |¢o(z,w)| > ¢(D) = const > 0 for z € D and w with
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|w| < 10. The equation with similar restrictions we will refer as (F™™(D)). In
particular case when all x; ,(;)(w) are regular functions we will refer the equation
as (F""(D)).

For similar functions w(z) as above, we consider Ahlfors islands over the disk
A(p,a) = {w : |w — a|] < p} which can be defined as those domains g, for k =
1,2,...,n(D,A(p,a),w), on the Riemann surface {w(z) : z € D} which projected
one to one and onto A(p,a) (see [1] or |9, Chapter 13]).

Defining M} (D) = max,cap |7:,,(2)| and denoting by S(D) the area of D, we

formulate the following theorem.

Theorem 3.1. Let w(z) be a meromorphic in D solution of the equation (F™"(D)).

Then for any set of disks A(p,,a,), v=1,2,...,q, with non-intersecting closures
we have
(3.1) > (D, Alpy, a,),w) < K28(D),

v=1

where Ko < o0 is a constant independent of w; the constant depends only on the

equation and D.

In the next result we make use of Ahlfors-Shimizu characteristic A(D,w) (for
arbitrary domain D) and another characteristics in Ahlfors theory of covering
surfaces (see [1] and [9, Chapter 13])

|w'|
L(D,w) = /OD - |w\2)d8'
Theorem 3.2. Let w(z) be a meromorphic in D solution of the equation (F™™(D))
with w(D) implying a disk D(o), where o = const > 0. Then

(3.2) A(D,w) < K38(D) + hs L(D, w),

where both constants K3 and hs are independent on w; the constant depend only

on the equation, D and o.

4. PROOFS

4.1. Proof of Theorem 2.1. We need some obvious comments.

In the case when the first coefficient ¢¢(z,w) is nonconstant polynomial in z we
can decompose ¢g(z,w) as Ag(w)z? + Ay(w)zT=1 + -+ + Ar(w), T > 1, where
Ap(w) is a meromorphic function in w.

In the case when the first coefficient ¢g(z,w) does not depend on z we denote it

by ¢o(w); obviously it is meromorphic in w.
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All coefficients x; ,,(;)(w) are meromorphic in the complex plane. This implies
that for a fixed disk, say D(10), any coefficients x; ,;)(w), taken for any i =
0,1,2,...,m, u(i) = 1,2,...,n(i), have only a finite number of zeros in the disk
D(10). The same is true for the poles. The same is true for the zeros and poles of
functions Ag(w) and ¢g(w).

Now we take five non-passing through all these zeros and poles curves ~1,...,7s5 in
D(10) with the distance between two different similar curves > 2. Then obviously all

mentioned above functions do not vanish at any point w =a € vy =y Uy U---U~s

and there is a constant M such that the modules |---| of all mentioned above
functions < M. Taking arbitrary five values aq, ..., a5 each belonging respectively
to 71, - .-,7v5 we get the following statement.

Proposition 4.1. There are five values a, € D(10), v = 1,...,5; with non-
intersecting closures of A(1,a,), v=1,...,5, such that
1. All those functions x; ,;)(w) which include variable w does not vanish at any
point w = a € (a1,...,a5) consequently
n(i)
®; = max Z IXi,u() ()| < n(i)M < oo,

1<i<m
n(i)=1
where ®; depends only on ay,...,as and the involved coefficients;
2. Function ¢o(w) do not vanish at any point w = a € (ay,...,as), respectively
we have
dy = mi
o= min |¢o(a,)| >0,
where ®g is a constant depending only on ay,...,as and ¢g;
3. Function Ag(w) does not vanish at any point w = a € (aq,...,as), respectively
we have
®, = min |A
A 121325\ o(av)| >0,
where @, is a constant depending only on aq,. .., a5 and Ag(w).

We need the following result.
Theorem A ([2, Theorem 1]). For any meromorphic function w in C, any set
ai,asz,...,aq € C, ¢ > 4, of distinct values and any monotonically decreasing on
[0,00) function ®(r) with ¥(r) — 0 as v — oo, there is a set E C [0,00) of
finite logarithmic measure and for every r ¢ E there is a subset {z}(a,)} C D(r),
1<v<q 1<k<n*(ra,), of the a,-points of w for which
A2 (1)

(4.1) |w' (27 (av))| Z 9 (r)

,1<v<g 1<k <n'(ra),
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and
q
(4.2) > n*(ran) > (g —4)A(r) — o[A(r)], o0, r¢E.
v=1

A slight modification (see [2]) replaces 9 (r) by a positive constant: given positive
g, 0 < e < 1/2, there is a constant K = K{a1,az,...,aq4,€) > 0 such that (4.1)

becomes

AY2(r)
r

(4.3) |w' (25 (av))| = K , 1<v<q 1<k<n'(ra)

for a set of a,-points which satisfy
q
(4.4) Zn*(r, a,) > (g—4—¢e)A(r) —olA(r)], r— o0, 7¢E.
v=1

Now we apply Theorem A and Proposition 4.1 to solutions w in the complex
plane of equations (£ (C)).

Due to definitions and Theorem A we have the following.

Property 4.1. Let aq,...,as be the points mentioned in Proposition 4.1. Then in
any D(r) with r ¢ E, there is a set Z(r) consisting of Zi:l n*(r,a,) points z(ay),
1<v <5, 1<k<n*(ra,), such that at each similar point we have inequality
(4.1) for 1 <v <5, 1 <k <n*(r,a,), and we have also

Zn*(r, a,) > (1 —e)A(r) —o[A(r)], " — o0, ¢ E.

Due to the last inequality for r — oo, r ¢ E, we have Zi:1 n*(r,a,) — oo and
since the points z;(a,) cannot have any limit point in any finite disk we obtain the

following.

Property 4.2. For any constant H > 1 there is a constant r(H) such that any
disk D(r) with r > r(H), r ¢ E, implies a point z}(a,) occurring in Property 4.1
and satisfying also |z;(a,)| > H.

Now we take any point z}(a,) satisfying Property 4.2 and put it into equation
(x). We have

b0z (), w(zi (@) (W (27 ()™ + é1(27 (@), (i (@) (W' (@)™ +

(4.5) ot Om(zi(an), wiz(ay))) = 0.
It is well known (see [10, Section III, Problem 21]) that all roots of an algebraic
equation
2" b2 b, =0
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are contained in the disk |2| < max;<;<p, (m|b;|)*/".

Applying this to (4.5) we get

% * 1/4
(4.6) w (z(a)] < max |m2ilEla) wzi(a) 17
lsism (bo(Zk(a,,),w(Zk(al,)))
Notice that item 1 in Proposition 4.1 is valid for w = a = w(z}(a,)) (since
w(zf(ay)) € (a1,...,as)), so that we have
(4.7) |6i(2 (aw), w(z(a,)] < n(i)®; max MID (1), i =1,2,...,m.

(i)
Now we need to consider below bounds for ¢y which in our case is polynomial in z
and meromorphic in w.
We can have only the following cases for ¢o(z, w):
(case 1) there are non-constant polynomial coefficients 7 ,,(0)(2);
(case 2) all 1g,,,(0)(2) are constants however not all xq, ,(0)(w) are constants;

(case 3) all 1 ,,(0)(2) are constants and, in addition, all xq,,(0)(w) are constants.

In the first case we can decompose ¢o(z,w) (as Ag(w)z? + Ay (w)zT=1 4+ -+ +
Ar(w), T > 1) and note that at the pair (z,w), where w € (a,...,as) and |z|
is enough large, the term Ag(a,) (z,’;(al,)))T become dominant in ¢o(2}(a.),a.),
so that we have |¢o(2;(ay),a,)| > (1/2)|Ao(a)||2;(a,)|T for |z} (ay,)| > r0; here
obviously ro depends on ¢y and values aq,...,as. Consequently taking r(H) (in
Property 4.2) equals to rg and taking into account item 3 in Proposition 4.1 (i.e.
®) = minj<,<4|Ao((ay)] > 0) and also Property 4.2 we obtain the following
assertion: for any disk D(r) with r > r(H), r ¢ E, there is a value a, € (ay,...,as)

and corresponding point zj(a,) with |z} (a,)| > H such that
@05 (aw), w(zi (@) = 5 Pal (2 (an)[" > SOAHT.

Making use of (4.6) and (4.7) applied at the same point (where |2} (a,)| > H) we

have

1/4
|w’(z3(ay))] < max N )(r)} )

) NP )
{mn(z)@z max Miﬂ(l
1<i<m

Then applying (4.3) we get

2mn (i) P;

A(r) B HT

' 2/i
2 max {maxM.“(l)(r) } , forr — 00, r ¢ E,

<
- KQT 1<i<m | p()
so that obtain Theorem 2.1 with

1
Klgﬁ max

1<i<m

2mn(i)®; 2/
O HT
In the second case, ¢o(z, w) become function in w merely, namely become function

¢o(w) in Proposition 4.1. Due to item 2 in Proposition 4.1, function ¢o(w) do not
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vanish at any point w = a € (aq, ..., as), respectively, we have &y = 1r<nir<1 lpo(ay)| >
<v<q
0. Repeating the above arguments we get Theorem 2.1 with
1 2mn(i)®; 1"
K < — ST
B CR { o,
In the third case, ¢o(z,w) is simply a constant: ¢g(z,w) = co = const which

should be non-zero, otherwise the degree m in our equation reduces. With the same
arguments we obtain Theorem 2.1 with

max

Koo L 2mn(i)®; 1"
t= K2 1<i<m '

ol
The discussed three cases exclude each other so that in any given case we have

Theorem 2.1 with one of the mentioned K.

4.2. Proof of Theorem 3.1. Assume that ex(px,ar), K = 1,2,..., n, are some
disjoint domains in D which w maps one-to-one onto A(pg,ar); note that for
different (even all) ey (pg,ax) the values of ap and/or pp may coincide. Any set
of domains ey (pg,ar) contains a subdomain e ( ak) such that w (e (p’“ ak))
coincides with A(Z%, ay,). Clearly, each e, (2, a) is contained in a domain ey, (pg, ax).
The diameters d (ek (L5, ay)) of the domains ey (£, ay,) were first given in [2]
and were applied to CDE. Later on similar applications were given in [6] and [5]

based on the following inequality
- Pk 3
2. (er (Goo)) = /5 V5DV

where S(D) is the Euclidean area of D. We need a slightly more sharp inequality
established in [[3], inequality (6)]:

3T
(4.8) Zd(ek V5 251/2 (ex(pK,ar)).
In addition we have also the following.

Lemma 4.1 ([3, Lemma 2]|). Let z;, be the point in ey (pr,ar) which w maps onto

ak, i.e. w(zx) = ag. Then

Pk
(4.9) |w'(z)| > 2 (e (Za)) k=1,2,...,n
24 (er (5 ar)
Now we take ¢ pairwise different values a,, ¢ = 1,2,...,q, and consider as
Ueg ( ak) the union of all domains e, +, v =1,2,...,¢,t =1,2,..., n(a,), which

w maps one-to-one and onto the disk A(p,,a,). (Important remark: in this case

the disk A(p,,a,) remains the same for all t = 1,2,..., n(a,)). In other words,

function w maps each domain e, ; onto an Ahlfors simple island over A(p,,a,) so
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that n(a,) becomes (in this case) the usual number n(D,A(p,,a,),w) of simple
islands over A(p,,a,).
Thus we can rewrite (4.8) and (4.9) as

q n(D,Apv,a), w) q n(D, A(ﬂbﬂb) w)
(4.10) S dlews) < \/ SY2 (ev,)

v=1 k=1

and

(@I ' Gala)] 2 s, v =120 = 120D, Al ), ),

where z(a,) € e, and satisfies w(z(a,)) = a,.
Denote N = >?_ n(D,A(py,a,),w). Due to (4.10) we conclude that the set
of all domains e, ; implies some domains é5, s =1,2,...,7 = [%N + 1]/, (here [z]’

means entire part of z), which satisfy

/ q n(D A(pu,au)ﬂﬂ)
> = 51/2 (eV,t) )

indeed assuming contrary we come to contradiction with inequality (4.8). Since
(N/n) <2, we have for any s =1,2,...,1n = [1N+ 1]/,

a n(D,A(py,an),w)

(4.12) ) < NG Z Z 512 (e,,).

