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Í. Ã. ÀÃÀÐÎÍßÍ, Â. ÕÀËÀÒßÍ

ãäå dPi, i = 1, 2 - ìåðà Ëåáåãà â ïðîñòðàíñòâå R3. Òàê êàê

(1.2)

∫∫
{P1, P2∈D}

dP1dP2 = V 2(D)

(çäåñü ìû èñïîëüçóåì, ÷òî òî÷êè P1 è P2 âûáèðàþòñÿ íåçàâèñèìî â D), ìû ïî-

ëó÷àåì

(1.3) Fρ(x) =
1

V 2(D)

∫∫
{P1,P2∈D : ρ(P1,P2)≤x}

dP1 dP2.

Èç âûðàæåíèÿ ýëåìåíòà ïëîùàäè â ñôåðè÷åñêîé ñèñòåìå êîîðäèíàò, ãäå â êà÷å-

ñòâå íà÷àëà êîîðäèíàò ìû âûáèðàåì òî÷êó P1, ïîëó÷àåì
x = r cosψ sin θ

y = r sinψ sin θ

z = r cos θ

ãäå r - ðàññòîÿíèå ìåæäó P1 è P2, ψ - óãîë ìåæäó ïðîåêöèåé îòðåçêà P1P2 íà

XOY è îñüþ OX. θ - ýòî óãîë, îáðàçîâàííûé îñüþ OZ è îòðåçêîì P1P2. Òàêèì

îáðàçîì, èñïîëüçóÿ ïðåîáðàçîâàíèå èç äåêàðòîâîé ñèñòåìû êîîðäèíàò â ñôåðè-

÷åñêóþ ñèñòåìó êîîðäèíàò, ïîëó÷àåì

dP2 = dx2d y2 dz2 = r2 sin θ dr dθ dψ.

Èñïîëüçóÿ ýòî âûðàæåíèå, ìû èìååì

(1.4) dP1dP2 = r2 dr sin θ dθ dψ = r2 dr · dK,

ãäå dK - ýëåìåíò êèíåìàòè÷åñêîé ìåðû â R3.

Êèíåìàòè÷åñêàÿ ïëîòíîñòü â åâêëèäîâîì ïðîñòðàíñòâå áûëà âïåðâûå ââåäå-

íà Ïóàíêàðå. Â ñîâðåìåííîé òåðìèíîëîãèè ýòî ìåðà Õààðà ãðóïïû äâèæåíèé

(ñäâèãîâ è âðàùåíèé), êîòîðàÿ äåéñòâóåò â ïðîñòðàíñòâå. Ïóñòü R3 - åâêëèäîâî

òðåõìåðíîå ïðîñòðàíñòâî, è dK - êèíåìàòè÷åñêàÿ ïëîòíîñòü, íîðìèðîâàííàÿ òàê,

÷òî ìåðà âñåõ ïîëîæåíèé îòíîñèòåëüíî òî÷êè ðàâíà 8π2. Äðóãèìè ñëîâàìè, ìåðà

âñåõ ïîëîæåíèé òåëà D ñ îáúåìîì V (D), äëÿ êîòîðîãî D ñîäåðæèò íåïîäâèæíóþ

òî÷êó, ðàâíà 8π2V (D).

Èñïîëüçóÿ (1.4), ìû ìîæåì ïåðåïèñàòü (1.3) â ñëåäóþùåì âèäå:

(1.5) Fρ(x) =
1

V 2(D)

∫
0

x

r2K(D, r)dr
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ãäå K(D, r) - êèíåìàòè÷åñêàÿ ìåðà âñåõ îðèåíòèðîâàííûõ îòðåçêîâ äëèíû r,

ëåæàùèõ âíóòðè D. Òàêèì îáðàçîì, ìû ïîëó÷àåì ñâÿçü ìåæäó ôóíêöèåé ïëîò-

íîñòè fρ(x) ðàññòîÿíèÿ ρ(P1, P2) è êèíåìàòè÷åñêîé ìåðîé K(D,x):

(1.6) fρ(x) =
x2K(D,x)

[V (D)]2

Ñëåäóåò îòìåòèòü, ÷òî ìû ìîæåì âû÷èñëèòü êèíåìàòè÷åñêóþ ìåðó âñåõ íåîðè-

åíòèðîâàííûõ îòðåçêîâ, êîòîðûå ëåæàò âíóòðè D, à çàòåì óìíîæèòü ðåçóëüòàò

íà 2.

Ïóñòü S1 = MS - îáðàç îòðåçêà S ïðè åâêëèäîâîì äâèæåíèè. M - ãðóïïà âñåõ

åâêëèäîâûõ äâèæåíèé â ïðîñòðàíñòâå R3. Äëÿ ëîêàëüíî êîìïàêòíîé ãðóïïû M

ñóùåñòâóåò ëîêàëüíî êîíå÷íàÿ ìåðà Õààðà, ò. å. ëîêàëüíî êîíå÷íàÿ, íå òîæäå-

ñòâåííî ðàâíàÿ íóëþ áîðåëåâñêàÿ ìåðà, èíâàðèàíòíàÿ êàê ñëåâà, òàê è ñïðàâà.

Îòðåçîê S1 ìîæíî îïðåäåëèòü ñ ïîìîùüþ äâóõ êîîðäèíàò (γ, t), ãäå γ ∈ J (J -

ïðîñòðàíñòâî âñåõ ïðÿìûõ â R3) ñîäåðæèò îòðåçîê S1, à t - îäíîìåðíàÿ êîîðäè-

íàòà öåíòðà îòðåçêà S1 íà ïðÿìîé γ. Â ïðîñòðàíñòâå M îïðåäåëèì ìåðó ïî åå

ýëåìåíòó ñëåäóþùèì îáðàçîì:

(1.7) m(dS1) = dγ dt,

ãäå dγ - ëîêàëüíî êîíå÷íàÿ ìåðà â ïðîñòðàíñòâå J , èíâàðèàíòíàÿ îòíîñèòåëüíî

ãðóïïû M , à dt - îäíîìåðíàÿ ìåðà Ëåáåãà íà γ. Ìåðà m(·) íàçûâàåòñÿ êèíåìà-

òè÷åñêîé ìåðîé íà ãðóïïå M .

2. Îñíîâíàÿ ôîðìóëà

Â ýòîì ðàçäåëå ïðèâåäåíà îñíîâíàÿ ôîðìóëà äëÿ âû÷èñëåíèÿ êèíåìàòè÷åñêîé

ìåðû K(D,x) â òåðìèíàõ ôóíêöèè ðàñïðåäåëåíèÿ äëèíû õîðäû òåëà D. Êàê

èçâåñòíî (ñì. [1] - [3] èëè [10]), ðåøåíèå çàäà÷è î íàõîæäåíèè êèíåìàòè÷åñêîé

ìåðû K(D,x) îòðåçêîâ ïîñòîÿííîé äëèíû x, öåëèêîì ëåæàùèõ â D, íåïðîñòîå è

ñóùåñòâåííî çàâèñèò îò ôîðìû D. Î÷åâèäíî, ÷òî

K(D, r) = 0, åñëè r ≥ diam(D)

ãäå diam(D) - äèàìåòð D, ò.å. diam(D) = max{ρ(x, y) : x, y ∈ D}, ãäå ρ(x, y) -

ðàññòîÿíèå ìåæäó òî÷êàìè x è y. Ñëåäîâàòåëüíî, òîëüêî ñëó÷àé 0 ≤ r ≤ diam(D)

ðàññìàòðèâàåòñÿ â ñòàòüå. Î÷åâèäíî, ÷òî â óêàçàííîì ñëó÷àå

(2.1) K(D, r) =

∫
[D]

∫
t∈(0,χ(γ)−r)

dγ dt =

∫
(χ(γ)− r)+dγ,
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ãäå [D] = {γ ∈ J : γ ∩D 6= ∅} - ìíîæåñòâî ïðÿìûõ â R3, ïåðåñåêàþùèõ òåëî D,

χ(γ) = γ ∩D - õîðäà â D, à

x+ =

{
0, åñëè x ≤ 0

x, åñëè x ≥ 0.

Èçâåñòíî, ÷òî (ñì. [1] èëè [4])

(2.2)

∫
χ(γ) dγ = 2πV (D),

∫
dγ =

π

2
S(D)

ïîýòîìó,

(2.3) K(D, r) =

∫
χ(γ)>r

χ(γ) dγ−r
∫

χ(γ)>r

dγ = 2π V (D)−G(r)−r π
2
S(D) [1−FD(r)],

ãäå

(2.4) G(x) =

∫
χ(γ)≤x

χ(γ) dγ

è FD(·) - ôóíêöèÿ ðàñïðåäåëåíèÿ äëèíû õîðäû òåëà D, îïðåäåëÿåìàÿ êàê

(2.5) FD(y) =
2

πS(D)
·
∫
χ(γ)≤y

dγ

(òàê êàê
∫

[D]
dγ = π

2 · S(D)). Òåïåðü äîêàæåì ñëåäóþùóþ ôîðìóëó:

(2.6) G(x) =
π

2
S(D)

∫
0

x

u fD(u) du,

ãäå fD(x) - ôóíêöèÿ ïëîòíîñòè äëèíû õîðäû òåëà D, ò. å. fD(x) = F ′D(x) - ïåðâàÿ

ïðîèçâîäíàÿ ôóíêöèÿ ðàñïðåäåëåíèÿ. Òåïåðü âû÷èñëèì ïðîèçâîäíóþ ôóíêöèè

G(x). Èìååì
G(x+ ∆x)−G(x)

∆x
=

1

∆x

∫
x<χ(γ)≤x+∆x

χ(γ) dγ

= (x+ θ∆x)
π

2
S(D)

FD(x+ ∆x)− FD(x)

∆x
.

Òîãäà, ïðåäïîëàãàÿ, ÷òî ôóíêöèÿ ðàñïðåäåëåíèÿ FD(x) îáëàäàåò ïëîòíîñòüþ

fD(x), ïðè ∆x→ 0, ïîëó÷èì G′(x) = π
2S(D)x fD(x), îòêóäà ñëåäóåò

(2.7) G(x) = G(0) +
π

2
S(D)

∫
0

x

u fD(u) du =
π

2
S(D)

∫
0

x

u fD(u) du,

ïîñêîëüêó G(0) =
∫
χ(γ)≤0

χ(γ) dγ = 0. Òåïåðü ïðåîáðàçóåì ôîðìóëó (2.7) ïóòåì

èíòåãðèðîâàíèÿ ïî ÷àñòÿì:

(2.8) G(x) =
π

2
S(D)

∫
0

x

ufD(u)du = −π
2
S(D)

∫
0

x

u d[1− FD(u)]

= −π
2
xS(D) [1− FD(x)] +

π

2
S(D)

∫
0

x

[1− FD(u)] du.
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Íàêîíåö, ïîäñòàâëÿÿ (2.8) â ôîðìóëó (2.3) äëÿ K(D, r), ïðèõîäèì ê îñíîâíîé

ôîðìóëå:

(2.9) K(D, r) = 2πV (D)− π

2
S(D)

∫
0

r

[1− FD(u)]du.

Òåîðåìà 2.1. Äëÿ ëþáîãî òåëà D â R3

K(D, r) = 2πV (D)− π

2
S(D)

∫
0

r

[1− FD(u)]du.

Òàêèì îáðàçîì, åñëè çàäàíà ÿâíàÿ ôîðìà ôóíêöèè FD(u) äëÿ òåëà D, òî ìîæ-

íî âûâåñòè ÿâíîå âûðàæåíèå äëÿ êèíåìàòè÷åñêîé ìåðû K(D, r) ñ ïîìîùüþ (2.9).

Ôîðìóëà (2.9) áûëà ïîëó÷åíà äëÿ íåîðèåíòèðîâàííûõ îòðåçêîâ. Äëÿ îðèåíòèðî-

âàííûõ îòðåçêîâ ýòó ôîðìóëó ñëåäóåò óìíîæèòü íà 2. Ïîäñòàâèâ (2.9) â (2.3) (è

óìíîæèâ íà 2), ïîëó÷èì îñíîâíóþ ôîðìóëó ýòîé ñòàòüè:

(2.10) fρ(r) =
4πV (D)r2 + πr2S(D)

∫
0

r
FD(u) du− r3π S(D)

V (D)2

Ïîëó÷åííàÿ ôîðìóëà ïîçâîëÿåò ðàññ÷èòàòü êèíåìàòè÷åñêóþ ìåðó K(D, r) ñ ïî-

ìîùüþ ôóíêöèè ðàñïðåäåëåíèÿ äëèíû õîðäû.

3. Ñëó÷àé øàðà â R3

Â ñëó÷àå øàðà D = Bd ñ äèàìåòðîì d, V (Bd) = 1
6πd

3, S(Bd) = πd2. Ïîýòîìó,

èñïîëüçóÿ òåîðåìó 2.1, ïîëó÷àåì

(3.1) K(Bd, r) =
π2d3

3
+
π2d2

2

∫
0

r

FD(u)du− rπ2d2

2
.

Äëèíà õîðäû Ôóíêöèÿ ðàñïðåäåëåíèÿ äëèíû õîðäû äëÿ øàðà Bd èìååò ñëåäóþ-

ùèé âèä (ñì. [6], [7] èëè [8]):

(3.2) FBd
(y) =


0, åñëè y ≤ 0

(y/d)2, åñëè 0 ≤ y ≤ d
1, åñëè y ≥ d.

Ñëåäîâàòåëüíî, ïîäñòàâëÿÿ (3.2) â (3.1), ïîëó÷àåì

(3.3) K(Bd, r) =
π2d3

3
+
π2r3

6
− rπ2d2

2
.

Ïîäñòàâëÿÿ ýòîò ðåçóëüòàò â (1.6), ïîëó÷èì ôóíêöèþ ïëîòíîñòè ðàññòîÿíèÿ ìåæ-

äó äâóìÿ òî÷êàìè, âûáðàííûå â øàðå äèàìåòðîì d

fρ(x) =
24x2

d3
+

12x5

d6
− 36x3

d4
.

Ïðèìåíåíèå ÿâíîé ôîðìû fρ(x) (èëè FD(x)) äëÿ íåêîòîðîãî òåëà D äàåò íàì

âîçìîæíîñòü èñïîëüçîâàòü ýòè ôîðìû â êðèñòàëëîãðàôèè (ñì. [9]).
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Abstract. In the present paper a formula for calculation of the density function

fρ(x) of the distance between two independent points randomly and uniformly chosen

in a bounded convex body D is given. The formula permits to �nd an explicit form

of density function fρ(x) for body D with known chord length distributions. In

particular, we obtain an explicit expression for fρ(x) in the case of a ball of diameter

d in R3.
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or nondeterministic) and on the dependence structure of the underlying observed

process X(t).

Notice that the aforementioned prediction problem goes back to the classical

works by A. Kolmogorov, G. Szeg�o and N. Wiener, and later for di�erent classes

of stationary models has been considered by many authors. The problem has been

studied most intensively for nondeterministic processes, that is, in the case where

the prediction error is known to be positive (σ2(F ) > 0) (see Baxter [2], Devinatz

[9], Doob [10], Golinski [14], Grenander and Rosenblatt [17], Grenander and Szeg�o

[18], Helson and Szeg�o [19], Hirshman [21], Ibragimov [23], Ibragimov and Solev

[25], Kolmogorov [27], [28], Pourahmadi [29], Rozanov [32], Wiener [34] and others

(more references can be found in Bingham [5] and Ginovyan [13]). This is not

surprising because from application point of view the nondeterministic models are

more realistic and represent great interest.

The case of deterministic processes, that is, when σ2(F ) = 0, represents mostly

theoretical interest. However, it is also important from application point of view.

For example, as it was pointed out by M. Rosenblatt [31], situations of this type

arise in Neumann's theoretical model of storm-generated ocean waves. Also, such

models are of interest for meteorology, because the meteorological spectra often

have a gap in the mesoscale region (see Fortus [11]).

There are only few works devoted to the study of asymptotic behavior of prediction

error for deterministic processes. It goes back to the classical work by M. Rosenblatt

[31], where using the technique of orthogonal polynomials and Szeg�o's results, M.

Rosenblatt has investigated the asymptotic behavior of the prediction error variance

δn(F ) = σ2
n(F ) for discrete-time deterministic processes in the following two cases:

(a) the spectral density f(λ) is continuous and vanishes on an interval,

(b) the spectral density f(λ) has a high order contact with zero.

Later the problem (a) was studied by Babayan [3], [4], Davisson [8], and Fortus

[11], where some generalizations and extensions of Rosenblatt's result have been

obtained.

In this paper we consider the case (b), that is, when the spectral density f(λ) has

a high order contact with zero, and obtain su�cient conditions for hyperbolic decay

of prediction error variance, generalizing the corresponding result of Rosenblatt [31],

obtained in this case.

Throughout the paper we will use the following notation. The letters C, c,M and

m with or without indices are used to denote positive constants, the values of which

can vary from line to line. For two functions f(λ) and g(λ), λ ∈ Λ, we will write

10
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f(λ) ∼=
λ→λ0

g(λ) if limλ→λ0

f(λ
g(λ) = c, c 6= 0, and f(λ) ∼

λ→λ0

g(λ) if c = 1. A similar

notation we will use for sequences: for two sequences {an > 0, n ∈ N = {1, 2, . . .}}
and {bn > 0, n ∈ N}, we will write an ∼= bn if limn→∞

an
bn

= c, c 6= 0, and an∼ bn if

c = 1.

The paper is organized as follows. In the remainder of this section we introduce

the model of interest - a stationary process, recall some key notions and results

from the theory of stationary process, and state the in�nite prediction problem.

In Section 2 we state the �nite prediction problem, present a formula for �nite

prediction error in terms of orthogonal polynomials on the unit circle, and state

the Kolmogorov-Szeg�o theorem. Section 3 is devoted to the asymptotic behavior

of the �nite prediction error for nondeterministic processes. Here we brie�y review

some important known results. Section 4 is devoted to the asymptotic behavior of

the �nite prediction error for deterministic processes. Here we state and prove a

number of new theorems.

1.2. TheModel. In this subsection we introduce the model of interest - a stationary

process, recall some key notions and results from the theory of stationary process

(Kolmogorov's isometric isomorphism theorem, spectral representations of the

covariance function and the process, etc.)

Let {X(t), t ∈ Z} be a centered, real-valued, discrete-time, second-order stationary

random process de�ned on a probability space (Ω,F , P ) with covariance function

r(t), that is, IE|X(t)|2 < ∞, IE[X(t)] = 0, r(t) = IE[X(t)X(0)], t ∈ Z, where IE[·]
stands for the expectation operator with respect to measure P .

By the well-known Herglotz' theorem (see [33], p. 421), there is a �nite measure µ

on (Λ,B(Λ)), where Λ = [−π, π] andB(Λ) is the Borel σ-algebra on Λ, such that for

any t ∈ Z the covariance function r(t) admits the following spectral representation:

(1.1) r(t) =

∫ π

−π
e−itλdµ(λ).

The measure µ in (1.1) is called the spectral measure of the process X(t). The

function F (λ) = µ[−π, λ], λ ∈ Λ, is called the spectral function of the process

X(t). If F (λ) is absolutely continuous (with respect to Lebesgue measure), then

the function f(λ) = dF (λ)/dλ is called the spectral density of the process X(t).

Notice that f(λ) ≥ 0 and f(λ) ∈ L1(Λ). The set Ef = {eiλ : f(λ) > 0} is called
the spectrum of the process X(t).

We assume thatX(t) is a non-degenerate process, that is, Var[X(0)] = E|X(0)|2 =

r(0) > 0. Also, to avoid the trivial cases, we will assume that the spectral measure

11
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µ is non-trivial, that is, µ has in�nite support. We write

(1.2) µ(λ) = µAC(λ) + µS(λ) =

∫ λ

−π
f(u)du+ µS(λ),

so f(λ) is the spectral density and µS is the singular part of µ, that is, µS =

µSC + µPP , where µ = µAC + µSC + µPP is the Lebesgue decomposition of µ into

an absolutely continuous (with respect to Lebesgue measure) part (µAC), a singular

continuous part (µSC), and a pure point part (µPP ). The same representations we

have also for spectral function F (λ).

By the well-known Cram�er theorem (see [33], p. 430), for any stationary process

{X(t), t ∈ Z} with spectral measure µ there exists an orthogonal stochastic measure

Z = Z(B), B ∈ B(Λ), such that for every t ∈ Z the process X(t) admits the

following spectral representation:

(1.3) X(t) =

∫ π

−π
eitλdZ(λ).

Moreover, IE
[
|Z(B)|2

]
= µ(B) for every B ∈ B(Λ). For de�nition and properties of

orthogonal stochastic measures and stochastic integral in (1.3) we refer, e.g., [33],

Chapter VI.

Given a probability space (Ω,F , P ), de�ne the L2-space of random variables

ξ = ξ(ω), IE[ξ] = 0:

(1.4) L2(P ) =

{
ξ : ||ξ||2 =

∫
Ω

|ξ(ω)|2dP (ω) <∞
}
.

Then L2(P ) becomes a Hilbert space with the following inner product: for ξ, η ∈
L2(P )

(1.5) (ξ, η) = IE[ξη] =

∫
Ω

ξ(ω)η(ω)dP(ω).

For a, b ∈ Z, −∞ ≤ a ≤ b ≤ ∞, we de�ne the space Hb
a(X) to be the closed linear

subspace of the space L2(P ) spanned by the random variables X(t, ω), t ∈ [a, b]:

(1.6) Hb
a(X) = sp{X(t), a ≤ t ≤ b}L2(P ).

Observe that the subspaceHb
a(X) consists of all �nite linear combinations,

∑n
k=1 ckX(tk)

(a ≤ tk ≤ b, k, n ∈ N), as well as, their L2(P )-limits.

De�nition 1.1. The space H(X) = H∞−∞(X) is called the Hilbert space generated

by the process X(t), or the time-domain of X(t).

Consider the weighted L2-space L2(µ) of complex-valued functions ϕ(λ), λ ∈ Λ,

de�ned by

(1.7) L2(µ) =

{
ϕ(λ) : ||ϕ||2µ :=

∫ π

−π
|ϕ(λ)|2dµ(λ) <∞

}
.

12
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Then L2(µ) becomes a Hilbert space with the following inner product: for ϕ,ψ ∈
L2(µ)

(1.8) (ϕ,ψ)µ =

∫ π

−π
ϕ(λ)ψ(λ)dµ(λ).

For a, b ∈ Z, −∞ ≤ a ≤ b ≤ ∞ de�ne the space Hb
a(µ) to be the closed linear

subspace of the space L2(µ) spanned by the exponents eitλ, t ∈ [a, b]:

(1.9) Hb
a(µ) = sp{eitλ, a ≤ t ≤ b}L2(µ).

De�nition 1.2. The Hilbert spaceH(µ) := H∞−∞(µ) is called the frequency-domain

of the process X(t).

Kolmogorov's Isometric Isomorphism Theorem states that for any stationary process

X(t) with spectral measure µ there exists a unique isometric isomorphism V between

the time- and frequency-domains H(X) and L2(µ), such that V [X(t)] = eitλ for

any t ∈ Z. In particular, we have

1. For any random variable Y ∈ H(X) there exist a unique function ϕ(λ) ∈ L2(µ),

such that Y admits the spectral representation

(1.10) Y =

∫ π

−π
ϕ(λ)dZ(λ),

where Z is the orthogonal stochastic measure in the spectral representation (1.3)

of X(t), and for any function ϕ(λ) ∈ L2(µ) the stochastic integral (1.10) de�nes an

element Y ∈ H(X).

2. For any Yi ∈ H(X) and ϕi(λ) = V [Yi] ∈ L2(µ), i = 1, 2,

(1.11) (Y1, Y2) = (ϕ1, ϕ2)µ.

3. Any linear problem in the time-domain H(X) can be translated into one in

the frequency-domain L2(µ), and vice versa. This fact allows to study stationary

processes using analytic methods.

1.3. The in�nite prediction problem. Observe �rst that since by assumption

X(t) is a non-degenerate process, the time-domain H(X) of X(t) is non-trivial,

that is, H(X) contains elements di�erent from zero.

