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Abstract. This article is concered with demonstrating the power and simplicity of
now (special weakly wandering) sequences. We calculate an sww growth sequence
or the infinite measure preserving random walk transformation. From this we obtain
the first explicit etoto (exhaustive weakly wandering) sequence for the transformation.
The exhaustive property of the eww sequence is a “gift” from the sww sequence and
requires no additional work. Indeed we know of no other method for Gnding explicit
eww sequences for the random walk map or any other infinite ergodic transformation.
The result follows from a detailed analysis of the proof of Theorem 3.3.12 in [1] as
applied to the random walk transformation from which an sww growth sequence is
obtained. We explain the significance of sww sequences in the construction of eww

sequences.

MSC2010 numbers: 37A40, 60G50, 82C41.
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infinite measure preserving transformation; random walk.

1. Introduction

Every nonsingular invertible transformation T of a Lebesgue space (X, 23, m) with
no finite invariant measure equivalent with m has exhaustive weakly wandering
sequences (defined below). However, for most transformations no explicit exhaustive
weakly wandering sequences axe known, and in particular given a specific T, it is not
clear how to find an explicit exhaustive weakly wandering sequence for it.

In this article, we examine the infinite measure preserving random walk transformation
(see next section) and derive an sww growth sequence for it (defined below). Using
this we prove that the integer sequence {16<+4 :i = 1,2,3,...}, and every infinite
subsequence of it, is an exhaustive weakly wandering sequence for the random walk
transformation. The method employed here is general enough that it applies to a wide

range of other maps.
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For the sake of completeness and clarity of exposition, we repeat some results that

were presented in [1].

1.1. History. The definition of mixing in ergodic theory, for a transformation T
preserving a probability measure /i is

(1.1) JIMACTM  B) = u(,A)u(B)

for all measurable sets A and B. There have been several attempts to extend this
definition of mixing to ergodic transformations that preserve a crfinite infinite measure.
The first attempt in this direction was by Eberhard Hopf when in 1937 in his famous
book Ergodentheorie [2] he devoted to it, section 17 titled “Ein Beispiel fur Mischung
bei unendlichem His goal was to extend the notion of mixing for finite
measure preserving transformations to infinite measure preserving transformations.
He presented a slight variation of the random walk transformation on the integers. His
example started with the classic random walk on the nonnegative integers: forn > 0,
n -+ {n- I,n + 1} with probability {5,5} and 0 -* {0, 1} with probability {5, 5}.
This he considered as a map of the infinite strip [0,00) x [0,1) which preserved the
infinite Lebesgue measure. Being in an infinite measure space he replaced equation

(1.1) with a ratio version. However he was only able to prove (equation 17.1 in [2])

T(ANnrB) m(A)m(B)
11 m(C T"D) m[C)m[p)'
for Jordan measurable sets of finite measure with m(C)m(D) 0. Then he concluded
that if the above were shown to be true for all measurable sets of finite measure then
“metric transitivity” ( that is, ergodicity) of T would follow. He then ended the section
with “Dieser Beweis verlagt jedoch tiefere Hilfemittel.”

Now we know this cannot be done. In 1964, Hajian and Kakutani [3] defined weakly
wandering sets and showed that all infinite measure preserving ergodic transformations
possess weakly wandering sets. These are sets with an infinite number of mutually
disjoint images under the transformation T. Replacing the sets C and D with the
same weakly wandering set in equation (1.2) shows the convergence fails. Further
historical details and attempts at defining mixing in infinite measure spaces can be
found in Lend [4].

In what follows we do more. We discuss the random walk transformation T on
the integers and exhibit some properties of it that show how fax T is from possessing
any type of “mixing“feature. We do this by showing the existence and construction
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of specific emu sequences (defined below) that T possesses. We also exhibit some

number theoretic properties of these sequences.

12. Definitions and Preliminaries. We consider transformationsT that are invertible
onto maps defined on a 4-finite Lebesgue measure space (X,b,T). As usual, all
statements are to be understood as “modulo sets of measure zeroand all sets will be
measurable by assumption or construction. We assume all the transformations T we
consider are measurable [A 6 b <=> TA € B], and non-singular [m(A) = 0
m{TA) = 0]. We say T is a measure preserving transformation if m{TA) = m(A) for
all A e 3. Two measures m and u defined on the same measurable space (X,b) are
equivalent (m ~ /*) if m and u have the same sets of measure zero. There are many
equivalent definitions of ergodicity. We use the following.

.+ T is ergodic if TA = A implies m(A) = 0orm(X\ A) = 0.
An ergodic transformation T is an infinite ergodic transformation if it is a measure
preserving transformation defined on the infinite measure space (X, b,T).

Following [1], we consider the following infinite ofintegers {Tu}

to an infinite ergodic transformation T.

Definition 1.1.

« {rii} is a weakly wandering (ww) sequence for T if for some set A of positive
measure F"'A TAA =0 fori/ j.

« {a*} is an exhaustive weakly wandering (evnu) sequence for T if for some set
A of positive measure X = (JSo T niA(diaj).

+ {nj} isa special (or attimes called strongly) weakly wandering (sww) sequence
for T if there exists a set A of positive measure such that for i,j,k,I >0
and t > j we have Tu~Mk+ AN Tn*~n+1'A = 0 whenever one of the indices
{

+ We call the set A above, a ww, eww, or sww set respectively (for T, with the

j. k, 1} is larger than all the others or i =1> k.

sequence {nj}), and at times we say {Tu} is a ww, eww, or sww sequence (for

T with the set ).

The definition of ww sequences first appeared in [3] where it was shown that they
exist for every infinite ergodic transformation. There are many examples of infinite
ergodic transformations in the literature; however, for almost any example, it has
not been possible to exhibit a specific ww sequence for the transformation. There is

one notable exception: the infinite ergodic example T in [5] which was constructed
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for the purpose of exhibiting an explicit ww sequence for it. In that example it was
noticed that the constructed ww sequence happened to be an eww sequence. Except
for the transformation T in [5] and some similar ones, it is not that easy to construct

specific ww sequences for any of the known infinite ergodic transformations —though

we know they must exist. However, to our knowledge, it is practically impossible to
construct eww sequences for any of those transformations. The construction of ww
sequences entails showing for some sequence and some set W the mutually disjoint

images of the set W. For eww sequences on the other hand one needs to stfow further

that the mutually disj;

t images of the set W fill up the whole space X.

In [6], Jones and Krengel present a proof that eww sequences exist for all infinite
ergodic transformations. In outline, their proofis a complicated back-and-forth induction
existence proof. They build their sequence one integer at a time while simultaneously
adjusting their set. The setis built up in a two step process. At each step they must
take a bit away from the set so that it will be disjoint for the next integer and then
they have to add a bit backin order to build up the set to be exhaustive. As a practical
matter, no one to date has been able to use this method to construct an actual eww
sequence for any transformation.

Ib overcome this difficulty sww sequences were introduced in [1]. The definition
of an sww sequence appears to be more complicated than that of an eww sequence.
However it is designed in such a way that it can be easily applied. The construction of
sww sequences is similar to the construction of ww sequences. By this we mean that
both sequences are concerned only with the construction of a set A whose images
under the sequence are mutually disjoint, and this is relatively easy. Once the set A
is constructed in the case of an sww sequence, a second easily performed automatic
construction produces the derived set W. For ergodic transformations the fact that
the mutually disjoint images of the derived set W are exhaustive follows from the
definitions.

In addition, sww sequences give a lot more. When the transformation is ergodic,
notonly is the sww sequence an eww sequence for the associated derived set, but every
infinite subsequence of it is again an eww sequence with a similarly defined derived
set W. This hereditary property follows from the definitions of both ww and sww
sequences but not for eww sequences. That is, if the images of a set A are mutually
disjoint under a sequence, they are still mutually disjoint for any infinite subsequence

ofit; but the set may not be exhaustive for the same sequence. Pbr example, the eww
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sequence given in [5] has many infinite subsequences which are not eww (just remove

any single non-zero integer from the sequence).

13. The DerivedSet. Toclarify thecomments made above, andtomake this

articleself i we make alobservations and discuss a
that are covered in [1] and will be used in the sequel.
For a sequence of integers {n<:t > 0} and any set A with m(A) > 0,
letno =0, Ao = A, and Wo = T~"Mo>
N,- TA\0 T"Wa, and Wi=0 T "1At,

r=0 i=0
and in general forp > 2

00 \%
(1.3) Ap=TM\  T"Wr-1 and W, = T'"A,.
r=0 i=0

Let us call the set W = [J Wp the derived set from the set A and the sequence

=0

{n.}. Then for any p > 0 we have

Q T"W DTPAUQ T*Wp_! whichimphes 0 T"W D0 TYA.
=0 =0 =0 p=0

From the above we conclude with the following remark:
Remark 1.1. Let W be the derived set from the set A and the sequence {ru}. If
{n,} is an sww sequence then
(14) Qrriytdisj) 30 "A
i=0 p=0
To show (1.4) it is enough to show TAW  T"W =0fori,j >0andi>j. For

it is sufficient to show that

(L5)TMi~MKAKM\T Mi~wAi = 0 for i,j,k,1>0, and i>j.
It is clear from (1.3) that for any integerr > 0

(1.6) Ap TAA’As=0 if p>s.

Tfi = k> max{.7,/} then (1.5) follows from (1.6). In all theother cases we note that
Apc TPA forall p > 0, and (1.5) then follows from theproperties defining the
sww sequence {ni}.

For the next theorem we define the following:
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Definition 1.2. Let {0 < Ni < N2 < mmm} be an increasing sequence of positive

integers. Then, for any increasing sequence of positive integers {0 = vo < r*i < <

(M f w-mi>Niforallt>1 =» {ru} isa twosequence for T then {W*}
is a ww growth sequence for T,
and

(M) If W -2ru_i > Niforalli> 1 => {n<} is an sww sequence for T then

{Ni} is an sww growth sequence for T.

Theorem 1.1. Let T be a measurable and nonsingular transformation defined on
(X,b,T), and suppose there is a setA ofpositive measure satisfying 1it,, oo T(TM N
A) = 0. Then there exists an increasing sequence of positive integers {Ni} which is

both a ww and an sww growth sequence for T.

Proof. The proof of the Theorem is contained in detail in [1]. Here we sketch a proof
and show the similarity of the role of ww and sww sequences in constructing the ww
and sww set Aq for each. Later, we apply this construction to find an explicit sww
growth sequence for the random walk transformation on the integers.

Let A be a set of positive measure with m(A) < 00, and suppose
(1.7) JimAmiT'A )= 0.
Forpositivee< (), andfori>1let —2"_[ " 32

Using (1.7) we choose an increasing sequence of positive integers
(0 < N[ <Nj< mes}such that foreach i > 1, 7(Fr"A A)<un
foralln > N-. Welet Ni = N-+ifori>1.

To show {Ni} is a ww growth sequence we let (0 = no <th < < «+m} be any
increasing sequence of integers satisfying w, - rn_i > JVifori > 1.
(18) Fbri>0and 0<j <iwehaveu -MJ]>ry—Tuy_i > Ni.

Next we let,

It is not too difficult to show that m(A) < e and the set Ag = A\ A’ is a ww set

with the sequence {n<}.

To show {IVi} is an sww growth sequence we let {0 = no < < < ees} be
any increasing sequence of integers satisfying w, - 2n<_i >Nifort > 1. For each

8
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t > 1we consider the set of integers Si = {s :a = auy + brij + cn* + dni + e} where
0 6(1,2}, 6c,d6 {0,+1}, 6 {0,£1,2,....t}, 0<jk,I<i.

In the sets Si we also require that at most two of the numbers b, c, d be negative.
Then the cardinality of Si, [Sj| < 2i333(2»+1). Since {w :i > 0} is an increasing
sequence of positive integers we have for a6 Si

s =ani+ btij+ cnk+dTd+e>ni-2<_ - *>Ni i=N-

Similarly as before we let

=qQ (3 rmnn.

Again, it is not difficult to show that rn[A’) < e and the set Aq= A\ A is an sww
set with the sequence {nj}. O
Remark 1.2. For an ergodic transformation T the following is an immediate consequence

of the definition:
19 m(A)>0 »

Then (1.4) in Remark 1.1 together with (1.9) above imply that all sww sequences for
an ergodic transformation are eww sequences for T.

Next for an ergodic transformation T we extend the definition of ww and sww
growth sequences to eww growth sequences for T.

(W) An increasing sequence (0 < Ni < N2 < -mm} of positive integers is an eww
growth sequence for an ergodic transformation T if any increasing sequence
{0=no< < < em}ofpositive integers that satisfies uy - 21u_i > N5
forr> 1 =J- {ni} is an eww sequence for T.

Then for ergodic transformations every sww growth sequence is an eww growth

sequence. Finally we conclude with the following Corollary to Theorem 1.1.

Corollary 1.1. Every infinite ergodic transformation T that posesses a set A of

positive measure with Um m{TnA A) = 0 has eww growth sequences.

2. Infinite Measure Preserving Random Walk on the Integers

2.1. Random W alk on the Integers. We begin, as did Hopf (page 61 of [2]), with

the Baker’s transformation S defined on the unitsquare Z = {{x,y): 0< 1< 1, 0<

(2x,y/2) if 0<X<5,
(@z-1,(» +1)/2)  if < K 1L
9
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The map S is obviously a finite (probability) measure preserving invertible transformation.
Hopf [2] proved it was mixing in the sense that (1.1) holds for all measurable sets. The
proof begins by analyzing how S operates on dyadic rectangles. It is then a standard
approximation argument to extend the mixing result from dyadic rectangles to all
measurable sets. From this mixing property it follows that the map is ergodic (i.e.
metrically transitive). There are now multiple proofs of the ergodicity of the Baker’s
map and in fact a lot more is known. For example it is well-known to be Bernoulli.
We extend the transformation S to the two-sided infinite strip
{(i,j/) : 00 <1 < 00, 0 < 2 < 1} by a skew product construction as follows.
Identify each square {(*,y) :n <x <n+1, 0<y < 1} as (Z,n). The infinite strip
(—o0, 00) X[0,1) with area measure is the space Z x Z = \Jnez(Z, n) with the measure
which is the product of the Lebesgue area measure on Z and the counting measure on
the integers. Consider the skewing function ¢: Z  {-1,1} defined by ®(x,y) = -1
if0< X< 1/2and d(x,y) = 1if 1/2 < x < 1. The random walk transformation on
Z XZis (see p. 62-63, [1])

T((x.y).n) = (S(x,y),n + db(xy))
We refer to this map T as infinite measure preserving random walk on Z. This example

is a variation of Hopf’s example on the one sided infinite strip [0,00) x [0,1).
Theorem 2.1. Theinfinite measure preserving random walk transformation is ergodic.

Although Hopf never completed the proof of the ergodicity of the random walk
transformation on the non-negative integers its ergodicity and that of the random
walk on the integers T are now well known (see [7] and [4]). An elementary proof
of the ergodicity of ' can be given by examining the induced transformation on
(Z,0) and recognizing it as a finite measure preserving Bernoulli map (similar to
recognizing the Baker’s map as Bernoulli). More precisely, the induced map on every
square Z x {n} is a Bernoulli map, and each square Z x {n} can be mapped to any

portion of every other square.

2.2. An sww sequence for Random Walk. We are now in a position to derive
an explicit sww growth sequence for T and we emphasize how simple and short it is
once one has the sww definition. Specifically we duplicate the steps of the proof given
in Theorem 1.1 to the random walk transformation T.
The necessary inequalities used in calculating the sww growth sequence come from
the next lemma.
10
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Lemma 2.1. For the infinite measure preserving random walk transformation T
described above, the set (Z,0) satisfies the inequality

—  <m(T* (Z,0)n(2,0)) < — Jorall k> 0.

v5k V2K

Proof. For an odd integer n > 0 we have m (Tn(Z,0) (Z,0)) = 0, and for an
even integer n = 2k, k > 1 we have:
m(T>47 \ (7nfl- P K\ %= - - @2 DI

Using induction it is easy to show:

(2k- 11 1 Lo

It is also easy to show:
1 (k-1
VIAKFT  (2foc
Combining the above we get:

for k >'1.

— < 1— <m(T2(Z,0NZ,0)< ,} <~  fori>1.
M Wt TR T T e
O

We use the lemma above to get an sww growth sequence for the random walk

transformation. This will also be an sww and an eww sequence.

Theorem 2.2. The sequence [Ni = 16,+4 : i > 1} is both an sww growth sequence

and an eww sequencefor T the infinite measure preserving random walk transformation.
Proof. For the random walk transformation T we showed in Lemma 2.1
m(T“ (2,0) (Z,0) <
Therefore specializing the part of the proof given after the statement of Theorem 1.1

to the random walk T, the set A = (Z,0) and e = 1/2, we can choose N- so that for

all > Ni

BVor this we conclude that > 8(2i + l)ie4* find we have the growth sequence
8(2: + 1) ®*+ i. This can be “neatened"to the growth sequence 16(2t + I)ie4* which
can be bounded by
Ni = 42i+6 = 16i+s, t > 1.
This is also an sww growth sequence.
Clearly this implies that the sequence 16i+4 is also a growth sequence.
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Since T is ergodic, we use Condition M of Definition 1.2 comparing {16<+4} to the
previous growth sequence {16i+3} obtaining
16<44 2 +16(1_1)+4 = (16 - 2) +16i+3

which shows that {16'+4} is also an sww sequence for the random walk transformation. 0
3. Application to Tilings op the Integers

As a special case consider the integers Z with the counting measure /x a»d denote
the translation transformation T : (Z,/x) -4 (Z,/i), T(n) = n + 1. This is an ergodic,
infinite measure preserving, invertible transformation, albeit with an atomic measure,
and we can consider the analog of Theorem 1.1 for this map.

First we note that an infinite subset of integers {Ty :i > 1} (denoted simply by
{Tu}) is weakly wandering for T in this context means there exists another subset
{nij} ofthe integers such that

£ 0+ {m} = {m}® {mi}
By this it is meant that the sum is direct, Mi + =rij+nij and only if Ty = rij
and iy = rrij.

Further, to say that {ru} is eww means there exists {m~} which is direct with {Tu}
and the sum contains all integers, i.e., {Tu} ® {m,} = Z. This says that {ru} tiles the
integers Z and we call {Tu} a tile.

The case when {Tu} (or {nij}) is finite is a very active area of research with many
open questions. This finite case has been studied using a wide range of techniques
including cyclotomic polynomials, fourier analysis and the theory of finite cyclic
groups. None of these methods however apply in the case when both {Tu} and {m,j}
are infinite. This is the situation in which we are interested in obtaining an analog of
Theorem 1.1.

In [1] it is shown that the following provides an analog of part M of Theorem 1.1

and replaces the eww growth condition by a limit.

Theorem 3.1. Any infinite sequence {Tu} = {rio= 0 < < eee} of nonnegative

integers satisfying ~iiin*Ty - 2TU_i = 0o tiles the integers.

A surprising of this, which emphasi the difference between finite

and infinite tiles, is that such an infinite tile has the hereditary property that any
finite set of non-zero integers can be removed and the resulting sequence still tiles the
integers. This is not true for finite tiles and is not true for all infinite tiles.

12
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This theorem was first proved using ergodic theory techniques for the translation
transformation T [8], but J. Schmerl (private communication) gave a strictly combinatorial
proof which appears in [1].

Note that, the analogous ww growth condition for part | of Theorem 1.1 is not
true: There exist sequences of integers {n*} which satisfy lit(ty - rit-i) = oo, yet

there is no infinite subset {m,} with which { *} is direct let alone tiles the integers.

4. Questions

In this section we gather a few questions about the random walk transformation.
Question 1. The eww sequence obtained in Theorem 2.2 has the derived set W as
an eww set associated with it. Is the measure of W infinite or finite?

Question 2. Transformations can have many different eww sequences and sets. Does
the random walk transformation T have another eww sequence whose eww set has
finite measure?