Since é; coincides with one of e, ;, we conclude &, implies an a,-point 2 (a,); to
stress that this is namely a point lying in €, (which satisfies (4.12)) we denote it
by Z;(a,). This means that (4.10) is valid also for any given é, with corresponding
point Z(a,). Now (4.10) and (4.12) yield

,,7a,,),w)
V24 AL
(4.13) N - T (z(an) Z Z SY2 (e,4)

Applying Cauchy-Schwarz inequality to the last double sum we have

q n(D,A(py,a,),w) q n(D,Apy,au),w) /2

Z Z SV <NV Y Sl |
v=1 k=1

so that (4.13) yields

n(D,A(py,ay),w)

247r I
N +(a,))| Z Z S (evt)

and taking into account that the last sum dominated by the area S(D) we obtain

(4.14) ZnDAW%>Lffm<mm%w>
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Assume now that w(z) is a solution of (F™" (D)) in Theorem 3.1. Considering the
equation (F™"(D)) at this point Z;(a, ), we notice that all coefficients in (F™" (D))
are defined at this point since we assumed in Theorem 3.1 that (a1,...,a,) € w(D).

Arguing as in (4.6) we obtain

[masi(zt(a»,w(zt(ay))) v
doGu(an) w(E(@)]

Since the values ay,...,a, are fixed in Theorem 3.1 and functions x; ,;)(w) are

(4.15) 0/ ()| < max.

regular (so that all x; ,(;)(a,) are finite for any v =1,2,...,q) we have

n(i)
o, = 12132( ;1|X1u %) au)| < o9

note that ®; depend only on functions x; ,;)(w) and values a1,. .. ,a,.
Applying this to (4.15) we get

i i n(z 172
M (D) R

Z |Xi,u(i) (au)|

n(i)=1

< ) _—
[w'(Ze(an))]| [max mn(l)glgf D)

< max |[mn(i)®; max

1<i<m u@ (D)
1/i
Mﬂ(i) D
< max [mn(i)®;]"" max maxé .
1<i<m 1<i<m | p(G)  ¢(D)

In turn applying the last inequality to (4.14) we obtain the following inequality

Zn(D,A(pu,au), w) < —- max [mn(i)fbi]zﬂ max

p2 1<i<m 1<i<m

M“()(D) 2/i
[%( (D) ] S(D)

Ky = — max [mn(i)@if/i max

max
p? 1<i<m 1<i<m

O]
u@) (D) '

4.3. Proof of Theorem 3.2. Let w(z) be a meromorphic function in D solving
equation (F™™(D)). Clearly we should assume that all x; ,,;)(w) defined on w(D).
Remember that D(9) C w(D) so that all coefficients x; ,,(;)(a,) defined at any
point w = a € D(p).
Arguing as in the Proposition 4.1 we can fix five points a,, € D(p), v =1,...,5,
with non-intersecting closures of A(p/10,a,), v = 1,...,5, such that these points

do not pass through zeros and poles of these coefficients. Respectively we have
n(1)

‘:1I<nf¥§n Z |X“L (ay)| < 0.

43



G. BARSEGIAN, F. MENG, W. YUAN

Repeating the proof of Theorem 3.2 with similar ai,...,a5, we find first the point

Zi(a,), (where a,, € (ay,...,as5)) and obtain (instead of (4.14)) the following inequality

5 2
S n(D,A(1a,),w) < (?) 247 W' (Z(a))|* S(D).

v=1
Then we put this 2 (a, ) into equation (F™™ (D)) and arguing as above (after (4.15)),

we get similarly

r . 1/
p(i) (D) n(i) /
o/ Ga(@))] < max | mn(o) max === gj ity (@)
L ()=
- ) 1/i
. M"(D
< o, [l me )]
The last two inequalities yield
5
(4.16) > n(D,A(a,),w) < K3S(D),
v=1

where

0 ) 1<i<m 1<i<m | p() (D)

so that K5 depends only on equation (F™™(D)) and p.

2 @ 1"
1 : M"(D
K3 =247 (O> max [mn(i)@i]wl max [max l()] :

Finally we need the second fundamental theorem in Ahlfors theory of covering
surfaces (see [1] and |9, Chapter 13]): for any w in D and any set of pairwise

different points a,, v=1,2,...,q, ¢ > 4, we have
q
(g —DAD,w) <Y n(D, Alpy, a,),w) + hL(D, w),
v=1

where h < o0 is a constant depending on A(p,,a,), v=1,2,...,q.

Applying this inequality with the above five values a,...,a5, we have

5
A(D,w) < Zn (D,A (le,ay> ,w) + hsL(D,w),
v=1

where h3 depends on these values ay,. .. ,as; in other words depends only on p. From

here taking into account (4.16) we obtain Theorem 3.2 with the above defined K.
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Abstract, This work is concerned with the solvability of multi-peint boundary value
problems for fractional differential equations with nonlinear growth at the resonance.
Existence results are obiained with the use of the coincidence degree theory, As an

application, we discuss an example to illustrate the obtained results.
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1. INTRODUCTION

This paper is devoted to the solvability of the following fractional multi-point
houndary value problems (BVPs) at the resonance
(p()°DEu(®)) = f (4, u(t), &/ (1), 4" (1), “Dgut)), tel=[0,1],

L1) m l
T a0 =0, D) =0, w0 = Y€, w1 =Y bl

where ©Dg, is the Caputo fractional derivative, 2 < 2 <3, 0< & <+ < &y <
LOo<m< -<mym<l,anbieR, i=1,...,m,j=1,...1 ¢(t) € C(0,1]),
and ¢ = mingey ¢(¢) > 0. The nonlinearity is such that the following conditions are
satisfied:
(Ho) f:[0,1] x B* — R is a Carathdodory function, that is,
(i) for each = € R*, the function t — f(t,x) is Lebesgue measurable;
(it} for almost every ¢ € [0, 1], the function t — f(t, sc) is continuous on R4,
(i) for each r > 0, there exists @, (t) € L*([0,1], R) such that for ae. ¢t € [0,1]
x| <7, we have |f(t,2)] < .(2).

and overy

Phe research s supported by National Natural Science Foundation of Clina {11671 3393,
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The resonant conditions of (1.1) are as follows:
l l
(Hi) 3t 0 =1, Zj:l bj =1, Zj:l bjn; = 1.
!

This means that the linear operator Lu = ((;SCD(‘)X+ u) corresponding to the problem
(1.1) has a nontrivial solution or, in a functional framework, L is not invertible, that
is, dim kerLL > 1.

In order to be sure that the linear operator @ (to be specified later on) is well

defined, we assume, in addition, that

(Hy) There exist p,q € Z',q > p+ 1 such that A(p, q) = d11das — d12da21, where
oc 3

&i p _ &i q —
dll—zaz/ i f S ds, d21—zaz/ i 5 s ————ds,

LsP(1— )2 l i gP(n; — s)* 2

d :/ ———ds — b»/ —L (s,

P )y pels) E 7o pols)
1 s9(1 — i 1(n; — 5)*72

d :/ ds— b; / 7ds.

“ 0 q¢ Z 0 qo(s)

Note that A(p,q) # 0 (see [19, 23])

Fractional calculus is an extension of the ordinary differentiation and integration

a 3

to arbitrary non-integer order. In particular, time fractional differential equations
are used when attempting to describe the transport processes with long memory.
Recently, the study of time fractional ordinary and partial differential equations
has been received great attention by many researchers, both in theory and in
applications. We refer the reader to the monographs [1, 2, 20, 26, 30, 34|, the
papers [35] — [39], and the references therein. The question of existence of solutions
for fractional boundary-value problems at the resonance case has been extensively
studied by many authors (see [5] — [8, 10, 12, 13, 14, 17, 18, 21, 22, 32], and the
references therein. It is worth to mention that there are a number of papers dealing
with the solutions of multi-point boundary value problems of fractional differential
equations at the resonance (see [7, 8, 10, 17]).
In [8], Bai and Zhang considered a three-point boundary value problem of fractional
differential equations with nonlinear growth given by
Dgu(t) = f(t ut), DG u(t), t€0,1],

u(0) =0, u(l) = ou(),
where D, is the standard Riemann-Liouville derivative, 1 < o < 2, f : [0,1] x
R? — R is continuous and o € (0, o), n € (0, 1) are given constants such that
on®~! = 1. The authors applied the coincidence degree theorem to prove existence

of solutions. In [10], Chen and Tang have studied the following class of multi-point
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boundary value problems for fractional differential equations at the resonance by

employing the coincidence degree theorem:

(a(t)CDg+u(t))' = F(tu(t),d/ (), D2 u(t)), teJ,
m—1
w(0) =0, “Dgu(0)=0, u(l)=Y ou()
j=1
where 1 < a <2, f:[0,1] x R® — R satisfies the Carathéodory conditions, a(t) €
C'([0,1]), mingesa(t) >0, J=1[0,1], o; e R%, & € (0,1),j=1,....m—1,m¢€
N, m > 1, and Z?;l 0;&; = 1. The results are obtained under the assumption that

fmfl . 15 75a71i87 Sjs '75a71i5
Aoij;% (51/0 (1—3) ¢(s)d /0 (& ) ¢(S)d>7é0

In [7], Bai and Zhang considered the solvability of the following fractional multi-
point boundary value problems at the resonance with dim kerL. = 2 by applying

the coincidence degree theorem:

Diu(t) = f(t,u(t), Dy >u(t), Dy tut)),  t e (0,1),
157 u(0) =0, Dy Mu(0) = Dz (n), Zaz u(mi),

where 2 < a<3,0<n<1,0<m <ne <- <77m<1m>2211amf‘1=
Yo and T 2 = 1.Dg, and I, are the standard Riemann-Liouville fractional
derivative and the fractional integral, respectively, and f : [0, 1] x R? — R satisfies

the Carathéodory conditions. The results are obtained under the assumption that

m

e b ey ] S ]

i=1

Jiang [17], by using the coincidence degree theorem, has obtained an existence
result for the boundary value problems of fractional differential equations at the

resonance with dim kerL = 2:
D& u(t) = f(t u(t), Dgglu(t)), vte J=10,1],

u(0) =0, Dy u(0) Zal &), Dyu(0) =Y biDgi (),

Where2<a<3,0<§1<§2<~~~<§m<1,0<n1<172<~--<77n<
LY " a=1, Z;L:lbj = 1,2?:1bj77j =1, and f:[0,1] x R? — R satisfies the

Carathéodory conditions. The results are obtained under the assumption that

(1 —Zb]n]> Zaz@ — (1 —ijn]) 2%5 #0.

In this paper, we study problem (1.1), which allow f to have a nonlinear growth.
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The rest of the paper is organized as follows. In Section 2, we introduce some
notation, definitions and preliminary results, which will be used in the proofs of our
main results (see [1, 2, 20, 26, 27, 28, 30, 34]). In Section 3, we state and prove our
main results by applying the coincidence degree theorem. In Section 4 we provide

an example.

2. PRELIMINARIES

Definition 2.1. Let o > 0. For a function u : (0,00) — R, the Riemann-Liouville
fractional integral of order o of u is defined by

eut) = gy [ (=9 uleas,

provided that the right-hand side is pointwise defined on (0,00).

Remark 2.1. The notation I§, u(t) |;—o means that the limit is taken at almost all
points of the right-sided neighborhood (0,£)(e > 0) of 0 as follows:

I u(t) [=o0= tl_i}r&_ ISy u(t).

Generally, 1§ u(t) |1=o is not necessarily equal to zero. For instance, let o € (0, 1)

and u(t) =t~*. Then we have

—o 1 ! a—1_—o
ISt im0 = t1—>0+F( )/O(t—s) s7% s =T(1 — «).
Definition 2.2. Let o > 0 and n = [a] + 1, where [a] denotes the integer part of
«a. The Caputo fractional derivative of order o of a function u : (0,00) — R is
given by

“Dgu(t) = I *u™(t) = m/o (t—s) ™) (s)ds,

provided that the right-hand side is pointwise defined on (0, 00).

Lemma 2.2. Let a,n > 0 and n = [a] + 1. Then the following relations hold:
I'(n+1)
'n—a+1)

and °Dg tF =0, (k=0,...,n—1).

