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Abstract. In the frunework of von Neuniann's description of measurements of
discrete quantum observable we establish a onc-to-one correspondence hetween
symmetric slatistical operators W of quantum mechanical systems and clussical
point procexses xyy, thereby giving a particle picture of indistinguishable guantum
particles. This holds true under irreducibility assumnptions if we fix the underlying
complete orthonormal system_ The method of the Campbell measure in developed
for such statistical operators: it is shown that the Campbell measure of a statistical
operator W coincides with the Cainphell mcasure of the corresponding point process
sy Moreover, again uuder irreducibility sssumptions. a symmetric siatistical ope-
rator is conpletely determined by its Caunipbell measure. The method of the Campbell
measure then ig used to characterize Bose-Einstein and Fermi-Dirac statistical ope-
rators. This is an elementary introduction into the work of Fichtner and Freudenberg
[10, 11] combined with the quantum mechanical investigations of [2] and the corres-
ponding point process approunch of [30]. 1t 18 based on the classical work of von Neu-
wmann [22], Segal, Cook and Chaiken |28, 8, 7] us well as Moyal [13].
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1. INTRODUCTION

We consider guantum statistical states and ask for a precise particle picture of
them. Under irreducibility assumptions we develop a one-to-one correspondence between
symmetric statistical operators W of finite quantun mechanical systems and point
processes aw, Lhereby giving a particle picture of indistinguishable guantum pacticles.
This is done by developing a disintegration theory for such statistical operators in
complete analogy to the decoraposition of classical into conditional probabilities.

We also need the method of the Campbell measure. which is well known for point
processes. and which is developed here for statistical operators. (This is inspired by
the work of Fichtner, sce for instance [12), and Lichscher [16].) We show that the

Campbell measure of a symmetric statistical operator W coincidex with the usual
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Campbell measure of its law xyy, morcover, under irreductbility essumnptions, W is
then completely determined by its Campbell mcasure.

We then present the point processes which correspond to the quantum statistical
operaturs of Maxwell-Boltzinann, Bose-Einstein and Fermi-Dirac in the case of a fxed
number of particles. Surprisingly. only the point process belonging to the Maxwell-
Boltzmann statistical operator is really known and has been considered in probability
theory until now.

We then extend our considera® «<ms to systemns with a random number of particles
and therefore work on Fock spaces. lu this framework the Poisson point process
belongs to the Maxwell-Boltzmann statistical operator. Next the symmetric Bose-
Einstein and Fermi-Dirac stalistical operators are coustructed togethier with their
associated point processes. Since these statistical operators are determined by their
Campbell measures, and since the Campbel] measnres coincide for statistical operators
and their pomt processes, we shall investigate the Campbell mcasure of these point
processes.

As a result of the application of the nethod of Campbell nieasures we find that
the point processes belonging 1o Bose-Emstein and Fermi-Dirac statistical operators
respectively are given by Papangelou processes with explicitly given conditional intensity
kernels. They are called here Polya sum and Polyn difference processes respectively.
The corresponding random fields are of first order and have independent increients.
The distribution of the field variubles, which represent the number of particles in a
given region, are explicitly known, These results have been shown in {20]. Thus these
processes have all characteristic properties of an ideal gas. In this way we obtain
detailed informations about the poiut processes und thereby about the correponding
statistical operators.

We stress liere the point of view that for the developement of a full interacting
theory of quantum gases ane should start with the coriesponding ideal gas and then
modify this by neans of a Boltzmann factor to include an interaction between the
particles, (First steps in this direction can he lownd in [20].)

Historically the first attempts to unify quantum mechanics with point process
theory can be found in the work of Fock [13), Segal [28], Couk [8] and Chaiken |7| and
thewn, more systematically, in the work of Moyal [18]. For a more recent contribution
to the construction of Bose and Fermi processes [rum the point of view of quantum

mechanics we refer to Tamura and Ito |29).
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Note added in February 2015. Unpubtished versions of this work exist since 2008.
We did not intend to publish it. But in the meantime several publications (see 20,

19, 26, 27| e.g.) referred to it 50 that it might be useflul to make it available to the
public.

2. DISINTEGRATION OF STATISTICAL OPERATORY

We consider von Neumann's description of the measuring process of discrete quantum
observables (cf. |22, 23]) and use it for n representation of statistical operators in termis
of their conditional statistical operators aud their laws.

Counsider a countable set Y # 0 together with an equivalence relation ~ in Y
Represent (Y,~) by means of (I',r) in such a way that |' is a countable set and
r:Y = T asurjective mapping satisfying

(2.1) (x ~y = r(z) =r(y).

Given v € [’ we set Y, = {r = v} for the associated equivalence class. In the sequel
we assutne slways that

(2.2) 1<cdY, <+ foranyy

Let H be a complex separable Hilbert space of countable dimension |Y|. We identify
the set Y with the complete othonormal system (cons) ¥ = {¢yly € ¥} chosen in
H. Furthermore, we set ¥, = {e;ly € Y,}. The cquivalence relation ~ induces an
cquivalence relation in Y by means of {e; ~ ¢, & 1 ~ y) with ¥, a5 equivalence
classes.

The set of events of the system described by the Hilbert space X can be identified
with the collection of all orthogonal projections resp. all (closed) subspaces. The state
space 8(H) of the system is the collection of (self-adjomnt) bounded linear operutors
W on H which are positive and have fruce one, ie. tr W = 1. Such W are called
statistical operators. I'hey form a convex set whose extremal points, the socatled pure

stafes, are defined by
hoh=(h,) h he 3 jjh) =L

By the spectral theorem every state W admits a representation

W= ip" ~hpohy,

tym]
where (p)n is & probability on N and (Ay)a some cons in H. (For more details we
refer to [9].)

[




A. BACH AND H. ZESSIN

Our problem is how to associate to a given statistical operator W € §(!H), admitting
aspectral resolution with respect to a given cons Y, a law, and, in particular situations,
A point process &, aud viee versa.

In the above situation we are given a complex separable Hilbert space H with fixed
basis Y. indexed by Y. We consider

5, = spleyly € ¥},

the smallest subspace of H containing {e,|ly € Y,}. The collection (H,)e1 is an
orthugonal decomposition of H; and H is the direct sumn ol it. We have

1 <dim X, = [Y;]| =cd¥] < .
Here cd denotes cardinaelity. Finally we write
P'\' = Pa{w

for the orthogonal projection onto H,.
We start with a statistical operator W € §(H) which admits the speetral resolution

(2.3) W=3" Pol)
yey

for some law o on Y with respect to the chosen cons Y. Here P, = e, ¢ ¢, with

ey0e, = (e, ) -e,. Thus W is diagonalized by the given cuns Y. Set
(2.4) W, =" Py
v )

This defines self-adjoint linear operators on H. leaving H., invariant s.th.
W, =P,WP, W, %! =0}

Decomposition (2.4) is unique. If 1t Wy = tr(P, W) is strictly positive, we can
vormalize W, to obtain the following statistical operator on H:

P,WP,

(2.5) W(|y) = WY

This is called the conditional statistical operator of W ginen P.. The notiou of
conditional statistical operators has been studied systematically by Cassinelli. Zanghi
and Ozawa (cf. [6, 23] and the literaturc cited there).

Theorem 2.1. Given an equivalence relation in'Y whick can be represented by means
of (T'.r) in such a way thet conditions (2.1) and (2.2) are satisfied, any statistical
6




THE PARTICLE STRUCTURE OF THE QUANTUM

operator W € 8(H), admitiing a spectral resolution (2.3) with respect o Y, can be
represented as

(2.6) W=3" W) swiv),

~€T
where W(.|y) € 8(H), leating H, muariant with W(.|[y)H; = {0}. and where xy is
a probability on U having the following properties:

(2.7 sw(y) =tr(P,W). ~€er.

This decomposition is unique.

In formula (2.6) and also later we use the convention that Wiiinl - wywls) =01l
Kw(7) = 0. We call kg the law of the statistical operator W It is some kind of partial
trace of W with respect to «, and we also write xyw(7y) = ¢r,(W). This means that
iry(W) = 3y (&) Wey). We observe that for the calculation of the law mw we
can use the cons which is most convenient. because a trace does uot depend ou the
choice of a cons. Decomposition (2.6) is completely analogous to the decoposition
of classical probabhilitics into conditional probabilities; and it is the starting point for

the solution of our problem.

3. DISINTEGRATION OF SYMMETRIC STATISTICAL OPERATORS

Consider uext a finite group § acting on Y together with the equivalence relation
~ induced by G in ¥ by means of x ~ y < 3g € G-y = g.x. All orbits are finite,
and G acts transitively on each of them. We assume also that (Y, ~) is represented
by (T.r). As above H denotes a complex separable Hilbert space with a cons given

by Y. We consider then the unitary representation U = (tg)seq induced by GSouH

UA=S"0 ey hmY Moy
Y y

It is obvious that U acts.on H as well as on cach H,. Thus each K., as well as

by mcans of

!H::- remains invariant under Y. The collection U, of restrictions of U, g€ G, to the
subspaces H.. is called an irreducible system, if any closed subspuce S of H., which
remains muvariant under 1L, is either {0} or M. This is equivalent to the condition
that it does not commute with no non-trivial (self-adjoint) projection (|1]. Exercise

1.3.D.) A statistical uperator W is called symmetric (with respect to §)if
(3.1) U,WU, = Wiorany g€ S.

I the sequel we consider symmetric W admitting a spectral resolution for cons Y.
7




A. BACH AND H. ZESSIN
Lemma 3.1. W is symmetric if and only if each W, is symmeinic.

Proof. By (3.1) combined with decomposition (2.6) W is symmetric iff
ZW‘ = Zu,w,u, \ forany g € S.
¥ 0

The uniqueness of the decomposition combined with the fact that each 3., vesp. H3
remains invariant under U immediately implies the result. 0

We need also the following result which in our context is Schur's lemmna ([4], Satz
7.1b.):

Lemuma 3.2. Let W be symmeetric. [f the collection U, 13 trveducible then W, 15 of
the form W., = k(1) - P,. Here 3, are non-negative functions on I, deternined by
the equation x5, () = (ey. Wey), 7= o

The positivity of x}, follows from the positivity of the statistical operator W. Thus

we obtain the following disintegration of a synunetric statistical opcrator W.

Corollary 3.1, If W is symmetric and if cach 1, is :meducible then

W= Z Kw(v) Py and Z aw(y)dmH, = 1.
€T el

To summarize we have the following result.

Theorem 3.1. {nder the assumption that each U.,. v € T, is iwrreducible the equation
1
i = — P .x
(3.2) w=3" Tmoe P )
~€r

induces o one-lo-onc corvespondence belween symmeliic stalistical operators W oon

H, admatting a spectral resolution with respect to Y. and probebilities x on T.
This correspondence will be the main device in the sequel.

Corollary 3.2. If W is a symmelric statistical operator on M, admilting o speciral
resolution with respect ta Y, and if U, is irreducible then the conditional stalistical
operator W{.|~). if well defined, coimcides with the normalized projection onte H, :
(33) W) = goegr Py

Morcover, sw(y) = dimH,, - w3 {9). 5 € T, the law of W, deternines the operator W
comnpletely.
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From now on the underlying group § is given by a finite symmetric group §(E)
of all perinutations ¢ of some finite set E. In this case we consider the following
operators:

1
1 = Ef Z sgna(o) - U,.
. a€B(E)

Here sgn(o) € {1, +1} denotes the sign of o where sgn , is the identity and sgn =

sgn. Both operators are orthogonal projections onto subspaces H, and H_ of 3 and
satisfy

(3.4) U ITy = IOy UglT_ =syn(o)- - for any o € 8(F).

In particular the operators fI; and f1_ arc symmetric. The elements of K, are also
called symmetric; the elements of H_ antisymmetric

4. EXAMPLES

We consider the following standard finite setting (cf. [2. 24]). X is a finite, non-
cmpty sct of cardinality d: and Y = X According to the convention of quantum
mechanics the 1-particle space of a particle in X is given by CVY. whereas the n-
particle systein is described by the complex [Hilbert space H = ®" CY, ie. the neth
tensor power of the 1-particle space. Note that H coincides with C¥ and if n = 0
then ‘K is the one-dimeusional complex plane. In CX we choose some cons (e)zex
conveniently. Y = {e, = @64,y = (z:....,7a) € ¥} then is a cons in H indexed
by Y. If m = 0 then Y is a singleton consisting of sowne unit vector 1 in € fixed once
and for all. The underlying symmetric group is given by the collection §,, of bijections

aon E=[n]={}...,n}. 8, acts on ¥ by means of
o {(Z1secea @) = (Ta-101)1- - Ta-t()))

It operates on H by means of the collection of unitary representations consisting of
Usie, @ Qe 1y 3 @er_,

and is then extended by linearity. We shall be interested in statistical operators
which are symmetric, i.e. commute with the above representation of §,. and which
admit a spectral resolution with respect to ¥. Every observation W of a system of
identical particles has this property. The Hilbert spaces Hy . H_ | appropriate for the
description of particles obeying quantu statistics. are constructed by means of the
projeetions T, JT_ induced by the group §,,.

9




A. BACH AND H ZESSIN
A representation (', 7) of the equivalence relation induced by §,, on Y is given by

F=MuX) = {8, + - + 6 [(z1eer.2n) € Y],

L € TR N e R SRR o

4.1. The Maxwell-Boltzmann statistical operator. In H we choose a cons indexed
by Y in the following way: We are given a statistical operator w on the 1-particle space
%, = CX. Denote by g the probability on .\ appearing in the spectral resolution of
w. which al the same time gives a cons (€, )ze x in Hy. This basis will be fixed also in
the following examples and enables one to define the cons Y in M as above. Moreaver,
we always assume that p is not 2 Dirac ineasure. This implies that d = cd X 2 2.
The Mazwell-Boltzmann statistical operator for w is defined by the tensor product of
w: M = «™. Here uw™ denotes the n—fold tensor product of u. Using proposition
16.3. in 24| this statistical operator can be expressed explicitly by
4.1) ML =3 B e

= N
where P, = ¢y oe,,, und ¢" is the product law p® -~ ® g on Y. (4.1) is nothing else
than the spectral resolution of MI with respect to Y. M7, is symmetric with respect
to §,.. By Theorem 2.1 there is associated the following law on M, (X). which thus
is a point process in X, namely

(4.2) ,\-(w)=(:') Il e, veM.(x).

T7€X

Here -

n n! i
()= ey 7SN

{4.2) follows from the fact that dimHD? = (2) and that. for y = (z;,...,2,) € ¥,
and thereby ¥ = 8., + -+ + 4, . by formula (4.1),

n
R(Y)=(er, B B er, .M} er, ®11B6e;,) = n o(x;).
J=1
‘The point process k is called Mazwell-Boltzinann process for the parameters (g, n),
and will be denoted by P.

