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1. Beepenne

HanomHum, 4To MHoXecTBO E ¢ [a, b HasbiBaeTcs f/-MHOXECTBOM (MHOXECTBOM
eAnHcTBeHHOCTH) Ans cucTembl {v5. (K)}ELo>x e [0, ].ecnumusycnosus £ * )=
O, X € [a,£5]VI, cnepyeT, 4To Bce KO3 (MULMEHTHI a,, paBHbl Hynio. B npoTusHOM
cny4ae MHOXecTBO E Ha3biBaeTcs M-MHOXecTsBoM, T.e. E ¢ [a, 6] aBnaeTca M-
MWUOXECTBOM, €CNU CYLLECTBYeT HeTPUBUANbHbI A b, (X), 4aCTUUHbIE CYyM-
MBI KOTOPOTO BIIC E BCIOJY CXOASTCH K MyMio.

Knaccuueckas Teopema Kautopa rnacut (cm. [1] cTp.191 wnm [2]), 4To nycToe
MHOXECTBO ABNAETCA {/-MHOXECTBOM sl TPUTOHOMETPUYECKOH cuCTeMbl. [anee,
IOHr gokasan (cm. [1] cTp.792, unn [3[), uTo Nio6oe cHeTHOE MHOXECTBO ABNAETCA
{/-MHOXeCTBOM NSl TPUTOHOMETPUYECKON CUCTEMBI. OUEBMAHO, YTO NK060E MHOXe-
cT80 E C [T, 7r], ¢ NONOXMNTENbHOI Mepoil ABNAETCA J1/-MHOXECTBOM ANS TPUTOHO-
METPUYECKOI CUCTeMbI. [leliCTBUTENLHO, JHS 3TOTO HYXHO PacCMOTPeTb paj dypbe
XapaKTepucTuyeckoi GyHKLM MHoxecTBa F, rge F C E HEKOTOpPOe 3aMKHYTOe MHO-
XKECTBO MONOKMUTENLHOA MEpbI.

[lonroe Bpems 0CTaBanCs OTKPbITbIM BONPOC: ABNALTCA /11 BCAKOE MHOXECTBO Me-
pbl Hynb {/-MHOXeCTBOM AN TPUTrOHOMETPUYECKOi cucTembl? B 1916 roay A. E.
M [4] 6bin npumep HeT 0 TPUrOHOMETPUYECKOrO psa-

Aa, CymMma KoToporo no4Ty sciogy (n.B.) paBHa Hynio.

°11 npu i FKH MOH PA a pamKax Hay4Horo
npoekTa 15T-1A006 3
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V13BECTHBI TAKOKE NPUMEDLI MHOXECTB Mepbl My/ib, KOTOPbIE ABNSKOTCA A-MHOXECTBa:,
ANs TPIrroHOMETpHYeckoii cuctembl (cm. [1], [5 u [6]).

HesaBMCMMO HeckonbKuMK aBTopamu [7|-[9] 6bin0 A0Ka3aHO, 4TO MYCTOe MHOXe-
CTBO ABNAETCA U-MHOXECTBOM NS CUCTEMbI Xaapa. L138ecTHO, 4To Nlo6oe 04HOTO-
YeyHoe MHOXECTBO ABNAETCA M-MHOXeCTBOM Ans cucTembl Xaapa (cm. [10]).

®. I". ApyTionsiHom n A. A. TanansiHom [11], B 4aCTHOCTH, [J0Ka3a10 4TO ecn paj
no cucTeme Xaapa ¢ KO3 uUMeHTaMM
1) a, = o(v"),

BCIOAlY, KPOME GbITb MOXET, HEKOTOPOTO CYETHOTO MHOXKECTBA CXOAUTCSH K HYMIO, TO
BCe KOIM(ULMEHTBI 3TOTO PAiAA PaBHbLI Ny/I0.

Cnepys . M. Myinersny |12), MmnoxecTBo E HasoBeM M ’-MHOXeCTBOM Anf cu-
cTeMbl Xaai>a, ecnit CyL|ecTBYeT HeTpUBMaNbHbIA psjg ¢ koathduum-
enTamu (1.1), Takoe YTOONX«(®) = 0. gns Mo6oro x e [0,1]\E. B Toii xe
paboTe .M. MywersiH jokasan, 4To MHOXecTBO E faBnsetcs J1'/'-MuOXecTBOM Ans
cucTeMbl Xaapa, TOrAa v TOMbKO TOrfa, Koraa 75 COAEPXKMT HenycToe COBEpLIEHHOe
NOAMHOXECTBO.

B HacTosujeli paboTe JOKa3bIBAETCA aHaNOr BbilIEYNOMAHYTOro pesynbTara .M
MyHicrsiHa gns cuctembl ®p&nknmna.

2. OCHOBHOW PE3Y/IbTAT
AnA (hopMyNMPOBKM OCHOBHOTO pe3ynbTaTa, HAMOMITUM ONpeJeneHye cucTeMbl ®pan-

KNWHa.

MycTb n. .M 1<v< 271 O603HaYUM

am+n rpel/i=0,1,2
ATAT, pns 0<i < 2il,

AN 2K < i<

N KYCOUHO
;1] ¥ nuHeiiHaa Ha Kax-

Yepes ,, 0603Ha4MM MPOCTPAHCTBO 8
Ha [0;1] ¢ ysnamu {a,.i}; n T1e. / e ,, ecnm/ g C[
[OM OTpeske s 58,0, 1= 1,2,...,n. AAcHo, 4To dimSn = n + | 1 MHOXeCTBO

{sn.i}JLo nonyyaeTcs fob6aBneHueM TO4KN ., ,,_ K MHOXecTBY {s,-i,i}"-0 *MoaTo-
My, CYW|eCTBYET eJUHCTBEHHAs, C TOYHOCTBIO 0 3HaKa, GyHknus fn G S,,, KoTopas
opToroHansHa ,,-, u ||/,|[a= 1. Monaras/,(8) = 1, /r(x) = y/3(2x- 1), x e [0;1],
nony4um opToHopMHpoBauHyto cuctemy {/ ( )}£ 0>KOTOpas 3KBUBANEHTHbIM 06pa-
30M onpefeneHa B paboTe [13] u Ha3biBaeTCA cuCTEMO PpaHKNUHA.
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HepasHo, B pa6oTax [14], [15] 6bina joka3aHa TeopemaTuna KaHTopa Ans cuCTeMbl
®paHKNMHa, T.e. 4OKa3aHa, YTO eCM Pig «n/n(*) —0, :¢ € [0,1], To BCE KOAP-
(BULMeHTLI @, PaBHbI HyNi0. TeM CaMbiM, [J0Ka3aH0, YTO MyCTOE MNOXECTBO ABNACTCA
{/-MHOXeCTBOM Anf cuCTeMbl DpaHKNNHA.

Ansaa=2"+unrge =012..,nl<il< 2% obosHauum I, := 8,.2k-j (cm.
(2.1), 1 P = It

CucTemaTuyeckoe n3yyeHue cuctembl ® paHknuna Havanocs ¢ pa6or |17, [18], rae
NONyYeHbl MHOTME BaXHbIE CBOMCTBA 3TOM CUCTEMbI. B 4aCTHOCTM, NONYYeHbI 3HaMe-
HUTbIE IKCMOHEHUMANbHbIE OLEHKM ANs BYNKuWiA dpanknuHa u agep Jupuxne cu-
cTeMbl ®paHKAWHa. 3. YHCENbCKHM [0Ka3aHO Cyl|ecTBOBaHWe NOCTOAHHbIX C\ > 0,
Gi >0,( 6(0,1), ¢ € (0,1), TaKuX 4TO

(2:2) ITAM 1i#0 i-ar-i""1 *e[o1],
(2.3) N, Gii)l<Ca-2 *(£[0,1],
(2.4) K, {x,t) = Y A TkEx) k),

ABNACTCH -bIM AAPOM [lUpuXne cucTembl ®paHKIMHa.
MycTb Xu-HekoTopoe Yncno u3 [0,1] u an = /b(0). L3 (2.4) n (2.3) cnegyeT, 4To
akfk{x) — 0, Korga X  xq. OUeBUAHO TaKXKe, 4T0 a« = 1. CNesoBATENbHO,
N06OE 0HOTOUEUHOE MHOXKECTBO IBNSETCS J1/-MHOXECTBOM ANS CUCTEMbI ®paHKM-

Onpepenenue 2.1. MHO>XKecTBO E HazoBeM M*-MHO>XKECTBOM ANA CUCTEMbI PpaH-
KNWHA.. eCNV CYLLeCTBYET HeTpUBNANbHbLIA pAj anfn(x), ¢ koadhuymeHTammn
(1.1) Takoif, 4ToO anfn(x) = 0, gnsa no6oro x € [0,1]\-6.

B pa6ore [14] aHoncuposano, a B [15] fokasaHo, 4T0 Nio6oe cHeTHOe MHOXecTBO fie
ABnfeTcA M “-MHOXecTBOM Ans cuctembl ®panknuHa. B pa6ote [16] gokasaHa Gonee

obujas Teopema.

Teopema 2.1. MNycTb pag Ub=o0 akfk(x), ¢ koappuynenTamn (1.1), cxoguTcsa no
Mepe K MHTerpupyemoil (hyHKLMM U BCIOAY, KPOME 6bITh MOXKET, HEKOTOPOro cyeT-
HOTO MHOXKECTBa, BLINOAHSET s supn 15Zfc=o akfk (x)\ < co. Torgapsia Ai?=n akfk (c)
ABNseTCA pAfoM Dypbe-®paHkiinHa 3T ol yHKLuN.
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B HacTosujeii pa6oTe J0KAa3bIBAETCA NONHLIA aHanor Teopemsl .M. Mynieranaans
cucTembl GpaHKInHa.
Teopema 2.2. [Ana Toro, 4To6bl MHOXeCTBO E ABnAn0CL M*-MHO>KecTBOM Ana
cucTeMbl PpaHKIUHA, HEOBXOAUMO 1 AOCTATOUHO, 4TO6L E CopepKano HenycToe
COBEPLUEHHOR NMOAMHOXECTBO.

JfokasaTenbcTBo. Heo6xoAuMOCTb. [lonycTUM MHOXecTBO E sBnseTcs M * MHo-

KECTBOM ANA cucTemMbl ®paHknuHa. TorgacyujecTByeT HeTpUBUANbHbIi pﬂu/f_oakfk(x
¢ koathnueHTamu (1.1), KoTopblit BClogy BHe E cxopuTcs K Hynw. B cuny Teope-

Mbl 2.1 MHOXecTBO .E-mecueTno. O6o3Hauum Sn(x) = akfk(&), =01,...,

X € [0,1]. OueBNAHO, TTO MHOXECTBO

9>{>eM ~ H i»0)- 1 <ML 3B >
ABNAETCA GOPENEBCKMM MHOXECTBOM 1 COAepXuTca B E. B cuny Teopembl 2.1 .MHO-
KecTBo B-HecueTHo. Bcsikoe HecueTHOe GopeneBckoe MHOXECTBO COAEPKUT HemycToe

CcoBepUIEHHOE MOAMHOXECTBO. C/lel0BATENLHO, MHOXKECTBO E COAEPXUT HenycToe co-
T80. H Th

[ocTaTouHOCTb. HYXHO [0Ka3aTh, 4TO /l0GOE HeMycTOe COBEPLIEHHOE MHOXeE-
CTBO Mepbl HyNlb ABNSETCA M ‘-MHOXecTBOM. MyCTh P-MenycToe CoBeplieHHoe MHO-
KecTBo Mepbl Hynb W a := minfa; :a: £ P}, b := max{x : x G P}. Torga P =
[a, bI\tUSLi (nk,t>k)), rae nHTepBanbl (ai,bi) B3aMMHO HenepecekawTCs U He UMe-
10T 061X KOHL0B. MpryemM KONMYECTBO HEBbIPOX/EHHbIX MHTEPBaNoB (a*..bk) cueT-
Ho. Mo uHAykuuu onpegenum otpesku Ay, j = 0,1,2.... Monoxum [o := [0,a],
Ai [6,1]. O603HauMm 61 = supfe 1(6*. —a*.). AcHo, 4To 0 < 6\ < 1. MoaTomy
cywecteyer j\, Takoe uTo (by, —0.-) > 4~ Monoxum Ar = [3,631]

JlonycTum onpefeneHbl oTpesku [4, yncna 5qjq, q = 1,2, co cBOicTBaMu:

1) A.+1=Kn.,];
(2) Hu- aiv> ,jn { ...,._};
(3) 6q=sup{bk- ak :k jpp=1,2..q- 1}

O6o3Hauum 5m+i = sup{6/_.—ak :k jp,p = 1,2, OuyeBMAHO, 4T0 0 < < +i <
1. MoaTomy HaiigeTtca jm+i , 4 ....jm}, Takoe uTO - oedmil > — Mo-
noxus A1+2= [rjm+1,6jm,.], nonyunm otpesok At +2 u yucno dm-n, obnagaiouine
cBoiicTBamu: |[AT+2| = 6Jm+, - ajm+, > n B+ = sup{6fr- ak :k @ jt,p =

1,2,...m}. Takum o6pasom, No WHAYKLUMH ONpeAenvm oTpeskn An u uucna Sq jq,
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<= 1,2,...,. koTopble yaosnetsopsioT 1.-3., flo = [O.a], Ai = [6,1]. Ycnosue 2.
o6ecneunBaeT, uToGbl JHA KaXA0r0 MHAEKCA K CYL|eCTBOBANO eANHCTBEHHOE <, Takoe
4T06bI BbINONHANOCH (€j,,bje) = (ma-b"). MoaTomy

(2.5) ApplA4=0, korja pT4<,

P- [0,1]\ [0,a)U<*.1u (0 («Asbl ]J m
Onpegenum dyHKuUK ri>k(x), k = 1,2,..., cnegylownm obpasom. O6nacTb onpegene-
HUA QyHKUNN DK ABNAETCA MHOXecTBO D* := = A/- Monaraetca

e oy -1 8 oA

[Manee, ana k > 2, yHKUMA (K onpegenseTca no popmyne

n PN f ok i(x), korga X € Ufc_i
- , Korpa X € A*.
OuYeBUAHO, 4TO YHKLNM (M NpinnwwoT pauy NbHblE . YuuTbl-

Baf, YTO MHOXeCTBO P MMeeT Mepy Hynb, BbiNoNHAeTCA (2.5) n nHTepsansbl (0*, .)
He UMEIOT 06UMX KOHLOB, NONYYUM YTO N1060e ABOMYMO-PALMONANLIIOE 3HAYEHNE
r € [O, 1] npuHumaeTca GyHKUMAMKM (K NpU BCEX K HayMHaa C HEKOTOpPOro , 3a-
BUCSWLErO OT T.

Monoxum

Ou4eBUAHO, YTO i/>-neybbiBatoLjan HYHKLUSA, MPUHUMALOLLas BCE iBONYHO-PALNOHANbHbIE
3Ha4yeHuna u3 otpeska [0,1]. CnegoBaTensHo, ~-HenpepbiBHa Ha oTpeske [0,1]. N3 (2.6)

u (2.7) cnepyert, 4To

(2.8) G0)=0 u V()= 1-

Kpome Toro, u3 (2.8) cnegyet, 4uTo dyHKunA  Ha oTpeskax [~ npuHUmaeT nNocTo-

AHHbIE 3HAYEHUSA.
Monoxum

29 < = 0 ()‘J =01.2,..

n
o

(2.10) sn(x) = akfk{x), n=0,12
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13 (2.4), (2.9) u (2.10) umeem
S.(x)=  TC.(bdip(t), =0,12...

MycTb X £ P. MockonbKy P -3aMKHYTOe MHOXeCTBO, TO cyljecTByeT T/ > 0, Takoe 4T

(*-4X+V)ftP -0.
CnepoBaTenbHo, Ha (x —i],x + %) GyHKUMA "-NOCTOSAHHA U NO3TOMY
(211) IS.MI- | * £
W3 (2.11) n (2.3) cnepyet

[s..W I<ci.2w ~"4
OTcloaa nmeem

(2.12) v, -

=0, korga X &P.

no= \J do() = 1.

Ans 3aBeplweHns oKasaTeNbCTBa TeOPeMbl HaM 0CTaeTCs 40Ka3aTh, YT

13 (2.8) umeem

(2.13) an=o(y/n).

MycTbn = 2;°4-n, rae /i= 0,1,2,...,n 1< v < 2L Torgamns (2.1), (2.9) nmeem

(2.14) N.(»)*M<)|<

Ea(t <) <] 5 YN
w,«, (cn)-< (., )% ()l
W3 (2.2) cnepyer, uTo
rge C3 —HeKoTopas NocTosHHas
A 13 HenpepbiBHOCTU (yHKUMK ¢ A (2.1) cnegyeT, uTo

(2.16) ) (V'(-Vi) - ®(*n,i-i)) = 0
W3 (2.14)-(2.16) cnepyeT (2.13).
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3. 3aKNOYNTENbHbIE 3aMeyanHns

3amevyanue 3.1. [ins psga, NOCTPOEHHOTO NpH 40Ka3aTeNbCTBE TEOpembl 2.2, no-
MUMO ycnosuit (2.12) u (2.13) BbINONHAETCA Tak>Ke Cnejyloliee ycnosne:

(3.1) A |Bu/H(A0| < 00, Korpa x &P.
«-0
AokasaTenscTso. MycTb x 0 P. Torga x € (a;, b,), Ana HekoToporo i unm x € [0,a)
nunn X € (b. 1] (ecnu 3T MHTEpBanbl HenycTbl). O6CYAUM TONbKO cnyyaii X e (8- h).
Aj = (a,,bi), ans HekoToporo i. MycTs i) = miufar—a<. bi—x}. duUKcupyem HekoTopoe
HaTypanbHoe K, C yCNoBUEM 2 K < Ij U olenum

(%)

O6osHaunm //,, = [ATr. j$t], p = 1,2,..., 2*+1 Yepes p(*,A) 0603Hauum paccTosHue
TOYKW [0 MHOXecTBa A. Y4nTbiBas, 4T0 yHKUNA ( Ha (oi,bi) NocTosHHa, ANg a,,,
cycnosuem [n] ='k, nonyunm

(3.2) kKi<E [ W (< E Gg AW W W .
I p:p{x.H,)>4 v
rae W ) = *(3&r) - v-(r1).
N3 (2.2) umeem

(3.3) wrEl/(1)] <c, m»m
CHoBa npumenan (2.2), u3s (3.2) u (3.3) nonyyaem

(34) e i>/-(»)i<a m*mE el g
frl=* e p:p(x.H,)>N)

(1]
Yuutigas, uto Lp=i Vp(») = V(1) —V'(0) = 1u |T—L1,|+ p(f,.9p) > p(x, f1,.), u3
(3.4) nonyuum

(33) E Kami<c, 2°E E «F*M U Ne J<a- "-c 7
[n)=fc [Ml=kp:/3(*,SIp)>u

BbnTonHenue (3.1) cnegyet u3 (3.5). o
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Onpegenerune 3.1. MHo>kecTBo E Haszosem J1 M '-MTI00iCECTBOM AN CUCTEMbI
®paHKNMHA, e CYLeCTBYET HeTPUBUANLHbIA PAA £2 **»/«(*)> G Kon(dbIMCH-
TamH a,, = o(y/n), KoTopblii BHe E BCloAy aBCONOTHO CXOANTCA K HYNI0, T.K.