CDg+tn = tniaa (T’ >n— 1)a

Lemma 2.3. Let o, > 0, and u € L'([0,1]). Then I$ IV u(t) = IS u(t) and
“Dg I u(t) = u(t), for all t € [0,1]

Lemma 2.4. Let « > 0 and n = [a] + 1, then

Igﬁr oru(t )+ Z cnt®,  cp €R.

49



Z. BAITICHE, K. GUERBATI, M. BENCHOHRA AND Y. ZHOU

Lemma 2.5. Let o > 0 and n = [a] + 1. If “Dg,u(t) € C[0,1], then u(t) €
cm1([0,1]).

Proof. Let v(t) € C[0,1] be such that “Dg, u(t) = v(t). Then by Lemma 2.3, we

have
u(t) cru(t +cht cr € R.
It is easy to check that u(t) € C™~1([0, 1]) O
Lemma 2.6. Let o >0 and u € L*([0,1],R). Then for all t € [0,1] we have
1o () < 5wl
Proof. Let u € Ll([O, 1],R), then by Lemma 2.3 we have
() = Bt = [ I uls)ds < / g u(s)ds = 115

(I

Lemma 2.7. The fractional integral I3, , a > 0 is bounded in L*([0,1],R), and

Julle
“TI'(a+1)

Proof. Let u € L' ([0,1],R), then can write

| I5vullp: = /|Ig‘+u |dt< //t—sa Yu(s)|dsdt
e BN 1 1
_@/0 |u<s>|ds/8<t ) dts—r(aﬂ)/o (s = s
O

Now we recall the coincidence degree continuation theorem and some related

Mg+ ullLr <

notions (for more details see [25]).

Definition 2.3. Let X andY be real Banach spaces. A linear operator L : dom L C

X — Y is said to be a Fredholm operator of index zero if

(1) Im L is a closed subset of Y;
(2) dimker L = codimImL < cc.

It follows from Definition 2.3 that there exist continuous projectors P : X — X
and @ : Y — Y such that

KerL=ImP, ImL=KerQ, X=KerL®KerP, Y=ImL®ImQ.
Also, it follows that
Ly =L laomrkerp: domL(|Ker P — ImL

is invertible and its inverse is denoted by K.
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Definition 2.4. Let L be a Fredholm operator of index zero, and let ) be an open
bounded subset of X such that dom L) # 0. Then the map N : Q — X will be
called L— compact on Q if

(1) QN(9Q) is bounded,

(2) Kpg N =K,(I-Q)N:Q — X is compact.

Theorem 2.8. Let L : domL C X — Y be a Fredholm operator of index zero,
and let N : X — Y be L-compact on Q. Assume that the following conditions are
satisfied:

(1) Lx # ANz for every (x, A) € Kdom L\Ker L) ﬂaﬂ} x (0,1).

(2) Nz ¢ Im L for every x € KerL() 09.

(3) deg (QN |kerr,2(Ker L,0) # 0, where Q : Y — Y is a projection such
that ImL = Ker Q.

Then, the abstract equation Lz = Nx has at least one solution in dom L.

For our purposes, the adequate functional space is:
X = {u : CD8‘+u € C([O, 1],R), u satisfies the boundary conditions of (1.1) },

equipped with the norm:

lullx = llulloo + llu' oo + 1u”lloe + 1D ull o,
where
= t)|.
lulloo = mas Ju(®)]
By means of the functional analysis theory, we can prove that (X, | - |x) is a

Banach space. Let Y = L'[0, 1] be the space of real measurable functions t —s y/(t)
defined on [0, 1] such that ¢ — |y(¢)| is Lebesgue integrable. Then Y is a Banach
space with the norm |yl = fol |y(t)|dt. Define L to be the linear operator from
dom L XtoY :

Lu = (QSCDS‘Jru)/, u € dom L.

where dom L = {u € X | “Dg, u(t)is absolutely continuous on [0, 1]}, and define
the operator NV : X — Y as follows:

Nu(t) = f(t,u(t), o' (), u" (1), “Dgsu(t), te0,1].
Then the boundary value problem (1.1) can be written in the following form:
Lu= Nu, wué€domlL.

To study the compactness of the operator N, we will need the following lemma.
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Lemma 2.9. A subset U C X is a relatively compact set in X if and only if U is
uniformly bounded and equicontinuous. Here the uniformly boundedness means that

there exists M > 0 such that for every u € U
lullx = lulloo + I lloo + " loc + DG ullow < M
and the equicontinuity means that Ve > 0, 30 > 0, such that
@ () —u® ()| <&, YueU, Vi, tyel, |t —ta] <6, Vie{0,1,2}.
and
D& u(ty) — “Dgult)| < e, Yu €U, Vi, ta €1, |t — ta] < 6.
3. THE MAIN RESULTS

In this section we state and prove our main results.

Lemma 3.1. Let y € Y, ¢(t) € C[0,1], p = minges ¢(t) > 0 and (Hy) hold, and
let Th, To : Y — Y be two linear operators defined by

_m . éi(&_s)a—3 s Ndrds
T = [ S [ s

Tg(y)z/o (1;)(852/ r)drds — Zb/ W/()Sy(r)drds.

Then u € X is a solution of the following linear fractional differential problem:

(wﬁ%mﬁzthu=mm

(3.1) !
u(0) = 0, “Dgu(0) = 0, u” z:a7 &), u'(1) = iju'(nj),

if and only if

u(t) =c cot? 1 U r)drds, ci,c
(32) (t) =1t + cot” + F(Oé)/o ¢(S) /0 y( )d d R 1,C2 € R,
and

(3.3) Ti(y) = Ta(y) = 0.

Proof. Let u be a solution of the problem (3.1). Then we have

o(t)°Dult) = C+/0 y(s)ds, ceR.

Since “Dg, u(0) = 0, we find

Dieult) = 5 [ wis)as.
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By Lemma 2.4, we get

t t— a—1 s
u(t) = co + 1t + cot? +/ %/ y(r)drds, c¢o,c1,c2 € R.
0 0

Since u(0) = 0, we have

t _ a—1 s
u(t) = ert + cat® + F(la)/o U ¢2) /0 y(r)drds, ci1,c2,€R.

By u”(0) = 322, a;u” (&) and Zz 1 a; = 1, we obtain

gaz /57 5_(‘:);3/0 y(r)drds = 0.

From the conditions u/(1) = Zi 1 bju'(n;) and Z] 1 b= Z 1bin; =1, we get

/01(1;(55);2/ r)drds — Zb/ '_(’Ziazfosy(r)drdso-

Thus, we have T1(y) = T2(y) = 0. On the other hand, if ¢1,co are arbitrary real

u(t) = eit + caot? +/0 (t_qﬁfs))a_ /05 y(r)drds,

then clearly «(0) = 0, and by Lemma 2.2 and 2.3, we obtain
CD0+U’( ) =0 ,
vee o, (6°Dgult)) =y(b).

Taking into account that (3.3) holds, we get the following equations:

T1 / l / T2
Z“l &) (a(il/)g)o’ “(1);%“(773‘)11(&(3)1)0.

Thus, u is a solution of the problem (3.1). This completes the proof. (]

constants and

Lemma 3.2. Assume that the conditions (Hy) — (Hz) hold.

t _Sa—l S
(3.4 K0 = [l [ wtras.

Furthermore, we have

(3.5) IKpyllx < prllyllzs,

where

(3.6) _1 R I S
' M= \Tla+1) " T(@ " Ta-1) '

Proof. It is clear that Ker L = {u | u(t) = cit + cat?, c1,c0 € R}. Furthermore,
Lemma 3.1 implies that
(3.7) ImL={yeY |Ti(y) =Ta(y) = 0}.
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Consider a continuous linear mapping @ : Y — Y defined by

(3.8) Qy = Q)" + Qa(y)t* ",
where p, ¢ are given in (Hj), and
Q:1(y) = @(dmﬂ(y) — do1T(y)),
Q2(y) = @( —dioT(y) + diiTa(y)).

We prove that Ker @Q = I'm L. Obviously, ImL C Ker Q. Also, if y € Ker @, then

dooT1(y) — d21To(y) = 0.
—d12T1(y) + di1 Tz (y) = 0.

The determinant of coefficients for (3.9) is A(p, q¢) # 0. Therefore T3 (y) = Ta(y) = 0,
implying that y € Im L. Thus, Ker Q@ C Im L. Now, we show that Q%y = Qy,

(3.9)

y €Y. For y €Y, we have

Q(Qiy)trh) = A . [dooT1 (Q1(y)tP ") — dnTo (Q1(y)t"™))]

= oY (dzzdu - d21d12)Q1y = Quy,

and

! p [dooT1 (Q2(y)t9™") = dan T2 (Q2(y)t9™ )]

= (d22d21 - d21d22)Q2y =0.
b.q
Similarly, we obtain

Q2P =0, Q2(Q2(y)t"™") = Qay.

Therefore, we get

Q% = Q ()P ")t + Qu (Qaly)tr )P !
+ Qo (Q1 ()P 4 Qo (Qa(y)t1 1)t}
= QY+ Q2(y)t ! = Qy,

showing that the operator @) is a projector.

Take y € Y of the form y = (y — Qy) + Qy to obtain (y — Qy) € KerQ = ImL
and Qy € Im@Q. Thus, Y = Im@Q + Im L. Also, for any y € Im@Q N Im L, from
y € ImQ there exist constants ci, ca € R such that y(t) = ¢t~ + c2t?7 !, and

from y € I'm L we obtain

(3.10) {dncl + daico =0,

d1201 + d2262 =0.
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The determinant of coefficients for (3.10) is A(p,q) # 0. Therefore (3.10) has a

unique solution ¢; = ¢y = 0, which implies that Im Q N Im L = 0. Then, we have
(3.11) Y=ImQdKerQ=ImQ@Q®ImL.

Thus, dim Ker L = 2 = dim Im @ = codim Ker QQ = codim I'm L, showing that L
is a Fredholm operator of index zero.
Let a mapping P : X — X be defined by
1
0

(3.12) Pu(t) = u/(0)t + uT()t?

We note that P is a linear continuous projector and I'm P = Ker L. It follows from
u = (u— Pu)+ Pu that X = Ker P+ Ker L. By simple calculation, we obtain that

KerL N KerP = {0}, and hence
(3.13) X =KerL® Ker P.
Define K, : Im L — dom L N Ker P as follows:

IR A () Ll
K)®) =5 [ s [ vtrnas.

Now, we show that K, is the inverse of L |gom Lnier p. In fact, for u € dom L N

Ker P, we have

(K, Lyu(t) = = (1a) /0 (t ;2; _ /O | ( CDngu)/(r)drds = 12.°D&, u(t)
= u(t) + u(0) + v'(0)t + @t?

In view of u € dom L N Ker P, we have u(0) = 0 and Pu = 0. Thus

(3.14) (K, Dyu(t) = u(t),

and for y € Im L, we find

/

B2 )] =)

¢

Thus, K, = (L ldom LAKer P )71. Again, for each y € I'm L, in view of Lemmas 2.3,

(LI () = L)) = | o60) D 5.

2.6 and 2.7, we can write

2
1Epllx =D max |(Kpy) @ (t)] + max [°Dg: (Kpy)(¢)
=0

(ol

2

s
1o ( O;y) (t)‘ + max

= max
o tel tel
2 1—1
I t I oyt
<5 max 155 'y 1 max wy()‘
el I tel I
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yll: yllz:

= pl (o + 1 —14)
and the result follows. O

+ < pillyllcr,

~

Lemma 3.3. Suppose that 2 is an open bounded subset of X such that dom L () #
(). Then N is L-compact on €.