Question 3. If S is a nonsingular transformation which commutes with the random

walk [ is it measure preserving?
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Abstract. Summarizing results from Joseph Mecke's last fragmentary manuscripts, the
generating function and the Laplace transform for nonnegative random variables are
considered. The concept of thickening of a random variable, s an inverse operation to

thinning (which is usually applied to point processes) is introduced, based on generating
functions, and a characterization of thickablc random variables is given. Further, some
new relations between i and their in terms of
Poisson point processes are derived with the help of the Laplace transform.

MSC2010 numbers: 60E10; GOGSS
Keywords: Generating function; Laplace transform; thinning of a point process;
exponential distribution.

1. Introduction

Joseph Mecke passed away in February 2014, a few days after his 76th birthday.
Until his last days, he was dealing with mathematical problems, and he wrote fragments
of manuscripts, saved on his computer. His brother, Norbert Mecke, was able to
identify the corresponding files; he handed them over to the authors of the present
paper, in order to see whether some of the material can be published. The present
paper is the result of this compilation.

As emphasized in the introduction of [8], Joseph Mecke preferred to work deep into
problems in order to reach a clear insight and a maximum of mathem atical clcgance.
After his last paper published in ajournal [6], he formulated several new ideas and a
wider working agenda. The fragments compiled here date from July 2011 to December
2011 and then from February 2013 to June 2013.

Joseph Mecke made outstanding contributions to the theory of point, processes,
mainly in the 1960s and early 1970s. Nowadays the Campbell-Mecke formula (Mecke
himself referred to it as the ‘refined Campbell formula’) and the Slivnyak-Mecke
formula (see [12], referred to as the Mecke formula in [4]) are cited oftentimes. Since

14
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the late 1970s, Joseph Mecke worked in stochastic geometry, a field in which he applied
the point process theory strikingly. Thus he contributed to a sound mathematical
foundation of this field, proving rigorously quite a few new results.

Ata first glance, the content of the present paper - involving generating functions
and the Laplace transform for nonnegative random variables - seems to be far away
from the main subjects of Joseph Mecke’s work, described above. Itis not so surprising,
however, because in his earlier work he applied and appreciated these powerful tools.
Although they appear only occasionally in his published proofs during a long carccr,
this use often gave deeper insight into a problem.

We (the authors of the present paper) remember a situation in a seminar (in 200G)
when we dealt with the length distribution of I-segments in planar STIT tessellations.
We had found an expression for the density of  distribution which looked rather
strange and wc had no clue how to interpret it. Joseph Mecke immediately started
his calculation (using the Laplace transform) and soon he revealed this ‘mysterious’
distribution as a mixture of exponential distributions. Meanwhile, much more is
known about STIT tessellations, and there are other methods to prove the mentioned
result. But Joseph Mecke opened a door - as he did it in many other cases

Probably, the present paper will inspire other mathematicians to study and to

generalize some of the problems which Joseph Mecke considered.

2.Nonnegative integer-valued random variables and generating

FUNCTIONS

2.1. Generating function. We denote No = {0,1,2,...}, N.= No\ {0}, and 1{ }
the indicator function which has the value 1, if the condition in braces is fulfilled and
with value 0 otherwise.

Generating functions are widely used in mathematics and they play also an important
role in probability theory. In this paper they are considered for nonnegative integer-
valued random variables to introduce later the concept of thinning and thickening
of a random variable. Let C be a discrete random variable taking values in No with

distribution

(2.1) eBp=X >0,
=0
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where nk > O, nk = 1and 6k the Dirac measure assigning mass 1to k. The
corresponding generating function G : [0,1] -> [0,1] is defined by
(2.2) G(x) = E(x<) = Yhakxk, 0<x<1

k=0
Note that in the following we will consider the series on the right-hand side also for
general x 6 R if it is defined.

Recall that a function G : [0,1] -> [0,1] is a generating function of a nonnegative
integer-valued random variable if and only if G (I) = 1, limAyi G(x) = 1, G{)) > 0
and all derivatives of G are finite and nonnegative on [0,1) (see [3]). Furthermore,
the uniqueness theorem conveys that two random variables have the same generating

function if and only if they have identical distributions.

Examples:

(a) If Cis almost surely (a.s.) constant, ( =m) = 1 for some m € No, then
G(x) = xm.

(b)  Chas atwo-point distribution, £(() = (L-r)5m-+rSn,m,n € NO,r e (0,1),

then the generating function is G[x) = (1- r)xm + rx".

(¢) For a random variable which is Poisson-distributed with parameter A > 0
we have G (x) = eAX " .

(d) If C has a binomial distribution with parameters n € N and r e (0,1) the
generating function is G(x) = (L- r + ra)n, which is the n-th power of a
generating function of a Bernoulli random variable with parameter r

(e) The generating function of a geometric random variable C with parameter r
and distribution L ) = £j” 0(1 - r)kr5k is G(x) = A negative
binomial random variable with distribution £(C) = (K )(r - 1)*r sk
(parameters r e (0,1) and n e (0,00)) has the generating function G(x) =
(1-a(i—)) which is the n-th power of the generating function of a geometric

random variable with parameter

2.2.Thinning and thickening. Thinning is an operation applied to point processes,
see [2] and the references therein. Given a realization, for each single point it is
decided (independently of the other points) whether it survives or not. If the survival
probability is p for all points, and if { is the (finite) random number of points
before thinning, then the distribution of the number of the thinned point process
is described in Definition 2.1. In this definition, thinning is introduced for arbitrary
nonnegative integer-valued random variables. And one can ask whether there is an
16
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inverse,operation to thinning. So, given a nonnegative integer:valued random variable,
can this be the result of thinning of a ‘thicker’ one, and if so, what is its distribution?

Tliis will be formalized in Definition 2.2 and studied tliis section.

Definition 2.1. Let QLQ2,... be independent and identically distributed random
variables with the two-point distribution £(«fc) = (1 - p)6y + p5\, k C N. For a
nonnegative integer-valued random variable £ the thinning with parameter p 6 (0, 1)

is defined as the mndom variable

(2.3) =
fe=1
If Chas the distribution given in (2.1), then the distribution of ‘DP( can be written

as *
(2.4) E(1«) = >((1-1>Ne +1%)*1
A

where * denotes the convolution of measures. This means that £(1>, ) is the mixture
of binomial distributions with parameters k and p, weighted with *, respectivelj'.
Because P(D,,C = m) = £ =T0*(i»)PT (L - p)k-m, a straightforward calculation

yields the generating function Gp of
2.5) Gp(x) = <L -p +px)

Examplr

(a) Fox .in constant (, P(( = m) = 1 for some m e No, the generating

fiiiirii..it uf rhe thinning is Gp(x) = (1 —p + px)™. The uniqueness theorem
yields *hat Dy.C has a binomial distribution with parameters in and p, which
is obvious in this case.

.(b) For Cwith a two-point distribution, £«) = (1- 1), rS.. Wre thinning
DPCis a mixture of two binomial distributions with weights 1- 7 and r and
parameters m.n respectively, and p.

(c) For a Poisson-distributed Cwith parameter A> 0 the generating function of
its thinning is Gp(x) = eA(x-1\ which coufirms the well-known fact, that
'XpC has again a Poisson-distribution with parameter pX

(d) If Chas a binomial distribution with parameters n and r, then the thinning
DPC s again binomially distributed but with parameters n and pr.

17
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(e) Also for geometric and negative binomial distributions thinning retaincs the
type of the distribution. In both cases the parameter r of ~changes over to

1% ra»fl 1) 01®
Now consider G (x), represented by a series as in (2.2), for arbitrary x e R if the
value of this series is defined. For 0 < p < 1let us formally modify the function (2.5)

to

(2.6) Gi(x)= GAl- i +Axj, ifthisisdefined forall0< <1,

As a function of x, this is not necessarily a generating function ofa random variable.

Definition 2.2. Let( bea nonnegative integer-valued random variable with generating
function G. We say that £ to p-thickable for 0 < p < 1, if the function G1[x) =
G(1 p+ px) to definedfor all x e [0,1], and if it is the generating function of a

nonnegative integer-valued random variable. Such a variable will be denoted by 7)

A combination of formulas (2.5) and (2.6) yields that

This means that thinning and thickening are somehow mutually inverse operations.
But note, that (Gij = G is meaningful only for those p for which the distribution
is p-thickable. The other equation, (Gp)j. = G, holds for all 0 < p < 1. This confirms

the meaning of thickening as the inverse operation of thinning.

First we gate the teger-valued random variables given in the
examples above whether they are p-thickable or not. From the characterization of a
generating function it follows that all the (right-hand side) derivatives at x = 0 are
nonnegative. Hence if, for a fixed p € (0,1), the function G i given in (2.6) is the

generating function of a nonnegative integer-valued random variable then

.7) gm(i-~>0 forallr=0,1,2

where GNe denotes the £-th derivative of G.
Examples:
(a) An a.e. constant Cwith P[( = m) = 1 is p-thickable for alLO < p < 1 if
m = 0, and it is not thickable forany 0 < p < 1ifm is a positive integer. For
m =0wehaveG = Gp = G i = LIn contrast,ifm > 0,then G{x) = xm and
hence Gi(x) = G(L- + ) = (1- £+ -x)m.Ifm is odd, then Gi(se) < 0
18
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for 0 < X < 1—p. And, if m is even, then the first derivative at x = 0 is
negative. This contradicts the necessary condition given in (2.7)

b) Analogous considerations show that £ with a two-point distribution is not

thickable forany 0 < p < 1.

(c) CisPoisson-distributed with parameter A> Othen G i (x) = eA* x A which
yields that has a Poisson-distribution with parameter ~A. Therefore the
Poisson-distributions are p-thickable forall 0 < p < 1

(d) 1f Chas a binomial distribution with parameters n and r, i.e. the generating
function is G (x) = (L-r+ ri)n, then ( isp-thickable if and only ifr < p < 1
Forr > p the function Gi = (1-r£+r78)" isno longera generating function.
This follows with the same argument for the derivative which was given for
Cas- constant. For r < p < 1 the p-thickening of C is again binomially
distributed with parameters n and jj. In particular, the r-thickening of C is
the constant n

(e) As in the case of thinning ateo thickening retains the type of geometric and
negative binomial distributions. Thickening is possible for all p € (0,1) and

the new parameter for isrm_n

2.3, Characterization of unbounded thickability. In the examples above we
have seen that some ofthe nonnegative integer-valued random variables are p-thickable

forall 0 < p < 1and others only for some p.

Definition 2.3. A nonnegative integer-valued random variable is called unbounded

thickable if it is p-thickable for allp 6 (0,1).

Random variables with a Poisson, a geometrical or a negative binomial distribution
are unbounded thickable. A random variable with a binomial distribution is not
unbounded thickable. In the following theorem the class of unbounded thickable

random variables is described.

Theorem 2.1. (Characterization ofunbounded thickability)
A nonnegative integer-valued random variable C with generating function G a3 in
(2.2) is p-thickable for allp € (0,1) if and only if it has a Cox distribution (a mixture
ofPoisson distributions and the constant 0), i.e. ifand only if there exists a probability

measure Q on [0,00) such that
(2.8) G(x)= J e*<™1)0 (d1), 0< X< 1.

0.00)
19
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Proof. If a function G satisfies (2.8), then obviously G () = 1, G(0) > 0 and
liin-e/*i G (x) = 1, because forall 0.< ®< 1, t> 0, the function e£(s, 1) is monotone in
Xand 0 < c**-1) < 1. Furthermore, because forall/ = 0,1,... the function kEfx” ,
t > 0 can be dominated on (0,00) by a constant, we obtain that the derivatives
G(c(x) = f IV (x 1)Q(dt) > 0and they are finite. Hence, G is indeed the generating
function of a nonnegative integer-valued random variable. W ith analogous arguments
it can be shown, that also G i{x) = G (I-~ +~x) = f e ~x~"Q (dt) is the generating
function of n nonnegative integer-valued random variable.

Now we show that (2.8) is necessary for unbounded thickability. If £ is p-thickable
forallp e (0,1), then according to (2.7)

GA(x) >0 forallX<0,/=012,..
For 8 > 0 we define L(s) - G(L- 1), which implies
(-1/L (a)w («¢) > 0 foralls > 0, = 0,1,2,..
ie. L is completely monotone on (0,00). Furthermore, L is right-continuous at 0
(because the generating function G is left-continuous at 1) and L{0) = G(I) =
1. Hence the characterization theorem for Laplace transforms (also referred to as

moment generating functions: see [3]) yields that L is the Laplace transform of a

probability measure Q on the half-axis [0,0c), and hence

or, equivalently,

Exam ples: Referring to the examples above, special Cox distributions arc
(c) The Poisson distribution with parameter A, and according to (2.8), Q = 6>,
(e) The negative binomial distribution with parameters n and r, where Q is the

gamma distribution with parameters n and In the particular case of
a geometric distribution, we have n = 1 and hence Q is the exponential

distribution with parameter

2.4. Relations to point processes. In [1], R.V. Ambartzumian introduced the

concept of 1/p-condensation of point processes (p G (0,1]) as the inverse operation to

thinning. Hence condensation is also related to splitting of point processes. Moreover,

he provided a sufficient condition for 2-condensability (which is related to 1/2-thickability

considered in the present paper) of point processes in 1 1, d > 1.1t remains an open
20
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problem to characterize the class of all point p which are 1/p
ifa value p e (0,1) is fixed. Recently, thinning, splitting and condensation were
studied in [9, 10), and in [10] a generalized concept of thinning is introduced, both
for nonnegative integer-valued random variables and for point processes.

In an early paper [5] (where thinning is named "Auswiirfelverfahren’), J. Mecke
already proved that a point process  on the real axis K is a Cox process if and only
iffor anyp 6 (0,1] exists a point process ®p, such that the p-thiuning of ®, has the
same distribution as ® (Satz 4.2 ibidem). This means that a point process on the
real axis is unbounded (i.e. for all p € (0,1]) condensable if and only if it is a Cox
process. This result immediately implies Theorem 2.1 of the present paper. But the
proof given here is much shorter and more elegant than that one in [5]. And vice
versa, with the help of the generating functional for point processes (see [7] or [2]),

one can easily deduce Satz 4.2 in [5] from Theorem 2.1.

2.5. M -transform. The generating function G ofa nonnegative integer-valued random
variable (in (2.2) can also be interpreted as the cumulative distribution function
(c.d.f.) of a probability measure concentrated on the interval [0,1]. Consequently, in
this section we consider the problem how to find for a given < a random variable
whose c.d.f. < coincides with G on [0,1]. To avoid complications dunto (= 0) > 0,
ie. no > 0, in this section only positive integer-valued random variables with values

in N are considered.

Proposition 2.1. Let 7L772...be i.i.d. random variables with uniform distribution
on the interval (0,1) and C, independent of this sequence, a positive integer-valued
random variable with generating function G as in (2.2) withac = 0. Then the random
variable

1= TaX{T i t]CH

has the c.d.f. Fj with FA(x) = G(x) for allx 6 [0,1]. ,

Proof. Straightforward calculations yield for 0 < x < 1

Fe(x) = p(S<x)=£p (Tax{T2%.V(} <X\C=K)m ( =k)
k=1
= AP (Tax{Th..w}<x)-P[E=kK) = ak.
=1 k=1

Underthe assumptions of Proposition 2.1 the following transform of a positive integer-
valued random variable can be specified.
21
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As the Laplace transform depends only on the distribution of a random variable, we

can also speak of the Laplace transform of a distribution. Since 1- s continuous,

nondecreasing with 1- 1 (0) = Oand lime»0l-L c(e) = 1,it can also be interpreted

asthe c.df.  ofsomenonnegative random variable £, i.e. Fj = 1- . Equivalently,
=1— s the survival function of

An open problem: Let be given a nonnegative random variable and a sequence

M o f iid. random variables, uniformly distributed on (0,1). Find a random
variable (if it exists) f = £(Co7, %,--m) which transforms C.»?i>V2>m+ such that

=1— . Andas forthe M-transform in Section 2.5 we could ask for an inverse
transform: For a given find a random variable ( with Laplace transform  equal

to the survival function of f.

3.2. Laplace transform and generating function. Recall that for a nonnegative
integer-valued random variable ( with generating function G, the Laplace transform
is {)=G(e") foralla> 0,

Now we consider an arbitrary nonnegative random variable.
Proposition 3.1. Let be a nonnegative random variable with Laplace transform

and define for allt> 0 the function Gt : [0,1] -4 [0,1] by

Gt{x)= ( 1- x)) forallx 6 [0]
(1) Thenfor d11t>0 the function Gt is the generating function of a nonnegative
integer-valued random variable.
(2) If, for all t > 0, nt is a nonnegative integer-valued random variable with

generating function Gt, then

which implies thatfort-* oo the random variables Kt/t converge in distribution

toC

Proof. Asitcan be seen in the proofof Theorem 2.1, Gt is the probability generating
function of a nonnegative integer random variable, k* say. Now define the nonncgative
random variable fit = «t/i which has the Laplace transform Lp, with values

>) = ()=o,(-)= (@ e-S)).

This yields
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An open problem ia again the construction of the random variables ret as a transform

of a given

3.3. Roots ofsurvival functions. Let 77Lfft, «=+be a sequence of i.i.d. nonnegative
random variables with c.d.f. F. As it is well-known, forn € N the survival function
of the random variable C~ minfo,. .iJn} is 1- F((x) = (1 - F(x))n for all x > 0.

This immediately yields for the survival function of r\\ that

(3.1) I-f=

How can a random variable A\ with c.d.f. F according to (3.1) be generated from a

sequence Cb e+ i-d- copies of <€

Proposition 3.2. Let CbCa. m be a sequence of i.i.d. nonnegative random variables
with c.d.f. F( anda a random variable, geometrically distributed with parameter Un,
n € N, and independentfrom the sequence. Further, define the sequence £ £ ... of

record times by
£i=1, 6 =min{ffc> £i:Cc> Cefli + €m+i= min{fc> & > Gm},
Then the random variable Qa has a c.d.f. F satisfying (S.1)

Proof. As it is well-known (see e.g. [11]), the process CfuC & f-  records can be
represented as a Poisson point process on [0,00).

Given F(, define the measure /i on [0,00) (with the Borel c-algebra) by
(3.2) exp(-/i([0,a))) = 1- F((x) forallx >0

This measure can be interpreted as a failure measure for £. If F( has the density /c,
then for %> 0 with F((x) < 1, the failure rate of is aNote that
H is not necessarily a Radon measure.

Now let ® be a Poisson point process on the positive half-axis with intensity
measure /, and denote the ordered sequence of its points by ft < ft < ... This
implies Q(fim) = £(Cfm) form = 1,2,... Now consider the Poisson point process
generated from by independent thinning with the probability 1- (1/n) for deleting
apointfrom .Then *hasthe intensity measure /x'= (I/n)/x. Therefore, according
to (3.2) its first point [ (in the ordered point set) has the c.d.f. satisfying (3.1).
Furthermore, if a is geometrically distributed and independent from all the other
random variables, we obtain that £(/2() = Z(Qa), which completes the proof. 0
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3.4. Relations between exponential distributions. It is well-known, that the
minimum of finitely many independent and exponentially distributed random variables
is exponentially distributed as well. Furthermore, the sum of n i.i.d. exponentially
distributed random variables with parameter A> 0 has an Erlang distribution, which
is a spccial gamma distribution with parameters n and A. In order to study the sum of
not necessarily identically distributed random variables, we consider now particular
convolutions of exponential distributions.

Some of the results have an interpretation conccming Poisson point processes. The
intervals between the points of a homogeneous Poisson point process on the real axis
are i.i.d. exponentially distributed.