YJ]anfn(x) =0 u "2 |On/n(a)| < 0o korga x £ E.

3ameyaHue 3.1 yKasbiBaeT Ha TO, 4TO ANA cUCTeMbl ® paHKNUHa Knacc /17*-MHoXeeTn
coBnajaeT ¢ knaccom J1/1/'-MuoxocTn.

Abstract. Tn this paper, we prove that a set E is an W -set or an AM'-svt for the
Franklin system if and only if E contains a nonempty perfect set.
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Abstract.. In Ibis paper we study the maximal operator for a class of subscquences of
strong NOrlund logarithmic means of Walsh-Fourier series. For such a class we prove the
almost everywhere strong summability for every integrable function /.

MSC2010 numbers: 42 10.
Keywords: Walsh function, Strong Summability, Norlund means.

1. Introduction

We denote the set of all non-negative integers by N, the set of all integers by Z,
and the set of dyadic rational numbers in the unit interval I := [0,1) by Q.
particular, each element of Q has the form forsomep,n 6 N, 0< p < 2”. Denote
In :=[0,2-3V) and Tn (X) := [T+ X.

Let 7o(a:) be the function defined by

The Rademacher system is defined by
r,(*)=ro(@2nx), n>1

Let tuo.wi,... denote the Walsh functions, that is, wO(x) = 1and ifA= 2"» +
»»»»» 2n* is a nonnegative integer with > > mm> ns,then

wk (x) = 1,,, (¥)eeer,,. (X).

Given Xe I, the expansion
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where each xb = 0 or 1, will be called a dyadic expansion of x. Ifaze J\Q , then (1.1)
is uniquely determined. Fbr the dyadic expansionic Q w e choose the one for which
lim Xk = 0.

The dyadic addition of x,y e Min terms of the dyadic expansion of x and y is
defined by

p(A,v) M@+ y = A2 Ixk - YK\ 2- (1+1>,

If/ € 1(1), then by
J<»>- 3 [(s1» . (*)*
I
we denote the n-th Fourier coefficient of /
The partial sums of Fourier series with respect to the Walsh system are defined by
ni-1
Sm (/) = A2 f (m)wm(y).

Forn e N let us introduce the projections

=52 (%)) = 2" \] fs)d*  (J €L\ (1),*61),
In(x)

£, (x;/

and
£*(*;/) :=sup En (as;|/]) .
new
The question of almost everywhere convergence is one of the important questions in
the theory of Fourier series. It is well known that for Walsh and trigonometric Fourier
series the logarithmic means defined bj’

Sk(f n
n k' * &k
have a nice behavior, in the sense that, for each nitegrable on the unit interval function
1, these means converge to / almost everywhere. Thus, to examine the logarithmic
means is a good idea, because for the partial sums there fire divergence results. For
instance, for Walsh system it is known that for each measurable function ¢ satisfying
d(n) = o(uMo"u) there exists an integrable function / such that

fmtow * < my

and the Walsh-Fourier series of / diverges everywhere (see [II).
12
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The notion of Norlimd logarithmic rncans is similar to that of logarithmic means,
the difference is that, the denominators arc taken in the reversed order. More precisely,
the Norlund logarithmic means are defined by

In [5, 6] it. is proved that these means are much more closer to the partial stuns
than the logarithmic means. More precisely, we proved that hi the function class
above (see the result of Bochkarev [1]), there exist a function and a set with positive
measure, such that the Walsh-Norhmd logarithmic means of the function diverge on
that set. This also says that, in this point of view, not all classical summation methods
improve the convergence properties of the partial sums. On the other hand, in [9],
the author studied the maxima! operator for a class of Norlimd logarithmic means of
Walsh-Fouricr series, where only the logarithmic means of order 2" was considered.
For such subsccjuence we have proved the almost everywhere convergence for every
int.cgrable function /. In [22], Memid enlarged the convergence class of subsequences
given in [0].

The stroug summability problem, that is, the convergence of the strong means

(1.2) K (*,/)-Ne )f. >eT, p>o,

was first considered by Hardy and Littlewood in [18], where by S]: (T.f) we denote
the partial sums of Fourier scries with rcspect to trigonometric system. They showed
that for any / e L,-(T) (1 <r < 00) the strong means tend to 0 a.e., as n —» 00.
The Fourier series of / 6 L\(T) is said to be (TT,p)-summable at x € T, ifthe strong
means (1.2) converge to 0 as n —t 0o. The {H.p)-summability problem in L\(TT) has
been investigated by Marcinkiewicz [21] for p = 2, ami later by Zygmund [31] for the
general case 1 < p < 00.

In [25], Schipp investigated the strong (H,p) and B M O-aummability of Walsh-
Fouricr scries. Among others, he gave a characterization of points at which the Walsh-
Fourier series of an integrable function is (Tf,p)- and BM O-summable. This result
is an analogue of Gabisonia’s result, obtained in [4], that characterizes the points of
strong summability with respect to the trigonometric system.

The results on strong summation and approximation oftrigonometric Fourier scries
have been extended for several other orthogonal systems, see Schipp [31, 34], Fridli
and Schipp [2,3], Leindler [20], Totik [29], Rodin [24], Weisz [40], Goginava, Gogoladze

13
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[13, 12], Gogolatlzo [15, 16], Glukhov [17], Gogl [10, 11], Gogi N

Karagulyan [14] Gat, Gogi Karagulyan [7, 8], Karagidyan [19], Oskolkov |23].
Iu this paper we study the maximal opearator for a class of subsequences of strong

Norland logarithmic means of Walsh-Fourier scries. For such a class we prove the

almost everywhere strong summability for every intcgrable function / .

2. Main resijits

The strong logarithmic means are defined by

E«<*il)i= (NE — rF )"
Let
(2.1) 1= 2% <)+ 2"a(n) + oot 2°r<n),
where
i (n) >a2(n) > ~mw> ar(n) >0, r=r(n).
(2.2) M™ = 2e%<"> + 2%%n(Q + ... + i=0,0,...r-1

The following arc the main results of this paper.
Theorem 2.1. Letp > 0 and
3> £'.?72 < "

Then
N upE« () >all<cE i, /6 ().

making use the well-known density argument due to Marciukiewicz and Zygmuud
we can show that Corollary 2.1 follows from Theorem 2.1.

Corollary 2.1. Let the condition (2.8) be satisfied and/ 6 , (1). Then

1y N (<,))-/(<)[» 10
u. mn-j

fora. e. Te Aandfor anyp > 0.
14
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Corollary 2.2. Letf € Li (1), m,

27 +'in, 7n 2 2MN/<H> and p > 0. Then
_L
oA me

lora. coael.

Corollary 2.3. £e*/ 6 L\ (M) and p > 0. Then

2
fora e X6 W.

3. Auxiliary propositions

In [25], Schipp introduced the following operator (p > 1)

rW (*;/):= ~23 ~ (*)/<*+ *+ i L]

The proof ofthe next lemma can be found in [25] (for p —2) and in [7] (forp > 2).

Lemma 3.1. Letp> 2. T/len

wpA[{* 6 1:Vw - 1) > n}] < c(p) I/,

I n+4 \
*H><r g o= = (

G E is.c«inn L]
Lemma 3.2. Letp > 2. The following inequality holds:
AE> (%)< <*« (% 11).

ProofoflLemma 3.2. Observe firstthat for p = 2 the lemma was proved in [25]. Let

/-1, ifj=0,1,..%-1
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In [25], Schipp proved that

(3.1)
A j=0

SJ«v(*)+ M+ 12)1,.(1), m<2*,

{“ i 14V 2"-1
i&AsilN"! -« p X)

We can write

by taking the supremuin over all {a,,} for wliich
_ Lilu
£53 len, ()N <1, /P+1/4=1.

Let us assume that p > 2. Prom (3.1) we have

1201 1
£o ., b M

SHE A(N/(FHOE «AMFWE Sc2 T - <cheomr]

tjco-w/ [<*+0-— m|

+ Ewm (X)) 1 (x+ 1) (m+ 1/2) 1n (0 di\

=3\ +J-+ 13-

_ W_- 20W>
|fe=i 1
for J\ we get

as) noo< yil(*+i)ix;2%-u,,(i)



' Ouro) meu - Ieottef 1 > )

3pam nea am.  nog

Z<d *(/1 "= {dAd/uZP > If (sS)
a’etuijss auy uiejqo an ( -g) XpuanbasuoQ
. i=>*lIvIl
'd/uZzo= Hvi <ns auzO >
M x| 5 >
nM IRV 1
@V | dne <k =

ris*lvll / r\
P(1)4(fix) Jichs ri/Z=hp /(") V11 |t =

/o a)«l«r-  (1Ff)nd] 2 1
us(+) vz i if 1@

(1 = 6/1+d/x‘z<d)
urejgo  Auilviibani 3nnog-jjopsireji ptre Xjipmhatit staap]OH asn as.xij

jipltfa+ 2+ X)/1 () % _fz'X  f | ZK ) x
\ 1 z(i+) ] 171

0=f «n 0=;
m\(fa+ r+ 3)/1 (?) 4b-cZ Iy ) tef| [X =
1, e(i+rt

0=r 0=,
»o[(>1%) efli(fs £ »+ *)/1(») fill-r2j[ /| H =
S b(tH) T- s
o=f »
P2 a) W\ I(f3+ Ve %) 1 ) trl,-fZ X J > f (*oc
an«y oM (E+E) uiojj maux -2 F\ = () / jvqi aas o /Cseasi jj

WOMOUis jo a0.vaouanmMo3 auaHMnu3na isom v
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< SO (X414 eVIK (x; )dt <20V, (Gl , p> 2,
i-0
where
PAK*)= £ (*)»-(a)«-(0 -
m=0
Analogously, wc can write
3.7) 13 < c2(1+1/f)nI\F(x +t)\dt< c2n/pVn (a;|/]), p > 2

L
Combining (3.2) and (3.5)-(3.7) we complete the proofof the lemma.

4. Proof of Theorem 2.1

Observe first that in view of (2.1) and (2.2) we can write

E(cToapg)¥

1 > (o M)l le
> U mw -j
Since forj = 0,1,...,2e‘t") —1

(®»/) = < «((@;/) + t02,1(,) 0K Sj (x:/ ) » (),
we obtain

4 <> < (N is,,e<R)

Iteratinj the last inequality we obtain

L NVp L k) \"
ro) n—n LU A L R 16j (x; 1 () *seu2a,(n))| \
mn( /) - & ARV pe— J
r-2 /[ (+1\ lp
+53 I~F— ) [52"4xC") (x; fw 3a (n) *mmtb20,,(,,))|-
*=o\ In" )

Next, since

u Kk-j= DKW IDj,j=12,..,2*- 1,
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Eii>;]) £ | M ' ( t T
r—211/ \I'p r-1 /1\VP
+e (TIE-A) (tir1) <.,(>" U1

) g

Let > 2. Then using Lemma 3.2, we can write

(4.2) K (m/mant w r
“mnro1 1A 15i C»! et H V. oaM -i)
/=0 =2
~ 11 2~ X) 122 (*;/w 20,<nneew2, (N2, .+1cn)_1) |p
1=0 =2

A2 (# *+« (K /INe2e<,,, seeu/2c(n)W3a.+t(n,_"y

< 2 *53 (vE#> (3;]/]))P < 2aa+l () (K (p) (*;|/]))P.
Combining (4.1) and (4.2), and taking into account the condition (2.3) ofthe theorem,
we obtain
4.3) ifei (9 <c{*?@; U+ VM (B 1))}, p>2

Now let 0 < p < 2. Since

we can write
(4.4) Lg, (*;/)<c{s-(z;|/]) + VOL(*il/1)}. O0<p<2.
Finally, taking into account the inequality

Als €1 :BXC;ip > A<, 161, (1),

from estimates (4.3), (4.4) and Lemma 3.1, we conclude the proof of the theorem.
Theorem 2.1 is proved.
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Abstract. In Ihe present paper, estimates of the partial moduli of smoothness of
fractional order of the conjugate functions of several variables are obtained in the
space C(T"). The accuracy of the obtained estimates is established by appropriate
examples.
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1. Introduction

Let R" (n > J; Rl = R) be the n-dimensional Euclidean space, of points x =
(x\,...,xn) with real coordinates. Let B be an arbitrary non-empty subset of the set
M = {1,...,«}. Denote by \B\ the cardinality of B. Let xn be such a point in R"
whose coordinates with indices in M \B are zero.

As usual, lot T = [—mw] and let C(T™*) (C(T*) = C(T)) denote the space of al!
continuous functions / :Rn —R that are 2jr-periodic in each variable, endowed with
the norm

= max|/(*)|.

If f ( L(Tn), then following Zhizhiashvili [14 , p. 182], the function

Sh T tIv>Ti+$e),

we call the conjugate function of n variables with respect to those variables whose
indices form the set B (with /c =/ forn = 1).

°The author has been supported by Shota Rustaveli National Science Foundation, grant D 1/9/5—
00113
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Suppose that / e C(T”), 1< i <n, and fte R. For each x e R", we consider the
difference of fractional order a (« > 0):

B2 f(x) = 5Z (-1)% () F(Xi,.. xi-i,xi+ jh xi+i,.

whore A~ ¢ A = °<°- )~ -I+Il forj > iiand ~ ° A =1forj = 0.
Then we define the partial modulus of smoothness of order a of a function / with
respect to the variable x, by the equality (see ([2], [10]):

Wa, (/;*)= sup [[N2(N)/|.
Forrt= 1 we write " (N)f(x) = A“(ft)/(x) and wa<(/; §= (G2

DeQnition 1.1. We say that a function < is almost decreasing in [o, 6] if there
exists a positive constant A such that <p(t\) > A< ( )fora<t\ < < b,

Definition 1.2. If for / e C(T) there exists a function g € C(T) such that
lim/,_»o+ ||[N~*A"(N)/ —( = 0, then g is called the Liouville-Grunwald derivative of
order a > 0 of / in the C(T)-norm, and is denoted by Dcf.

Let ®0 (a > 0) be the set of nonnegative, continuous functions >p@) defined on
[0. 1) and satisfying the following conditions:

1.416) = 0,

2. p(6) is nondecreasing,

3.f'*® dt- OMS)),

4 gSU-0OM fl).

Note that when a = k is an integer number, then the class ®a coincides with the
well-known class of Bari-Stechkin of order k (see [1]).

Let >be a nonnegative, nondecreasing continuous function defined on [0,1) with
&) = 0. Then by C(T™) (i = I,...,n) wc denote the set of all functions
/ 6 C(T") such that

wo,((/;i) = 0 (v>Ne), «4 0+, i=1,..n,
and define
i (w €(T")) = *C()
In tlie theory of real-valued functions there is a well-known theorem by Privalov on

the invariance of Lipschitz classes under the conjugate operator /. An analogous
23
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result, in terms of modulus of smoothness of fractional order, has been obtained
by Samko and Yakubov in [8], where they proved that the generalized Holder class
11" (9;C(T)) (P€ ®a,a > 0) is invariant under the operator /. In the paper (9) by
Simonov and Tikhonov, embedding theorems for generalized Weyl-Nikol’skii classes
and for generalized Lipschitz class;s are obtained. In the paper [12| by Simonov,
Besov-Nikol'skii classes are considered and embedding theorems for some classes of
functions are established.
In the present paper, we obtain exact estimates of the partial moduli of smoothness of
fractional order ofthe conjugate functions ofseveral variables in the space M (ip\C(T'*)),
provided that p€ ®,, a > 0. Notice that similar results for classical moduli (if
smoothness (that is, when the moduli of continuity of different orders satisfy Zygmund’s
condition) were obtained in the papers [3], [5] - [7], [13].

Now we state some auxiliary results that will be used iii the proof of the main
result of this paper.

Lemma 1.1 (sec [4]). Letf C G(T), and let Wk(f',t) nni b>k+H(f'-.t) be the moduli
of continuity of f of k-th and (k + 1)-th orders, respectively. Then for all t € [0,1)
the following inequality holds:

Wic(/;<2) < Awk+ (+/;«),
where .4 is a constant, which is independent of f .
Lemma 1.2. Letf e 11°(f.C(T")) and ip € ®,, ct > 0. Then the following
asymptotic relations hold:

(1) ojai(ffiy,s)= OMS)), i= 1. , S->0+,

(2) dek({<E<D = 0(p(*)[In*|), <J-40+ .

Proof, “he statement (1) of the lemma is a multivariate version of Theorem 2 from
[8 and can be proved exactly in the same way with some minor changes. So, we have
to prove O11I3 the statement (2) of the lemma.