Proof. It is clear that QN () and K, (I —Q)N(Q) are bounded, due to the fact that
f satisfies the Carathéodory conditions. Using the Lebesgue dominated convergence
theorem, we can easily show that QN and Kpo N = K,(I — Q)N : Q — X
are continuous. By the hypothesis (ii7) on the function f, there exists a constant
M > 0, such that [(I — Q)N (u(t))| < M, for all w € Q and ¢ € [0,1]. For i =0,1,2,
0<t; <ty <1,and u €, we can write

|(Kpq Nu) (k) = (Kpg Nu) ()

1 to (t2 _ S)a—i—l s 3 w(r\drds
“ta ol e [ U @
_ (=TT oy Nu(rydrds
/0 o / (I - Q) Nu(r)drd
M h a—i—1 — s a—i—1 s " —g a—i—1 s
Sipr(a—i) {/0 (t2 — ) (t1 —s) d ‘*‘/t1 (t2 —s) d }
M e e,
pl (o +1 —1)

Furthermore, we have

|Dg Kpg Nu(ts) — “Dgs Kp.g Nul(ty)]

1 to 1 t1
= ’Qb(tz)/o (I —Q)Nu(s)ds — m/o (I — Q)Nu(s)ds

= ' ((25(12) - ¢(11)> /Otl(I — Q)Nu(s)ds + @ /;2(—7 — Q)Nu(s)ds

M M
SEW(Q) —¢(t)] + ;(b —t1).

Since t®, t*~1, t*=2 and ¢(t) are uniformly continuous on [0, 1], we conclude that
K,(I — Q)N : Q — X is compact. O

Now we are in position to state the main result of this paper.
Theorem 3.4. Assume that, in addition to (Hp) — (Hz), the following conditions
hold.
(H3) There exists a Carathéodory function ® : [0,1] x (RT)* — R* that is
nondecreasing with respect to the last four arguments and satisfies the inequality:
‘f(t,$073317$2,$3)‘ < ®(t, |zol, |@1], |22], |z3]).
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(Hy) lim, o0 sup % fol ‘(I)(S,T, T, r) |ds < plim where p1 is defined by (3.6), and

1 2 5
m= (i 7o)
(Hs) There exists a constant A > 0 such that for u € dom L\Ker L, if |u (t)| > A
or |u” ()| > A for all t € [0,1], then Ty (Nu) # 0 or To(Nu) # 0.
(Hg) There exists a constant B > 0 such that for any ci, ca € R, if |c1] >
B, |co| > B, then either

TlN(Clt + CQtZ) + TQN(Clt + CQtQ) < 0,
or
TlN(Clt + CQtQ) + TQN(Clt + CQtQ) > 0.

Then, the problem (1.1) has at least one solution.

Remark 3.5. A sufficient condition for (H3) to be satisfied is the existence of
functions 6;(t) € Y, ¢ = 0,...,5 and a constant v € (0,1) such that for all
Zo,T1,%2,23 € R and t € [0,1] the nonlinearity f verifies one of the following

growth conditions:

IN

M- 14

-
Il
o

f(t, @0, 21, 22, 23) 0;(t)|zi| + 04(t)|z0l” + 05(1),

IN

f(t, @0, 21, 22, x3) 0; ()il + 0a(t)|z1]" + 05(1),

f(t7$075€17$27$3) 9z(t)|$z| + 04(t)|22|” + 95(75)7

R

S
Il
=)

Gz(t)|xl| + 94(t)|$3|y + 95(t).

-

o

f(t, @0, 21, 22, x3)
1=

In this case, (Hy) reduces to the following;:
* 3
(Hi) >ieo l0illzr < leerQ-

Proof of Theorem 3.4. Consider the set

O = {u € dom L\Ker L | Lu = ANu, \ € [0, 1]},
and observe that for u € Q, we have Lu = ANu. Thus, A # 0, Nu € ImL =
Ker@Q CY, and hence, Q(Nu) =0, that is, T (Nu) = To(Nu) = 0. It follows from
condition (Hy) that there exist t1,¢2 € [0,1], such that |u'(t1)] < A, [u”(t2)] < A.
If t; = to = 0, then we have |u/(0)] < A, |u”(0)] < A. Otherwise, in view of
Lu = ANu, we obtain

_ u’(0) o A [
u(t) = v (0)t + 5 t* + F(a)/o
57
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If to ;é O, then

A 2 (ty — 5)=3 [®
u”(ta2) = u”(0) + / / Nu(r)drds,
L= O Ty e S M0
and, together with |u”(t2)] < A, we get

b2 — )3 s ul| 1
[u” (0)] < |u”(t2)| + F(al— % /0 (t2 ¢(s)) /0 |Nu(r)|drds < A+ N|]|T]z[0< [Ll)'

Consequently, we have
1

[Nullr
If t1 # 0, then
, o . A t1 (tl _ 5)(172 s
u'(t1) = u'(0) +u"(0)t1 + Mo —1) / ) /0 Nu(r)drds,

and, according to (3.15) and |u/(t1)] < A, we get

t1 _g)a—2 s
O < )]+ 0O+ s [ S [ INuGlards

1 1 1
<24+ (e + 1) Vel
Therefore
(3.16) W/ (0)] < 24 + 1 ( I ) [Nullp:.
- p\T'(a) T(a—-1)

Next, for u € 1, we get
2
— @ (¢
|Pullx = ; e |(Pu) (1) +tr€n[g>§]! Dgs (Pu)(t)|
< 2|d/(0)] + 3Ju"(0)].

From (3.15) and (3.16), we obtain

(3.17) |1Pullx < 7A+ pa|| Nulp:.

Again, for all u € 4, we have (I — P)u € dom LN Ker P, and hence, by (3.14) and
(3.5), we find

(3.18)

I(I = Plullx = [|KpL(I = P)ul|x < p1f|[L(I = P)ul[r = pr|[Lullzr < pr[[Nul| s
From (3.17) and (3.18), we obtain
(3.19) lullx < 1Pullx + (T = Pullx < 7A+ (p1 + p2) [ Nul 1.

On the other hand, from (H3), we have

|Nul|p: = /01 ‘f(S,u(s),u’(s),u”(s),CD(‘iﬂru(s))‘ds

< /01 ‘@(s,u(s)m’(s),u”(s),CDg+u(s))’ds
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1
(3.20) < [ oGl e ) s

Because the function ® is Carathéodory, the function ¥ : Rt — R, given by
U(r) = %fol ‘@(s,r, T, r)|ds, is well defined. Let [ = lim,_, o, sup ¥(r). By (H4)
1 1
we have 0 < [ < I and hence, for each 0 < ¢ < -
that r > r. = U(r) < l+4e. If |lul|x > re, then ¥(JJulx) <

(3.20) implies that

— [, there exists r. such

1
i and hence,

(3.21) INuflr < I+ e)llullx-
Therefore, in view of (3.19) and (3.21), we obtain

< Jlullx < “
r u .
- X_l—(p1+p2)(l+s)

Consequently, we have

TA 7A
(3.22) lullx < max {”’ L—(+¢)(p1 + p2) } 1=+ +p)

Since (3.22) is valid for all 0 < € < p141-p2 — 1, we get
Jullx <
T 1=Up1+p2)

So, €1 is bounded. Denote

Qy = {u € KerL| Nu € ImL},

and observe that for u € s, we have u € Ker L = {u | u(t) = crt+eat?, c1,c0 € R},
and Q(Nu) = 0, that is,

TyN (e1t + eat®) = ToN (et + cot?) = 0.
From condition (Hg), we get |c1| < B, |ca| < B. Hence, 2y is bounded. Define
Q= {u e KerL | -Mu+(1—NQNu=0, €0, 1]}
provided that the first part of condition (Hg) holds, or
0y = {u e KerL| —Mu+(1—NQNu=0, A€o, 1]}

provided that the second part of (Hg) holds, where J : Ker L — ImQ@ is the

linear isomorphism given by
(3.23) J(Clt + CQtQ) = w1tp71 + (.dgtqil, c1,c0 € R,
with

(= diz]cr| + dinleal).
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Without loss of generality, we assume that the first part of (Hg) holds.

In fact u € Q3, means that u = ¢t + cot? and —AJu + (1 — A\)QNu = 0. Then we
obtain

(3.24) M (e1t + cat®) + (1 = QN (crt + cat®) = 0.

If X =0, then |c1| < B,|cz| < B. If A =1, then

{d22|01| —dayl|ea| =0

(3.25)
—d12‘01| + d11|02| = 0

The determinant of coefficients for (3.25) is A(p,q) # 0. Thus, the system (3.25)

has only zero solution, that is, ¢c; = co = 0.

Otherwise, if A # 0 and X # 1, in view of (3.23), the equation (3.24) becomes
)\(wltp_l + wth—l) = (1 - )\) (QlN(Clt + CQtQ)tp_l + QQN(Clt + CQtQ)tq_1>.

Hence
Awp = (1 — /\)Ql(clt + CQtz),
Aws = (1 —N)Q2 (C1t + 02t2).
Thus, we have
Ner| = (1= NTiN (ert + eat?),
Aea| = (1 = N)ToN (1t + 62t2).
Then, we get
A8+ 1821) = (1= 2) (TN (81 + 6562) + TaN (61t + 6t2) ) < 0.

By the first part of condition (Hg), we have |01 < B,|d2] < B. Hence, Q3 is
bounded.

Now, we proceed to show that all the conditions of Theorem 2.8 are satisfied.
Let Q be a bounded open set of X containing Ule Q;. By Lemma 3.3, N is L-
compact on €. Because Q; and € are bounded sets, we have

(1) Lu # ANu for each (u, ) € KdomL\KerL) N 8(2] x (0,1);
(2) Nu ¢ ImL for each v € KerL N 0N.
To show that the condition (3) of Theorem 2.8 is satisfied, we define

H(u,\) = £AJu+ (1 — \)QNu,
and observe that, because (23 is bounded, then we have
H(u,\) #0, Vue KerL()o9.
Appealing to the homotopy property of the degree, we obtain
deg (QN lkerr, ﬂ KerL, 0) = deg (H(7 0),9 m KerlL, 0)
:deg<H(~, 1),QﬂKerL,()) = deg( + J,QﬂKerL,O) #0.
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Thus, the condition (3) of Theorem 2.8 is also satisfied.
Finally, we can apply Theorem 2.8, to conclude that the abstract equation Lu =
Nu has at least one solution in dom L (), and hence, the boundary value problem

(1.1) has at least one solution in X. Theorem 3.4 is proved. O

4. AN EXAMPLE

To illustrate our main result, we discuss an example.

Example 4.1. Let us consider the following fractional boundary value problem

(qb(t)CDoiu(t))' = f(tu(t), o (8), 4" (1), CDE u(t)), t € [0,1]

1

(w1 u(0) = D u(0) =0, w'(0) =~ (3 ) 2" ().

1 1
"1)=—=2u' (| = (=),
u'(1) u (4> + 3u <2)
where ¢(t) = e!~3 and
f(t,xo,zl,xg,xg) =9 +cos:1:3(1 fsinxl) + V |xal.

Now show that the conditions of Theorem 3.4 are fulfilled.

Corresponding to the notation of the problem (1.1), we have that a = %, l =
2, m=2, ap = —1, ap = 2, 51:%, 522%, by = =2, by = 3, 771:%, Mo =
%7 p = minger ¢(t) = e=3 > 0. Then we have aj +az = by +by = 1, byny +bane = 1.
Thus, the condition (H;) is satisfied.

Also, we find

1 1
3 1 _1 i s % 1 _ 1 B s
Ti(y) = _/0 (§ — s) 263_‘5/0 y(r)drds + 2/0 (6 — s) 3 S/O y(r)drds,

Tr(y) = /01(1 —5)Eed /OS y(r)drds — 2/0411 G — s)ée?’_s /OS y(r)drds

1 1
-i-3/2 (l—s)ﬁe
O 2

By simple calculations, we get

w
|
w
o\
w
<
—
=
—
QU
3
j<%
[Va)

—761 —301
993 982 263
A(1,2) = s
(1.2) 1545 463 376 7 7
311 431

Therefore, the condition (Hz) holds.
On the other hand, we have

‘f(t,$079€1,$2,3?3)‘ < || + V22| + 2.
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It is easy to see that the condition (Hj) holds, where
1
eo(t) = 61(t) = 93(t) = O7 92(t) = 1, 64(t) = 5, 95(t> = 2, vV =

Next, we have

3
1 3 6 833
(p1+p2)§|| I =e (F(3.5) e T ) 1620

Therefore, the condition (H}) holds.