Denote the exponential distribution with parameter A> 0 by E[A] and by E*fdA]

its Mold convolution, fc€ N
Theorem 3.1. Forall0< A<ocand0<p <1,

(3.3) EIpAT=pfi(l-p) E-I*+«[A).
k=0
Proof. The proof is easy, using the Laplace transform L(s) = A/(A + a), s > 0,
for the exponential distribution with parameter A> 0, and the fact that the Laplace
transform ofa fc-fold convolution of a distribution is just the fc-th power of the Laplace
transform of the respective distribution
This result has also an interesting interpretation in terms of Poisson point processes
on the positive real axis. Let be a homogeneous Poisson point process on (0, 00) with
intensity A, Then the coordinate of the firstpoint of has the exponential distribution
E[A], and the coordinate of the (fc+ 1)-st point has the distribution E*A'+1)[A]. Now
consider the independent thinning of ~where the points are deleted with probability
1—p. Tliis yields an homogeneous Poisson point process with intensity p A. Thus the
coordinate of the first point of the thinned point process has the distribution E[pA]
The probability that this first point of the thinned process (i.e. the first point which
survived the independent thinning procedure) is the (fc+ 1)-st pointof isp (1-p)k.
This is expressed by (3.3).

Decomposing the summands in (3.3) for fc> 1 as
(T p)E"r+LA= (1 p)(I- p)fclE[A]. E,(*>A]

straightforwardly yields:
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Corollary 3.1. Forall0< A< oo and0<p< 1
PE[A] + (1 - p)(E[A] *E[pA]) = E[pA]

Substituting A by A2 and p by Ai/A2 for 0 < Ai < A2 < oo, this immediately

supplies:
Corollary 3.2. Forall 0 < Ai < A2 < 00
E[Al= —E[A3+ ~ i(E[A.) . E[AS)
or equivalently,
apg.apg.-".BM -37~-4A ).

Now, we formulate the main result of this section for the convolution of two
exponentially distributed random variables. Similarly as in Theorem 3.1 it is given as

a mixture of Erlang distributions. Note that the two exponential distributions have

(l:l _a\2

ANEA~]

different parameters.

(3.4) E[AI] *E[A2]= (1-p) flp* e*2r+A[j(A2+ A
fe=o

Proof. Let L denote the Laplace transform of the distribution on the right-hand

side of (3.4). Then, fora> 0 andp = i

8 A

f. A2- Al N A2+ AP \a 1
VAat+Aij A3+ Ai+2al) ! _

Ai+a A2+ s’

and the term in the last line is just the product of the Laplace transforms of E[Ai]
and E[A2].

Alternatively, the result in Theorem 3.2 also follows from an iterated application
of the equation given in the next corollary.
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_a\2

AN+A
(3.5)  E[A.1.E[Aa] = E'S[L(A, + AS)]. ((1 p)Jo+ p(E[A). E[A2])).

Again the proof is straightforward using the Laplace transforms.
Concluding remarks and acknowledgment. In Joseph Mecke’s fragments almost
no references are given. Therefore we cannot reconstruct and cite the sources which
he probably used. Consequently, we do not claim priority concerning all details. We

are indebted to Hans Zessin for his valuable comments and hints.
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1. Introduction

The main topic of this paper concerns invariant subspaces of a particular class of
complete operators T :X X acting on a complete metrizable vector space X (recall
that asubspace M ofa complete metrizable vector space X is invariantfor an operator
T:X->XifT xeM whenever x € M). Any complete operator has an abundance
of invariant subspaces, namely the closed linear span of arbitrary collections of its
eigenvectors. In fact, it may be tempting to believe that these are all of the invariant
subspaces of a complete operator. However, this is not always the case, even when X
is a Hilbert space having an orthonormal basis of eigenvectors for the operator (see
Wolff's Example below). Any complete operator, all of whose invariant subspaces are
the closed linear span of some collection ofits eigenvectors, is said to adm it spectral
synthesis. The operators of study in this paper are the so-called diagonal operators,
which by definition act on the space 5£(D) of functions analytic on the open unit disk
in the complex plane and have as eigenvectors the monomials. The purpose of this
paper is to produce a rich class of examples of diagonal operators on !K(D) which fail

spectral synthesis.
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The problem of determining which complete operators adm it spectral synthesis remains
open, even when X is a Hilbert space having an orthonormal basis of eigenvectors
for T. In fact, it wasn't until 1921, with the advent of an example due to Wolff, that
it was known that there existed examples of non-synthetic operators of this type.

In particular, if [ : V. -» 5C is an operator acting on a Hilbert space Oi having an

orthonormal basis of eig for T with i g {A.}, then
@y
for all " "K- Moreover, it is not difficult to see (p. 270 of [1]) that T

fails spectral synthesis if and only if there exists a non-trivial sequence {tu,} € f1for
winch the Moment Condition

=1>
holds for all k > 0.
Wollf’s elegant construction [2] of such an example (which uses only Laurent series)
may also be found in [3].
There are numerous conditions known to be equivalent to the Moment Condition
(1.1) holding for all k > 0 whenever {An} is a bounded sequence of distinct complex

numbers. For instance, it follows from the Fubini-Tonelli Theorem that

whenever [z| > sup|A,|. Moreover, condition (1.1) holds for all k > 0 if and only if
the Dirichlet series g(z) = wneAn* vanishes identically on the complex plane

since g = 0 if and only if

sY(0)=£ >,
n=0
forall k > 0. This, in turn, is equivalent to the measure | = w,,Sf%,} (the sum

of weighted point masses) annihilating the monomials since

Ifthe points {A,} lie in a Jordan region M and accumulate only on its boundary, then
- An)= 0 whenever | > sup|A.| where {«.,} is a non-trivial sequence
in ifand only if {A,} is a dominating sequence for ; that is, if and only if

sup{l/(z)] ::£1} = sup{|/(A.)] :n> 0}
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for all functions / bounded and analytic on SI (see Theorem 3 on p. 1C7 of Brown,
Shields, and Zeller [4]). If is the open unit disk, then this condition is equivalent to
almost every point of the unit circle (with respect to Lebesgue arc length measure)
being the non-tangential limit point of {A,}. Deep connections to operator theory
are provided by work of Sarason [5] and [6] who shows that that the Borel series
W./(*- A,) = 0whenever \2\ > sup |A,| for some non-trivial sequence {wn} in
I1if and only if there exists a closed invariant subspace for the diagonal operator D
having eigenvalues {A,} which is not invariant for the adjoint D * of D. This condition,
in turn, is equivalent to the weakly closed algebra generated by D and the identity
operator not containing D '. For more on the connections between Borel series and
complete normal operators, please see Wermer [1], Scroggs [7] and Nikolskii [3], [B].
The study of Borel series has a rich and fabled history. Of particular interest has been
conditions for a function analytic on a region to be representable as a Borel series,
and conditions for such a representation, if one exists, to be unique,  particular,
the seminal work of Leontev [9], Korobeinik [10], Leont’ eva [11], and Brown, Shields,
and Zeller [4], amongst others, has examined the extent to which the existence of
non-trivial expansions of zero by Dirichlet series YA=ownrXnX = 0 on regions
in the complex plane imply (and, under additional conditions, is equivalent to) the
ability to represent an arbitary function f{z) analytic on Sl as a Dirichlet series
f(z) = £ * oas.XXon . It follows from the preceding comments that the non-
uniqueness of any such representation is equivalent to the existence of Borel series
which vanish identically on SI. In 1959, Makarov [12] showed that for every sequence
of complex numbers {A,} for which |A,| + 0o, there exists a sequence of complex
numbers {w,} for which the moment condition (1.1) holds for all k > 0 where the
coefficients {«;,} satisfy the decay rate 0 < | mJA*| < oo. In addition to
Wolff's example [2], in which the coefficients {tu,} are in |1, Denjoy [13] in 1924 and
Leont’eva [11] in the late 1960’ gave examples of Borel series which vanish identically
where the coefficients satisfy various decay rates just shy of exponential decay (see p.
26 of [14])
There has also been particular interest regarding the converse, namely the so-called
unicity problem, which is to determine the rate at which {lwn[} must decrease so
that wn/(z - An) does not extend analytically to a region containing {A,}

Borel [15], Carleman [16], Gonchar [17], and Poincare all determined decay rates in
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the unicity problem in their investigations on Borel series, which were focused mainly
on issues regarding quasianalytidty and analytic continuation. In 1968 Makarov gave
such a decay rate depending on a given arbitrary sequence {An} (see 5.7.8(c) (vii) on
p. 128 of [3). A rather definitive result was obtained by Sibilev in 1995 when the
eigenvalues {A,} are bounded (see the theorem on p. 146 of [18]). For more on the
history of Borcl series and a discussion of generalized analytic continuation, please
see the recent monograph of Ross and Shapiro [14].

The purpose of this paper is to provide a rich class of examples of diagonal operators
acting on 9f(D) which fail spectral synthesis. The main result of this paper, Theorem
1, appears in Section 2 below and improves upon previous results in the literature

When endowed with the topology of uniform convergence on compacta, 5£(D) is an
example of a complete locally convex topological vector space. Using the Radius of
Convergence Formula, it follows that a function onzn is in 3C(D) if and only if
limsuplonll/” < 1. Moreover, if {An} is any sequence of distinct complex numbers,
then the map for which D (zn) = Anzn extends by linearity to an operator on all of
5{(D) ifand only if limsup IANIY" < 1 (see [19]). In particular, the set of eigenvalues
of a diagonal operator on 5£(D) need not be bounded. It’s known that the diagonal
operator D Q AL 0a,.zn) = a,Anzn fails spectral synthesis if and only if the
moment condition (1.1) holds for all k > 0 for some non-trivial sequence {iu,} of

complex numbers for which limsup 1" < 1 (please see Theorem 3 on p. 1214 of

[19] for this and other ions eq tto ynthesis).
In [20], Anderson, Khavinson, and Shapiro, give a detailed analysis of the moment
condition (L.1) for all k > 0 where the eigenvalues An = np are powers of n with
p > 0. Their study focuses on questions concerning the analytic continuation of
Dirichlet series and Fredholm’s method for examining gap series and its connections
to partial differential equations. They show, amongst other results, that the moment
condition 0 = w..(np)fcholds for all k > 0 where 0 < limsup 11" < 1ifand

only if p > 2, and moreover, that no solution exists for integral p > 2 for which
0 < limsuplw,[1/n < e-**™.y"/p)

(see Theorem 3.1 on p. 464 of [20]). In view of which, the moment condition holding
and hence a diagonal operator admitting spectral synthesis is intimately related to
the growth rate of the eigenvalues {A,} of the diagonal operator. In some cases, the
growth rate of the eigenvalues alone determines the spectral synthesis; for instance,
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Leontev [9) lias shown tliat the moment condition (1.1) does not hold for all k > 0
whenever limsuplw, J1"* < 1if {A<}| exhibits linear growth (that is, whenever 0 <
liminf|A,|/n < limsup|A.l/n < oc) whether or not the Au are positive). However, if.
is known that the distribution of the points A, throughout, the complex plane, as well
as their growth, typically plays a role in determining spectral synthesis. For example,
the diagonal operator on 3C(D) having eigenvalues {\/»} admits spectral synthesis
by Theorem 3.1 of [20], while the diagonal operator on 3£(D) with eigenvalues {A,}
comprising the integer lattice Z x iz = {m +in :m,n € Z} fails spectral synthesis
(see [21J), although |A,| « n112.

The result of Anderson. Khavinson, and Shapiro mentioned above suggests that the
slower the growth rate of {JA, [}, the harder it is for the moment condition to hold,
and hence for the associated diagonal operator on 9t(D) with eigenvalues {A.} to
fail spectral synthesis. Nonetheless, in this paper, we demonstrate that there exist
diagonal operators acting on IK(D) whose eigenvalues have growth rate |A,[u n 1for
any 0 < 1 which fail spectral synthesis. The examples produced do not require that
the eigenvalues {A,} assume any particular form, only that they satisfy a particular

growth rate and are regularly distributed (in a sense made precise in the next section).

2. Examples of non-synthetic diagonal operators on IK(D)

In this section, we show that a diagonal operator on !tt(D) fails spectral synthesis
whenever its eigenvalues have order of growth less than one, arc regularly distributed
with respect to a proximate order p(r), and satisfy a separation criterion, definitions
of which we now provide for the convenience of the reader.

The relationship between the growth of an entire function and the distribution of its
zeros is well-known. It is often convenient to measure the growth of an entire function
using a so-called proximate order, or function p(r) for which liinr>00p(r) = P > 0
and lim,._oo rp'(r) Int = 0 (see p. 32 of [22]). A set of points in the complex plane is
said to have an angular density [ (") of index p(r) if for all but a countable set of

values i; and ©for which 0 < rj< 8< the limit

exists where here n(r, tj, 6) denotes the number of points of the set lying within the
sector { :|z| < r;7< argz < 0} (see p. 89 of [22])
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A sequence {a,} of distinct complex numbers satisfies Condition (C) if there exists
a positive number d > 0 such that the set of closed balls
I

are pairwise disjoint, while the sequence satisfies Condition (C:) if the points all
lie inside sectors with a common vertex at the origin but with no other points in
common, and which are such that if one arranges the points of the set {0,} within
any one of these sectors in order of increasing moduli, then for all points which lie
inside the same sector it is true that [a*+i| - [a& >d|ofc|l AI°*~ (see p. 95 of [22])
In the following theorem, the conditions that the points are regularly distributed
with respect to p[r) and p < 1/2 ensure that there exist coefficients {w,} for which

0= wnpXnZ while the separation condition ensures that limsup 17" < 1.

Theorem 2.1. Let p(r) be any proximate order for which p = limr_»00p(r) €
(0.1/2) and let {a,} be any sequence of distinct complex numbers whose angular

density A(v>) has index p(r), satisfies either Condition (C) or Condition (C), and

is such thatliminf| [~*"A/ > 0- Then the diagonal operator having eigenvalues

{Iftn[V, e,(*rga, +2'(jM :0 < | < g:0 < n} fails to admit spectral synthesis on 3f(D)

whenever g is any integer for which q > 1/p

An outline of the proofis as follows: Let {a,} be any sequence of complex numbers
satisfying the hypotheses of Theorem 2.1. Then S(z) = f(z4) is an entire function
having only simple zeros at the points

An = |on|U®eq* ga"+3,~ fe
for0<j <gand 0< n and f[z) = WY0CLl~ zAn) is a canonical product having
only simple zeros at the points An. Since the points {an} are separated, it follows that
[5(A)] > e*1An for all Aon a sequence of circles Cr whose radii increase to infinity,

where here P > 1. Using this estimate and the Residue Theorem, we see that

0<~
It follows from estimates for S near the points An obtained using the Inverse Function
Theorem and Schwarz’s Lemma, that limsup (/|S'(An)[1/n) < 1. Hence, the moment
condition holds and the result follows (see Theorem 3 on p. 1214 of [19])
Proof. Let {dn} be any enumeration of the set of points
{lo»ilV, erargan+2irt ?:0 < j < ¢;0 < n}
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where here n(r) denotes the number of points On for which [a,| < r. Hence n(r) >
54 M for all r sufficiently large. Since {Ja*[} is increasing, it follows that [at| < r
where t = ,5Arp* for all r sufficiently large. Since p(r) -> p, we have that t =
SATPW > 5792 for all r sufficiently large. Thus [a BArp/al < [<u < r or [a,| < 1 =
(2n14)alp for all n sufficiently large. Hence

<@+ AK+IFL < 2+ d)I<@M )1 (»+ YW
for all n sufficiently large. Moreover,

Ne,.e“)l > efflifwwI

for all n sufficiently large, and so it follows that

forall z € C since gp(r€)  gp > 1. In order to deduce that the diagonal operator
having eigenvalues {At} fails to admit spectral synthesis, by Theorem 3 on p. 1214
of [19], it suffices to show that lim sup (1/|5'(At))VE < L. 1b end, let k be any
positive integer. Then

A, = [0n[Veedargen+2, >l
for some integer n and j  {0.1...,q-1}. Since S(z) = f(zq), we have that S'(z) =

qzq~1f'(z4), and so

Ne »)l =MV bl I=«kM /'bl |-

We now estimate |/'(a,,)| using the Inverse Function Theorem and Schwarz’s Lemma.
since the closed balls {S(a..rn)} are pairwise disjoint, there exist radiir,, € (r., 1+
r.) for which the open balls {B(0..fn)} are pairwise disjoint and stay inside E°

Hence

whenever re*® 6 dB{an,fn) with r sufficiently large. It follows from the Inverse

Function Theorem (p. 234 of [23]) that the restriction
AI-CBA°»-T U 87)) ->B(0.c.)
of/ to /-1(5(0,an)) has analytic inverse f 1 Hence

g(z)a (1/rm){rdon*) an):5(0,1) B(0,1)
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is analytic with g(0) = 0. By Schwarz’s Lemma, we have that

1> 1s'(0)l = =arfejl

whence
. < o
1'W 1 e(/asi ok 7Y, ({losl""n))

for all r sufficiently large. Since (n-1)q < k< ng, we have that

limsup (I/|S*'(Af[)Ufe = limsup AMion)\H/k *

“m p
since [l = 4mr 100w (r)/r~r), we have that n(r) < 1.5rAr) for all r sufficiently
large. Since {[a. [} is increasing, it follows that [at] > r where t = 1.54rArA for all
r sufficiently large. Since p(r) -* p, we have that t = 1.54rp(r) < 1.54r2p for all
r sufficiently large, and so |ae| = [0i,54r3p| > r where a = 1.54r2p. Hence [on]| >

(2n/(34))1" 2p) for all n sufficiently large. Hence

limsup(1/S'(A®)) < limsup [~ A || /()

-lin
However, for all n sufficiently large,
f,S1+r, <1+dKI1' <2dOn! < 1)*1
and so
limsup (I/IS'M DI* < ( | i m s u p ) V-

Since p(r) 4 p, we have that f, < dianil® 74 for all n sufficiently large and so
| |- > -5la,| foralln sufficiently large. Since is increasing for all r sufficiently
large (see p. 33 of [22]) and L(r) = rp® ~ p is slowly increasing (see p. 33 of [22], it
follows that
{1 - > (5Klyl'»1“1>> (.5K|[)'<-sl--"){.S]o,[}"
= L(5lan)){.5K[K > [i(K |) mbl "> pybl ‘O -»

for all n sufficiently laxge. Since

liminf| [re"A) = &> 0
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by hypothesis, it follows that
bT.op(L/i'(N )PV * < < -o>ms <1

The result follows.
Examples. If p > 0, then On = n1* is a sequence of complex numbers having
proximate order p(r) = p with liminf jon[pr*n”/n > 0.1fp > 0, then a, = n~lnn
is a sequence of complex numbers having proximate order p(r) = p+(Ininr)/Inr
with liminf > 0.
It follows from Theorem 3.1 of [20] that the diagonal operator D on !K(D) having
eigenvalues {n1/3} admits spectral synthesis. However, it follows from the preceding
theorem that the diagonal operator on 9C(D) having eigenvalues {n”3em " 8 : 0 <
j < 6} consisting of six copies of {n13} placed on the six rays {rez'<Je : r > 0}
where 0 < j < 6 fails spectral synthesis. In fact, a similar conclusion holds for any
sequence of eigenvalues {n'9} whenever < 1.In particular, if P < 1, then for any
integer q > 2/P, we have that p = I/[qP) < 1/2. Hence the diagonal operator on
1K(D) having eigenvalues {[an|V/9e2™ 9: 0 < j < g} fails spectral synthesis by the
preceding theorem, where here On = n1%. In this case, a%4 = mnfi. In fact, we need
only choose points {a,} having proximate order p(r) = r, which places only mild
conditions on how they are distributed throughout the complex plane. This example
is in contrast to examples mentioned earlier where the points {n " 3e2iri* 6 :0 < j < 6}
lie on six rays, or the eigenvalues Z x iZ = {m+ in :m,n € Z} form a lattice
It is possible to obtain examples of diagonal operators on W (D) which fail spectral
synthesis by perturbing the eigenvalues of a diagonal operator on 3f(D) which is
known to fail spectral synthesis; however, some care must be taken. Recall that a
linear map D for which D (zn) = Anzn extends to an operator on all of 5C(D) if
and only if limsup IAnp/* < L. In this case, D fails spectral synthesis if and only if
there exists a non-trivial sequence of complex numbers {w..} for which the moment
condition 0 = i«nA* holds for all k > 0 where here limsup <1

It may be tempting to believe in this case that adding points to this list of
eigenvalues produces another diagonal operator which fails spectral synthesis (simply
by making their coefficients zero in the moment condition). However, this requires
moving the position of the existing eigenvalues {A,} and the coefficients {tun} which
in turn typically changes the values of both limsup |A,[L/n and limsup 11", This
poses difficulties even when simply rearranging the eigenvalues. For instance, suppose
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that 17 is a diagonal operator on W (D) which fail spcctral synthesis. It follows from
the result due to Sibilev mentioned above that the eigenvalues {A,} are unbounded
(see p. 146 of [18] or [19]). In view of which, there is some rearrangement {A "}
of {A.} for which limsup|A*(,)IV” = oo. That is, there does exist a continuous
linear map D for which D (zn) = Ai(n)2n for all i > 0. Even if sucli a rearrangement
yields a new diagonal operator D on IK(D) having eigenvalues {A*n)}. it need not
be the case that D fails spectral synthesis (see, for example, Exam ple 4.3 on p. 58
of [21]). It is known, however, that adding or deleting any finite list of eigenvalues
of a non-synthetic diagonal operator on IK(D) produces a new diagonal operator
on 9£(D) failing synthesis (see, for example, [19]), but that adding a countable list
of eigenvalues to an operator admitting synthesis may produce an operator failing
synthesis. For example, the diagonal operator on 5£(D) having eigenvalues {n1/3}
fails spectral synthesis while the diagonal operator on 5t(D) having eigenvalues {n}
admits spectral synthesis (see Theorem 3.1 of [19]). The extent to which rearranging,
adding, or deleting eigenvalues effects the synthesis or non-synthesis of a diagonal

operator is explored in [21]
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I. Introduction

In this paper, we consider the Schrodinger differential operator on Rn (n > 3):

L=-4+V(),

where [ is the Laplacian operator on Rn, and V is a nonnegative potential belonging
to certain reverse Holder class.