Let »*} = (0,., ,0,M,0,..0). For a given a, there exists a natural number p such

thatp—1<a <p.
By the definitions of the difference of fractional order and the conjugate function,
we can write
(-2Tr) BE(I»)I<(*) =
24
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= “)3 1H(* - jhw + *«}) - /(* - 3bl} =~ *«)] «* L ,bi+
+3 0 LAY()/(* + *{i})potjd.Si- I w_1a"(n)f(x - S{E)«'tyrfs, =
=£( iy () fHOGh{KD+Mx,hw )+ J2(x,/t,f).

Foreaciij (j = I,...,00) we have

INe . *,4)15/1 * “b
where A is a constant independent of /.
Taking into acconnt Lemma 1 and substituting s, by sj **', wc got
Ne A, )|<Mf e <A2J "Sh!

where Ai and A2 are constants independent of /

Now using the inequality u)p.,(/; s,) < Cu},, si) (see [H])>where C is a constant

independent of /, we obtain

Ne (% fti)Il < AL £ Q- 100,

where 13 is a constant independent of /.
It is easy to see that
117 (x,.n {K))I| < Nacsib(/, M)A, i= 1,2,
where / is a constant independent of /.

In view of the above estimates for Ij(x.!>{)) (J —I,--, 00) and J,(.r, /<{/)) (> —
1,2), and the condition ip6 0, we complete the proof of the statement (2). Lemma
1.2 is proved. [m]

The next two lemmas can be proved in the same way as the statement (Lemma 3)
given in [1, pp. 498-499].

Lemma 1.3. If 9G ®,(» > 0), then the function Lr- is almost decreasing in
0,1]
Lemma 1.4. Tfpe ®n(a > 0), then there exists a real number f) (0 < f) < «)

such that the function is almost dccrcusing in [0,1]

Notice that Lemina 1.4 actually implies Lemma 1.3.
25



2. Estimates for the partial moduli of smoothness of fractional order

OF THE CONJUGATE FUNCTIONS
The following theorem is the main result of this paper.

Theorem 2.1. The following assertions hold:
() Letf GHa(ip:C(T")) and ipG ®a, a > 0. Then

(2.1) UaAfB'S) = 0(y>(«)[INAIRT'1), t €3, -»0+,
(2.2) wa.i(/8)6) = 0(¥>( )L || ), i<=M\B, tf-»0+ .

(b) For each B C [/ there exists afunction G such that G G w/(/><C(T")) anrf
(23) blc1&B-«) > Cv>(MIn<s|[8| 1 *GB, 0< 6 < 60,

(2.4) wa,.(G,SB,S) > C<p{6)l lu*[inl, tGA/\B, 0<S<S0,

where C and  are positive constants.

It should be noted that, for the ease of modulus of continuity of first order, the
theorem was proved in [7].
Proof. Part (a) of the theorem follows from Lemma 1.2. So, we have to prove only
part (b). Without loss of generality, we carry out.the proof of part (b) for the case
0={1,...,» —1}

We consider a strictly decreasing sequence of positive numbers (&/)/>, satisfying
the following conditions:

1-E£0**S| (60= 0);

2- 52i=i+i > < bf,

3.¥ 1( +1) < where v 1(bj) {I = 1,2,...) is a certain element of
the set {t :tp(t= 6)} and /9 (0 < 0 < a) satisfies the condition of Lemma 1.4.

We se

n-aErt), = +<-bi.
i=0

Forany 1= 1,2,... let us consider the functions uj and hi in T, defined as follows:
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and
~ 0, otherwise.

Next, we define the functions Gi in T" as follows:
n-1
G,(*i,....X,) - b tinlIM (- 1,2,.

.jn).

and consider the function G defined by the scries
PC

G (X\.ooxn) = Y Gi(Xi...
1=1

We extend the function C? 2jr-periodically in each variable to the whole space 51".

We claim that
Ge I/ (v2;C(I)).
Let 0 < ft< v 1(6i). Then we have
iia;(epai <£ Hawaii- £ nn-

Let us estimate each //(ft) (i = 1,2,...) from above.
For given ft, there exists a number N such that rjy+x —7w+i < ft < rjy —r,v.
It is known (see [2]) that if a function of one variable f G C(T)

Let I = 1...N
has fractional derivative of order a (a > 0), then
Ua(fis) < CSa\\Daf W6 > 0), C = const > 0.

In our case, using the definition of the function Gi and this fact for the variable x,,,

we can conclude that
Ai = const.

() < Aiha .
If1=N+1 , then we have
lI(fty < A- , A- = const.
Therefore A .
ng;well <A 1P +n, J2 b,
1=1 * ) I=N+1

If Tar+1 —7Tnr+i < ft < (tar —r,, ), then by Lemma 4 and by the construction of

the sequence (6/)/>i, with some constant A3, we obtain
I +A2 ]T b,<A3p(h)
I=N+1

WRBa <A
=11



(r*_rm') "3 << —tw, then by Lemmas 3 and 4, and by the construction
of the sequence 1, we get

iig;(ucii <n,  (r.

BN - i -
H--4i (tn ;-r_NST“ + Aa<p(li), As = const.

Hence, we havi
wa.,,(G; d)(/i)<? = O(v=(-5), €->0+ .
Analogously, we cau show that
«*(<2;6)(h)G = O(v>(<), §-» 0+, <= 1,..,n- 1
Hence
Ge# " (cpC(r)).
Now we proceed to prove the inequalities (2.3) and (2.4).

Leth = r, —77. ding to the definition of the j function and the
function G, we obtain

AiNe )C (hoen (0

S(-5F)TTOL

- ) [11<  9*(*) Ci€m= s £+ H n - f*
Now using the inequality |[* | < Cifc " 1 (fc= 1,2,...) (see [0]), the construction
of the sequence (6/)j>i and the definition of the function Gj, we can write

VE E£E<-W £)<3f»...on i, A +apl<caf; i, M ,m,
mt+1K=0 4 7 j=(+1 sl

le£ (-i)* ( t)gi(», * -.E02 +*n)|<
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1£,(-4* (") g.(crem<» -, "+ N )[<i,n*<* L )ls
3 4 i=i fe=[n-4]+, 4
< Chhab, N
where Cj (i = 1. ...4) are positive constants and the symbol [«] denotes the integer

part of a real number a.

Ilence. we can conclude that, with some constants Cr, and Co
. .
KTo»..ppm < - 2 > e(«....-v-i.3MnVn,,

> Cob/Lhi(r* - TH|"

1.

Thus, the inequality (4) is proved. Now prove the inequality (3). Without loss of
generality, we can take i = n —1.

Let h —t," —7/. Then in view of the definition of conjugate function, we can write

. (-&y" . GS* .

1Ef «*j dve=
S (-h)" A -3 r 3 4-c *Ne -l o« F2EE

Y(-N)" o, T e

Next, using the definition of the function G, we obtain

|4;.,(-454..ni}o,..,0,+2) =

T (s)" AL M el €% d

- C7b* M “e™*JSJT **
> ¢ 86ili» (-nF-Ti)l-r,
where C7 and Cu are positive constants. Thus, the inequality (2.3) is proved. =]
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Abstract. In this paper, for an one-dimensional semillnear wave equation we slud.v a mixed
problem with a nonlinear boundary condilion. The questions of uniqueness and existence of
global and blow-up solutions of this problem are investi ing on the

nature appearing both in the equation and in the boundary condition
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Keywords: Semilinear wave equation; nonlinearboundary condition; a priori estimate;
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1. Introduction. The statement of the problem

In this paper, in the domain Dr = {(*<) 6 R2: 0 <x <1, 0 <t < T) of the
plane ofiindependent variables x and t, we consider a mixed problem of determination
of a solution u(x, t) of a semilinear wave equation of the form:

(1.1) Lu = utt- uxx+ $(«) = f(x,t), (x,t)€ DT,
satisfying the initial conditions:
(1.2) u(a:,0) = <p(x), ut(x,0) = ®(x), 0<x<I,

and the boundary conditions:

(1.3) ul(0,1) = F[«(0,))] + a(t), = y3(Mw(EZi) + 7(), 0<t<T,
wherey, f, tp, ¢, a, 0, 7 and F are given functions, and u is the unlaiowu real
function.

Notethatfor/ £ C(DT), 96 C(R), F e C*(R), y2€ C2([0,Z]), b 6 CATM ). 76

~([O.TI), necessary conditions of solvability of the problem (1.1)-(1.3) in the class

°The research was supported by Shota Rusta\-eli National Science Foundation grant No FR/86/5-
109/14
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C-(Dt) are the following second order consistency conditions:
< )- FlcM +0(0). *(=

(11 v>'(0-NOM )+7(0). < « I ) - . + +
Weset = M uwQura, wherel, :x =0,0< f<T; f=00< k< u:
X=10<t<T.

Definition 1.1. Let the functions
f €C(Dr), g. F €C(R),

V>6C*([M). «6C!([0,1]), a. A n eC(|0,[])
satisfy the ing first, order i iti
(16) ~(0)=% (0] +t(0), ~(1)=X Ov>0 +7(0).
A function u is said to be a strong generalized solution of the problem (1.1)-(!.1{) of
the class C in the domain Dr ifu £ C'(Dr), and there exists n sequence offunctions

u, € C'-(Dt) such that the following conditions are satisfied:

-7 Jim, I, - M\c(BT) = > ndid lILu>- flcnpT) ~
(1-8) JimA e (m.0)  ¥lIC(e) = 0,  lirnA|u..t(".0) - Vilcwu-o) = Q
(1.9) Jta ltin,(0, ) - *>,(0.9] e()lc(ri) = 0,
(1.10) lItw (i, 9 - /2()x(, ) 7()lc(ra) = 0.

Remark 1.1. In the case rv= 0 and 7 = 0, in Definition 1.1 we assume that the
sequence tt,, is such thatv, €C 2( /-, , = {n6 C2(Dr) : (vx —ir(i>))cl =

0, (v*—ew)r2= 0}

Remark 1.2. Itis clear that the classical solution v e - )ofthe problem (1.1)-
(1.3) is a strong generalized sohition of that problem of the class C in the domai
Dr

Mote that nonlinear boundary conditions of the form (1.3) arise, for instance, in
tlm description of the process of longitudinal vibrations of a spring in the ease of
clastic fixing one of its endpoint:,, when tension is not subject,ed to linear Hooke’s law
and is a nonlinear function of blending (see [1], p. 41], as well as, in the description
of processes in the distributed self-vibrating systems (see [2], p. 405 and [3]).

The problem (1.1)-(1.3) in the case of one-dimensional spatial variable, as well
as, its multivariate version has been studied in a number of papers (see, e.g., [4]-[8],
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and references therein). On the whole, in these papers the solution u = u(x,t) of
the problems of interest are considered in the energetic spaces, when the solution
and its partial derivatives for a fixed t belong to Sobolev spaces with rcspect to
the spatial variables. lu the paper [9], for equation (1.1) was investigated the mixed
problem, when at the endpoint x = | is imposed Dirichlet homogeneous condition.
When jumping from this case to the case of Robin type boundary condition (see
condition (1.3) with X = 1), additional difficulties arise not only of technical nature,
but also in obtaining a priori estimate of the solution, as well as, in construction of
a representation of a solution of the corresponding linear problem, which plays an
essential role in obtaining of an existence theorem.

In this paper, we study the problem (1.1)-(1.3) in the class of continuous functions
for sufficiently broad classes of nonlinear functions, appearing both in the problem
(1.1) - (1.3).

The paper is organized as follows. In Section 2, under some conditions imposed on
functions g, F, a, B, -y appearing in equation (1.1), we obtain a priori estimate for a
strong generalized solution u of the problem (1.1)-(1.3) of the class C in the domain
Dy hi the sense of Definition 1.1. In Section 3, we reduce the problem (1.1)-(1.3)
to an equivalent system of Volterra type nonlinear integral equations in the class
of continuous functions. Section 4 is devoted to the proof of local solvability of the
problem (1.1)-(1.3) in variable t. In Section 5, we prove a uniqueness theorem for
a solution of the nonlinear mixed problem (1.1)-(1.3). In Section G, we consider the
question of solvability on the whole in the domain MT,T < | of the problem (1.1)-
(1.3) in the class of continuous functions, as well as, the question of existence of a
global classical solution of this problem in the domain Deo- Finally, iu Section 7, we
consider the question of existence of a blow-up solution of the problem (I.1)-(J.3).

2. An a PRIORI ESTIMATE OF A SOLUTION OK THE PROBLEM (1.1)-(1.3)
Consider the following conditions:

@1 G\s) = [ g(s)dsi > -Mjs2- M-, I FMdsi>-M3 VseR,
0 [}

(2.2) Q=7=0, peci(on), /3(*)<0, P\t)>q O<«<t,

where Mi = const>0, 1< i< 3.
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Lemma 2.1. Let the conditions (2.1) anil (2.2) be satisfied. Then for a strong
generalized solution u of the problem (I.1)-(t.S) of the class C in the domain Dt
in the sense of Definition 1.1 the folloxuing a priori estimate is fulfilled:

IMIcdr) - cd\fWc(DT) + callvlice**,) + csIMIcfo») + c«||C?(bl: M )Ic(wO)

(2.3) + 1| (v (O (O + Co,

where G = o,(Mj, /I ,My,I,T, (1(0)), 1 < i < G are positive constants, independent
offunctions u, f, ip and ip.

Proof. Let u be a strong generalized solution n ofthe problem (1.1)-(1.3) of the class
C in the domain Dt mThen by (2.2), Definition 1.1 find Remark 1.1, there exists a
sequence of functions u,, eC'2(Dr, ['i,Ir), such that the limiting relations (1.7) and
(1.8) are satisfied.

Denote
(2.4) I, = Lu,,
(2.5) =« U, V= «ill.

Multiplying both sides of equality (2.4) by xiw and integrating over the domain
DT, 0< t < T, weobtain

(2:6) J(y2uytdxdt- J unxxuntdxdt+ J [G(p;bi)ltdxdt= J fnuntdxdt.
D, DT Dr DT

Weset BT :t =1, 0<x <i; 0<r <T.Letn= (i/x,ifj) be the unit vector of the
exterior normal to dDT. It is easy to see that

«* =0, 0<r<T, wW,=-1, =1,
(2.7)
“diYura= 0, vtlo= -1, /|, =1, 0<r<T.
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Applying integration by parts (Green's formula), and taking into account (2.5), (2.7),
and that u,, €C 2(OT-Ti, ), we can write

1J (rayrixat H [eioundxdt = | J uzwas + J G unyvds
or or oor opr
=1f AJAdx +3G(g\u,,)dx —IG{g\<pn)dx,

— J u,xxuudxdt= J [u,iunii —(unxunt)x]Jdxdt= ~J (u2x),(Lcdt

or Dr br

(2-8) I r r r
- | « *«niVxds=2 / ‘LnxVtda+ / UnxUntdt— / fiununtdt

oor oDr rair rar

=\J W*lhr~ \J 4> <&+ J UnxUntdt- ir(T)t4(2,T)
« uo ra.,

+ /3(0)A(0+]J faldt,
rat
where 1\>r= - { <71}, t=12.
In view of (2.8), the equality (2.6) we can write in the form:

2j fnumdxdt = 2 J xblxunldt- 0(Yu2(1.0) + (Ow2(0) + J 0'uddt

@9 H wax+ uanax+ 2 6(g\unax — | + ip2)dx —2J G(g-tp..)dx.

r T 1#"(0.1)

/ wapelN = | Fle,(0,)ldu,(0.f) = / F(s)ds

Jo Jv..(0)
riv
run(Qr)

2.10 = F(s)rfs+ | F(*)ds.
(2.10) Jtnw (s)rfs+ s (*)ds.

In view of (2.1), (2.2) and (2.10), from (2.9) we obtain
W) = J wer + urtydz <2 J tnu,idxdt- ooyp2(l) + J goax + i>2)ax

r (0
@ / G(siva)<te+ 2Mi / +2 F(s)ds + 2(M 2l + Af3)
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Next, since by (2.5)
(2.12) Mn(*,1) =Aa(*) + J Val(xnt,
wo have
[«n(®,0]2< 2°n@) + 2( j unt(x,)dtd < 2<p2() + 2r  uh(x, t)dt,

implying that
(2.13) Juidx <2\ \ (¢ +2T @ (*)*r
where u,, is as in (2.11)

Taking into account (2.13) and the following inequalities

20« <, + N, N1<0.) < alll.lfe®)

tdrigt< J wn{o,

J(v>Ix+vi)<Ix + 23 G(g;ipn)dx < i[valicuc«) + *Neslic(«<o +LL (*{\nV, IVIOllcu** ).

=)

2 p (3Ne - - v«1°) + HTUC(H*.,0)bl*.(P>1).
AMn\ \ 1 )+ (0)- HO)*£(0 + 1\ *cM < (4A/L+ |+ [*(O))|I¥>n|o(nu)
F1\W bb)  io(lven&(VE) + LW 2(wo)) < io]LL \bYuwo),

max (4L + 1+ |0(0).Q.

from (2.11) we get
»,.>)< (4M,24-1) »,(()*+ IFI/LUINe , + 10 1Bl INM  + IAMI2,<»,>

+2Z|IG(I<7]; Vi, Dllc(uo) + IMIc(|—An()l>n(e>]) + 2{M3i + Ma).