Let A = 9 and assume that |u”(¢)] > 9 holds for all ¢ € [0,1]. Then, by the
continuity of u”(t), we have either v”(¢) > 9 for all ¢ € [0, 1], or u”(t) < —9 for all
t €10,1]. If w”(t) > 9, then for all ¢ € [0, 1] we obtain

|
[\}
S—
ol
/N
| =
|
®
N———
[N
o)
o
|
w
o\
»
N
:\
—~
=
SN~—
+
Q
@]
o3
S
o
=%
I
N
3
N~—
—~
—
|
0
®,
=
Q\
—
N~—
SN—"
+
=
/;
=
-
N~
=%
3
QL
)

+ 3/0é (% _ 8) %63*8 AS (u”(T) + cos CD&.U(T) (1 - Sinu’(r)) + |U//(T)|>d7’ds.

L , o 3 1 3
> 5/ s(1 —s)2e3%ds — 14/ 5(7 - 5) e37%ds + 15/ 5(, - 5) 3% ds
0 0 4 0 2

7280
> —.
- 257
If w”(t) < =9, then for all ¢ € [0, 1] we obtain

To(y) = /01(1 —5)zeds /OS (u"(r) + cos “Dgu(r) (1 — sind/ (1)) + |u”(r)\)drds

_ 2/1i (i - 8)%&”*5 /S (u"(r) + cos D u(r) (1 — sinw'(r) + |UH(T)|>deS

0

+ 3/0; (% _ s>%e3—s /OS (u"(r) + cos CDSZru(r)(l —sin/(r)) + |u”(r)|)drd5.

L , TN IS
—4/ s(1—s)2e* %ds + 14/ S(* - s) e375ds — 12/ s(f - s) e375ds
0 0 4 0 2
< _12329.
- 544
So, the condition (Hj) is satisfied.
Let B =1 and ¢1,ce € R be such that |e1]| > 1, |e2] > 1. Then we have

IN

TlN(Clt + Cgtz) + TQN(Clt + Cgtz) = (2|CQ| + 2|CQ|)(d11 + d12) < 0.

So, the condition (Hg) is satisfied.
Thus, all the assumptions of Theorem 3.4 are satisfied, and hence, the problem

(4.1) has at least one solution.
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SOME RESULTS ON THE PAINLEVE III DIFFERENCE
EQUATIONS WITH CONSTANT COEFFICIENTS

L. LIV, J. ZHANG

Beihang University, P. R. China'
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Abstract. In this paper, we investigate the following two Painlevé 111 equations:
o (w? — 1) = w? + p and Ww(w? — 1) = w? — dw, where W= wiz + 1), w = w(z — 1)
and p {p# —1) and A € {1} are constants, We discuss the equations of existence of
rational solutions, of Borel exceptional values and the exponents of convergence of zeros,

poles and fixed points of transcendental meromorphic solutions of these equations,

MSC2010 numbers: 30D35, 39A10.
Keyweords: meromorphic solution; Painlevé difference equation: finite order.

1. INTRODUCTION

Afier the completion of the differential Nevanlinna theory, the value distribution
of solutions of difference equations has received a considerable attention of a mumber
of researchers. Halburd and Korhonen [1] abstracted the difference Painlewd I
equation by wsing the value distribution theory. Chen and Shon [2] dealt with the
properties of solutions of complex difference Riceati equations. It is an important
discovery that difference Riceati equation plays an important role in the study of
difference Painlovd equations.

We assume that the readers are familiar with the fmdamental results and the
standard notion of Nevanlinna’s value distribution theory of meromorphic functions
{see [3] - [3]).

Let w be a meromorphic function in the complex plane and let 2 be an arbitrary
clement in the complex plane. By p(w), A(w) and A (1/w) we denote the order, the
exponents of convergence of zeros and poles of w, respectively. The exponent of

convergence of fixed points is defined by

log N (’.’", wiz)
r(w) =limsup —————~.
TR R logr

The field of small functions of w is defined by
S(w) = {ameromorphic : T'(r,a) = S{r,w)},

YPhis research was supported by the NNST of China, grants no. 11201014, 11171013, 11126036
and the Fundamental Besearch for the Central University,
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where S(r,w) is any quantity satisfying S(r,w) = o (T(r,w)) for all r outside a set
of finite logarithmic measure. A meromorphic solution w is called admissible if all
the coeflicients of a difference equation are in the field S(w). For instance, all the
non-rational meromorphic solutions of a difference equation which has only rational
coefficients, are admissible.

Recently, Halburd and Korhonen [9], developing the Nevanlinna value distribution
theory on difference expressions (see [6] — [8]), considered the following difference

equation:
(1.1) W+ w = R(z,w),

where R is rational in w and is meromorphic in z with slow growth of coefficients.
They proved that if the equation (1.1) has an admissible meromorphic solution of
finite order, then either w satisfies a difference Riccati equation, or the equation
(1.1) can be transformed to eight simple difference equations. These simple difference
equations include the Painlevé I, II difference equations and some linear difference

equations. We recall the family including Painlevé III difference equations.

Theorem A ([10]). Assume that the equation:
(1.2) Tw = R(z,w),

has an admissible meromorphic solution w of hyper-order less than one, where
R(z,w) is rational and irreducible in w and meromorphic in z. Then either w
satisfies the following difference Riccati equation:

aw+ 8
w7y’

w =

where o, 8, v € S(w) are algebraic functions, or the equation (1.2) can be transformed

to one of the following equations:

o nw? — Aw +
(1.3a) ww = w=D(w—2)’

_ nw? — \w

o nw—2A)
(13C) ww = m,
(1.3d) ww = hw™.

In (1.3a), the coefficients satisfy HQﬁH = 12, A\ = KL, JA = KA\, and one of

the following conditions:

Wn=lmw=1Lr=v; (@Q)n=n=v
66
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b), 7 =1 and AA = AX.

c), the coefficients satisfy one of the following conditions:

s

(1.
In (1.

=1, and either A = A\ or X[S]A[g] = i)\;

—~~
—_

=M\, A = An, 1 =g 5

n, A =1;
3] = A, A =Ty

—~~

w

Sl
IS
|

)

>
I>~

—~ —
. =~ V)
LW ~—  ~— ~— Lo
>l 3
>~

~
S

~~
[
(oW

SN—

,heSw) and m € Z, |m| < 2.

The difference Painlevé III equations (1.3a)—(1.3d) have been studied recently
by Zhang and Yang [11], and Zhang and Yi [12, 13], where a number of interesting

results were obtained. In particular, Zhang and Yi [12] studied the following equation:
(1.4) ww(w —1)? = w? — \w + p,
where A and p are constants, and obtained the following two results.

Theorem B ([12]). Let w(z) = gg;, where P(z) and Q(z) are relatively prime

polynomials of degrees p and q, respectively. If w(z) is a solution of equation (1.4),

then one of the following assertions holds:

(i) p=gq, a*(a —1)? = a®> — Xa + p, where a = w(c0);
(il) p<q, \=p=0, and P(z) is a constant.

Example 1.1. The rational function w(z) = ﬁ is a solution of the difference
equation ww(w — 1)? = w?. This shows that the conclusion (ii) of Theorem B may

occur.

Theorem C ([12]). If w is a transcendental meromorphic solution of equation

(1.4) of finite order p(w), then the following assertions hold:

(i) 7(w) = p(w);
(i) If Ap # 0, then A(w) = p(w).

Example 1.2. The function w(z) = sec? Z% is a solution of the difference equation

2

ww(w — 1)? = w?, and 0 is a Picard exceptional value of w. This shows that the

condition Ay # 0 is necessary in assertion (ii) of Theorem C.

In this paper, motivated by the above theorems and equation (1.3a), we study
two difference Painlevé III equations that follow. Observe first that if in equation
(1.3a) of Theorem A, x = v = —1 when both p and A are constants, then we have

at least one of y and X to be 0 from Ay = kM. So, in Section 3, we discuss the
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question of existence of rational solutions of the following difference Painlevé III

equation:
(1.5) ww(w? — 1) = w® + u,

where p (1 # —1) is a constant, and investigate the value distribution. In Section
4, we discuss the same questions, that is, the existence of rational solutions and the

value distribution, of the following difference Painlevé III equation:
(1.6) ww(w? — 1) = w? — I,

where A(\ # £1) is a constant.
The reminder of the paper is organized as follows. In Section 2, we state a number
of auxiliary lemmas, which will be used to prove our main results. In Section 3, we

study the equation (1.5). Section 4 is devoted to equation (1.6).

2. AUXILIARY LEMMAS

In this section we state a number of auxiliary lemmas, which will be used to
prove our main results. We first state the following lemma, which is a difference
analogue of the logarithmic derivative lemma, and reads as follows.

Lemma 2.1. Let f be a meromorphic function of finite order, and let ¢ be a non-

zero complex constant. Then

In view of Lemma 2.1, we can obtain the following difference analogues of the

Clunie and Mohon’ko lemmas (see |7, 8]).

Lemma 2.2 ([8]). Let f be a transcendental meromorphic solution of a finite order

p for a difference equation of the form:

Uz, [)P(z, [) = Q(z, f),
where U(z, f), P(z, f) and Q(z, f) are difference polynomials such that the total
degree deg; U(z, f) = n in f(z) and its shifts, and deg; Q(z, f) < n. If U(2, f)
contains just one term of mazximal total degree in f(z) and its shifts, then, for each

€ > 0, we have
m (r, P(z, f)) = O (r=%) + S(r, f),

possibly outside an exceptional set of a finite logarithmic measure.

Lemma 2.3 ([7, 8]). Let w be a transcendental meromorphic solution of a finite
order of the difference equation:
P(z,w) =0,
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where P(z,w) is a difference polynomial in w(z). If P(z,a) Z 0 for a meromorphic

m (r, - ! ) = S(r,w).

Lemma 2.4 (See, e.g., [11, Theorem 3.1]). Let w be a non-constant meromorphic

function a € S(w), then

solution of a finite order of equations (1.3a) — (1.3d) with constant coefficients, and
let m # 2 in equation (1.3d). Then the following equalities hold:

mtrow) = St () = ol

w

We conclude this section by the following lemma.

Lemma 2.5 (See, e.g., [5, pp. 79-80]). Let f; ( =1,...,n) (n > 2) be meromorphic
functions, and let g; (j = 1,...,n) be entire functions. Assume that the following

conditions are fulfilled:
(1) X7y fi(2)e ) = 0;

(ii) gn(z) — gr(z) is not a constant for 1 <h <k < n;
(iii) T'(r, f;) = S(r, egh(z)_gk(z)) for1<j<nandl <h<k<n.

Then fj(2)=0,j=1,...,n.
3. EQUATION (1.5)
Theorem 3.1. There is no any non-constant rational solution of equation (1.5).

Proof. Assume the opposite that w(z) = ggg is a non-constant rational solution

of equation(1.5), where P(z) and Q(z) are relatively prime polynomials of degrees p

and g, respectively. Also, we assume that the leading coefficient of P(z) is a (a # 0)

and the leading coefficient of Q(z) is 1. Substituting w(z) = ggzg into (1.5), we get
2 2
(3.1) P(z+1)P(z—1) (P(z)) ) = (P(z)) .
Qlz+1) Q(z—1) \\Q(2) Q(2)
We set s = p — ¢, and discuss the following three possible cases.

Case 1. Let s > 0. Then ggz; = az®(1 + o(1)) as z tends to infinite and from

(3.1), we get

a?(z+1)%(z — 1)*(1 + o(1)) (a®2**(1 + 0(1)) — 1) = a®2**(1 + o(1)) + 4,

which is a contradiction as z tends to infinite.

Case 2. Let s < 0. Now we have ggg = 0(1) and ggzﬁ; = o(1) as z tends to

infinite. By (3.1), we obtain p = 0. From (1.5), when p = 0, we have
2

w
w2 —1"
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Let w(z) = f(lz). Substituting w = % into the above equation, we obtain
ff=1-r%

Observing that the coefficients on the left- and right-hand sides of the above

equation are = and —-%, respectively, we get % = 0, which is impossible.