A nonnegative locally L4 integrable function V(x) on Rn is said to belong to the
class Bq (1 < q < 00) if there exists a constant C > 0 such that the reverse Holder

inequality

(11) [d ~ \L rm T ~ )
holds for every ie R " and 0 < r < oo, where B(x,r) denotes the ball centered at
X and radius r. In particular, if ¥ is a nonnegative polynomial, then V 6 Bk. It is
worth to point out that if V 6 Bq for some g > 1, then there exist e > 0, depending
only n, and a constant C (as in (1.1)) such that V 6 Bg+t. Throughout paper,
we always assume that O ~V e Bn/2.

« °The research was supported by the NNSF (11771023) and (11571289) of China
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The study of the Schrodinger operator L = -J1 + V has recently attracted much
attention (see [1, 2, 5, 6,12,15], and references therein). In particular, in Shen [12] it
was proved that the Schrodinger type operators: V' (-4 + V) 1V, V (-4 + V) 1%a,
(—A + V) 1/2V with V € B,,, and (-f] + V)¥7 with 7 6 R and V € B,/2, are
standard Calderdn-Zygmund operators.

Recently, Bongioanni et al. (see [1]) proved the 22(Rn)(l < p < 00) boundedness
for commutators of Riesz transforms associated with Schrodinger operators with
BMO{p) functions (which include the class BM O functions), and then, in [2], they

the weighted of Riesz transforms, fractional integrals and

Littlewood-Paley functions associated with Schrodinger operator with weights from

the class A£, which includes the class of Muckenhoupt weights. Very recently, in

[13, 14], one of the authors of this paper has i weighted norm i
for some Schrodinger type operators, which include commutators of Riesz transforms,

fractional integrals, and L| Paley related to

(see also [3, 4]).

In this paper, we continue our research to study weighted norm inequalities for
area functions related to Schrodinger operators and their commutators. To state the
main result of this paper, we first introduce some definitions. The area function Sq

related to Schrodinger operators is defined by

/00 2

where
«W)W=<S(§ | /)(*), T.=e-L, (* )elll+l=(0, )«] "

The commutator of Sq with b € BMO(p) is defined by

Mm \

Ne («*)  b()N(y)I3cy W
The following two theorems are the main results of this paper.

Theorem 1.1. Letl1<p < 00. Ifw £ A (to be defined in Section 2), then there

exists a constant C such that

1So(/)b(u,) <011/11%).
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If A | then there exists a constant C > 0 such thatfor any A> 0
wUx e R": [5q(/}(x)| > A}) <
The next theorem contains weighted norm inequalities for the commutator Sq”.

Theorem 1.2. Letb 6 BMO(p) (to be defined in Section 2) and 1 < p < oo. If

w e Ap, then there exists a constant C such that
ISQbAIfP(Y ~ ~ Bolsmo(p)W W(b1)-

/lw e Ah then there exists a constant C > 0 such thatfor any A> 0
U{*6R": l[aga(*i|>A»<C + log+ L*)*.

The rest of the paper is organized as follows. In Section 2, we introduce some
notation and state some basic results. In Section 3, we establish a number of lemmas,
which play a crucial role in paper. Finally, in Section 4 , we prove our main
results - Theorems 1.1 and 1.2.

Throughout the paper, we let C to denote constants that are independent of the
main parameters involved, but whose value may vary from line to line. The notation
A ~ B means that there exists a constant C >1 such that 1/C <A/B < C.

2. Preliminaries

We first recall some notation. Given a ball B = B(x,r) and a number A > 0,
by AB we will denote the Acdilated ball, which is the ball with the same center x
and with radius Ar. Similarly, by Q(x, r) we will denote the cube centered at x with
the side length r, and AQ(x,r) := Q(x,Xr) (here and below only cubes with sides
parallel to the coordinate axes are considered). Given a Lebesgue measurable set E
and a weight w, by |£| we denote the Lebesgue measure of E and w(E) := JE udx.
For 0 < p < 00, by 1? ) we denote the I"-weighted space with norm [|/|| *(,,) :=
(1, 1M IM v)*)1* .

The function mv(x) is defined by

Obviously, 0 < my(x) < oo if V 0. In particular, we have Ty[x) = 1forV = 1
and mv[x) ~ (1 + 1®) for V = |i|2.
2
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Lemma 2.1. (see [12]). There exist constants lo > 0 and Co > 1 such that
1+ -vitvMItr< <Co@+I*-»|T,M)"/"+Um
In particular, my{x) ~ mv[y) if \x~v\< C/Ty(x).

For a ball B = B(xo,r) with center at xo and radius r and a number ©> 0, we
denote ®e(B) = (1 + r/p(x0))°®

A weight will always mean a nonnegative locally integrable function. As in [2], we
say that a weight u belongs to the class A 6 (1 < p < 00), if there is a constant C

such that for all balk B = B(x,r),

(% /4 i (Ne) (@A / :'iim ) sc-
Also, we say that a nonnegative function w satisfies the A*'B condition if there exists

a constant C such that for all balls B,
My(u)(x) < Cw(x), o.e. X6 R”,

where

Since ®e(S) > 1, we obviously have Avc A 6 for 1 < p < oo, where Ap denotes the
class of classical Muckenhoupt weights (see [7] and [9]). Note that in some cases we
have the embedding Ap CC AQe for 1 < p < oo. Indeed, let ©>0and 0 <7 < §
then it is easy to check thatbi(x) = (1+ | |) ( +7) g A := Apand u(x)dx is
not a doubling measure, butw(x) = (1 + [i|) (n+7~GAje provided that V = 1 and
®BNe 0,r)) = (1+ )9

Also, we remark that in the above definitions of A£6 (p > 1) and My, the balk
can be replaced by cubes because ®8(B) < ®e(2B) < 28®e(B). For V = 0 and
6= 0, instead of Mo,of{x) we use the notation M f(x), which is the classical Hardy-
Littlewood maximal function. It is easy to see that |[/(®)] < Myf{x) < M f(x) for
ae.ieR " and ©> 0. For convenience, in the rest of this paper, for a fixed > 0,
instead of ®e(B) and A? 8 we use the notation ®(B) and A£, respectively.

The next lemma follows from the definition of the class A? (1 < p < 00).

Lemma 2.2. Let 1< p < 00. Then the following assertions hold.

(i) //1< P 1<P2< 00, then A"xCcA .
(i) wGjae ifand onlyifu ~ 6Awhere 1/p+ 1/j/ =1
43
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In [1], Bongioanni et al. have introduced a new space BMO{p) defined by
« - »P5W A m fHi* <o,

where fB = uj fBfW v, d(8) = (1+ r/p(zQ)e, B = B(x0,r), and 0> 0.
In particular, in [1] it was proved the following result for the space BMO(p).

Lemma 2.3. Let®> 0 and 1< a< oo. Ifb e BMO(p), then

for all B = B[x,r) withi€ R n andr > 0, where & = (/0+1)0

Obviously, the classical BM O is properly embedded into BMO(p). More examples
can be found in [1].

Applying Lemma 2.3, one of the the authors of this paper proved the following
John-Nirenberg type inequality for space BMO(p) (see [13]).

Proposition 2.1. Letf € BMO(p). There exist positive constants 7 and C such
that

IWTmtoMMO)Ne) /g)) * s
where fB = w fBf(v)dy, ®e<(B)= (1+r/p(x0))e’, B = B(x0,r), and & = (TO+ 1)0.

We remark that in the above definitions of A, BMO(p) and My, the baUs can
be replaced by cubes.

We also will need the dyadic maximal operator M yvf(x) and the dyadic sharp
maximal operator M |4/ (x), which for 0 < ? < 00 are defined by the following

formulas:

< MNr)«w Z -4egM Ne )1 *
and

where <%0s denotes the dyadic cube Q(x0,r) and /q = ~ fQf(x)dx.
The following versions of dyadic maximal and dyadic sharp ma-rima! operators:

< I(*) =< (11w *)
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and

will be the main tools in our scheme.
In [13], one of the the authors of this paper proved the following results.

Theorem 2.1. LetO<p, rj, S<oo and 6 [1». There exists a positive constant
C such that

f MAMX)-w(x)1x<C N()4A > )

S MATO-WONXSC [ A () 4>)
Further, let <p: (0, 00) -> (0, 00) be a doubling function, then there exists a positive

constant C such that

supy>(A)<j({x e R" : m£ f(x) > A}) < Csup<p(A)w({a: € R" : AR f{x) > A})
250 A>0 '

for any smooth function f for which the left hand-hand side is finite.

Proposition 2.2. Let1<p <ooand e A£. Ifp <p\ < oo, then
WMy f(x)\pu(x)dx < \f(x)\p'u(x)dx.
Further, let 1 < p < oo, then 6 A% if and only if
u({zeR": My/(x) >NI» <~ J IIMIM*)*-

From Proposition 2.2 it follows that My may be unbounded on ) forallw € A?
and 1 < p < oo. We will need a variant of maximal operator My,n (0 <rj < oo) defined
as follows:

MvM-T B w T ill]iy-
Theorem 2.2. Letl<p < oo andj/ =p/(p—1), and letbl 6 Then there exists

a constant C > 0 such that
IMvynl,m<Cl|/b.m

Finally, we recall some basic definitions and facts about Orlicz spaces, referring to
[11] for a complete account.

A function B[t) : [0,00) -* [0,00) is called a Young’s function if it is continuous,
convex, increasing and satisfies ®(0) = 0 and B -> 0o as t 0o. For a Young’s
function B, we define the S-average of a function f over a cube Q by means of the

following Luxemberg norm:
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If A, B and 67 are Young’s functions such that
<cCrei).
whore A 1 is tho Young’s complementary function associated with A, then wo have
\\ig\e,n < 2[[/1ksIbl 18,9~

The examples to be considered in our study will be A~ (t) = log(l + t), =
t/log(e + i) and C~I(t) = t. Then A(t) ~ eland B(t) ~ ilog(e + 1), whifch give the

generalized Holder’s inequality:

Aj o \faldy < 11/1kalbl lB.4-

For these examples, if 6 BMO(p) and bQ denotes its 5-average over the cube Q,

in view of Proposition 2.1, we get
0 - () (<2)[«*)., < C\Wblamo(p),
where @ = (1+ lo)e.
Ateo, we define the corresponding maximal functions:

MBH{x)= sup [l/la.Q

and

MvbNe = sup ® KO IV iag-
ke

3. Some lemmas

In this section, we establish some estimates, which will play a crucial role in
the proofs of the main results of paper. We first introduce some notation and
definitions. We define the space B = L2(R"+1,dydt/tn) to be the set of measurable
functions a : R”+1 -> C endowed the norm [a[s = (/R-+i [a(j/, t)]2dyd|/tn)~ 2 < oc.
By M (Rn) we denote the set of measurable functions a : R" -> C, and by M (Rn, B)
we denote the set of Bochner-measurable functions h : Rn -4 B. The space (R ", B)

is defined to be the set of functions h GM (R", B) endowed the finite norm:
IMUp(R",b) = IM*)Ib <bj

We define aQ{f)(x) = (/* |Qt/(a:)]2f )US. Itisknown that [« (/)| = ~[|/]] (see
Lemma 4.1 of [6]).
16
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Let ip < 1 be a nonnegative infinitely differentiable function on R+ such that
ip(s) = 1for 0 < 8 < 1and <p(s) = O for a > 2. Then the function ft{x,y) :=

satisfies
(31  »(..) *( »>1< ( <- 11},

for\x- y| > 2\x - X|.
Now we consider an operator S : M (R") -* M(Rn,B) defined as follows:

(32) SI(X) - {Sun . /(*)» i"V (*,v)<r /bl }(BiDeR. , |
which has an associated kernel given by

(3.3) 12(%,%) - {<UVi(*1)QI(IF, 1)}

We first recall some properties of the function Qt.

Lemma 3.1. (see [6]J There exist positive constants ¢ and So < 1 such that for every

| > 0 there is a constant Ci so that the following inequalities hold:

(> W i#)IEC,r" (14~ + i )
(b) 10 ,(i+1,»)-0,(*»)1<c,(M) cxp

for all [/i| < t;

3.2. LetK{x,z) and Sq be as above, then for any | >0 we have

Ci 1

(34) K[x,2)[B <
1+ W—2\(p(X) 1+ p(r) D)L\~ y\n

(3'5)

fer)-~,z)|B< * x>

3.6)

No *)-c(% %> < (L4 1,_2]W Ij-14 ,(*)-))! ' _Zl,U . u N-*1> af*—al-

Proof. We adapt the arguments applied in the proofof Theorem 4.1 of [8]. Without
loss of generality, we can assume that p(z) < [x - z\. We first prove the inequality
47
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(3.4). By Lemma 3.1(a), forany N, I> 0 we can write

e ...k
+ - ftr" W < VoA
* _4 FE\ - I pws A
S C JaluaduAsRx-yV2 BT (L B > T/T " \ By )
=N+ N1+ Ja,
where the sets j4i,  and 3, constituting a partition of R", are given by
={V€Rn Sx| > 2P —*>,
N2= {y6R” 41@-*I < Ir- 2\ 2w - *1}e

Na={y6R" Iv- 1< si*- A)-
Forye Au wehave [*- 2\ < |ly - z| < |i - y| < 2]y - z|, and hence

Y GRS Uex\ \x-vI/at3™*1 0 (%)

o< / 173
_-Ozlsn rili)[zz)i i]v "
Fory e A2, wehave| - y\ <3|i- z\and \x-z\~\y- 2\,
ree 1/ #\2a)

ro( MRx-*1 1 AN/ t \-2x

=Jav+ »

For 7 0, we have

- I*-*r V.K31.-.11*
< E__flizflv
- *Ifc \ (50 /
in which we take n <N - 1< fn, and for Ju, we get
I - ormM"1 |/ i [
J«-*|1*+" [.-,|<3],-,] -4 (p@)
Thus, from the above inequalities it follows that
C (\x z\\
i if I p@))
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Finally, for y e A3, we have \y -z\< \\x-z\ and |x - 2\~ \x y\, and hence

Cplz) f
- 13N«
- z[2n  p(z) J
From the above inequalities and Lemma 2.3, we obtain the inequality (3.4).
Ib prove the inequality (3.5), let us consider \x - z\ > 2\x —®'|, denote a =
min{la:-y|, Ix-y1}, and define B = {y : \x-y\ > 2|x-ar/[}. Then, by Lemma3.1(b)

and the inequality (3.1), we can write

FeGx) - 20 D= ™ 1)
Ao, f \*~ A2 2N (t V-3
s CJ*L (i+ b- «B1" m itdy
FOX X >t icHin-*i)a ) dtdy~ i+ n-

Forye B, we have [x - y\ > |z - y|/2, and hence o > [* - y|/2. Denoting Bi =

B {y:| - y\> |x- z|/2}, we get
I <CWx «T @n+1+s ((+ ] _ z)1,, dtdy
r roo fIN ! 21
+CI*" A AVRLL 1L (F+b- )" )
=/i+/.

Fory G, we have

SrfE v |

Fory 6 B \5i, we have |y - z| ~ |®- z|, and hence

r roo 1 2 1 EN-2
+Clz- z f dtdy ;=
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SC|*-,p< Ib\Bi {i-M < S5T&R3I*) "
[ << d,,
I % Y < N - 1% me s aj
R P
sS4 p<eW I

wheren +1 < W- 1<

PW™ iy

<C\x-Ar ! )

JB\BL, J|x j
-< > -« »*w o l-,ia,-.u, dv
<c(b:-T\Y* I* «ll
schw-~J f

tN»-«IV  Ig-jgT
opw 3 kezlFor

Ta estimate |1, we notice that ify € B°, then \x' - y| < 3k - x'\, and hence

Tof + 1 / )oa €t g b My e iear
VISC A vii2 | AlshvI<3[F x| I-vIZ) A Y-z w

ni
Since the above two integrals are similar, we estimate only 1Ji, the estimate for 1
can be obtained similarly.

We consider the set (Bc)i = B® {y : \- y\ > \x - z|/2}, and notice that for
y 6 (Bc)i, wehave | - y\ ~ \x- 2\ and \y-z\< 2\x - 2\, and fory 6 Bc\ (Bc)u

we have |a- z\ ~ \y- z|and |x - j/| < [®—z|/2. Thus, we can write

Ih <c[ r —ggrdtdycC [ r* 1 _PWI1_ dtdy
.13 LV 3Te A YRNBN JIBBI2 B +1+" 1> <1
+ * Y 421 = tha + lhb + Illc-
L Hoenr

Then, for Ilia we have

lha <@ f w
D LA
Cp(*F [ dv
% rZrren - s
I»-»T
W - z|2n+2"

50
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For /Nlb, we take N =n +1, to obtain

711 < cf r _£2__ 0+
sWhA—V/AT " " W~ [>*«
cpjzf f 1 .
Ji—_ir 1 1*-*f
sciTor 20a,+2
pw -2

For //n, since \x - z\ > 2\x - y|, we have

lhe <cC PE9”

\x- 173
|i- zlan+a-
Combining the above inequalities and using Lemma 2.1, we get the inequality (3.5).
Now we proceed to prove the inequality (3.6). Ib end, we consider \x -z\>
2\x - x'| and define E = {y :\y-z\> \x-z\/2). Note that Qt(x,y) = Qt(y,x), and

hence we can apply Lemma 3.1(b) to obtain

lif(*,*)-*(«,*011 = «)-*<* At ojd oy
- i i ' 1% *
JE{‘.fJ\y,Zw{'E'fO” e.0»'»)I1
<clx- «f i P50 P L5 (1, ko) xs
< - > + 1 _(]), didv
+olx- *b CA IR L R (1A v)ly <
=1lh +9/.