Therefore, in view of Gronwall’s lemma, we obtain

™ T)<[ITW\LOTI + la\bl I1x*)+ ren|io(sio) + 2Z||G(Is; [*..)Hc(.0)

(2.14) HIPIC-IVE,OLIVL(O) + 2Ne 1 + M3)] exp [T(4MIT + 1)j



For (X,t) GDr, by integrating with respect to variable 6 [0.J] the following obvious
inequality

K («.«12- [p»«, i)+ f *vnAn, t)dx,f < 2K K, Qia+ n f*
mveobtain
(2-15) OP < §/ K tt.*)P« + 2h»»(«).
By similar arguments, in view of (2-12), we obtain

f'olee(*,012dx <20Wn\ 1 )+ 21j ‘dx ,0)da

<2 »U( )+ 213 we()dT-

Hence, taking into account (2.15), we get
K (*.,t)ia< +iET {*yb+vu.T
(2.16) <f +61 «.(») <«iiM Sw +« «.(+)m
Next, taking into account (2.14), (2-16) and the obvious inequality afj3 <

Y~"_, |s;], we obtain
Ba«nlic(Bp) £ 2llv>»lb«*o + [AVEF|I/<lic(T5r) + ¥ «M bl 1cu<*o
+14/6][An|1(>-0) +2iv/3]|G (fi(f;vn])lic(u,0) + ALY -p,1I<2(i-v>(0)| (o)1)
+2yl W+ Ms)\ [2_1T(4MIT + 1)]

Finally, by (1.7), (1.8) and (2.5), passing to the limit (as n —>00) in the last inequality

we get

», +'v?IK>llom

IHcdJrt < 2|[M ¢ m + [fvra’ll/llojBri+ v ~IM b .,»,
+2ivS[|G (Isl: M)ITIm  + v@ 1|F|jc(l
(2.47) +2y/31(MTi + Afs)] exp [2_1T (4MiiT + 1)].

Lemma 2.1 is proved.
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Remark 2.1. It follows from (2.17) that the constantsa, 1< i< 6, in the estimate

(2.3) are given by
ci= iV6Tco, =2+ ylMico, C3= iV/6coj = 2t\/3co, Cs= '/glco,
(218) c6=27U, w Tl co, where co:=exp [2- 1M (41, T+ 1)].

Remark 2.2. We give examples of classcs of functions, which appears frequently in
applications and for which the conditions in (2.1) are fulfilled:

1. g(s) = ijo(.s)stjns + as + b, where gu £ C(R), go >0; a,b,s € R;

2. F(s) = FO(s)sgtis + as + b, where FO € C(R), FO> 0; a,b,se R, «> 0;

3.ge C(R),e bi(-00.0); ff|(0i+o0) > 0 (for instance, g{s) = exps, s G R).

3. Reduction of the problem (1.1)-(1.3) to a system of Volterra typf.
NONLINEAR INTEGRAL EQUATIONS

Wec first represent the solution in the domain Di of the following mixed linear

problem

(3.1) Du) = tutt —vexx = /(*. ), (x1) e Di,
(3.2) w(x,0) = <fl(x), Wi(x,0) = h.(x), 0<x<I,

(3.3) wx(0,t) = 5(i), nyx(i,9=7(), 0<t<z2

in quadratures in a convenient fonn, where —-

(3.4) Jec (), yec2®,1]), v.€C*‘([0,4), a, TEC‘(M )
are given functions satisfying the ing second order
(3.5) v>'(0) = 5(0), V-(0) = 5'(0), v>'(0= 7(0), ®'V) = 7°(0),

and w £ C2(Di) is the unknown function.
Below the solution ofthe problem (3.1)-(3.3) we represent in the form:
(3.6) vi(x.t) = Ax(/, y)(x,t) + B-(ip,d)(x,1), (x,1)e Di,
with operators At and B\, which will be constructed in explicit form.
To this end, the domain D , being a square with vertices at the points 0(0,0),
-4(0,0. W1,0 and C(l,0), we split into four right triangles Al| := AOQIC. 4> :=

AOOQIA, A3:= &CO\B and 14 := AOiAB, where the point ) is the center
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of the square Di. It is known that the solution of the problem (3.1)-(3.3) in the
triangle Ai is given by the following formula (see [1], p. 59):

@)

VM- D)+ @+ Q)

3.7) +1 /A TMT+\ Jnl TNe dT  (*»*)€ Ai,
where $2, denotes the triangle with vertices at the points (x,t), (x—t,0) and (t+x, 0).

To obtain the solution of the problem (3.1)-(3.3) in the other triangles Ar, A3 and
A4, we use the following equality (see [10], p. 173):
3.8 P) =«'(Pi) + 10(A )-»eNe,) + i m,r)didr,
(3.8) »(P) =«'(Pi) + 10(A )-»=Ne ) *;PP'Pij )
which is true for any characteristic (for equation (3.1)) rectangle PP\ Cc o/,
where and P3, as well as, Pi and  are the opposite vertices of tliat rectangle, and
the ordinate of the point P is greater than the ordinates of the other points.

Now let (.r,t) .e [a. Then setting
(3.9) Mr = w |,
and applying the equality (3.8) for characteristic rectangle with vertices at the points
P(x.t), Pi(0jt—x), Pj(t, x) and Pa(t—x,0), the formula (3.7) for point  ( ,x) € fl»,
and using (3.9), we can write

w(x,t) = u>(Ft) + w{P2) - w(Bj)+ 5 f I(E, T)dEdr = [i(i - x) - - X)
JPP\P1P3

HA[¥>(i-®)+V» (i+®)] +i Arydr-fi f o ftfr)dEdT+" N(ET)<lfelT =
Z[ ( ) ( ] 2 J[tfr. o Jni x ) JpP,PaP3 En
(3.10) tr
1Zi(t-x) + A[<p(t+x)-ip(t )\ +~ 3 A(r)dr-t-i f(,T)d dT,  (cot) € A2
Here % denotes the quadrangle PP2P3P1, where P2 = ( + x,0).
Taking into account that for (% t) e 42
[ f(tT)d4dr= f* 1dr THET)dS+ dr ' *T.TU,
Jm, Jo Jox+t-r Jt=x  Ix-t+r
in view of (3.10) we obtain

wx(x,t) = -4i(i - x) + i [tp\t+x) 4-<p'(t- x) +ii>(t+ x) + ( - K)]
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+ [@+t- t,r) +f( x +t- T,nldT

(3.11) +\_x [/(*+t-r, T)-f(x-t+T0)]dr.
Similarly, for (a:, i) G 42 we get
wt(x, 1) = Ji(t- x) + i [S[-+*) 4>(t- x)+ (.+x)- (- x)}

81 (AT r) -l (-» + % -TT)]ET

(3.12) + M) [f(x+t-T,T) +f(x-t +TT]<IT.
Setting X = 0 in the equality (3.11), and taking into account the first boundary
condition in (3.3), for unknown function jI\ we obtain the equality:

—Jii(E) + + U9+ J f(t-r,r)ydr=a(i), 0< <L
Integrating the last equality and taking into account the initial condition A\(0) =
¥(0), we get

= N2(/,3.7)(i) + B2(<p.ip)(t) := <p(i) s(ndr+ V(i

(3.13) +J and fin - tndr o< <1

Now, in view of (3.10) and (3.13), the solution of the problem (3.1)-(3.3) in the domain
[a can be represented in the form:

wiy = = amdr+d ipmar
+3 0 dnj /(n er)dr+ DASpits k) + <pt-*)\ + A D d(T)r

(314) +1 * Ne 'TNe dT> ("Oefr-
Next, to obtain representations for the solution of the problem (3.1)-(3.3) in the
domains /13 and /14, we set
(3.15) = agla
and use the above arguments, applied to obtain the equality (3.10), to conclude that
WX, t) = 12(x + 1- 1)+ i [wa- i) - <p@l- a- *)]
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(3.16) 13 A{r)dr+\J A f((.T)dfdT, (.,1)64,,
w(t) =, 1,(1 X)+I3(x +t-1) - * ¥)4A-1—1-,0

(3.17) +[3rx(ndr+13 (, Tydidr, (%) 6 4.

Here denotes tlie quadrangle with vertices P3(x,t), P*(I,x +t —I), P$(x —t, 0),

Pj(21 —x —t,0), and il* t denotes the pentagon with vertices P*(x,t), P?(0,t —
x), { —X,0), P}21 —x —t,0) and P f(l,x +1 —I).
Taking into account that for (x,t) e A3
I N Tl dr= i drd_ I+ flE>The + 0 +t < -1 t+ 1 1)1,
and differentiating the equality (3.16) by x, we obtain
Wx(X,t) = ji2(x+ *-1) + 1 [p'(x- t) + tp'(2l - x - 0)]

.

1 1 =
= M- x-t) Hisx- 0]- 3 TH@I—x —t+ T,e) FH(x - t +1,0] (it

(3.18) 1M X H T ) - f(x -t + TN, (x, 1) e A3,

Substituting the expression (3.18) with x = I into the second boundary condition in
(3.3), for unknown function we obtain

(319) () -rI>(I-t) + < p'(1 1)-3 f(1-t+TTdr=y(t), 0<t<l.
And, in view of (3.2) and (3.15), we have

(3.20) 12(0) = <pf).

Finally, from (3.19) and (3.20) we obtain

12(r) = N3(1,5,7)(«) + B3(<pip)() := pl-t) +J 7(dr+  ip(miiT

(3.21) +J dnd U =Ti+T.r)dr, O<t<l.
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Remark 3.1. If w is a solution of the problem (3.1)-(3.3), then in view of equalities
(3.6), (3-13) and (3.21), for the triple of functions (w, fii := w |r,,* = 1,2) the following
integral representation holds:

(3.22) (ifi,1,,0a) = -4(7,ft,7) +

where the actions of operators A := ( ,A-,An), B := (Z?,B-, ) are specified by
formulas (3.G), (3.7), (3.14), (3.1G), (3.17), (3.13) and (3.21).

Remark 3.2. It is easy to check that in the case / € C(Di), (pe Ca([0,2]), e

C([0,i]), 5, 7 GC([0,i]), ifthe firstorderconsistency conditions 2'(0) = #(0), <p{l) =
7(0) are satisfied, then in view of formulas (3.11) and (3.12) for every wx, wt in the

domain , and also in the other domains 4|, A3 and [-i, the triple of functions

(ro./xbAr), defined by equality (3.22), belongs to the class () x CAffO]]) x

C'1([0.1])- Moreover, the linear operator

(3.23) A :C(D,) XC((0,i]) kK C([<M]> -> CI(D,) x C*((0<]) x C'LLO.¢

in (3.22) is continuous. A similar remark holds also for operator B in the corresponding

spaces of functions.

Remark 3.3. Similar to Remark 3.2, it can be shown that if the smoothness condition

(3.4) and the second order consistency condition (3.5) are satisfied, then according to
(3.6), the function to, constructed by means of equalities (3.7), (3.14), (3.16), (3.17),

(3.13), (3.21), belongs to the class C2(D{), and is the classical solution of the problem

(3.1)-(3.3)
Remark 3.4. Notice that in the case where the problem (3/)-(3.3) is considered in
the domain Dr for T < I, then for the triple of functions (w,/ :=ru|r,,r = 1,2), the

integral representation (3.22) remains valid.

Now -e proceed to reduce the problem (1.1)-(1.3) to a system of Volterra type
nonlinear integral equations. Let u be a strong generalized solution ofthis problem of
the class C in the domain Dt- T < I, thatis,n e C[Dt) and there exists a sequence
of functions u,, € C2(DT), such that the equalities (1.7)-(1.10) are satisfied. Consider
the function un as a classical solution of the problem (3.1)-(3.3) for

/ = —obln)+ fn, b= Vn, = Vn, 5= F(n-in)+amn, 7=/ +7,,
where

I/, = Lun, n m=«,l,, ¢, = ,
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Mn = Unlr,, an = Unxlr,  F(frn), 7n = «r*lla  PH2,-
Then, by equality (3.22), for function u,, and its truncations wn := m,|r,» = 1,2,
the following equalities hold:

« = A, (- g(un) + Jo,Ffain) + <*,0  +yn) + Bi(<pn,-@,,),
(3.24) Min = Ai+1(—g(un) + In, F(Min) + « »Pl*2n + 7u) + B>+iIVn, V),

i=12

Taking into account Remark 3.2, the equalities (1.7)-(1.10) and (3.22), and passing
to the limit in equations (3.24) as n —* 0o, we conclude that the triple of functions

(»,Ui ;= uli\,* = 1,2) satisfies the nonlinear operator equation:
(3.25) (UMi>/*2) = Ao(«if*i>/*a).

where

(3.26) A0 ., )= A(-g(u) + f,F(ni)+a,0fi2 +7)+

Remark 3.5. In viewofRemark 3.2, the operator Ao defined in (3.26) acts continuously
from the space C(Dt) x C([0,T]) x (7([0,T]) to the space C1{Dt) x C1([0,T]) x
C1([0,T]), T < I. Hence, taking into account that the space C1(Dt) x C1([0,T]) x
C 1([0, T]) is compactly embedded into the space C(Dt) x C([0,T]) x (7([0,7]) (see
[11], p. 135)], we conclude that the operator

(327)  A0: C(DT)x <7([0,7]) x C((0,T]) -+ C(DT) x C([0,T1) x <7([0,T])

is compact.
Remark 3.6. It is easy to see that if ( ,r) e 1< t< 4, thenr < t, which in
view of formulas (3.7), (3.14), (3.16), (3.17), (3.13), (3.21), permits to consider (3.25)
as a system of Volterra type nonlinear integral equations with rcspect to variable t.
Notice that in the linear case, for this system can be applied a converging method of
Picard’s successivc approximations in the corresponding spaccs of functions
Remark 3.7. Similar to Remark 3.3, in view of (3.25) we can conclude that ifu is
a strong generalized solution of the problem (1.1)-(1.3) of the class C in the domain
Dt,T < I, and the following smoothness conditions
328) / e CI(DT), g, Fe CAK),

$GC2([CU]), GCHtO.i]), a, 0, 7 GCra0.T])
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and the second order consistency condition (1.4) are satisfied, then u will be the
classical solution of this problem from the space 6'2(Or)-

Remark 3.8. From the above presented arguments it follows that if the smoothness
condition (1.5) and the first order consistency condition (1.6) are satisfied, and if a
function V is a strong generalized solution of the problem (1.1)-(1.3) of the class C
in the domain Dr in the sense of Definition 1.1, then the triple of functions (u./m
Jr_r= 1,2)isa continuous solution of the system of Volterratype nonlinear integral
equations (3.25). Using arguments similar to those, applied in [9], it can easily be

shown that the converse assertion also holds.

4. Local solvability in t of this probtem (I.1)-(1.3)

Theorem 4.1. Let the functions f 6 C(Di), g..F€ C'(M), pe G'I([0./]), o, cr, ft,
7 € C([0,Z]) satisfy the consistency condition (1.6). Then a positive number T(, =
To(f, g, F, if,q,ft,7) < I can be found such thatfor T < TO the problem (1.1)-(1.3)
in the domain D t will have at least one. strong generalized solution u of the class C
Proof. In Section 3, the problem (1.1)-(1.3) in the space C (D t)xC ([0, 7-])xC'([0,T]),
T < I, was reduced to the equivalent equation (3.25), where by Remark 3.5 the
operator Ao is continuous and compact, acting in the space C(Dt) x C([0.77) x
C([0, T]). Hence, according to Schauder theorem, for solvability of equation (3.25) it
isenough to show that the operator Ao transfers some ball /?n,,(«0,//?,//*) with center
at point (u®,/*2«:]) and of radius flo > 0 of the Danach space C(Dr) x C{[0, T]) x
C([0,T]) to itself. We show that this is the case for small enough T < I. Indeed, in
view of Remark 3.1 and equality (3.22), the operator equation (3.25) can be written
in the form:

(4.1) (% <) = N0 .gimr) = + M(- p{n), pu2),

no = Ai(/,«,7) + B1(ip, i), = Ait+ (/,a,7) + Bi+i(qif), *= 1,2
It is easy to see that if (? /1 ,/3) belongs to the ball Bro(u0, ,u%) and, according
to Remark 3.6, the linear operator A from (3.23) is a Volterra type integral operator
by the variable t < T, then

m( (*).F(ni),0( )HcfSrjxCdo.TDxCdo.r]) * T™M,
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where
0 < M := A/(|IOIC([-n/r])* HPUc.N-na)» |II3]lc([0,«))T) < °°>
R := |K«®»Miila)llc(5i).xe,(M)xC (io,ii) +

and RO is an arbitrary fixed positive number, and the function M = M (s\, ,a3)is

continuous and nondecreasing by each of the argument > 0. i = 1,2,3.
Taking T < TOtwhereTo := ,from (4.1) and (4.2) for (u,/ii- A%) e -/ 1)
we obtain

[I-40(m, Mi,Ma) — (1°|M 1>\R) 1c (1°T)XC'((0,'M)xcu[o,]) —
implying that 10: /34, (u°,/i?,;*§) =  ( °,p"),and the result follows. Theorem
4.1 is proved.

5. Uniqueness of a solution of problem (I.l) (1.3)

Theorem 5.1. Problem (1-1) - (1.3) cannot have more than one strong generalized
solution of the class C in the domain D r,T < I in the sense of Definition 1.1, if in
(1.5) it is assumed additionally thatg, F € C 1(ffi).