De�nition 1.3. The space Ht
t−n(X) is called the �nite history, or past of length

n and present of the process X(u) up to time t. The space Ht(X) = Ht
−∞(X) is

called the entire history, or in�nite past and present of the process X(u) up to time

t. The space

(1.12) H−∞(X) = ∩tHt
−∞(X)

is called the remote past of the process X(u).

13
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It is clear that

H−∞(X) ⊂ · · · ⊂ Ht
−∞(X) ⊂ Ht+τ

−∞(X) ⊂ · · · ⊂ H(X), τ ∈ N.

The Hilbert space setting provides a natural framework for stating and solving the

problem of predicting future values of the process X(u) from the observed past

values. Assume that a realization of the process X(u) for times u ≤ t is observed

and we want to predict the value X(t + τ) for some τ ≥ 1 from the observed

values. Since we will never know what particular realization is being observed, it is

reasonable to consider as a predictor X̂(t, τ) for X(t+τ) a function of the observed

values, g({X(u), u ≤ t}), which is good �on the average�. So, as an optimality

criterion for our predictor we take the L2-distance, that is, the mean squared error,

and consider only the linear predictors. With these restrictions, the in�nite linear

prediction problem can be stated as follows.

The in�nite linear prediction problem. Given a �parameter� of the process

X(u) (e.g., the covariance function r(t) or the spectral function F (λ)), the entire

history Ht
−∞(X) of X(u), and a natural number τ ∈ N, �nd a random variable

X̂(t, τ) such that

a) X̂(t, τ) is linear, that is, X̂(t, τ) ∈ Ht
−∞(X),

b) X̂(t, τ) is mean-square optimal (best) among all elements Y ∈ Ht
−∞(X),

that is, X̂(t, τ) minimizes the mean-squared error ||X(t+ τ)− Y ||2L2(P ) :

(1.13) ||X(t+ τ)− X̂(t, τ)||2L2(P ) = min
Y ∈Ht

−∞(X)
||X(t+ τ)− Y ||2L2(P ).

The solution - the random variable X̂(t, τ) satisfying a) and b), is called the best

linear τ -step ahead predictor for an element X(t+ τ) ∈ H(X). The quantity

(1.14) σ2(τ) = ||X(t+ τ)− X̂(t, τ)||2L2(P ) = ||X(t+ τ)||2L2(P ) − ||X̂(t, τ)||2L2(P ),

which is independent of t, is called the prediction error (variance).

The advantage of the Hilbert space setting now becomes apparent. Namely, by

the projection theorem in Hilbert spaces (see [29], p. 312), such a predictor exists,

is unique, and is given by

(1.15) X̂(t, τ) = PtX(t+ τ),

where Pt := P(−∞,t] is the orthogonal projection operator in H(X) onto Ht
−∞(X).

Remark 1.1. The reason for restricting attention to linear predictors is that

the best linear predictor X̂(t, τ), in this case, depends only on knowledge of the

covariance function r(t) or the spectral function F (λ). The prediction problem

becomes much more di�cult when nonlinear predictors are allowed.
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1.4. Deterministic and nondeterministic processes. From prediction point of

view it is natural to distinguish the class of processes for which we have error-free

prediction, that is, σ2(τ) = 0 for all τ ≥ 1, or equivalently, X̂(t, τ) = X(t + τ) for

all t ∈ Z and τ ≥ 1. In this case, the prediction is called perfect. It is clear that a

process X(t) possessing perfect prediction represents a singular case of extremely

strong dependence between the random variables forming the process. Such a process

X(t) is called deterministic or singular. From the physical point of view, singular

processes are exceptional. From application point of view it is of interest the class

of processes for which we have σ2(τ) > 0 for all τ ≥ 1. In this case the prediction

is called imperfect, and the process X(t) is called nondeterministic.

Observe that the time-domain H(X) of any non-degenerate stationary process

{X(t), t ∈ Z} can be represented as the orthogonal sum H(X) = H1(X) ⊕
H−∞(X), where H−∞(X) is the remote past of X(t) de�ned by (1.12), and H1(X)

is the orthogonal complement of H−∞(X). So, we can give the following geometric

de�nition of the deterministic (singular), nondeterministic and purely nondeterministic

(regular) processes.

De�nition 1.4. A stationary process {X(t), t ∈ Z} is called

• deterministic or singular ifH−∞(X) = H(X), that is,Ht
−∞(X) = Hs

−∞(X)

for all t, s ∈ Z,
• nondeterministic ifH−∞(X) is a proper subspace ofH(X), that is,H−∞(X) ⊂
H(X),

• purely nondeterministic (PND) or regular if H−∞(X) = {0}, that is, the
remote past H−∞(X) of X(t) is the trivial subspace, consisting of the

singleton zero.

The next result, known as Wold's decomposition theorem (see [1], p. 65), provides

a key step for solution of the in�nite prediction problem in the time-domain setting,

and essentially says that any stationary process can be represented in the form of a

sum of two orthogonal stationary components, one of which is perfectly predictable

(singular component), while for the other (regular component) an explicit formula

for the predictor can be obtained.

Theorem 1.1 (Wold's decomposition). Every centered non-degenerate discrete-

time stationary process X(t) admits a decomposition

(1.16) X(t) = XS(t) +XR(t),

where
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(a) the processes XR(t) and XS(t) are stationary, centered, mutually uncorrelated

(orthogonal), and completely subordinated to X(t), that is, Ht
−∞(XR) ⊆

Ht
−∞(X) and Ht

−∞(XS) ⊆ Ht
−∞(X) for all t ∈ Z.

(b) the process XS(t) is deterministic (singular),

(c) the process XR(t) is purely nondeterministic (regular) and has the in�nite

moving-average representation:

(1.17) XR(t) =

∞∑
k=0

bkε0(t− k),

∞∑
k=0

|bk|2 <∞,

where ε0(t) is an innovation of XR(t), that is, ε0(t) is a standard white

noise process, such that Ht
−∞(XR) = Ht

−∞(ε0) for all t ∈ Z.
(d) the representation (1.16) is unique.

The next theorem contains spectral characterizations of deterministic, nondeterministic

and purely nondeterministic processes (see [24], p. 35-36, [32], p. 58, 64)).

Theorem 1.2. Let X(t) be a discrete-time non-degenerate stationary process with

spectral function F (λ) = FR(λ) + FS(λ) =
∫ λ
−π f(u)du + FS(λ). The following

assertions hold.

(a) (Kolmogorov-Szeg�o alternative). Either

H0
−∞(FR) = H(FR)⇔

∫ π

−π
log f(λ) dλ = −∞⇔ σ2(f) = 0⇔ X(t) is deterministic,

or else

H0
−∞(FR) 6= H(FR)⇔

∫ π

−π
log f(λ) dλ > −∞⇔ σ2(f) > 0⇔ X(t) is nondeterministic.

(b) The process X(t) is regular (PND) if and only if it is nondeterministic and

FS(λ) ≡ 0.

Remark 1.2. The condition

(1.18)

∫ π

−π
log f(λ) dλ > −∞

is called Szeg�o condition. Observe that (1.18) is satis�ed if and only if log f ∈
L1(Λ), since log f(λ) ≤ f(λ) and f(λ) ∈ L1(Λ). Also, the Szeg�o condition (1.18)

is connected with the character of zeros of the spectral density f(λ), and does

not depend on the di�erential properties of f(λ). For example, for any α ≥ 0

the function f(λ) = exp{−|λ|−α} is in�nitely di�erentiable, for α < 1 the Szeg�o

condition is satis�ed, and hence a stationary process X(t) with this spectral density

is nondeterministic, while for α ≥ 1 the Szeg�o condition is violated, and X(t) is

deterministic (see [30], p. 151, [29], p. 68).
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Remark 1.3. A stationary process X(t) is deterministic if either it has pure

discrete spectrum, or pure singular spectrum, or the Szeg�o condition is violated:

log f /∈ L1(Λ). Thus, for X(t) to be nondeterministic, its spectral density f(λ)

cannot be zero too often (see [29], p. 68).

2. The Finite Prediction Problem

In practice we never will have the observed entire in�nite past, instead will be

available only the �nite past.

Suppose we have observed the values X(−n), . . . , X(−1) of a centered, real-

valued stationary process X(t) with covariance function r(t) and spectral function

F (λ), the one-step ahead �nite prediction problem in predicting a random variable

X(0) based on the observed valuesX(−n), . . . , X(−1) is: �nd the orthogonal projection

X̂n(0) = P[−n,−1]X(0) of X(0) onto the space Hn(X) = H−1
−n(X) = sp{X(t), −n ≤

t ≤ −1}, that is, �nd constants ĉk = ĉk,n, k = 1, 2, . . . , n, that minimize the one-

step ahead prediction error variance σ2
n(F ) = σ2

n(1, F ):

σ2
n(F ) = min

ξ∈Hn(X)
‖X(0)− ξ‖2L2(P ) = min

{ck}

∥∥∥∥∥X(0)−
n∑
k=1

ckX(−k)

∥∥∥∥∥
2

L2(P )

=

∥∥∥∥∥X(0)−
n∑
k=1

ĉkX(−k)

∥∥∥∥∥
2

L2(P )

= ||X(0)− X̂n(0)||2L2(P ).(2.1)

If such constants ĉk can be found, then the best linear 1-step ahead predictor X̂n(0)

of a random variable X(0) based on the observed �nite past: X(−n), . . . , X(−1)

can be computed by

(2.2) X̂n(0) =

n∑
k=1

ĉkX(−k), ĉk = ĉk,n,

and the mean-squared prediction error σ2
n(F ) can be computed by formula (2.1).

Using Kolmogorov's isometric isomorphism V : X(t) ↔ eitλ between the time-

and frequency-domains H(X) and L2(F ), in view of (2.1), for σ2
n(F ) we can write

σ2
n(F ) = min

{ck}

∥∥∥∥∥X(0)−
n∑
k=1

ckX(−k)

∥∥∥∥∥
2

L2(P )

= min
{ck}

∫ π

−π

∣∣∣∣∣1−
n∑
k=1

cke
−ikλ

∣∣∣∣∣
2

dF (λ)

= min
{ck}

∫ π

−π

∣∣∣∣∣einλ −
n∑
k=1

cke
i(n−k)λ

∣∣∣∣∣
2

dF (λ) = min
{qn∈Qn}

∫ π

−π

∣∣qn(eiλ)
∣∣2 dF (λ),(2.3)

where Qn =
{
qn : qn(z) =

∑n
k=0 ckz

n−k, c0 = 1
}
stands for the set of polynomials

of degree n with coe�cient of the leading term equal to 1.
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Thus, the problem of �nding σ2
n(F ) becomes to the solution of the following

minimum problem:

(2.4)

∫ π

−π
|qn(eiλ|2dF (λ) = min, qn(z) ∈ Qn.

The polynomial pn(z) = pn(z, F ) that solves the minimum problem (2.4) is called

the optimal polynomial for F (λ) in the class Qn. This minimum problem was solved

by G. Szeg�o (see [18], Section 2.2) by showing that the optimal polynomial pn(z, F )

exists, is unique and can be expressed in terms of orthogonal polynomials ϕn(z),

n ∈ Z+ = {0, 1, 2, . . .}, on the unit circle T = {z ∈ C : |z| = 1} with respect to

F (λ).

Recall that the system of orthogonal polynomials {ϕn(z) = ϕn(z;F ), z = eiλ, n ∈
Z+} is uniquely determined by the following conditions:

(i) ϕn(z) = κn(F )zn + lower order terms

is a polynomial of degree n, in which the coe�cient κn = κn(F ) is real

and positive;

(ii) for arbitrary nonnegative integers k and j

1

2π

∫ π

−π
ϕk(z)ϕj(z)dF (λ) = δkj =

{
1, for k = j
0, for k 6= j,

z = eiλ.

Theorem 2.1 (Szeg�o theorem). The optimal polynomial for F (λ) in the class Qn,
that is, the polynomial pn(z) = pn(z, F ) that solves the minimum problem (2.4) is

given by pn(z) = κ−1
n (F )ϕn(z), and the minimum itself is equal to κ−2

n (F ). Thus,

we have

σ2
n(F ) = min

{qn∈Qn}

∫ π

−π

∣∣qn(eiλ)
∣∣2 dF (λ) =(2.5)

=

∫ π

−π

∣∣pn(eiλ, F )
∣∣2 dF (λ) = κ−2

n (F ).

Remark 2.1. Denote Q∗n =
{
qn : qn(z) =

∑n
k=0 ckz

n−k, cn = 1
}
. Then we have

(see [18], Section 3.1):

σ2
n(F ) = min

{qn∈Q∗n}

∫ π

−π

∣∣qn(eiλ)
∣∣2 dF (λ) =

∫ π

−π

∣∣p∗n(eiλ, F )
∣∣2 dF (λ),(2.6)

where p∗n(z) = pn(z, F ) is the optimal polynomial for F (λ) in the class Q∗n.

Remark 2.2. From the obvious embeddingQ∗n ⊂ Q∗n+1, it follows that the sequence

{σ2
n(F ), n ∈ N} is non-increasing in n: σ2

n+1(F ) ≤ σ2
n(F ). Also, it follows from (2.5)

that σ2
n(F ) is a non-decreasing functional of F (λ):

σ2
n(F1) ≤ σ2

n(F2) when F1(λ) ≤ F2(λ), λ ∈ Λ.(2.7)
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Indeed, by the de�nition of optimal polynomials pn(z, F1) and pn(z, F2), corresponding

to spectral functions F1 and F2, respectively, we have

σ2
n(F1) =

∫ π

−π

∣∣pn(eiλ, F1)
∣∣2 dF1(λ) ≤

∫ π

−π

∣∣pn(eiλ, F2)
∣∣2 dF1(λ)

≤
∫ π

−π

∣∣pn(eiλ, F2)
∣∣2 dF2(λ) = σ2

n(F2).

The �nite prediction problem is to describe the asymptotic behavior of σ2
n(F )

as the length of the observed past increases (n→∞). The problem was solved by

G. Szeg�o in 1915 in the special case where F (λ) is pure absolute continuous, that

is, FS(λ) = 0, and by A. Kolmogorov in 1941 in the general case (see, e.g., [18],

p. 44 or [22], p. 49). The solution is given in the theorem that follows, known as

Kolmogorov-Szeg�o theorem.

Remark 2.3. If F (λ) is purely absolutely continuous, that is, dF (λ) = f(λ)dλ,

then instead of σ2
n(F ) and σ2(F ) we will write σ2

n(f) and σ2(f), respectively.

Theorem 2.2 (Kolmogorov-Szeg�o theorem). For any non-trivial spectral function

F (λ) the following limiting relation hold:

lim
n→∞

σ2
n(F ) = σ2(F ) = σ2(f) = 2πG(f),(2.8)

where f(λ) is the spectral density, that is, the derivative of the absolutely continuous

part of F (λ), and G(f) is the geometric mean of f(λ), given by

(2.9) G(f) =

{
exp

{
1

2π

∫ π
−π log f(λ) dλ

}
if log f ∈ L1(Λ)

0, otherwise.

De�ne the relative prediction error δn(F ) to be

(2.10) δn(F ) := σ2
n(F )− σ2(F ).

Observe that δn(F ) ≥ 0 and δn(F ) → 0 as n → ∞. Note that if the underlying

process X(t) is deterministic, then δn(F ) = σ2
n(F ).

The problem of interest is to describe the rate of decrease of relative prediction

error δn(F ) to zero as n → ∞, depending on the regularity nature (deterministic

or nondeterministic) and the dependence (memory) structure of the model X(t).

This problem we discuss in Section 3 for nondeterministic processes and in Section

4 for deterministic processes.

3. Asymptotic behavior of the prediction error variance for

nondeterministic processes

In this section we study the asymptotic behavior of the �nite prediction error

for nondeterministic processes, and review some important known results.
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We assume that the model process X(t) is regular, or equivalently, is purely

nondeterministic (PND), that is, X(t) has a non-trivial spectral function F (λ) =∫ λ
−π f(u)du + FS(λ) with dFs(λ) = 0 and ln f(λ) ∈ L1(Λ), and describe the rate

of decrease of relative prediction error δn(F ) to zero as n → ∞, depending on the

dependence (memory) structure of the model X(t) and the smoothness properties

of its spectral density f(λ).

3.1. Asymptotic behavior of δn(f) for short-memory processes. Recall that

a short memory processes is a second order stationary processes possessing a

spectral density f(λ) which is bounded away from zero and in�nity, that is, there

are constantsm andM such that 0 < m ≤ f(λ) ≤M <∞. A typical short memory

model example is the stationary autoregressive moving average (ARMA)(p, q) process

X(t) de�ned to be a stationary solution of the di�erence equation: ψp(B)X(t) =

θq(B)ε(t), t ∈ Z, where ψp and θq are polynomials of degrees p and q, respectively,

B is the backward shift operator de�ned by BX(t) = X(t− 1), and {ε(t), t ∈ Z} is
a discrete-time white noise, that is, a sequence of zero-mean, uncorrelated random

variables.

We �rst give a result that contains a necessary and su�cient condition for exponential

rate of decrease to zero for δn(f) = σ2
n(f)−σ2(f). Notice that the �rst result of this

type goes back to the paper by Grenander and Rosenblatt [17]. The next theorem

was proved by Ibragimov [23] (see also Golinskii and Ibragimov [15]).

Theorem 3.1. A necessary and su�cient condition for

(3.1) δn(f) = O(qn), q = e−b, b > 0, n→∞

is that f(λ) is a spectral density of a short-memory process, and 1/f(λ) ∈ Ab,

where Ab is the class of 2π�periodic continuous functions ϕ(λ), λ ∈ R, admitting

an analytic continuation into the strip z = λ+ iµ, −∞ < λ <∞, |µ| ≤ b.

Observe that (3.1) will be true for all b > 0 if and only if the analytic continuation

of f(λ) is an entire function of z = λ+ iµ.

Thus, to have exponential rate of decrease to zero for δn(f) the underlying model

should be short-memory process with su�ciently smooth spectral density f(λ).

Now we give a result that contains a necessary and su�cient condition for

hyperbolic rate of decrease to zero for δn(f):

δn(f) = O(n−γ), γ > 0, n→∞.(3.2)

Bounds of type (3.2) with γ > 1 for di�erent classes of spectral densities were

obtained by Baxter [2], Devinatz [9], Geronimus [12], Grenander and Rosenblatt
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[17], Grenander and Szeg�o [18], and others (see [13] and references therein). The

most general result in this direction has been obtained by Ibragimov [23]. To state

Ibragimov's theorem, we �rst introduce the H�older class of functions.

For a function ϕ(λ) ∈ Lp(Λ), we de�ne its Lp-modulus of continuity by

ωp(ϕ; δ) = sup
0<|t|≤δ

||ϕ(·+ t)− ϕ(·)||p, δ > 0.(3.3)

Given numbers 0 < α < 1, r ∈ Z+ := {0, 1, 2, . . .}, and p ≥ 1, we put γ := r + α.

The H�older class of functions, denoted by Hp(γ), is de�ned to be the set of those

functions ϕ(λ) ∈ Lp(Λ) that have r-th derivative ϕ(r)(λ), such that ϕ(r)(λ) ∈ Lp(Λ)

and ωp(ϕ
(r); δ) = O(δα) as δ → 0.

Theorem 3.2. A necessary and su�cient condition for

δn(f) = O(n−γ), γ = 2(r + α) > 1; 0 < α < 1, r ∈ Z+, as n→∞(3.4)

is that f(λ) is a spectral density of a short-memory process belonging to H2(γ).

Remark 3.1. It follows from Theorem 3.2 that if δn(f) = O(n−γ) with γ > 1,

then the underlying model X(t) is necessarily a short-memory process. Moreover,

as it was pointed out by Grenander and Rosenblatt [17] (see, also, Devinatz [9], p.

118), if the model is not a short-memory process, that is, the spectral density f(λ)

has zeros or is unbounded, then, in general, we cannot expect δn(f) to go to zero

faster than 1/n as n→∞. This question we discuss in the next subsection.

3.2. Asymptotic behavior of δn(f) for long memory and antipersistent

processes. Recall that a second order stationary process X(t) is said to be anti-

persistent if the spectral density f(λ) vanishes at frequency zero: f(0) = 0. And,

we say that X(t) displays long memory or long-range dependence if the spectral

density f(λ) has a pole at frequency zero, that is, it is unbounded at the origin.

A well-known example of processes that displays long memory or is anti-persistent

is an autoregressive fractionally integrated moving average ARFIMA(p, d, q) process

X(t) de�ned to be a stationary solution of the di�erence equation:

ψp(B)(1−B)dX(t) = θq(B)ε(t), d < 1/2,

where B is the backward shift operator, ε(t) is a discrete-time white noise, and ψp

and θq are polynomials of degrees p and q, respectively. The spectral density f(λ)

of X(t) is given by

(3.5) f(λ) = |1− e−iλ|−2dh(λ), d < 1/2,
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where h(λ) is the spectral density of an ARMA(p, q) process. Note that the condition

d < 1/2 ensures that
∫ π
−π f(λ)dλ <∞, implying that the processX(t) is well de�ned

because E|X(t)|2 =
∫ π
−π f(λ)dλ.

Observe that for 0 < d < 1/2 the model X(t) speci�ed by (3.5) displays long-

memory, for d < 0 it is anti-persistent, and for d = 0 it displays short-memory. For

d ≥ 1/2 the function f(λ) in (3.5) is not integrable, and thus it cannot represent a

spectral density of a stationary process (see Brockwell and Davis [7], Section 13.2).

The following theorem was proved by A. Inoue (see [26], Theorem 4.3).

Theorem 3.3. Let f(λ) have the form (3.5) with 0 < d < 1/2, where h(λ) is the

spectral density of an ARMA(p, q) process. Then

(3.6) δn(f) ∼ d2

n
as n→∞.

Another well-known example of processes that displays long memory or is anti-

persistent is the Jacobian model. We say that a stationary processX(t) is a Jacobian

process, and the corresponding model is a Jacobian model, if its spectral density

f(λ) has the following form:

(3.7) f(λ) = h(λ)

m∏
k=1

|eiλ − eiλk |−2dk ,

where h(λ) is the spectral density of a short-memory process, the points λk ∈ [−π, π]

are distinct, and dk < 1/2, k = 1, . . . ,m.

The asymptotic behavior of δn(f) as n→∞ for Jacobian model (3.7) has been

considered in a number of papers (see Golinskii [14], Grenander and Rosenblatt

[17], Ibragimov [23], Ibragimov and Solev [25].)

The following theorem was proved in Ibragimov and Solev [25].

Theorem 3.4. Let f(λ) have the form (3.7), where h(λ) is the spectral density of a

short-memory process, the points λk ∈ [−π, π] are distinct, and dk < 1/2 (dk 6= 0),

k = 1, . . . ,m. If f(λ) satis�es the Lipschitz condition with exponent α ≥ 1/2, then

(3.8) δn(f) ∼ 1

n
as n→∞.

More results for this case can be found in Ginovyan [13] and in the references

therein.

4. Asymptotic behavior of the predictor error for deterministic

processes

4.1. Background. In this section we discuss the asymptotic behavior of the predictor

error for deterministic processes. We assume that the process X(t) possesses a
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spectral density f(λ) and the Szeg�o condition (1.18) is violated. As it was mentioned

in Introduction, this problem was �rst studied by M. Rosenblatt [31], where using

the technique of orthogonal polynomials and Szeg�o's results, M. Rosenblatt has

investigated the asymptotic behavior of the prediction error δn(f) = σ2
n(f) in the

following two cases:

(a) the spectral density f(λ) is continuous and vanishes on an interval,

(b) the spectral density f(λ) has a high order contact with zero, so that the

Szeg�o condition is violated.

For the case (a), in [31] M. Rosenblatt proved the following result.