For 111§, we then have

W,<c|.-~/agb_ffiw *ig ~ ) "

Ify €i%, then ly- z| < [i - z|/2 < |®- y| < 2|s - z|, and hence
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For Il112Mand I11ab, we have the following estimates:

[ r pK B
° LTV
[ )"
L R R e R
I»-*1»
<0 z[2n+2i0

I >W ]
(we take d + So<N —1< (3n + 2<50)/2)i and

11 < Cl*- *1"e CpifxXortd
p(z)"Jij-xA" T dy<cC jx-
I*—Z[3-+MO+« - \< - 2 7 \ F*) 3 -1F *|2neMe

Combining the above i ities, we get the i ity (3.6). o

Lemma 3.3. Let0 <p,t] <oo andletn € £,, iiien 47k following inequalities hold:
J _ISt(*)6"M * s ¢ IMvA/C*)IM *)«b
supApw({* GRn : |<S'()(x)|b > A}) < CsupApw({z £ Rn : Mv,vf(x) > A}),
A>0 A0

Proof. By Pubini’s theorem and the property of 8q f, we have
\W\S ()\B h< C\M f)h< C\\fh.

By Lemma 3.2 and the theory of vector valued singular integrals the result will be
proved by showing that the kernel K of 5 is a standard vector valued Caller6n-
Zygmund kernel, and so [5[b is bounded on Lp(Rn)(l < p < oo) and of weak type
(1,1). In view of the inequality |/(x)| < MAvf{x) a.e x € R”, and Theorem 2.1, to
prove the lemma, we need only to show that forany O< t; < ooand 0 < 6 < I7(77+ 1)
the following inequality holds:
37 <,(Ne)Ib)M <CMvM LU
We fix X € Rn and assume that x € Q = Q(xo,r) (dyadic cube). Decompose / =
fi + where f\ = fxQ with Q = Q(x, 8\/nr). To prove the inequality (3.7), we
consider the following two possible cases: r < p[xo) and r > p(xo).

Case Isr < p(x0). Let Cq = [S(/)(io)|b- Since 0 < S< 1, we can write

[w i - *y 1< (lJw/ magmiB-iagb iBi'N)1

<C(— Ne Ne & *)1/1+ (— WbT -apgmiiiy)ll 1+n.
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Ib estimate the term |, we recall that |S (/)|b is of weak type (1,1), and note that
p(x) ~ p(xo) for any X € Q and (<3) ~ 1. Hence we can apply Kolmogorov’s
inequality (see [10]), to obtain

(3.8) I < w iT b A-< o lBiTHY<CMV,,nx).

To estimate the term I, we let Qk = Q(xo, 2fc+lr) and a = rj+1. Then, taking | > €a

and using (3.5), we obtain

n <L |9Ne Ne) 5(A)(«)|B4
Tﬁ Jlng‘K% YHe(y,w) - K(x0,u)\B\f(w)\duidy
IJIr\‘I\l\l.iﬂ .{\ixﬁ-m]>2r‘£(y'w) - K(xu,0j)\B\f{u)\dwdy

- C \K(y,w) - K (x0,w)\B\f{w)\dudzdy
IQII I I T<[*0-w|<a*+,r

“ -ksa r
S 8 (I+2%rm,(io)NeM1")"  ImdU
(39) Sc's (L+24 pbl )L Y 4 2Vite»"* 1051 IIMIA"
<c, J(N(*) < CMV,(N)(»).

fe=l

Case 2:1 > p(zo). In this case, noting that ctj := ij/6 > 7/+1, we get

ui/e fanor -~ \ &

A )

= o+l

For , similar to I, we have the following estimate

(3,0) s 4 i lTto A

-agxagll Yo
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As for 11, taking | = ay® + 1, and using (3.5) and Lemma 2.1, we get
lh < 7(/3)(i)[Bdy < J1S f K (y,m)\e\/(w )\(LL
B J[ql (13)(inls dy LQIJQI\; g KO BV (u)\(Wy

isif J
WQ\jQtrNIVrixo-vW +'

\K(y,0j)\B\f(u)\dudy
r
3.1) ECIE (1+2t/p(3p))ien Ne )|n"

SO E (L+a M » 0% % (L+VT/p(»)* ISW L [*M[A"

2-*Mv,, (/)(*) < CiM v M W

EVom (3.8) (3.11), we get (3.7). Lemma 3.3 is proved. o

Lemma 3.4. Letb€ BMO(p) and (I0 + 1) < ¥< oo, and let0< 26 < e< 1. Then
for any f € Co°(Rn) and the following inequality holds:

(312)
< (.@Ns)(*)<C|lbllrmom«,(Jags)M +M 1 Uly, (AH)>e. . 6T,

Proof Observe first that for any constant A we have
(LSTF(x) = (b(x) - A)5()(x) - B(( - AN*).

As above, we fixx 6 Rn and assumethatxe Q = Q(x0,r) (dyadic cube). Decompose
f=fi+h, where ] = fxB with Q = Q(x, by/nr).

To prove the inequality (3.12), again we consider the following two possible cases:
r < p(x0) and r > p(xo).

Case 1: 1 < p(x0). We first fix A= b$, the average of bon Q. Since 0 < S< 1, we

then can write
(m llirmisHag-apnm/rv)T
( na~7()1e (¢ )
A /aKB O -agr/me **) +c (i5f i«Ne W K»)iB<i»)“/f

+c (A ™ b<>LU() ) M \s*) - m T+Il+111
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Then for any 1 < 7 < e/5, note that p(x) ~ p(xq) for any x € Q and 9(Q) ~ 1.

Hence, by Lemma 2.3, for the term | we obtain the estimate

(3.13) CoAC (dilalag- l«lY* )T/ (w /0% M'B*)",
<clpb«on< (|5/bl 18)M ,
where /7' + 1/7=1
To estimate the term 11, we recall that |S|b is of weak type (1,1), and note that
p(x) ~ p(x0) for any X € Q and ®(¢) ~ 1. Hence, by Kolmogorov’s inequality and

Proposition 2.1, we get

"iT& iiapg-b MiBin* .-
cu

(3.14)
-\Q\lg~” dy - CMLI0&LV.rif(.x)-
For the term 111, we let bk = bQ"0i2*»x) and & = (IQ+ 1)0. Then, in view of
Lemmas 2.1 and 3.2, we can write
(3.15)
ui>2r(* (,, ) -WMi'M/

saf (i+ad4m >« L |iM b/>imdu
» 2-Wo

« (1% A (10)-(Ne ).
X (i+ 2 TM3g))<> >l Wu) 6 -[Ne )% °

PE (142 0/M*0))-"'mi
* (1+Vr/MaYTMus b« ‘B*1
< C ,Z 2~kSoO\bWBMO(p)MnogL v, T (f)(x) + CND\BMO{p)Mv,v(f)(x)  k2~kSo
fe=1 fe=1
< C'illbIBATO(p)MLiogL.V,L(/) (1),
where / = (T)+2)©' and in the last inequality we have used the following inequalities:

MV, (/)(*) < MLIosLV V(f)(x) and B@ bQK\ < <7(1+ Y /p bl )8WBlemo{p)
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Case 2:1 > p(x0). Since 0 < 26 < e < 1, we have 0 = u/6 and e/6 > 2. Hence,

e can write

iffc is/, v ™ 6*)'"

2 { l(ag B)Sm *( W)Wb*)

+0 v ) 1

+ ¢~ (jj N -buyllWi*) mA+b +BA.

Then noting that o +1 < for any 2 < 7 < e/6, by Lemma 2.3 we obtain the

following estimate for ly.

1/1 1 Loun)

(3-16) ®8,(0) ( 1 r n o\
xa g A (a g w [0[3a(!>="i)

<oidiicron<, (iags (*),

where 1/Y + 1/7=1
Tb estimate /1, we recall that [5|b is of weak type (1,1), and use Kolmogorov’s

inequality and Proposition 2.1, to obtain

< CM nogl<VVf(x).
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Finally, to estimate 11 , we let bgk = 6a(IIb2k+ir) and & = (Iq+ 1)0. Then, we use
Lemmas 2.1 and 3.2 with | = (] + 2)0' + 1, to obtain
(3.18)

Iniw Ypa-apguw b*

«

ra//l  I7(».")IBI(6H-bB)/M INi,
K6 Jq Jk \Q

/D[ Ne «)I(b («) - bQ)f(u)\dudy
1 jQ ttIVE < \x a-u\<2k+T

SQE (T T e | 11 1* * '

S A (L+ 2¢AS(®0))- < +ar
* @

+anr'(i+2r/pbl Y -A*

<OE 2-»[[HMram ik.bvn(A(») + Cilldlsmoncy, (/)(*) £ > 2
* fe=i

=i
< CilLNeMO{p)Mbloe LV, V(f)(x).
from (3.13)-(3.18), we get (3.12). Lemma 3.4 is proved.
Finally, we recall the following results proved in [13,14].

Lemma 3.5. Let0 < rj < oo and be locally integrable. Then there exist
positive constants C\ and independent off and x such that

CIMV,vMv,ri+if{x) < /T logb,v;TH-i/(3) » CiMVill2Mv V/2f{x).
Lemma 3.6. Let2<n<oo, £ A{ andB{t) = ilog(e + 1). Then there exists a
constant C > 0 such thatfor allt>0
(3.19) U({*€R" : Mbyv.1{i) > t})<cj B u(iy)*.

Proof. Let K be any compact subsetin {3 6 R" : MnogLtV\(f)(x) > A}). For

any Xe K, by a standard covering lemma, it is possible to choose cubes Q i, m+, <?,,
with pairwise disjoint interiors such that K C U jli 3Qj and |//IUiogL,v.Q* >

j = 1,-mm.m. This implies

af orNel < (i+i°s+ (")) *-
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Prom the last inequality we obtain

(.1 Nsnto(n.\.itn,\ - MMINA*10, -

implying (3.19).
4. Proop of main results
Proof of Theorem 1.1. We first notice that
(4.1 SqU)(x) < CI5(/)(%)[8 for every x e Rn.

Thus, the desired results follow from (4.1), Lemmas 3.2, Theorem 2.2 and Proposition
22. [m]

Proof of Theorem 1.2.  We first notice that
(2) SQ.b(f)(x) < C\[b,S]F{X)\B for every x e Rn.

Using arguments similar to those applied in [10], the inequality (4.2), Lemmas
3.3-3.6, Proposition 2.1, and Theorems 1.1, 2.1 and 2.2, we can obtain the desired

results. [m]
Remark. It can be shown that the analogs of Theorems 1.1 and 1.2 hold for spaces

BMOeAp) and iierg e.
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1. Beeaeune

OAHNM 13 BaXKHbIX NPOGNEM B TEOPUM MHOFO3HAUHBIX 0TOGPaXEH NI ABNSETCS BO-

npoc CyujecTBoBaHNA X n c

cBoiicTBaMN. BONPOC O CYu|eCTBOBAHWM CeNeKLyii, 06NajjalolMX HeKOTOPbIMMU ToMo-
NIOTMYECKNMM CBOWICTBAMM BECbMa HTEPECeH 1 HAXOANT Pa3Ho0GPasHbIe NPUNOXKEHMS
BO MHOTVX 06/1aCTAX MaTeMaTnKi. 3aaya o CyuU|ecTBOBaHM HEMPepbl BHbIX Cenek-

Unii MynbTUOTH K K it Teopeme 3. Maiikna (cm.

[15]) nonyuuna B fancHeiilwem WMPOKOe passnTUE U HallNa MHOFOYMC/IEHHbIE Npy-

NOXEHWs B TeOpUn X s cucTemax u B

o6ueii Tononoruum (cm. [1,4]). Teopema Maiikna yTBepX/aeT, UTo BCAKOE NONYHenpe-

PbIBHOE CHU3Y 0TOGPAXeHNe C BbIMYK/bIMY A y
cenekumio.
B pa6otax [1, 16] WAMIOCTPUPYIOLMNE BAXHOCTb YCNOBHUS

BbINYKNOCTM MMOro3nauitoro oto6paxenus. A B ctatbe [9] (npumep 1(A)) moctpo-
eH MpUMEp HENpepbIBHOTO OTOGP@KEHNS CO 3BE3AHbIMU 3HAYEHUAMM, HEAoMyCKa-
1oWWii HI OJHOTO HEMPEPLIBHOTO CeNeKkTopa. TeM He MeHee, CyuleCTBOBaHME Herpe-
PbIBHbIX CENEKLMii MOXET GbITb JOKA3aHO 11 /15 HEKOTOPBIX KNACCOB 0TOGPaXeHNii ¢

“VceneoBanve BLINOAHEHO Npy nogepxke MK H MOH PA B pamKax COBMECTHOTO Hay4HOTO Mpo-

exta NYSU-SPU-16/1 TKH MOH PA-ETY-0®Y
P®-2016.




O HEMPEPBIBHbIX CENEKLMAX MHOMO3HAYHbBIX OTOBPAXEHWN

y . Tak B cTaTbe [9] pacCMOTpeH HeKOTOpbIi Nog-
Knacc (0TOGpaXeHNs C 38e3AHONOAOGHLIMA UM MAPaNbINYKbIMU 3HAUEHUAMN )

HEMPEPbIBHbIX MHOTO3HAYHbIX OT! co , Aony

LWWe HenpepbiBHble cenekyumn (cM. Teopemy 1 u3 [9]). B obuiem HeBbinyKnom cnyyae
8 cTaTbe [10] K K&XAOMy 3aMKHYTOMY MHOXECTBY M CTaBAT B COOTBETCBUME HEKO-

Topylo dyHKuMio N1 : R+ R+ HeBbINyKNocTU MHOXecTBa M. [lokasano(cm. [10],

Teopema 5.1), uTo ecnv a nony CHU3y 0TOGP , DyHKLMN BbINYKNO-
cTm 3Ha4YeHNii KOTOPOro CTPOro MeHblle HEKOTOPOIi MOHOTOILIO HeybbiBatoLLelt
thyHkyum a : (0, 00) —»[0,1), T0 a UmeeT Al y oa-

HaKo, onpesieneHne (yHKLNN h UMeeT onucaTenbHbIi XapakTep 1 [J0BONbHO CNOXKHO
NOCTPOUTL 3TY PYHKLMIO NS KAKAOTO 3aMKHYTOTO MHOXeCTBa M.

OTMeTUM Takxe, 4TO B CTaTbaX [11,12] METOAOM KacaTeNbHbIX KOHYCOB BblAens-

oTca y nnn y no nokanbHble
CeneKyn 0T MHOTO3HAUHBIX it KakK ¢ y TaK n y
3HAYEHNAMN.

B HacTosuleii CTaTbe pacCMaTpuBaeTCA BOMPOC CYUIECTBOBAHNA HEMPEPbIBHbIX Ce-
NeKuuit 4N5 HOBOTO KNacca MHOTO3HAUYHbIX OTOBPAXEHNT C MeBbINYKNbIMI 3HAYEHN-
AMU, TOUHEe 0TOGPaXEHNAMM C MOUTM BbIMYKNLIMI 3HAUEHUAMU. MOHATME NOUTH
BbINYKNOCTN BBE/eHO B pa6oTax [7, 8]. MOTPeGHOCTL M3yUeHWUA TaKUX MHOXECTB BO3-

HUKNa B Teopun guddepeHunansHbix urp [5].

2. HekoTopsie 060anauenun u onpeaencHus

MycTb X —meTpuyeckoe a Y - 6aHaxoBo NpocTpaHcTBa. B ganbHeiiwem Br[a)- 3a-
MKHYTBIV Wap ¢ UeHTpom a paguycar; M C Y - 3aMKHyToe MHOXecTBo a diam(M)-

amnameTp MHOXecTBa M, conv{M }- Beinyknas 060104ka MHOXecTBa M. Monoxum
Prm(x) = {y6 MA\x /ll = Wx- 2\ = d(x, M)}

HanomHuM onpejeneHns MHOro3Ha4yHoro otobpaxeHus u cenektopa. MycTb 2Y co-
BOKYMHOCTh BCEX HEMYCTbIX TB M3 Y, a E - nog BO NPOCTPaHCTBa
X

OTo6paxeHue a : E — »2Y Ha3biBaeTCA MHOTO3Ha4YHbIM 0TOBpaxkeHueMm. Henpe-
PbIBHOE 0/JHO3HAUHOE OTOGPAXKEHNEY  E — >Y Ha3blBAeTCH HENpEPbIBHOI Cenekumelt
(HenpepbIBHLIM CenekTopom) oTobpaxeHus a, ecnny(x) 6 a(i), x e E.
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OT06paXeHuii a : E — >2y HasbiBaeTCs NOJyHenpepbIBHLIM CHU3Y N XU 6 E, ecnn

AN nio6oro e > 0 cyuiecTyeT Takoe 6 > 0, 4T0
® o) Aun(x)+ "e(0), Vx€E Bs(xo).

OTo6paxeHune s : E —>2Y Ha3blBaeTcs NoNyHenpepbiBHLIM CBepXy H X0 € E, ecnn

Ans no6oro fa> 0 cyljecTByeT Takoe 6> 0, YT
a(x) Ca(a:0) + Bt(0) Vx6 E N Bg(xo). *

Ecnu 0ToGpaxeHue NoNyHENpEPLIBHO CHI3Y U CBEPXY B XO, TO OHO Ha3bIBAeTCA Herpe-
PLIBHLIM B 3TOl Touke (cM. [1], onpesenenmne 1.2.43 HeNpepbIBHOCTY B CMbIC/e Xay-

epopta). MHOXecTBO
graphfc) = {(x,y) € E x Rm, y e a(x)}.
Ha3bIBAETCA rPAdUKOM OTOBPAKEHUS a.

Onpepenenne 2.1. (cm. [3]J. MycTe M C Y. Monookum
Me°={xe M : @+ (1 A)y6 M, Vy6M,A€ [01]}

MoamHo>kecTBo M° C M HasbiBaeTCA AAPOM 3BeafHOCTN MHO>KecTsa M. Ec-
m M° ®0. To MHOXKecTBO M HasbiBaeTCs 38e3AHbIM. HeTpyAHO NokasaTb, 4TO
M °- BbINYKNOE MHOXKECTBO. OUEBUAHO, YTO eCAU M - BLINYKNIOE MHOXECTBO, TO
M=M°.

Onpegenerue 2.2. (cm. [7]). MHo>kecTBo M C Y yaoBneTBOpseT YCNOBMIO Mo-
YT W BBINYKNOCTY C KOHCTaHTOii ©>0, ecnn Ans NioGbix

Xj eM Xj> 0,j 63,
/e J - KOHEWHOE MHOXKECTBO WHJEKCOB, TaKux, 4To Y.jej BLINOMHAETCA

53 A*i eM + 0f31(O0)>

rpe r = maxiiej [[*4- 1,

Ecny HeT Heo6X0AMMOCTN YTOUHSATL KOHCTaHTY € TO Gy/ieM NPOCTO FOBOPMTb, YTO
MHOXECTBO M NOYTH BbINYK/0. 3amMeTum, 4To ecnm ©= 0, T0 M - BbINyKNOE MHO-
KecTBO. KNacc nouTy BbIMYK/bIX MHOXECTB JOCTaTOUHO WHPOK.
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3. Mpumeps:
Mpumep 3.1. MHoxecTBo M = {a, 6} COCTOALNX N3 ABYX TOYEK NOYTHN BbINYKNO.
[eiicTBUTENbHO, UMeEM

conv{a,b)CM + 1 Jla 6Ne(0),

T.e. B 3TOM C/ly4ae KOHCTAHTY MOYTU BbINYKNOCTN ©MOXHO BbibpaTh 1/(2[j0 - ||).
Mpumep 3.2. [lyra Ha OKPYXKHOCTU SIBASIETCA MOYTU BbINYKNbIM MHOXECTBOM.

3TO HENOCPE/CTBEHHO CNeyeT U3 JOCTATOUHOTO YC/OBMS MOYTM BbIMYKNOCTH, JOKAT

3aHHoro B [8], Teopema 2. HaiileM KOHCTaHTy Mo4Ti BbIMyKnocTu. Mpeanonoxum,

4yTo Ayra M MeHblIe NONYOKPYXHOCTM U MHOXecTBO Q = {£ £ ,....£*} HaxopuT-

cA Ha aToii gyre. Myctb A = x\,B = Xk.d =

liam(Q) = AB. Torpga kak BUgHO
3-pucynka 1 MHOXecTBO conv{Q} HaxoAuTcs Na a-oKPCCTNOCTN MHOXecTBa M, rae

a = CD. Nwveem

Tenepb uncno ©BbiGepem U3 HepaBeHcTBa DC < (P, T.e.