Proof. Assume that problem (1.1) - (1-3) has two distinct strong generalized solutions
itland u2 ofthe class C inthe domain Dt ,T < I. Then, according to Remark 3.8, the
triples of functions (it1,/i\ := ux|r, /< := tillra) and (u2,u42 := w2|r,;/ -=u2|r3)
are continuous solutions of the system of nonlinear integral equations (3.25). Setting
u® = V? —ul, /x° := /i? —/jj, i = 1,2, and talcing-into accoimt (3.13), (3.14) and

Remark 3.4, we can write

Jo
- fdrt T e A=A K n-T ,T)dT, 0<t<T,
Jo Jo
(5.1) ° )= - NMkbIM dr
SN - L eKR («GN)E, {1<4-
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Next, since

- % i) =[f 1+ ((?-1.3).0%]rf,
-2) g -s(*) = bl (« -u)ald*Aue,
then assuming = 1.2 to be fixed functions and setting

5(0 = d.ggéﬂw“(a:,l)l. 0<L<T, ;
by (5.1) and (5.2), we obtain
KW H < [K (r)] +n(T)]rfT
< Mo £ [[fi2(r)] + P2(0)1 + wi()]dr, {x.t) e A2 { <T},
(5-3) Jo
IMI(*)l < MoJ  [[/*2(T)1 + «(r)]dr

<Mnf [[fi2(T)]+ [m*(T)|+ Ti(T)]dr, 0< <T,
Jo

where Mo is a positive constant depending on g, F mid on fixed functions —
1,2. Similar arguments, carried out in the other domains Ay {i < T}, and possibly,
by enlarging Mo, allow to obtain the following inequalities:

[« (@)l < Ma  [I/i2(n] + Im°()] + n(r)]dr,
(5.4) (Xt)eA, {t<T} j=134,

Ixe(@)] < Mo [m2(r)] + lixg(r)] + #(T)]dr, 0<t<T
It tollows from (5.3) and (5.4) that
+ IMRCOI + «(*) < 2M0)  [|g2(T)| + IS(r)| + m(r)]rfr, 0<t<T

Therefore, in view of Gronwall’s lemma, we conclude that ) =0, 0 < t <T, that
is, ul= u2 The obtained contradiction completes the proof of the theorem. Theorem
5.1 is proved
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6. The solvability of problem (1.1) - (1.3) in domain Dt for any T < lin
THE CASEa = }=10
Lett [0.1], and let u = uT be a strong generalized solution of the class C iu the
domain Dt,T < | of the following problem

,-ourx = r[-<?(u) + /(x,i)j, (*,t) € Dt,

(6.1) u(x,0) = Tip(x), Ut(x,0) = Th(x), 0<x<I,
«(0,0) = tF[u(0,i)], t ) =To{u(l,t), 0<t<T,
provided that the smoothness condition (1.5) and the following consistency condition
(an analog of condition (1.6)):
V() = Atv»(0)3, ip{l) = TO(O)ip(l)
are satisfied. It is easy to see that these conditions will be satisfied for any r 6 [0,1]
if, for instance,
(6.2) . w(0) =0, </(0) = F(0), <p() = 0, « (0= 0.
Similar arguments show that if » = uT is a classical solution of the problem(6.1)
for any r € [0,1], then according to Remark 3-7, it is natural to requirethatthe
smoothness condition (3.28) and the following equalities (instead of (1.4)) be fulfilled:
~'(0) = F[tr(0)], ~'(0)=TP'M O W
<p'(l) = TO(O)<p(l), rp'(l) = TO*(O)ip(d) + r4OXO-
It is easy to see that these conditions will be satisfied for any r € [0,1], if, for instance,
along with (6.2) will be satisfied the following conditions:
(6.3) tf>(0) = 0, ~'(0) = 0, VKO = 0, ¢'(1) = 0.
Remark 6.1. Note that forr = 1, the problems (6.1) and (1.1)-(1.3) coincide, and
similar to Definition 1.1, it can be defined the notion of strong generalized solution of
problem (6.1) of the class C in domain Dt, provided that the consistency condition
(6.2) is satisfied
Remark 6.2. In view of Remark 3.8, problem (6.1) in the class of continuous
functions can be reduced the following equivalent nonlinear operator equation:
(6.4) (u,/n,li2) = tAg(u, , ),

where the operator Ao is as in (3.27) and, by Remark 3.5, is compact.
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As a consequenro of Remarks 6.1, 6.2 and Lcray-Scliaudcr theorem (see {12], p.
375), we can state the following result.
Lemma 6.1. Let conditions (1.5) and (0.2) befulfilled. I1ffor any strong generalized
solution u = Ur of problem (6.1) of the class C in the domain Dr for anyr € [0, I]

the following a priori estimate holds:

(0.5) IMIc(@25r) A N/

where M, = M (g, f, 9®,F,a,/3,7) is a ivc constant independ ofr, then
problem (1.1)-(1.3) has at least one strong generalized solution of the clitss C in the
domain Dt-
Proof. Observe first that in view of Remarks 6.1 and 6.2, a functionun C(Dt) is
a strong generalized solution of problem (1.1)-(1.3) of the class C in the domain D-r
if and only if it is a continuous solution of the nonlinear operator equation (6.4) for
r = 1. On the other hand, according to conditions of the lonnna, for any solution
n S C(Dt) ofequation (6.4) with compact operator Aq, for any r € [0,1] the a priori
estimate (6.5) holds, and hence, according to Leray-Schauder theorem, equation (6.4)
fort = 1 lias at least one solution n € C(Dt), which is also a strong generalized
solution of problem (1.1)-(1.3) of the class C in the domain Dr-

Lemma 6.1 is proved.

As a consequence of Lemmas 2.1 and 6.1 and Theorem 5.1, we have the following
result.
Theorem 6.1. Let T < I, and let (1.5), (6.2) and the conditions of Lemma 2.1 be
fulfilled. Then problem (1.1)-(1.S) has at least one strong generalized solution of the.
class C in the domain Dt, which in the case g, F € C1(R) is unique. Moreover, if
the smoothness condition (3.28) and equalities (6.2), (6.3) are also satisfied, then this
solution u/iii also be classical.
Pr_of. Observe first that if the given functions g,f, ¢ ,F of problem (1.1)-(1.3)
we replace by the functions rg, rf, rip, T,tF, « € [0,1], then by (2-3) and (2.18),
for any strong generalized solution n = uT of the class C in the domain D- of the
obtained problem the following a priori estimate holds:

IMlouor) A cir IMIK7Z>r ) + A IM I chwo) + cstliriico®) + CAI<Y(bl; [v>1)lic(ar)

+e5r||f7lIC(L#O)L¥O)) + co
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< CIN\A\G(BT) + ®2IMIC(34,) + C.u[l0[c(u>,) + C4ll<2(10]; V'i)lic(wo)
+CsI-F (v () iv>(0)]]) + ce-
Hence, the first assertion of the theorem follows from Lemma 6.1 and Theorem 5.1.
The assertion that under conditions (3.28) and (6.3) the solution is classical, follows
from Remark 3.7. Theorem 6.1 is proved.
Remark 6.3. Notice that the existence of the unique classical solution in the domain
Dik := {(ki) € R2:0<x < I, fc—1)1 < | < kl}, kK € N, k > 2, of the mixed
problem
Lu=/(K,J), (Kt) e Dl
D= <k =
m*(0,t) = Fu(0,q]+ a(i), uAht)=/3(u(lt)+7(t), (k—11<t< ki,

can be proved exactly in the same way as in the case fc= 1, that is, in the domain
Di.i = Di. Therefore, all the constructions of structural nature, given in the previous
sections in the domain Dr with T < | (such us the representations (3-7), (3.10),
(3.1G), (3.17) of a solution of the linear problem (3.1)-(3.3) and the nonlinear operator
equations of type (3.25) as a system ofVolterratype nonlinear integral equations with
respect to variable t) analogously can be transferred to the case of domain Dt for
any T > I. Hence, ifthe conditions of Lemma 2.1, the smoothness condition (3.28) for
T = oo, and the consistency conditions (6.2), (6.3) are satisfied, then forrty T >0
(in particular, for T = o00) in the domain Dt there exists a unique classical solution
ae C2(Dt) of the problem (1.1)-(1.3). Thus, we have the following result.
Theorem 6.2. Let the conditions ofLemma S.I, the smoothness condition (S.28) for
T = co, and the consistency conditions (0.2), (6.8) be satisfied. Then for T = oo
problem (I.1)-(1.S) has a unique global classical solution n € C2(D 00).

7. The existence of blow-up solution of problem (1.1)-(1.3)

In this section, in a specia! case, we show that if the conditions in (2.1), imposed
on the nonlinear functions g and F are violated, then the solution u of the problem
(1.1)-(1.3) can turn out to be blow-up. That is, a number T* 6 (0,Z] can be found
such that for T <T" problem (1.1)-(1.3) has a unique classical solution u, and

a-1) T-&£-0 = el
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This, in particular, implies that the considered problem has no a classical solution in
the domain Dt for T > 2%
Indeed, considerthe following special case of problem(1.1)-(1.3)
—Uxt.= 0, (X,t) € Dt,

(7.2) w(x,0) = <p(x), ut(x,0) = V>x), 0 <a< I,

m*(0,t) = F[ti(o,*)], ux(i,t) =0, 0<t<T,
where 6 C2([0,Z]), v?(0) > 0, \>€ C1((0,I]) and F(s) = -5|s|As, [ := const >
0, A:= const > 0, s € lit. and the corresponding consistcucy conditions, similar to
(1.4), are satisfied. It is easy to check that in the case ¢ = —ip’, the classical solution
suofthis problem in tbe domain D-r for T = Tr is given by formula:

fy>(x-t), (xt)<= 4,N{i<T*},

1 Mi(t —x), (x,t) € A2 {f<*}
(73)  «(x,t) = A<p@-x -t)- <p(l) + <p(x- 1), (x,t) 6 A3 {t<T*},

Mi(t- x) + <p(1- x - t) - <p{x+t-1),
[(x.t)ye A4 {t<T*}

where

T4» "M o-pjffu ¥ -

It follows from (7.3) and (7.4) that the solution of problem (7.2) is blow-up, that is,
equality (7.1) is satisfied. Therefore, in the considered case, in the statement of this
problem it should be required that T < T*.

Remark 7.3. In fact, formula (7.3) allows to continue the solution of the considered
problem from the domain Dt- to domain D/(~\{t < x + T*}, and this solution u(x,t)
will unboundedly increase when the point (x,t) from the domain D\ {t< x + 7"}
approaches to the characteristic t —x = T, to which border on this domain by the
part of ts boundary
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Abstract. In this note, we study the admissible meromorphic solutions for algebraic
differential equation / **/' + P n-1(f) = MN(r)o"<2>, where ) is a differential
polynomial in / of degree < n —1 with small function coefficients, 51 is a non-vanishing
small function of /, and a is an entire funcLion. We show that this equation floes not
possess any meromorphic solution /(s) satisfying N (r.f) = S(r.f) unless P ,,-i(J) sO.
Using this result, we generalize a well-known result by Hayman.
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1. Introduction and main results

Let/ denote a transcendental meromorphic function. We assume that the reader is
familiar with the fundamental results of Nevanlinna theory and its standard notation
such asm(r,/), N(r,/), T(r,f), S(r,/), etc. (see [8] and [24]). Recallthat a nonconstant
meromorphic function a is said to be a small function of / if T{r,a) = S(r,/)(=
o(l)T(r,/)) asr —>o0, possibly outside a set of r values offinite linear measure. Also,
apolynomial in / and its derivatives with small functions of / being the coefficients is
called a differential polynomial in /. By Pn{f) wewill denote a differential polynomial
in / with the total degree in / and its derivatives < n. By p(f) and A(/) we will
denote lie order and the exponent of convergcncc of zeros of f, respectively. We will
ncxd the following concept of admissibility (see, e.g., [14], [15]).

Definition 1.1. Let R(z,oj) be rational in w with meromorphic coefficients. A mero-
morphic solution w of equation (U>)n = R(z,u>) is called admissible ifT{r,n) = S(i\v>)
for all coefficients a(z) of R(z, 1)

“Thin works war. supported by NNSF of China Project ( No. 11601521) and the Fundamental

Research Fund for Central Universities in China Project ( Nos. 15CX05061A & 18CX02048A)
IDedicated to Professor Chungchun Yang on the occasion of his 7Gth birthday.
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It is dear that admissibility makes sense relative to any family of meromorphic
functions, without any reference to differential equations.

In 1980, Gackstatter and Lainc [6]conjectured that the following algebraic differential
equation:

(" = *»(l),

where p,,,(f) is a polynomial in / and s is a positive integer, does not possess any
admissible solution when m < n 1. In 1990, He and Laine [12] gave a positive
answer to this conjecture. Recently, Zhang and Liao [25] proved that if the following
algebraic differential equation with polynomial Coefficients:

(1.1) Pn(f) = 0

has only one dominant term (highest-degree term), then the equation (1.1) has no
admissible transcendental meromorphic solutions with a few poles. Liu et al. [18]
considered the possible admissible solutions for the following algebraic differential
equation:

(1.2) fnf () + ,_ [ _ +-ss+ajf+ao= e,

where 0j {j = 0,1, +++ ,n —1) are small functions of /, R is a nonzero small function
and r*is an entire function. They have obtained a simple expression for meromorphic
solutions of equation (1.2) provided that the solutions satisfy N(r,f) = S(r,f). This
also means that the solutions have finitely many zeros determined by the term Rf.a
in the differential equation. Rirther, this result can be viewed as a generalisation of
the following well-known result due to Hayman [9] in 1959, which is a prototype of
the studies of the zeros of certain special type of differential polynomials.
Theorem A. Letf be a transcendental meromorphic function, and n > 3 be an
integer. Then /" /' assumes all finite values, except possibly zero, infinitely many
times.

Later, Hayman [10] conjectured that Theorem A remains valid for n = 1 and
2. Then, Hayman’s conjecture was confirmed by Mues [20] in the case n = 2, and
independently by Bergweiler and Eremenko [2] and Chen and Fang [3] in the case
n = 1. Forthe related results we refer to [1], [5], [7], [13], [16], [21], [22], and references
therein

It is clear now that distributions of zeros of differential polynomials P (f) of the
form P (f) = /"/(*) —6, withn > 1,k = 1 and ba nonzero constant, have been dealt
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with. In this paper, we study similar problems for such differential polynomials when

n = 1and k >2, as well as for more general differential polynomials when n > 2.
Before proceeding further, we recall two known results from [17] and [18]

Theorem B ([17]). Let Q,i(z,/) be a differential polynomial in f of degree d with

rational function coefficients. Suppose that u is a nonzero rational function and v is

a nonconstant polynomial. I1fn>'d+ 1 and the differential aquation

(1.3) 1"+ Qd{z, ) = u(z)ev(s)

has a meromorphic solution f with finitely many poles, then f has the following form:

{z) = s(z)ev(z)lin+r>and Qd{z,f) = 0,
where s(z) is a rational function satisfying sn((n + 1)s'+ v's) = (n 4- 1)u.
Theorem C ([IS]). Let f be a transcendental meromorphic function and a hr: an

entire function, and let g and R be small functions of f with g 0.. Then the
differential equation f f —qg —Rc® has no transcendental meromorphic solutions.

Remark 1.1. In [19], the authors of the present paper proved the following result.
Let a and /5 he entire functions, and letp, g, lit and be non-vanishing rational
functions. Then the system of equations: p ffW q—9dic°.pff()- g—R- hue
no transcendental solutions for integers | and k ynth I> k> 2.

Now we are in position to state our first main result, which extends Theorem B,
proved in [17]. Note that our proofis different and much simple than that of applied
[17]. For related recent results we refer the papers [17] —[19]).

Theorem 1.1. Let Pn—i{f) be a differential polynomial in f with coefficients being
small functions, and let degPn_i(/) < n —1. Then for any positive integer n, any
entire function  and any small function R, the equation

(1.4) rr +pPn-An = flea

d s notpossess any transcendental meromorphic solution f{z) with N(r,f) = S(r,f)
unless P,, i(f) = 0. Moreover, ifthe equation (1. ) possesses a meromorphic solution
f with N (r,f) = S(r,f), then (1. ) will become fnf = Re" and f(z) has the form
f(z) = itexp(ar/(n + 1)) as the only possible admissible solution of (1-4), where u is
a smallfunction of f.

Corollary 1.1. Let f be a transcendental meromorphic function with N (r,f) =
S(r.f). and let P,,_i(/) be a differential polynomial in f with small functions as its
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coefficients, such that P,,—A(0) 0 and degP,_i(/) < —1. Then for any positive
integer n. the differential form fnf + P, _i(/) has infinitely many zeros.

Based on Corollary 1.1, wc pose the following more general conjecture
Conjecture 1.1.LetJ be a transcendental meromorphic function with N(r,f) =
S(r,/). and let P,t\(f) be a differential polynomial in f with small functions as its
coefficients, such thatdegP,<_]J(/) < n —1 and P,,A(0) 0. Then for any positive
integers n and k, the differential form /"*/(*) + P, _i(/) has infinitely many zeros.

Remark 1.2. The condition N{r,f) = S(r./) in Corollary 1.1 is necessary. For
example, letf(z) = jrrie Then f'+ §/" + §/'- | —1= — “as no zeros.

Also, the condition P, _i(0) 0 is necessary. For instance, if f(z) = z2ez. then
r2/ 30"+ r2//* —(@2+ z)zf2 = (2+ r)2%4r has finitely many zeros. The conclusion
of Corollary 1.1 becomes invalid, if we replace the condition degP, _i(/) < n —1by
the condition deg P, (/) < n. Indeed, to see this, take f{z) = e*—1, and observe that
P- )=2/2+3/+ landf2f'+ ()= e3zhasno zeros.

Remark 1.3. (see [18],). Let f be an admissible meromorphic solution of equation
(1.2), and letao = 0. Then for n > 2 and k > 1, the other coefficients Oi, ++m
must be. identically zero. Tn this case, (1-2) becomes / “/(*) = Re" and f has the form
f(z) = «exp(al/(n+ 1)) as the only possible admissible solution of the equation (1.2),
where n is a small function of f.

In view of Theorem 1.1 and Remark 1.3, we obtain the following result, which
improves the corresponding result from [17].

Theorem 1.2. Let f be a transcendental meromorphic function with N (r,f) =
S(r,f). andgm(/) = bmf mH-—I-bi/+bo be apolynomial of degreem with coefficients
being smallfunctions off, and letn be an integer with n > m+1. Then the differential
form /'/” + 9m (/) assumes every small function 7 infinitely many times, exceptfor
apossible smallfunction 6o = 7m(0). On the other hand, if f f n + gm{f) assumes the
small function bo = 4m(0) finitely many times, then gm(z) = bo-

2. Proof of Theorem 1.1

The following lemma is crucial in the proofof our theorem (see [4, 23]).
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Lemma 2.1. (see [4, 23]). Let f be n bransce.ndc.ntal meromorphic solution of the
equation:

f*P{z,f) = Q{z,f),
where P{z,f) and Q(z,f) are polynomials in f and its derivatives with meromorphic
coefficients {«ajA € /} such that m(r,ag) = S(r.f) for allr e /. // the total degree
ofQ (z,f) as apolynomial in f and its derivatives is at most n, then

m(r,P{r,f)) =S(rf).