Case 3. Let s = 0. Then w(z) = SEZ = a+o(1) as z tends to infinity and from
(3.1), we get

(3.2) a*(a® — 1) = a® + p,

where a ¢ {0,£1}. We rewrite (3.1) as follows:

PEADPE—1) P2+ Q%)

Qlz+1)Q(z—1)  P(2)— Q)
We assume that there is a point 2o such that P?(2g) + uQ?(29) = 0 and P?(zg) —
Q*(z0) = 0. Since u # —1, we obtain P(z9) = 0 and Q(z) = 0, which is a
contradiction. Thus, the degrees of P2(2) + uQ?(z) and P?(z) — Q?(z) both are 2p,

and we have

(3.3) (a® + p)PP = a*(P? + uQ?),

(3.4) (> —=1)QQ = P*> — Q*.

Next, we assume P = ar, p = n. Then from (3.3) we have that

(3.5) pQ* =7r (a® + p) — r’a’,

where

(3.6) Pr=2"4+ Ay 12" Ay 02" 4 Ay 52" b Arz + Ao,
(3.7) Q=2"4+Bp_ 12" '+ B, 92" 24+ B,,_32"" 3 +...+ Bz + By.

We rewrite (3.4) as follows:
(3.8) (@® - 1)QQ + Q> = P

Substituting (3.6) and (3.7) into (3.5) and comparing the coefficients of terms 22",

2n—1 2n—2
)

z z , we obtain the following two equations:

,U(Bn—l - An—l) = 07
p(Bi_y + 2By o) = p(AZ_y + 24,2 —n) —a’n.

If 1 = 0, then from the last equation we get a?n = 0, which is a contradiction. If

u # 0, then the last two equations become

2
By-1= An—la B2 = An—2 - n(a27—~_u)
i

70



SOME RESULTS ON THE PAINLEVE III DIFFERENCE ...

By the same way, we substitute (3.6) and (3.7) into (3.8), and compare the coefficients

of terms 22", 22"~1, 227=2 o obtain

1— 2
By, 1= An—ly Bn2= An—2 - M
2a?
So, we get a® = (1 —2a?). On the other hand, from (3.2) we have p = a® (a* — 2).
It is obvious that a® = 1, which is a contradiction. O

Theorem 3.2. If w is a transcendental meromorphic solution of equation (1.5) of

a finite order p(w) > 0, then the following assertions hold:

0 A (5 ) =t = )
(ii) when p # 0, we have A(w) = p(w);

(iii) w has at most one non-zero Borel exceptional value.

Proof. Denote ¢(z) = w(z)—z, and observe that ¢(z) is a transcendental meromorphic
function and T'(r,¢) = T(r,w) + S(r,w). Substituting w(z) = ¢(z) + 2z into (1.5),

we obtain
(p+241)(¢+2-1)((¢+2)°—1)=(d+2)* +p.
Denote
P(z,¢) = ($—|—Z—|—1) (Q—Fz—l) ((¢>—|—z)2—1) — (0 +2)* — p,

and observe that P(z,0) = (22 — 1)2 — 22 — i #0. From Lemma 2.3, we get

m(nots ) = m(n1/6) = 5(0)

1

implying that N (n ) =T (r,w) 4+ S(r,w), and hence 7(w) = p(w).

w—z
1
In view of Lemma 2.4 we have m(r,w) = S(r,w). Then, the equality A () =
w
p(w) holds.

To prove the assertion (ii), for u # 0, we denote
Py(z,w) = ww(w? — 1) —w? — p,

and observe that P;(z,0) = —p # 0. Then, from Lemma 2.3, we obtain m(r, 1/w) =
S(r,w), implying that A\(w) = p(w).

Now we proceed to prove the assertion (iii) of the theorem. To this end, we
assume that a and b are two non-zero finite Borel exceptional values of w, and set
w(z) —a
w(z) —b’

71

(3.9) flz) =



L. LIU, J. ZHANG

Then, we have p(f) = p(w), A(f) = Mw—a) < p(f) and A(1/f) = A(w —b) < p(f).
Since f is of finite order, we suppose that

(3.10) f(2) = g(2)e*",

where d (d # 0) is a constant, n (n > 1) is an integer, and ¢(z) is a meromorphic

function satisfying the condition:

(3.11) p(g) < p(f) =n.
Then, we have
(3.12) fe+1)=g(z+Dgi(2)e™",  f(z—1) = g(z = 1)ga(2)e™",
where g(z) = end=" ' HFd and gy(z) = e 4" D" From (3.9) we get
w= b},’c:f Next, in view of (1.5), (3.9) to (3.12), we can write
(3.13) A(2)e*®" + B(2)e®#" 4+ C(2)e®*" + D(2)e®" + E =0,
where
Alz) = [b*—20* — 1] 9°G91992,
B(z) = [-2b%(ab— 1)+ 2ab+ 2u] gg91992
+ [—ab(b® — 1) + 0% + p] ¢*(Gg1 + 992),
C(z) = [b*(a®—1)—a®—p]gggig2 + [a®b® —a® —b* — u] ¢°
—[—2ab(ab — 1) + 2ab + 21] 9(gg1 + gg2),
D(z) = [—a3b +ab+a® + M] (991 + 992) + 2(—a’b + a® + ab+ p)g,
E = a*—2d%—p.

Applying Lemma 2.5 to (3.13) and taking into account (3.11), we see that all the
coefficients vanish. Since a and b are non-zero constants, we deduce from A(z) =0
and E = 0 that

(3.14) a* —2a% = p, b* —20% = .

2

Then, we have (a — b?)(a® + b* — 2) = 0. Now we discuss the following two cases.

Case 1. Let a® = b%. Due to a # b, we get a = —b. Denote G = g, G; = gg; and
G2 = ggo. From B(z) =0, D(z) = 0, we have
2(b" + p)G1Go = (=b* — p)G(G1 + Go),
2a* + )G = (~a* — ) (G1 + Ga).
Noting that pu # —1, we get b* + 1 # 0 and a* + p # 0 by (3.14). Thus, we have

2G1G9 = *G(Gl + GQ), 2G = *(G1 + GQ)
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From the last two equations, we obtain
G? = G1Ga, 4G1Gy = (G + Go)2.

So, we have —G = G = G5 and f = f = —f. From (3.9), the equality a = —b and

the above equation, we get
2

a
W=w=—.
w
Hence, from (1.5) we get a*(w? — 1) = w* + pw?. Therefore, w is a constant, which

is a contradiction.
Case 2. Let a? + b? = 2. When B(z) = 0 and D(z) = 0, then using arguments

similar to those applied in Case 1, we get
2G1G9 = —G(G1 + G2)7 2G = —(Gl + Gg)

Noting that u # —1, the above equations also lead to a contradiction by the similar

reasoning as in Case 1. This completes the proof of the theorem. |

4. EQUATION (1.6)

Theorem 4.1. Let w(z) = Q( %, where P(z) and Q(z) are relatively prime polynomials
of degrees p and q, respectively. If w(z) is a mon-constant rational solution of

equation (1.6), then
6 4
p=gq,ala®—1)=a— ), wherea::tg, A= ?a'
Proof. For p # ¢, the proof of the theorem is similar to that of Cases 1 and 2 in
Theorem 3.1, so we only prove the theorem for p = q. We assume that the leading

coefficient of P(z) is a (a # 0), and the leading coefficient of Q(z) is 1. Substituting

w(z) = Qgg into (1.6), we get

P(z+1) P(z—1) ((P(x)\* .\ _ (P Pk
U GEEnaE- ((Q(Z)) 1)‘(@<z>> o)

When p = ¢, we have Q( ; =a+o(1) and SEZB =a+ o(1) as z tends to infinite.

Then, from (4.1) we get the following equation

(4.2) ala®> —1)=a—

where a ¢ {0,+1}.
We rewrite (4.1) as follows:
P(z+1) P(z—1) _ P%*(z) — AP(2)Q(2)
Qlz+1)Q(z-1)  P(2) - Q%(2)
Arguments, similar to those applied in the proof of Theorem 3.1 (Case 3), can
be used to conclude that the degrees of P?(z) — AP(2)Q(z) and P?(z) —Q?(z) both
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are 2p for A\ # +1. Hence, we have

(4.3) (a® = Xa)PP = a*(P? — APQ),

(4.4) (a? —1)QQ = P? — Q.

Next, we assume P = ar, p = n, and use (4.3) to obtain

(4.5) MQ =7r (A —a) + ar?,

where

(46) r=2z" + An,lzn_l + A,,L,QZH_2 + An,32’n_3 + -4 Alz + AO,
(4.7) Q=2"4+B,_ 12" '+ By 22" 24+ B,,_32"" 2 +..-+ Bz + By.

We rewrite (4.4) as follows:
(4.8) (a*> -1)QQ + Q* = P°.

Substituting (4.6) and (4.7) into (4.5) and comparing the coefficients of terms 22",

22—l 227=2 we obtain the following two equations:

)\(anl - Anfl) =0,
)\(an2 + A, 1Bn_1+ An,Q) = (Angl + 24,5 — ?’L) + an.

For A = 0, from the last equation we get an = 0, which is a contradiction. For

A # 0, the last two equations become

n(a—M\)
—

By the same way, we substitute (4.6) and (4.7) into (4.8), and compare the coefficients

B, 1= An—h B, 2= An—2 +

of terms 227, 22771, 227=2 t0 obtain
n (a2 — 1)
2a2
So, we get 2a® = A(3a® — 1). And from (4.2), we have A = 2a — a®. By the above
equations, we have (3a? —2) (a? —1) = 0. Since a® # 1, we get a = i? and

A = +4Y6 Therefore é = é O
9 a 3

B, 1= An—ly Bp2= An—2 +

Theorem 4.2. If w is a transcendental meromorphic solution of equation (1.6) of

a finite order p(w) > 0, then the following assertions hold:
. 1
A () =t = tw);
(if) when A # 0, we have A(w) = p(w);

(iii) w has at most one non-zero Borel exceptional value.
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Proof. Denote ¢(z) = w(z)—z, and observe that ¢(z) is a transcendental meromorphic

function and T'(r, ¢) = T(r,w) + S(r,w). Substituting w(z) = ¢(z) + z into (1.6),

we obtain (¢ +z+1) (¢+2—1) ((¢+2)*—1) = (¢ + 2)? = A (¢ + 2). Denote
P(z,¢)=(¢+2+1) (¢+2—1) ((¢+2)°—1) = (¢ +2)* + A(p+ 2),

and observe that P(z,0) = (2% — 1)2 — 22 + Xz # 0. Then, from Lemma 2.3, we

obtain

m(nots ) = m(n1/6) = 5(0)

implying that N (r, ) =T (r,w) 4+ S(r,w), and hence 7(w) = p(w).

w—z
1
We deduce from Lemma 2.4 that m(r, w) = S(r, w). Then, the equality A <> =
w
p(w) holds.

To prove the assertion (ii), for A # 0, we rewrite (1.6) as follows:

w? — dw
w2 —1"

IS

Let w(z) = f(lz). Substituting w = % into the last equality, we get

?if)\:fi—1+f2.

From Lemma 2.2, we obtain m(r,1/w) = S(r,w). Therefore, \(w) = p(w).

|

Now we proceed to prove the assertion (iii) of the theorem. To this end, we

assume that a and b are two non-zero finite Borel exceptional values of w, and set
w(z) —a

4.9 = —.

(49) 1) = 055

Then, we have p(f) = p(w), A(f) = AMw—a) < p(f) and A(1/f) = A(w—b) < p(f).
Since f is of finite order, we suppose that

(4.10) f(2) = g(z)e™",

where d (d # 0) is a constant, n (n > 1) is an integer, and ¢(z) is a meromorphic

function satisfying the condition:

(4.11) p(g) < p(f) =n.

Then, we have

(4.12) fle+1) =g+ Da(x)e™", f(z=1) = g(z = 1)ga(2)e’",

where g1(z) = en®" FHd and gy(z) = e =" (D" From (4.9), we get
w= b}f_—la. In view of (1.6), (4.9) to (4.12), we can write

(4.13) A(2)e* " 4 B(2)e®" + C(2)e2*" + D(2)e?" + E =0,
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where
A(z) = [b" =20 +bA] 6°Gg1g9,
B(z) = [-2b%(ab—1)+ 2ab— Aa+b)] ggg1992
+ [=ab(d?* = 1) + b(b — N)] ¢*(Go1 + ggo),
C(z) = [b?(a®—1)—a®+aX|gggig2 + [a®b* —a® — b* + bA] ¢
+[2ab(ab — 1) — 2ab + A(a + b)] (991 + gg2),
D(2) = [-2a%b+2ab+2a* — Aa+b)] g+ (—a®b+a® + ab— aX)(gg1 + ggo),
E = a*—2d®+al.