1.2. The Bosc-Einstein statistical operator. We start with the following obscrvations:

We are piven a particle number n > 0. One can construet by means of Y, as chosen
10
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THE PARTICLE STRUCTURLE OF THE QUANTUA|

above. a cons Y. in My and Y_ in H_ respectively as follows:

" 2(a) 2
Ya = {“ ) = |‘J" _},) A1y Raemuppy €77y € M (X J}u
H_ = {f _("T) = V‘;;" TIE Ene,"m‘n €a|Y € M"(X)}
Here the tensor product is taken along a fixed nmuneration of X', and
M, (X) = {6,.l fese b, (1. .z) EY }

Y is the collection of all y € Y with pairwise distinct comnponents
We work separately in each of the spaces #. with these cons. In terms of Ya

the projections {13 can be written as 14 = Y Q. where the one-dimensional

€l g
projections are given by Qf = eoe, ¢ € Y4 Since there is a bijection between M_ (X))

and Yy resp. M, (X) and Y we sce immediately that (recall that 4 = trX)

‘d+n~ 1
n

A
:-d‘;’+=k : edy_:(f) if n<d: edY_=0. if n>d.

The Bose-Einstein statistical operator for w is given by the conditional Maxwell-
Boltzinann statistical operator given the projection f1_. This is an operator on H

defined by EZ = W} IT M. Note that
(i M) = Y ] el >0

PEM_ | XjaeX
because the g is assumed not to be a Dirac measuie,

We chouse a cons in H, for which E? can be diagonalized. namely Y, which is
indexed by the finite set M, (X). The symmetric gronp now acts on the basis ¥, and
is trivial. i.e. a singleton consisting of the identity. Thus the associated equivalence
relation ~ is given by the identity of elements in Y4 ; and the representation of (Y, .~}
is given by ' = M, (X) with r : ¢;(3) — 7. Theorem 3.1 then implies that the
point process belonging to E2 is given by the following point process in X: For any
7 € My(X)

'(/1.3) E:("] = . H y(m?(“ﬂ

2 e, ) Llex olay @ L5
Morcover. the Bose-Einstein statistical operator admits the representation
+
Ez= Y E0) QL
FEM, (X)

We call E} the Bose-Einstein point process in X for the paremeters (n.0)
11



A. BACH AND H. ZESSIN

If o is the uniform distribution on X, and thereby w = -g,t'rl, where 7 denotes the

identity uperator on €, then
1
Ef - ———
B d+n-—1
n

and the Bose-Einstein process is then given by the uniform distribution on M (X):

By

-1,

1
Elg)e —m———— e M,(X).
‘! d+n-1 e {4
n

4.3. The Fermi-Dirac statistical operator. For n < d = cd X the Fermi-Dirue
statistical operator for w is given by the conditional Maxwell-Boltzmann statistical
operator given the projection 4/_. This is a symmetric statistical operator on H_
defined by

1

1.4) DL = g -Me

This operator admits a spectral resolution with respect to the cons Y_ in H{_., where
again the basis (e;);ex i8 coming from the spectral resolution of w and p is the
corresponding law not being a Dirac measwre. By Theorem 3.1 we then obtain as
before the particle picture of the Fermi-Dirac statistical operator: It is given by the
following simple point process, called Fermi-Dirac process for {n. p) in X:

! .
(4.5) Di(7) = 3tr I] ete)™, 7€M, (X). and 0 otherwise .

< ag X
The partition function now is given by 7 = E”( M. (X) D= e p{a)"®) Thus Dj is
the couditional law of E} given M, (X), 1.e. given that the realization v of the particle
process is simple. We again have a repiesentation of the Fermi-Dirac statistical
operator which is parallel to the one for the Bose-Einstein statistical operator, namely

Di= ) Dpm-Qy
FEM_LX)

Note that in the special case where w = 5 - I, thus p being the nniform distribution

on X. the Fermi-Dirac statistical operator is given by

.,
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and the simple point process by the Fermi-Dirac process in X for the parameters
{n,d). (Recall that d = | X|.)
|
(=)
n

5. THE METHOD OF THE CAMPBELL MEASURE

Ofly) = TEMLX)

In the situation of the last section we introduce the occupation number vperator
and the Campbell operator respectively Campbell measure of a statistical state.

The situation is the same as in the examples: 3, = CX for some finite X (c;)ze x
is a cons in H;. Recall that T = M (X}, and r : (z;,.. .. 2,) —
Or, +:--+0,,. Note that r = M o¢. where ¢: (z),....z,)— €, & - B e, and
Meg, ®  ®er,) =0, +- +6;,.

We definc for z € X the occupation number operator in r on H = HP?" as follows

If I is the identity operator on H,, let

"
“"l) :\.,-Zl'n Re,00,° ¥4
’-‘ ?

(In the case n = 0 we set No = 0-I.) And. more generally. Ng = 2z Ns the
occupation number operator in B C X. It is cvident that Ng = (g{M)/". where for

Zy,..., Ty € X we set
B0z, +- - +8z.) = (0, + -+ 6, )(B).

Extend Ny ) linearly to an operatar-valued measure on X x M, (X)) by Ny, = (,,(AM)
I, h € Fi(X x M (X)). Here (y(p) = [h{x,u)p(dz). and F, denotes the
collection of non-negative, measurable functions on the underlying domain. Thus in
particular Ngyxe = (p{M)-10(M)-I®". This shows: Any element e, = ¢, % &«
of the basis is an eigenvector of Npyc with eigenvalue (5(A/(e,)) - 1o(M(e,)).

We are now in the position to define the Campbell measure for statistical operators
on H. Given a statistical operator W we call WN, | on ' the Campbell opcraior
mensure of W. Iis trace Cw(.) = tr{WN, ) is called the Campbell measure of W on
X x M, (X). Recall that the Campbell measure of the law xw of W is defined by

er (a7) - ')‘(G)I’C‘W(')'), a€ X,v€ Mw(x)
It is obvious that such a Campbell measure is supported by the set
{(a,7) : v(a) > 1}. Moreover, we sec that the law xw of W is determined by its
Campbell measure.
13
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Proposition 5.1. For any stetistical operator W on the space M its Campbell tnrasure
coincedes with the Camphell measure of its law, r.e. Cop = €. The law of W s
completely determined by Cyw. If W is also symmelric then, under the additional
iveducibility assumptions of Theorem 2. even W is completely determined by its

Campbell measure.

Proof.
RN = 3 ey Wn(es)) = 3 Gnr(@) e Wiew)h = 32 6u3) 3 (e Wiey)).
v y ¥ vy,
The assertion now follows {rom the definition (2.7) of kw. The remaining statement
follows innnediately from Theorem 3.1. (]
We remark for later nse that Proposition 5.1 renains true for statistical operators
W acting on subspaces of H because the occupation number operators Ny act on

them by restriction
G. STATES ON FOCK SPACES AND TIEIR CAMPBELL MEASURES

The above picture is now extended to svstems with a random particle number.

Let X be a fimite set of cardinality d > 1 and 2, = @™ C¥.m > 0, with H, = C.
The cons in € consists of somne unit vector. denoted by 1 The direet sum of these
Hilbert spaces is the Fock space over €*. denoted by H. For esch m the symmetric
group §,, acts on X' aud the corresponding unitary representation on H,, is denoted
by U, This family of representations gives rise to a unitary operator U on H, defined
by the direct sum U = Y .. Thus U(g)h = U, (g)h. if g € S h € H,,,. Given
statstical operators W, on Hy, and scalars p,, > 0,27 2 0. sunnning up to 1. then
the direct ~um

oc
(6.1) : W= puW.
m=0

a statistical operator on the Fock space H. W is svnunetric if and only if each W,,,

has this property. It is obvious that the point process belonging to this statistical

opcerator is given by

22C
(6.2) Kw = Z Pm KW, -
m=0
The simplest examples are obtained if W,,, = w' for somne given statistical operalor w

on H; = CY. Only themn will be considered in the sequel in detail. In this framework

the oecupation number operator is given by the direet sum operator N, = 3> M"’

on the Fuck space over C¥. Here Ny™' is the occupation number operator on %,
14
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as defined above. And again Ng = (p(M) -/, B C X, wheic [ now denotes the
identity operator ou H. Extending N to an operator valued measure on X x M (X)
as above by N, = ¢, (A) - I, h€ F (X x M (X)), we are now in the position
to define the Campbell measure for statistical operators on H as we did already in a
special situation. Recall that £y ()) = [ h(r. 1) p(d x).

Given a statistical operator W on H we call WN( | the Campbell operalor measure
of W. By Theorem 2.1 we know that WX, — E-,c_r(h*f‘”l"w{' ) -W( ). h € F,
Define Cy(.) = i7(WN( ). This object is called 1he Campbell measure of W . Arguing
as above we obtain

Theorem 6.1. For any statistical operator W on the Fock space H onc has Gy =
Civ - Thus the law of W is completely determined by Cw. If W is also symmetiic then,
under the additional iveducibility essumplions of Theovem 3.1, even W s complelely

determined by its Compbell measure.

Consider now the direct sums 7y =

*
o 1T

. where 1" is the orthogonal
projection onto the BE- resp. FD symmetric subspace of H,,,. 114 is then the orthogonal
projection onto the BE- resp. FD symmelric subspace Hy of H. 1t follows (sce [2])
that Ty satisfy
(6.3) UMy = sgns(o)Ty, 0 €8x := | Sn

m20
We are mainly interested in statistical operators W living on the symmetric subspaces
Hz. By this we mean that W satisfies the conditions W = [T WIT, . In case + this is
cquivalent to say that W is Bose-Einstein symmetric. i.e. U, W ="W. g € §: and iu
case — that W is Fermi-Dirac symmetric, i.e. Uy W = sgn(o)W. 7 € §.. Moreover.
these conditions imply the symmetry of the statistical operator. (All this can be found
in |2|)

Theorem 6.1 remains true for statistical operators acting on Lhe Fock spaces Hy
because the Ng act on Hy by restriction. Note also that one obtains by means of a
basis in H; a basis in the Féckspaces H. Ha by taking unions U, o, W™ 1,2, Vi
angmented in cach case by the basis in Hp. which consists of 1. Considered as an
clement of the Fock spaces 1 is called ground state and corvesponds to the empty

particle configuration.
7. STATES WITH RANDOM PARTICLE NUMBLRS

The method of second quantization is recalled which pennits to lift an operator

on a l-particle space to a Fock space.
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71. The method of second quantization. We recall the method of the so-called
second quantization. The idea behind is to lift operators H on 3 to one of the Fock
spaces. The method goes back to the work of Fock [13], Cook (8] and Berezin [3] (cf.
also [5]). If H is a statistical operator on H. one can define a operator Hy, on the

tensor product H,, by setting Hpl = 0 and

m
Hoy(€a, - R¢€q,)= Zem R Req, ®-- Reg,,. ay,.--.am € X.
=l

Denoting by 4,; the Kronecker symbol,

m

Hn=SN H% & -.@ Ho.

2

i

The direct sum of the /{,, is denoted by
=
dT (H s T,
m=0

Note that we used this method already for the operator e, oe, and obtained in chapter

6 for the operatur dI'(e, ¢ €.) the occupation number operator N; on the Fock space
ver CY¥

If w is a statistical operator on H. the second quantization of w then is deflned by

-

I'(w) = Z ;%iw’".

m=0 1
This is an operator vn the full Fock space H having finite trace c.

An important observation is given in terms of such trace class operators These are
multiples of statistical operators. i.e. operators of the form w = z&™, where = > 0
and w is some statistical operator. In this case

O
T(w)=Y = &™ withtrT(w) =c*.

m!
m=0

Lemma 7.1. Let Il be o bounded, self adjoint operator such that w = exp(—BH) is

a trace class operator with f € Ry. Then

"

cxp (-8 H)™ =exp —.12 H @... @ Hb~

=1

Recall here that the left hand side of this cquation is given by ¢ #*# ... g 8
For a proof of the lemma we refer to Cook [8].
16
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Lemma 7.2, Let II be a sclf adjoint operator such that w = exp(—3H) is a trace
class operator with 3 € R. Defining the associated Gibbs state

I
7.1 e S L
(.1 tr onp(-ain) P(~BH)
and z = ¢d exp(—BIH) we obtuin
=
:
(7.2) I (exp(-3H)) = E_u ;!-(.""

T (exp(—AH)) is trace class unth trace c* .

As a consequence we sec that M. := ¢™* I' (exp(—B8H)) is a statistical operator
on the Fock space.

According to Lemmas 7.1 and 7.2 there are two representations of this operator:

N o 1 -
p—— —~ . s — - Yo 5 e,.
M,c=¢ E _m'.G =e — P 3 E H"g . @&H
e ot =1

To suminarize in a slightly modified way: Given some trace class operator w = 2w
with corresponding spectral measure g = :g, then w™ has trace tr u™ = z™. In this

casc Lhe associated scecond quantization of w is given by

1 o= tru™ o™ 1 o= 2™

Z,, is the normnalizing constant. In this way the trace class operator w is lifted to
some symmetric statistical operator on the full Fock space H.

The construction principle behind the method of second guantization is: Given
m, the trace class operator w™ is nortalized to some statistical operator w™ then

ed w™

weighted by the factor “““— and summed up: finally it is normalized so that the

resulting operator becomes statistical.
One also uses this quantization method in a sligthly generalized form to lift the

underlying w on the subspaces Hy and obtain the statistical operators

. 1 :’.t (™ o™ e~
=S r =
3] ,,‘L_’n . er(f1Y ]w'")

1 a0 ) n"_"‘)u.m
D, = — tr(T ™) ———.
YT E, ,,,Z.:u el 1™ )

. = T -
Note here that the normalizing constants =% = Z:'=O'r(ll: M) are termwise

strictly positive and convergent on account of the assumption that g is not a Dirac
measure. E,, is called the Bose-Einstein operator for w, D, the Fermi-Dirac operator
17
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forwand p¥ :mv— 2 -ir(ﬂ;"')M’_") the particle number distribution of E,. or E,,
respecitvely. Thus the operators M,,.. E,, and D, are the sccond quantizations of w for
the different Fock spaces H. H4. One question then is to calculate the correponding

laws and ro characterize them.

7.2. Maxwecll-Boltzmann statistical opcrators with Poissonian random particle
number. The Maxwell-Boltzmaun statistical operator is described as a solution of
an integration-by-parts formula.

We are in the framework of section 4: @ is a statistical operator on CX. X being
a finite set of cardinality d. As above we choose & cons e..z € X, the one coming
from the spectral decomposition of w with law 0. We are interested in the symmetric

statistical operator given by the sccond quantization of the trace class operator w =

A S0P g

(7.4) My =¢™ — .M
m!