Proofof Theorem 1.1. We first show that /" /'+ Pn-1(/) can not be a small function
of /. Indeed, assuming the opposite, from Ar(r,/) = S(r,f) and Lemma 2.1, we get
m(r,/') = S(r,/), and then T(r,f) = S(r,/). A contradiction T(r,f) = S(r,f)
now follows by relying to a Theorem from [11] and combining it with the proof of
Proposition E from [12]. Thus, for any transcendental meromorphic function / under
the condition N (r,f) = S(r,/), we have

(2.1) T(r,F T +Pn-i(f)) S(r, /),

showing that Rcais not a small function of /.
In view ofTheoremC, without loss of generality, wc can assume that n > 2. Lot
Pn-i(f) %O0. BVot (1.4) and a result of Milloux (see, e.g., [8]), we obtain

T(r,e*) < (n+ 1)r(r,/) + 5(r,/),
which and the equality T(r,a)+T(r,a') —S(r,e*)leadto T(r,a)+T(r,a") = S(r,/).

By taking ihe logarithmic derivative on both sides of (1.4), we get
n/t-1¢/ )2+ Il J+pl_i(/) &,

£+ P -i(f) -R
implying that
(8§ +cf)rr+»/"- IV +r 1
P-2) S< 8 A )M (1)~ ().
Next, we set
m V. .<§+d)ie+ nwf+r,

and use (2.2) to obtain

(2.4) /»-V = (8§ +«V-iCA - K-1(/)» Qn-M)
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Clearly, Q ,,-i (/) is a differential polynomial in / with deg< - (f) < n—1. We claim
< 0. hideed, if » = 0. then in view of Q ,-i (/) = 0, and (2.4), with some constant
13 we have 13Pn-1 (/) s 7?e". Since/ is a transcendental meromorphic function, (1.4)

shows that 1. and
fI'=(B )P, .. (/).
which together with Lemma 2.1 impliesm(r,/') = S(r,/). Thus, by /V(r,/) = S(?\/)
we have T(r,f) = S(r,/), yielding a contradiction. Hence p 0. Moreover, applying
Lemma 2.1 to (2.4) again, we can conclude that m(r, ) S(r,f) and T(r,y?) =
5(r./).
From (2.3), we get m(r, -*) = S(r,/), and hence
(2.5) m(r.j) = S(r./).
It follows from (2.3) that
NI2(r, i)< IV (r,2) + S(r,/)
< T(r,<p) + S(r.f) = S(r.f),
implying that the zeros of / are mainly simple zeros. Thus, by (2.5), we obtain
(2.6) nr.o 1) - V(i) + S(r,/) = w,I(r, ) +S(r,/),
where i\ri)(r, 1//) involves only the simple zeros of /.
Let 2d be a simple zero of / such that R(zo) 0. Then in view of (2.3) we have
(2.7) »(1N2(«.)-VM -
Now, we show that tp' 0. Suppose, contrary to our assertion, that <p' = 0,that is,

>is a constant. If zq is a zero of f'(z) — 7tp/n, then we set

@8)
and observe that h 0. It follows by (2.5), (2-7) and (2.8) that
(2.9) m{r.h) = S{r.f)

From (2.6) and (2.8), we get N(r,h) = S(r,/), which together with (2.9) show that
T(r,h) =S(r,/), and

(2.10) fr=hf+ Jz, (" =f{h*+h)f+hjz
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By (2-10) and (2.3), we obtain
[ro+ h2+ -4 7"+ «)]/+1(2=+1)-- ( +“'«yf=o0-
Therefore, we must have
(»+ )Aa+ h'- [(Af+)=0. P»+ 1)A- Ojr+0’) =0,
which implies (2n + 1)x = n("- + »")i and thus (Re.")" = Cli2*| witli a constant
C. This, however, contradicts (2-1) and T(r,/*) = S(r,/), and thus % ~ 0.
Using the above arguments, it can be shown that g9 0. In this case we set

and assume that f'(zo) + s/f/n = 0.

Again, from (2.3), we get
¢i1) il )2- "+ @n+ v
wheret = * + a'. |l view of (2.11) and (2.7), we see that a simple zero zo of f(z)
such that R(zq) 0, is a zero of (2n + 1) pf"(z) — (tip 4- n<p")f'(z)

If (2n + 1)<pf'(z) —(tip+ tvp')f(z) O, we set

(2n4-1)y»/"(r)  (ty?>-+nip")f(z)
1(*)

It is clear that a is a small function of /. Therefore, we have

12) = sil+s2/",

(2.13) 'z 1+ @+ oi+a + /.
Ne it follows from (2.13), (2.12), (2.11) and (2.3) that

@n+1- 1 —1@+ai+ + 41— — )

(2.14)
In this case, (2.14) and (2.6) imply
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Therefore, we have (2n+3) logsj = 2n(log/14-a) + (3n+1) logip+ D with a constant
B, which implies that (/lcQ)3cS (p3'+1 = Thus, Rca is a small function of /,
which contradicts (2.1). Therefore, (2 + )< "()—(ttp+n<p’)f'(z) — 0, and we have
(2.15) m=Er
with 3=+ j. From (2.15) we obtain
(2.16) Jre i+ i)
It follows from (2.1G), (2.15) and (2-11) that
(2 +32)F- (1" <E))"+ «+-W -

Therefore, we have
(2.17) 0'-t' = -0(0 - i)+ 07- f)r-
1f0 —t = 0, then by the definitions of t and 0, we see that (Rea)2 = C<p, where
C is a constant. So, Rea is a small function of /, which contradicts (2.1). Hence,
we have — 0. In this case, again, by (2-17), we obtain (2« + 1) log(/3 —t) =
nlog<p+ log /1 4-a + D with a constant D, showing that R.oa is a small function of
I, which also contradicts (2.1).

This completes the proof of the theorem, namely the equation /" /' + P, _j(/) =
Re° does not possess any meromorphic solution / with N(r,f) = S(r,f) unless
P, (/)= o

3.Conclusions

Using different and much simpler proofs, this paper provides two main results,
extending the main results of the paper [17} to more general differential polynomials.
Sonic examples are discusscd showing that the imposed conditions arc ucccssary. For
further study, a general conjecture is posed.

Acknowledgement. The authors would like to thank Professor Chung-Clmn Yang
for his helpful discussions and suggestions during the preparation of this paper.
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Abstract. Suppose \s is 1 holomorphic seir map of the unit disk and Cv is a composition
operator with symbol <pthat fixes the origin and 0 < \<ff(O)\ < 1. This paper explores sufficient
conditions that ensure all the holomorphic solutions of Schrtidcr equation for the composition

operator Cf to belong to a Bloch-type space  For sonic u > 0. In the second part of the paper,
the results obtained for composition operators are extended to the case of weighted composition

MSC2010 numbers: -17B33.
Keywords: Composition operator; Schroder equation; Bloch space.

1. Introduction

Let 2> be the unit disk of the complex plane C, and let CK(D) denote the space of
holomorphic functions defined on the unit disk D. Recall that a holomorphic function

I defined on D is said to be in the Bloch-type spacc b,,, for some a > 0 if
sup(l - \z2\2)a\f,(2)\ < o°-
Notice that under the Bloch-type norm:

(11) Wil». - 1/(0)l + wg(i -
the space CB, becomes a Banach space. From the definition of Bloch-type spaces, it
immediately follows that $a C 'Bp fora < p and J3n ¢ H°° fora < 1.

The Bloch type spaces have been studied extensively b} many authors (Hee [1], [8],
and references therein). In [8], it has been shown that the Bloch-type norm foro > 1

is equivalent to the a —1 Lipschitz-type norm:

<1-2) 11/11». ««Iseu'g(i - M2r~*i/MI. /1 6®,, a>1.
61


mailto:bpa4tlyal@centxalstate.edu

B. PAUDYAL.

Composing functions / in W, V) with any hoiomorphie self-wap <pof T>, induces a
linear transformation, denoted by Cv and called a composition operatoron  (2>):

Cvf =fo<q
For any n € CK(b) we define the weighted composition operator uCv on OUT)) as
follows:

«ecun = («)(/ow)

In this paper, we study holomorphic solutions / of the following Schroder’s equation:
(1.3) «*3)I(*) = A(*),
and of the corresponding weighted Schroder’s equation:
(1.4) uc, /= A,
where Ais a complex constant.

Assuming that  fixes the origin and satisfies 0 < |v>'(0)] < 1, Konigs [5] showed
that the set of all holomorphic solutions of equation (1.3) (the eigenfunctions of the
operator Cv acting on 5€(D)) is exactly {<r"}*L0, where a, the principal eigenfunction
of Cy,, is called Konigs function of >

Following the Konigs work, Ilosokawa imd Nguyen [4] showed that the set, of all
eigenfunctions of the weighted operator uCv acting on  (2>) is exactly {t*r"}~LO0,
where v is the principal eigenfunction of uCv and a is the Konigs function
According to a general resultofHammond [2], ifuCv is compacton any Banach space
ofholomorpliic f i on 'D ining polynomials, then all the eigenfunctions van

belong t.o a Bauacli space. Under somewhat, strong restrictions on the growths of u
and <pnearthe boundary of the unit disk, Hosokawa andNguyen [4] showed that all
the eigenfunctions van areeigenfunctions of uCv acting on the Bloch space b.

Our +oal in this paper is to obtain conditions under which all the eigenfunctions
va" belong to a Bloch-type space ba.

The rest of the paper is organized as follows. Section 2 contains some preliminary
results. In Section 3 we presert our main results concerning composition operators
Theorem 3.1 provides sufficient conditions ensuring all the cigeufunctions @ to bdong
to Bloch type spaces fora < 1. Similarresults fora = 1and a > 1are presented
in Theorems 3.2 and 3.3, respectively. In Section 4 we prove results concerning the

weighted composition operators
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2. Preliminaries
We recall the following criterion for boundedness of the operator uCv on the Bloch-
type spaces (see [6. Theorem 2.1]).
Theorem 2.1. Letn be an analytic function on D, ip be an analytic snlf-Tap ofD,
ami let be a positive real number. Then the following assertions hold.

1. IfO < a < 1, then uCv is bounded on &,, if and only ifu € ®, and

2. The operator uCv is bounded on b if and only if the following conditions are
satisfied.
(a) sup™.j, '()11- H2)logi-bl*A* < °°»
(b) supa62>l«(*)I1?2iiA5bIN(*)l < ~-

3. Ifa > 1, then uCv is bounded on b,, if and only if the following conditions

are satisfied.
(a) supz€2>|y'(r)| < < 00,
(b) sup,ea)ti(z)I (i34 44.M W < oo-

The following theorem provides a compactness criterion for the operator vCv
acting on (see [6, Theorem 3.1]).

Theorem 2.2. Let u be a holomorphic function on T> and let ip be a holnmorphic
self-map of T>. Let a be a positive real number, and letuOv be bounded on 23,. Then
the following assertions hold.

1. Tf0 < ft < 1, then uCv is compact, on bn if and only if

LA 0> o wil(r g Ne ~ 0
2. The operatoruCv is compact on b if and only if the following conditions are
satisfied.
(a) limp()tl- (%)L - \2\2) log =0,
3. Ifa > 1, then uCv is compact on ba if and only if the following conditions

are satisfied.

M Brd»w

lu'W la iitjp)*-1 - o,



D. PAUDYAL

Remark 2.1. If in Theorems 2.1 and 2.2 we nasiiTe 1 = 1, then they provide a
criterion for and of position operators C,p acting on the

Bloch-type spaces ®«-

The following two theorems arc fundamental for our work. Theorem 2.3 is the
famous Konigs theorem about the solutions of Schroder equations (see [5| and [7,

Chapter 6]).

Theorem 2.3 (Konigs theorem (1884)). Assume that p is a holomorphic self-map
of'D such that ip(U) = 0 and 0 < [v?'(0)| < 1- Then the following assertions hold.

(i) The sequence of funetioi

where ipu is the kth iteration of @, converges uniformly on a compact subset
of'D to a non-constant function that satisfies (1.3) with A= y>'(0).

(ii) f and A satisfy (1.3) if and only if there is a positive integer n such that
A= vs'(0)" and f is a constant multiple ofan.

The next theorem characterizes all the eigenfunctions of a weighted composition
operator under some restriction on the symbol (sec [4]).

Theorem 2.4. Assume thattp is a holomorphic self-map of'D andwu is a holomorphic
map of D such that u(0) 0, y?2(0) = 0 and 0 < |[v>'(0)] < 1. Then the following
statements hold.
(i) The sequence of functions
(1_ u@u(<p(@)..u(<pk i(z))
H )" u(0)k
where gk m the kth iteration of p, converges to a non-constant holomorphic.
function V of D that satisfies (1.4) with A= «(0).
(ii) f and A satisfy (1.4) if and only if f = van and A = u(0)v3'(0)™, where, n
is a nonnegative integer and a is a solution of the Schroder equation (t.3)
<J0W= <p(0)<r.
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3. Composition operators

In this section, we obtain sufficient conditions that ensure all the eigenfunctions
<t" of a composition operator to belong to ba for some positive number a and for all
positive integers n.

Definition 3.1. Given a number n > 0, the Hyperbolic  derivative of a function y?

at z e V is defined by
(1 -1»12)° g*M

For ri = 1, it simply is called the Hyperbolic derivative of y? at 2, and is denoted
by shHz).
Definition 3.2. Let <5 be a holomorphic self-map of D such that y>(0) = 0 and
0 < w'(0)] < 1»and let <,, be the mlh iteration of ys for some fixed nonnegative
integer m. Then we say that y>satisfies condition (A) if there exists a nonnegative

integer rn such that

(A) Jo<»-WW)I - (1 W)y, (0)1

for all z € £>and for some fixed a > 0.

Remark 3.1. Tfcondition (A) is satisfied for some m, then it aho is satisfied for all

nonnegative integers greater than m.

The following example provides a family of maps that satisfies condition (A). The

example is borrowed from [3].

Example 3.1. Consider a map 7 that maps the unit disk univalently to the right

half plane. This map is given by formula:
HOEEEEN
For any t € (0,1), define
iM* o+ 1
It is well known that < maps the unit disk into itself for each t € (0, ) (see [7]) .

These maps are known as lens maps.
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Claim 3.1. The map < satisfies the condition (A) fora = 1 and m = 0. that is,
fostic(*)l < Iv.(0)| forall t € (0,1) and forall z€ b

Proof. Clearly, we have <pt(U) = 0 and

¥>»001 Mzy + 12

Since 7''2) = we see that [v?t(0)] = t. It is known that the image of ipt

a-*)2
touches the bounda?’y of the unit disk non-tangcntially at 1 and —1. Now we put
=7(r) = reis to obtain

yw ()i, 1- H2 .2tK :*iM
1 -1Ar o+
1-\2\

L% Nt 4 W
low+ 112- k- ip
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On the other hand, we have
402 W- 122 (¢4 Dt + 1) - (wl- D)(tet - 1) =

(W' D+ 1) - (Wr- 1)( *- 1) = 2(tu +w') = 2 r*(e"e + e~i,e) = 4 r*costO.

Usingz =" w e get

blww i-
i)+ 12 —u>—1)2 tr* 1 4rcos0 trL1 _ tcos®
4 r' costo 4 rlcostti costo
Ifs € (—1,1), then 7(2) € R+. Therefore 0 = 0 and so = * On the other
hand, if z e b\ (—1,1), then |0] e (0,a/2). Hence cost# > cos0 > 0, and so
(r)l < t. This completes the proof. ]

Remark 3.2. Prom the proofof Claim 3.1, we see that |ip[INz)\ n 0 as z approaches
the boundary of the unit disk along the real-axis. Hence the composition operator with

symbol <t is a non-compact operator on b

The following proposition, which provides a sufficient condition for Konigs function
to belong to Bloch-type spaces, plays an important role in the proofs of our main

results

Proposition 3.1. Assume that the opemtor Cv is bounded on b,,, and < satisfies
condition (A) for some a > 0 and for some fixed nonnegative integer m. Then a

belongs to b,,

Proof. Since the operatoris bounded on ba, there exists a positive number M

such that

(3.1) (1- \2\2a\<p'@\ < W 1- Mz)\*)*  forr € V.
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For m given by the assumption, choosc a nonnegative integer k such that k > rn. For
z € 'D, we have
(L 1) IVE) = @~ N a)© I, (Wici(X)val (Vc-a(z))- VIV .-i(*))v>,(@m (*))-"p/ (2
= (1~ Ne)** IVCOVMMED)) -V (vm -i(*))2 ' (v» n (*)-w (vir-a(*)) A(v>fe-i(«)].
By using (3.1), we obtain
(1- N2)“K(*)I <
< IW(L- [¥»(s)[2)* HS(v3(r)) oV ((fti.-iW )» /W 4 - I (W -afc)) ¥>'(Vie-i(*)l-
Again using (3.1) repeatedly, we get
(1- 1Fa)elvi(*)l <wm (I IVA(*)I2MATC O )V (*>*-i(r)I
Now using condition (A) repeatedly, we get
(1 N2m (z)] <M "V (0)*™| (1- bl *)[2)
Thus, we have

wr (I m2* |~ | < (1- IWWI2)" < — if,
implying that (1 —\z\2)a\tr'(z)\ < |y/XQSQ<»j “Hence, a 6 23 Proposition 3.1 is proved.

The following corollary provides a sufficient condition that ensures all the integer
powers of the Konigs function to belong to Bloch-type spaces 23Q for « < 1.

Theorem 3.1. Suppose a < 1.1f operator Cv is bounded on 25, and ¢ satisfies the

condition (A), then an e 23a for all positive integers n.

Proof. From Proposition 3.1, we see that a 6 ®0. Let H00 denote the space of
bounded holomorphic functions on the unit disk D. Since ba ¢ 100 fora < 1, there
exists ; positive constant C such that ||a]lH~ < C, and
@ Melm(i)),| =1 - \A2r Inh 1(z) o'{2)\
<lkb, » kn_1(*)I
<n k®, ¢ - 1.
Hence, <t" 6 23Q for all positive integers n. o
The following theorem gives a sufficient condition that ensures all the integer

powers of Konigs function to belong to the Bloch space.
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Theorem 3.2. Letp be a holomorphic self-map of D such that p(0) = 0 and 0 <
17(0) 1< 1. Also, assume that

3.2 17 .87 h/i < Isp'(0)l  for oil » ED.
@2 - IvVMP logrrfs, (=l PO ?