Theorem 4.1. Let the spectral density f(λ) of a discrete-time stationary process

X(t) be positive and continuous on the interval (π/2 − α, π/2 + α), 0 < α < π,

and zero elsewhere, then the prediction error σ2
n(f) approaches zero exponentially

as n→∞. More precisely, the following asymptotic relation holds:

(4.1) δn(f) := σ2
n(f) ∼=

(
sin

α

2

)2n+1

as n→∞,

implying that

(4.2) lim
n→∞

(σn(f))1/n = sin
α

2
.

Later this result has been generalized by Babayan [3], [4] to the case of several

arcs, without having to stipulate continuity of the spectral density f(λ) (see also

Davisson [8]). To state the corresponding result we �rst introduce the concept

of a trans�nite diameter of a set (see, e.g., Goluzin [16], Chapter 7). Let E be

a bounded closed set in the complex plane. Denote by Tn(z, E) the Chebyshev

polynomial which deviates least from zero on the set E in the uniform metric. We

set Cn(E) = maxz∈E |Tn(z, E)|. Then limn→∞(Cn(E))1/n =: τ(E) exists and is

called the trans�nite diameter (or Chebyshev constant, or capacity) of the set E.

Remark 4.1. Notice that the trans�nite diameter of the unit circle T is equal

to 1 (see Goluzin [16], Section 7.1), and the trans�nite diameter of an arc of T
of length 2α (0 < α < π) is equal to sin(α/2) (see Rosenblatt [31]). Thus, the

right hand side of (4.2) is the trans�nite diameter of the closure of the spectrum

Ef = {eiλ : λ ∈ [π/2− α, π/2 + α]} of the process X(t).

Using some results from geometric function theory, in [4] was proved the following

theorem, extending Theorem 4.1.

Theorem 4.2. Let the spectrum Ef = {eiλ : f(λ) > 0} of the process X(t) consist

of a �nite number of arcs of the unit circle. Then the following asymptotic relation
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holds:

(4.3) lim
n→∞

(σn(f))1/n = τ(Ef ),

where Ef is the closure of Ef .

Remark 4.2. It follows from Theorem 4.2 and Remark 4.1 that if the spectral

density f(λ) vanish on an interval, then the prediction error σn(f) decreases to

zero exponentially, that is, σn(f) = O(e−bn), b > 0 as n → ∞. Conversely, a

necessary condition for σn(f) to tend to zero exponentially is that f(λ) should

vanish on a set of positive Lebesgue measure.

Concerning the case (b), in [31] M. Rosenblatt proved that if the spectral density

f(λ) of a stationary process X(t) is positive away from zero, and has a very high

order contact with zero at λ = 0, so that the Szeg�o condition (1.18) is violated,

then the prediction error δn(f) = σ2
n(f) decreases to zero hyperbolically as n→∞.

More precisely, in [31] was considered a deterministic process X(t) with spectral

density fa(λ) given by formula:

(4.4) fa(λ) =
e(2λ−π)ϕ(λ)

cosλ(πϕ(λ))
, fa(−λ) = fa(λ), 0 ≤ λ ≤ π,

where ϕ(λ) = a
2 cotλ and a is a �xed positive parameter.

It is easy to show that

(4.5) fa(λ) ∼ exp

{
− aπ

2|λ|

}
| sin(λ)| as λ→ 0,

so that fa(λ) has a very high order contact with zero only at λ = 0.

In [31], using the formula (2.5) and the technique of orthogonal polynomials on

the unit circle, M. Rosenblatt proved the following result.

Theorem 4.3. For a process X(t) with spectral density fa(λ) given by (4.4) the

following asymptotic formula for prediction error δn(f) = σ2
n(f) holds:

(4.6) δn(fa) = σ2
n(fa) ∼=

Γ2
(
a+1

2

)
π22−a n−a ∼ n−a as n→∞.

In the next subsection we extend Theorem 4.3 to more broad class of spectral

densities.

4.2. The main results. In this subsection, we analyze the asymptotic behavior

of the prediction error in the case where the spectral density f(λ) of the model has

a high order contact with zero, so that the Szeg�o condition (1.18) is violated.

Based on Rosenblatt's result for this case - Theorem 4.3, we can expect that

for any deterministic process with spectral density possessing a zero of type (4.5),

the rate of prediction error σ2
n(f) should be the same as in (4.6). However, the
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method applied in [31] does not allow to prove this assertion. Here, using a di�erent

approach, we extend Rosenblatt's theorem to more broad class of spectral densities.

To this end, we �rst examine the asymptotic behavior of the ratio σn(fg)/σn(f)

as n→∞, where g(λ) is some nonnegative function, such that the product f(λ)g(λ)

is a spectral density, that is, fg ∈ L1(Λ).

To make the approach clear, we �rst assume that f(λ) is a spectral density of

a nondeterministic process, in which case the geometric mean G(f) is positive (see

(2.8) and (2.9)). Then, in this case, we can write

(4.7) lim
n→∞

σ2
n(fg)

σ2
n(f)

=
σ2
∞(fg)

σ2
∞(f)

=
G(fg)

G(f)
= G(g).

It turns out that under some additional assumptions imposed on functions f and g,

the asymptotic relation (4.7) remains valid also in the case of deterministic process,

that is, when σ2
∞(f) = 0, or equivalently, G(f) = 0.

To state the corresponding results we need some de�nitions.

De�nition 4.1. A sequence of numbers {an, n ∈ N} is said to be slowly decreasing

if

(4.8) lim
n→∞

an+1

an
= 1.

It is easy to check that the following simple assertions hold:

1. If {an, n ∈ N} is a slowly decreasing sequence, then for any ν ∈ N

(4.9) lim
n→∞

an+ν

an
= 1.

2. If {an, n ∈ N} is a sequence such that an → a 6= 0 as n → ∞, then {an} is a
slowly decreasing sequence.

3. If {an, n ∈ N} and {bn, n ∈ N, } are non-zero slowly decreasing sequences, then

can, c 6= 0, 1/an, a
k
n, k ∈ N, anbn and an/bn also are slowly decreasing sequences.

4. If {an, n ∈ N} is a non-zero slowly decreasing sequence, and {bn, n ∈ N} is a
sequence such that

(4.10) lim
n→∞

bn
an

= c 6= 0,

then {bn, n ∈ N} is also a slowly decreasing sequence.

5. If {an, n ∈ N} is a slowly decreasing sequence of nonnegative numbers, then

(4.11) lim
n→∞

(an)
1/n

= 1.

Remark 4.3. It follows from assertion 2 that the notion of slowly decreasing

sequence is more signi�cant in the case where an → 0 as n → ∞. Also, it follows

from assertion 5 that if {an, n ∈ N} is a slowly decreasing sequence of nonnegative

numbers such that an → 0 as n → ∞, then it converges to zero slowly than the
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geometric progression {qn, n ∈ N} for any q, 0 < q < 1, that is, qn = o(an) as

n→∞.

In what follows we consider the class of processes for which the sequence of

prediction errors {σn(f)} is slowly decreasing. Moreover, in view of Remarks 4.2

and 4.3, it is reasonable to consider deterministic processes except those for which

the spectral densities vanish on an interval.

De�nition 4.2. We de�ne the class A to be the set of all nonnegative, Riemann

integrable functions h(λ), λ ∈ Λ. Also, de�ne A+ = {h ∈ A : h(λ) > m > 0},
A− = {h ∈ A : h(λ) 6M <∞}, and A−+ = A+ ∩A−.

Now we are in position to state the main results of this paper.

The following theorem describes the asymptotic behavior of the ratio σn(fg)/σn(f)

as n→∞ for the class of above described processes.

Theorem 4.4. Let the spectral density f(λ) be such that the sequence {σn(f)} is
slowly decreasing, and let g(λ) = h(λ) · t1(λ)

t2(λ) , where h(λ) ∈ A−+ and t1(λ), t2(λ) are

nonnegative trigonometric polynomials. If f(λ)g(λ) ∈ A, then

(4.12) lim
n→∞

σ2
n(fg)

σ2
n(f)

= G(g),

where G(g) is the geometric mean of g(λ).

The next theorem extends Rosenblatt's Theorem 4.3.

Theorem 4.5. Let f(λ) = fa(λ)g(λ), where fa(λ) is de�ned by (4.4) and g(λ)

satis�es the assumptions of Theorem 4.4. Then

(4.13) δn(f) = σ2
n(f) ∼=

Γ2
(
a+1

2

)
G(g)

π22−a n−a ∼ n−a as n→∞,

where G(g) is the geometric mean of g(λ).

4.3. Auxiliary lemmas. To prove the theorems, we �rst establish a number of

lemmas.

Lemma 4.1. Assume that the sequence σn(f) is slowly decreasing, that is,

(4.14) lim
n→∞

σn+1(f)

σn(f)
= 1.

Then for any nonnegative trigonometric polynomial t(λ) we have

(4.15) lim inf
n→∞

σ2
n(ft)

σ2
n(f)

> G(t),

where G(t) is the geometric mean of t(λ).
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Proof. Let the polynomial t(λ) be of degree ν. Then by Fej�er-Riesz theorem (see

[18], Section 1.12), there exists an algebraic polynomial sν(z) of degree ν in z ∈ C,
such that

(4.16) t(λ) = |sν(eiλ)|2, sν(z) 6= 0, |z| < 1.

Observing that ln |sν(z)|2 is a harmonic function, we have

ln |sν(0)|2 =
1

2π

∫ π

−π
ln |sν(eiλ)|2dλ,

implying that

(4.17) |sν(0)|2 = G(t) > 0.

Let p∗n(z, ft) be the optimal polynomial of degree n for f(λ)t(λ) in the class Q∗n
(see formula (2.6)). We set

(4.18) rn+ν(z) =
p∗n(z, ft)sν(z)

sν(0)
,

and observe that rn+ν(z) ∈ Q∗n+ν , and

(4.19)

∫ π

−π
|rn+ν(eiλ)|2f(λ)dλ >

∫ π

−π
|p∗n+ν(eiλ, f)|2f(λ)dλ.

Therefore, in view of (4.16), (4.18) and (4.19),we can write

σ2
n(ft) =

∫ π

−π
|p∗n(eiλ, ft)|2f(λ)t(λ)dλ =

∫ π

−π
|p∗n(eiλ, ft)sν(eiλ)|2f(λ)dλ.

= |sν(0)|2
∫ π

−π
|rn+ν(eiλ)|2f(λ)dλ > |sν(0)|2

∫ π

−π
|p∗n+ν(eiλ, f)|2f(λ)dλ = |sν(0)|2σ2

n+ν(f),

which, in view of (4.17), implies that

(4.20) lim inf
n→∞

σ2
n(ft)

σ2
n+v(f)

> |sν(0)|2 = G(t).

Now, taking into account (4.14) and (4.9), from (4.20) we obtain (4.15). �

Lemma 4.2. Let the sequence σn(f) satisfy (4.14), and let t(λ) be a nonnegative

trigonometric polynomial such that the function f(λ)/t(λ) ∈ A. Then the following

inequality holds:

(4.21) lim sup
n→∞

σ2
n(f/t)

σ2
n(f)

6 G(1/t).

Proof. Let the polynomial sν(z) be as in (4.16), and let p∗n(z, f/t) be the optimal

polynomial of degree n for f(λ)/t(λ) in the class Q∗n (see formula (2.6)). For n > ν

we set

rn(z) =
p∗n−ν(z, f)sν(z)

sν(0)
,
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and observe that rn(z) ∈ Q∗n. Therefore, we have

σ2
n(f/t) =

∫ π

−π
|p∗n(eiλ, f/t)|2f(λ)/t(λ)dλ ≤

∫ π

−π
|rn(eiλ)|2f(λ)/t(λ)dλ

=
1

|sν(0)|2

∫ π

−π
|p∗n−ν(eiλ, f)|2f(λ)dλ =

1

|sν(0)|2
σ2
n−ν(f),

which, in view of (4.17), implies that

(4.22) lim sup
n→∞

σ2
n(f/t)

σ2
n−ν(f)

6
1

|sν(0)|2
= G(1/t).

Finally, taking into account (4.14) and (4.9), from (4.22) we obtain (4.21). �

Lemma 4.3. Let h(λ) be a function from the class A−+. Then for any ε > 0 a

trigonometric polynomial t(λ) can be found to satisfy the following condition:

|h− t‖1 =

∫ π

−π
|h(λ)− t(λ)|dλ 6 ε.(4.23)

Moreover, ifm andM are the constants from the De�nition 4.2, then the polynomial

t(λ) can be chosen so that for all λ ∈ [−π, π] one of the following inequalities is

satis�ed:

m− ε < t(λ) < h(λ),(4.24)

h(λ) < t(λ) < M + ε.(4.25)

Proof.We �rst prove the inequalities (4.23) with (4.24). Without loss of generality,

we can assume that h(−π) = h(π). Otherwise by changing one of these values we

can make them equal as follows: h(−π) = h(π) = min{h(−π), h(π)}.
Let {λi} (−π = λ0 < λ1 < · · · < λk = π) be a partition of the segment [−π, π],

and let s be the Darboux lower sum corresponding to this partition:

s =

k∑
i=1

mi∆λi, mi = inf
λ∈∆i

h(λ), ∆i = [λi−1, λi], ∆λi = λi − λi−1, i = 1, . . . , k.

On the segment [−π, π] we de�ne a step-function ϕk(λ) corresponding to given

partition as follows:

ϕk(λ) =

 mi, if λ ∈ (λi−1, λi), i = 1, . . . , k − 1,
min{mi−1,mi}, if λ = λi,
m1(= mk), if λ = λ0 or λ = λk.

It is clear that such de�ned function ϕk(λ) satis�es the following conditions:

ϕk(λ) ≤ h(λ), λ ∈ [−π, π] and

∫ π

−π
ϕk(λ)dλ = s.(4.26)

Since the function h(λ) is integrable, for an arbitrary given ε > 0 a partition of

the segment [−π, π] can be found so that the corresponding Darboux lower sum
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satis�es the condition:∫ π

−π
h(λ)dλ− s =

∫ π

−π
[h(λ)− ϕk(λ)]dλ = ‖h− ϕk‖1 <

ε

3
.(4.27)

Now using the function ϕk(λ) we construct a new continuous function. To this

end, we connect all the adjacent segments of the graph of ϕk(λ) (the steps) by line

segments as follows: for each interior point of the partition λi, i = 1, . . . , k − 1, the

endpoint of the lower step with abscissa λi we connect with some interior point of

the adjacent (from the left or from the right) upper step, the abscissa λ∗i of which

satis�es the condition:

|λi − λ∗i | < ε/(3kM).(4.28)

Then, we remove the part of the upper step lying under the constructed slanting

segment. The obtained polygonal line is a graph of some continuous piecewise linear

function, denoted by hk(λ), satisfying the condition:

hk(λ) ≤ ϕk(λ) ≤ h(λ) ≤M, λ ∈ [−π, π].(4.29)

Taking into account that the functions hk(λ) and ϕk(λ) coincide outside the segments

[λi, λ
∗
i ] (or [λ∗i , λi]), in view of (4.29) and (4.28), we can write

‖ϕk − hk‖1 =

∫ π

−π
[ϕk(λ)− hk(λ)]dλ =

k−1∑
i=1

∣∣∣∣∣
∫ λ∗i

λi

[ϕk(λ)− hk(λ)]dλ

∣∣∣∣∣ < ε

3
.(4.30)

Next, according to Weierstrass theorem (see, e.g., [18], Section 1.9), for function

hk(λ) a trigonometric polynomial t̃(λ) can be found so that uniformly for all λ ∈
[−π, π],

− ε

12π
< hk(λ)− t̃(λ) <

ε

12π
.(4.31)

Setting t(λ) = t̃(λ)− ε
12π , from (4.31) we get

0 < hk(λ)− t(λ) <
ε

6π
.(4.32)

Therefore

‖hk − t‖1 =

∫ π

−π
[hk(λ)− t(λ)]dλ <

ε

3
.(4.33)

Combining the inequalities (4.27), (4.30) and (4.33), we obtain

‖h− t‖1 ≤ ‖h− ϕk‖1 + ‖ϕk − hk‖1 + ‖hk − t‖1 ≤ ε,

and the inequality (4.23) follows.

Now we proceed to prove the inequality (4.24). Observe �rst that the second

inequality in (4.24) follows from (4.32) and (4.29). To prove the �rst inequality in

(4.24), observe that by construction of function hk(λ), we have

hk(λ) ≥ min{m1, . . . ,mk} ≥ m.(4.34)
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Next, in view of (4.32), we get

t(λ) ≥ hk(λ)− ε

6π
> hk(λ)− ε.(4.35)

Combining (4.34) and (4.35), we obtain the �rst inequality in (4.24).

The proof of inequalities (4.23) with (4.25) is completely similar to that of (4.23)

with (4.24). The only di�erence is that now instead of Darboux lower sum should

be used the upper sum and in the construction of function hk(λ), the endpoints of

the upper steps of the function ϕk(λ) should be connected with the interior points

of the adjacent lower steps. �

Lemma 4.4. Let h(λ) ∈ A−+ and let the sequence σn(f) satisfy (4.14). Then the

following asymptotic relation holds:

(4.36) lim
n→∞

σ2
n(fh)

σ2
n(f)

= G(h).

Proof. Observe �rst that together with h(λ) the function 1/h(λ) also belongs to

the class A−+:

(4.37) m ≤ h(λ) ≤M and 1/M ≤ 1/h(λ) ≤ 1/m.

By Lemma 4.3, for a given small enough ε > 0, we can �nd two trigonometric

polynomials t1(λ) and t2(λ) to satisfy the following conditions:

‖h− t1‖1 < ε,
m

2
< t1(λ) < h(λ),(4.38)

‖1/h− t2‖1 < ε,
1

2M
< t2(λ) <

1

h(λ)
.(4.39)

Now in view of (2.7) and Lemmas 4.1, 4.2, to obtain

(4.40) lim inf
n→∞

σ2
n(fh)

σ2
n(f)

≥ lim inf
n→∞

σ2
n(ft1)

σ2
n(f)

≥ G(t1),

and

(4.41) lim sup
n→∞

σ2
n(fh)

σ2
n(f)

≤ lim sup
n→∞

σ2
n(f/t2)

σ2
n(f)

≤ G(1/t2).

Next, it follows from (4.37) � (4.39) that

‖h− 1/t2‖1 = ‖h/t2(t2 − 1/h)‖1 6 2M2ε,

‖t1 − 1/t2‖1 6 ‖t1 − h‖1 + ‖h− 1/t2‖1 6 ε(1 + 2M2).

Hence, in view of (4.37) and (4.39), we can write∣∣∣∣ln G(t1)

G(1/t2)

∣∣∣∣ = |ln[G(t1)G(t2)]| =
∣∣∣∣∫ π

−π
ln[t1(λ)t2(λ)]dλ

∣∣∣∣ 6 ∫ π

−π
|t1(λ)t2(λ)− 1|dλ

= ‖t2(t1 − 1/t2)‖1 6
1

m
‖t1 − 1/t2‖1 6

ε

m
(1 + 2M2).
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Thus, the quantities G(t1) and G(1/t2) can be made arbitrarily close. Hence, taking

into account that G(t1) 6 G(h) 6 G(1/t2), from (4.40) and (4.41) we obtain

(4.36). �

Taking into account thatG(h) > 0, from (4.10) and (4.36) we obtain the following

result.

Corollary 4.1. If the sequence σn(f) is slowly decreasing and h(λ) ∈ A−+, then the

sequence σn(fh) is also slowly decreasing.

Lemma 4.5. Let the sequence σn(f) be slowly decreasing, and let h(λ) ∈ A−. Then

(4.42) lim sup
n→∞

σ2
n(fh)

σ2
n(f)

6 G(h).

Proof. Observe that the function hε(λ) = h(λ) + ε belongs to the class A−+. Then

we have the asymptotic relation (see, [18], Section 3.1 (d)):

(4.43) lim
ε→0

G(hε) = G(h).

Hence, using (2.7) and Lemma 4.4, we obtain

lim sup
n→∞

σ2
n(fh)

σ2
n(f)

≤ lim
n→∞

σ2
n(fhε)

σ2
n(f)

= G(hε).

Passing to the limit as ε→ 0, and taking into account (4.43), we obtain the desired

inequality (4.42). �

As an immediate consequence of Lemma 4.5, we have the following result.

Corollary 4.2. Let the sequence σn(f) be slowly decreasing, and let g(λ) ∈ A−

with G(g) = 0. Then σn(fg) = o(σn(f)) as n→∞.

Lemma 4.6. Let the sequence σn(f) be slowly decreasing, and let h(λ) ∈ A+. Then

(4.44) lim inf
n→∞

σ2
n(fh)

σ2
n(f)

> G(h).

Proof. Let hl(λ) denote the truncation of h(λ) at the level l ∈ N:

hl(λ) =

{
h(λ), h(λ) 6 l
l, h(λ) > l.

Then by Monotone Convergence Theorem of Beppo Levi (see [6], Theorem 2.8.2),

we have

(4.45) lim
l→∞

G(hl) = G(h).

Next, by Lemma 4.4 we get

lim inf
n→∞

σ2
n(fh)

σ2
n(f)

> lim
n→∞

σ2
n(fhl)

σ2
n(f)

= G(hl).
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Hence passing to the limit as l→∞, and taking into account (4.45) we obtain the

desired inequality (4.44). �

As an immediate consequence of Lemma 4.6, we have the following result.

Corollary 4.3. Let the sequence σn(f) be slowly decreasing, g(λ) ∈ A+ with

G(g) =∞, and let fg ∈ A. Then σn(f) = o(σn(fg)) as n→∞.

4.4. Proof of main results. In this subsection we prove the main results of this

paper - Theorems 4.4 and 4.5.

Proof of Theorem 4.4. We have

(4.46)
σ2
n(fg)

σ2
n(f)

=
σ2
n(fht1/t2)

σ2
n(f)

=
σ2
n(fht1/t2)

σ2
n(fht1)

· σ
2
n(fht1)

σ2
n(fh)

· σ
2
n(fh)

σ2
n(f)

.

Next, by Lemma 4.4 we have

(4.47) lim
n→∞

σ2
n(fh)

σ2
n(f)

= G(h) > 0.

This, in view of Corollary 4.1, implies that the sequence σ2
n(fh) is also slowly

decreasing. Therefore, by Lemma 4.1, we have

lim inf
n→∞

σ2
n(fht1)

σ2
n(fh)

≥ G(t1).

On the other hand, since t1(λ) ∈ A−, then according to Lemma 4.5, we get

lim sup
n→∞

σ2
n(fht1)

σ2
n(fh)

≤ G(t1).

Therefore

(4.48) lim
n→∞

σ2
n(fht1)

σ2
n(fh)

= G(t1) > 0

This implies that the sequence σ2
n(fht1) is also slowly decreasing. Hence we can

apply Lemma 4.2, to obtain

lim sup
n→∞

σ2
n(fht1/t2)

σ2
n(fht1)

6 G(1/t2).

Next, it is easy to see that 1/t2 ∈ A+. Hence, according to Lemma 4.6, we obtain

lim inf
n→∞

σ2
n(fht1/t2)

σ2
n(fht1)

> G(1/t2).

Therefore

(4.49) lim
n→∞

σ2
n(fht1/t2)

σ2
n(fht1)

= G(1/t2).

Finally, combining the relations (4.46) - (4.49), we obtain

lim
n→∞

σ2
n(fg)

σ2
n(f)

= G(1/t2)G(t1)G(h) = G(ht1/t2) = G(g).

Theorem 4.4 is proved. �
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As an immediate consequence of Theorem 4.4, we have the following result.

Corollary 4.4. If the sequence σn(f) is slowly decreasing and g(λ) satis�es the

conditions of Theorem 4.4, then the sequence σn(fg) is also slowly decreasing.

The proof of Theorem 4.5 immediately follows from Theorems 4.3 and 4.4.
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(∗) φ0(z, w) (w′)
m

+ φ1(z, w) (w′)
m−1

+ · · ·+ φm(z, w) = 0,

where φi(z, w) =
∑n(i)
µ(i)=1 ηi,µ(i)(z)χi,µ(i)(w) for i = 0, 1, 2, . . . ,m and µ(i) =

1, 2, . . . , n(i). Obviously we should exclude the case φ0(z, w) ≡ 0, since then the

degree m reduces.