OueBWAHO, YTO 3TOMY HEpaBeHCTBY y/A0BNeTBOPAOT uucna 0 > 1/411. Ecnu pyra
6onble NONYOKPYXXHOCTM, TO OHA NOYTY BbiNykna no Teopeme 3 U3 [8] ¢ HekoTopoii

KOHCTaHTOl# 12. Torga, kak BUAHO ro pucyHka 1, ecnim Q = {a,b}, To MHOXeCTBO

conv{Q] HaxoguTtcs B 0- OKpecTHOCTW Ayru, rae 0 = (/2. Takum obpasom
1
B- 2|[a-b|l
3HauuT, ecnu Lla- || -* 0, To ©-y oo.
o
Puc. 1

63



P. A XAUATPSH

Mpumep 3.3. OKPYXHOCTb M ¢ pagnycom R ABNAETCA NOYTU BbINYKNbIM MHOXe-
CTBOM C KOHCTaHTOI# ©> 1/(V3R). [leiicTBUTENbHO, MyCTh MHOXECTBO Q = {Xx1 1, ...,XK)
C M. PaccmoTpum gge cnyyan. Ecnu 0 conv{Q}. OT0 03Ha4aeT, YTO MHOXECTBO
HaXOAMTCA B HEKOTOPOU NONYOKPYXXHOCTM. TOrAa 13 NpuMepa 3.2 CneayeT BKIKYeHe

(3.1) conv{Q} CM + ~(diam {Q )fBn(0).

Ecnm 0 £ intQ. Torga B convQ CyLiecTBYeT HEKOTOPbI OCTPOYrONbHbIK Tpeyronb-
HUK, COZIePXKallynit BHYTPU Ce6S1 LIEHTP OKPYXKHOCTM 0. 3HAUNT, OKPYXKHOCTb OnMcaHa
K 3TOMY TpeyrofibHuky. CnejosaTencHo, ANMHa HEKOTOPOii CTOPOHbI TPeyronbHMKa

6onblie nnu paBHo /1V'3. OTcloga

diam(Q) > \/3R.

QueBMAHO, YTO MHOXECTBO Q HaxoauTcs B R-OKpecTHOCTU Mnoxectsa M. Tenepb

BbIGEpEM YMCNI0 OU3 yCnoBUA
(3.2) B < e[diam(Q))3.

3T0 HepaBecTBO MMeeT MecTo, ecm ©> 1/(n/3[1). Ecnu Touka O HaXOAWTCA Ha rpa-
Huue mHoxecTBa conv{Q}, To diam(Q) = 2R. Torja HepaBeHCTBO (2) BbINONHAETCS,

ecnv ©> 1/4]]. B obuiem cny4ae, umes BBUAY U BKnioueHune(l), umeem
conv{Q) C M +

OTciofia M - MoyTH BbIMyK/N0e MHOXECTBO C KOHCTaHToii 1/(\/351)

MpuBeaeM NpUMEP MHOXECTBA, ABNSIOLLETOCS MOUTH BbINYK/bIM 1 3BE34HBIM, HO
He BbIMYK/bIM.

Mpumep 3.4. OkpaleHHas 06nacTb M Ha puc.2 ¢ 3aMKHyTol rpaHiLeit ACBDA
ABNIACTCA 3BE3/1HBIM MHOXECTBOM. TMOKaXeM, 4TO OHO MOUTH BbINYKNO. Bbibepem unc-

no ©> 0 u3 ycnosus

DE=R -JNo-'£m< £, In d=AB
\ 4

310 TBO o6pasom TCH, ecnn 0= —.Hetpya-
HO 3aMeTUTb TakXKe, YT 06nacTb M ABNAETCA NOUTN BLINYK/bIM MHOXECTBOM C KOH-
cTaHTOii © 3ameTum, yto ecnm DO = [ -> 00, To 9 -+ 0, a o6nactb ACDBA

npespaujaeTca B TpeyronbHuK ACB
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Puc. 2. MHOXeCTBO NOYTK BbINYK/OE W 3Be34HOE

4. CooiicTBa NOMTYM BLINYKNLIX MHOXECTS

Mpeanoxeiwe 4.1. ([8], Teopema 3). MycTb 3aMHyToe MHOXKecTBO M C E ? ypjo-
BNETBOPAET YCNOBUIO NOYTMU BbINYKNOCTY C KOHCTaHTON 6> 0. Ecnne < 1/(166),

To oTobpaxkeHne x — YPruj(x) 04HO3HauYHO Ha MHo>KecTBe M + [1.(0) n
-Prw@2)<2| - ®].

CnepyeT OTMETWTb, 4TO ecu M — BbINYKAO U 3aMKHYTO, TO Mio6as Touka u3
R™ nmeeT eANHCTBEHHYIO NpPOeKyMio HaM 1 onepaTop NPoekTupoBaHua Prm yao-

BeTBOPAET YC0BUIO JTMNWHMLA C NOCTOAHHOA 1.

3ameuanne 4.1. ®. Knapk u apyrve [14] onpefenvnu NOHATWe NpOKCMManb-
HO TNafKoro MHOX eCTBa KaK MHOXKeCTBa, (DYHKUMA paccTOAHUA [0 KOTOPOro
OT HEKOTOPO/ TOUKN NPOCTPAHCTBA HenpepbIBHO AudidepeHLMpyema B HeKOTOpoit
OKPECTHOCTU 3TOT0 MHOXKECTBA, 3a UCKMIOYeHNeM Camoro MHOXecTBsa. B Toi
>ke paboTe nokasaHo (cM. Teopema .11 [14]j, 4TO B rMNLGEPTOBbIX NPOCTPaH-
CTBax ycnosue NPOKCUMAnbHOM MaAKoCT MHOXKECTBA IKBUBANEHTHO TOMY, 4TO
MeTpuyeckas NpoeKkUMs Ha 3TO MHOXKECTBO NGOl TOUKN U3 JOCTATOYHO Manoi
OKPECTHOCT U MHOXKECTBA CylU|ecTBYeT, eIMHCTBEHHA U HENPePbIBHO 3aBUCHT OT

npoekuMpyemoii Touku. 3aTem B CTaTbe [13] A0Ka3aH aHANOTMUHbIl PesyNbTaT B

HEKOTOPbIX W rnagknx npocTpaHcTeax. U3 npeg-
NO>KeHUA 4-1 HeNocpeACTBEHHO credyeT, yTo eciu M C in v NoYTY BbINYKNO, TO

OHO ¥ MPOKCUMaNbHO FNaAKo.
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Takum 06pasom, 0 MPoCTpaHCTBe RN MOUYTW BbIMyK/ble MHOXECTBA COCTABAAIT

HEKOTOPbIA NOAKNACC B CEMENCTBE NPOKCUMANbHO FNaAKNX MHOXECT.

Mpeanoxenue 4.2. ECAu M C S ¥- 3aMKHYyTOe, 3Be3[HOE U MOMTY BbINyKOE
MHO>XEeCTBO, TO AN 40CTaTO4YHO Manbix e > 0 MHooicecToo M + £e(0) Takxke

3B€3/]HO M NMOYTW BbINYKNO.

[loka3aTenbcTBO. ECAM 3aMKHYTOE MHOXECTBO M - NOYTY BEINYKNO C KOHCTAHTOM
6, 10 nssectHo (cm. [8), Teopema 3, Cneactsue 3) uTo, ecnm e < 1/(100), To MHo-
xecTBo M + [1-(0) ABNAETCA NOYTHM BbINYKNbIM C KOHCTaHTO W. HcTpyano Takke

nokasats, uTo (M° + Bc(0) C (M + Be(0))°. 3HaunT, M —38e34H0€ MHOXECTBO. [

Teopema 4.1. TycTb HenpepbiBHOE MHOT03HauHOe O0TOGParkeHue a : [a.6] — >2a"

C NOYTW BbINYKNLIMU 3HAYEHNAMM U C KOHCTaHTO/ 6. Torga yepes niobyio nunky

ero rpatuka npoxognT 3TOro oT

[loka3aTenbcTBo. Mockonbky 0TOGPaXCMUC @ NCNPCpLrono no Xaycgopgy na oT-
peske [0,6,] TO OHO paBHOMEPHO HEMPEPbLIBHO Ha 3TOM 0TPe3Ke. DTO 3HAUNT, YTO ANA

nioGoro £ > 0 Haiietcs uncno S > 0 Takoe, 4YTO NPK pa3BuUeHUM OTPe3ka Ha YacTuy-

ANVIHBI KOTOPbIX MeHblue 6 KoneGaHne 0TOGPaXeHUs a Ha

Hble cermeHTbl [®i_i,®i
KaK[JOM TaKoM 4aCTU4HOM cermeHTe 6yaeT mMeHblue e. Bbibepem e < 1/(160). Toraa
a(x{ i) 6 a(x) + Be(0) x € [®<-i,@®<].

MycTb YE € a(x0). Monoxum yo(x) = Prdp)M (® € [ROi®i])- MockonbKy, cornacHo
NPeANoXeHNio 4.1, NPOEKUMA TOUKN YO Ha MHOXECTBO a(X) eAMHCTBEHHO U 0TOGPa-

KeHue a TO 6ypeT u ot yo (cm. [2], rnasa 3,

n.5, nemma 3, cTp. 344). Bbibepem ToUKy yo(®i) U CnpoeKTUpyeM ee Ha MHOXEeCTBO

a(®) (x e [®i,® ].) MNonoxum yi(x) = Pra(x)¥o(xi). OHo Takxe 6y/eT HenpepbIBHbIM

ot no Vi IM np
Mpopo/Kas aHaNorMyHO, Mbl NOCTPONM HenpepbiBHOe 0TOGpaxKeHue Y (x), onpepae-

NeHHOe Ha Lenom oTpeske [a, b Takoe, 4To

y(x) = y{(x), @6 [@+,®J, t=1,2,., )

Teopema 4.1 fokasaHa. o

3ameuvaHue 4.2. OToGpa>keHue y, NOCTPOeHHOoe B Teopeme .1 3aBUCMT Tak-

>Ke 0T HavanbHoii Touku LLl. Vicnonb3ys npeano>kexue 4-1 nerko 3ameTuThb, YTO

0TOGpaXKeHHe y yA0BNETBOPAET YCNOBUIO JINNWNLA OTHOCUTENLHO NePEMeHHOM ya
66
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paBHOMEPHO Mo T. CnefoBaTeNbHO, 0T y no ™

nepemeHHbIX [X,y0).

CyLecTByeT NpuMep HenpepbIBHOrO MHOTO3HA4YHOT0 0TO6GpaXkeHns u : 1?2 — »A2c

NOYTY BLIMYKNBIMIA U KOMNAKTHBIMM , KOTOPGIi He gony HU OfiHOTO
HeNpepbIBHOTO CeNeKTopa.
Mpumep 4.1. MNycTb

a(x)=SiV% u(p), a(0) = Si.

B [1]( npumep 1.4.6., cTp. 58) fokasaHo, 4TO OTOGpaXeHNe O ABNAETCA HEMPepbiB-
HbIM 1 110 JONYCKaeT HEmMpepbIBHOTO CeNeKTopa. 3aMeTuM elle, YTo oToBpaxeHue a
C NOYTI BLINYK/LIMK 3HAYEHNAMU. [IefiCTBUTENbHO, TaK KaK MHOXECTBO a()- gyra
Ha eAMHUYHON OKPYXHOCTU Si, TO KaK OTMEUYEHO Bbille B NpUMepe 3.3 OHO MOYTU
BbINyKna. Mpuyem ecnn ayra a(x) MeHblue NONYOKPYXHOCTM, TO OHA MOYTY BbIMYK-
na c noctoaHHoit 0 = 1/4. Ecnn gyra a(x) 60nblue NonyoKpy>XXHOCTU, TO OHa NOYTH
BbINYK/Ia C HEKOTOPOI KOHCTAHTOM 6. A eUHIYHAA OKPYXHOCTb S\ MOUTK BbiNyKNa

C KOHCTaHTOR 1/v/3.

6. OcHosueie pesynsTaTh

Myctb a : E -y 2" - MHOrosHayHoe OT [o] 0T06p:
og no npasuny: oq(x) = (a(i))° Varé E. O4eBMAHO, YTO MHOrO3HA4HOE OTOBpaXeHe

a0 :E -» 22" uMeeT BbINyK/ble 3na4enus.

Teopema 5.1. MycTb E - KOMNaKkTOB NOAMHOXKECTBO MeTPUYECKOrO NPOCTpaH-

cTea X aa :E —»2ii"™ —HenpepbiBHOE MHOTO3HayHoe 0TOGpa>keHne ¢ KOMNakT-

HbIMY, nnouTH y .n MM TaKKe, KOH-
CTaHThbl () NOYTK BLINYKNOCTYN MHOXKeCTB o(a:), X € E ya0BneTBOPAKT ycno-
BIIO:

SUpOM) = < oo.
MycTb (xo,y0) e graph(a). Torga cyujecTByeT HenpepbiBHas cenekuus y oTobpa-

>KeHus a, NpoxoAsAL|an yepes Touky (Bo>Vi> T.e.
y[xo) = lo, V(x) € a(x) V*CE.

/l0Ka3aTenbCTBO OCHOBAHO HA yTBEPXKAEHNAX CNeAyIoL|nuX NeMm.
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Nemma 6.1. MycTb X  MeTpuyeckoe, a Y - 6aHaxoBo MPOCTPAHCTBA, a : X

2V- ub:X -* 2Y~ mHor( oT co ¥ KOMNaKkTHbIMK
. MycTb OT u, a0 u b, bo B Touke x0 u
(5.1) OC int (00(x0) - 60(0))-

Torga oTobpakenue ¢(x) = a(*)/IM*) HenpepbiBHO B XO0.

JokasaTenscTso. CHauana fjoKaxem b CHU3Y 0TOGP: cB

Touke x0. MockonbKy CHU3Y 0T I = o00* bo umeer

BbINYK/blE, 3aMKHYTbIE 3HAYEHNs U CNpaBenBo BknloyeHne (5.1), To cyliecTByloT

HEKOTOPOe 4Ncno T > 0 ¥ OKPECTHOCTb  TOUKM XO, TaKue, YTo

(5.2) £r(0) CI(x) = (00(x)- 60(x)) VX €

[leliTBUTENbHO, TaK KaK OT! r B TOUKE X0, TO CyLL| yioT

4MCNO T > 0 H OKPECTHOCTb  TOUKM XO Takue, 4To

B21(0)CT (x) + BT(0)

Otcropa gns 0 Hen 0 NMHelHoro dy yLolly*l=1
Mmeem
ax  <y* U>< max <y* n>+ wax <y* n>.
>iéuBar(o) v I/IEI'(I;) v ueBré}) y
Ortcropa

Te. T < maxterf*) < /*, > . OTcloga, Tak Kak [ (X)- BbINyKNoe 3aMKHyioe MHO-

KeCTBO B 6aHaXoBOM MpocTpaHcTBe Y, TO

BT(0) ¢ r(»), Vxe un.

[Manee, TaK Kak MHOT b nony CBEPXY B OKPECTHO-
CT1 U, TO OHO OTPaHMYEHO Ha 3O OKPECHOCTH, T.e. CYUIECTBYeT OrPaHIUYEH0e MHO-
XKecTBo G, Takoe, 4To b(x) C G, Vxe U. Myctb diam(G) - D. MycTb e > 0u Takoe,
4yTo e < 2£).Monoxum a = Te/(2D - e) 1 BbiGepeM r > 0 HAaCTONMbKO ManbiM, YTo

a < e/2. Mockonbky a n 6 ABNAOTCA y CHMU3Y OT B

X0, TO MOXHO HalTn TakKyt OKpecTHOCTb U C U To4kK#M X0, 4TO
a(x0) C a(x) + Ba/2(0), b(xo) C b(x) + Ba/2(0), x 6 U.

MycTb Touka x € U. Torga ans noboro y e c(xo) cyujectsyeT BekTop yx G b(x)

TaKoii, 4To

(5.3) yx€a(x) +BoO)wm fly- yx\ < a.
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Monoxum 0 = T/(a + T) < 1. YMHOXMM BKknoyeHne (5.3) Ha B 3amevas, 4To

©a= (1- O)T, nonyunm
(5.4) Oyx € Ba(x) + ©aBi(0) = Oa(x) + (1 - ©)TBI(0).
YMHOXUM BKtoueHune (5.2) Ha (1 - €), nonyyum
(1- ©)TBr(0) C (1- 6)ao(x)- (1- 6)bO(x).
OTciofa v u3 (5.4) nony4um, 4To cyuectyeT BekTop / € bo(x) Takoid, 4To
(55) eyx + (1-0)y’e a{x)
C Apyroii CTOPOHbI, Tak Kak yx 6 b(x) n y* € bo(x), T0
(5.6) y = 6yr + (1-8)T/ Gb{x).

3 cooTHoweHuit (5.5) u (5.6) cnepyet, uto y E c(x). Mposepum, uto |y -y || <e.

[leiicTBUTENbHO,
- #1< I1#- No + (1- Q#)I-11%+(1 B)B- , (1- «Y U<

<lv- #10+ (1- 48411 £ “+ SO +1 =E
Takum obpasom c(i0) £ c(x) + Be(0) Vike . 970 03Ha4aeT, 4To OTOGPaXKeHMe C no-
NYHENPePbLIBHO CHU3Y B xq. AHNOrMUYHO [I0KA3bIBACTCS MONYHENPEPLIBHOCTb CBEPXY

oTo6paxeHus c. o

Mpumep 5.1. NycTb gnu kaxgoro t £ [0,1/2] MHoxecTBO a{t) ecTb 06nacTb c 3a-
MKHYTO#i rpaHnLjoit OADBCO Ha puc.3. Torga oo(*)- TpeyronsHuk ODC. Monoxum

b(t) = {(xi.x3) 6 [0,1] X [0,1]/x2= tx 1},t 6 R. Jlerko 3sameTuTb, 4TO OTOGpaxeHNs

ounbco HO UX nep al\b paspbiB-
HO B Touke = 1/2. 3T0 cBA3aHO C Tem, 4TO 3fecb ycnosue (5.1) nemmbl 5.1 He
BbIMONHAETCA B Touke (-1/2.

MpuBeeM NPUMEp HeNPepbIBHOTO MHOTO3HAYHOT0 0TOGPAXEHMS O TaKOe, YTO 0TG-
paXeHWe 00 He ABNAETCH HEMpPepbIBHbIM.

Mpumep 5.2. MycTb o6nacTb Ha puc. 4 ¢ rpannueii OAFDHO- MHOXecTBO
a(t), t G [1/2,1]. OHo ABNAETCA 3BE3/JHbIM MHOXECTBOM @ ero 84po ao(t)- MHOXecTBO
c rpaHuueit OFEHO. Mpu = 1 MHOXeCTBOM 3Ha4eHuii 0To6paxeHMs ao ABNAeTCS
kBagpat OAEH. OueBnAHO, YTO MHOro3HayHoe oToGpaxeHue a : [1/2,1] — »2/1

HenpepbiBHO BO BCeX TOuKax oTpeska [1/2,1], HO oToGpaxeHue a0 TEPMUT paspbis B
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Puc. 3. Mept X 0T i co

Touke 1. OTMETUM Takxke, uTo 3HaueHns a(<), i e [1/2,1) OTOGpaXeHWH a He 5iB-
NAIOTCA NOYTY BBINYKNLIMM, NOCKONbKY Nto6as Touka Ha Guccektpuce yrna AFD
VIMeeT fjBe NPOEKL{MN Ha MHOXECTBO a( ), 4TO NPOTMBOPEUNT NPeAnOXKeHNio 4.1.