Then operator . is bounded on b and an € b for all positive integers n.

Proof. The boundedness of Cv on the Bloch space follows from Schwarz-Pick theorem.
From the hypothesis of the theorem, we have

(33) (I-H ~log— wily'(r)| < y>(0)|(I-ly(a)[2)log ~ £)\ forall2e

Let k be a positive integer, then we have

1 lgl2)lyfe(-s)lk>g r =(1 N 2)\<p'(*Nebl*)

=(i-\\lg FPKI)I-

fok-x (z))lbg

By using (3.3), we see that
(- Irl2)kp*(r)|krr-2u <fe/(0)I(i - ly(*)12)>0g

And using (3.3) repeatedly, we get

<2¥>(0)*(i - |o>M)i*sy
Since logx < X for x > 1, we have

1 KM 1logj— <4|p'(0)I*.

Jta(l [I>)|~ | log -bj=q@ w i log <4, .f»

showing that

(3.4)

(1-1*[2)log I- ~
Recall that <t(0) = 0. Now we obtain an estimate for a. We have

M*)[- 1 17(to)I(t2)] < Ne Jag*[)s £ — — rrT5p (AL
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(3.5) < 4 [log (logr~ R )Jo=4 [log (log 1,9(log2)] .
Next, by using (3.4) and the above obtained estimate for cr, we get

(1- U3)(*"M) =<1 I*la) » lo—*(+) »'M |

~m,(loglogj-~j-loglogi)

Finally, it is easy to see that the right-hand side of the last expression teds to zero as
|z| — 1. Hence cm e b for all positive integers n. o
Letusrecall the Lipschitz-t.ype norm, which is equivalentto the usual norm, defined

for function / 6 ®«, a > 1 by
WU, = sup(l —*|2)a-1|/(z
'e_%( [*[2)a -1]/(2)]

Next, we present results for the Bloch-type spaces ba for or > 1. We start with the

following definition.

Definition 3.3. Suppose / e ®,, for some a > 0, then we define the Bloch number
of/ by & = inf {o:/ € ba}.

Proposition 3.2. Suppose > 0. Then fn &'bp+j for all positive integers n if and

only ifb/ if at most 1.

Proof. Suppose / “ € bp 11 for all positive integers n. We have to show that b/ < 1.
On the contrary, assume bf > 1. Then there exists a positive integer n0 such that
1<1 \— < bj. Now, in view of definition of Lipschitz-type norm, we see that for
any fixed positive integer M there exists r e B such that

Mo<(i- W2)"~i/M | <{(i- M2)"“ /bl IT"- (I- M VW I-,
showing that

M < sup(l- [r|Y W I1"" -
‘e(g( It

Since M is an arbitrary positive integer, we have f na & bp+1. Which isa contradiction.
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Conversely, suppose chat bf < 1. Since bac b forall a < 1, then clearly f € b
For any fixed U> 0 and for any fixed positive integer n, we have

L- <t I(/*)WI-(1 - MV +Us/— HON*)!
=n(L- MRS A 1" W

<»Il/b(1 - HV (I/l» logs ru )

< (I/IW '4i-M 2)e (bgT— ) *

The last expression goes to zero as \z\ — 1, showing that / " € bpa+i for all positive

integers it. o

Theorem 3.3. Letip be. a holomorphic self-map ofD such that 0) = 0 and 0 <
ly>'(0)] < 1, and leta > 1.1f [c”n)(r)| < |(p'(0)| for all z 6 "D, then operator is
bounded on bn and it € for all positive integers n.

Proof. Since |~ n)(r)| < |y?'(0)| for all r e D, by Proposition 3.1 we have a e b. So
bf < 1. Therefore the result follows from Proposition 3.2. o

4 W eighted Composition operators

Recall that if u is a holomorpliic function of the unit disk, and is a holomorphic
self-map ofthe unit disk, then the Scliroder equation for weighted composition operator
is given by
(4.1) Ul bl *)) = AJ(*).
where / € Di(D) and Ais a complex constant.

Also, recall that if tt(0) 0, ip(0) = 0 and 0 < |ip'(0)| < 1, then the solutions of
equation (4.1) are given by Theorem 2.4. The principal eigenfunction corresponding
to the eigenvalue u(0) we denote by v, and observe that all the other eigenfunctions
arc of the form vern, where a is the Konigs function of ip and n is a positive integer
Hosokawa and Nguyen [4] studied the equation (4.1) in the Bloch space and obtained

the following result.

Theorem 4.1. Let<pbe aholomorphic self-map ofD with y?(0) = 0 and 0 < 17(0)1<
1, and let u be a holomorphic map of D such that rr(0) 0. Assume that operator
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«Cy, is bounded on b. Further, for 0 < r < 1, we set.
Mriv) = R M), @ = s (@i + W<,
[T =I=r

and assume that the following conditions are satisfied:

(i) limr_+ilog(l —r) logMr(<p) = 00.

(ii) loglar| < elog(l - r)logMr(),

where e > 0 is a constant satisfying e log Li/loo > —1

Thenvnn G b for all nonnegative integers n

Now we proceed to obtain conditions on the weight u and on the symbol €>0f the
weighted composition operators uCv that ensure vem to belong to Bloch-type spaces
ba for some a > 0 and for all nonnegative integers n. We begin with the following
remark.
Remark 4.1. Letf be aholomorphic function defined on 'D. If||/'||TO< M for some
M >0, then we have

1M - 1(0)1- \E r/(ir)(it] < £ FAON < M £

If, in addition, f also satisfies /(0) = 0, then ||/||«, < A1/.
Proposition 4.1. Letip be a univalent holomorphic self-map of the unit disk with
tp(0) = 0 and 0 < |<p'(0)] < 1, and let be the Konigs function of ip.Then a is
bounded if and only if there is a positive integer k such that [|ogloo < 1+
Proof. Suppose that it is bounded. Since ipis univalent, a is also univalent (see [7],
p. 91). Since a is bounded univalent map, there is a positive integer k such that
Ibl 100 < 1 (see [7]).

Conversely, suppose there is a positive integer k such that |ly>*joo < 1. Since
0{+(z)) = y?(0)o-(z), we have

N<Pk()) = o(ip(<pk~ifz)) = ip'(0)cr(ipk-i(z)) = <p(Ok<r(2).

Clearly the left-hand side of the last relation is bounded, and therefore a is also
bounded, which completes the proof. ]

Theorem 4.2. Let <pbe a univalent holomorphic self-map ofthe unit disk with p(Q =
0 and 0 < |v>'(0)l < 1 satisfying | n*>(r)| < |y/(0)| for all z 6 X>and for some fixed
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a < 1. Ifu is a holomorphic map of V such that u(0) 0 and [[tt]jce < oo, then
operator uCv is bounded an ba and va" € HQfor all nonncgative integers n.

Proof. Since |ulloo < ||« ||-» + |“(0)| < oo and |*(/,“4”)| < |~(0)], the operator vCv
is bounded on ba for some o < 1.

Since < |v?'(0)| for some a < 1, in view of Proposition 3.1, we see that
(Té b, fora < 1,and hence is bounded. Next, since isunivalent, a is alsounivalent.
Consequently, there exists a nonnegative integer k such that |ly?n|joc < 1+ Composing
ifik- 1 on both sides of the Schroder equation (4.1) from right, we get

(4.2) U(<Pk-i (2))f(tpk{2)) = AI(?>fc-i ()

The left-hand side of the above equation is bounded, and so is / o hk-x- Hence,
differentiating both side of (4.2), we get

«(V2e-i(2)) h_, (%) 1(¥>*(*))+ «(wl—i(2)) ) &@) - Aly>fe-i(E) - )-

Next, multiplying both sides ofthe last equation by (1—z\2)a, and using boundedness
of |m|<»i Umloo, / ° 4% and '° <Pk we see that there exists a constant M such that

@43 (- [ifriviow -iW K-iMI<M(1 p)"(Irt-1W 1+ KAWD-

The riglit-liaiid side of the above inequality is uniformly bounded, and therefore the
left-hand side is bounded. Again, we compose k-2 on (4.1), to get
N(r>*-2(0) (v »*-i(*)) = Al(V2fc-2(«)).
Now we differentiate the above equation, then multiply by both sides by (1 —|"[2)*,
and use (4.2) and (4.3) to show that (1 —\z\2)a\f'( Pk-2iz))ifik_2{z)\ is bounded
Continuing this process, we see that that sup.e.£,( —\z\2)a\f'(z)\ i bounded, and
hence / 6 'Bn. By Theorem 2.4, any holomorphic / satisfying (4.1) is of the form vrr"
for some positive integer n, implying that van € ba for all nonncgative integers n.
This completes the proof. Theorem 4.2 is proved. o
The following two theorems give sufficient conditions that ensure hit" to belong to

Bloch-type spaces ba for some a > 1 and for all nonncgative integers n.

Theorem 4.3. Letip be a holomorphic self-map of the unit disk with y>0) = 0 and
0 < [¥>'(0)] < 1, and letn be a holomorphic map of D sveh that u(0) 0. Assume
73
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thatfor a fixed positive number /9
@ M*pP)a
Then the following statement? hold.

(i) 1f\p(hr-)(z)\ < |*/(0)| for allz € D and for some a < 1, thenva 1G bu.y
for all nonnegative integers n.

(ii) 1f M4 2)l —17(0)| for all z G D, then va" G bPIxfor somep >  and for
all nonnegative integers n

Proof. We first prove the assertion (i). From the definition of v& (see Theorem 2.4),

(1 wVkmi-a nv (9}l
<@ Moy L igyg il g i
Hence (1- \z\2)P\v{z)\ = limfc_too(l - \z\2)e\vk (z)\ < 1. Since r is arbitrary, we have
| - \*\2)fil .
sup( Yfiwv{z)|.< 0o.

On the other hand, the assumption < 12(0)! and Proposition 3.1 imply
that an G "Bc C H°° for all nounegative integer n. Therefore,

sug(l - \z2\2)Mv(z)an(z)\ < oo

ze-

forall nonnegative integersn. Considering the equivalentnorm (see (1.2)), we conclude
that va" G 25ii+i for all nonnegative integersn. This completes the proofof assertion

0)
Jo prove the assertion (ii), observe first that from the proof of part (i). we have

(4-4) sup(l - \2\3)fiv(2)\ < oo.
reio

On the other hand, since V(ft)(.z)| < |*(0)|, Proposition 3.1 implies that a G b, and
hence there exists a number M > 0 such that
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Next, using equations (4.4) and (4.5), with some constant C > 0 we have
(1- BVbiBOU*)! -{<1 - *IV|»W)H(1- M V -V M Il
<CM(1- lil2)- ‘1(log -~ )7«
Finally, it is easy to see that the last expression goes to zero as \z\ — 1. Hence,
va" e jBpii for all nonuegative integers «. Theorem 4.3 is proved o

Theorem 4.4. Let <pbe a holomorphic self-map of the unit, disk with y>(0) = 0 and
0 < |y3'(0)] < I, and let u be a holomorphic. map of'D such that u((J) 0. Suppose,
that p is a positive integer and the following conditions are satisfied:

(> < Wo)l for allzev

(1 1yM N> log MTAL L
(ii) s " MzE®-
Then veflL€ B/3+ for all nonnegative integers n.

Proof. In view of the definition of Vk (see Theorem 2.4) and the condition (i), we

can write
o (- kir

WEOBSI M s o B s MY sy

<(X- £21,1- A )ifle« (.- il m iy -
Since log® < X for x > 1, we have

(1- [)»log (1_2M)aM *)I A 2"+1-

So taking limit as k approaches to oo, we see that
20+

(4-0) 1 WVM*)

On the other hand, since < satisfies condition (ii),

n view of equation (3.5), there,
exists K > 0 such that

4.7) ler(r)| < JTloglog
Now using (4.6) and (4.7), we get

(1 m*)>Mo0"M 1< (loglog
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Clearly the right-hand side of the above equation goes to 0 as \z\ -> 1. Using the
norm defined in (1.2), we conclude that va" e ®/3+i for all nonnegative integers n.
Theorem 4.4 is proved. =]

This paper is based on a research which forms a part of the author’s Ph.D.
dissertation from University of Toledo. The author wishes to express his deep gratitude
to his dissertation adviser Professor 2eljko Cuiikoviii
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ON TIFTE CONVERGENCE OF PARTIAL SUMS WITH RESPECT
TO VILENKIN SYSTEM ON THE MARTINGALE HARDY
SPACES

G. TEPHNADZB

The University of Georgia, Thilisi, Georgia
University of Technology’, , Sweden
E-mail: giorgitcphnadze@gmnil.com

Abstract.. In this paper, we derive characterizations of boundedness of subsequences
of partial sums with respect to Vilenkin system on the martingale Hardy spaces Hp when
0 < p < 1. Moreover, we find necessary and sufficient conditions for the modulus of continuity
of martingales / e Hp, which provide convergence of subscqucnces of partial sums on the
martingale Hardy spaces Hp. It is also proved that these results are the best possible in s
special sense. As applications, some known and new results are pointed out.
MSC2010 numbers: 42C10.
Keywords: Vilenkin system; partial sums; martingale Hardy space; modulus of
continuity.

1. Introduction

The notation and definitions, used in this section, will be given in the next section
of the paper. It is well-known that (for details see [14]):

IS, f\\p < CpIf\\p, when p > 1,
where Snf is the n-th partial sum with respect to bounded Vilenkin system.
Moreover, the following more stronger result, is also known (see [11]):
S/, <<vIl/Il, = when / e LP, p> I,

where S"f = sup,.eN|S,,/|.
Lukomskii [13] obtained a two-sided estimate for Lebesgue constants Lu with
respect to Vilenkin system. By using this resuit, wc easily can. show that for every

°The research was supported by Shota Rustaveli National Science Foundation grants no.
DO/24/5-100/14 and YS15-2.1.1-47, by a Swedish Institute scholarship no. 10374-2015 and by target
scientific research programs grant for the students of faculty of Exact and Natural Sciences.
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integrable function f, the sequence S, kf converges to / in Lj-norm if and only if
sup <c<oo

Pointwise and uniform convergence and some approximation properties of partial
sums in Li-norm were studied by a number of authors (see, e.g, the papers by
Goginava |9], Goginava and Saliakian [10], AvdispahiC and Mcmi£ [2|, and references
lherein). Fine [4] obtained sufficient conditions for the uniform convergent» which are
in complete analogy with the Dini-Lipschitz conditions. Guli&v [12] has estimated the
rate of uniform convergence ofa Walsh-Fourier scries by usuig Lebesgue constants and
modulus of continuity. Uniform convergence of a subsequence of partial sums with
respect to Walsh system was investigated also in [8]. This problem for a Vilenkin
group G,,, was considered by Blahota [3], Fridli [5] and Git [7].

It is known (for details see, e.g., [18]) that the Vilenkin system does not form a
basis in the space L\ (Gm) . Moreover, there is a function / in the martingale Hardy
space Hi (Gm) such that the sequence of partial sums of/ is not bounded in Li (Gm)-
norm, but a subsequence Sm,, of partial sums is bounded from the martingale Hardy
space Hp (Gm) to the Lebesgue space Lp (Gm), for all p > 0.

In [21] it was proved that if 0 < p < 1 and {a*. :k 6 N} is an increasing sequence

of nonncgative integers such that
(1.1) SRR («*) < o0,
where p (n) = |[n| —(n) and
(n) = mia{j GN :Tij 0}, In| = max{jfGN : , 0},
forn = 53n.jMj, nj GZmj (j GN), then the restricted maximal operator
5*,n/ := sup|5efc/|
ken
is b'-unded from the Hardy space Hp to the Lebesgue space Lp.
Moreover, if 0 < p < 1 and {a* :k GN} is an increasing sequence of nonnegative
integers satisfying the condition
(1.2) supP(afc) = 00,
then there exists a martingale / GHv such that
SUPlISan/Hi  =oo.
feEN
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Itimmediately follows that foranyp > 0 and/ 6 Hp, the following restricted maximal
operator
S#/ = ag’e\sw,. 1,

whore Mi, := 1, Mk+i == HOm* au<"m (n'o, mi,...) is a sequence of positive
integers not. less than 2, which generates the Vilenkin system, is bounded from the

Hardy space Hp to the space L,, :
(1.3) IM |,< 1111, /6 fp.
For the Vilenkin system, Simon [15] proved that there is an absolute constant c,,

depending only on p, such that
M n 20

forall/ € Hv where 0 < p < 1.1In [17] we proved that the sequence {1/k2~v : Kk € N}
can not be improved.

A similar theorem for p = 1 with respect to the unbounded Vilenkin systems was
proved in Git [6].

In [18] we proved thatif0<p< 1,/ € Up(Gm) and

(1.5) I (/- i -» o as k ~400.

Moreover, for every p € (0,1) there exists a martingale / € Hp(Gm), for which

USkf - /IILP(G,) 0 as fc—>00.
In [20] we investigated some (HP,HP), (HP,LP) and (HP,LP,00) type inequalities for
subsequences of partial sums of Walsh-Fourier series for 0 < p < 1.

In this paper, we derive characterizations of boundedness ofsubsequences of partial
sums with respect to the Vilenkin system on the martingale Hardy spaces Hp when
0 < p < 1. Moreover, we find necessary and sufficient, conditions for the modulus
of continuity of / 6 Hp, which provide convergence of subsequences of partial sums
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on the martingale Hardy spaces I1,,. It is also proved that these results are the best
possible in a special sense. As applications, we point out some known and new results.

The paper is organized as follows: In Section 2 wc present necessary notation and
definitions, and state a number of auxiliary lemmas, needed in the proofs of.the
main results. Some of these lemmas are new and represent independent interest. The
formulations and detailed proofs of the main results and some of their consequences

are given in Sections 3 and 4.