We put the following restrictions: all coe�cient χi,µ(i)(w) are meromorphic in

C, all coe�cients ηi,µ(i)(z) with i 6= 0 are entire functions and all coe�cients

η0,µ(0)(z) are polynomials. The equations (∗) with similar restrictions we will refer

as (F e,mp (C)).

Note that algebraic di�erential equations of the �rst order (see related studies

in [8]) are particular cases of equations (F e,mp (C)) when all mentioned above entire

and meromorphic functions are polynomials.

For meromorphic function w in C we make use of classical Ahlfors-Shimizu

characteristic

A(r) = A(r, w) =
1

π

∫ ∫
D(r)

|w′|2

(1 + |w|2)2
dσ,

where D(r) = {z : |z| < r}; for entire functions ηi,µ(i) we denote M
µ(i)
i (r) =

maxz∈∂D(r) |ηi,µ(i)(z)|.

Theorem 2.1. For any equation (F e,mp (C)) with meromorphic solution w(z) in the

complex plane we have

(2.1) A(r) ≤ K1r
2 max

1≤i≤m

[
max
µ(i)

M
µ(i)
i (r)

]2/i

, for r →∞, r /∈ E,

where K1 < ∞ is a constant independent of w and E is a set of �nite logarithmic

measure.

Corollary 2.1 ([7]). Meromorphic solutions (in the complex plane) of algebraic

di�erential equations are of �nite order.

Indeed, in this case all M
µ(i)
i (r) have polynomial growth so that Corollary 2.1

follows from (2.1). Thus Theorem 2.1 generalizes widely this old result in [7].

3. Meromorphic solutions in a given domain

Let D be a simply connected domain with smooth boundary ∂D of �nite length.

Consider again equation (∗) by assuming that w(z) is its meromorphic solutions

in the closure D̄ = D ∪ ∂D. In this case we assume that all ηi,µ(i)(z) are regular

functions in z ∈ D̄ and all χi,µ(i)(w) are meromorphic functions in w ∈ w(D̄). In

addition we assume that |φ0(z, w)| ≥ c(D) = const > 0 for z ∈ D̄ and w with
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|w| < 10. The equation with similar restrictions we will refer as (F r,m(D)). In

particular case when all χi,µ(i)(w) are regular functions we will refer the equation

as (F r,r(D)).

For similar functions w(z) as above, we consider Ahlfors islands over the disk

∆(ρ, a) = {w : |w − a| < ρ} which can be de�ned as those domains g̃k for k =

1, 2, . . . , n(D,∆(ρ, a), w), on the Riemann surface {w(z) : z ∈ D̄} which projected

one to one and onto ∆(ρ, a) (see [1] or [9, Chapter 13]).

De�ning Mµ
i (D) = maxz∈∂D |ηi,µ(z)| and denoting by S(D) the area of D, we

formulate the following theorem.

Theorem 3.1. Let w(z) be a meromorphic in D̄ solution of the equation (F r,r(D)).

Then for any set of disks ∆(ρν , aν), ν = 1, 2, . . . , q, with non-intersecting closures

we have

(3.1)

q∑
ν=1

n(D,∆(ρν , aν), w) ≤ K2S(D),

where K2 < ∞ is a constant independent of w; the constant depends only on the

equation and D.

In the next result we make use of Ahlfors-Shimizu characteristic A(D,w) (for

arbitrary domain D) and another characteristics in Ahlfors theory of covering

surfaces (see [1] and [9, Chapter 13])

L(D,w) =

∫
∂D

|w′|
(1 + |w|2)

ds.

Theorem 3.2. Let w(z) be a meromorphic in D̄ solution of the equation (F r,m(D))

with w(D̄) implying a disk D(%), where % = const > 0. Then

(3.2) A(D,w) ≤ K3S(D) + h3L(D,w),

where both constants K3 and h3 are independent on w; the constant depend only

on the equation, D and %.

4. Proofs

4.1. Proof of Theorem 2.1. We need some obvious comments.

In the case when the �rst coe�cient φ0(z, w) is nonconstant polynomial in z we

can decompose φ0(z, w) as Λ0(w)zT + Λ1(w)zT−1 + · · · + ΛT (w), T ≥ 1, where

Λ0(w) is a meromorphic function in w.

In the case when the �rst coe�cient φ0(z, w) does not depend on z we denote it

by φ0(w); obviously it is meromorphic in w.
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All coe�cients χi,µ(i)(w) are meromorphic in the complex plane. This implies

that for a �xed disk, say D(10), any coe�cients χi,µ(i)(w), taken for any i =

0, 1, 2, . . . ,m, µ(i) = 1, 2, . . . , n(i), have only a �nite number of zeros in the disk

D(10). The same is true for the poles. The same is true for the zeros and poles of

functions Λ0(w) and φ0(w).

Now we take �ve non-passing through all these zeros and poles curves γ1,. . . ,γ5 in

D(10) with the distance between two di�erent similar curves > 2. Then obviously all

mentioned above functions do not vanish at any point w = a ∈ γ = γ1∪γ2∪· · ·∪γ5

and there is a constant M such that the modules | · · · | of all mentioned above

functions ≤ M . Taking arbitrary �ve values a1, . . . , a5 each belonging respectively

to γ1, . . . , γ5 we get the following statement.

Proposition 4.1. There are �ve values aν ∈ D(10), ν = 1, . . . , 5; with non-

intersecting closures of ∆(1, aν), ν = 1, . . . , 5, such that

1. All those functions χi,µ(i)(w) which include variable w does not vanish at any

point w = a ∈ (a1, . . . , a5) consequently

Φi = max
1≤i≤m

n(i)∑
µ(i)=1

|χi,µ(i)(aν)| ≤ n(i)M <∞,

where Φi depends only on a1, . . . , a5 and the involved coe�cients;

2. Function φ0(w) do not vanish at any point w = a ∈ (a1, . . . , a5), respectively

we have

Φ0 = min
1≤ν≤q

|φ0(aν)| > 0,

where Φ0 is a constant depending only on a1, . . . , a5 and φ0;

3. Function Λ0(w) does not vanish at any point w = a ∈ (a1, . . . , a5), respectively

we have

ΦΛ = min
1≤ν≤5

|Λ0(aν)| > 0,

where ΦΛ is a constant depending only on a1, . . . , a5 and Λ0(w).

We need the following result.

Theorem A ([2, Theorem 1]). For any meromorphic function w in C, any set

a1, a2, . . . , aq ∈ C, q > 4, of distinct values and any monotonically decreasing on

[0,∞) function ψ(r) with ψ(r) → 0 as r → ∞, there is a set E ⊂ [0,∞) of

�nite logarithmic measure and for every r /∈ E there is a subset {z∗k(aν)} ⊂ D(r),

1 ≤ ν ≤ q, 1 ≤ k ≤ n∗(r, aν), of the aν-points of w for which

(4.1) |w′(z∗k(aν))| ≥ ψ(r)
A1/2(r)

r
, 1 ≤ ν ≤ q, 1 ≤ k ≤ n∗(r, aν),
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and

(4.2)

q∑
ν=1

n∗(r, aν) ≥ (q − 4)A(r)− o[A(r)], r →∞, r /∈ E.

A slight modi�cation (see [2]) replaces ψ(r) by a positive constant: given positive

ε, 0 < ε < 1/2, there is a constant K = K{a1, a2, . . . , aq, ε) > 0 such that (4.1)

becomes

(4.3) |w′(z∗k(aν))| ≥ KA1/2(r)

r
, 1 ≤ ν ≤ q, 1 ≤ k ≤ n∗(r, aν)

for a set of aν-points which satisfy

(4.4)

q∑
ν=1

n∗(r, aν) ≥ (q − 4− ε)A(r)− o[A(r)], r →∞, r /∈ E.

Now we apply Theorem A and Proposition 4.1 to solutions w in the complex

plane of equations (F e,mp (C)).

Due to de�nitions and Theorem A we have the following.

Property 4.1. Let a1, . . . , a5 be the points mentioned in Proposition 4.1. Then in

any D(r) with r /∈ E, there is a set Z(r) consisting of
∑5
ν=1 n

∗(r, aν) points z∗k(aν),

1 ≤ ν ≤ 5, 1 ≤ k ≤ n∗(r, aν), such that at each similar point we have inequality

(4.1) for 1 ≤ ν ≤ 5, 1 ≤ k ≤ n∗(r, aν), and we have also

5∑
ν=1

n∗(r, aν) ≥ (1− ε)A(r)− o[A(r)], r →∞, r /∈ E.

Due to the last inequality for r →∞, r /∈ E, we have
∑5
ν=1 n

∗(r, aν)→∞ and

since the points z∗k(aν) cannot have any limit point in any �nite disk we obtain the

following.

Property 4.2. For any constant H > 1 there is a constant r(H) such that any

disk D(r) with r ≥ r(H), r /∈ E, implies a point z∗k(aν) occurring in Property 4.1

and satisfying also |z∗k(aν)| > H.

Now we take any point z∗k(aν) satisfying Property 4.2 and put it into equation

(∗). We have

φ0(z∗k(aν), w(z∗k(aν))) (w′(z∗k(aν)))
m

+ φ1(z∗k(aν), w(z∗k(aν))) (w′(z∗k(aν)))
m−1

+

(4.5) · · ·+ φm(z∗k(aν), w(z∗k(aν))) = 0.

It is well known (see [10, Section III, Problem 21]) that all roots of an algebraic

equation

zm + b1z
m−1 + · · ·+ bm = 0
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are contained in the disk |z| ≤ max1≤i≤m(m|bi|)1/i.

Applying this to (4.5) we get

(4.6) |w′(z∗k(aν))| ≤ max
1≤i≤m

[
m
φi(z

∗
k(aν), w(z∗k(aν)))

φ0(z∗k(aν), w(z∗k(aν)))

]1/i

.

Notice that item 1 in Proposition 4.1 is valid for w = a = w(z∗k(aν)) (since

w(z∗k(aν)) ∈ (a1, . . . , a5)), so that we have

(4.7) |φi(z∗k(aν), w(z∗k(aν)))| ≤ n(i)Φi max
µ(i)

M
µ(i)
i (r), i = 1, 2, . . . ,m.

Now we need to consider below bounds for φ0 which in our case is polynomial in z

and meromorphic in w.

We can have only the following cases for φ0(z, w):

(case 1) there are non-constant polynomial coe�cients η0,µ(0)(z);

(case 2) all η0,µ(0)(z) are constants however not all χ0,µ(0)(w) are constants;

(case 3) all η0,µ(0)(z) are constants and, in addition, all χ0,µ(0)(w) are constants.

In the �rst case we can decompose φ0(z, w) (as Λ0(w)zT + Λ1(w)zT−1 + · · · +
ΛT (w), T ≥ 1) and note that at the pair (z, w), where w ∈ (a1, . . . , a5) and |z|
is enough large, the term Λ0(aν) (z∗k(aν)))

T
become dominant in φ0(z∗k(aν), aν),

so that we have |φ0(z∗k(aν), aν)| ≥ (1/2)|Λ0(aν)||z∗k(aν)|T for |z∗k(aν)| > r0; here

obviously r0 depends on φ0 and values a1, . . . , a5. Consequently taking r(H) (in

Property 4.2) equals to r0 and taking into account item 3 in Proposition 4.1 (i.e.

ΦΛ = min1≤ν≤q |Λ0((aν)| > 0) and also Property 4.2 we obtain the following

assertion: for any disk D(r) with r ≥ r(H), r /∈ E, there is a value aν ∈ (a1, . . . , a5)

and corresponding point z∗k(aν) with |z∗k(aν)| > H such that

|φ0(z∗k(aν), w(z∗k(aν))| ≥ 1

2
ΦΛ|(z∗k(aν)|T > 1

2
ΦΛH

T .

Making use of (4.6) and (4.7) applied at the same point (where |z∗k(aν)| > H) we

have

|w′(z∗k(aν))| ≤ max
1≤i≤m

[
2mn(i)Φi

ΦΛHT
max
µ(i)

M
µ(i)
i (r)

]1/i

.

Then applying (4.3) we get

A(r) ≤ 1

K2
r2 max

1≤i≤m

[
max
µ(i)

M
µ(i)
i (r)

2mn(i)Φi
ΦΛHT

]2/i

, for r →∞, r /∈ E,

so that obtain Theorem 2.1 with

K1 ≤
1

K2
max

1≤i≤m

[
2mn(i)Φi

ΦΛHT

]2/i

.

In the second case, φ0(z, w) become function in w merely, namely become function

φ0(w) in Proposition 4.1. Due to item 2 in Proposition 4.1, function φ0(w) do not
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vanish at any point w = a ∈ (a1, . . . , a5), respectively, we have Φ0 = min
1≤ν≤q

|φ0(aν)| >
0. Repeating the above arguments we get Theorem 2.1 with

K1 ≤
1

K2
max

1≤i≤m

[
2mn(i)Φi

Φ0

]2/i

.

In the third case, φ0(z, w) is simply a constant: φ0(z, w) = c0 = const which

should be non-zero, otherwise the degree m in our equation reduces. With the same

arguments we obtain Theorem 2.1 with

K1 ≤
1

K2
max

1≤i≤m

[
2mn(i)Φi
|c0|

]2/i

.

The discussed three cases exclude each other so that in any given case we have

Theorem 2.1 with one of the mentioned K1.

4.2. Proof of Theorem 3.1. Assume that ek(ρk, ak), k = 1, 2, . . . , n, are some

disjoint domains in D which w maps one-to-one onto ∆(ρk, ak); note that for

di�erent (even all) ek(ρk, ak) the values of ak and/or ρk may coincide. Any set

of domains ek(ρk, ak) contains a subdomain ek
(
ρk
2 , ak

)
such that w

(
ek
(
ρk
2 , ak

))
coincides with ∆(ρk2 , ak). Clearly, each ek

(
ρk
2 , ak

)
is contained in a domain ek(ρk, ak).

The diameters d
(
ek
(
ρk
2 , ak

))
of the domains ek

(
ρk
2 , ak

)
were �rst given in [2]

and were applied to CDE. Later on similar applications were given in [6] and [5]

based on the following inequality
n∑
k=1

d
(
ek

(ρk
2
, ak

))
≤
√

3π

2

√
S(D)

√
n,

where S(D) is the Euclidean area of D. We need a slightly more sharp inequality

established in [[3], inequality (6′)]:

(4.8)

n∑
k=1

d
(
ek

(ρk
2
, ak

))
≤
√

3π

2

n∑
k=1

S1/2(ek(ρk, ak)).

In addition we have also the following.

Lemma 4.1 ([3, Lemma 2]). Let zk be the point in ek(ρk, ak) which w maps onto

ak, i.e. w(zk) = ak. Then

(4.9) |w′(zk)| ≥ ρk

2d
(
ek
(
ρk
2 , ak

)) , k = 1, 2, . . . , n.

Now we take q pairwise di�erent values aν , q = 1, 2, . . . , q, and consider as

∪ek
(
ρk
2 , ak

)
the union of all domains eν,t, ν = 1, 2, . . . , q, t = 1, 2, . . . , n(aν), which

w maps one-to-one and onto the disk ∆(ρν , aν). (Important remark: in this case

the disk ∆(ρν , aν) remains the same for all t = 1, 2, . . . , n(aν)). In other words,

function w maps each domain eν,t onto an Ahlfors simple island over ∆(ρν , aν) so
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that n(aν) becomes (in this case) the usual number n(D,∆(ρν , aν), w) of simple

islands over ∆(ρν , aν).

Thus we can rewrite (4.8) and (4.9) as

(4.10)

q∑
ν=1

n(D,∆(ρν ,aν),w)∑
k=1

d (eν,t) ≤
√

3π

2

q∑
ν=1

n(D,∆(ρν ,aν),w)∑
k=1

S1/2 (eν,t)

and

(4.11) |w′(zt(aν))| ≥ ρν
2d (eν,t)

, ν = 1, 2, . . . , q, t = 1, 2, . . . , n(D,∆(ρν , aν), w),

where zt(aν) ∈ eν,t and satis�es w(zt(aν)) = aν .

Denote N =
∑q
ν=1 n(D,∆(ρν , aν), w). Due to (4.10) we conclude that the set

of all domains eν,t implies some domains ẽs, s = 1, 2, . . . , ñ =
[

1
2N + 1

]′
, (here [x]′

means entire part of x), which satisfy

d (ẽs) ≤
1

ñ

√
3π

2

q∑
ν=1

n(D,∆(ρν ,aν),w)∑
k=1

S1/2 (eν,t) ;

indeed assuming contrary we come to contradiction with inequality (4.8). Since

(N/ñ) ≤ 2, we have for any s = 1, 2, . . . , ñ =
[

1
2N + 1

]′
,

(4.12) d (ẽs) ≤
√

6π
1

N

q∑
ν=1

n(D,∆(ρν ,aν),w)∑
k=1

S1/2 (eν,t) .

Since ẽs coincides with one of eν,t, we conclude ẽs implies an aν-point zt(aν); to

stress that this is namely a point lying in ẽs (which satis�es (4.12)) we denote it

by z̃t(aν). This means that (4.10) is valid also for any given ẽs with corresponding

point z̃t(aν). Now (4.10) and (4.12) yield

(4.13) N ≤
√

24π

ρν
|w′(z̃t(aν))|

q∑
ν=1

n(D,∆(ρν ,aν),w)∑
k=1

S1/2 (eν,t) .

Applying Cauchy-Schwarz inequality to the last double sum we have

q∑
ν=1

n(D,∆(ρν ,aν),w)∑
k=1

S1/2 (eν,t) ≤ N1/2

 q∑
ν=1

n(D,∆(ρν ,aν),w)∑
k=1

S (eν,t)

1/2

,

so that (4.13) yields

N ≤ 24π

ρ2
ν

|w′(z̃t(aν))|2
q∑

ν=1

n(D,∆(ρν ,aν),w)∑
k=1

S (eν,t) ,

and taking into account that the last sum dominated by the area S(D) we obtain

(4.14)

q∑
ν=1

n(D,∆(ρν , aν), w) ≤ 24π

ρ2
ν

|w′(z̃t(aν))|2 S(D).
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Assume now that w(z) is a solution of (F r,r(D)) in Theorem 3.1. Considering the

equation (F r,r(D)) at this point z̃t(aν), we notice that all coe�cients in (F r,r(D))

are de�ned at this point since we assumed in Theorem 3.1 that (a1, . . . , aq) ∈ w(D̄).

Arguing as in (4.6) we obtain

(4.15) |w′(z̃t(aν))| ≤ max
1≤i≤m

[
m
φi(z̃t(aν), w(z̃t(aν)))

φ0(z̃t(aν), w(z̃t(aν)))

]1/i

.

Since the values a1,. . . ,aq are �xed in Theorem 3.1 and functions χi,µ(i)(w) are

regular (so that all χi,µ(i)(aν) are �nite for any ν = 1, 2, . . . , q) we have

Φi = max
1≤ν≤q

n(i)∑
µ(i)=1

|χi,µ(i)(aν)| <∞;

note that Φi depend only on functions χi,µ(i)(w) and values a1,. . . ,aq.

Applying this to (4.15) we get

|w′(z̃t(aν))| ≤ max
1≤i≤m

mn(i) max
µ(i)

M
µ(i)
i (D)

c(D)

n(i)∑
µ(i)=1

|χi,µ(i)(aν)|

1/i

≤ max
1≤i≤m

[
mn(i)Φi max

µ(i)

M
µ(i)
i (D)

c(D)

]1/i

≤ max
1≤i≤m

[mn(i)Φi]
1/i

max
1≤i≤m

[
max
µ(i)

M
µ(i)
i (D)

c(D)

]1/i

.

In turn applying the last inequality to (4.14) we obtain the following inequality

q∑
ν=1

n(D,∆(ρν , aν), w) ≤ 24π

ρ2
max

1≤i≤m
[mn(i)Φi]

2/i
max

1≤i≤m

[
max
µ(i)

M
µ(i)
i (D)

c(D)

]2/i

S(D),

i.e. we obtain Theorem 3.1 with

K2 =
24π

ρ2
max

1≤i≤m
[mn(i)Φi]

2/i
max

1≤i≤m

[
max
µ(i)

M
µ(i)
i (D)

c(D)

]2/i

.

4.3. Proof of Theorem 3.2. Let w(z) be a meromorphic function in D̄ solving

equation (F r,m(D)). Clearly we should assume that all χi,µ(i)(w) de�ned on w(D̄).

Remember that D(%) ⊂ w(D̄) so that all coe�cients χi,µ(i)(aν) de�ned at any

point w = a ∈ D(%).

Arguing as in the Proposition 4.1 we can �x �ve points aν ∈ D(%), ν = 1, . . . , 5,

with non-intersecting closures of ∆(%/10, aν), ν = 1, . . . , 5, such that these points

do not pass through zeros and poles of these coe�cients. Respectively we have

Φi = max
1≤i≤m

n(i)∑
µ(i)=1

|χi,µ(i)(aν)| <∞.
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Repeating the proof of Theorem 3.2 with similar a1,. . . ,a5, we �nd �rst the point

z̃t(aν), (where aν ∈ (a1, . . . , a5)) and obtain (instead of (4.14)) the following inequality

5∑
ν=1

n (D,∆ (1, aν) , w) ≤
(

10

%

)2

24π |w′(z̃t(aν))|2 S(D).

Then we put this z̃t(aν) into equation (F r,m(D)) and arguing as above (after (4.15)),

we get similarly

|w′(z̃t(aν))| ≤ max
1≤i≤m

mn(i) max
µ(i)

M
µ(i)
i (D)

c(D)

n(i)∑
µ(i)=1

|χi,µ(i)(aν)|

1/i

≤ max
1≤i≤m

[
mn(i)Φi max

µ(i)

M
µ(i)
i (D)

c(D)

]1/i

.

The last two inequalities yield

(4.16)

5∑
ν=1

n (D,∆ (, aν) , w) ≤ K3S(D),

where

K3 = 24π

(
10

%

)2

max
1≤i≤m

[mn(i)Φi]
2/i

max
1≤i≤m

[
max
µ(i)

M
µ(i)
i (D)

c(D)

]2/i

;

so that K3 depends only on equation (F r,m(D)) and %.

Finally we need the second fundamental theorem in Ahlfors theory of covering

surfaces (see [1] and [9, Chapter 13]): for any w in D̄ and any set of pairwise

di�erent points aν , ν = 1, 2, . . . , q, q > 4, we have

(q − 4)A(D,w) ≤
q∑

ν=1

n(D,∆(ρν , aν), w) + hL(D,w),

where h <∞ is a constant depending on ∆(ρν , aν), ν = 1, 2, . . . , q.

Applying this inequality with the above �ve values a1,. . . ,a5, we have

A(D,w) ≤
5∑

ν=1

n

(
D,∆

(
1

4
, aν

)
, w

)
+ h3L(D,w),

where h3 depends on these values a1,. . . ,a5; in other words depends only on %. From

here taking into account (4.16) we obtain Theorem 3.2 with the above de�ned K3.
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The resonant conditions of (1.1) are as follows:

(H1)
∑m
i=1 ai = 1,

∑l
j=1 bj = 1,

∑l
j=1 bjηj = 1.

This means that the linear operator Lu =
(
φCDα

0+u
)′

corresponding to the problem

(1.1) has a nontrivial solution or, in a functional framework, L is not invertible, that

is, dim kerL ≥ 1.

In order to be sure that the linear operator Q (to be speci�ed later on) is well

de�ned, we assume, in addition, that

(H2) There exist p, q ∈ Z+, q ≥ p+ 1 such that ∆(p, q) = d11d22 − d12d21, where

d11 =

m∑
i=1

ai

∫ ξi

0

sp(ξi − s)α−3

pφ(s)
ds, d21 =

m∑
i=1

ai

∫ ξi

0

sq(ξi − s)α−3

qφ(s)
ds,

d12 =

∫ 1

0

sp(1− s)α−2

pφ(s)
ds−

l∑
j=1

bj

∫ ηj

0

sp(ηj − s)α−2

pφ(s)
ds,

d22 =

∫ 1

0

sq(1− s)α−2

qφ(s)
ds−

l∑
j=1

bj

∫ ηj

0

sq(ηj − s)α−2

qφ(s)
ds.