Applying Lemma 2.5 to (4.13) and taking into account (4.11), we see that all the
coefficients vanish. Since a and b are non-zero constants, we deduce from A(z) =0
and E = 0 that

(4.14) a®—2a=—-\ b>—2b= -\

Then, we have (a—b)(a?+ab+b*—2) = 0. Since a # b, it follows that a?+b*+ab = 2.
By (4.14), a and b are distinct zeros of the equation z* — 2z + X\ = 0.

According to the algebraic basic theorem, the above equation has three solutions.
Denoting by « the third solution, and using the relationship between roots and

coefficients, we obtain abz = —\, ab + ax + bx = —2, a + b+ x = 0, implying that
2

ab+ (a+b)x =ab— = = —2.

A
at+b=—x=— 2

ab’

r=—

%a
So, we have

ab(a +b) = A, 2ab+ a?b? = (a +b)\,a® + b* +ab = 2.
Denote G = g, G1 = gg1 and Gy = ggs. From B(z) = 0, D(z) = 0 and the above

equations, we have

(20% — 2ab® — a®b*)G1Gy = (2ab® + a*b* — ab — b*)G(G, + Ga),
(2a® — 2ab — a®*V*)G = (2a°b+ a®b? — ab — a®)(G1 + Go).
Because
G1Go B 2ab® + a2b? — ab — b? b2 —ab

= = — 1.
G(Gy + G9) 262 — 2ab3 — a2b? 262 — 2ab3 — a2b?

By a? + b + ab = 2, we gain 2b> — 2ab® — a?b? = b3(b — a), and hence, we have
_ GG 1
G(G1 + Gz) b2 ’

Thus, we get

1
GGy = <

i 1) G(G1 +Gs), G = <a12 - 1> (G1+ Ga).
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Noting that X\ # +1, by (4.14), we get a? # 1 and b? # 1. Moreover, since the last
two equations are homogeneous, there exist two non-zero constants « and (3, such
that G; = aG and G5 = BG. Then, we have

a? — a?b?

(4.15) af = a2
On the other hand, combining (4.10) and (4.12), we get f = af, f = Bf, which
yields a8 = 1. Thus, by (4.15), we have a®> = b*>. When a = b, then we get a
contradiction. So, we have only to consider the case a = —b. From B(z) = 0,

D(z) =0 and a = —b, we have

20'G1Gy = (=b* +bN)G(Gy + Gy),
(4.16) 2¢'G = (—a*+a))(G1 + G2),
implying that
(4.17) (=b* — bN)G1Go = (—b* + bN)G.

Since the last equation is homogeneous, there exist two non-zero constants « and
(3, such that G; = aG and Gy = BG. Then, we have

(4.18) aB® + X)) =b* -\

On the other hand, combining (4.11) and (4.13), we get f = af, f = Bf, which
yields a8 = 1. Thus by (4.18), we have A = 0, and, in view of (4.16) and (4.17),
we infer that 2G = —(G1 + G32) and G1G2 = G?. Then, G; = Gy = —G. Thus, we
have « = f = —1 and f = f = —f, and by the similar reasoning as in Case 1 of
the proof of Theorem 3.1, we get a contradiction. (]
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1. INTRODUOTION

Let P, denote the class of all complex polynomials of degree at most . EP € B,

=1, we have

then concerning the estimate of |P/(z)| on
(L1) |P/(2)] < nmax | P(2).
The inequality {1.1) is a famous result due to Bemstein [3. It is worth mentioning
that i (1.1} equality holds if and only if P(z) has all 1ts zeros at the origin. So, 1t is
natural to seek improvements under appropriate assumption on the zeros of P(z).
H we restrict ourselves 0 the class of polynomials P(z) having no zeros in |2] < 1,
then (1.1) can be replaced by
(1.2) max |P'(2)] < 2 max |P(2)],

|z|=1 2 |z)=1

whereas, if P(z) has no zeros in [z > 1, then by

.i\ 4 >
{13) lrﬁgﬁilp(z)\ 31

ma | Pzl
The mequality (1.2) was conjectured by Erdds and later it was vertfied by Lax [7].
whereas the mequality (1.3} is due to Turdn [10).

Jain [6] had used a parameter 8 and proved an interesting generalization of (1.3).
More precisely, Jain proved that if P € P, and P(z) has all s zeros m |2) < 1,

then for every f with |8] < 1. we have
(1.4) s |oP' (<) + "5 P()| > 5 {1+ Re(§)} max [P
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Li, Mohapatra and Rodriguez [12] gave a new perspective to inequalities (1.1)
- (1.3), and extended them to rational functions with fixed poles. Essentially, in
these inequalities they replaced the polynomial P(z) by a rational function r(z)
with poles a1, as,...,a, all lying in |z| > 1, and 2™ was replaced by a Blaschke
product B(z). Before proceeding towards their results, we first introduce the set of
rational functions involved.

For a; € C with j = 1,2,...,n, we define

W =116 e 56 =11 G2 = 5
where
1
W*(z) = z”W(%)
and

R, = Ry (a1, az, ..., an) = {Il;((i)) . Pe Pn}.

Then R, is defined to be the set of rational functions with poles a1, as, ..., a,, at most

and with finite limit at co. Note that B(z) € R,, and |B(z)| = 1 for |z| = 1. Also, for

r(z) = Vlf,((z)) € R, the conjugate transpose r* of r is defined by r*(z) = B(z)r(2).

In the past few years several papers pertaining to Bernstein-type inequalities for
rational functions have appeared in the study of rational approximations (see [2],
[4], [11] - [13]). For r € R,,, Li, Mohapatra and Rodriguez [12] proved the following,

similar to (1.1), inequality for rational functions:
(1.5) r'(2)] < |B'(2)] max r(2)].

As extensions of (1.2) and (1.3) to rational functions, Li, Mohapatra and Rodriguez

also showed that if r € R,,, and r(z) # 0 in |z| < 1, then for |z| = 1,

B/
(1.6 @) < B o),
whereas, if 7 € R,, has exactly n zeros in |z| < 1, then for |z] = 1,
|B'(2)l
(17) )= E ),

Very recently, Wali and Shah [13] proved an interesting refinement of (1.7). Namely,

they proved that if » € R,,, and r has exactly n zeros in |z| < 1, where r(z) = VI[D,((?),
with P(z) = >0, ¢jz7, then for |z| = 1,
|cn| |col
(1) ez p{1me)+ Y ol
|enl
In this paper, we establish some results for rational functions r(z) = V}:,((Zz)) with

restricted zeros, where P(2) = > 7 ¢;z?, by involving some coefficients of P(z).
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Our results strengthen some known inequalities for rational functions and, in turn,

produce refinements of some polynomial inequalities as well.

2. MAIN RESULTS

In what follows we shall always assume that all the poles a1, ag, ..., a,, of r(z) lie
in |z| > 1. In the case where all poles are in |z| < 1, we can obtain analogous results

with suitable modifications.

Theorem 2.1. Suppose that v € R,,, and all the n zeros of v lie in |z| < 1. If
r(z) = VI;((ZZ))’ where P(z) = >0, c;jz3, then for every B with |8] <1 and |z| = 1,

we have

2r'(2) + %r(z)
The result is best possible in the case B = 0, and in (2.1) equality holds for r(z) =

B(z) + A with |\ = 1.

(2.1)

> {4 nre() + [ o),

[en| + |col

We first discuss some consequences of Theorem 2.1. If we take o; = «, |a| > 1,

for j =1,2,...,n, then W(z) = (z —a)™ and r(z) = P)_ and hence we have

 (z—a)™?
’ . (z—a)"P'(z) —n(z — a)"*lP(z)
r'(z) = o
_ _{nP(z) —(z— a)P'(z)} _ —DuP(2)
(z —a)nt! (z — a)ntl’

where D, P(z) = nP(z) + (o — z) P'(z) is the polar derivative of P(z) with respect
to point a. It generalizes the ordinary derivative P’(z) of P(z) in the sense that
D,P

timg DeL(2)

a— 0o «a

= P'(2).

Z—x

Also, W*(z) = (1 — @z)™, which gives B(z) = (1‘“) , implying that

n(l —a@z)" " 1(|a)? - 1).

B'(z) =
(2) (z — a)ntl
With this choice, from (2.1) for |z| =1, we get
zDaP(z)—l—%(a —2)P(z2)

1 n(|a|2—1) |cn| — |co| }
>« ————>+nRe(B)lz—a|+ ————|z—a| p|P(z

n(oP 1) oo e =l
> 3 { et nmes)al - )+ 2 o] - 1 (o)

|a—1{ |Cn|—00|}

= ——n(l+ Re + —— ¢ |P(2)].

30 Re®) + P HIPG)

Thus, from Theorem 2.1 we immediately get the following result.
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Corollary 2.1. If P(z) = Z?:o ¢;z’ is a polynomial of degree n having all its
zeros in |z| < 1, then for every o, B € C with |a| > 1 and || < 1, we have

\I?Ii)i zDaP(z)—l—%(a —2)P(z2)
(2.2) > lof = 1{n(1+Re(ﬁ))+|cn|_col}max|P(Z)|.

- 2 |Cn| + ‘Co| |z|=1
Remark 2.1. Since |c,| > |co| and hence for § = 0, the above corollary provides

an improvement of a result due to Shah [9)].

Remark 2.2. Dividing both sides of (2.2) by |a| and letting |a| — oo, we obtain
the following result, which as a special case, gives a strengthening of the classical

Turdn inequality [10].

Corollary 2.2. If P(z) = Z?:o cjzj is a polynomial of degree n having all its
zeros in |z| < 1. Then for every § € C with || < 1, we have

, np 1 |en] — [col
(2.3) |I£|i)§ zP'(z) + 2P(z)‘ > 2{n(1 + Re(p)) + |Cn|+|00|} lrillzfi |P(2)].

Remark 2.3. The above inequality for B = 0 was also independently proved by

Dubinin [5]. Also, it is easy to see that the inequality (2.3) improves the inequality
(1.4) as well.

Taking 8 = 0 in Theorem 2.1, we get the following result.

Corollary 2.3. Suppose r € R, and all the n zeros of r lie in |z| < 1. If r(z) =
%, where P(z) = Y_7_oc;27, then for |z| = 1 we have
1 [en] = |0l
(2 2{B’z—|—n r(z)].
1= 5{ 181 2 o)
The result is sharp and equality holds for r(z) = B(z) + X with |A\| = 1.

Remark 2.4. Again, since |c,| > |col, it is easy to verify that

eal — leol o /Teal = V/Te0]
eal Fleol =7 el

showing that Corollary 2.3 strengthens the inequality (1.8).

Instead of proving Theorem 2.1, we will prove the following more general result.

Theorem 2.2. Suppose r(z) = Vli,((i)), where P(z) = 2* (Z?:_g cj+szj), and all the

zeros of v lie in |z| < 1 with a zero of multiplicity s at the origin. Then for every
with |B] <1 and |z| =1 we have

! @rz 1 "(2)| + nRe s lon] = les| r(z
')+ )| 2 {1+ nme(s) s e o),

(2.4) 5
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The result is best possible in the case 8 = s = 0, and equality in (2.4) holds for
r(z) = B(z) + X with |A\| = 1.

Remark 2.5. For s = 0, the inequality (2.4) reduces to (2.1).
The next result generalizes the inequality (1.7).

Theorem 2.3. Let r € R, and assume that r has all its zeros in |z| < 1. Then

for every S with |B| <1 and |z| = 1 we have

r'(z) | Br(z)
Bz 2B()

Equality in (2.5) holds when 8 =0 for r(z) = aB(z) + b with |a| = |b].

(2.5)

1
> (1= B)Ir(2)]

The above inequality (2.5) will be a consequence of a more fundamental inequality

presented by the following theorem.

Theorem 2.4. Let r € R, and assume that r has all its zeros in |z| < 1. Then
for every § with |B| <1 and |z| = 1, we have

26 |ps 5|z s{a-rers ([ 5] - |5 e

|z|=1

Equality in (2.6) holds when =0 for r(z) = aB(z) + b with |a| = |b|.