This is the Marwell-Boltzmann statistical operator for z,w. We remark that, instead

of the Poisson law, any law (., )m can be tuken to get some statistical operator. By

formula (6.2) the corresponding point process is the Poisson process P, with intensity

0 = z9. Thus ngg, = P,. where
X m
,.. v = *‘4_lv'fc-:z’;—!r Z ,."6' ‘F""F&r.,.) @('tl)' 'é(zm)'

m=l) (xL. T.-.)Ex"‘

P, is supported by M (X} = |22 M, (X). Note that this formula is completely
parallel to (7.4). namely
Ky =g"? Z E-?(L,)"‘, whete L= Z 8 o),
mal X

and = denotes convolution of laws.
It is well-known hy Mecke's characterization of the Poisson process (see [17]) that

I, is characterized as the unique solution Q of the equation

75) Colh) = }: Z ki, v +6,) o(2)Qld5), heF,
rEX YEM

To say it in another way. Q is the unique solution of the equation €q(z. +) = o(x)Q(y -
6.), T € X, v €M (X), y(z) > 1. Another very useful view to equation (7.6) is

(7.6) Cq=0CL +Q.

(Note that the operation + differs fromn the convolution operation #.) To summarize:

The first part of Theorem 6.1 inplies
18
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Corollary 7.1. Let & be a statstical operator on CX wnth spectral law  and z > 0

a paramcter. Then M, is ¢ solution W of the equation Cy = CL.,*~nw.

This result is a version of Lemma 4.12 of Liehscher [16].

7.3. Bosc-Einstein statistical operators with random particle number. We
consider the Bose-Einstein statistical operator on the Fock space H, unth one-particle
Statistical operator w. It is clear that Ey; is symmetric and thereby also BE-synimetric.

By the results obtained in Bad. E,, is given by the following direct sum

= s N
(7.7) Eu=z3 ) 0Ul"MY) - 3 ERO) QLY
m=—">0 YEM_{X)

Here we denote now the dependence on the particle number e in Q:jfﬂ)_

Example 7.1. Consider a statistical operator w unth g being the uniform distribution

on X, i.c. p= 5. Recall thet d 2 2. In this casc
Mipgray o [ d+m=11)\ 1
(VM) = ( - )=

andi=it ==4(d) = “_"TF Thus the particle number distribution is given by the
follounng ncgative binomial distribution
“ 1

(7.8) pJ(:n):( d+m=1 ) f 3) 1

m ™

We want tu calculate the Campbell measure Cg_ . Thus we first calculale its law:

formulas (6.1) and (6.2) immediately imply that

1S prp™vmy . g
(7.9) re, = E, = :+(d)§:¢r(n3, ™M) - Ej
e m=0

This point process is called here the Bose-Einstein process and denoted by E,. This
cnables us to represent K, as
. = Z Eo() QF, (-
YEM (X)
The Campbell measure of the Bose-Einstein statistical operator E,, is given by the
usual Campbell measure of the Bose-Einstein process. Moreover. E,. is completely
determined by the Campbell neasure of its law E,. So we have to study the Camipbell

measure Cg, which will be done in the Bin3.
19
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7.4. Fermi-Dirac statistical operators with random particle numbecr. Consider
now the Fermi-Dirne statistical operator on H_ with one-particle statistical operetor

w. Analogousty to the case of the Bose-Einstein operator it is FD-symmetric and can

Le represented as

1 L
(7.10) i Z "(”I 7M‘ y Z Dm( ) Q. {4y
= =0 yEM, {X)

Example 7.2. Consider a statist: +( operator w with p being the uniform distribution

on X,ie p= ;'; withd > 2. Then

1
tr(1"MMT) = ( % ) ey

gLl iy
and =7 = Z(d) = (1 + §)%. Thus the particle number distribution is given by the

following binomial distribution

(7.11 ;v..'m'=(,(f,)'(d il)m'(]_xh)d-m'

Observe here the symmetry between Bose-Einstein and Fermi- Dirac statistical operators:

2;(d) = SH(~d).

We want to calculate its Campbell measure €5 . Again we calculate first its law:

This is given by

lllj__,

oc
(712} KD“ = z' ‘Il““' .-., Dlu

This point process is called the Fermi-Dirac process and is denoted by D,. Again we
have a representation of the form
Dy, = Z Du(7}Q; oy
TEM (X)
Now we have the problem to study €p, and to analyze D,. This problem will be
solved in Bun8 by using again the method of the Campbell measure.

8. CHARACTERIZATIONS OF BOSE-EINSTEIN AND FERMI-DIRAC PROCESSES

The questiou is, what are the properties of the Boson resp. Fermion point processes.
The answer is given by means of the method of the Campbell measure. For this aim we
derive integration-by-parts formulas for E,, resp. D, in terins of its Campbell measures.
The arguments are only sketched. For the details we refer to [15, 20, 21, 25].

20
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8.1. Bosons. Recall that the law ¢ ou X is uot a Dirac weasure. Recall that for a
given p € M (X)
1
Eul) = = [T elar .
W oaex
Il £(X) = n, this can be wrilten as

. 1 1
Ey(l-‘) === =

e

In terms of the Poisson process in X with intensity measure p. which is defined by

Po{s).

X m
o) = =X 80 )

we obtain a representation of E, in terms of P,

1 1 m'

B el . ol X
w =g oy

—
N
Now we start to calculate the Campbell measure of E,. i.e.

Ce,(a,u) = p(a)Ep(p — &a), ple) 21

Using representation (8.1) in combination with Mecke's characterization (7.5) of the

latter yields a recurrence which immediately leads to

Lemma 8.1. For (e,p) € C = {(a, 1) : pla) > 1}

#(a)

82) Cepla.p) = Y ela) -E,lu - jdy).

J=1
Observe that (8.2) is an equation for E,. To solve this equation we ook at it in
the following way:

Proposition 8.1. For any h € F,
(8.3) Ce, (M =3 Y. 3 h(av+jba)e(ayMa)E().

AEX 7€M (X) 21
Here A denotes the counting measure on X .

Equation (8.3) has the same structure as equiation (7.6):
(z.:) Ce, = €ys4E,,

where the operation = is a version of a convolution operation defined by the right
hand side of (8.3); and L} is given by the following positive measure on M, (X)

L) = XY Tetibel), veFi.
7>1aex 7
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This implies that E, is the so called random KMM measure in X for L} in the sense
of |21).

As Mathias Rafler [25) bas shown in full generality E, then coineides with the
Polya suin process Sg a for (o, A). This process is by definition & Papungelou process

unth the kernel 7% defined by

(8.4) 7*(u.a) = p(a) - (Ma) + u(a)), a€EX.ueM (X)
And this means that S, 5 1s the unique solution S of the following iutegration by parts
formula:
(8.5) Cs(h) = Z Z h{a, e+ 8,)m* (2, @)S(1), heF,.
y a

This process has been called in [20] the Pdlya sum process for the parameters {p. A).
Thus we see that the characteristic properties of the Bose-Einstein process are twofold:
It is a KMM process as well as a Pélya sum process.

The argument for the equality of E, and S = S, 5 is us follows: If vue iterates the

last equation (8.5) one obtains for any N € N

Cs(h) =33 hla.p+da)e(a)(t + u(a)S()

N
= Z Z Z oleP hla. u + §6,)S(u) +

3=l p a

+ 373 o(a) ¥ hia. p + Nda)u(a)S(n)
—nrn 30 Y ela)h(a.u + j6a)S(u).

J2l g a
Here we used again that p is not a Dirac measure and also that S is of first order.
This shows that S solves equation (8.3) or cquivalently (EL:)' One can show that

this equation has only onc solution. {Cf. |21]) To summarize we obtained the

Proposition 8.2, Given a probability p on X which is not a Dirac messure then the
Boge-Einstein process E, coincides with the randorn KMM measure in X for L: as
well as the Polya sum process S, for the parameters (p. 2). Moreover. this process
s infinitely dunsible and uniquely determined as a solution of the integration-by-parts
formula (8.3).

We kunow also from [20] that the property of E, being a Papangelon process for
7" allows to calculate explicitly its particle number distribution. In the case where

g is the uniform distribution on X this coincides with p: which we caleulated nbove
22
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by completely different quantum mechanical methods. This implies that the point
process in this case is of first order. i.e. the mean particle number is finite. (All thus
enn be found in [20].) This shows thut €, hus all propertics of an ideal ghs.

Mureover. equation (Z ,';) iniplies that E, is a socalled permanental process. This
means that its reduced density matrix has a permancotal structure. A proof hased
on (SL:) can be found in {21. 19] and the references therein.

Finally. using the above developed method of the Camphbell measure. in particular
Theorem 4, we obtain immediately characterizations of the Bose-Einstein statistical

operator for u: The fact that kg, = E, solves equation (E‘ ¢) immediately implies

Theorem 8.1. Let w be a statistical operator on C* wath spectral law ¢ which v not a
Dirac measure. A symmetric statistical operator W on the Fock space H, |, admiiting a
spectral resolution with respect to Y., comncides unth E,, iff it s a solution of equation

Cw =C,+ #xw.
-
Moreover, xg, = E, being also a solution to equation (8.5). implies

Theorem 8.2. Under the assumptions of Theorem 8.1, W coincides with B, off it
is the solution of the equation
(8.6) Cwh = Z h(e,y+8;)n¥(y. r)sw(v), he F,.

(E ]

Statistical operators W which solve equation {8.6) can be called Pélya sum statistical

operators specified by 7y

8.2. Fermions. The Campbell ineasure of D, is concentrated on C and given there
by
Cp,(a. ) = ola) - Dolpt = 8a), wla) =1
This unplies that D, is & Papangelou process for the kernel
7 (a, 1) = oa) - (Ma) - p(a)).  pla) <1
(and 7~ = Qelse.) Recall here that A denotes the counting measure. In the terminology
of [20]. D, is u Pdlya differcnce: process for (A, @). As for Busons the distribution of
the particle munber is explicitly known, aud the process is of first order. Again D,
is completely determined by its kernel 7. D, is a simple prucess, i.e. concentrated on
M-(X }, and thus respects Pauli's exclusion principle. Furtherwore, D, has independeat
increments. Thus it has all properties of an ideal gas. (For more details we refer to
[20].) We observe here that the same reasoning we did above [or the Papangelou
process E, yields that
23
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Proposition 8.3. The Papangelou process D, s the unigue solution of the following

equation for simple pont processes Q.

+ o0
(8.7) €ah) = (=1 3 ela)’hla,pu+ jda) Qu), h € Fi.
J=1 au.gi

(The proof is exactly the same s» above.) Again equation (8.10). which has D, as a
unique solution. is of the form
(}:L:\’ CQ:CL;*Q‘
but now for the signed measure
o (=1p?
L0} =) ) ——wlid)ela), pe€F,.
i21aex 7

[n this case one can show (see |21. 15]) that (21 ) implies that D, is a so called
determinantal process.

As above for Bosons we obtain a characterization of symmetric statistical operators
for Fermions: A symmetric statistical operator W. admitting a spectral resolution
with respect to Y_, coincides with D, iff it is the uuique solution of the cquation

Cw=2~C L *Kwior equivalently, iff it is the solution of the equation

Cwh= > h(y+8&)r (y.2)xw(7), heF;.

{r.7)
Acknowledgement. We are grateful to Prof. Freudenberg and Dr. Rafler for several
illuminating discussions. The second author is grateful for clarifying written discussions
with Prof. Fichtner (Jena University) as well as to Prof. Goldin (Rutgers University).
Comwparing his approach {(cf. [14]) to the one proposed in this paper, Prof. Goldin
conmented in a Jetter: "The general idea appears quite consistent with the approach
I've taken in my work, but [ don’t think it is specifically contained in it. In particular,
I've not explicitly made use of a basis in Hilbert space in urder to construct the
configuration space: rather. I've generally made use of configuration space and a
group action on configuration space in order to construct various unitary group
representations in lilbert space.” Finally, we thank the referee for several written

discussions which led to a much bLetter presentation of this work.

CIIUCOK JIMTEPATYPHI

|1] W. Arveson, An invitation to C*-algebras, Springer, New-York (1976).

|2| A. Bach, Indistinguishable Classical Particles. Lecture notes in physics, Springer (1997).
[3] F. A. Berczin. The Mcthod of Second Quantization. New York, Acadeinic Press (1966}
|4] 1. Boerner, Darstellungen von Gruppen. Springer (1955).

24




15
o)
17
I8
[o

0]

]

112

13

[14)

(15|

116

(17

[18]

(19]

[20]

[21)

f22]

[23)

|24

25|

[24]

[27]

(28]

|29

|30]

THE PARTICLE STRUCTURE OF THE QUANTUM

O. Bratecli. D. W. Robinson, Operator Algebras and Quantum Statistical Mech
(2nd ed.), Springer (1997).

G. Cassinelli, N. Zanghi, "Conditional probabilitics in quantum theory 1 -
respect Lo a single evenl”. Nuovo cimento. 73. 237 243 {19a3).

J. M. Chaiken, "Finite-particle rcpresentations ane states of the canonic
relations”, Ann. Phys, 42, 23 - 80 (1967)

J. M. Caok, “The mathematics of second quantization”, Transactions AMS 74 222 245 (1953)
E. B. Davics, Quantum Theory of Open Systemns, Academic Pres (1976).

K. H. Fichiner, W. Freudenberg, “Point processes and the ositic
systoms”, JJ. Statist. Phyvs. 47, 959 - 978 (1987)

K. 3. Fichtner, W. Freudenberg. “Characterizations of siates of infinite Boson
Commun Math. Phys. 137. 315 - 357 (194}).

K. H. Fichtner, G. Winkler, “Generalized Brownian motion point processes and stochastic
calenlus for random fields”, Marh. Nachr. 161, 291 307 (1993).

V. Fuck, “Konfigurationstaum und zweite Quantelung”, Zeitschrift fur Phvsik 75, G22 - 647
(1932).

G. A, Goldin. U. Moschella, T Sakuraba, “Self-similar processes and infinite-dimensicnal
configurntion spaces”. American Inst. Physics, Physics of atomic nuclei 68, 1615 - 1684 (2005
K. Krickeherg, Point Processes. A Random Radon Mcasure Approach, Nachst Neuvendor
Walter Warmuth Verlag (2014)

V. Liebscher, “Using weights for the description of states of Boson systems”. Commun. Stnc
Anal. 3, 175 - 195 (2009).

J. Mecke, “Stationare Mafle aul lokal-kompakten  Abelschen  Gruppen Z
Wahrscheinlichkeitsthcorie und verw. Gebiete 9, 36 58 (1967)

J. E. Moyal, “Particle populations and number operators in Quantum Theory”, Adv. Appl. Prob.
4,39 80 (1972).

B. Nehring, Construction of Classical and Quantum Gases The Method of Cluster Expansions,
Nachst Neuendorl: Walter Warmuth Verlag (2013)

B. Nehring, H. Zessin, “The Papangclou process. A concept for Fermion and Boson Processes
Izvestia NAN Armenii. Matematika 46, 49 66 (2011)

B. Nehring. H. Zessin, “A representation of the moment measures of the general ideal Bose gas
Math. Nachr. 285, 878 — 488 (2012).

J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer Verlag, Berlin
(196¥).

M. Ozawa. “Conditional prababilily and a posteriori states in quantum mechanics”, Publ. RIMS
Kyoto Univ, 21, 279 - 295 (1985).