Note that ∆(p, q) 6= 0 (see [19, 23]).

Fractional calculus is an extension of the ordinary di�erentiation and integration

to arbitrary non-integer order. In particular, time fractional di�erential equations

are used when attempting to describe the transport processes with long memory.

Recently, the study of time fractional ordinary and partial di�erential equations

has been received great attention by many researchers, both in theory and in

applications. We refer the reader to the monographs [1, 2, 20, 26, 30, 34], the

papers [35] � [39], and the references therein. The question of existence of solutions

for fractional boundary-value problems at the resonance case has been extensively

studied by many authors (see [5] � [8, 10, 12, 13, 14, 17, 18, 21, 22, 32], and the

references therein. It is worth to mention that there are a number of papers dealing

with the solutions of multi-point boundary value problems of fractional di�erential

equations at the resonance (see [7, 8, 10, 17]).

In [8], Bai and Zhang considered a three-point boundary value problem of fractional

di�erential equations with nonlinear growth given by

Dα
0+u(t) = f

(
t, u(t), Dα−1

0+ u(t)
)
, t ∈ [0, 1],

u(0) = 0, u(1) = σu(η),

where Dα
0+ is the standard Riemann-Liouville derivative, 1 < α ≤ 2, f : [0, 1] ×

R2 −→ R is continuous and σ ∈ (0, ∞), η ∈ (0, 1) are given constants such that

σηα−1 = 1. The authors applied the coincidence degree theorem to prove existence

of solutions. In [10], Chen and Tang have studied the following class of multi-point
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boundary value problems for fractional di�erential equations at the resonance by

employing the coincidence degree theorem:(
a(t)CDα

0+u(t)
)′

= f
(
t, u(t), u′(t),CDα

0+u(t)
)
, t ∈ J,

u(0) = 0, CDα
0+u(0) = 0, u(1) =

m−1∑
j=1

σju(ξj),

where 1 < α ≤ 2, f : [0, 1]×R3 −→ R satis�es the Carath�eodory conditions, a(t) ∈
C1([0, 1]), mint∈J a(t) > 0, J = [0, 1], σj ∈ R∗+, ξj ∈ (0, 1), j = 1, . . . ,m− 1, m ∈
N, m > 1, and

∑m−1
j=1 σjξj = 1. The results are obtained under the assumption that

Λ0 =
m−1∑
j=1

σj

(
ξj

∫ 1

0

s(1− s)α−1 1

φ(s)
ds−

∫ ξj

0

s(ξj − s)α−1
1

φ(s)
ds

)
6= 0.

In [7], Bai and Zhang considered the solvability of the following fractional multi-

point boundary value problems at the resonance with dim kerL = 2 by applying

the coincidence degree theorem:

Dα
0+u(t) = f

(
t, u(t), Dα−2

0+ u(t), Dα−1
0+ u(t)

)
, t ∈ (0, 1),

Iα−10+ u(0) = 0, Dα−1
0+ u(0) = D3−α

0+ (η), u(1) =

m∑
i=1

αiu(ηi),

where 2 < α < 3, 0 < η ≤ 1, 0 < η1 < η2 < · · · < ηm < 1, m ≥ 2,
∑m
i=1 αiη

α−1
i =∑m

i=1 αiη
α−2
i = 1. Dα

0+ and Iα0+ are the standard Riemann-Liouville fractional

derivative and the fractional integral, respectively, and f : [0, 1]×R3 −→ R satis�es

the Carath�eodory conditions. The results are obtained under the assumption that

R =
1

α
ηα

Γ(α)Γ(α− 1)

Γ(2α− 1)

[
1−

m∑
i=1

αiη
2α−2
i

]
− 1

α− 1
ηα−1

(Γ(α))2

Γ(2α)

[
1−

m∑
i=1

αiη
2α−1
i

]
6= 0.

Jiang [17], by using the coincidence degree theorem, has obtained an existence

result for the boundary value problems of fractional di�erential equations at the

resonance with dim kerL = 2:

Dα
0+u(t) = f

(
t, u(t), Dα−1

0+ u(t)
)
, ∀t ∈ J = [0, 1],

u(0) = 0, Dα−1
0+ u(0) =

m∑
i=1

aiD
α−1
0+ (ξi), Dα−2

0+ u(0) =

n∑
j=1

bjD
α−2
0+ (ηj),

where 2 < α < 3, 0 < ξ1 < ξ2 < · · · < ξm < 1, 0 < η1 < η2 < · · · < ηn <

1,
∑m
i=1 ai = 1,

∑n
j=1 bj = 1,

∑n
j=1 bjηj = 1, and f : [0, 1]× R2 −→ R satis�es the

Carath�eodory conditions. The results are obtained under the assumption that

1

3

(
1−

n∑
j=1

bjη
3
j

) m∑
i=1

aiξi −
1

2

(
1−

n∑
j=1

bjη
2
j

) m∑
i=1

aiξ
2
i 6= 0.

In this paper, we study problem (1.1), which allow f to have a nonlinear growth.
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The rest of the paper is organized as follows. In Section 2, we introduce some

notation, de�nitions and preliminary results, which will be used in the proofs of our

main results (see [1, 2, 20, 26, 27, 28, 30, 34]). In Section 3, we state and prove our

main results by applying the coincidence degree theorem. In Section 4 we provide

an example.

2. Preliminaries

De�nition 2.1. Let α > 0. For a function u : (0,∞) −→ R, the Riemann-Liouville

fractional integral of order α of u is de�ned by

Iα0+u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds,

provided that the right-hand side is pointwise de�ned on (0,∞).

Remark 2.1. The notation Iα0+u(t) |t=0 means that the limit is taken at almost all

points of the right-sided neighborhood (0, ε)(ε > 0) of 0 as follows:

Iα0+u(t) |t=0= lim
t→0+

Iα0+u(t).

Generally, Iα0+u(t) |t=0 is not necessarily equal to zero. For instance, let α ∈ (0, 1)

and u(t) = t−α. Then we have

Iα0+t
−α|t=0 = lim

t→0+

1

Γ(α)

∫ t

0

(t− s)α−1s−αds = Γ(1− α).

De�nition 2.2. Let α > 0 and n = [α] + 1, where [α] denotes the integer part of

α. The Caputo fractional derivative of order α of a function u : (0,∞) −→ R is

given by

CDα
0+u(t) = In−α0+ u(n)(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1u(n)(s)ds,

provided that the right-hand side is pointwise de�ned on (0,∞).

Lemma 2.2. Let α, η > 0 and n = [α] + 1. Then the following relations hold:

CDα
0+t

η =
Γ(η + 1)

Γ(η − α+ 1)
tη−α, (η > n− 1),

and CDα
0+t

k = 0, (k = 0, . . . , n− 1).

Lemma 2.3. Let α, β ≥ 0, and u ∈ L1
(
[0, 1]

)
. Then Iα0+I

β
0+u(t) = Iα+β0+ u(t) and

CDα
0+I

α
0+u(t) = u(t), for all t ∈ [0, 1]

Lemma 2.4. Let α > 0 and n = [α] + 1, then

Iα0+
CDα

0+u(t) = u(t) +

n−1∑
k=0

ckt
k, ck ∈ R.
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Lemma 2.5. Let α > 0 and n = [α] + 1. If CDα
0+u(t) ∈ C[0, 1], then u(t) ∈

Cn−1([0, 1]).

Proof. Let v(t) ∈ C[0, 1] be such that CDα
0+u(t) = v(t). Then by Lemma 2.3, we

have

u(t) = Iα0+v(t) +

n−1∑
k=0

ckt
k, ck ∈ R.

It is easy to check that u(t) ∈ Cn−1([0, 1]). �

Lemma 2.6. Let α > 0 and u ∈ L1
(
[0, 1],R

)
. Then for all t ∈ [0, 1] we have

Iα+1
0+ u(t) ≤ ‖Iα0+u‖L1 .

Proof. Let u ∈ L1
(
[0, 1],R

)
, then by Lemma 2.3 we have

Iα+1
0+ u(t) = I10+I

α
0+u(t) =

∫ t

0

Iα0+u(s)ds ≤
∫ 1

0

|Iα0+u(s)|ds = ‖Iα0+u‖L1 .

�

Lemma 2.7. The fractional integral Iα0+ , α > 0 is bounded in L1
(
[0, 1],R

)
, and

‖Iα0+u‖L1 ≤ ‖u‖L1

Γ(α+ 1)
.

Proof. Let u ∈ L1
(
[0, 1],R

)
, then can write

‖Iα0+u‖L1 =

∫ 1

0

|Iα0+u(t)|dt ≤ 1

Γ(α)

∫ 1

0

∫ t

0

(t− s)α−1|u(s)|dsdt

≤ 1

Γ(α)

∫ 1

0

|u(s)|ds
∫ 1

s

(t− s)α−1dt ≤ 1

Γ(α+ 1)

∫ 1

0

|u(s)|ds =
‖u‖L1

Γ(α+ 1)
.

�

Now we recall the coincidence degree continuation theorem and some related

notions (for more details see [25]).

De�nition 2.3. Let X and Y be real Banach spaces. A linear operator L : domL ⊂
X −→ Y is said to be a Fredholm operator of index zero if

(1) ImL is a closed subset of Y ;

(2) dimker L = codim ImL <∞.

It follows from De�nition 2.3 that there exist continuous projectors P : X −→ X

and Q : Y −→ Y such that

KerL = ImP, ImL = KerQ, X = Ker L⊕KerP, Y = ImL⊕ ImQ.

Also, it follows that

Lp = L |domL
⋂
Ker P : domL

⋂
Ker P −→ ImL

is invertible and its inverse is denoted by Kp.
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De�nition 2.4. Let L be a Fredholm operator of index zero, and let Ω be an open

bounded subset of X such that domL
⋂

Ω 6= ∅. Then the map N : Ω −→ X will be

called L− compact on Ω if

(1) QN(Ω) is bounded,

(2) KP,QN = Kp(I −Q)N : Ω −→ X is compact.

Theorem 2.8. Let L : domL ⊂ X −→ Y be a Fredholm operator of index zero,

and let N : X −→ Y be L-compact on Ω. Assume that the following conditions are

satis�ed:

(1) Lx 6= λNx for every (x, λ) ∈
[(
domL\Ker L

)⋂
∂Ω
]
× (0, 1).

(2) Nx /∈ ImL for every x ∈ KerL
⋂
∂Ω.

(3) deg (QN |Ker L,Ω
⋂
Ker L, 0) 6= 0, where Q : Y −→ Y is a projection such

that ImL = KerQ.

Then, the abstract equation Lx = Nx has at least one solution in domL
⋂

Ω.

For our purposes, the adequate functional space is:

X :=
{
u : CDα

0+u ∈ C
(
[0, 1],R

)
, u satis�es the boundary conditions of (1.1)

}
,

equipped with the norm:

‖u‖X = ‖u‖∞ + ‖u′‖∞ + ‖u′′‖∞ + ‖CDα
0+u‖∞,

where

‖u‖∞ = max
t∈[0,1]

|u(t)|.

By means of the functional analysis theory, we can prove that (X, ‖ · ‖X) is a

Banach space. Let Y = L1[0, 1] be the space of real measurable functions t −→ y(t)

de�ned on [0, 1] such that t −→ |y(t)| is Lebesgue integrable. Then Y is a Banach

space with the norm ‖y‖L1 =
∫ 1

0
|y(t)|dt. De�ne L to be the linear operator from

domL
⋂
X toY :

Lu =
(
φCDα

0+u
)′
, u ∈ domL.

where domL =
{
u ∈ X | CDα

0+u(t) is absolutely continuous on [0, 1]
}
, and de�ne

the operator N : X −→ Y as follows:

Nu(t) = f
(
t, u(t), u′(t), u′′(t),CDα

0+u(t)
)
, t ∈ [0, 1].

Then the boundary value problem (1.1) can be written in the following form:

Lu = Nu, u ∈ domL.

To study the compactness of the operator N , we will need the following lemma.
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Lemma 2.9. A subset U ⊂ X is a relatively compact set in X if and only if U is

uniformly bounded and equicontinuous. Here the uniformly boundedness means that

there exists M > 0 such that for every u ∈ U

‖u‖X = ‖u‖∞ + ‖u′‖∞ + ‖u′′‖∞ + ‖CDα
0+u‖∞ ≤M,

and the equicontinuity means that ∀ε > 0, ∃δ > 0, such that

|u(i)(t1)− u(i)(t2)| < ε, ∀u ∈ U, ∀t1, t2 ∈ I, |t1 − t2| < δ, ∀i ∈ {0, 1, 2}.

and

|CDα
0+u(t1)− CDα

0+u(t2)| < ε, ∀u ∈ U, ∀t1, t2 ∈ I, |t1 − t2| < δ.

3. The main results

In this section we state and prove our main results.

Lemma 3.1. Let y ∈ Y, φ(t) ∈ C1[0, 1], µ = mint∈I φ(t) > 0 and (H1) hold, and

let T1, T2 : Y −→ Y be two linear operators de�ned by

T1(y) =

m∑
i=1

ai

∫ ξi

0

(ξi − s)α−3

φ(s)

∫ s

0

y(r)drds,

T2(y) =

∫ 1

0

(1− s)α−2

φ(s)

∫ s

0

y(r)drds−
l∑

j=1

bj

∫ ηj

0

(ηj − s)α−2

φ(s)

∫ s

0

y(r)drds.

Then u ∈ X is a solution of the following linear fractional di�erential problem:

(3.1)


(
φ(t)CDα

0+u(t)
)′

= y(t), t ∈ I = [0, 1],

u(0) = 0, CDα
0+u(0) = 0, u′′(0) =

m∑
i=1

aiu
′′(ξi), u

′(1) =

l∑
j=1

bju
′(ηj),

if and only if

u(t) = c1t+ c2t
2 +

1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0

y(r)drds, c1, c2 ∈ R,(3.2)

and

T1(y) = T2(y) = 0.(3.3)

Proof. Let u be a solution of the problem (3.1). Then we have

φ(t)CDα
0+u(t) = c+

∫ t

0

y(s)ds, c ∈ R.

Since CDα
0+u(0) = 0, we �nd

CDα
0+u(t) =

1

φ(t)

∫ t

0

y(s)ds.
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By Lemma 2.4, we get

u(t) = c0 + c1t+ c2t
2 +

∫ t

0

(t− s)α−1

φ(s)

∫ s

0

y(r)drds, c0, c1, c2 ∈ R.

Since u(0) = 0, we have

u(t) = c1t+ c2t
2 +

1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0

y(r)drds, c1, c2,∈ R.

By u′′(0) =
∑m
i=1 aiu

′′(ξi) and
∑l
i=1 ai = 1, we obtain

l∑
i=1

ai

∫ ξi

0

(ξi − s)α−3

φ(s)

∫ s

0

y(r)drds = 0.

From the conditions u′(1) =
∑l
j=1 bju

′(ηj) and
∑l
j=1 bj =

∑l
j=1 bjηj = 1, we get∫ 1

0

(1− s)α−2

φ(s)

∫ s

0

y(r)drds−
l∑

j=1

bj

∫ ηj

0

(ηj − s)α−2

φ(s)

∫ s

0

y(r)drds = 0.

Thus, we have T1(y) = T2(y) = 0. On the other hand, if c1, c2 are arbitrary real

constants and

u(t) = c1t+ c2t
2 +

∫ t

0

(t− s)α−1

φ(s)

∫ s

0

y(r)drds,

then clearly u(0) = 0, and by Lemma 2.2 and 2.3, we obtain{
CDα

0+u(0) = 0

∀ t ∈ [0, 1],
(
φ(t)CDα

0+u(t)
)′

= y(t).

Taking into account that (3.3) holds, we get the following equations:

u′′(0)−
m∑
i=1

aiu
′′(ξi) =

T1(y)

Γ(α− 2)
= 0, u′(1)−

l∑
j=1

bju
′(ηj) =

T2(y)

Γ(α− 1)
= 0.

Thus, u is a solution of the problem (3.1). This completes the proof. �

Lemma 3.2. Assume that the conditions (H0)− (H2) hold.

(Kpy)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0

y(r)drds.(3.4)

Furthermore, we have

‖Kpy‖X ≤ ρ1‖y‖L1 ,(3.5)

where

ρ1 =
1

µ

(
1

Γ(α+ 1)
+

1

Γ(α)
+

1

Γ(α− 1)
+ 1

)
.(3.6)

Proof. It is clear that Ker L =
{
u | u(t) = c1t + c2t

2, c1, c2 ∈ R
}
. Furthermore,

Lemma 3.1 implies that

ImL =
{
y ∈ Y | T1(y) = T2(y) = 0

}
.(3.7)
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Consider a continuous linear mapping Q : Y −→ Y de�ned by

Qy = Q1(y)tp−1 +Q2(y)tq−1,(3.8)

where p, q are given in (H2), and

Q1(y) =
1

∆(p, q)

(
d22T1(y)− d21T2(y)

)
,

Q2(y) =
1

∆(p, q)

(
− d12T1(y) + d11T2(y)

)
.

We prove that KerQ = ImL. Obviously, ImL ⊂ KerQ. Also, if y ∈ KerQ, then

(3.9)

{
d22T1(y)− d21T2(y) = 0.

−d12T1(y) + d11T2(y) = 0.

The determinant of coe�cients for (3.9) is ∆(p, q) 6= 0. Therefore T1(y) = T2(y) = 0,

implying that y ∈ ImL. Thus, KerQ ⊂ ImL. Now, we show that Q2y = Qy,

y ∈ Y . For y ∈ Y, we have

Q1(Q1(y)tp−1) =
1

∆(p, q)

[
d22T1

(
Q1(y)tp−1

)
− d21T2

(
Q1(y)tp−1

))]
=

1

∆(p, q)

(
d22d11 − d21d12

)
Q1y = Q1y,

and

Q1

(
Q2(y)tq−1

)
=

1

∆(p, q)

[
d22T1

(
Q2(y)tq−1

)
− d21T2

(
Q2(y)tq−1

)]
=

1

∆(p, q)

(
d22d21 − d21d22

)
Q2y = 0.

Similarly, we obtain

Q2

(
Q1(y)tp−1

)
= 0, Q2

(
Q2(y)tq−1

)
= Q2y.

Therefore, we get

Q2y = Q1

(
Q1(y)tp−1

)
tp−1 +Q1

(
Q2(y)tq−1

)
tp−1

+Q2

(
Q1(y)tp−1

)
tq−1 +Q2

(
Q2(y)tq−1

)
tq−1

= Q1(y)tp−1 +Q2(y)tq−1 = Qy,

showing that the operator Q is a projector.

Take y ∈ Y of the form y =
(
y −Qy

)
+Qy to obtain

(
y −Qy

)
∈ KerQ = ImL

and Qy ∈ ImQ. Thus, Y = ImQ + ImL. Also, for any y ∈ ImQ ∩ ImL, from

y ∈ ImQ there exist constants c1, c2 ∈ R such that y(t) = c1t
p−1 + c2t

q−1, and

from y ∈ ImL we obtain

(3.10)

{
d11c1 + d21c2 = 0,

d12c1 + d22c2 = 0.
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The determinant of coe�cients for (3.10) is ∆(p, q) 6= 0. Therefore (3.10) has a

unique solution c1 = c2 = 0, which implies that ImQ ∩ ImL = 0. Then, we have

Y = ImQ⊕KerQ = ImQ⊕ ImL.(3.11)

Thus, dimKer L = 2 = dim ImQ = codimKerQ = codim ImL, showing that L

is a Fredholm operator of index zero.

Let a mapping P : X −→ X be de�ned by

Pu(t) = u′(0)t+
u′′(0)

2
t2.(3.12)

We note that P is a linear continuous projector and ImP = Ker L. It follows from

u = (u−Pu)+Pu that X = Ker P +Ker L. By simple calculation, we obtain that

KerL ∩KerP = {0}, and hence

X = Ker L⊕Ker P.(3.13)

De�ne Kp : ImL −→ domL ∩Ker P as follows:

(Kpy)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0

y(r)drds.

Now, we show that Kp is the inverse of L |domL∩Ker P . In fact, for u ∈ domL ∩
Ker P , we have

(KpL)u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0

(
φCDα

0+u
)′

(r)drds = Iα0+
CDα

0+u(t)

= u(t) + u(0) + u′(0)t+
u′′(0)

2
t2.

In view of u ∈ domL ∩Ker P , we have u(0) = 0 and Pu = 0. Thus

(KpL)u(t) = u(t),(3.14)

and for y ∈ Im L, we �nd

(LKp)y(t) = L(Kpy)(t) =

[
φ(t)CDα

0+I
α
0+

(I10+y
φ

)
(t)

]′
= y(t).

Thus, Kp =
(
L |domL∩Ker P

)−1
. Again, for each y ∈ Im L, in view of Lemmas 2.3,

2.6 and 2.7, we can write

‖Kpy‖X =

2∑
i=0

max
t∈I

∣∣(Kpy)(i)(t)
∣∣+ max

t∈I

∣∣CDα
0+(Kpy)(t)

∣∣
=

2∑
i=0

max
t∈I

∣∣∣∣Iα−i0+

(
I10+y

φ

)
(t)

∣∣∣∣+ max
t∈I

∣∣∣∣(I10+yφ
)

(t)

∣∣∣∣
≤

2∑
i=0

max
t∈I

∣∣∣∣∣Iα+1−i
0+ y(t)

µ

∣∣∣∣∣+ max
t∈I

∣∣∣∣I10+y(t)

µ

∣∣∣∣
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≤
2∑
i=0

‖y‖L1

µΓ(α+ 1− i)
+
‖y‖L1

µ
≤ ρ1‖y‖L1 ,

and the result follows. �

Lemma 3.3. Suppose that Ω is an open bounded subset of X such that domL
⋂

Ω 6=
∅. Then N is L-compact on Ω.

Proof. It is clear that QN(Ω) andKp(I−Q)N(Ω) are bounded, due to the fact that

f satis�es the Carath�eodory conditions. Using the Lebesgue dominated convergence

theorem, we can easily show that QN and KP,QN = Kp(I − Q)N : Ω −→ X

are continuous. By the hypothesis (iii) on the function f , there exists a constant

M > 0, such that |(I −Q)N(u(t))| ≤M , for all u ∈ Ω and t ∈ [0, 1]. For i = 0, 1, 2,

0 ≤ t1 ≤ t2 ≤ 1, and u ∈ Ω, we can write∣∣∣(KP,QNu
)(i)

(t2)−
(
KP,QNu

)(i)
(t1)

∣∣∣
=

1

Γ(α− i)

∣∣∣∣∫ t2

0

(t2 − s)α−i−1

φ(s)

∫ s

0

(I −Q)Nu(r)drds

−
∫ t1

0

(t1 − s)α−i−1

φ(s)

∫ s

0

(I −Q)Nu(r)drds

∣∣∣∣
≤ M

µΓ(α− i)

{∫ t1

0

(t2 − s)α−i−1 − (t1 − s)α−i−1ds+

∫ t2

t1

(t2 − s)α−i−1ds
}

=
M

µΓ(α+ 1− i)
(tα−i2 − tα−i1 ).

Furthermore, we have∣∣CDα
0+KP,QNu(t2)− CDα

0+KP,QNu(t1)
∣∣

=

∣∣∣∣ 1

φ(t2)

∫ t2

0

(I −Q)Nu(s)ds− 1

φ(t1)

∫ t1

0

(I −Q)Nu(s)ds

∣∣∣∣
=

∣∣∣∣( 1

φ(t2)
− 1

φ(t1)

)∫ t1

0

(I −Q)Nu(s)ds+
1

φ(t2)

∫ t2

t1

(I −Q)Nu(s)ds

∣∣∣∣
≤M
µ2

∣∣φ(t2)− φ(t1)
∣∣+

M

µ

(
t2 − t1

)
.