B 06lem cnyyae MMeeT MecTo Crieayioumii PesynbTaT 0 HenpepbIBHOCTM 0TOGpa-

KeHUA a0

Mpepgnoxenune 5.1. MycTb E C X  KOMNaKkTHOE NOAMHOXKECTBO MeTPUYECKOrO
npocTpaHcTea X, Y - 6aHaxoBo NpoCTPaHCTBO; 0Tobparkenne a : E 2Y co
3BE3JHLIMU KOMNAKTHbIMU 3HAYEHUAMU HENPEPLIBHO. TOTAa BHYTPEHHOCTb TOUEK,

e Qo He HenpepbIBHO, NycTa.

MAokasaTenbcTBo. CHauana nokaxem, 4To oTo6paxeHune ao : E -» 2/ nonyHenpe-

pbIBHO cBepxy. MycTb xn -> x0, y,, € ao(xn),yn -> y0. Mokaxem, 4To y0 € ao(x).

MycTb zq 6 a(.10). Tak Kak a ABnseTcH y CHU3Y OT( T0
cyliecTByeT nocneAoBaTenbHoCTb r,, 6 a(x,,) Takas, 470 z,, -» 0. C Apyroii CTOpPOHbI,
nockonbKy yn 8 flo(®n)i To gns no6oro Ae [0,1] umeem

Azn+ (1- Ayyn e a(s,).
OTcioga cnegyet, 4yto Aro+ (1- X)yo € a(ko0)- 9T0 03Hau4aeT, 4T 0 yo e 00(®0). NTaK,

oToGpaxenne ao UMeeT 3aMKNyThlii rpaduk. Tenepb cornacno Teopeme 10 [6] (rn. 1,

n.1, cTp.118) BHYTPEHHOCTb MHOXECTBa TOYEK, F/je a0 He HenpepbiBHO, NycTa. o

Kak nnniocTpauynio aToro yTeepX/aeHna MOXHO paccMaTpusaTh npumep 5.2, rae

oTobpaxeHne ao onpeaeneHo Ha oTpeske [1/2,1] u OHO pa3pbIBHO TONLKO B TOUKe

= 1. OgHako, ecnu 00T a ABNAKTCA 3BE3AHBLIMU

W NOYTW BBINYKNbIMU MHOXECTBaMW, TO OT ao bynet A

VIMEHHO, BepHa creflyloulas nemma.
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Puc. 4. OTo6p a- aor CO He

Nemma 5.2. NycTe E C X — KOMNaKTHOE NOAMHOXKECTBO MeTpPU4YECKOro npo-
cTpaHcTBa X; oTob6paoicenne a : E —> 24T HenpepbiBHO. MycTb fganee MHOXe-
CTBa 0(X) KOMNAKTHbI, 38€3[HbI U YA0BNETBOPAIT YCIOBMIO BbINYKNOCTH C HEKO-
Topoil KOHCTaHTOoN B(x). MpesnonoXKUM, 4TOo AN KaXKAoro X int ao(x) on

] = supxeB ©(x) < 00. Torga 0Tob6pa>keHue a0 HempepbIBHO.

JfokasaTenbcTBo. Mony b CBEPXY' OT «0 fj0Ka3aHa B npej-

noxeHnn 5.1. MoKaxeM, 4TO OHO U NONYHenpepeHO CHU3Y. MycTb yo e int ao(xo).
MpeanonoXuM, 4TO CyLecTBYIOT NOCNEA0BaTENbHOCTL X* -> Xq n 4ucno S > 0 Ta-
kue, 4to d(yo,ao(xk)) > 6 Ans gocTaTo4Ho 60NbWUX K. TOrga MOXHO CYnTaTh, YTO
Bi(yo) C Oo(xo), Ho gns 6onbnTx K -Ba(yo) ®o(@fc) = 0- Tak kak oTobpaxeHue a
TOYEYHO HenpepbiBHO (cM. [1], Teopema 1.38, cTp. 45), To cyujecTByeT Takas OKpCT-
HocTb BgO(yo) C Bi(yo), uto B{0O(Y0) A ®*fc) Ana pocTaTtouHo Gonbwux K. OTcloaa,
nockonbky yo $ ao(xfc), To cyuectsyet Takas Touka yk € a(sfc), koTopas He BugHa
N3 ToukM /o, T.e. Ha oTpeske [/o, /ic] cywecTByeT Touka L, a(xfc). Mo 3amkHyTOCTM
MHOXeCTBa a(x") CylecTByeT wWwap 14 ¢ LeHTPOM Yyii u Takoii, 4yTo Vi <*@&f) = 0-
Byaem caBurath 3TOT Wwap oT Touku LLL K yK no oTpesky [yo>2/*]. B cuny komnakTt-
HocTu a(xfc) cpegn aTX WapoB cyliecTByeT Takoil Wap . KOTOPbIA KacaeTcs MHO-
xecTBa a(xfc) Tonbko B 0AHON Touke z* G a(xk). O4eBMAHO, YTO KacaTenbHas k VE
B TOUYKe 2" rUnepnnockocTs L/, CUNLHO OTAENseT TOUKY YO OT MHOXecTsa ao(xfc).
MycTs HXK- MoNynpocTpaHCTBo, Cofepxaljee TOUKY yii- 3aMeTUM, YTO Mo MocTpoe-
HUIO B 3TOM MONYNPOCTPAHCTBE HAXOANTCA Wwap VE He Hapywas 06WHOCTM, MOXHO
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cuMTaTh, YTO Z* -> zq 6 a(x0). Tak Kak oTo6paxeHWe a yA0BNETBOPAET YCNOBUIO
BLINYK/IOCTY C ONPEAENEHHOH KOHCTAHTOIA, TO CyujecTBYeT wap VK GUKCUPOBAHHOK
paguycar = 1/87T) KOTOpbIii TakxKe KacaeTcss MHOXECTBa B I* 1 KOTOPbIiA HaxoanuTcs
B nonynpocTtpaHcTee H3k (cM. nemmy 2.7 u3 [7], Teopemy 1 wn [8]). MOXHO cumuTath,
4TO N0CNe0BaTENLHOCTL WAPOB VK B MeTpUKe Xayeaopa CXOAUTCS K HEKOTOPOMY
wapy Vo paguyca r. MpeaensHas runepniockocTb  Kacaetcs wapa Vb B Touke %>
3ameTum, 4T ec/u u Gint Vo, TO CyujecTsyeT yucno eo > 0 Takoe, 4To Btu(u) C VK
ANA pocTaToyHo Gonbwwux k. OTcloga cnegyet, uto int Vg a(xo) = *0- 3ameTum
TaKXKe, 4TO B MPeAeNbHOM 3aMKHYTOM MONYNPOCTPAHCTBE HaxoguTes wap VO u
TOYKa yo- 3HaUMT, B wape Bs(yo) CW|eCTBYIOT TOUKH, KOTOPbIE He BUAHLI U3 10. Ho
3TO HEBO3MOXHO, NOCKONLKY Wwap Bi(y0) uennkom BXoAUT B AAPO MHOXECTBa a(xo).

Mony4eHHoe NPOTMBOPEUHe 1 [joKa3biBaeT neMmy 5.2, [}

Nemma 5.3. NycTte E C X - KkoMNakTHOE NOAMHOXKECTBO MeTpPUYECKOro npo-
cTpaHcTBaX; a: E -* 2Rm- MHOrosHayHoe 0To6pakeHne ¢ KOMNAKTHbIMU 3Be3/-
HbIMU 3HAYEHUAMYU U Takoe, 4To Ans N6Oro x int ao[x) ® 1. MpegnonoXKUM Tak-
e, YTO 0TO0BpPa>KeH!s a 1 a0 HenpepbiBHbI. Torga Ans nioboro (xo,yo) € graf(a)
cyljecTByeT HenpepbiBHOe 0To6Gpa>keHue y(x) Takoe, 4To y(x) Ga(x) Vr GE n

y{xo0) = Yo-

JflokasaTenscTso. M oT ao CHU3Y, TO Cyle-

CTBYeT HempepbiBHOE 0ToGpaxeHue y(x) Takoe, uto y(i) Ginta”x) Vi G A7 feii-

CTBUTENLHO, or a0 ToYeuHo To 4ns n6oroy G
int ao(i) cywecTByloT Takne okpecTHocTH ¥ (y), Uv(x), 4to V(y) C a0(x/) V.r' e
Uy{x). Myctb W = UIBE Uy(x). Cuctema oTKpbITbIX MHOXecTB {Uv}vey, (¥ =
Uses® (*))o6pasyeT 0TKpbITOE NOKPbITME KOMNAKTHOrO MHOXecTBa E. MycTb {UV]
KOHE4HOe MOAMOKPbITHE 3TOTO MOKpbITUA. PaccmoTpum {pVj}jel~ pasbueHue egn-
HUubl, cooTBecTBylowee nokpeituio {UVj}j*j u onpegennm HenpepbiBHOe 0TOGpa-
KeHue y cnegylowum obpasom: y(x) = T,& P yAx)Yy HeTpyAHO npoBepuTb, uTo
y(x) Gintoo(®), X G E. PaccMoTpum oTob6paxeHue b cnegytouinm obpasom:

b(x) = {y:y= A0+ (1- A)y(r), AG[0.1]}.

[o] , UTO OHO cHU3y 1 Ana nw6oro x umeem O G int(ao{x) -

b(*)). Toraa cornacHo nemme 5.1 oto6paxenue c(x) = a(x)f)b(a:) nonyHenpepbiB-

HO CHM3y. SICHO TaK)Xe, YTO OHO MMEET BbiNYK/ble 3aMKHYTbIe 3HaueHus. 3HauuT,
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cornacHo Teopeme Maiikna yepes Touky (x0,yo) € graf(c) npoxogut HenpepbiBHas

CeNeKuMs y 3TOro 0TOGPaKeHUU. s}

JAokasaTenbcTBO Teopembl 5.1. MycTb e < 1/(16r/). PaccMOTPUM MHOro3Ha4Hoe
oTobpaxeHue a(x) + Be(0). OHo No npeanoxexuto 5.1 y0BNeTBOPAeT BCEM MpejAno-
noxeHunsm nemmsl 5.3. Moatomy yepes Touky (xo,Ya) € graph(a) npoxogut Henpe-
PbIBHOE OJHOYHAYHOE 0TOGpaXeHue y Takoe, 4To y(x) e a(x)+Be[0), a6 E. Tak kak

y{x) e a(x) + Bi/(iBB(x))(0),a; € E, To cornacHo npegnoxenuto 5.1 npoekuns y(x)

TOYKM Y(X) Ha MHOXeCTBO a(x) op| .n oT! ay
Hbl, TO KaK y)Xe 0TMeueHo Bbille, 6GypeT n oT y. OuesugHo,
UTO 0TOGPAXKEHNE Y ABNAETCH NCKOMbIM. o

MpuBeeM A0CTaTOYHOE YCOBUE O CyLLECTBOBAHMI HEMPEPbIBHBIX CeneKLnii MHo-

rO3HaYHbIX 0TO6P: it ¢ noutn y (6e3 ycnosua 3BesgHo-

cTn). BepHa cnepyioujas Teopema.

Teopema 5.2. MycTb E C X — KOMNaKTHOE NOAMHOXKECTBO MeTPU4YECKOro Npo-

cTpaHcTBa X ; OT a: E 2™ npuyem ans nio6oro x € E

MHOXKEeCTBO a(X) KOMNAKTHO 1 YA0BAETBOPAET YCNOBMIO BbINYKNOCT W C KOHCT aH-

Toil ©(x). lonycTUM TakxKe, 4T0O

5.7 r/= sup 8(x) < oo, diam(a(x)) < * ..
(5.7 sup () (a(x)) )
Torpa uepes N06yl0 TOuKY rpajuka o n NpoxoanT cenek-

WA 3TOro 0TO6PasKeHNs.

MokasaTenbcTBO. CHayana npegnonoxum, 4to int () 0. Mokaxem, 4To 0T06-
paxeHue a TOYEUHO HenpepbiBHO. MycTb yo e inta(ko)- Toraa, B cuny nonyHenpe-
PLTHOCTM CHU3Y OTOBPaXEHNs a ANA N06Or0 e > 0 MOXHO BbIGPATh OKPECTHOCTh U
TOYKMN X0 TakuM 06pasom, 4To yo 4- Ca(x)+Br(0),x G .OTcioaacneayer, yto
(5.8) 10+ B,(0)c (<m())+ B ,(0)-«)
«es.(0)

Tak Kak a[x) yA0BNeTBopseT yCN0BUIO BbIMYKNOCTU C KOHCTaHTOW ©(X), To No nemme
2.11 [7](cm. Takxke [8], Teopema 5) npu e < 1/16T) npaBas 4acTb BKNl4eHns (5.8)
paBHa a(i). Moatomy yo + Be{0) C a(*) V®6 . Mokaxem Tenepb, YTO CyL|eCTBYeT
TaKoe HenpepblBHOe oToGpaxeHne y[x), uTo y(x) 6 a(i) + (Jlatn(o(i)))26 (i)51(0).
[JeiicTBUTeNbHO, NycTb U* e int a(x). Torga, B CUNY TOYEYHOI HENpPepbLIHOCTH, Cy-

ujecTByeT Takas OKpecTHoCcTb U(x), uto u* € inta(x) 'Ix e Ua = U(x)
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CemeiicTBO OTKPbITbIX OKpCTHOCTell {Ux)azE o6GpasyeT MOKpbITUE KOMMAaKTHOTO
MHoxecTBa . MycTb {UXj}jeJ KOHeuHoe NOKpPbITUE 3TOFO NOKPLITUA. PaccMoTpum
{pj}jed~ pasbueHne eguHWLbI, COOTBETCTBYIOL|EE 3TOMY WMOK|)bITiMO H onpeaenvum

ot y Aylolwum obpasom: y(x) = £ j€jpj(x)iij. Ilycti>
J(i) = {j GJ :X GUXj}. Torga, ecnu x G U(xj), to Uj G a(x), noatomy umeem

V(x) = Pj(x)Uj G a(x) + 0( max Wj- wL*I3"*0) C

C n(x) + 0(x)(diam(a(x)))2Bi (0)
Tenepb, ecnu e(x)(diam(a(x)))a < 1/160(x), T.e. diam(a[x)) < 1/40(x), To cornacHo
npeanoXeHunio 4.1 CyLeCTBYeT eAMHCTBEHHAR NPOEKUMs Y(X) TOUKN y{X) Ha MHOXe-
cTBe a(x). Tak Kak 0TOGPaXEHWe a C KOMNAKTHLIMU 3HAYEHUSMU HEMPEpLIBHO, TO
oToGpaxeHue y(x) Takxe ByAeT HenpepbiBHbIM. Tenepb paccMOTPUM 06LW KA Cnyyait.
Monoxum b(x) = a(x) + B*(0), e < 1/(1617). Mo npeanoxeHnio 4.2 MHOXeCTBO b(x)
NOYTK BbINYKNO C KOHCTaHTOI 40[x). OueBnAHO Takxe, 4yto diam[b(x)) = diama(x)+
e. Tenepe, COTNACHO BblleyKa3aHHOMY, 4epes Ml06yl0 TOUKY ero rpaduka npoxo-
ANT 3TOro0 O ecnu diamb(x) < I/(4(4fl(x))) =
1/160(x). OTcioga, ecnn diama(x) < 1/160(x) —e < 1/46(x), To CyLjecTBYyeT Henpe-

pbIBHOE OTOGpaXeHWe y Takoe, 4To y(x0) = y0, y(x) G b(x)V'x G E. OueBugHo, 4TO

oTo6paxeHue y(x) = Pra(x)VIx) 6yaeT NCKOMbIM. o

3amevaHue 5.1. ina npumepa .1 HepaBeHCTBO (5.7) TeopeMbl 5.2 He BbINONHA-
eTca. leficTBUTEeNbHO, ANA eAUHUYHON OKPY>KHOCTH Si umeem diam(Si) - 2, 6=
1/>/3, noaToMy HepaseHcTso diam(Si) < 1/40 He MMeeT MecTo. HepaBeHCTBO
suPxeF.S(x) < 00 TakHee He UMeeT MecTO, NOCKONbKY npumep 3.2 nokasbiBaeT,

4TO 3upxesd(x) = 00.

Abstract. It is proved that through each point of the graph of a continuous set-
valued mapping with almost convex and star-like values can be passed a continuous

sclection of that mapping.
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*

Abstract. In this paper, we analyze the analytic Feynman integrals on the Wiener
space. We define a new concept of analytic Feynman integral on the Wiener space,
which is called the generalized analytic PeynTan integral, to explain various physical
circumstances. Furthermore, we evaluate the generalized analytic Fteynman integrals
for several important classes of functionals. We also establish various properties of
these generalized analytic Fbynman integrals. We conclude the paper by giving several

applications involving the Cameron-Storvick theorem and quantum mechanics.

MSC2010 numbers: 28C20, 60J65.

Keywords: Schrodinger equation; diffusion equation; (non)harmonic oscillator; Feynman-
Kac formula; Cameron-Storvick theorem.

1. Introduction

Let (70[0, T\ denote the one-parameter Wiener space, that s, the space of continuous
real-valued functions x on [0,T] with ®(©0) = 0. Let M denote the class of all Wiener
measurable subsets of Co[0,T], and let m denote the Wiener measure. Observe that
(Co[0,T],M,m) is a complete measure space, and denote the Wiener integral of a

Wiener integrable functional F by

Feynman [5] has introduced an integral over a space of paths, and used his integral in a
formal way in his approach to quantum mechanics. Since then the notion of Feynman
integral was developed and was applied in various theories. For the procedure of
analytic continuation, to define the analytic Feynman integral, we refer the reader

*This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning
(2017R1E1AXA03070041).
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to [5], [121- [15], [18, 20]. Many mathematicians have studied the analytic Feynman
integrals of functionals in several classes of functionals (see, [1] [4], [6, 8, 10, 16,18,

21, 22]). The differential equation

(1.1) SVh A M

is called a diffusion equation with initial condition t/>(u,0) = <p{u), where [ is the
Laplacian and ¥ is an appropriate potential function. Many mathematicians have
considered the Wiener integral of functionals of the form F{A~ix + u), where k is a

real number. It is a well-known fact that the Wiener integral of the functional
(1.2) cxpj'J V(X~bx[t) + u)tftjy>(A~ix(T) + u)

gives solutions of the diffusion equation (1.1) by the Feynman-Kac formula. In the
case where time is replaced by imaginary time, this diffusion equation becomes the

Schrodingcr equation:

(1.3) * = 4y (K us)

with initial condition  ( ,0) = v?(u). Hence, a solution of Schrodinger equation (1.3)
is obtained via an analytic Feynman integral. In particular, the authors found the
solutions of the diffusion equation (1.1) and the Schrodinger equation (1.3) for the
harmonic oscillator V[v) = 2 (for a more detailed study see [8, 23]). On the other
hand, it is not easy to find the solutions of the diffusion equation (1.1) and the
Schrodinger equation (1.3) with respect to nonharmonic oscillator.

In this paper we consider the following functional:

(1.4) Agos +ap)<“j»>(A-b(r)+an),

where h(t) is a continuous function on [0,T]. When h(t) is a constant function, then
the functional F in (1.4) reduces to that of in (1.2). That is, our functioned (1.4) is
more general than that of in (1.2). Therefore, the results and formulas for functional
(1.2) will be special cases of the results and formulas obtained in this paper for

functional (1.4).
7
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2. Preliminaries and Definitions

Asubset B of Co[0, T\ is said to be le-il iantm ifpB isM

for all p > 0, and a scale-invariant measurable set N is said to be a scale-invariant
null setif m(pN) = 0 for all p> 0. A property that holds except on a scale-invariant
null set is said to hold scale-invariant almost everywhere (s-a.e.) [11]. Throughout
this paper we will assume that each functional F : CQJ0,T] -» C that we consider is

scale-invariant measurable and that for each p > 0

ForVe [0,F]andx € Co[0,!T], let (u,x) denote the Paley-Wicner-Zygmund (PWZ)
stochastic integral. The following assertions hold:
(1) For each v e La[0,T], the PWZ stochastic integral (v,x) exists for a.e. x e
Cb[o,T].
(2) Ifu € br[0,T] is a function of bounded variation on [0,T], then (vyx) is equal
to the Riemann-Stieltjes integral JO v(t)dx(t) for s-a.e. x € Cq[0,T].
(3) The PWZ stochastic integral (v,x) hasthe expected linearity property.
(4) The PWZ stochastic integral (v,x) is a Gaussian process with mean 0 and
variance |[|«|| .
For a more detailed study of the PWZ stochastic integral see [7]- [10].