K. R. Parthasarathy, An Introduciion to Quantum Stochastic Calculus. BRirkliauser. Basel
(1992)

M. Rafler, Gaussian Loop- and Pdlya Processes. A point process approach. Universitatsverlag
Potsdam (2009).

M. Rafler, “The Pélya sum process: Limit theorems for conditioned random fields”, .J. Theoretical
Prohab. 26, 1097 1116 {2013).

M. Rafler, H. Zessin, “The logical postulates of Boge, Carnap and Johnson in the context of
Papangelou processes”, JI Theoret. Probab. DOI 10.1007 :s10959-014-0043-2 (2014)

1. E. Segal, “Mathematical characterization of the physical vacuum for a lincar Bosc-Einstein
field”, 1llinois J. Math. 8, 500 523 {1962).

H. Tamvra, K. RB. Ito, “A canonical ensemble approach to the Fermion/Boson random poini
processes and its applications”, Commun. Math. Phys. 263, 353 — 380 (20006).

Il. Zessin, Classical Svinmetric Point Processes, Lectures held at the Instituto de Cibernetica,
Matematica vy Fisica (ICIMAF), La Habana, Cuba (2010).

anies |, Vol. 2
conditioning with

al commutation

sn distribution of infinite Bosan

systems”

Moctynuna 6 mas 2015

25



ipecrin HAH Apyennn. Maremarska, Tom 52, n. 1, 2047, crp. 26-37.

TOHKWE CBOHUCTBA ®VHKIIMN U3 KJIACCOB
XAITAIIIA -COBOJIEBA M IPHU p > 0, II. ATIMMPOKCUMAILINA
JV3IHHA

C.A. ROHOAI'EB, B.I'. K"OTOB

Detopyeckuil rocyapeTBEHHBIA VHHBEPCIITET
E-mails:  bsa0393@gmail com, krotov@bsu. by

AnioTauusn. B pafore waguncron ammpoxcamanun Mysuna hynkunid 12 xaac-
cor Xairama CoSonesa ML(Y) npn p > 0. Joxasauo, uto ana f € ME(X) n
Mmoboro £ > 0 eymecrByioT orkputoee MiokeeTso O C X, Mepa KOTOPUro MeIb-
IME £ (B KAMCCUBE MEDI MUNHO BIMTh COUTBETCTEY IOUNE EMKOCTh HAM BMECTH-
vmoets Xaveaopeba). n npnGuinpxkaomas dyuknis fo taxue, uto f = f. na X\O,.
IMpu aTOM u.cnpaa'lmo:uml dyvuxwm fr apanercs pervaapuont {MPWIIAIIEIKHT He-
xoanouy npoctpaicrsy ML (X) xaacey w aBIACTCA TOKANLHO reanacporckoit) 1t
npMGAHKALT WeXQRH) K DYHKIWINO R MeTpuke npoctpancTea MA(X).

MSC2010 number: 46E35. {3ARS.

Kawuensie cnosa: Meipiueckoe npocTPAHCTBO ¢ MepoH. YCIIOBHE VIROSHUS, K1ACC

Cobo.icsa, aunpokeusiatpss U ly3iHa, CMKOCTb, BHCILHSIS MePa, MCPa I Pa3MePHOCTD
Xaveaopda.

1. BBEAEIHE

ania paGoTa sib.ISIeTC3 HEIIOCPEICTBEHHBIA 11PO,10;KCHHEM paGotst [1]. Mbi ne-
10 IVeN pe3yiibraTel n3 |1] L1 usvyernta csofic rsa annpokeHMaumn B cmuicie Jv-
wia 1aa kiaccon Xahanna—Coboacna MP npu p > 0. Ipst 3ToM A HOTHOCTLIO
npraepxnBaemcs 0boInavenuit n olpegenennt i |1,

Teopena Jlvansa yrrepkaaet, yro mobast nanepunias Ha R® dynknus f o6raaa-
er C-coficTeoM  f s1a)15CTCH HEUPCPLIBHONR, eC.1it 1IpcHebpeb MHOXKECTBOM CKO.Ib
yrouo manoii meper. Tounee, s mioboft masmepumolt ka R dyvaxuun f 1 moboro

> U cvinecrsywn 1akue doynkips @ € C(R™) W arkpbiroe sMuoxecrso O, € R”,
Ailsl KO10pbiX

flz)=p(e) upn z€R"\O,. u(0,) <c¢
(p mepa TeGera na R™)
Ecm dyukins f suiseres Hoaee peryisiplioft 5 TOM 114 HHOM CMbIC/C, TO NCUPAR-

JISHIOINAZT (l))'HKlLIlH ¥ MOKer (Jﬁu'lil.,ll,ﬂ'l'b AOHOJHHATC/ILHBIMA CBONCTRANII MIaAKOCTI 11

AMIPOKCAMIPYIOUGIMI FBolicTaaM.
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TOHKHUE CBORCTBA OVHKLIHNA U3 KTACCOB XARTALLIA COBO.ILNA

Aas wkraccon Xatinama CoGoncsa MY npu p > | Takue BONPOCH NCCICAOBATICH

# |2] |5]. Mel pacupocipanus pesyabrarsl 3rux paboy ua cayuai p > 0.

2. OCHOBHASR TEOPEMA

[Ipusenen onpe.ienennst, HeobxoMnibie 115 HOPMYIMPOBKE OCHOBHOIO PE3Y/bTa
ra. [lyers (X.d, p) — Merpuieckoe npocrpanciso ¢ peryisiproi Gopeaesckoii Mepoi
¢ v merpikoii d, B(xr.r) = {ye X :d(xr, y) <r} mapc uenrpon u Touke r € X,
pivanyca ¢ > 0.

By.aes npeanonaraTs, 1T MEpu g YAODACTEOPACT VCIODKIO YIABOCHHS ¢ HOKAUATE

aeM y > 0, 1.e. 4131 HeKOTOPON HOCTONHHOI 1, BbINOHCHO HEPRBENC [BO

r

u(B(x, R)) < a, (B) ; p(B(r,7)), zeX,0<r<An.

At mapa 3 € X ofioanauaen rg W X'p COOTRETCTBOIIHO €10 PAMYC 1 LPHT]. KPOAie

TOro, AB  mwap, konuentpuycckufi ¢ B. paanyca Arg. Kpose toro. nycts

fn=szdu=“—(%}ﬂffdu

Ylepes ¢ nciogy obo3iavaen pasIHuHbIe NOAOAKHTCALNGIE NOCTOANNLIC, SARKCRILIIE.
BO3MOXHO, OT OLPEUE/IeHHbIX MAPAMETPOB, HO Y1H 38BUCHMOCIM LIM HAC HECVLle-
crBenubl. Kpome roro, 3aunes A S B peerga 6yaer oaHauars. uyto 4 < B,
Heorpinarenbuyio dynkwio v. onpeleneHHyIo na o airebpe GopeileBCKHX AMHO-
aKeern B3 X, Byucn HadbiBALh BHCWHEH MEPOIi. CC 1M OHa MOHO TOHHA H ey b THBHA
C UeKUTUPOI LOCTOHHNONM d,,. TO eUTL i 000l HUC. 1€10Ba res1LHoC 11 fupelleBCKHY

MHOKE'1'B Ek BbIIOANCHO HEPABEeHLT DO

v UE" fn,.Zu(E‘).
A

k

Kponie ‘roro, BHeinH00 Mepy 6y4€M HAIREBATD PECYIsPHOR B HY/IE. eC:H L 100010
mitoxeersa E € X ¢ #(E) = 0 1 2.0 06010 £ > 0 eyUieeTByer 0rkput 'OC MHOXKEC 1 BO
O O E. nan koroporo i{0) < =

Myers 3aaana sospacrtiioman dhynxams 4 : (0, 1] = (0, 1], 2(+0) = 0. Taxne dynx-
mun 6yacn nasLiBaTh wancepawomuntn. Ml 6yvacn nienons308atL creayiomee veaope,
CHAILINAIOMEE NCXOAUYIO MEDY [ H BRETTILON MCPY V! CYIIECTRYET TAKAA MOCTOAMINSA
€4, YTO BBIIOJHEHO HEPABEHCTHO

p(B)

(2.1) v(B) <ec, —  aas Beex mapos B C \N.rg <1
hirg)
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Hanomuun. wro ais n3nepsiouiefi ynkiim h n 0 < R < 1 knaccnveckast n MOuH-

hunuporantas (h. R)-smecrimoctb Xavcaopda MuoxeeTsa £ € X BBomITes Kak

HRE) = ind {Zh(..) Ec|)Blr.n). rn< ”}-

hir,)

OO TRCTCT'BEHHO (“l'()‘-lll&bl HHXXHYA I'DARD Gepe'xul 1O BCEBOIMONCHBIM ITOKPLITHSIA MHO-

f}{’,'t(E) = inf{i M : E C ':J B(z;,r), 1< R}

=

xeerBa £ cueTueMH ceMeficTBaMK mapos). Beawnust
HY(Ey= lim HME), HM™E)= lim HIE
(E) Ro40 ) (E) R-++40 #(E)
HA3HBAIOTCA Kaacchnyeckol n aoandmiuposannoi i-mepoit Xaycaopda aaa E coor-

sercrscHHo. st A(t) = 1", a > 0, ummenr 11 u H? smeero O u KT 13 cayyae

RISCCHYECKHX MED TAKXKE MOXKHO OlPELe) IHTh PDAIMEPHOCTh Xayc,uop(ba.

»

dimpE =inf {s: I} (E) =0}.
Brenenm knace Xanama CoGoaera M2(X). 0 < p < ¢, o > 0, KaK MHOXECTHO
ME(X)={f € LP(X): D,[f]n LP(X) # &},
Sliarzoxy = 1flleeexy + inf {llgllLecx) : g € Do[flNLP(X)},

rae gepes D, f] vbosnaden KIacc BCeX HEOTPILIATEABNLIX f1-13MePHMBIX (YHKUNi g,

A1l KAXCION N3 KOTOPBIX CVILCCTBYCT Takoe MHoXkecTso E € X, u(E) = 0, uro
() = f(») € [dlx, )] [o(2) + 9(g)]. r.ye X\ L.

Kaacent ME(X) noposaol ¢MKOC 11
Cap, ,(E) = inf {|!f||’1;,,()‘.) cfe MIX), f > | BpoxkpeethocTn E C X}.

Hakoueu. 113 o > 0 onpezestny kacent Centaepa

e _ o lolz) oyl
H(X) { e C(X) : llolly, x) :':I: [d(.t.y)| <+0C}-

[ais ocHorHOf pe3yibrar bOpMy IMPYETcs caeayioumMa o6paszons.

Teopema 2.1, {lyemv 0 < 3 < a <1, 0 < p < v/ usudena dynxyux [ € ME(X).
Mycmny maxore 3000ne BHEUIRAR MEPB IV, DEZYLAPHAR 6 Hyae U yJ08AEMEOPAIOUUR
yeaoouwe (2.1) ¢ Pynxyued h(t) = """ Tozde dan arbozo ¢ > 0 cywecmayiom
dyprivuua [, © omapumoe aundicecrnoo O C X, marue, vmo
I} v(O) <.
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TOHKHE CBOACTDA ON¥HKUMD U3 KAACCOB XARTALLY COBOAEBA %

2) f=Je ve X\ O,
3) fe € ME(X) u f. € Hg(B) dan awbozo wapa B C X,
41 = Tellagzixy < <

B kauecrse npiMepon BHEININX MEp. ¥:0k.IETBOPAIOUIIX YCIOBHIO TEOPEbI, MOK-
no wiath v = Cap, g, n v = H 4 rakme v = H7°"” (1bu venosus
w(X) < ).

[pnn 8 = a =1, p> 1 nosobuslit pesyavrar 6L panee noayuen [ Xafinawen
[2]. rac BmecTo 1) yruepkaasiocs, uto u(0) < ¢, a o 3) 6o f, € H,(X). Cayuai
B < o = 1 Teopexbl 2.1 CymecTBeHHO C.10XKHee, o BuiT Iy 16K B paboTe [3] npx p > 1

# B |4] npu p = 1. B patore [5| Teopema 2.1 6uta T0KazaHa 214 p > 1.0 < a < 1.

Caeacreue 2.1. Mycmv D < 8 < a €1, D< p < y/a u 3adanag dypoxyun f € ALP(X).
Toz2da dan a10bozo ¢ > 0 cywecmeyom dynryus f. u omapwmoe anoxcecmeo
O C X, maxue, wmo
1) Cappupy p(O) < €, H} """ "(0) < c. 3¢~ 7P(0) < <
2) f=f. na X\O0,
3) f. € M¥(X) u fe € H3(B) dan awboeo wape B = X,
4) ILf = fellars(x) < &

Bo Bpema nogaroronky Hauell paboTbl k meyaT nossK.ICH npenpuitt 6], o koTopom
TAKHKC AOKAIAHO YTHEPKUACHHE CaeucTBu 2.1 4ust MOARDUUMPOBAHHOI BAIECTIINOCTH
Xaycaopga. Meroaer |6] ormnb: 01 Hanmx.

PeayiabraThbl HAlERA PaboTH TOKIAILIBANIICE HA ceMUHAPe “DyHKUMOHATLHEE TIPO-
crpancrsa” Vausepcurera @puapnxa lln.iepa (Hena. Fepyanns, 19 nexabpa 2014
r. ¥ 3 nekabps 2015 r.), na Mex yHapoaaon koHdeperinn "Py HKIHOHA IbHbIE LPO-
CTPAHCTLA Il TEOPHi ABNNPOKCHMMaUNH hyHKuuii”. nocwvsiutenHoli 110-aetuo co ius
poxcaenua akagemuka C.M. Huxoasckoro (Mocksa. 28 yas 2015 r. u na Mexay-
napoaHoh kKoHpepenuun «Harmonic Analysis and Approximations. VI» (Laxxaasop.
Apmennst, 13 cenindps 2015 r.).

Mpn goxazareabcrye Teopenmn 2.1 Mbi caegyem cxene pabor [3. 5] Padory ¢ Hecym-
Mupyembing (pyHKuisAG obecueunsarrr peayisrare pator [1) v {9]. 1o cymecrsy.
3agavua pasbupactes na ape yacti. C 0AHONA CTOPOHBI HAM 1Y A HAI Kha1ibuLiponak-
BIC OLEIKA MACCHBIOCT NCHCIOBLIX MHOXCCTH NCKOTOPX MAKCHMAIBILIX (PYHK-
W, A € Apyrofi  HANO YMCTb NPOAOIDKATH (DYHKUHIL C FPHX MHOXKOCTE, COXPaHHH
oLpeAe/IeHHbIE YCI0BI INRAKOCT. LA OUeHKI HCKIIOWTeIbHBIX MHOKECTB Ovaem
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HCHoNBI0BATE peayasrarst w3 pator [10] u [1]. TIpn 3Tom BaxcHO HENO.1b30BEHNE HEKO-
TOPULO ATNIPOKCHMUDY IOIEr0 AIAPATA — UPH £ 2 1 9TY POJIb BRUIOAHSIOT CPeAHBe
Crexnona. 119 p € (0, 1) 3ra poss nepegaercs nanayvamunt LP-npuGatxennsn no-
crostinbimg Hoanapax 8 C X [1). Jast npogo-oxenus dy KL HPHMCHACTC aHwIoL
KOHCTDVKINN YHTHIL MPCATORCHHBIA B [3| npu pacemoTpesnn anaiorn tHofl 3azauu

ot TACTHOUO CHY NS ¢ = 1.