2. Preliminaries

Let M, denote the set of the positive integers, and N = N+ U {0}. Let 7» = (m0,
mi,...) denote a sequence of positive integers not less than 2. By Z,,,L = {0,1,..., m*
1} we denote the additive group of integers modulo -, and define the group G,n
to be the complete direct product of the group Zmj with the product of the discrete
topologies of Z,nj’s. The direct product /xof the measuresgo, ({ '}) := 1/1o* (j e Z,,k)
is the Haar measure on Gm with y (Gm) = 1.

If the sequence to (mo,mi,...) is bounded, then the group G,, is called a
bounded Vilenkin group, else it is called an unbounded Vilenkin group. The elements
(€0, %1, ... X],...) (XK€ ZmK).

of the group Gm are represented by sequences x
It is easy to give a base for the neighborhoods of G,,,:

J0@)=Cm, 1,(x)={y €Gm\y0=x0,..yn-i =x,_i} (ke C,, ne N).
Gm\ It is clear that

N-i
(2-1) = 1J/\W

*=0

Denote /,, =m/,, (0) forn € N and In :

If we define the so-called generalized number system based on m in the following way
Mo := , Affc+i := rnuMk (k € N), then every n e N can uniquely be expressed as
l="_rijMj, where n, e Zm, (J € N) and only a finite number of n-'s differ from

zero. For alln 6 N we define

(n) := min{j € N : 0}, Inl:=max{i 6 N: # (O}, p(n) = In|- (n).
For a natural number = njMj, we define the functions v and v** as follows:
v(n)= 18+~ &\+ do> V (n) = A2 S],
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where Sj —signnj —.sign( ), S’ —\Qnj —1|Sj and O is the inverse operation
for ofc (b bk := («fc + bk)modmk- The norms (or quasi-norms) of the spaces Lp(Gm)
and Lp.oo (Gm) (0 < p < 00) are respectively defined by
VK'= =mpV (/>A).I".

Next., on the group Gm wc introduce an orthonormal system, which is called the
Vilenkin system. To this end, we first define the complex-valued functions »*(x) :
&,, —aC, called the generalized Rademacher functions, as follows:

rK(x) := exp (2T TiXk/WK) (2= —1, xe Gm, ke N) .
Now define the Vilenkin system -p:= :n e N)on Gm as follows:
¢n(x) := nor - (x) (new).
Notice that in the special case where in 2, that is, = 2forall k € N, the above

defined system is called t.he Walsh-Paley system. Observe that the Vilenkin system is
orthonormal anti complete in (Gm) (see, e.g. [1, 22]). If/ e L\ (G,,), then we can
define the Fourier coefficients, the partial sums of the Fburier series, and the Dirichlet
kernel for the Vilenkin system t>in the usual manner as follows:

f(k)y . - woo (isN)
S, *u, (»SH).
k=0 k=0
Recall that (see [1])
«@ » ,\ f, if X In
-2) Dm~W - { 0,if xii,
(23) = jrsorii

Moreover, if n e N and x e Ta\ Ta+j, 0 < s < JT—1, then the following estimates
hold (see Tephnadze [16, 19]):

(2.4) U .(*)]-14"~-k~1O IrnlTm,
and

. cMt
(2.5) J \Dn{x-t)\dn{t) 5 MN
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The n-tli Lebesguc constant L,, for the Vilenkin system ip is defined by
IA . 1l m
It is known that, for every ti = 53“ , wM,, the following two-sided estimate is true
(see Lukomskii [13]):
(2.6) (@+ (" (N)+ 7~ <Ln< V() +4c*(n) 1,
where A:= supnénJn,,.

The fT-algebra generated by the intervals [I, (a;):x S G,,,} we denote by ,,
(ne N), and by / = (/n,n € N) we denote a martingale with respect to f ,, (n 6 W)
(for details see Weisz [23]).

The maximal function of a martingale / is defined by

I* =supl/(n)|.
el ™)
In the case where / e L\ (Gm), the maximal function can also be given by the
following formula:

rw =~ K M K ,./[("),ipW
For 0 < p < oo the Hardy martingale spaces Hp (G'm) consist of all martingales, for
which WA\Hp := 11/[|p < 00.

Let X = X (Gm) denote either the space L\{Gm) or the space of continuous
functions C(G,,,). The corresponding norm is denoted by ] «Lin. The modulus of
continuity, when X = C (Gm) and the integral modulus of continuity, when X =
L\ (G,,,) are defined by

The modulus of continuity in the Hardy martingale spaces Hp (Gm) (0 < p < 1) can
be def led as follows:

“0 b "),«=_>" U~S8“"n"a>n
If / 6 L\ (Grn), then it is easy to show that the sequence (5ar,/:n GN) is a
martingale. If/ = (/n.n € N) is a martingale then the Vilenkin-Fourier coefficients
must be defined in a slightly different manner:
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Notice that the Vilenkin-Fourier coefficients of / e L\ (Gm) are the same as the
martingale (S\,r,,f :n € N) obtained from / . A bounded measurable function a is
called a p-atom if there exists an interval | such that

Jatlts-0, II'| <~(1)-1¥", Supp(a)C /m
Observe that for 0 < p < 1, the martingale Hardy spaces TIP (Gm) have atomic

characterizations (for details see, e.g., Weisz [23, 24]):

Lemma 2.1. A martinyale f = (/,,.n € N) is in Hp (0 < p < 1) if and only ij there
exist a sequence (a”, k € N) of p-atoms and a sequence (**-fee N) of real numbers
such that, for everyn € N
(2.7) Y 'IAkSM,,ak = fn a-e., where IMajp < oo.

k= feo
Moreover,

iifithp ~ inf (jr. k 1)
where the infimum is taken over all decompositions of f ofform (2-7).

By using the atomic decomposition of martingales / e Hp, we can construct a
counterexample, which plays a central role to prove the sharpness of our main results,
and it will be used several times in this paper (for details sec Tephnadze [21], Section
1.7., Example 1.48).

Lemma 2.2. Let0<p < 1, A= supn6Nm,,, and {A* :fce N} be a sequence of real

numbers such that
2.8 57 IAfcp - °p < °°-
(2.8) § 2 \Afclp

Let {a* :fc€ N} be a sequence of p-atoms defined by

where [a*| max {j € N: (& ). 0} and (ab)" denotes the j-th binary coefficient
of k€ N. Then f = (/,, : n € N), where

n -= *kak,

{fc: Joa[<n}
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is a martingale, f G Hp forall0<p < 1, and

i G{AfInt,..., Af,fo+ - 1}, k GN,
333 {Mosl.-. <1y

(2.9) fu) =

Further, let Alla,j < j< M|0|[+i, 1 € N. Then

L AMBL miLin MK
n

)

Moreover, the following asymptotic, relation holds:

There exists a close connection between the Hp and Lp norms ol partial sums (see
Ttephnadze [21], Section 1.7., Examplel.45):

Lemma 2.3. Let Mk < n < Afk+i and Snf be the n-th partial sum with respect to
Vilenkin system, where f GHp for some 0 < p< 1. Then for every n GN we have

the following estimate:
S, /P < |I5.nillp < |l sup, [SMI/|[] + W5,,/0 < [Jsj/|| + ILSV/I,
1. /11p < i P < 4B ISMV I Ysifil,
3. Convergence of subsequences of partial sums on the martingale
Hardy spaces

Our first main result in this paper is the following theorem.

Theorem 3.1. The following assertions hold.
a) Let0O<p< landf GHp. Then there exists an absolute constant cp, depending

only on p. such that

b) Let0 < p < I and {«t: k GN} be an increasing sequence of nonnegative
integers such that condition (1.2) is satisfied, and let { ,, :n G N} be any nondecreasing
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sequence, satisfying the condition:
M&rl
-m'KI1* - L]

Then there exists a martingale f € Hp such that

sslifeflL ,.." 00-

Proof. Wo first prove assertion a). Suppose that

(3.2) & o~ 3plllou,-
1M i»i 11,

Then according to Lemma 2.3 and estimates (1.3) and (3.2) we get

M Aris»fll - I IMin\~Isnfll
(3-3) " SiM i+ [-rp -]

In view of Lemma 2.1 and (3.3), the proofofpart a) of the theorem will be completed,

if we show that

fK.I

<S4> K
for every p-atom a, with support | and p (/) = M #1

‘We may assume that this arbitrary p-atom a has support 1

that Sna = 0, when M,v > «- Therefore, we can suppose that M n < n. According ti

-Itis easy to s©

|llloo ~ M~/p, we can write

M ,4p 1S ,a(x)| MIr U T

(351 (I 1€
MY IR ¢
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Letae In-Sincex —te , G andv(n)+v*(n) < c(l«|- (n) = cp (i), we
napply (2-6) to obtain
. M Jfilp-ip ...
K rrissen, KUPNore o \on (L)
mHt 1 " MIErl  Ji*
(»e») s = hyyn-
cmUj-"m'J’um <«» , cMY VM
nne 1 - 2/>(n)»/p-1)
and
/ IMX riSna(x)f «p(n)
K}7) I MV si-i——1 7 (x) < 2P(H)1-P) < cp < o0.

LetX GTal Ta+i, 0< s < N—1< (n)or0<s< <»< JIF-1. Then x-tG r\7*+
for t G Jjv. Combining (2.2) and (2.3) we get Dn (x —t) = 0, and

IM,Up 15,.a|

I Mw I
LetXG \ ,+ ,0< (n)<8<N —lor0< (n)<s<N- 1Thenx-t GN\/I+
for t G In. Hence, applying (2.5), we get

IM AT Aan o M. .
(3.9) W LAY et T M o iy s,
1 MW 1 MN n

Combining (2.1), (3.8) and (3.9), we obtain

(3.10) [ M<S> 7= dM= 53 [ TV
w7771 ™ \n\ 1 |

s o .
=< e=<n> J1i"

This completes the proof of part a) of the theorem.
Now we proceed to prove part b) of the theorem. To this end, observe first that
under the condition (3.1), there exists a sequence {a* : Kk GN} ¢ {ar* : Kk GN} such
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We note that such increasing sequence {a* : k e N}, which satisfies condition (3.11),
can be constructed.

Let/ = (/,,,n € N) be the martingale from Lemma 2.2, where

Ma/P-w 4 i/2
(312) AB= ol

In view of (3.12) we conclude that. (2.8) is satisfied, and hence, using Lemma 2.2. v
obtain that / € Hp
Next, using (2.10) with At defined by (3.12), we get

Hence, according to (3.11), we can write
+ 00 Ar(1-p)/2¢p/2

15— sscg < P (" -« -DT-])IL.

@3 / ng <dfrce

Let.re /(@9 \ llak)+1. Then we can apply (2.4) to conclude that

Nilp-n/3 rU/P -i)2r>

(3.14) BiloP 0t
Mg r )BWIY r 1)2

Combining (3.13) and (3.14), for sufficiently large k, we can write

flgf|[ 2 - HfIIE,.. r 1H"K,,,
4)( f>(GCT:

MET IMIE?>2 ) cM fert/s
cUL BIV>Vn >+, } >~

This completes the proof of part b) of the theorem.



G. TRPIINADZB

The next corollary contains equivalent characterizations of boundedness of subsequences
of partial sums with respect to the Vilenkin system of martingales / e Hpin terms
of measurable properties of the Dirichlet kernel.
Corollary 3.1. The following assertions hold

a) Let0O<p < 1landf € Hp. Then there exists an absolute constant cp, depending
only onp, such that

nsn/H s, <oP{n*{suPv{Dn)})I'p- 1||/[].p.

b) Let0 < p < 1 and{ *: k€ N} be an increasing sequence of nonncgativc
integers such that
(3.15) sup {supp {D.ik)} = oo,
and let{ ,, :ne N} be any nondecreasing sequence, satisfying the condition

A—{nkn {supp (A )}'7" 1_

Then there exists a martingale f 6 Hp such that

Remark 3.1. Corollary 3.1 shows that when 0 < p < 1, the main reason of
divergence of partial sums ofa Vilenkin-Fourier series is the unboundedness of Fourier
coefficients, but in the case where the measure of the support of n*-th Dirichlet kernel
tends to zero, then the divergence rate drops and in the case when it is maximally
small, that is,

/i (suppDnd = O 33 k-w>  (WIni<nk< M(@d+1),

then wc have convergence.

Proof. Combining (2.2) and (2.3) we get I(n)\I(n)+i CsuppZ>, C I(,,) and

Since M|,,| < n < MH+1, we immediately get

[ D,
M@ < Ir{supp (D,,)} < An>

where A= supnéNm,,.
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It follows that

MM <y gsupp (AP <YM HE-,

The result follows by using these estimates in Theorem 3.1. o
As special cases of Theorem 3.1, we can infer a number of known and new results
that are of particular interest. Tn Corollaries 3.2-3.4 that follow we list some of them.

Corollary 3.2. Let0O<p < 1, f e Hp and {nj. : k € N} be an increasing sequence
of nonnegative integers. Then
W\Snkf\Hp <Cv\f\\Hp
if and only if condition (1-1) is satisfied.
Proof. It is easy to show that
MR < FFi* 2 < Ap(K),
M(n.)
where A= sup,,éNm,,. It follows that
M 1
ml" < c< o0

sup —

ifand only if (1.1) holds. Thus, the result follows from Theorem 3.1. n

Corollary 3.3. Letne N and 0 < p < 1. Tlien there exists a martingale f € 11

such that
3.16. 5M,,+il = 00-
(3.16) sup llsm.,+i/llr _ = oo

Proof. It is easy to check that

(3.17) Wn+1=n, (Mn+ 1) =0
and
(3.18) p(Mn+\) = n.

By using Corollary 3.2 we obtain that there exists a martingale / 6 Hp (0< p< 1)
such that (3.16) holds. The proofis complete. o

Corollary 3.4. LetnfN ,0<p<1 andf € Hp. Then

(3.19) «nr 4= fin,<*p 11/lb,,.
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Proof. Similar to (3.17) and (3.18), we obtain

Mn+M,_.I=n (M, +M,_ )=n-1
and p(M,, + M, = 1. By using Corollary 3.2 we immediately get the inequality
(3.19) for all 0 < Vii 1- The proof is complete. n

Corollary 3.5. Letn GN, 0<p< 1andf GHp. Then

(3.20) WSM,A\Hp < (h, \WA\Hp .

Proof. Similar to (3.17) and (3.18) we obtain |/I-/,| = n, (M n) = n and p (J1/,,) = 0.

Using Corollary 3.2 we get the inequality (3.20) for all 0 < p < 1. o

4. Necessary and sufficient condition for convf.rcence of partial sums
IN TERMS OF MODULUS OF CONTINUITY

The main result of this section is the following theorem.

Theorem 4.1. The following assertions hold.
a) Let0<p< 1/ GHp and Aik < n < Then there exists an absolute

constant cp, depending only on p, such that

<«)

Moreover, if { * :x GN} is an increasing sequence of nonnegative integers such that

(4.3) nsnJ - f\\Hv-»0 as k-too

b) Le> { * : AGN} be an increasing sequence of nonnegative integers such that the
condition (1.2) is satisfied. Then there exist a martingale f GHp and a subsequence
{at :k GN} C {n* : k GN}, for which

(4.4) _ 0 (M{uk) 1) as k->00
Ui-.i })nnam v Afle:rv

(4.5) W | 0,/ filpoo> c> 0 as K-y oo.
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Proof. Let0 < p < 1. Then, by Theorem 3.1, we get

1S,/ m2n.~ Hft/ frwi/lltf, + ISMJ - f\piv

= dift<w -m +is»./-lib, < { i~ - *i) ( k-f) -

"1/1 0\

Next, it is easy to see that relation (4.3) immediately follows from (4.1) and (4.2).
Thus, the assertion a) is proved. To prove, part b) of the theorem, we first note
that under the conditions of part b), there exists a subsequence {a* :k € N} C
{nfc: k e N} such that

(4-6) n 7to° « knee

@n Jasl < Mlau-|

Let/ = (/,,,n € N) be the martingale from Lemma 2.2, where
(4.8) At=
«nr

Applying (4.G) and (4.7) with At as in (4.8), we conclude that (2.8) is satisfied,

hence by Lemma 2.2, we obtain that / e Hp.
Using (4.8) with A% as in (4.8), we get

! - wypl fmigA
(49 sSi# 1=(zcrj

Next, applying (2.10) with A* as in (4.8), we obtain

a,./ =%y, <« ATyl .
In view of (2.4) we conclude that | > for \ /{0*>+i> and
(4.10) M(ak)lf e Gm: —AW )}

M ORI {1(@ak)\ I M +1}
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Finally, in view of Corollary 3.5 and formula (4.10), for sufficiently large k, we can

> M% % 'L O, .M.Ne bl T T

C T tiig..iK -

This completes the proof of part b) of the theorem.

Theorem 4.1 is proved. [m]
Next, we present a simple consequence of Theorem 4.1, which was proved in

Tephnadze [1S]:
Corollary 4.1. The following assertions hold,
a) Let0O<p< 1,/ € Hv and

Then
ISkf - f\\Hf -4 0 as «-too.

b) For every 0 < p < 1 there exists a martingale f GHp for which

I-Sfe/ - f\\Lptoe -0 as k-too.

Finally, we present a result that contains equivalent conditions for the modulus of
continuity in terms of measurable properties of the Dirichlet kernel, which provide
boundedness of the subsequences of partial sums with respect to the Vilenkin system
of martingales / € Hp.
Corollary 4.2. The following assertions hold.

a)Let0<p< 1/ e Hp and Mk < n < Mt+i- Thenthereexists an absolute
constant cp, depending only on p, such that

1S,/ 1\m < ("M(»4pOn))./p- “an, o
Moreover, if {u*.-:k € N} is a sequence of nonnegative integerssuch that
as K —500.

(M«*1 7’ wp(Cm) ( (rikfi (sv,ppD..k))1/p~I
92
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then (4-3) holds.

b)  Let{ * :k € N} be an increasing sequence of nonnegative integers such that the
condition (1.2) is satisfied. Then there exist a martingale f G Hp and a subsequence
{a* :k GN} C {nk :k GN}, for which

\ I sip(Cr) \(«fcM (suppDOU))wp 1

lifley./ - /11ipoo > ¢> 0 as K -t00.
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