Now we define the analytic Feynman integral of functionals on Wiener space.

Definition 2.1. LetC denote the set of complex numbers, C+ = {AG C : fle(A) > 0},
and letC+ = {A6 C:A 0 and fle(A) > 0}. LetF :Co[0,T] —¥C be a measurable

functional such thatfor each A> 0 the Wiener integral

exists. |f there exists a function J*(A) analytic in C+ such that J*(A) = J(A) for all
A > 0, then J*(A) is defined to be the analytic Wiener integi-al of F over Cb[0,T]

with parameter A, and for A6 C+ we write

Letq 0 be a real number and let F be afunctional such that J*(A) exists for all
A6 C+. If the following limit exists, we call it the analytic Feynman integral of F
78
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with parameter q, and write
f F[x)dm(x) = lim [ F(x)dm{x),
Jenfo ™ A-*-<g Jcolo.T]

where A-> -iq through vaines in C+.

The following theorem provides a well-known integration formula which we will

use several times in this paper.

m,an} be an orthonormal set of functions in L2, and let

Theorem 2.1. Let {qi,
f :Rn —¥€ be Borel measurable. Let Ju = y/vf+ mm+ tig, and let

F(i) =/((0i,i),- =, (a,*)) « 1((3 )
Then

[ F(x)dm(x) = f f({S,x))dm (x)
(21) JColo.T] JcOT]

in the sense that if either side of (2.1) exists, then both sides exist and the equality
holds.
3. An analogue of the analytic Feynman integral

Now we explain the importance of the functionals given by equation (1.4). For a
constant k, when the potential function is given by VA(u) = |u 2, then the equation
(1.1) is called a diffusion equation for harmonic oscillator with potential V. Forf GK,
the function

VI(»)3Y («+0 = (» + )
is the translation of V, and so, the equation (1.1) is called a diffusion equation for
harmonic oscillator with potential Vj.. However, for au appropriate function h{t) on
[O.T], the function
B A =V(«ctM«)) = Mot L()*

might be a nonharmonic oscillator.
Example 3.1. Let h(u) = u2 defined on [0,T]. Then

V3(U) = A(u2+ 2u3 +u*).
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In this case, the equation (1.1) is called a diffusion equation for a nonharrnonic
oscillator with potential V3 because it contains the “ualiterm. The above facts show
that in certain physical circumstances the status of the harmonic oscillator can be
exchanged by the status of the nonharmonic oscillator, which can be explained by

studying the Wiener integral of the functional given by (1.4).

Example 3.2. For7 6 R let h(u) = -u+ yl/u2(y? - 72) defined on [0,7|. Then

bi this case, the equation (1.1) is called a diffusion equation for double-well potential
V4. Thus, the functionals considered in this paper are more useful in applications

than the functionals considered in the earlier papers [1] - [4], [6, 8, 10, 12, 23].

Now we are ready to state the definition of a generalized analytic Fey integral.

Definition 3.1. Leth € Co[0, T] be given, and let F : Cb[0,T] — >C be such that

the function space integral

existsfor all A> 0. // there exists a function J*(A) analytic in C+ such that J*(A) =
J(A) for all A> 0, then J*(A) is defined to be the modified analytic function space
integral of F over Cq[0, T] with parameter A, and for AGC+ we write

Utqg ~ 0 beareal number and let F be afunctional such that the integral A F(x)dm(x)
exists for all A€ C+. If the following limit exists, we call it a modified generalized

analytic Feynman integral of F with parameter q and we write

where A approaches -iq through values in C+

Remark 3.1. If h(t) = 0 on [0,T], then we can write
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and

!C,,[O,T] F(X)dm (X) - J[CO[O,

n F{x)dm(x)

4. Examples involving generalized analytic Feynman integrals

In this section we establish the existence of the generalized analytic Feynman
integrals for several classes of functionals. Let M ([0, T]) be the class of all complex

valued countably additive Borel measures / on ir[0,T].
4.1.The Banach algebra S. Let S be the class of functionals of the form:

(4.1)

for s-a.e. X G Cb[0,T] for some / G M(br[0,T]). One can show that S is a Banach

algebra with norm

Example 4.1. Let h{t) = z/,(s)ds for some zj, 6 [0, T] and let F G S be given
by equation (4.1). Then for all A> 0, we have

[ F(X~bx + h)dm (x)
JCo[0,T]

“2)

But the expression above can be extended to the open right-hand plane A= p —iq

with p > 0. Then letting p -t 0 we obtain that
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4.2. The class Let be the class of all functionals of the form:

F(X) = [aqi> *)pens > (<" %5 = [((«.*»
where f € LAR™) forall 1 < p < oc and {aj.,*** ,a,,} is an orthonormal set in
no,n
Example 4.2. Let /i(i) = /0zh(s)dn for some zt € [0,T] and let F e Then
forall g e R - {0}, the generalized analytic Feynman integral of F exists*and is given

by formula
(4.4) o Fdm(x) = E(r< -

Furthermore, we have
\
\Jca[n.T)DAM*)l <( )5 \m\dc < (~) 'nn. <+~.

4.3. The class of Fourier-type functionals. Let S(R") be the Schwartz space of

infinitely differentiable functions /(it) together with all their derivatives each of which

decays at infinity faster than any polynomial of [u| 1. Let/ be the Fourier transform

of/ £ S(R"), thatis,

(45)

whereu and arein R” and Me£= « £ H- h -

Note that the Fourier transform is an isomorphism on the Schwartz space S(Rn).
hi addition, Akf and Akf are elements of S(Rn) forall fc= 1,2, — , where ] denotes
the Lapladan.

Next, following [9], we introduce the Fourier-type functionals. Let {aj, =+ ,<*} be

an orthonormal set of functions in L2. Ebr / e S(Rn), we set

(4.6) AXI() =B N((@*), *=
and
(a.7) &F{x) = & f({S.x)), fc= 0,1, 0.

The functionals in (4.6) and (4.7) are called Fourier-type functionals defined on the

Wiener space Co[0,7].
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Example 4.3. Let AKF be as in (4.7), and let h(t) = fg zh(s)ds for some z/, €
,T\. Then it is not hard to show that for all g 0, the generalized analytic

Feynman integral of AkF exists and is given by the formula:
“8) A ARF (FJA N (*)AA (,q*/)({?)expj - + N7-(3,zh)2"dv

foreach k = 0,1,+¢¢, and hence

rn-rri, «o»l _ (1A <+o0
[ W AF)ES () < (M) * i(a*nmi<® d
WA m > (< () ia
5. P roperties of generalized analytic Feynman integrals

The following lemma is useful in establishing various relationships among generalized

analytic Feynman integrals.

Lemma 5.1. (1) (Translation theorem). Let F be a Wiener integrable functional,

and letxo(t) =  zo(s)ds for some zq 6 £r[0,T]. Then

(5.1) F(x+x0)dm(x) = exp(-|]z ou.} J[co[u'l] \P(a)exp{(20,:¢)}1n(x).

[
Jc0[oT)
(2) (Fubini theorem for Wiener integrals). Let F be a Wiener integrable functional

on Co[0,T]. Then for all non-zero real numbersp\ and

! ! F(piXi +p2x2)d i
JCD[O,T](UCc)[o,ﬂ (pixi +p2c2) m(“).]) )
(5.2) =/ F(Jri+ti*)dTn(x)
JCafo,n
= ( F{pixi +p2x2)dm{x2))dm {x1).
JCo[0,T] \JCo[0,T] J

In Theorem 5.1 below, we list several relationships in a table format.

Theorem 5.1. Let F be as in Lemma 5.1. Let hj(t) = Zj(s)ds for some Zj €
Z .\ T\,j = 1,23, and let Hq(x) = F(x)exp{( iq)(23,x)} for q € ® - {0}. Then
for all non-zero real numbers g\ and with 91 + 92 0, we have the following
relationships:

1. Commutative:

* | fan/ft \ ranfqi f \
! o/ Fx +y)dm[x))dm[y) = / 1/ F(x + y)dm(y) )dm{x)
Jcn[o,M\jca{o,T] ] JCo[0,\ \IC o[0T\ J
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"2 ni \° 1j,«3
2. Fubini theorem: At F(3+y)rfm(i)ddm(y) = /Co[0N *e F(x)dm(z).

3. Translation theorem: /cAT] F(x)dm(x) = expj*IM I1J foo S H u(x)<bn(x)-

4. Integration formula: fAAT j Soo[o,T\F (x + v)dm{x)dm{y) = O.

Proof of Relationship 1:
First, using the symmetric property, for all A f) > 0, we have

f F(X~ix +p~by+h\+ ) Xm)(x,y)

JcS[o,T]

= [ F(P~by + X~bx + h2 + hi)d(mxm)(y x)

Jc3QT]
It can be analytically continued in Aand (3 for (A /9), and so we have for all (A,/3) 6
C+ XC+,
" (1 F(x +y)dm{x)\dm
- JcO[o,'I](J ¢ 0[o,T] (+y)ydm{ )/ o
63) Jon'l / ranl} \
= F(x +y)drty))dn(x).
JcaPT)\JCo[0,T\ J

Next, let E be a subset of C+ x C+ containing the point {-iqi, ) and be such

that (A,0) € E implies that A+ f) 0. Then the function

wae) = J[Cu[u*,Tj QJ’C 0[]

F(y+z)dm (y)!ldm (2)

is continuous on E and is uniformly continuous on E provided that E is compact. By

the continuity of % and equation (5.3), the Relationship 1 follows.
ProofofRelationship 2:

Using equation (5.2), it follows that for A> 0and >0,

[ F{X~bx +0~by + hi +h2)d (mxm)(x,y)

Jc%[0,T]

= JA 1+ hi .
J[copﬂ F(y/A L4+hiv ) ()

This last expression is defined for A> 0 and /3> 0. For /3> 0 it can be analytically
continued in A€ C+. Also, for A> 0 it can be analytically continued in /3 e C+.

Therefore A6 C+,/3 € C+ implies that e C+, and hence it can be analytically
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continued into €+ to equal the generalized analytic Wiener integral:

5.4 ! e N Gl
64 Jeagqn DT O
where 7 = jfg. Next, note that forall qu g2 GR - {0} with 91+ g2 0, if A-* -ig\
and /9-» -iq2, then > ~*A - Now, using this fact and equation (5.4), we can
” -|/-dm x)\dm
JCo[0,T] \(c aboT] yam( )) 2
= lim F(z)dm(z)

lim /
-i—igi Jc,,[o, T

. 1+3
= lim J/cc(O‘T) F(z)dm(z)
o™ I»
/ F(z)dm{z),
JeopT)

which completes the proof of Relationship 2.

Proofof Relationship 3:

Using equation (5.1) with G\(x) = F(A~4i) (instead of F) and x0(t) = A4/i3(t),
we can write

F(A bx + h3)dm{x) = [ G\(x + x0)dm(x)
jcofo,t] Jc0[oT]

= ey fon GA(i)exp{Ai(z3,®)}

=expl Mz} L F(A iexp{Ai30}

= eXp*f—(thalllBJ - F(A"ii)exp{A(z3 A"ia:)}.
It can be analytically continued in A G C+, and hence we have established Relationship
3 as A—»—iq.
Proofof Relationship 4:
In view of equation (5.2), it follows that for all nonzero real numbers 7 and /J,
[ [ F( +0~by+ hj- hj)dmfci)dm{x2)
JCa[0,M\JCo[0T]

= [ F(yNFrT F 1x)dm{x)
JCo[0,T]



H. S. CHUNG, D. SKOUO, S.J. CHANG

Let A-» -iq and /9-> - i(-q) = ig. Then A 1+ f) 1 -4 0, and hence Relationship 4

follows.

6. Application to the Cameron-Storvick theorem

In our first application, we establish the generalized Cameron-Storvick theorem for
the generalized analytic Feynman integral. To do this, we need to define the concept

of first variation of functionals on Co[0,T).

Definition 6.1. Let F be afunctional defined on Co[0,T]. Then the first variation

of F is defined by the formula:

6.1) EF(®u) = -irF(X + AM) ., x,w 6 Gb[0,T],
ak Ife=o

if it exists.

Now we are ready to state the generalized Cameron-Storvick theorem for the

generalized analytic Feynman integrals.

Theorem 6.1. (Generalized Cameron-Storvick theorem). Let F be an m-integrable

functional on Cb[0,T] such that
sup |EP(a; + N|w)|
Ifel<4

is an m-integrable functional on Co[0,T], and let w(t) = f* zvi(s)ds for some z,, e

£ [0,21. Then
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Proof of Theorem 6.1: First, let Fh(x) = F(x + ft) and G\(x) = Fh(X~ix). Then

for A> 0, we obtain that

[ 6F(A  +hwdm() =— [[ _F(A  +ft+ feiuydm(] |
o[0T alt UCa[0,T\ 3 lfe=o

= 01>uc\¢£[0,71 G¥(x+ Gio)mgxr)nl-!) !

where x0(i) = Xikw[t) = f* Aikzw(s)ds. Now applying the translation theorem for

functional Gx, we get

[ SF{A »X+ ftju;)dm(x)
JCo[0,T)

(6.3)
N S

mxp{Afc(z,,, A~»x + ft) - Afc(zu, ft))}dm(x)J |

The last expression in (6.3) can be decomposed into three terms

[ F( +fydm(x)  A(rw, f)2 / F(A-*x + ft)dm(z)
« jcooT] Jco[0,T)
j {2w,X=x + h)F[X~"x + h)dm(x)
JcOpT]

It can be analytically continued in Ae C+, and hence, we have

f 5F(x[to)dm(x) = f F(x)dm(x)
JCo[0,T) JcopT]

-A(2,,,,ﬂ)2J[ F{x)dm(x) + X f (2w, x)F{x)dm (x).
cOfo, T\ JeOpt\

Passing to the limit as A-* -ig, we obtain the desired equation.
From Theorem 6.1 we have the following corollary, which is known as ordinary
Cameron-Storvick theorem for the analytic Feynman integral.
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Corollary 6.1. Leth(t) = 0 on [0,T]and (2™ ft) = 0. Then for the analytic Feynman

integral we have

We conclude this section by giving two r i ips concerning i analytic
Ffeynman integrals. From Theorems 5.1 and 6.1 we have the following relationships,
which we state without any conditions.

Relationship R1: (Cameron-Storvick theorem, and Relationships 1and

2 from Theorem 5.1)

To state the next relationship, we first give some observations. Let F and G be
functionals on Co[0, T], and let Hgbe as in Theorem 5.1. Then for all x,w 6 Co[0, ]
we have <5(FG)(:elw) = <JF(x|tu)G(i) + F(a:)5G(a:|tu), provided that it exists. Also,
note that SH(x\w) = (-iq)(z3,x)H{x), where H(x) = exp{(-ig)(z3,x)}. Hence we

have

(6.4) <5(f,)(--cH = <5F(z|w) exp{(—tg)(z3,1)} iq(z3,x)F(x)exp{( iq)(z3,x)}

provided that they exist.
Relationship R2: (Relationship 3 from Theorem 5.1 and equation (6.4)).
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+iq J[COIOVT)(N‘X)F(x)exp((rlu)(z:i,z))c/m(x)g
sexp{ 3N} [J[ca{O,Tj Hg()dm[x) + m(zw‘ﬂa)zjc;][ovﬁ Ha{x)dm {x)
o3 fanfq3 1

-S4 (2w, x)Hg{x)dm (x) +iq / (23,2)F (x)exp{(-ig)(z3,a:)}dm(x) .
JCalo.T) JcOfom J

7. Application to quantum mechanics
The equation (1.3) with V(u) = a2u2,a e R - {0} is called diffusion equation for
harmonic oscillator:
(7.1) )= *)- )

with the initial condition ip(u,0) = <p(u) Hence the solution of the diffusion equation

for harmonic oscillator is given by

Ic PINAL2ZOP{ X ~3ydm (X).
Also, when time is replaced by imaginary time, the equation (7.1) becomes the
Schrodinger equation for harmonic oscillator:
(7.2)idub(n,t) = - i Leb(u,t) + aVr/>(u, 1)

with the initial condition ip{u,0) = <p(u). In [8, 16], the authors have described an
approach for finding solutions for the diffusion equation for the harmonic oscillator
(7.1) and the Schrodinger equation for harmonic oscillator (7.2) as follows.

(1) Note that there is a function fm in S(Rm) sothat /m(|) = exp|—a2 J2 /3j£2|.

In fact, fm is given by the inverse Fourier transform of epr'a212 ~o2l.

Now, let Vm[x) = fm((a,x)). Then Vm is a Fburier-type functional, and so, Vm is

also a Fourier-type functional. Furthermore, we have
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for ae. X 6 Co[0,71, where A» = « Also’ we have 1A ()1 A 1 for
m =12 +m, and

Jin~d(T))Un(x) = <p(x(T))expj - a2 i2(s)de|

for a.e. X e Co[0,T].
(2) The solution of the diffusion equation for harmonic oscillator (7.1) is the limit
of Wiener integrals for Fourier-type functionals. Assume that tpis a bounded function.

Then the limit of Wiener integrals for the Fourier-type functionals

lim { izJAnM
m-»00Jco[0T]

is a solution of the diffusion equation for harmonic oscillator (7.1). Furthermore,
the solution of the Schrodinger equation for harmonic oscillator (7.2) is the limit of

analytic Feynman integrals for the Fourier-type functionals,
ranft
lim / tp(x(T))Vm (x)dm (x)
m-iooJco[o,T)
is a solution of the Schrodinger equation for harmonic oscillator (7.2).
(3) In particular, we can choose the following initial condition:

M (A, Ju<Li2
««.0)-*<«)-{ o, ¥ >il2,

where A is a real constant. In view ofthe Schrodinger equation this condition corresponds
to a pulse wave packet with constant amplitude A in the given range of |u| < L2
(see [17,19]). Then the solution of the diffusion equation for harmonic oscillator with

the wave packet is:

Furthermore, the solution of the Schrodinger equation for harmonic oscillator with

the wave packet is:

O(X‘ET))me)dm(x} =A lim IT (— —£ K> n

n‘i’y“”JE}o[u,'l'\ 202T A{j {)a4)

= Asech =Asect\/-i2a2T".

It was not easy to obtain the solutions for the diffusion equation and the Schrodinger

equation for nonharmonic oscillators. However, we would like to obtain the solutions
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of these equations, by using the generalized analytic Feynman integral introduced in
Section 3. Given the potential function V(u) = au2,a € R - {0}, if we take h(u)
so that V[u + h{u)) is the potential function for the nonharmonic oscillator, then we
can conclude that the solution of the diffusion equation for nonharmonic oscillator
is the limit of Wiener integrals for Fourier-type functionals. That is, the limit of the

W iener integrals for the Bburicr-type functionals:
I X~bx(T) + h(T))Vm [X~*x + h)d
ini [[Zo[OT)Ip( X(T) +h(T))Vm[X~*x + h)dm (x)

is a solution of the diffusion equation for nonharmonic oscillator, and the solution of
the Schrodinger equation for nonharmonic oscillator is the limit, of analytic Feynman

integrals for the Fourier-type functionals. Furthermore,

/mon/f _
lim / <p((T)Vm{x)dm (x)
m~*°°JCo[0T]

is a solution of the Schrodinger equation for the nonharmonic oscillator (7.2).
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