3. BCNOMOILATE/IbHWE VIDEPAIEIA

,1 3 IOKA3ATE, IhC I'BA OCHUBHOR TEeOPenbl HaM l]OH&.‘.lOﬁHTC}I PHA PeIYILTATOR, 60J11-

MHHCTBO W3 KOTOPDbIX HABCC PRI NIPIL 2 > 1.
A

Jdevma 3.1 ([1]. demva 9). Jyemu EC X. 0< a < 1. 7> ap. Tozda.

1) exxocmns Cap,, p AGARCINCA GHCWUNEN MEPOT 1
'

Cap,, ,(E) = inf {Capa lr,(()) - EC 0.0 am'x[)mma}.

Cap, ,, (Ble,r)) £ r7"Pu(B(r,7r)) dammze X.0<r L 1,
npu ) < 3 < a us Cap, (E) =0 eaedyern Capy (E) =0.

\ 1/

\
3.1) 4,(1.8) = nf | £ 17 - fl”ffu(y)) p>0.
7

torda eymeersyer wucao 13 £ [9. aemsa 3)). peaimayiowce TOYNYIO MIDKHIOO TPa-
gy e (3.1).

Texinueckm CpeACTBOM 115 JOKA JHTEILUIBA OCIOBIIOR TCOPEMLI HBIIMETCH MAK-
CHMALLILIT oueparop Af:’:,,f Oupegenny €10 credyloiunm odpason

APfe) = sup 15 Al ),

Birrp<

Mpu K~ 00 pmecto A x. f Gyaem tiscats ./l:."}f-

Jlemnta 3.2 (|10]). Myemup > 0.0 € B < (. @ AEPA i U GHEUWNRA MEPE U CORIOHN

yeaoouest (2.1) ¢ dynxuued h(t) = o0 8% Tocdn dan | € er{X) cnpadedaugo

HEPUBEHC MO0

"
Iy (7 4
/" N AP > LA S AP FIL,
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JIemma 3.3 (19]. nemma 3). Myemn f € LP(X), p> 0. BB, € X wapw, npusen
ry, < rg, # By C B, To:du

)5 = B 11 < 4,07, By) + (%) " AfBy)
i

Jlemma 3.4. flyemo Byp >0, f € L¥(X) u movuxa r € X maxoaa. wmo
(3.2) ](J’ = 'l_i'n'lu I‘n",: v.!
Tozda

|f(r) = I, I S PPAY f(=).

ol

Hoxazareavcerno. ITyets mis kparkoetd I = T ‘LI? o f Toraa
2L )

| nC
|£(@) - fol = [ lim $(1 - el < S 10 - b

Jdaciee nenoiisaveM JaemMmy 3.3 B OUCHKI KAXCI0r0 CIATACMOLIO B CYAMe
~

D = fiaal £ A/ Bz 27') £ AY fia) Z(:rkrj’"

Vrpepacacse AoKusalio.

JIemma 3.5. |11. aemma 2.5] Bewn f € MP(X), ¢ € H.(X) v ozperuvena. mo
fo € ME(X). Kpome moco. econw E C X u@(x) =0 npux e N\ £, 00 dan arbot
dyrnnyun g € Da(f)NL?

(gliello + [£] - I@ll7ra(x)) XE € Dalfo) N L¥

OCHOBIILIM TEXIIHIECKHM CPOACTBOM LIS 1HOCTPOeHns pazbuenndi eumnny i 1po-
JAODKEIHA DYHKLUEH € COXPAIIEHHEM 1IAUKOCTH NBISIETCH KOUCTPYKIHSL. I3/ I0Ae1NAN

D CASAVIONINX OABYX JICMMaX.

Jdemma 3.6. [3, aemma 5.7] Hycme O C X — omxppinve muoxcecingo, 0 # X,

Bist (i X \())
p(0) < . dan sadannozo C > 2 ofingnanum T(x) = ——gF——

. Toeda cyuwecmeayem
N2lu nocaedosamenshocnt {x,} mouex ua X maxue, wmo

1) wepw B(x,, mh/4) nonapno e nepecexatomea, 1i = r(z,).

2) Ure, B(xiri) =0,

%) B(a;, Cri) C O,

4) ecau x € B(x;,Cr¢), mo Cr; < dist (z. X\ O) < 3Cr,.

5) Onst arobozo 1 cyugecmoyem manoe y; € X \ O, wmo (i, 4a) < 3C,

6) 3021 xBsor) SN
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Jlemma 3.7. (7. senma 2.16] fTyemv 0 < a € 1, O omwspumoe amoscecmao,
{B(xy.n)}  noxpwmue O wepast us aesars 3.6 dax C = 5. Tosda cymecnayem
THAKAA ROCACIOGAMEABHOCIY HYHNYULL ¢y, 4Mo

1) supp o, C B(z,,2r,).0 < @ () <€ 1.

2) [6u(2) — ouly)| < o] [dlz. 9))".

8) Xz, 0i(x) = xol).

4. JOKABATENLCTBO OCHOBHOR TEOPEMBI
CHadana cacaacy JONOTHHTCIBHOC HPCALO.IOAKCHHC — JUIH HOKOTOPOI'o Xy € X
(4.1) supp f C B{zy, 1) = By
Joxasameascmeo ymscpacdenux 1). B enay [1, reopema 3| v(A) = 0, rae A MHOMxe-

o rotiek £ € X. B ko1opwix e uptoaneno (3.2). Tlosrosy iaw € > 0 cywecrnyer

TaKoe OTKpuToe MHoxecTRo L D A, rto #(L) < . Qan A > 0 obosnavumm

Ey = {re X AP f(z) > A}.
[onakus () = £, U L 1 HOKDKCM, YTo TPH A0CTATOYHO COALITIOM A MIOXKCCTBO (O
obi1anaet neobxoUMLINA choiteraasm. Jlerko viLiers, wro O orkpurre u O C 28,,.

H3 aemaier 3.2 e
/ N V(Es) dA S (LA 10 5y < %

{0

orky.aa caeayer, uto v(E£y) — 0 pr A = 43¢, Kpone Toro, ouesiLiHo, 4o u(Ey) — 0
apM A — 4-oC.
Taxum obpazon. yraepaachise 1) Teopessl suitioaneno. Jonoanuyrensio npibepem

A > () nacrounko 6osLtuun, 4wrobtl .
(4.2) / [f]” dy ~i-/[A},’”]]’dﬂ <z
0 (8]

Aoxasnmeancmao yneeprcdenun 2). Ilyers {B(x;.7,)} -~ nokpwrie muoxecrsa O
m3 aenmbl 3.6 s C = 5. Toraa. upumersis siemmy 3.7, naiiuen na6op QyHkiwmii
{6,}7, 1axux, uro

supp Cb: C B(I'g2rl)1 0 £ 0.(::) S l‘

l0@) - ) S 77" [ )] Y dila) = xo(2).

=1
Oupeaeanns dyHKusw f, paBencTsom
f(z), 7€ X\O0,
w) = s
u KT\ Z g gt €0
=1l
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Y-ruepxaenve 2 Teopembl CJEAYET HEIIOCPEACTBEHHO U3 3TOIO ONpPe.eeH s

Horuzamenvcrneo ymeepncdenin 2). Cuepna nposesens BCHOMOIATENLHUE Pacey x-
aenue, Ilyers 2 € O, roraa cywectsyer Takas touka r* € X \ O, uto d(r, x*) <
2dist(z, X \ O). lloaromy

If:‘("r.) a fs(a:)l o \ZO.(X) [I(I ) - I::'(,l 27.)/] < Z \f(z*) = l::“, 2 ”

€1,

rae I, = {1:z € supp ¢;}.

3RM€"I'HM. 410 B rouke z* € X \ O srinoiveno coorwoumenwe (3.2), u Blr,.2r;) C
B(z*. 40r,) nas awboro i € I, Hoaromy s enny nema 3.3 n 3.4

sy rirl b . i i in o N aip i
I!(f ) ’D(a. 2'-,I|—‘l](l )—,alc' m,‘|j|4 ,Ull War, :’ l"'u' l(n,\ll:; ru'.l'* II" )
Tk kak b {. He Doltee NV ciaraerbix u .ALP‘)f(J-'.) < A (rak kak z° € X \ 0), 1o
{ 8 = e
(@4) |fe(z") = Sl £ ) o AP f(2*) S [dlx,2*))” AP f(z7) < Ald(z. )
€],

Hasibueiiluee qokasare/scrtso Toro, uro f, € H(X ). uposorutes oo rax XKe, Kak
U upd p > 1 B pabore [5], ¢ 1oil amus pasiwuell, 4o OUEPATOPb! 8 4 IAMEHATCH Ha
ONEPATOPSI Am A9 [10AHOTBI NOBTOPMM 3TO PACCYKIEHHe 33eCh. PACCMOTPHM TDH
BOBMOMKHBIX Cily*ias PACHOJOXKCHHY TOUCK I,y € X .

Cayvan 1. llycrs .y € X \ O. 3anumen ouesuitHoe HepaBeH T8O
|fe(2) = Fe@) S VW) = TRy e + 11D = 130, nage iy I+

(r) ]
lIB(u d{<c, v))f o ]B(x.zdtz.y))”‘
M3 Jeamnibl 3.4 coleayer, Iro UepBLIC 184 CIATALMBIX MAKODHPYIITCH BEIH THHORN
) { )
cld(x, ) [A9 1(2) + AP ()]
Tperbse ciiaraeasoe TAKXKE ONEHHEAETCH CHEPXY 1O XKe He-IMYMHOA B CHIIY JenMb)

3.3. Takum o6pason, an .y € X \ O Buinoaneso

8)  1ele) ~ felpdisS )l [42) @) + A5 1) < Aldo))”

Cryvat 2. Tlycrs @,y € O. Bucues obosnauenune

(4.6) dy = max {dist (z. X \ O) .dist (y, X\ 0)}.

Ecan d{z.y) > dp, 10 nonbepen rouku z° y* € X\ O rak, wrobm d(a, r™) <
2dist(w, X \ O) u d(y,y*) < 2dist(y, X \ O). 3anuuren 04eBMAHOE HEPABCIICTHO

Us(l) i fc(y)l < |fc(r) fc(z |+ | f- (y) fe(@®)) + | fela®) = f‘y-”
3
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OLeHnM LepBbIe 1A CJIAIAeMbIX ¢ LoMOWBIO (4.4). a 1perbe, ncuons3ys (4.5). Moay-
uuM

fe(z) = fely)l S Ald(z. )"
NMycrs reneps d(. y) < dy. Kax n npexe. smbepest r* € X\O rak. urabbr d{z, %) <
2dist(r, X \ O).

MosroMy, yuuTbisas yHkT 4) Jenmnbl 3.6, nony1iaem

Fele) - fel)l = 3 o) = @il@)] [T, 2y ~ £2)]| <
t=1
1
< [l Y =W, aenf = £

.01,
Juserum. 9T0 anst L € [, U 4y cnpasedanno skmovenmne B(x, 2r;) © B(x*, 100r,),

cieoBaTeNbHO, B oty gemsm 3.3 n 3.4

(f(z") - ILP{,I wnfl < 1f(z*) Ig’{J: aoory 1+

(p) (p) 2 AW £
ljﬂ{: 21 ) J - ‘!B{i 100¥ )f[ l"Aﬂ f(I )
Taxum 06133-3051. MbI HPXOAHM K HEPDABEHCTBY \

1e(0) o)) < [z, 3 EILT 49 ) < 5 fd(a. ).

iUl t
Crywad 3. Myers x € O, a y € X \ O. Bubepenm £* € X \ O rak, wrobu d(z,z*) <

2dist(z, X | O). Toraa 13 (4.4) n yxe JokazanHoro nynkrta 1 caeayer

£ (@) = Je)] < Ufel) = fe(z™)] + | felw) = Jela)| S Aldlz, )]

Tuxum vbpasoM, nokasano, uro f, € Ha( X ). ecan nocurens dyukuny f cocpeaoro-
YIeH B ¢IHHAYIHOM 1mape. -
Ocranoch nokasars. wro f. € MP(X). Tokaxenm chauaia, uto f. € LP(X). T

3TOr0 OUEHHM CBEPXY |I"(_l 2, f|: 13 (3.1) noayuaen

B('r" 2y fIP S AL (S, B(-Ti'27‘=))+][ | f|P dys S][ | £1P dys.
B(J:..Zr,—)

B(r,.21y)
Hemonn3ya 3To Hepasenerso 11 4.3) HMCCM

/ fel” dp < < / “g(’r..“.'n)ﬂpdl‘ x
Hlx, 2".)

o

(47) =) p(Blr2e)E. , flF < 2[ lfl”dﬂ=r:/0 |FI dye.

=1 =1 - B(:..zu)
Tak kak f. = f Ha X4 O, 10 JokazaHo, yro f. € L¥(X).
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TOHKME CBOACTBA @VHKUMN U3 KAACCOB XAATALUA COBOJIERA ... q

Yrobbl qokadare, 4ro Do (f. )NLY # @, 1okaxeM. 4ro wis HeKOTOPOR 110CTOSIHHOM
¢ Byner BLIIOJIHeHO f'.A.‘?]f € Dn(fo)NLP. CHoBA PACCMOTPHM TPH PA3IMYHBIX CI1Y Uas

DACTIONOMKEHHS TOYeK Z., Y.
1. Ilyers 2,5 € X \ O. Torpa. ruk kak f. = f ua X \ O, 10
Ve(@) = fe()h = 1 @) = () £ [d(=, ) [AS.”fm + AE:”f(yJ] -

2. Ilycto z, y € O. Tpeanonokum chauaa, yro dz, y) € dp. Tak k8K, B CHIY 1eMArhl
3.7 [|dill g xy € e, ToO

Vfel2) ~ Jetw)l = |3 [0:l@) = 6uw)] |1, 20! - F12)]] <
(L)
(48) sy Hedlye s sl
1,01, 1

Tak kax upu ¢ € I; U, psumoausiercs vknouenne Blz;, 2r;) © B(r. 1007, ), 1o umeer

MCCTO OIICTIKS

5t arg? = £@N S UG so0ryf = FN + MGz, oo =~ 15, 0o, f1 S TEAL f(2)

(em. nemmn 3.3 u 3.4). Toacrasans 104y 4erRyI0 oueHKyY 1 (4.8) M UCHO LAY yerosre

6) acMmMbl 3.6, momyyuHa

[fe(x) = fe(y)) € [d(r, )] AL f(2).