Since tα, tα−1, tα−2 and φ(t) are uniformly continuous on [0, 1], we conclude that

Kp(I −Q)N : Ω −→ X is compact. �

Now we are in position to state the main result of this paper.

Theorem 3.4. Assume that, in addition to (H0)− (H2), the following conditions

hold.

(H3) There exists a Carath�eodory function Φ : [0, 1] × (R+)4 −→ R+ that is

nondecreasing with respect to the last four arguments and satis�es the inequality:∣∣∣f(t, x0, x1, x2, x3)∣∣∣ ≤ Φ
(
t, |x0|, |x1|, |x2|, |x3|

)
.
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(H4) limr→∞ sup 1
r

∫ 1

0

∣∣Φ(s, r, r, r, r)∣∣ds < 1
ρ1+ρ2

where ρ1 is de�ned by (3.6), and

ρ2 =
1

µ

(
2

Γ(α)
+

5

Γ(α− 1)

)
.

(H5) There exists a constant A > 0 such that for u ∈ domL\Ker L, if |u′
(t)| > A

or |u′′
(t)| > A for all t ∈ [0, 1], then T1(Nu) 6= 0 or T2(Nu) 6= 0.

(H6) There exists a constant B > 0 such that for any c1, c2 ∈ R, if |c1| >
B, |c2| > B, then either

T1N
(
c1t+ c2t

2
)

+ T2N
(
c1t+ c2t

2
)
< 0,

or

T1N
(
c1t+ c2t

2
)

+ T2N
(
c1t+ c2t

2
)
> 0.

Then, the problem (1.1) has at least one solution.

Remark 3.5. A su�cient condition for (H3) to be satis�ed is the existence of

functions θi(t) ∈ Y, i = 0, . . . , 5 and a constant ν ∈ (0, 1) such that for all

x0, x1, x2, x3 ∈ R and t ∈ [0, 1] the nonlinearity f veri�es one of the following

growth conditions:∣∣∣f(t, x0, x1, x2, x3)∣∣∣ ≤ 3∑
i=0

θi(t)|xi|+ θ4(t)|x0|ν + θ5(t),

∣∣∣f(t, x0, x1, x2, x3)∣∣∣ ≤ 3∑
i=0

θi(t)|xi|+ θ4(t)|x1|ν + θ5(t),

∣∣∣f(t, x0, x1, x2, x3)∣∣∣ ≤ 3∑
i=0

θi(t)|xi|+ θ4(t)|x2|ν + θ5(t),

∣∣∣f(t, x0, x1, x2, x3)∣∣∣ ≤ 3∑
i=0

θi(t)|xi|+ θ4(t)|x3|ν + θ5(t).

In this case, (H4) reduces to the following:

(H∗4 )
∑3
i=0 ‖θi‖L1 < 1

ρ1+ρ2
.

Proof of Theorem 3.4. Consider the set

Ω1 =
{
u ∈ domL\Ker L | Lu = λNu, λ ∈ [0, 1]

}
,

and observe that for u ∈ Ω1, we have Lu = λNu. Thus, λ 6= 0, Nu ∈ ImL =

KerQ ⊂ Y , and hence, Q(Nu) = 0, that is, T1(Nu) = T2(Nu) = 0. It follows from

condition (H5) that there exist t1, t2 ∈ [0, 1], such that |u′(t1)| ≤ A, |u′′(t2)| ≤ A.
If t1 = t2 = 0, then we have |u′(0)| ≤ A, |u′′(0)| ≤ A. Otherwise, in view of

Lu = λNu, we obtain

u(t) = u′(0)t+
u′′(0)

2
t2 +

λ

Γ(α)

∫ t

0

(t− s)α−1

φ(s)

∫ s

0

Nu(r)drds.
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If t2 6= 0, then

u′′(t2) = u′′(0) +
λ

Γ(α− 2)

∫ t2

0

(t2 − s)α−3

φ(s)

∫ s

0

Nu(r)drds,

and, together with |u′′(t2)| ≤ A, we get

|u′′(0)| ≤ |u′′(t2)|+ 1

Γ(α− 2)

∫ t2

0

(t2 − s)α−3

φ(s)

∫ s

0

|Nu(r)|drds ≤ A+
‖Nu‖L1

µΓ(α− 1)
.

Consequently, we have

|u′′(0)| ≤ A+
1

µΓ(α− 1)
‖Nu‖L1 .(3.15)

If t1 6= 0, then

u′(t1) = u′(0) + u′′(0)t1 +
λ

Γ(α− 1)

∫ t1

0

(t1 − s)α−2

φ(s)

∫ s

0

Nu(r)drds,

and, according to (3.15) and |u′(t1)| ≤ A, we get

|u′(0)| ≤ |u′(t1)|+ |u′′(0)|+ 1

Γ(α− 1)

∫ t1

0

(t1 − s)α−2

φ(s)

∫ s

0

|Nu(r)|drds

≤ 2A+
1

µ

(
1

Γ(α)
+

1

Γ(α− 1)

)
‖Nu‖L1 .

Therefore

|u′(0)| ≤ 2A+
1

µ

(
1

Γ(α)
+

1

Γ(α− 1)

)
‖Nu‖L1 .(3.16)

Next, for u ∈ Ω1, we get

‖Pu‖X =

2∑
i=0

max
t∈[0,1]

∣∣(Pu)(i)(t)
∣∣+ max

t∈[0,1]

∣∣CDα
0+(Pu)(t)

∣∣
≤ 2|u′(0)|+ 3|u′′(0)|.

From (3.15) and (3.16), we obtain

‖Pu‖X ≤ 7A+ ρ2‖Nu‖L1 .(3.17)

Again, for all u ∈ Ω1, we have (I−P )u ∈ domL∩Ker P , and hence, by (3.14) and

(3.5), we �nd

(3.18)

‖(I − P )u‖X = ‖KpL(I − P )u‖X ≤ ρ1‖L(I − P )u‖L1 = ρ1‖Lu‖L1 ≤ ρ1‖Nu‖L1 .

From (3.17) and (3.18), we obtain

(3.19) ‖u‖X ≤ ‖Pu‖X + ‖(I − P )u‖X ≤ 7A+
(
ρ1 + ρ2

)
‖Nu‖L1 .

On the other hand, from (H3), we have

‖Nu‖L1 =

∫ 1

0

∣∣∣f(s, u(s), u′(s), u′′(s),CDα
0+u(s)

)∣∣∣ds
≤
∫ 1

0

∣∣∣Φ(s, u(s), u′(s), u′′(s),CDα
0+u(s)

)∣∣∣ds
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≤
∫ 1

0

∣∣∣Φ(s, ‖u‖X , ‖u‖X , ‖u‖X , ‖u‖X)∣∣∣ds.(3.20)

Because the function Φ is Carath�eodory, the function Ψ : R+ −→ R+, given by

Ψ(r) = 1
r

∫ 1

0

∣∣Φ(s, r, r, r, r)∣∣ds, is well de�ned. Let l = limr→∞ sup Ψ(r). By (H4)

we have 0 < l < 1
ρ1+ρ2

, and hence, for each 0 < ε < 1
ρ1+ρ2

− l, there exists rε such
that r ≥ rε =⇒ Ψ(r) < l + ε. If ‖u‖X ≥ rε, then Ψ(‖u‖X) < 1

ρ1+ρ2
, and hence,

(3.20) implies that

(3.21) ‖Nu‖L1 ≤ (l + ε)‖u‖X .

Therefore, in view of (3.19) and (3.21), we obtain

rε ≤ ‖u‖X ≤
7A

1−
(
ρ1 + ρ2

)
(l + ε)

.

Consequently, we have

(3.22) ‖u‖X ≤ max

{
rε,

7A

1− (l + ε)
(
ρ1 + ρ2

)} =
7A

1− (l + ε)
(
ρ1 + ρ2

) .
Since (3.22) is valid for all 0 < ε < 1

ρ1+ρ2
− l, we get

‖u‖X ≤
7A

1− l
(
ρ1 + ρ2

) .
So, Ω1 is bounded. Denote

Ω2 =
{
u ∈ Ker L | Nu ∈ ImL

}
,

and observe that for u ∈ Ω2, we have u ∈ Ker L =
{
u | u(t) = c1t+c2t

2, c1, c2 ∈ R
}
,

and Q(Nu) = 0, that is,

T1N
(
c1t+ c2t

2
)

= T2N
(
c1t+ c2t

2
)

= 0.

From condition (H6), we get |c1| ≤ B, |c2| ≤ B. Hence, Ω2 is bounded. De�ne

Ω3 :=
{
u ∈ Ker L | −λJu+ (1− λ)QNu = 0, λ ∈ [0, 1]

}
provided that the �rst part of condition (H6) holds, or

Ω3 :=
{
u ∈ Ker L | −λJu+ (1− λ)QNu = 0, λ ∈ [0, 1]

}
provided that the second part of (H6) holds, where J : Ker L −→ ImQ is the

linear isomorphism given by

J
(
c1t+ c2t

2
)

= ω1t
p−1 + ω2t

q−1, c1, c2 ∈ R,(3.23)

with

ω1 =
1

∆(p, q)

(
d22|c1| − d21|c2|

)
, ω2 =

1

∆(p, q)

(
− d12|c1|+ d11|c2|

)
.
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Without loss of generality, we assume that the �rst part of (H6) holds.

In fact u ∈ Ω3, means that u = c1t+ c2t
2 and −λJu+ (1− λ)QNu = 0. Then we

obtain

−λJ
(
c1t+ c2t

2
)

+ (1− λ)QN
(
c1t+ c2t

2
)

= 0.(3.24)

If λ = 0, then |c1| ≤ B, |c2| ≤ B. If λ = 1, then

(3.25)

{
d22|c1| − d21|c2| = 0

−d12|c1|+ d11|c2| = 0.

The determinant of coe�cients for (3.25) is ∆(p, q) 6= 0. Thus, the system (3.25)

has only zero solution, that is, c1 = c2 = 0.

Otherwise, if λ 6= 0 and λ 6= 1, in view of (3.23), the equation (3.24) becomes

λ
(
ω1t

p−1 + ω2t
q−1) = (1− λ)

(
Q1N

(
c1t+ c2t

2
)
tp−1 +Q2N

(
c1t+ c2t

2
)
tq−1

)
.

Hence {
λω1 = (1− λ)Q1

(
c1t+ c2t

2
)
,

λω2 = (1− λ)Q2

(
c1t+ c2t

2
)
.

Thus, we have {
λ|c1| = (1− λ)T1N

(
c1t+ c2t

2
)
,

λ|c2| = (1− λ)T2N
(
c1t+ δ2t

2
)
.

Then, we get

λ
(
|δ1|+ |δ2|

)
= (1− λ)

(
T1N

(
δ1t+ δ2t

2
)

+ T2N
(
δ1t+ δ2t

2
))

< 0.

By the �rst part of condition (H6), we have |δ1| ≤ B, |δ2| ≤ B. Hence, Ω3 is

bounded.

Now, we proceed to show that all the conditions of Theorem 2.8 are satis�ed.

Let Ω be a bounded open set of X containing
⋃3
i=1 Ωi. By Lemma 3.3, N is L-

compact on Ω. Because Ω1 and Ω2 are bounded sets, we have

(1) Lu 6= λNu for each (u, λ) ∈
[(
domL\KerL

)
∩ ∂Ω

]
× (0, 1);

(2) Nu /∈ ImL for each u ∈ KerL ∩ ∂Ω.

To show that the condition (3) of Theorem 2.8 is satis�ed, we de�ne

H(u, λ) = ±λJu+ (1− λ)QNu,

and observe that, because Ω3 is bounded, then we have

H(u, λ) 6= 0, ∀u ∈ KerL
⋂
∂Ω.

Appealing to the homotopy property of the degree, we obtain

deg
(
QN |kerL,Ω

⋂
KerL, 0

)
= deg

(
H(·, 0),Ω

⋂
KerL, 0

)
=deg

(
H(·, 1),Ω

⋂
KerL, 0

)
= deg

(
± J,Ω

⋂
KerL, 0

)
6= 0.
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Thus, the condition (3) of Theorem 2.8 is also satis�ed.

Finally, we can apply Theorem 2.8, to conclude that the abstract equation Lu =

Nu has at least one solution in dom L
⋂

Ω, and hence, the boundary value problem

(1.1) has at least one solution in X. Theorem 3.4 is proved. �

4. An example

To illustrate our main result, we discuss an example.

Example 4.1. Let us consider the following fractional boundary value problem

(4.1)

(
φ(t)CD

5
2

0+u(t)
)′

= f
(
t, u(t), u′(t), u′′(t),CD

5
2

0+u(t)
)
, t ∈ [0, 1]

u(0) = CDα
0+u(0) = 0, u′′(0) = −u′′

(
1

3

)
+ 2u′′

(
1

6

)
,

u′(1) = −2u′
(

1

4

)
+ 3u′

(
1

2

)
.

where φ(t) = et−3 and

f
(
t, x0, x1, x2, x3

)
= x2 + cosx3

(
1− sinx1

)
+
√
|x2|.

Now show that the conditions of Theorem 3.4 are ful�lled.

Corresponding to the notation of the problem (1.1), we have that α = 5
2 , l =

2, m = 2, a1 = −1, a2 = 2, ξ1 = 1
3 , ξ2 = 1

6 , b1 = −2, b2 = 3, η1 = 1
4 , η2 =

1
2 , µ = mint∈I φ(t) = e−3 > 0. Then we have a1 +a2 = b1 +b2 = 1, b1η1 +b2η2 = 1.

Thus, the condition (H1) is satis�ed.

Also, we �nd

T1(y) = −
∫ 1

3

0

(1

3
− s
)− 1

2

e3−s
∫ s

0

y(r)drds+ 2

∫ 1
6

0

(1

6
− s
)− 1

2

e3−s
∫ s

0

y(r)drds,

T2(y) =

∫ 1

0

(1− s) 1
2 e3−s

∫ s

0

y(r)drds− 2

∫ 1
4

0

(1

4
− s
) 1

2

e3−s
∫ s

0

y(r)drds

+ 3

∫ 1
2

0

(1

2
− s
) 1

2

e3−s
∫ s

0

y(r)drds.

By simple calculations, we get

∆(1, 2) =

∣∣∣∣∣∣
−761
993

−301
982

1545
311

463
431

∣∣∣∣∣∣ =
263

376
6= 0,

Therefore, the condition (H2) holds.

On the other hand, we have∣∣∣f(t, x0, x1, x2, x3)∣∣∣ ≤ |x2|+√|x2|+ 2.
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It is easy to see that the condition (H3) holds, where

θ0(t) = θ1(t) = θ3(t) = 0, θ2(t) = 1, θ4(t) =
1

2
, θ5(t) = 2, ν =

1

2
.

Next, we have

(
ρ1 + ρ2

) 3∑
i=0

‖θi‖L1 = e−3
(

1

Γ(3.5)
+

3

Γ(2.5)
+

6

Γ(1.5)
+ 1

)
=

833

1620
< 1.

Therefore, the condition (H∗4 ) holds.

Let A = 9 and assume that |u′′(t)| > 9 holds for all t ∈ [0, 1]. Then, by the

continuity of u′′(t), we have either u′′(t) > 9 for all t ∈ [0, 1], or u′′(t) < −9 for all

t ∈ [0, 1]. If u′′(t) > 9, then for all t ∈ [0, 1] we obtain

T2(y) =

∫ 1

0

(1− s) 1
2 e3−s

∫ s

0

(
u′′(r) + cosCDα

0+u(r)
(
1− sinu′(r)

)
+
√
|u′′(r)|

)
drds

− 2

∫ 1
4

0

(1

4
− s
) 1

2

e3−s
∫ s

0

(
u′′(r) + cosCDα

0+u(r)
(
1− sinu′(r)

)
+
√
|u′′(r)|

)
drds

+ 3

∫ 1
2

0

(1

2
− s
) 1

2

e3−s
∫ s

0

(
u′′(r) + cosCDα

0+u(r)
(
1− sinu′(r)

)
+
√
|u′′(r)|

)
drds.

≥ 5

∫ 1

0

s(1− s) 1
2 e3−sds− 14

∫ 1
4

0

s
(1

4
− s
) 1

2

e3−sds+ 15

∫ 1
2

0

s
(1

2
− s
) 1

2

e3−sds

≥ 7280

257
.

If u′′(t) < −9, then for all t ∈ [0, 1] we obtain

T2(y) =

∫ 1

0

(1− s) 1
2 e3−s

∫ s

0

(
u′′(r) + cosCDα

0+u(r)
(
1− sinu′(r)

)
+
√
|u′′(r)|

)
drds

− 2

∫ 1
4

0

(1

4
− s
) 1

2

e3−s
∫ s

0

(
u′′(r) + cosCDα

0+u(r)
(
1− sinu′(r)

)
+
√
|u′′(r)|

)
drds

+ 3

∫ 1
2

0

(1

2
− s
) 1

2

e3−s
∫ s

0

(
u′′(r) + cosCDα

0+u(r)
(
1− sinu′(r)

)
+
√
|u′′(r)|

)
drds.

≤ −4

∫ 1

0

s(1− s) 1
2 e3−sds+ 14

∫ 1
4

0

s
(1

4
− s
) 1

2

e3−sds− 12

∫ 1
2

0

s
(1

2
− s
) 1

2

e3−sds

≤ −12329

544
.

So, the condition (H5) is satis�ed.

Let B = 1 and c1, c2 ∈ R be such that |c1| > 1, |c2| > 1. Then we have

T1N
(
c1t+ c2t

2
)

+ T2N
(
c1t+ c2t

2
)

=
(
2|c2|+

√
2|c2|

)
(d11 + d12) < 0.

So, the condition (H6) is satis�ed.

Thus, all the assumptions of Theorem 3.4 are satis�ed, and hence, the problem

(4.1) has at least one solution.
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where S(r, w) is any quantity satisfying S(r, w) = o (T (r, w)) for all r outside a set

of �nite logarithmic measure. A meromorphic solution w is called admissible if all

the coe�cients of a di�erence equation are in the �eld S(w). For instance, all the
non-rational meromorphic solutions of a di�erence equation which has only rational

coe�cients, are admissible.

Recently, Halburd and Korhonen [9], developing the Nevanlinna value distribution

theory on di�erence expressions (see [6] � [8]), considered the following di�erence

equation:

(1.1) w + w = R(z, w),

where R is rational in w and is meromorphic in z with slow growth of coe�cients.

They proved that if the equation (1.1) has an admissible meromorphic solution of

�nite order, then either w satis�es a di�erence Riccati equation, or the equation

(1.1) can be transformed to eight simple di�erence equations. These simple di�erence

equations include the Painlev�e I, II di�erence equations and some linear di�erence

equations. We recall the family including Painlev�e III di�erence equations.

Theorem A ([10]). Assume that the equation:

(1.2) ww = R(z, w),

has an admissible meromorphic solution w of hyper-order less than one, where

R(z, w) is rational and irreducible in w and meromorphic in z. Then either w

satis�es the following di�erence Riccati equation:

w =
αw + β

w + γ
,

where α, β, γ ∈ S(w) are algebraic functions, or the equation (1.2) can be transformed

to one of the following equations:

ww =
ηw2 − λw + µ

(w − 1)(w − ν)
,(1.3a)

ww =
ηw2 − λw
(w − 1)

,(1.3b)

ww =
η(w − λ)
(w − 1)

,(1.3c)

ww = hwm.(1.3d)

In (1.3a), the coe�cients satisfy κ2µµ = µ2, λµ = κλµ, κλλ = κλλ, and one of

the following conditions:

(1) η ≡ 1, νν = 1, κ = ν; (2) η = η = ν, κ ≡ 1.
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In (1.3b), ηη = 1 and λλ = λλ.

In (1.3c), the coe�cients satisfy one of the following conditions:

(1) η ≡ 1, and either λ = λλ or λ
[3]
λ[3] = λλ;

(2) λλ = λλ, ηλ = λη, ηη = ηη
[3]
;

(3) ηη = ηη, λ = η;

(4) λ
[3]
λ[3] = λλλ, ηλ = ηη.

In (1.3d), h ∈ S(w) and m ∈ Z, |m| ≤ 2.

The di�erence Painlev�e III equations (1.3a)�(1.3d) have been studied recently

by Zhang and Yang [11], and Zhang and Yi [12, 13], where a number of interesting

results were obtained. In particular, Zhang and Yi [12] studied the following equation:

(1.4) ww(w − 1)2 = w2 − λw + µ,

where λ and µ are constants, and obtained the following two results.

Theorem B ([12]). Let w(z) = P (z)
Q(z) , where P (z) and Q(z) are relatively prime

polynomials of degrees p and q, respectively. If w(z) is a solution of equation (1.4),

then one of the following assertions holds:

(i) p = q, a2(a− 1)2 = a2 − λa+ µ, where a = w(∞);

(ii) p < q, λ = µ = 0, and P (z) is a constant.

Example 1.1. The rational function w(z) = 1
(z+1)2 is a solution of the di�erence

equation ww(w− 1)2 = w2. This shows that the conclusion (ii) of Theorem B may

occur.

Theorem C ([12]). If w is a transcendental meromorphic solution of equation

(1.4) of �nite order ρ(w), then the following assertions hold:

(i) τ(w) = ρ(w);

(ii) If λµ 6= 0, then λ(w) = ρ(w).

Example 1.2. The function w(z) = sec2 πz2 is a solution of the di�erence equation

ww(w − 1)2 = w2, and 0 is a Picard exceptional value of w. This shows that the

condition λµ 6= 0 is necessary in assertion (ii) of Theorem C.

In this paper, motivated by the above theorems and equation (1.3a), we study

two di�erence Painlev�e III equations that follow. Observe �rst that if in equation

(1.3a) of Theorem A, κ = ν = −1 when both µ and λ are constants, then we have

at least one of µ and λ to be 0 from λµ = κλµ. So, in Section 3, we discuss the

67



L. LIU, J. ZHANG

question of existence of rational solutions of the following di�erence Painlev�e III

equation:

(1.5) ww(w2 − 1) = w2 + µ,

where µ (µ 6= −1) is a constant, and investigate the value distribution. In Section

4, we discuss the same questions, that is, the existence of rational solutions and the

value distribution, of the following di�erence Painlev�e III equation:

(1.6) ww(w2 − 1) = w2 − λw,

where λ(λ 6= ±1) is a constant.

The reminder of the paper is organized as follows. In Section 2, we state a number

of auxiliary lemmas, which will be used to prove our main results. In Section 3, we

study the equation (1.5). Section 4 is devoted to equation (1.6).

2. Auxiliary lemmas

In this section we state a number of auxiliary lemmas, which will be used to

prove our main results. We �rst state the following lemma, which is a di�erence

analogue of the logarithmic derivative lemma, and reads as follows.

Lemma 2.1. Let f be a meromorphic function of �nite order, and let c be a non-

zero complex constant. Then

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= S(r, f).

In view of Lemma 2.1, we can obtain the following di�erence analogues of the

Clunie and Mohon'ko lemmas (see [7, 8]).

Lemma 2.2 ([8]). Let f be a transcendental meromorphic solution of a �nite order

ρ for a di�erence equation of the form:

U(z, f)P (z, f) = Q(z, f),

where U(z, f), P (z, f) and Q(z, f) are di�erence polynomials such that the total

degree degf U(z, f) = n in f(z) and its shifts, and degf Q(z, f) ≤ n. If U(z, f)

contains just one term of maximal total degree in f(z) and its shifts, then, for each

ε > 0, we have

m (r, P (z, f)) = O
(
rρ−1+ε

)
+ S(r, f),

possibly outside an exceptional set of a �nite logarithmic measure.

Lemma 2.3 ([7, 8]). Let w be a transcendental meromorphic solution of a �nite

order of the di�erence equation:

P (z, w) = 0,
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where P (z, w) is a di�erence polynomial in w(z). If P (z, a) 6≡ 0 for a meromorphic

function a ∈ S(w), then

m

(
r,

1

w − a

)
= S(r, w).