Remark 2.6. Theorem 2.4 is a refinement of Theorem 2.3, this can easily be seen

by observing that |1 + §| > |g\ for |8] < 1.

Theorem 2.5. Suppose r € R,,, and all the n zeros of r lie in |z| > 1. If r(z) =

L) yhere P(z) = Z?:o c;jz%, then for |z| = 1, we have

W(z)’
1 lco| — lenl ) _Ir(2)I?
en el {iEe-( 1) I
2 |col + leal /1 7(2) 12
where || r(z) ||= max; =y |r(2)|. The result is best possible and equality in (2.7)

holds for r(z) = B(z) + A, |\ =1.

Remark 2.7. Since all zeros of r(z) = %, and hence of P(2) = Y 7_y¢;27, lie
in |z] > 1, we have |co| > |cy|, showing that Theorem 2.5 is an improvement of

(1.6).

3. LEMMAS

In this section we state a number of lemmas, which will be used in the proofs of

main results stated in Section 2.
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Lemma 3.1. (see [5]) If P(z) = Z?:o ¢;z’ is a polynomial of degree n having all
its zeros in |z| < 1, then at each point z of the circle |z| = 1 at which P(z) # 0, we

zP’(z)) n—1 el
Re > + .
( P(z) 2 [en| + |col

have

Lemma 3.2. (see [2]) If |z| = 1, then

he(W2) _no 1),

Lemma 3.3. (see [12]) If r € R,,, then for |z| = 1, we have

()] + 10" (2))'] < |B(2)| max|r(2)].

Lemma 3.4. Suppose r € R,, is such that r(z) = %, where P(z) =37 ¢;2/,

and all the zeros of r lie in |z| > 1. Then for |z| = 1, we have
re(Z2) < oy - Lol
’I"(Z) -2 ‘CO‘ + |Cn|
Proof. We have r(z) = £\ where

n n

P(z) = chzj =cp H(z - z;),

3=0 j=1
with ¢, # 0 and |z;| > 1,7 =1,2,...,n.
By direct calculation, we get
2r'(z) zP'(2) 2W'(2)
1 = — .
&y re(55) = (75) - (s
Let Q(z) = 2z"P(1), therefore, P(z) = 2z"Q(2). Since P(z) has all its zeros in
|z| > 1, it follows that Q(z) has all its zeros in |z| < 1, and hence
@ 11 (1%
(3.2) Gloy = Q) 2QE) &, (ZJZ>
2=1Q(L) P(z) ¢y z = zj
is analytic in |z| < 1 with G(0) = 0 and |G(z)| = 1 for |z| = 1. Hence by a result of

Osserman for the boundary Schwartz lemma [8], we have

j=1

2
(3.3) G'(2)] = 110 for |z] =1
It easily follows from (3.2) that for |z| =1,
2G'(z) zP'(2)
(3.4) G0 —(n+1)—2Re< P0) >

Further, using (3.2), it can easy be verified that

2G'(z) |z -1
o _1+27.
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Since |z;| > 1 for 1 < j < n, it follows from above that zgég) is real and positive.

Also, taking into account that |G(z)| =1 for |z| = 1, we have

n

=|G'(z)] and [G"(0) =[]

Jj=1

2G'(2)

G(2)

2G'(z)
G(2)

1

Zj

Cn

€o

Using these observations, from (3.3) and (3.4), we get for P(z) # 0 and |z| =1,

(n+1)— 2Re (ZP/(Z)) = +2

P(z)

Cn
Co

implying that

2P'(2)\ _n+l o
(3.5) Re( PC2) ) = |co| + |en]”

Finally, using (3.5), Lemma 3.2 and (3.1), we get

w() =3P e

which completes the proof of of the lemma. O

Lemma 3.5. Let r,s € R, and let all the n zeros of s lie in |z| < 1 and for |z| =1,
Ir(2)] < [s(2)].

Then for every |B| <1 and |z| = 1, we have

p
2
Equality in (3.6) holds for r(z) = us(z), |u| = 1.

B'(2)r()] < |B(2)5'(2) + S B/(2)s(2).

(3.6) |B(2)r'(2) + 5

Proof. The proof follows on the same lines as those given in the proof of Theorem

3.2 of Li [11]. Hence, we omit the details.

Lemma 3.6. Let r € R,,, and let all the n zeros of r lie in |z| < 1. Then for every
I8l <1 and |z| = 1, we have

B
2

B (3)] < B () + 2B (r(z)].

(3.7) |B(2)(r*(2))" + 2

Proof. Since r*(z) = B(z)r(1/Z), we have
[r(2)] = [r(z)] for [2] = 1.

Also, since 7(z) has all its zeros in |z| < 1, we can apply Lemma 3.5 with r(z) and

s(z) being replaced by 7*(z) and r(z), respectively, to obtain the result.
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4. PROOFS OF THEOREMS

Proof of Theorem 2.2. Since r(z) = P((Z)) € R,,, where P(z) has all its zeros in

|z| <1 with a zero of multiplicity s at the origin, we can write
(4.1) P(z) = 2°h(2),

where h(z) = Z;ZOS ¢j1+s27 is a polynomial of degree n — s having all its zeros in

2] < 1.
e () = (55)

By a direct calculation, we obtain for every § with |5] < 1,
zr'(z)  nB _ zP'(z) 2W'(z)  np

r(z) 2 P(2) W) o2
Therefore for 0 < 6 < 27 by Lemmas 3.1 and 3.2 we obtain

Re(ﬁg) + nf) . = Re(ij;g)) o ~ fe (ZVMV/;S)> ’z ' gRe(ﬁ)
= e 52) | sasicolip

< n—s—1 len] ) (n—|B' ') >
> s+ + -
2 |enl + |cs

- H'B’(e”ﬂ bl el +nRe(ﬁ)},

|en] + fes]

From (4.1), we have

+ 5 Re(8)

for the points €0 < 6 < 27, other then the zero of r(z). Hence, we have
0 oo L i eal — e }

4.2 ezerl 619 +E r 610 ’> { B’ 629 + s+ n s + nRe r 620 ,

(4.2) (€®) + 5 8r(e™)| 2 5 1B'(e7)] onl - Ico] (B) ¢lr(e”)]

for the points €, 0 < § < 27, other then the zeros of r(z).
Since (4.2) is true for the points ¥, 0 < § < 27, which are the zeros of r(z) as

well, it follows that
Y+ 50| 2 3{IB )+ s+ T ke |l
for |z] = 1 and for every 8 with || < 1. This completes the proof of the theorem.
Proof of Theorem 2.3. By a direct calculation (see, e.g., [12], p. 529), one can
obtain
|(r*(2))| = 1B (2)r(2) — 1'(2) B(2)] for |2] =1,
and hence, using the fact that |B(z)| = 1 for |z| = 1, we get

(" ()] = |B'(2)lIr(2)] = I (2)].
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This gives for |z| =1,
(4.3) () + (" (2))'] = |B'(2)]Ir (2)]-

Next, for any |3] < 1, we have

B + 5

+ B ) + 5B o

> B+ B Y - |11 - 5] 1B .

and hence, by using (4.3) and the fact that |r(z)| = |r*(2)| for |z| = 1, we obtain

BOFE) + 5B+ [BOE ) + §F )

(44) =@+ (=) = BB (2)lIr(2)] = |B'(2)lIr(2)| = [BIIB'(2)[|r(2)]-

Now, by Lemma 3.6, we have for |z| =1,

45 [+ §E o) 2 e e+ e
The inequalities (4.4) and (4.5) together yield to
(45) Ber e + )| = EE - e

for |z =1 and |5] < 1.
Finally, taking into account that |B’(z)| # 0 and |B(z)| = 1 for |z| = 1, from
(4.6), we get

>

(1= [BDIr(2)l;

DO =

for [z| =1 and |5] < 1. O
Proof of Theorem 2.4. Observe first that if (z) has some zeros on |z| = 1,

then |Jrrllin|r(z)| =0, and in this case, the result follows from Theorem 2.3.
z|=1

So, henceforth, we assume that all the zeros of r(z) lie in |z| < 1. Let m :=
|rznl_nl|r(z)| Clearly m > 0, and we have |[Am| < |r(z)] on |z| = 1 for any A with
|A| < 1. By Rouche’s theorem, the rational function G(z) = r(z) + Am has all
its zeros in |z| < 1. Let H(z) = B(2)G(1/2) = r*(z) + AmB(2), then |H(z)| =

|G(z)| for |z| =1. Applying Lemma 3.6, for any 8 with |3] <1 and |z| = 1, we

get
‘B(z) ((r*(z))’ v ;\B’(z)m) v gB’(z) <r*(z) + XB(z)m) ‘
(4.7) < ‘B(z)r’(z) + gB’(z) (r(z) + )\m) ,
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implying that
B B

‘B(z)(r*(z))’ + 5B () () + 5\(1 + 5)B(z)B'(z)m

(48) < B + 5B )| + |5 s

2
for |z] = 1,]8] <1 and |\ < 1.
Choosing the arguments of A on the left hand side of (4.8) to satisfy

B (2) + gB’(z)r*(z) +A(1+ g)B(z)B’(z)m’
49 = [BEE @)+ B ErE)] WL+ 5| B ),
in view of (4.8), (4.9) and the fact that [B(z)| = 1 for |2| = 1, we get
B () + gB'(z)r(z)‘ > |B)0(2) + gB’(z)r*(z)‘

(4.10) n |A|B’(z)|{‘1+§‘ = ‘g‘}m

Finally, letting |\| — 1 in (4.10) and adding |B(z)r'(z) + gB’(z)r(z)| to both sides,
and using (4.4), we get the required assertion. Theorem 2.4 is proved.
Proof of Theorem 2.5. Since r(z) = P where P(z) = Z?:o cjz? and r(z)

W(z)’
has all its zeros in |z| > 1, and also r*(z) = B(z)r(1/Z), we have
() = 2B r(3) - P,
and therefore, for |z| =1 (so that z = 1), we get
1) 16 = [5G - B G| = 186 G - )
Taking into account that (see [12], formula (15))
B
from (4.11) for |z| = 1 with r(z) # 0, we get
“(2)) |2 2 (2) |2
| |- 3
O P e
— 1B+ |2 -2,

which, in view of Lemma 3.4, for |z| = 1 with r(z) # 0, gives

2OV L e O a1 - ol = leal
| = mer [ - menimer -
_ @, (leol=lenl Y e,
3+ (e e
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This implies for |z| = 1 that

/ 2 |CO|*|CVL| / 2 * 112
() + (Wm)w )P < ()2

Combining this with Lemma 3.3, for |z| = 1 we get
lcol — lenl :
r(z —|—{7“’z 2+(CO _cn>B’z r(z 2}
7' (2)[+4 | (2)] o F o] |B'(2)||r(2)]
<@+ )< B N r(2) |,

or equivalently,

' (z 2+(|CO|CTL|> B ()lr(2)]2
P+ ([ ) G
SIB' P () 1P =21B' ()l (2)] | 7(2) | +1r' ()2,
which, in view of the fact that |B’(z)| # 0, after simplification, for |z| = 1 gives
lco| — len] ) _Ir(2)I?
@< g{mel- ( )1
’ T el el ) TG T2

This completes the proof of the theorem.

Remark 4.1. From inequality (4.10), for |z| = 1 and for every |B| < 1, we have

B B
2 2

(112) z|B'<>{\ +|- ’ﬁ‘}mmlr ).

Since |B'(z)| # 0 for |z| =1, from (4.12) we get the following inequality

b (o

‘B(Z)v“’(Z) + 5B (2)r(2) B'(z)r"(z)

- [y +

(4.13)

e

Taking 8 = 0 in (4.13), we get

r'(z) [ Br(z)
2

_ @) Brr(e)
B’(z) B(z) 2

B'(2) B(2)

|| R) ,
I;H_nl{ 5| | BG) }2?1_“1""( )
yielding
| (2)
(4.14) e >|rr|unllr( 2)|-

Clearly, the inequality (4.14) gives a generalization of the corresponding result for

polynomials (see [1], Theorem 1).
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