Teneps paccMoTpHMm chywah d(r, y) > dg. Toraa

lfs(.'b') = f-(y)l < Z |¢i(I)U(B‘?Ith.-;f - f(I\Ii+

1€l
' + Y 1o, oy f = FWN +1f(2) — flw)l <
el
S Y rpAPf(@) + 3 R AP F(y) + d(z,v))* [AP () + AP F(w)] <
el e,

< [dist (x, X \ O)]° AP f(x) + [dist (y, X \ O)"AP) f (1) +
+ [ )" [AP £(r) + AP 10)] < [dz. 9)° [AP 1) + AL £ (1)
3. Tlyers 2 € O,y € X \ O. B 3rom cnyuae notyaaen

fel@) = £ @I < Y1) - 10, 50 f1 S

1€,
<) - F@+ ) 1ftr) - ](Bp()z(ﬂr.)fl < [z, ) [AP f(r) + AP f ()]
i€l,
Takum obpasom, c.llf.”)f € Dy(fe) N LP.
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Joxazameavcmeo ymecpacdenua 4) B cuny (4.3). (4.7) u (4.2) [If — felles S &
Kpone roro, ecam ¢ € Do (f) N L2, 10 c[ﬂ.‘.’)f]ko € D (f - f.)N LY. 'Torpa

If = fellaez S U = Sfeller + elAP flxoller S e
HaGasuMCH T€lleph OT 1IPCAN0A0KeRHs (4.1). ST0 4e/IA€TCH TOMHO TAK XK€, KAK 11 B
cavuae p > 1 (oae [3] n [5]). deftersnrensro, cywectsyet ne 601ee e cueTHell

Habop Touek {z,}. raxoil, uro

X cl|JBGn1/2), 0(2:.1/4)0 B(z;,1/49) =@ (i# )

/131 KOTOPOT'O MOXKHO 10CTPOu Ib ApyToe paibienne exnanist (cu. [3])  waGop dynk-

undl {2} € Ha(X) co cBOACTBAMHU
0<@(z) <. suppy, C Blz,.1). |#illn.(x)=c Zcp,(:r) = 1.

B cuay nenmim 3.5 foo, € M2(X), a rak xak supp fo, C B(x,, 1), To 8 chiry aoxa-

aarroro cvimeeTsyer nabop hyrkurit {7}, yaorneTBopaiomui yeIIoRAsM
f1 € M2(X) 0 Ha(X), suppf:C B(z..2), |If ~ foill < /2"
[Ips 310M rakoke
v{re X fiz) # feilz)} < /2"
Jlerko nposcpsiercr. uTo pyHKIA f, = E f! va0BiCTROPHCT ACCAM HEOBXOIUMbIM

ycioBusn. Teopena 2.1 iokazana.

Abstract. The present paper is devoted to the Lusin’s approximation of functions
from Hajlasz Sebolev classes ME(X) [or p > 0. It is proved that for any f € MEP(X)
and any ¢ > 0 there exist an open set O,'C X with measure less than £ (as a measure
can be taken the carresponding capacity or Hausdorfl content) and an approximating
function f, such that f = f, on X \ O, Moreover, the correcting function f, is regular
(that is, it belongs to the underlying space MZ(X) and it is a locally Hélder function),

and it approximates the original function in the metric of the space A/2(X).
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HYPERSURFACES OF A FINSLER SPACE WITH A SPECIAL L
{(a.3-METRIC

V. K. CHAUBEY AND A. MISHRA

Buddha Institute of Technology, Gida. Gorakhpur, India
St. Joseph's College for Women, Gorakhpur, India
E-mails:  vkehaubey@outlook.com, arunimaléoci@hotmail.comn

Abstract. In the present paper we study the Finslerian hypersurfaces of a Finsler space with
a special (a, ) metric, und examine the hypersurfaces of this special metric as a hyperplane
of first, second and third kinds

MSC2010 numbers: 53840, 53C60.
Keywords: Finslerian hypersurface, (a, ) metric.

1. INTRODUCTION

We consider an n-dimensional Finsler space F™ = (Af". L), that is, a pair consisting
of an n-dimensional differentiable manifold M™ equipped with a Fundamental function
L. The concept of an (a.f) metric. denoted by L{a.3). was introduced by M.
Matsumoto (3], and later on has been studied by many authors (sec [1 - 5, 8 - 9] and
references therein). Well-known examples of (a. 8) metrics are the Rander’s metric

(a+ 3). the Kropina metric “_7' and the generalized Kropina metric “:,:' (m#0 -1}

Recall that a Fiusler metric L{z.y) is called an («, 3) metric if L is a positively
homogeneous function of @ and 3 of degree oue, where a? = a,,(2)y'y’ is a Riemannian
metric and B = b;(z)y" is an 1—forni on M™.

We consider a special Finsler Space F" = {M", L(a, 8)} with the metric L{a. 8)
given by

11 Lo.8) = a+ 8+ —2

() (0,)—0'[" +(—:ﬁ—).
Differentiating equation (2.1) partially with respect to & and 3. we get

2, a7 el | A2
f"’_ 2a® 4+ 87 Jaf Lﬂ_ 2a° 1 3 -2::8,

- lo-3)* L ol o—

o 'l
f - Fida o 2 200 —2a8
ao = LS LAap = —'|-|~HD B L,,ﬂ - =BT

where
38
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A al, . - S8 _ oL
Lo=@ Ly=%% Loa=2%2 Lys=%F L=

In the Finsler space E" = {M". L(a. )} the normalized element of the support
I, = 8,L aud the angular metric tensor Ay are given by the following formulas (sce
f5):

L=o 1LY, + Lgb;.
hiy = pai; + qobib; + q_ (LY, + 1,Y:) + q_oVY,

where Y, = a,;37. For the fundumental function (2.1) the constants p, go. g_, and
g2 in the last equation are given by the following formulas:
dat - 8% - 8a’A + 4033

1.2 =LL,a"'= :
(1.2) p a o BF

25% - 10”8
(a — B)*
da® — 20233 + 803+ aft — P

a*(a - p)* '

4o — 2042

gy 9 T Lhesa™

go=LLgs =

g-2=La ¥(Log — Loa?) = =

The fundamental metric tensor g;; = 18;8; L2 for L = L(a, f) is given by the following
formule (see [4. 5]}:

(1.3) $j = paj + pobib; + po1(bY; + 0,)Y) + p oYY,
where
4 292 o349 _ 193
(1.4) ,Do=qo+L2=80 +,’$4+0Fx;3 8a"4d -md7
(o= 34
E 208 — 40%8 + (202 + 32 - 2a1)?
Py =g P 3l a*3 (04/1 afd)
afa — J)
231 + 8a28% — 6u® + L
_ 01— ‘ 5
e adln - 4) '

The reciprocal tensor g*7 of g,, is given by the following formula (see [4. 5]):
(1.5) g7 =p e — gW'b — s_ (b'y +Vy) — s’y
where &' = aVhy, % = a0 and
: ! 3
(1.6) so = ;{ppo + (pop—2 — 12} )a’}.
1
s_1 = —{pp-1 + (pop—2 — 7-,)8},
TII
| . o
S.o=—{pp_2+ (Pop-2 -7 1)52]-
TP

7 = p(p + pob” + p_1 B) + (pop—2 — p2,)(a?6* — 7).
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The hr-torsion tensor Cyyx = %iﬂkg.-, is given by formula (see {10]):

(]7) 2])(70‘. = ]),i(hu e + hjk"'x + ’lk,‘lﬂj) + YT TR M,
where

(1.8) = pa— —3paqe. ™, =b, —a 2By,

(1. 1 aﬁ \ 1

Here m; is a non-vanshing covariant vector orthogonal to the element of support y'.
Let {", } be the component of the Christoffel symbol of the associated Riemannian

space ", and lel Tk be the covariant derivative with respect Lo z* relative to this

Christoffel symbol. Define

(1.9) 2E,; = b;j + by, 2K yabiy — by

where b,; = 7;b;
Let CT = ([};.T5i- ) be the Cartan connection of F". The difference vensor
Di, =T — {ix} of the special Finsler space F* is given by
(1.10) Ve = B'Eje + FiB; + F} Bi. + Blbox + Bibo; — bomg'™ Bjx
—Cln AR = CimA} + Cikm AV 9" + M(C;mCok +
CimCi3 = CiiCrusl:
where
(1.11) By =pobx + p_1Yx, B'=g¢"B, FF=g"Fy,
B.‘J=%{P=|(ﬂi;’ 2YY)+dp m;m;}, BF =¢" B,
Al' = Bl'Ego + B’ "Ekn + BiF" + ByF)",
™ = B"Ew+2BoFy",  Bo = Biy',

and ‘0’ denotes the contraction with 3* except for the quantities py.gp and s,.

2. INpDUCED CARIAN CONNECTION

Let F"~' be a hypersurface of F” given by the equation z' = 2*(u”), where
a=1.23.(n~1). The clement of the support ' of F™ is taken Lo be tangential to
F7~1, that is, it is given by formula (see [6]):

(2.1) y= B, (1)n".
The etric Lensor o5 and the hu-tensor Cuy., of £~ are giveu hy
oy = gijB:_.B}y C{.ﬂ-’ - «’i]kB;Bé'm,'
and at each point () of F*~!, a unit normal vector N'(u.v) is defined by
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gy {2(u,v) y(uw )} BN =0, g {a(w, v), y(u, v)}N'N7 = |
The angulur metric tensor hap of the hypersurface is determined by formulas
(2.2) hap = hy By,  hyBLN? =0.  h,N'N! =1.
The inverse (B, N;) of (B}, N*) is given by
Bj = *'g;B). ByB{ =¢), BINi=0. BiN,=0,
N; =g,N?, Bf=¢¥B,. B.,Bf+N'N;=4
The induced econucction ICI' = (150, G, C4. ) of F*~! from the Cartan’s counection
CT = (T35 Tk, C3i) is given by fornwlas (see |6]):
U3t = BBy, + U B, BY) + ML,
Gy = BBy, + T BY).  C5, = BeC:, BBt
wliere
Myy = NCBLBY, M3 = g™ My, Hy=N(B,, +T 8,
and
By, w5k,  Blyw By
The quantities M. aud I3 are called the second fundamental v-tensor and the
normal curvature vector, respectively (see [6]}. The second fundamental 2-tensor /5

is defined as lollows (see [6]):

(2.3) Hpy = Ni(Bj, + U3 By BY) + MaH,,
where
(24) . b",‘) = -\'- ';‘ B;.\.‘

The relative A— and v—covariant derivatives of the projection factor B, with respect
to ICT are given by i
Blys = HapN', B,ls = Al,aN'
1t easily follows forin equation (3.3) that Mg, penerally is not symmetric and satisfics

the equation

(2.5) Hpy — I3 = MpIL, — My 15
implving that

(2.6) Moy = 1, Hyp=11, + M1

The following lemmnas, due to Matsumoto [6]. will be used in Section 4
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Lemma 2.1. The normal curveture Hy = Hgv? vanishes of and only if the nornal

curvnlure vector Hg vanishes.

Lemma 2.2. 4 hypersurface F'"~ ' is a hyperplane of the first kind with respect to
the connection C'1 if and only if H, = 0.

Lemma 2.3. A hypersurfoce FU'~1) is g hyperplane of the second kind with respect
to the connection CL if and only if 1, =0 and lap = 0.

Lemma 2.4. A hypersurface F\*~4) g q hyperplane of the third kind with respect to
the connection CT if and only 1f H, =0 and Hag = Mas = 0.

3. A HYPERSURFACE F("~1(c) OF A SPECIAL FINSLER SPACE

‘]
Let us consider a Finsler space with the metric L = a + 8 + 5. where the
vector field b,(r) = ;;‘1 is o pradient of some sealar function b(x). Now we consider
a hypersurface F1"~Y(¢) given by the equation b{z) = ¢. where ¢ is a constant (sec

[10]). From the parametric equation z* = '{u”) of F”'(c) we get
q { g

e} _ o

T =

I} e . 0
Jz' Dur

b8 =0,
showing that b;(x) is a covariant component of a normal vector field of the hypersurface

F"*(c). Further. we have

(3.1) b,B. =0 and by' ~0. that is. 3=0,
and the induced matgic L{n. v) of F”~(¢) is given by

(3.2) L{u.v) = a,.,gt:“v",aad = a.JB:,B;g,

which is a Riemannian metric.

Taking 3 = 0 in the cquations (2.2), (2.3) and (2.5) we get

(33) p=4, =4, g1 =0, g2=-4a72
po=8. p_y=4da !, p_,=0, 7T=16(1+8).
1 1 —b?

Titrry T aeie) TP m1+5)

From (2.4) we get

o 1 ! ”? i
(3.4) Y=gt ‘- P 4 Py 4+ ——————— 1
IR et T deae Y Y G

Thus, from (4.1) and (4.4). along F"~!(c) we obtain
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yijble = T'-IA:TT—
Therefore we have
(3.5) W) = E N, 5 =ahb
1+ "1

where b is the length of the vector b'.

Next. f[rom (4.4) and (4.5) we get

(3.6) V= aft; =y S
: Ny

{1+82%(] — a?)}2 1+ 83(1 - a?)

Thus. we have the following result.

Theorem 3.1. In a special Finsler hypersurface FU" =V (c). the induced Riemannian

metric s gwen by (4.2) and the scalar function b{z) is given by (4.5) and (4.6).

Now, observe that the angular metric tensor hy; and the metric teusor g,, of F

are given by formulas:
: 4 4
(37) h,‘,J = 4(1"]' + 4b,‘,bj - EZ_Y'YJ and 9i; = 40.._, + Sb,b) + —(b,-} + b,Y,.
Q

From cquations (4.1). (1.7) and (3.2) it follows that i[hi‘"g denotes the angular metuic
w-1

)

F'(':)" we have % = & and hence from equation (2.6) we get

) . (o)
tensor of the Riemannian a,,(2), then along F) we have b, g h‘f" Thus. along

Y, =48 m; =b;.

o

Therefore, in the special Finsler hypersurface F(((',; "1 the hu-torsion tensor becomes

| [
(3.8) Cigte = g Uhushi + hyibi + hinby) + fb.b]-bk.
Next, it follows from {3.2), (3.3). (3.5). (4.1) and (4.8) that
L
Mog = — 1 ——has M, =0.
(3.9) Mos 2"\,‘“‘“)! s and Al

Therefore, it follows from equation (3.6) that Hyg is symmetric. Thus, we have the

following result.

Theorem 3.2. The second fundamental v-tensor of the sperial Finsler hypersurface

~(n-1})

Py 8 ginen by (4.9) and the second fundewmental h-tensor Hyy is symmetric

Now, from {4.1) we have b, B}, = 0, and hence

b8, + 6B, ), = 0.
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Therefore, using the equality byg = b, B} + b.|; NIiHg, from (3.5) we oblain

(3.10) by B}, B + by, BON Hy + billagN' = 0.
Since b,|, = —b;.C";,q we get b,; BL N = 0. Therefore. taking into account that b;); is
symimetric. from equation (4.1()] we have
(3.11) \/4(] +,2)11(,u+b,l,l),',l}; =0
Next. contracting (4.11) with ¢ and using (3.1), we get
.-
(312 \ WH + b, By
Again contracling by ¢® the equation (1.12) and using (3.1). we have

» 120 B Ho YR = 0.
313J‘ v‘ i1 +f)2)Hl] & vy

It follows from Lennas 3.1 and 3.2 that the hypersuface F‘ ; Yis a Lyperplane of
first kiud if and only if Hy = 0. Thus. in view of (4.13), it is obvious that P(") ' s
a hyperplane of first kind if and only if by,5°%’ = 0. On the other hand, by, bemg
the covariant derivative with respect to CLI' of £ is defined on 3, but by; = 9,6y

the covariant derivative with respect to Riemannian connection {',k} constructed
from a,;(x). llence by, does not depend on .