Lemma 2.4 (See, e.g., [11, Theorem 3.1]). Let w be a non-constant meromorphic

solution of a �nite order of equations (1.3a)− (1.3d) with constant coe�cients, and

let m 6= 2 in equation (1.3d). Then the following equalities hold:

m(r, w) = S(r, w), λ

(
1

w

)
= ρ(w).

We conclude this section by the following lemma.

Lemma 2.5 (See, e.g., [5, pp. 79�80]). Let fj (j = 1, . . . , n) (n ≥ 2) be meromorphic

functions, and let gj (j = 1, . . . , n) be entire functions. Assume that the following

conditions are ful�lled:

(i)
∑n
j=1 fj(z)e

gj(z) ≡ 0;

(ii) gh(z)− gk(z) is not a constant for 1 ≤ h < k ≤ n;
(iii) T (r, fj) = S(r, egh(z)−gk(z)) for 1 ≤ j ≤ n and 1 ≤ h < k ≤ n.

Then fj(z) ≡ 0, j = 1, . . . , n.

3. Equation (1.5)

Theorem 3.1. There is no any non-constant rational solution of equation (1.5).

Proof. Assume the opposite that w(z) = P (z)
Q(z) is a non-constant rational solution

of equation(1.5), where P (z) and Q(z) are relatively prime polynomials of degrees p

and q, respectively. Also, we assume that the leading coe�cient of P (z) is a (a 6= 0)

and the leading coe�cient of Q(z) is 1. Substituting w(z) = P (z)
Q(z) into (1.5), we get

(3.1)
P (z + 1)

Q(z + 1)

P (z − 1)

Q(z − 1)

((
P (z)

Q(z)

)2

− 1

)
=

(
P (z)

Q(z)

)2

+ µ.

We set s = p− q, and discuss the following three possible cases.

Case 1. Let s > 0. Then P (z)
Q(z) = azs(1 + o(1)) as z tends to in�nite and from

(3.1), we get

a2(z + 1)s(z − 1)s(1 + o(1))
(
a2z2s(1 + o(1))− 1

)
= a2z2s(1 + o(1)) + µ,

which is a contradiction as z tends to in�nite.

Case 2. Let s < 0. Now we have P (z)
Q(z) = o(1) and P (z+1)

Q(z+1) = o(1) as z tends to

in�nite. By (3.1), we obtain µ = 0. From (1.5), when µ = 0, we have

ww =
w2

w2 − 1
.
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Let w(z) = 1
f(z) . Substituting w = 1

f into the above equation, we obtain

ff = 1− f2.

Observing that the coe�cients on the left- and right-hand sides of the above

equation are 1
a2 and − 1

a2 , respectively, we get
2
a2 = 0, which is impossible.

Case 3. Let s = 0. Then w(z) = P (z)
Q(z) = a+ o(1) as z tends to in�nity and from

(3.1), we get

(3.2) a2(a2 − 1) = a2 + µ,

where a /∈ {0,±1}. We rewrite (3.1) as follows:

P (z + 1)

Q(z + 1)

P (z − 1)

Q(z − 1)
=
P 2(z) + µQ2(z)

P 2(z)−Q2(z)
.

We assume that there is a point z0 such that P 2(z0) + µQ2(z0) = 0 and P 2(z0)−
Q2(z0) = 0. Since µ 6= −1, we obtain P (z0) = 0 and Q(z0) = 0, which is a

contradiction. Thus, the degrees of P 2(z)+µQ2(z) and P 2(z)−Q2(z) both are 2p,

and we have

(a2 + µ)PP = a2(P 2 + µQ2),(3.3)

(a2 − 1)QQ = P 2 −Q2.(3.4)

Next, we assume P = ar, p = n. Then from (3.3) we have that

(3.5) µQ2 = rr
(
a2 + µ

)
− r2a2,

where

r = zn +An−1z
n−1 +An−2z

n−2 +An−3z
n−3 + · · ·+A1z +A0,(3.6)

Q = zn +Bn−1z
n−1 +Bn−2z

n−2 +Bn−3z
n−3 + · · ·+B1z +B0.(3.7)

We rewrite (3.4) as follows:

(3.8) (a2 − 1)QQ+Q2 = P 2.

Substituting (3.6) and (3.7) into (3.5) and comparing the coe�cients of terms z2n,

z2n−1, z2n−2, we obtain the following two equations:

µ(Bn−1 −An−1) = 0,

µ(B2
n−1 + 2Bn−2) = µ(A2

n−1 + 2An−2 − n)− a2n.

If µ = 0, then from the last equation we get a2n = 0, which is a contradiction. If

µ 6= 0, then the last two equations become

Bn−1 = An−1, Bn−2 = An−2 −
n
(
a2 + µ

)
2µ

.

70



SOME RESULTS ON THE PAINLEV�E III DIFFERENCE ...

By the same way, we substitute (3.6) and (3.7) into (3.8), and compare the coe�cients

of terms z2n, z2n−1, z2n−2, to obtain

Bn−1 = An−1, Bn−2 = An−2 −
n
(
1− a2

)
2a2

.

So, we get a4 = µ(1−2a2). On the other hand, from (3.2) we have µ = a2
(
a2 − 2

)
.

It is obvious that a2 = 1, which is a contradiction. �

Theorem 3.2. If w is a transcendental meromorphic solution of equation (1.5) of

a �nite order ρ(w) > 0, then the following assertions hold:

(i) λ

(
1

w

)
= τ(w) = ρ(w);

(ii) when µ 6= 0, we have λ(w) = ρ(w);

(iii) w has at most one non-zero Borel exceptional value.

Proof.Denote φ(z) = w(z)−z, and observe that φ(z) is a transcendental meromorphic

function and T (r, φ) = T (r, w) + S(r, w). Substituting w(z) = φ(z) + z into (1.5),

we obtain (
φ+ z + 1

) (
φ+ z − 1

) (
(φ+ z)2 − 1

)
= (φ+ z)2 + µ.

Denote

P (z, φ) =
(
φ+ z + 1

) (
φ+ z − 1

) (
(φ+ z)2 − 1

)
− (φ+ z)2 − µ,

and observe that P (z, 0) =
(
z2 − 1

)2 − z2 − µ 6≡ 0. From Lemma 2.3, we get

m

(
r,

1

w − z

)
= m (r, 1/φ) = S(r, φ),

implying that N

(
r,

1

w − z

)
= T (r, w) + S(r, w), and hence τ(w) = ρ(w).

In view of Lemma 2.4 we have m(r, w) = S(r, w). Then, the equality λ

(
1

w

)
=

ρ(w) holds.

To prove the assertion (ii), for µ 6= 0, we denote

P1(z, w) = ww(w2 − 1)− w2 − µ,

and observe that P1(z, 0) = −µ 6≡ 0. Then, from Lemma 2.3, we obtainm(r, 1/w) =

S(r, w), implying that λ(w) = ρ(w).

Now we proceed to prove the assertion (iii) of the theorem. To this end, we

assume that a and b are two non-zero �nite Borel exceptional values of w, and set

(3.9) f(z) =
w(z)− a
w(z)− b

.
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Then, we have ρ(f) = ρ(w), λ(f) = λ(w−a) < ρ(f) and λ(1/f) = λ(w−b) < ρ(f).

Since f is of �nite order, we suppose that

(3.10) f(z) = g(z)edz
n

,

where d (d 6= 0) is a constant, n (n ≥ 1) is an integer, and g(z) is a meromorphic

function satisfying the condition:

(3.11) ρ(g) < ρ(f) = n.

Then, we have

(3.12) f(z + 1) = g(z + 1)g1(z)e
dzn , f(z − 1) = g(z − 1)g2(z)e

dzn ,

where g1(z) = endz
n−1+···+d and g2(z) = e−ndz

n−1+···+(−1)nd. From (3.9) we get

w =
bf − a
f − 1

. Next, in view of (1.5), (3.9) to (3.12), we can write

(3.13) A(z)e4dz
n

+B(z)e3dz
n

+ C(z)e2dz
n

+D(z)edz
n

+ E = 0,

where

A(z) =
[
b4 − 2b2 − µ

]
g2gg1gg2,

B(z) =
[
−2b2(ab− 1) + 2ab+ 2µ

]
ggg1gg2

+
[
−ab(b2 − 1) + b2 + µ

]
g2(gg1 + gg2),

C(z) =
[
b2(a2 − 1)− a2 − µ

]
ggg1g2 +

[
a2b2 − a2 − b2 − µ

]
g2

− [−2ab(ab− 1) + 2ab+ 2µ] g(gg1 + gg2),

D(z) =
[
−a3b+ ab+ a2 + µ

]
(gg1 + gg2) + 2(−a3b+ a2 + ab+ µ)g,

E = a4 − 2a2 − µ.

Applying Lemma 2.5 to (3.13) and taking into account (3.11), we see that all the

coe�cients vanish. Since a and b are non-zero constants, we deduce from A(z) = 0

and E = 0 that

(3.14) a4 − 2a2 = µ, b4 − 2b2 = µ.

Then, we have (a2 − b2)(a2 + b2 − 2) = 0. Now we discuss the following two cases.

Case 1. Let a2 = b2. Due to a 6= b, we get a = −b. Denote G = g, G1 = gg1 and

G2 = gg2. From B(z) = 0, D(z) = 0, we have

2(b4 + µ)G1G2 = (−b4 − µ)G(G1 +G2),

2(a4 + µ)G = (−a4 − µ)(G1 +G2).

Noting that µ 6= −1, we get b4 + µ 6= 0 and a4 + µ 6= 0 by (3.14). Thus, we have

2G1G2 = −G(G1 +G2), 2G = −(G1 +G2).
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From the last two equations, we obtain

G2 = G1G2, 4G1G2 = (G1 +G2)
2.

So, we have −G = G1 = G2 and f = f = −f . From (3.9), the equality a = −b and
the above equation, we get

w = w =
a2

w
.

Hence, from (1.5) we get a4(w2− 1) = w4 +µw2. Therefore, w is a constant, which

is a contradiction.

Case 2. Let a2 + b2 = 2. When B(z) = 0 and D(z) = 0, then using arguments

similar to those applied in Case 1, we get

2G1G2 = −G(G1 +G2), 2G = −(G1 +G2).

Noting that µ 6= −1, the above equations also lead to a contradiction by the similar

reasoning as in Case 1. This completes the proof of the theorem. �

4. Equation (1.6)

Theorem 4.1. Let w(z) = P (z)
Q(z) , where P (z) and Q(z) are relatively prime polynomials

of degrees p and q, respectively. If w(z) is a non-constant rational solution of

equation (1.6), then

p = q, a(a2 − 1) = a− λ, where a = ±
√
6

3
, λ =

4a

3
.

Proof. For p 6= q, the proof of the theorem is similar to that of Cases 1 and 2 in

Theorem 3.1, so we only prove the theorem for p = q. We assume that the leading

coe�cient of P (z) is a (a 6= 0), and the leading coe�cient of Q(z) is 1. Substituting

w(z) = P (z)
Q(z) into (1.6), we get

(4.1)
P (z + 1)

Q(z + 1)

P (z − 1)

Q(z − 1)

((
P (z)

Q(z)

)2

− 1

)
=

(
P (z)

Q(z)

)2

− λP (z)
Q(z)

.

When p = q, we have P (z)
Q(z) = a+ o(1) and P (z+1)

Q(z+1) = a+ o(1) as z tends to in�nite.

Then, from (4.1) we get the following equation

(4.2) a(a2 − 1) = a− λ,

where a /∈ {0,±1}.
We rewrite (4.1) as follows:

P (z + 1)

Q(z + 1)

P (z − 1)

Q(z − 1)
=
P 2(z)− λP (z)Q(z)

P 2(z)−Q2(z)
.

Arguments, similar to those applied in the proof of Theorem 3.1 (Case 3), can

be used to conclude that the degrees of P 2(z)−λP (z)Q(z) and P 2(z)−Q2(z) both
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are 2p for λ 6= ±1. Hence, we have

(a2 − λa)PP = a2(P 2 − λPQ),(4.3)

(a2 − 1)QQ = P 2 −Q2.(4.4)

Next, we assume P = ar, p = n, and use (4.3) to obtain

(4.5) λrQ = rr (λ− a) + ar2,

where

r = zn +An−1z
n−1 +An−2z

n−2 +An−3z
n−3 + · · ·+A1z +A0,(4.6)

Q = zn +Bn−1z
n−1 +Bn−2z

n−2 +Bn−3z
n−3 + · · ·+B1z +B0.(4.7)

We rewrite (4.4) as follows:

(4.8) (a2 − 1)QQ+Q2 = P 2.

Substituting (4.6) and (4.7) into (4.5) and comparing the coe�cients of terms z2n,

z2n−1, z2n−2, we obtain the following two equations:

λ(Bn−1 −An−1) = 0,

λ(Bn−2 +An−1Bn−1 +An−2) = λ(A2
n−1 + 2An−2 − n) + an.

For λ = 0, from the last equation we get an = 0, which is a contradiction. For

λ 6= 0, the last two equations become

Bn−1 = An−1, Bn−2 = An−2 +
n (a− λ)

λ
.

By the same way, we substitute (4.6) and (4.7) into (4.8), and compare the coe�cients

of terms z2n, z2n−1, z2n−2, to obtain

Bn−1 = An−1, Bn−2 = An−2 +
n
(
a2 − 1

)
2a2

.

So, we get 2a3 = λ(3a2 − 1). And from (4.2), we have λ = 2a − a3. By the above

equations, we have
(
3a2 − 2

) (
a2 − 1

)
= 0. Since a2 6= 1, we get a = ±

√
6
3 and

λ = ± 4
√
6

9 . Therefore
λ

a
=

4

3
. �

Theorem 4.2. If w is a transcendental meromorphic solution of equation (1.6) of

a �nite order ρ(w) > 0, then the following assertions hold:

(i) λ

(
1

w

)
= τ(w) = ρ(w);

(ii) when λ 6= 0, we have λ(w) = ρ(w);

(iii) w has at most one non-zero Borel exceptional value.
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Proof.Denote φ(z) = w(z)−z, and observe that φ(z) is a transcendental meromorphic

function and T (r, φ) = T (r, w) + S(r, w). Substituting w(z) = φ(z) + z into (1.6),

we obtain
(
φ+ z + 1

) (
φ+ z − 1

) (
(φ+ z)2 − 1

)
= (φ+ z)2 − λ (φ+ z). Denote

P (z, φ) =
(
φ+ z + 1

) (
φ+ z − 1

) (
(φ+ z)2 − 1

)
− (φ+ z)2 + λ (φ+ z) ,

and observe that P (z, 0) =
(
z2 − 1

)2 − z2 + λz 6≡ 0. Then, from Lemma 2.3, we

obtain

m

(
r,

1

w − z

)
= m (r, 1/φ) = S(r, φ),

implying that N

(
r,

1

w − z

)
= T (r, w) + S(r, w), and hence τ(w) = ρ(w).

We deduce from Lemma 2.4 thatm(r, w) = S(r, w). Then, the equality λ

(
1

w

)
=

ρ(w) holds.

To prove the assertion (ii), for λ 6= 0, we rewrite (1.6) as follows:

ww =
w2 − λw
w2 − 1

.

Let w(z) = 1
f(z) . Substituting w = 1

f into the last equality, we get

fffλ = ff − 1 + f2.

From Lemma 2.2, we obtain m(r, 1/w) = S(r, w). Therefore, λ(w) = ρ(w).

Now we proceed to prove the assertion (iii) of the theorem. To this end, we

assume that a and b are two non-zero �nite Borel exceptional values of w, and set

(4.9) f(z) =
w(z)− a
w(z)− b

.

Then, we have ρ(f) = ρ(w), λ(f) = λ(w−a) < ρ(f) and λ(1/f) = λ(w−b) < ρ(f).

Since f is of �nite order, we suppose that

(4.10) f(z) = g(z)edz
n

,

where d (d 6= 0) is a constant, n (n ≥ 1) is an integer, and g(z) is a meromorphic

function satisfying the condition:

(4.11) ρ(g) < ρ(f) = n.

Then, we have

(4.12) f(z + 1) = g(z + 1)g1(z)e
dzn , f(z − 1) = g(z − 1)g2(z)e

dzn ,

where g1(z) = endz
n−1+···+d and g2(z) = e−ndz

n−1+···+(−1)nd. From (4.9), we get

w =
bf − a
f − 1

. In view of (1.6), (4.9) to (4.12), we can write

(4.13) A(z)e4dz
n

+B(z)e3dz
n

+ C(z)e2dz
n

+D(z)edz
n

+ E = 0,
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where

A(z) =
[
b4 − 2b2 + bλ

]
g2gg1gg2,

B(z) =
[
−2b2(ab− 1) + 2ab− λ(a+ b)

]
ggg1gg2

+
[
−ab(b2 − 1) + b(b− λ)

]
g2(gg1 + gg2),

C(z) =
[
b2(a2 − 1)− a2 + aλ

]
ggg1g2 +

[
a2b2 − a2 − b2 + bλ

]
g2

+ [2ab(ab− 1)− 2ab+ λ(a+ b)] g(gg1 + gg2),

D(z) =
[
−2a3b+ 2ab+ 2a2 − λ(a+ b)

]
g + (−a3b+ a2 + ab− aλ)(gg1 + gg2),

E = a4 − 2a2 + aλ.

Applying Lemma 2.5 to (4.13) and taking into account (4.11), we see that all the

coe�cients vanish. Since a and b are non-zero constants, we deduce from A(z) = 0

and E = 0 that

(4.14) a3 − 2a = −λ, b3 − 2b = −λ.

Then, we have (a−b)(a2+ab+b2−2) = 0. Since a 6= b, it follows that a2+b2+ab = 2.

By (4.14), a and b are distinct zeros of the equation z3 − 2z + λ = 0.

According to the algebraic basic theorem, the above equation has three solutions.

Denoting by x the third solution, and using the relationship between roots and

coe�cients, we obtain abx = −λ, ab+ ax+ bx = −2, a+ b+ x = 0, implying that

x = − λ

ab
, a+ b = −x =

λ

ab
, ab+ (a+ b)x = ab− λ2

a2b2
= −2.

So, we have

ab(a+ b) = λ, 2ab+ a2b2 = (a+ b)λ, a2 + b2 + ab = 2.

Denote G = g, G1 = gg1 and G2 = gg2. From B(z) = 0, D(z) = 0 and the above

equations, we have

(2b2 − 2ab3 − a2b2)G1G2 = (2ab3 + a2b2 − ab− b2)G(G1 +G2),

(2a2 − 2a3b− a2b2)G = (2a3b+ a2b2 − ab− a2)(G1 +G2).

Because

G1G2

G(G1 +G2)
=

2ab3 + a2b2 − ab− b2

2b2 − 2ab3 − a2b2
=

b2 − ab
2b2 − 2ab3 − a2b2

− 1.

By a2 + b2 + ab = 2, we gain 2b2 − 2ab3 − a2b2 = b3(b− a), and hence, we have

G1G2

G(G1 +G2)
=

1

b2
− 1.

Thus, we get

G1G2 =

(
1

b2
− 1

)
G(G1 +G2), G =

(
1

a2
− 1

)
(G1 +G2).
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Noting that λ 6= ±1, by (4.14), we get a2 6= 1 and b2 6= 1. Moreover, since the last

two equations are homogeneous, there exist two non-zero constants α and β, such

that G1 = αG and G2 = βG. Then, we have

(4.15) αβ =
a2 − a2b2

b2 − a2b2
.

On the other hand, combining (4.10) and (4.12), we get f = αf , f = βf , which

yields αβ = 1. Thus, by (4.15), we have a2 = b2. When a = b, then we get a

contradiction. So, we have only to consider the case a = −b. From B(z) = 0,

D(z) = 0 and a = −b, we have

2b4G1G2 = (−b4 + bλ)G(G1 +G2),

2a4G = (−a4 + aλ)(G1 +G2),(4.16)

implying that

(4.17) (−b4 − bλ)G1G2 = (−b4 + bλ)G2.

Since the last equation is homogeneous, there exist two non-zero constants α and

β, such that G1 = αG and G2 = βG. Then, we have

(4.18) αβ(b3 + λ) = b3 − λ.

On the other hand, combining (4.11) and (4.13), we get f = αf, f = βf , which

yields αβ = 1. Thus by (4.18), we have λ = 0, and, in view of (4.16) and (4.17),

we infer that 2G = −(G1 +G2) and G1G2 = G2. Then, G1 = G2 = −G. Thus, we
have α = β = −1 and f = f = −f , and by the similar reasoning as in Case 1 of

the proof of Theorem 3.1, we get a contradiction. �
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Li, Mohapatra and Rodriguez [12] gave a new perspective to inequalities (1.1)

� (1.3), and extended them to rational functions with �xed poles. Essentially, in

these inequalities they replaced the polynomial P (z) by a rational function r(z)

with poles a1, a2, ..., an all lying in |z| > 1, and zn was replaced by a Blaschke

product B(z). Before proceeding towards their results, we �rst introduce the set of

rational functions involved.

For aj ∈ C with j = 1, 2, ..., n, we de�ne

W (z) =

n∏
j=1

(z − aj); B(z) =

n∏
j=1

(1− ajz
z − aj

)
=
W ∗(z)

W (z)
,

where

W ∗(z) = znW (
1

z
)

and

Rn = Rn(a1, a2, ..., an) =

{
P (z)

W (z)
: P ∈ Pn

}
.

Then Rn is de�ned to be the set of rational functions with poles a1, a2, ..., an at most

and with �nite limit at∞. Note that B(z) ∈ Rn and |B(z)| = 1 for |z| = 1. Also, for

r(z) = P (z)
W (z) ∈ Rn, the conjugate transpose r∗ of r is de�ned by r∗(z) = B(z)r( 1

z ).

In the past few years several papers pertaining to Bernstein-type inequalities for

rational functions have appeared in the study of rational approximations (see [2],

[4], [11] � [13]). For r ∈ Rn, Li, Mohapatra and Rodriguez [12] proved the following,

similar to (1.1), inequality for rational functions:

|r′(z)| ≤ |B′(z)|max
|z|=1

|r(z)|.(1.5)

As extensions of (1.2) and (1.3) to rational functions, Li, Mohapatra and Rodriguez

also showed that if r ∈ Rn, and r(z) 6= 0 in |z| < 1, then for |z| = 1,

|r′(z)| ≤ |B
′(z)|
2

max
|z|=1

|r(z)|,(1.6)

whereas, if r ∈ Rn has exactly n zeros in |z| ≤ 1, then for |z| = 1,

|r′(z)| ≥ |B
′(z)|
2
|r(z)|.(1.7)

Very recently, Wali and Shah [13] proved an interesting re�nement of (1.7). Namely,

they proved that if r ∈ Rn, and r has exactly n zeros in |z| ≤ 1, where r(z) = P (z)
W (z) ,

with P (z) =
∑n
j=0 cjz

j , then for |z| = 1,

|r′(z)| ≥ 1

2

{
|B′(z)|+

√
|cn| −

√
|c0|√

|cn|

}
|r(z)|.(1.8)

In this paper, we establish some results for rational functions r(z) = P (z)
W (z) with

restricted zeros, where P (z) =
∑n
j=0 cjz

j , by involving some coe�cients of P (z).
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Our results strengthen some known inequalities for rational functions and, in turn,

produce re�nements of some polynomial inequalities as well.

2. Main results

In what follows we shall always assume that all the poles a1, a2, ..., an of r(z) lie

in |z| > 1. In the case where all poles are in |z| < 1, we can obtain analogous results

with suitable modi�cations.

Theorem 2.1. Suppose that r ∈ Rn, and all the n zeros of r lie in |z| ≤ 1. If

r(z) = P (z)
W (z) , where P (z) =

∑n
j=0 cjz

j, then for every β with |β| ≤ 1 and |z| = 1,

we have ∣∣∣∣zr′(z) +
nβ

2
r(z)

∣∣∣∣ ≥ 1

2

{
|B′(z)|+ nRe(β) +

|cn| − |c0|
|cn|+ |c0|

}
|r(z)|.(2.1)

The result is best possible in the case β = 0, and in (2.1) equality holds for r(z) =

B(z) + λ with |λ| = 1.