Below we consider the difference by, — by;. where b;;, = 7,b,. The difference tensor
D =I5 — {5} is given by (2.10), and since b, is a gradient veetor, then from (2.9)

wehave E;y=b;5, F, =0 and F]= 0. Thus, (2.10) reduces o the following

1J
(3.14) D = B'by + B'vbuk + Bpby, — bomg™™" ik — C;,,,A
( Moy A" +C]’”“ 4rnJls + A.( (‘x + Ck,"C;I; = m "m)’
wher
: 1
(3.15 B, = 8, + 1o~ 'Y, b ;
! i 'loll)] +u(l+(i")“
4 2 Y, 12
= me(m, Bij - a—(ft,‘_,' = 02" ) aF Zbib;,
i 5
1‘. = el - i Q" » =
Rl Il LR i Py
(1 + 65)

202(1 + bz)"byl- AL = B"%o + B"ino.

In view of (4.3) and (4.4). the relation in (2.11) becomes to by virtue of (4.15) we
have B} = 0. B,y = () which leads Af = B™hy.
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Now contracting (4.14) by y* we get

D.;U T B'bjo + B;bOU - B"C,, buo

2

Again contracting the above equation witl respect to g’ we obtain
i« L
Doy = Bty = (!,i-fp)b' -—1l__y Hoaw,

wilein

In view of (4.1), along F'((L:Y e get

[ (1 + 6b%) 1
n b.D' B o + ST e LT I
(3.16) = et eyt b b

Now we contract (4.16) by 3’ to obtain
1
(3.17) b; Dy = (I—H;Tf;bmo
From (3.3). {4.5), (4.6), (4.9) and A, = 0 we obtain
b,b™C: Bl = 4°A, = 0.

jm*~o
Thus. the relation by, = b,; — b. D}, and the equations (4.16), (4.17) give

b.‘uy'y“ = bny — br'D:m = l;h'l

Consequently. the equations (4.12) and (4.13) can be writien as follows

I
el

|
: e ——boB, =0
(3-18) Vir+v?) Ty P Pa

! b2 1
\(4(1+b2)H"+ T+ 02

b'»iﬂ =0.

Thus, the condition ffy = 0 is equivalent to byp = 0. Using the fact that 3 =by" =0
the condition bgg = 0 can be written us b, y'y’ = biy'd;y’ for some ¢; (). Therefore
we can write

!

(3]9) | 2[),] = b.'Cj + 4.

Now from (4.1) and (4.19) we get
boo =0, b;ByB, =0, b,B.y’ =0
It follows from (4.18) that H, = 0. and hence in view of (4.15) and (4.19) we get
bob' = W, Am = 0, 435 = 0 and B, B} B} = Zhos
Next, we use the equations (3.3), (4.4) (4.6). (4.9) and {4.14) to obtain

= b (4 + 3¢)
(3:20) WO BLBY = ~ T s o
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Thus. the equation (4.11) reduces to the following

[ b2(4 4 30%) |

LA R R
Vi +6 ™ " e + 027

(321)
and hence the hypersurface I"(""' " is nmbilic. Thus, we have the following result.

\ L -1
Theorem 3.3. A nccessary and sufficient condition for F'""\ " to be a hyperplane of
first kind is {(4.19). In this case the second fundamental tensor of F("' ; ' 15 proportional

to its angular metric tensor.

Now. taking into account that by Lemmna 3.3, F(ll,",' Vs a hyperplane of second
kind if and ouly if Hy, = 0 and H,y = 0, from (1.20) we get ¢g = o(z)y* = 0.
Therefore. there exists a function w(z) such that ¢;(z) = ¥(x)b;(z), and, in view of
(1.19). we get 2b,, bi(z)w(x)bi(xr) + b, (£)v(x)h(.e). The last cquation can also be

written as follows b,; = y:(z)}b;b,. Thus. we have the following result.

Theorem 3.4. A necessary and sufficient condition for a hypersurface F;:;_" to be

a hyperplune of second kind is (4.21).

Putting together Lenmna 3.4 and fornmla (4.9), we conclnde that F(L)—" is not a

hyperplanc of third kind. Thus. we have the following result.

Theorem 3.5. The hypersurface Fi\ ' is not « hyperplane of the third kind.
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AHIIOTAIMA. /IOKABRRACTCR. 'ITH MAMOPAKTA 'ACTHIHKYX CYMM M (iyHKIHA
T pagn Ppankanin KMET IKBUDANCHTILE HOPML D npocTpadcrne Ly ()
p > 0, ecan unteppaie “nuka’ Gy DpankiuHa ¢ HenyIeRbIMH Ko dHUM-
enraMu nexkat B I, [IpARoaAATey NPUMEPLE PA/IOR YKAARINAIONIME N CYINCCTREH-
HOCTH 3TOPO YCAORUS

MSC2010 number: 12C10: AGE30.

Kinoucssic caopa: Croresa @paukimia: Gesyciovunii 6asvc; Qyukuus 11zim.

1. BBEAFHUL

131 HOPMYIHPOBKH 101y IEHHBIX Pe3Y.ILTATOR, HAIIOMHIIM ONPEIETeHNE CHOTOMbI
@panxanva. [Tyerb n =2 + v, rae 1 =0.1.2, . 1| < v < 2% OBoznauusn
mgr, A8 0<i< 2w
(1.1) Sap =
T, a1 w<i<n
Uepea S, 0Ho3HANMAM 1POCTPAHCTBO QYHKIGM, HEHPCPBIBHBIX H KYCOHO JIMHCIHBIX
na [0;1] ¢ yonasm {sn, i, Tt. f € S, ccm [ € Cl0:1] u nmiefinns ua Ko
JOM OTpeske [Sp., 1:.!..,.]. 2 = 1.2....n. Heno. uro dim S, n 4+ 1 H MmuoXecTBo
{8,..,‘,}:'_0 NoTy'iaeTcst 106aBIEHACM TO'KA S, 2., 1 K MHOXCCTAY {54 141, - Hoaro
MY, CYIIECTBYET €(HC1 ueuu"an, C TOUHOCTBIO ;10 3HAKA, hyvHkIms f, € S,. koropast
oproronasibha S, | u || foll2 = 1. Hoxaran fo(x) = 1. fi(z) = V3(2r - 1). r€|0;1]
Oy 1M OpTOHOPMITpoBaniyo cuoresy { fu(2) ). KOTOpaY SKBHBACHTHRIM vbpa-
30M onpetesiena v paGore |1] 1 Haspisaercy cucrenoil PpanKibua.
Hinn=2"4+v, racup=0,12 . ul<v<2 obosuninm (cm. (1.1)) {n} :=

[81.2e0 2. 8y.20] 1 [12] = pe. OTpesok {1t} MiOIraY HEILIBAIOT MHTEPDAION MIKA Py usnm

1 cenogonanma neimosnenst npu danauconoit nogzepmxe I'RII MOH PA n pankax mayunoru
npoexta 15T 1A006
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J. B cBu3M C TeM. 410 PYHKUWHY f,, JOCTHIACY CHOErO HAMAEHbIIEro I HAHGO./AbLero

JHAUCHAR HA y1oM orpeske. Hucao [n] HassisaloT parron wcna 1w orpeska {n}.
CucrenaTveckoe muyvaenile cuereast Opankanna navatocs ¢ paGor [2]. |3]. rae

B HACTHOCTH JJOKasako. wto eerm f € Ly[;1],1 < p < 00, u Z:;u anfu(r) ee pan

OypuLe-PpankiHa. ro
"
2) §°(f ) € Lpl0i1]. 1tae S*(f.x) =sup|Su(f.x)| u Su(f.r)= Z(zkfk(.r).
a k=0

€ B. Boukapensin [1| Obi1a qoxazany, uTo cHerena OpaHKAMHA AB/RETCS GEAyCI0B-
upin Oasncom B npocrpancrne Ly[0:1], 1 < p < oc. [ast 310ro on JuKuda, ‘ITo
neparop Mau was cncresm Opankanua umeer cIabbiil 1 U (1.1}, re. cymecrsyer
nocrosinaan C > 0. 1akas weo e f e L0 n Y5 e, fulz) ce pag Oyphe-

dpankma, o

c
(1.3) mes{re [0.1]: P(f.z) > A} € T j[ | flz)|der,

raec P(f.x) = {Zf' Oa'f,f{’r)} J;2=

Fax kax P uveer cuusnnit tun (2,2), re. |P(f, )2 < Clfll2, n3 (1.3). 8 cu-
Hy HIBECTHOI Mureplicasiugoiioli reopesivl Mapumukesuya (em. nanp. [5] crp. 485),
citeayer, uro 118 Beex p € (1,20) nmeer mecro || P(f. )|, € Col| fllp- Creaosarenvue.

yreros (1.2). mam aeGoro p > 1 useest

~l | n |¥ 1 oc A\ r/2
(1.4) /” s:]){gjmhh) dr ~, J{ kzz;}nfff(:)}\ dr,

IAC 3alHCh ¢ ~, b O3HAYUACT. Y10 CYWICCTBYIOr HIOCIUSIIHAIC & 1 O, jasucamue
TOJbKO OT 7, Takue fro ¢, -a S b< ) - a.
[13 pesyawraros pabor (6| (8] caexyer. ara (1.4) sepHo Taxoke ans p € (0, 1).
Hauosmng 110 npocrpanerso Lo(E) Mo rpueckoe ipocrpacTso 1i.B. KOHE'HHbIX
i M3MePHMbIX HA E dDYHKUMEA ¢ METPRKOR, CXONMMOCTD 110 KOTOPOH COBIRNAET CO
CXOIIMOCTHIO 110 MCPE Ha MIloXKecTne E.
B pafiore [9] uokasan He T0.1bKO AHAJION COOTHOINEHISE (1.4) b cayuae p = 0. 4o u ee
AOUKTH AT 118 MBOKCCTBL O M LEIbHO MepbI. A HUMCHHO, HOKA48HA Cile 2YI0N1A%
{em. reopenur 2.1, 2.2 1 2.3 padors |9] )

~C:
Teopema 1.1. Jan pada Y ai fu(2) cacdyrouyue ycaogeua sneusarenmibe:
k=0

(1) pud nowunu acudy cTodumes na E,

(2) pad no mepe fiesycaoeno crodumex na E,
48




O JOKANLHOU SKBUBAAEHTHOCTU MAMCOPAHTH YACTUIIHHX CYMM

(3) sup,, |31 paxfr(r)| < +00 ne. ma E,
(1) Yo potfi(x) < +00 ne na E.

B nacromnell pafiore MLl JOKAXEM, 4T0 HEBOIMONCHO UOIYYATD JOKATHIAIMIO CO-
~
ornowenns (1.4) Zae 1A LBOHUMHBIX MUTCPBAIAX i LOAYHUM TRKYIO JIOKAIMINLIO

HPDH 1ICKOTOPOM JONOIINHATLbIION YCAODIIH.

2. OCHOBHBIE PE3VILTATHI

I a

Teopema 2.1. Jaa awbozo déonunozo ompeaxe | = [ & | wo6ozo pad
S anfu(z) v awbozo p > 0 umcem mecmo
|‘ )
supl S auful2) ~plly D eEfia) )
o) Lo | b s

Teopema 2.2. Jan awboen ompeaxe I = [ =] # (0,1]. mobba p > 0 u

C > 0 eyrseemaypom pudw 3o o @pfolT) 1 oo o b fr(7) mamace, wmo

n=0
r s 2 .1 ]g
(2.1) sup 3" anfalz) >C- R aifi(=)}
HSN Lp(l) n=0 } me!m
x 3
(2.2) {zbifz(x)} > C -+ [|sup Z bnfu(z)
[ rr=() Lold) T |ngN L, (1)

'Teopema 2.2 ykaseisaer Ha 1o. 410 yeonse {n} C I s Teopese 2.1 cymecruenno.

Mp1 yGemnnicn, uTo gas cuerenint Xaapa He Bepell aHANOr TeopeMbl 2.2. a anasior

reopemsbl 2.1 pepen 1 6e3 vososun {n} C I. Oanako B 3ToM cay'ae 1OCTONHHBbLE

AKBHHAMCH THOCTH TKIKe S}IU}IL‘H]{' orI. A HAMEHHU BEPDHR CIEUY HUAsl

Teopema 2.3. /Jan awbozo devusnozo ompesxa [ = [5‘% %—'] . a0boeo p > 0 u

a106020 pada Y apxn(s) usteemn aecrno

4P ) ()

nsV

Lp(7)

}
~p,I {Z a;, Y?.(-f)}

Lp(I)

Y INrbiHAs COOTHONICHHC (1.4), ans Jokasaresbersa reopenst 2.1, 10CTATOUMHO J0-

KA3ATH CleAy Iy JIEMALY.
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Jlemma 2.1. Ts awbozo deousnozo ompeina I = [ﬁ‘\ "-,?-1]. awboeop > 0 u

m0boco pada Y an fu(T) nmeron mecmo
» r
ol

{(2.3) /H sup Z anfo(z)| de € C, /sup Z an fu(r)| dr,

¥ {n}cingN I ¥ |(n}ycimgN

’ H
(2.4) /' | > aif,f(:r]lsri.!‘fc,,~/ ) a?,f,?(x)} dr.

10 | (n1cs ) "inyer
JList pokazarenberBn Bilecq)OpMYIMPOBAIHBIX ¥ TEE[IKIEHIA HANOMHUM HEKOTO-
pble cpoficTBa cicTeMsl Ppankavua.
B {ICCACUOBAHUIX PSLAOB 110 CHCLIEMO tllpaHKJmua BAXKHYIO POJIb MI'DAKOT TAK HA-

JhIHAEMbIE FKCHOHEHIMASIBHBIC OLEHIN, LunyiueHnbie 3. Tucenncknm (3]
O 2% 2 VI ¢ (L) (s0a0) < G 2'F (2 - VB2
rne C) = % nC =132+ \/3)

[ oKa3ate. iberBa dchmbl 2.1 yaobuee HCIOAB30BATL OUCHKH, UOTY'ICHHBIC B

[10]. Hx cdopayiupyenm s vuiae Mpeanosennd 2.1 u 2.2,

Ipeoxkenne 2.1. Jar 1106020 n = 2¢ + v UAEIOM MECTO CACOYIOULUE HEDR-

acncmoa’

1 2
(2.5) i fu(Snast)] < |falsn,dl < =|falSns1)| xozda 1 <1< 20— 2,
7

(26) %!.f‘ll(su,l—l)l < lfn(su‘l)l < ?If"(s"-‘—]jl NOZda 2v <i<n,

(2.7) fu(sn,1) = —2fa(snp)s Sa(snan-1) = —2fn(sn.n), Ja(8n.4) - falsnav1) < 0.