We �rst discuss some consequences of Theorem 2.1. If we take αj = α, |α| ≥ 1,

for j = 1, 2, ..., n, then W (z) = (z − α)n and r(z) = P (z)
(z−α)n , and hence we have

r′(z) =
(z − α)nP ′(z)− n(z − α)n−1P (z)

(z − α)2n

= −
{
nP (z)− (z − α)P ′(z)

(z − α)n+1

}
=
−DαP (z)

(z − α)n+1
,

where DαP (z) = nP (z) + (α− z)P ′(z) is the polar derivative of P (z) with respect

to point α. It generalizes the ordinary derivative P ′(z) of P (z) in the sense that

lim
α→∞

DαP (z)

α
= P ′(z).

Also, W ∗(z) = (1− αz)n, which gives B(z) =

(
1−αz
z−α

)n
, implying that

B′(z) =
n(1− αz)n−1(|α|2 − 1)

(z − α)n+1
.

With this choice, from (2.1) for |z| = 1, we get∣∣∣∣zDαP (z)+
nβ

2
(α− z)P (z)

∣∣∣∣
≥ 1

2

{
n(|α|2 − 1)

|z − α|
+ nRe(β)|z − α|+ |cn| − |c0|

|cn|+ |c0|
|z − α|

}
|P (z)|

≥ 1

2

{
n(|α|2 − 1)

|α|+ 1
+ nRe(β)(|α| − 1) +

|cn| − |c0|
|cn|+ |c0|

(|α| − 1)

}
|P (z)|

=
|α| − 1

2

{
n(1 +Re(β)) +

|cn| − |c0|
|cn|+ |c0|

}
|P (z)|.

Thus, from Theorem 2.1 we immediately get the following result.
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Corollary 2.1. If P (z) =
∑n
j=0 cjz

j is a polynomial of degree n having all its

zeros in |z| ≤ 1, then for every α, β ∈ C with |α| ≥ 1 and |β| ≤ 1, we have

max
|z|=1

∣∣∣∣zDαP (z)+
nβ

2
(α− z)P (z)

∣∣∣∣
≥ |α| − 1

2

{
n(1 +Re(β)) +

|cn| − |c0|
|cn|+ |c0|

}
max
|z|=1

|P (z)|.(2.2)

Remark 2.1. Since |cn| ≥ |c0| and hence for β = 0, the above corollary provides

an improvement of a result due to Shah [9].

Remark 2.2. Dividing both sides of (2.2) by |α| and letting |α| → ∞, we obtain

the following result, which as a special case, gives a strengthening of the classical

Tur�an inequality [10].

Corollary 2.2. If P (z) =
∑n
j=0 cjz

j is a polynomial of degree n having all its

zeros in |z| ≤ 1. Then for every β ∈ C with |β| ≤ 1, we have

max
|z|=1

∣∣∣∣zP ′(z) +
nβ

2
P (z)

∣∣∣∣ ≥ 1

2

{
n(1 +Re(β)) +

|cn| − |c0|
|cn|+ |c0|

}
max
|z|=1

|P (z)|.(2.3)

Remark 2.3. The above inequality for β = 0 was also independently proved by

Dubinin [5]. Also, it is easy to see that the inequality (2.3) improves the inequality

(1.4) as well.

Taking β = 0 in Theorem 2.1, we get the following result.

Corollary 2.3. Suppose r ∈ Rn, and all the n zeros of r lie in |z| ≤ 1. If r(z) =
P (z)
W (z) , where P (z) =

∑n
j=0 cjz

j, then for |z| = 1 we have

|r′(z)| ≥ 1

2

{
|B′(z)|+ |cn| − |c0|

|cn|+ |c0|

}
|r(z)|.

The result is sharp and equality holds for r(z) = B(z) + λ with |λ| = 1.

Remark 2.4. Again, since |cn| ≥ |c0|, it is easy to verify that

|cn| − |c0|
|cn|+ |c0|

≥
√
|cn| −

√
|c0|√

|cn|
,

showing that Corollary 2.3 strengthens the inequality (1.8).

Instead of proving Theorem 2.1, we will prove the following more general result.

Theorem 2.2. Suppose r(z) = P (z)
W (z) , where P (z) = zs

(∑n−s
j=0 cj+sz

j
)
, and all the

zeros of r lie in |z| ≤ 1 with a zero of multiplicity s at the origin. Then for every β

with |β| ≤ 1 and |z| = 1 we have∣∣∣∣zr′(z) +
nβ

2
r(z)

∣∣∣∣ ≥ 1

2

{
|B′(z)|+ nRe(β) + s+

|cn| − |cs|
|cn|+ |cs|

}
|r(z)|.(2.4)
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The result is best possible in the case β = s = 0, and equality in (2.4) holds for

r(z) = B(z) + λ with |λ| = 1.

Remark 2.5. For s = 0, the inequality (2.4) reduces to (2.1).

The next result generalizes the inequality (1.7).

Theorem 2.3. Let r ∈ Rn, and assume that r has all its zeros in |z| ≤ 1. Then

for every β with |β| ≤ 1 and |z| = 1 we have∣∣∣∣ r′(z)B′(z)
+
β

2

r(z)

B(z)

∣∣∣∣ ≥ 1

2
(1− |β|)|r(z)|.(2.5)

Equality in (2.5) holds when β = 0 for r(z) = aB(z) + b with |a| = |b|.

The above inequality (2.5) will be a consequence of a more fundamental inequality

presented by the following theorem.

Theorem 2.4. Let r ∈ Rn, and assume that r has all its zeros in |z| ≤ 1. Then

for every β with |β| ≤ 1 and |z| = 1, we have∣∣∣∣ r′(z)B′(z)
+
β

2

r(z)

B(z)

∣∣∣∣ ≥ 1

2

{
(1− |β|)|r(z)|+

(∣∣∣∣1 +
β

2

∣∣∣∣− ∣∣∣∣β2
∣∣∣∣)min
|z|=1
|r(z)|

}
.(2.6)

Equality in (2.6) holds when β = 0 for r(z) = aB(z) + b with |a| = |b|.

Remark 2.6. Theorem 2.4 is a re�nement of Theorem 2.3, this can easily be seen

by observing that |1 + β
2 | ≥ |

β
2 | for |β| ≤ 1.

Theorem 2.5. Suppose r ∈ Rn, and all the n zeros of r lie in |z| ≥ 1. If r(z) =
P (z)
W (z) , where P (z) =

∑n
j=0 cjz

j, then for |z| = 1, we have

|r′(z)| ≤ 1

2

{
|B′(z)| −

(
|c0| − |cn|
|c0|+ |cn|

)
|r(z)|2

‖ r(z) ‖2

}
‖ r(z) ‖,(2.7)

where ‖ r(z) ‖= max|z|=1 |r(z)|. The result is best possible and equality in (2.7)

holds for r(z) = B(z) + λ, |λ| = 1.

Remark 2.7. Since all zeros of r(z) = P (z)
W (z) , and hence of P (z) =

∑n
j=0 cjz

j, lie

in |z| ≥ 1, we have |c0| ≥ |cn|, showing that Theorem 2.5 is an improvement of

(1.6).

3. Lemmas

In this section we state a number of lemmas, which will be used in the proofs of

main results stated in Section 2.
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Lemma 3.1. (see [5]) If P (z) =
∑n
j=0 cjz

j is a polynomial of degree n having all

its zeros in |z| ≤ 1, then at each point z of the circle |z| = 1 at which P (z) 6= 0, we

have

Re

(
zP ′(z)

P (z)

)
≥ n− 1

2
+

|cn|
|cn|+ |c0|

.

Lemma 3.2. (see [2]) If |z| = 1, then

Re

(
zW ′(z)

W (z)

)
=
n− |B′(z)|

2
.

Lemma 3.3. (see [12]) If r ∈ Rn, then for |z| = 1, we have

|r′(z)|+ |(r∗(z))′| ≤ |B′(z)|max
|z|=1

|r(z)|.

Lemma 3.4. Suppose r ∈ Rn is such that r(z) = P (z)
W (z) , where P (z) =

∑n
j=0 cjz

j,

and all the zeros of r lie in |z| > 1. Then for |z| = 1, we have

Re

(
zr′(z)

r(z)

)
≤ 1

2

{
|B′(z)| − |c0| − |cn|

|c0|+ |cn|

}
.

Proof. We have r(z) = P (z)
W (z) , where

P (z) =

n∑
j=0

cjz
j = cn

n∏
j=1

(z − zj),

with cn 6= 0 and |zj | > 1, j = 1, 2, ..., n.

By direct calculation, we get

Re

(
zr′(z)

r(z)

)
= Re

(
zP ′(z)

P (z)

)
−Re

(
zW ′(z)

W (z)

)
.(3.1)

Let Q(z) = znP ( 1
z ), therefore, P (z) = znQ( 1

z ). Since P (z) has all its zeros in

|z| > 1, it follows that Q(z) has all its zeros in |z| < 1, and hence

G(z) =
Q(z)

zn−1Q( 1
z )

=
zQ(z)

P (z)
=
cn
cn
z

n∏
j=1

(
1− z̄jz
z − zj

)
(3.2)

is analytic in |z| ≤ 1 with G(0) = 0 and |G(z)| = 1 for |z| = 1. Hence by a result of

Osserman for the boundary Schwartz lemma [8], we have

|G′(z)| ≥ 2

1 + |G′(0)|
, for |z| = 1.(3.3)

It easily follows from (3.2) that for |z| = 1,

zG′(z)

G(z)
= (n+ 1)− 2Re

(
zP ′(z)

P (z)

)
.(3.4)

Further, using (3.2), it can easy be veri�ed that

zG′(z)

G(z)
= 1 +

n∑
j=1

|zj |2 − 1

|z − zj |2
.
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Since |zj | > 1 for 1 ≤ j ≤ n, it follows from above that zG′(z)
G(z) is real and positive.

Also, taking into account that |G(z)| = 1 for |z| = 1, we have

zG′(z)

G(z)
=

∣∣∣∣zG′(z)G(z)

∣∣∣∣ = |G′(z)| and |G′(0)| =
n∏
j=1

∣∣∣∣ 1

zj

∣∣∣∣ =

∣∣∣∣cnc0
∣∣∣∣ .

Using these observations, from (3.3) and (3.4), we get for P (z) 6= 0 and |z| = 1,

(n+ 1)− 2Re

(
zP ′(z)

P (z)

)
≥ 2

1 +
∣∣∣ cnc0 ∣∣∣ ,

implying that

Re

(
zP ′(z)

P (z)

)
≤ n+ 1

2
− |c0|
|c0|+ |cn|

.(3.5)

Finally, using (3.5), Lemma 3.2 and (3.1), we get

Re

(
zr′(z)

r(z)

)
≤ 1

2

{
|B′(z)| − |c0| − |cn|

|c0|+ |cn|

}
,

which completes the proof of of the lemma. �

Lemma 3.5. Let r, s ∈ Rn, and let all the n zeros of s lie in |z| ≤ 1 and for |z| = 1,

|r(z)| ≤ |s(z)|.

Then for every |β| ≤ 1 and |z| = 1, we have

|B(z)r′(z) +
β

2
B′(z)r(z)| ≤ |B(z)s′(z) +

β

2
B′(z)s(z)|.(3.6)

Equality in (3.6) holds for r(z) = µs(z), |µ| = 1.

Proof. The proof follows on the same lines as those given in the proof of Theorem

3.2 of Li [11]. Hence, we omit the details.

Lemma 3.6. Let r ∈ Rn, and let all the n zeros of r lie in |z| ≤ 1. Then for every

|β| ≤ 1 and |z| = 1, we have

|B(z)(r∗(z))′ +
β

2
B′(z)r∗(z)| ≤ |B(z)r′(z) +

β

2
B′(z)r(z)|.(3.7)

Proof. Since r∗(z) = B(z)r(1/z̄), we have

|r∗(z)| = |r(z)| for |z| = 1.

Also, since r(z) has all its zeros in |z| ≤ 1, we can apply Lemma 3.5 with r(z) and

s(z) being replaced by r∗(z) and r(z), respectively, to obtain the result.
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4. Proofs of theorems

Proof of Theorem 2.2. Since r(z) = P (z)
W (z) ∈ Rn, where P (z) has all its zeros in

|z| ≤ 1 with a zero of multiplicity s at the origin, we can write

P (z) = zsh(z),(4.1)

where h(z) =
∑n−s
j=0 cj+sz

j is a polynomial of degree n − s having all its zeros in

|z| ≤ 1.

From (4.1), we have

Re

(
zP ′(z)

P (z)

)
= s+Re

(
zh′(z)

h(z)

)
.

By a direct calculation, we obtain for every β with |β| ≤ 1,

zr′(z)

r(z)
+
nβ

2
=
zP ′(z)

P (z)
− zW ′(z)

W (z)
+
nβ

2
.

Therefore for 0 ≤ θ < 2π by Lemmas 3.1 and 3.2 we obtain

Re

(
zr′(z)

r(z)
+
nβ

2

)∣∣∣∣∣
z=eiθ

= Re

(
zP ′(z)

P (z)

)∣∣∣∣∣
z=eiθ

−Re
(
zW ′(z)

W (z)

)∣∣∣∣∣
z=eiθ

+
n

2
Re(β)

= s+Re

(
zh′(z)

h(z)

)∣∣∣∣∣
z=eiθ

−Re
(
zW ′(z)

W (z)

)∣∣∣∣∣
z=eiθ

+
n

2
Re(β)

≥
(
s+

n− s− 1

2
+

|cn|
|cn|+ |cs|

)
−
(
n− |B′(eiθ)|

2

)
+
n

2
Re(β)

=
1

2

{
|B′(eiθ)|+ s+

|cn| − |cs|
|cn|+ |cs|

+ nRe(β)

}
,

for the points eiθ, 0 ≤ θ < 2π, other then the zero of r(z). Hence, we have∣∣∣eiθr′(eiθ) +
n

2
βr(eiθ)

∣∣∣ ≥ 1

2

{
|B′(eiθ)|+ s+

|cn| − |cs|
|cn|+ |cs|

+ nRe(β)

}
|r(eiθ)|,(4.2)

for the points eiθ, 0 ≤ θ < 2π, other then the zeros of r(z).

Since (4.2) is true for the points eiθ, 0 ≤ θ < 2π, which are the zeros of r(z) as

well, it follows that∣∣∣zr′(z) +
n

2
βr(z)

∣∣∣ ≥ 1

2

{
|B′(z)|+ s+

|cn| − |cs|
|cn|+ |cs|

+ nRe(β)
}
|r(z)|,

for |z| = 1 and for every β with |β| ≤ 1. This completes the proof of the theorem.

Proof of Theorem 2.3. By a direct calculation (see, e.g., [12], p. 529), one can

obtain

|(r∗(z))′| = |B′(z)r(z)− r′(z)B(z)| for |z| = 1,

and hence, using the fact that |B(z)| = 1 for |z| = 1, we get

|(r∗(z))′| ≥ |B′(z)||r(z)| − |r′(z)|.
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This gives for |z| = 1,

|r′(z)|+ |(r∗(z))′| ≥ |B′(z)||r(z)|.(4.3)

Next, for any |β| ≤ 1, we have∣∣∣∣B(z)r′(z) +
β

2
B′(z)r(z)

∣∣∣∣+

∣∣∣∣B(z)(r∗(z))′ +
β

2
B′(z)r∗(z)

∣∣∣∣
≥ |B(z)| |r′(z)|+ |B(z)||(r∗(z))′| −

∣∣∣∣β2
∣∣∣∣ |B′(z)||r(z)| − ∣∣∣∣β2

∣∣∣∣ |B′(z)||r∗(z)|,
and hence, by using (4.3) and the fact that |r(z)| = |r∗(z)| for |z| = 1, we obtain∣∣∣∣B(z)r′(z) +

β

2
B′(z)r(z)

∣∣∣∣+

∣∣∣∣B(z)(r∗(z))′ +
β

2
B′(z)r∗(z)

∣∣∣∣
≥ |r′(z)|+ |(r∗(z))′| − |β||B′(z)||r(z)| ≥ |B′(z)||r(z)| − |β||B′(z)||r(z)|.(4.4)

Now, by Lemma 3.6, we have for |z| = 1,∣∣∣∣B(z)r′(z) +
β

2
B′(z)r(z)

∣∣∣∣ ≥ ∣∣∣∣B(z)(r∗(z))′ +
β

2
B′(z)r∗(z)

∣∣∣∣ .(4.5)

The inequalities (4.4) and (4.5) together yield to∣∣∣∣B(z)r′(z) +
β

2
B′(z)r(z)

∣∣∣∣ ≥ |B′(z)|2
(1− |β|)|r(z)|,(4.6)

for |z| = 1 and |β| ≤ 1.

Finally, taking into account that |B′(z)| 6= 0 and |B(z)| = 1 for |z| = 1, from

(4.6), we get ∣∣∣∣ r′(z)B′(z)
+
β

2

r(z)

B(z)

∣∣∣∣ ≥ 1

2
(1− |β|)|r(z)|,

for |z| = 1 and |β| ≤ 1. �

Proof of Theorem 2.4. Observe �rst that if r(z) has some zeros on |z| = 1,

then min
|z|=1
|r(z)| = 0, and in this case, the result follows from Theorem 2.3.

So, henceforth, we assume that all the zeros of r(z) lie in |z| < 1. Let m :=

min
|z|=1
|r(z)|. Clearly m > 0, and we have |λm| < |r(z)| on |z| = 1 for any λ with

|λ| < 1. By Rouche's theorem, the rational function G(z) = r(z) + λm has all

its zeros in |z| < 1. Let H(z) = B(z)G(1/z̄) = r∗(z) + λ̄mB(z), then |H(z)| =

|G(z)| for |z| = 1. Applying Lemma 3.6, for any β with |β| ≤ 1 and |z| = 1, we

get ∣∣∣B(z)
(

(r∗(z))′ + λ̄B′(z)m
)

+
β

2
B′(z)

(
r∗(z) + λ̄B(z)m

)∣∣∣
≤
∣∣∣B(z)r′(z) +

β

2
B′(z)

(
r(z) + λm

)∣∣∣,(4.7)
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implying that ∣∣∣B(z)(r∗(z))′ +
β

2
B′(z)r∗(z) + λ̄

(
1 +

β

2

)
B(z)B′(z)m

∣∣∣
≤
∣∣∣∣B(z)r′(z) +

β

2
B′(z)r(z)

∣∣∣∣+

∣∣∣∣β2
∣∣∣∣ |λ|m|B′(z)|(4.8)

for |z| = 1, |β| ≤ 1 and |λ| < 1.

Choosing the arguments of λ on the left hand side of (4.8) to satisfy∣∣∣B(z)(r∗(z))′ +
β

2
B′(z)r∗(z) + λ̄

(
1 +

β

2

)
B(z)B′(z)m

∣∣∣
=
∣∣∣B(z)(r∗(z))′ +

β

2
B′(z)r∗(z)

∣∣∣+ |λ|m
∣∣∣∣1 +

β

2

∣∣∣∣ |B(z)B′(z)|,(4.9)

in view of (4.8), (4.9) and the fact that |B(z)| = 1 for |z| = 1, we get∣∣∣B(z)r′(z) +
β

2
B′(z)r(z)

∣∣∣ ≥ ∣∣∣B(z)(r∗(z))′ +
β

2
B′(z)r∗(z)

∣∣∣
+ |λ||B′(z)|

{∣∣∣1 +
β

2

∣∣∣− ∣∣∣β
2

∣∣∣}m.(4.10)

Finally, letting |λ| → 1 in (4.10) and adding |B(z)r′(z)+ β
2B
′(z)r(z)| to both sides,

and using (4.4), we get the required assertion. Theorem 2.4 is proved.

Proof of Theorem 2.5. Since r(z) = P (z)
W (z) , where P (z) =

∑n
j=0 cjz

j and r(z)

has all its zeros in |z| ≥ 1, and also r∗(z) = B(z)r(1/z̄), we have

z(r∗(z))′ = zB′(z)r(
1

z
)− B(z)

z
r′(

1

z
),

and therefore, for |z| = 1 (so that z = 1
z ), we get

|(r∗(z))′| =
∣∣∣zB′(z)r(z)−B(z)zr′(z)

∣∣∣ = |B(z)|
∣∣∣zB′(z)
B(z)

r(z)− zr′(z)
∣∣∣.(4.11)

Taking into account that (see [12], formula (15))

zB′(z)

B(z)
= |B′(z)| > 0,

from (4.11) for |z| = 1 with r(z) 6= 0, we get∣∣∣∣z(r∗(z))′r(z)

∣∣∣∣2 =

∣∣∣∣|B′(z)| − zr′(z)

r(z)

∣∣∣∣2
= |B′(z)|2 +

∣∣∣∣zr′(z)r(z)

∣∣∣∣2 − 2|B′(z)|Re
(
zr′(z)

r(z)

)
,

which, in view of Lemma 3.4, for |z| = 1 with r(z) 6= 0, gives∣∣∣∣z(r∗(z))′r(z)

∣∣∣∣2 ≥ |B′(z)|2 +

∣∣∣∣zr′(z)r(z)

∣∣∣∣2 − |B′(z)|{|B′(z)| − |c0| − |cn||c0|+ |cn|

}
=

∣∣∣∣zr′(z)r(z)

∣∣∣∣2 +

(
|c0| − |cn|
|c0|+ |cn|

)
|B′(z)|.
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This implies for |z| = 1 that

|r′(z)|2 +

(
|c0| − |cn|
|c0|+ |cn|

)
|B′(z)||r(z)|2 ≤ |(r∗(z))′|2.

Combining this with Lemma 3.3, for |z| = 1 we get

|r′(z)|+
{
|r′(z)|2 +

(
|c0| − |cn|
|c0|+ |cn|

)
|B′(z)||r(z)|2

} 1
2

≤ |r′(z)|+ |(r∗(z))′| ≤ |B′(z)| ‖ r(z) ‖,

or equivalently,

|r′(z)|2 +

(
|c0| − |cn|
|c0|+ |cn|

)
|B′(z)||r(z)|2

≤ |B′(z)|2 ‖ r(z) ‖2 −2|B′(z)||r′(z)| ‖ r(z) ‖ +|r′(z)|2,

which, in view of the fact that |B′(z)| 6= 0, after simpli�cation, for |z| = 1 gives

|r′(z)| ≤ 1

2

{
|B′(z)| −

(
|c0| − |cn|
|c0|+ |cn|

)
|r(z)|2

‖ r(z) ‖2

}
‖ r(z) ‖ .

This completes the proof of the theorem.

Remark 4.1. From inequality (4.10), for |z| = 1 and for every |β| ≤ 1, we have∣∣∣∣B(z)r′(z) +
β

2
B′(z)r(z)

∣∣∣∣− ∣∣∣∣B(z)(r∗(z))′ +
β

2
B′(z)r∗(z)

∣∣∣∣
≥ |B′(z)|

{∣∣∣∣1 +
β

2

∣∣∣∣− ∣∣∣∣β2
∣∣∣∣
}

min
|z|=1
|r(z)|.(4.12)

Since |B′(z)| 6= 0 for |z| = 1 , from (4.12) we get the following inequality

min
|z|=1

{∣∣∣∣ r′(z)B′(z)
+
β

2

r(z)

B(z)

∣∣∣∣− ∣∣∣∣ (r∗(z))′B′(z)
+
β

2

r∗(z)

B(z)

∣∣∣∣
}
≥

(∣∣∣∣1 +
β

2

∣∣∣∣− ∣∣∣∣β2
∣∣∣∣
)

min
|z|=1
|r(z)|.

(4.13)

Taking β = 0 in (4.13), we get

min
|z|=1

{∣∣∣∣ r′(z)B′(z)

∣∣∣∣− ∣∣∣∣ (r∗(z))′B′(z)

∣∣∣∣
}
≥ min
|z|=1
|r(z)|,

yielding

min
|z|=1

∣∣∣∣ r′(z)B′(z)

∣∣∣∣ ≥ min
|z|=1
|r(z)|.(4.14)

Clearly, the inequality (4.14) gives a generalization of the corresponding result for

polynomials (see [1], Theorem 1).
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