INpeanoxenue 2.2. Jasn =2% + v, c ycrosuesm 1 < v < 2%, gunoansromes
(2.8) g_? > H.frl(sn,'zu=1)| 9_2 » ﬁ < lfn(snﬂu—l)l 9__8
18 lfn(sn,‘lu)l 12 66 Ifn(sn,zu—g)l 60

Mo llpennoxenna 2.1 u annednoctu dynkunn f, na [sna—a. 8,,1) POCTLIMM BLI-

THCTCHHAMHK ACTKO BbIBO/TATCH

MNpemioxenne 2.3: Jann =25 + v, ¢ yeaosuenm 1 < v < 2%, awbozo p > 0

UNOANURIOTNCA

LS ] ’ -
(2.9) )r | fa{z)|Pdz < (%) - r |fa(z)|Pdr., %0200 @ < 20— 2

Pobed

L R |
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L ,2- r - el
/ u@Pdz<(3) - [ Ua(@)Pde. worda 1220 +2.

Ipennoxkenue 2.4. ycmu 1y = 2* + vy ny = 2% + 1y u v < 4. Tozda
cyecmaipom wueae a, 8 (3asucsugue om g, 1y u vz), maxue, Wmno

I/"'l

2

I'l(:) =0 Iﬁ](x) xo’m 2 5 s". 20’. 3 -

|5

Jole) =8 fo,(2), x020a & 2 3n,2u =

L~

7o [pennoxenne snepnuie 6ui0 npuseneno o [8|. Ma storo [peatoxenns aemea-

JIEHHO chaenyer

Hpennoxenne 2.5. Jax wwobuz an, n = 2" +v, 1 < v < 2 u wobozo vy,

1 <y < 2¥ umerom mecmo

i
o
z:aw.,lzun(r) =0 faopu(r), xo2da x> o

vl

u

2“

vy — 1
E ey favs0(2) = B+ faniu(£), wo2da 1 < TER
[
ede a u B nexomopuc nucAa 3EUCKUUE O Gy, .
Ycaosunen wepes C.C).C,. ... 0603Ha4ATh NOCTOSHHEIE, 3aBUCALIME TOILKO OT

CBOMX MHACKCOB. JHBYCHINI ITUX NOCTOSIHHBIX B Pa3HbLX GOPMY1aX MOU'Y'T GbiTh pai-
Hbinm. Linny orpeaka I o6o3uatum yepes |1).
JfokazaTenncTBo nemmbl 2.1. Crayasa JoKasken cooTHoileHne (2.3). Baecro
Z{H)C 7 @n fu(x) 6yacm axcaTe 3. anfn(z), npcancnaran a,, = 0. xoraa {n} ¢ I.
Honycram

(2.10) /(S‘(:))’d.r =1, rae S*(z) = sup Z ay fulT)]
g .

‘ nEN

H AOKHKREM, UTO
(2.11) / * Sy <C
0

Monoxmun wist n,,, = 2M 4+ - 2% 41,

Tm(®) = [one, S (£)], w0 Sy (x) = max Y. aafnl@) = an, funl2)]-

()= wEN
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Quepiauo. yTo

(2.12) om(r) £2-5%(x). Sp(r) <2-5%(x), xorsma z€[0.1)

H
S (r) < z m(x) + Z Suu(r) =1 L1(z) + La(s). xorzawx € [0, 1).

1 nokaxem. 4ro

Q.
(2.13) /' i)z SCpe im1,2 £
0

[lyers I~ citesa nepsuit UHTEPBAN paHIa m, KoTopuili cozepkures B [, a Io-ero
Ipasasi NONOBMNA. 3AMCTHM. 4TO OTPE3KK I, He HCPOCOKRIOTCH M HX O6LCNHCHIC
cerb orpe3ok I. 3amernm rakoke, 1To byHkmK 0, (1) B Sy (z), m > k. ssasor-
€A MOTYTAMH THHeNHbIX Ha otpeske I dyukuuii. JdefictBurebHo. a,,(z)-monyan
or anmeitnolt na I byukuwu an,, fo, (). A 21s S2,(x), B cuay Ipeiaoxennn 2.5

HACeM. ¥TO A a06oro N cyulecTByeT an. TAKOE "TO

(2.14) S agfulz) =ap Jo () =an - fu_silz) mm x< .

[nlwm n<N

1
2m

2|8

Oromuus mes

o a 1
(2.15) Se(x) = |fnos2(2)} max lonl, am ¥ < 3 - TR
Yepes A,, u B,, oGoanaanm uuTerpanshme cpeatve va I dyukioit o, (z) n 57, (1),

COOTBETCTBEHHO. T.€.
1
5

3 roro. wro o, (z) 1 S5,(z), tn 2 k. ABIAIOTCA MOAYAAMY JHHCHHBIX HA OTPC3KC I

|
(2.16) Ay = Onlx)de, w By = T./ SexMdx, m 2 k.
g 1N o L

hyuximit, onyaores
(217) Am - ‘:g}z ﬂlll('r) L Bm o t'"'-"l;: S:n(.'l').

Ha (2.16). (2.12) n (2.10), ¢ npumcHenney kepascersa [eracpa, nyecen

»
L ANl = Z|1-| il (/ a,,,(,)d_,) <

m2A mzk
S [ et 5P <20 / (S° ())rde = 2°
"eh vis m)k
AHAIOIKH'HO [OJ1Y ' 18&M
(2.18) Y Bu) <2
m2k
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Chauaua joKaxes Hepasencruo (2.13) w ¢ =2 u p < 1. B s1om cliy 18e. [oriieno-

parensno npunsersy (2.9), (2.12) 1 (2.10) souyumum
-

» K X *
/o S':'(ﬂvb=[, (Zm:b‘.‘,(x)) ds -[ g(S,’.(:)}pdr <

6 L[, ura<e, [swrasc

AHAIOTNIMHO N0y 8CTCA HepaBeHETEO (2.13), kornat=1up < 1.

[lepeit.aenm k nomyuenmo onesok (2.13). korza p > 1. Bes orpannuenus obiHocTH
MOMCCM CHHTATD, 9TO CyMMLI X,, 1 = 1,2, koneunnl. 1. €. ©; = $::" Om W L2 =
Z m=k S:H %

Yepea I}, k < m < kj, 0603HAMM BOMTIIBIE OTPEIKH pAHIA 11 + || rjle upasbiii
Koriel, oTpeska I}, copnanaet ¢ Jienuim Koimonm oTpeaxa I, a 17a j > | npansift Konery
orpe3xa J2, copuaiact ¢ sicsnin konnon 271

Hosi z € [0, 35] w m 2 k ofoanasum

(2.19) n(#) ;= B, ; := “—IJ—/ Sp.(t)dl, xorna z € T .

[Mockonbky Sg,(x)-Monyan or xnneiinoil Ha I, GyHkuwM. To (326ch U Aa 1ee 101813
exca ¢ = 2/7) u3 (2.13), (2.17) u {2.9) umecem

(220) m(x) S C Vm(x) S C Bm ¥ < (‘ ?’_I Bm ot S C q’ Bm Kor.a r € [m

O6oomaunm Jyy = L\IY Ly o xoraa e =k, k+ 1. .k - 1.uJy, = [ . Toraa
1
(2.21) Vel = gl =277 = |31

HerpyAno samMernys, wro ecan x € Jon, 10 ua (2.20) cacayer

k)
22(I)<C'Zvm(r)SG"(Bk‘f'""FBm"'Bmi-l'q+ ) +Bk‘"qk‘=m)'
m-_-.k

[Moatomy

(2.22) /: (Za()Pdx = z [ (Sax))Pder S

,.‘ol..

"

Cp- ZIJ',,.I(ZBV)HC Zun.l( Z B, ¢~ =: Cu(Ty +Ta).

m=k v=k m=k vmmel

Mycts g1 € (0. 1), takoe uro ¢, < 2. Toraa a1a £, nonyuunm

¥ =C”i“'"| (iﬂvﬁ’*qi“") £C, Zu,,.]ZBr.,"*-H'zm = ) .

m=k v=k sk v=k
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YusrThipasl, 4TO B HOCHe Hell cymme v 2 k i g1 < 1, umeen

" 1l
Ah-m
(Z'l; ) < (‘r Q: g

vk

Mostomy. aaa I'| nmeen

kl m
(2.23) N"m<sG Z | o] Z Br. qp{"’ m) _ =C, Z B Z AR (ll~ﬂl)
m=k v=k

Tax xax |[Jme1| = $lJm| 1 ¢, < 2,10 [Jmsa|- P aaial S e A ~t1f“"m). sk
nexotoporo v < 1. ToaTomy na (2.23) 1w (2.18) 1nnaeenm

ki
(2.24) . TS Cp Y BIlJy| < Cp xotaa p>1.

v—k
Quetim Ty, korma p > 1. Qboanauuy ¢ = 0.9 u uanomitnm, wro ¢ = 2/7. Torua,
YUHTBLIBAS YTO q - l<tl,uws (2.22) ¢ npumeHennenm HepancHeTna lemnepa notyyuM
\ P

k) k) 5
(2.25) Lol S z | o] ( Z JE] (ql—l ) q;'-m/l
m=k

\v=m+1

=1

k o
Cr Z |l ( Z B (g - g™ ) ( Z (u-»m);{-\.) p

m=k v=m+1 \v=m=1

A p=1

Gy ZtJml Z BY (g P ™ =Cp 3 B2 ey - g™

v=m+1 . v=k+1 =k
M3 ( 2.20) 1 (2.21) cneayer

Ty sC, Z BY |1V|sz m( )

v=Kk+1 m=k

Yunrwsasy, uto 2- (g7 - q)P < 2- 2.2 < 1. u3 (2.25), (2.21) ¥ (2.18) uomyuuns

Ky
(2.26) r:<Cpy B SC,
v=k
W3 (2.26). (2.24) & (2.22) uonynaem
(2.27) I| (Z2(x))"dz < Cp. xorma p > 1.
11

Ovucenano, nz (2.20) unecy

) £C - Zcpm(r <C-¢~ ’thm(.c+2jw), Koruga z € Ij.
/

m=k

hd




O JIOKAJIHHON FKBUBANEHTHOCTU MAXKOPAHTHI YACTUYHIIX CVMM
C.1eq0Ba71€.1LHO. Loy t1aemM

[ (2)rde <C,- ¢ [ (£2(2))Pdz.

2
OTtciona ¥ u3 (2.27) nonyunn (2.13) ana ¢ = 2.

B ciiynae 1 = 1 Hepanerctso (2.13) pokasmpastcs 'yTh poule. B y1om cavuae ver
#eobxoaMMOCcTHI cooTitomernit THna (2.14), (2.15), nOCKONBKY Tm () oana dyHKLUSA
0 KOTOPOM u3BecTHO. wTo {ca. (2.5) )

)1

mﬂxa,,.(:c)s(;),-lwﬂ,(i)é('('g) A

vell 2*

e arpesku [, e xe, uto B cootHommernw (2.20). Bropoe KepapcHeTso cneyer Ui
Toro, 4ro & > 0 (B IPOTHBHOM CilyUac Hevero JoKasbiBaTh) u nosromy (cm. IMpenno-
aenne 2.2 u (2.16), (2.17))

i /
Tin (2-".) S ‘:_21}-‘ ﬂm{I) = l’é'}: ”m(—’) - C -4m

OT1c1oAa. paccy KIACHAANN. AHAJOTHUHKIMI PACCY KIEHHAM NIDH JNOKA3aTeIheTBe (2.27)

11021y \THM

ok
/ (Ti(x))Pde < Cp, Anm p>0.
0

Tenm carbiM {0Ka3aHO HEpapeHCTHOo (2.11). AHA/IOIH'IHO JOKA3BIEALTCs. YTO

/-l (S™(r))Pdx < Cy.
=t
KoTopoe Baecte ¢ (2.11) aokassiparoT HepasencTro (2.3). HepapereTso (2.4) qoxash:-
BacTes ananorwano. Jlesa 2.1 jokasana.

HokasatenbcTso reopemn: 2.2, Chanaig ybeanmcs B cnpaneinB0CTH HEDABEH-
croa (2.1). Hockoubky [&, ’5’,1] # [0.1). o ;6o & > 0 ;mbo & < 2F. PacemoTpun

cayuall, korna 2 > 0. Jas m > kul < 2 2™ % pubepen uge o Tak, 1100w

w 1 -
(2.28) @y 4y fom 41 (2—1_-) - T korma ! =1.2,..a 277"

Véenunicst, 1o ans mebore C > 0 npn roctarouso 6oabmon m pa Y., a, falz) =
agnrh

=1 aamgifami(x) yaonaersopser (2.1). Bo nepaux

) P
ghctutel =20 m-—k
(2.29) |lsup Z apfu(z) >/’ Z agm 4t famyi(2)| dz > Cﬂ._zﬁ_

N n<N Lo(D 2 =1
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C apyroii croponbl (M. (2.28) 1 (2.6))

¢

{' )® e 5 20
(2.30 ‘{Zaif#(:]} Sfm (Zagm.ufé"-nu(-r)) dzy " q" <
‘!

‘ L) # / n=0

"

§
Cp &Y (Zagu,fﬁ’m,: (7’:‘7)) <Cp-27™.
]

Mpu nocratouno Goaswom m w3 (2.29) u (2.30) caepyer (2.1).

Cayuan 2 < 28 noxaanmmacres ananorwuno. Toabko B CyMMe 3. anfn(z) BymyT
y9acrBoBarh 1 € ycioBuaMu [n] = m, {n} naxoautcs npasee [.

Tokarkenm cooTHomenue (2.2). Ousrs paccMOTPHM TOJbKO cayyad & > 0. Jas

m>kulga -'2""“"’ BrIGepeM Gy 4 TAK. ITOOL!
m .
(2.31) agm 41 fam 44 (’F) = (—1,)'. korga ! =12, .., 2"k

V6eumest, uro ams moGoro € > 0 npu noctatouso 6ombuiom m psia Y., ap fa(Z) =
wype- 2"

3 azm 41 fa 41(Z) yrosernopser (2.2).

pay

H3 Ipeamoxennst 2.4 1 (2.31) caeayer, qro

T
sup Z anfn(2)| = |agm41f2rn 1(z)|, worma z 2> 27
ng<N

n<N
Moy romy
»
(2.32) sup Z ap folx) < /|ag-n+;f2m+1(z)|”d1' <C,.-27™.
n<N “i
L,(I)

C apyroit croponnt

(2.33)

2 2 5 Ftah [0 :
/, Y alfiz) d—’”/ ( Y. Beafin(@) | dz> Cp(mamt)ka-m,
“ ',* =1

M3 (2.32) n (2.33). npu nocraTouno 6onsmom m. cneayer (2.2). Teopema 2.2 HOKa-

IAHA.

HokazaTcascrso Teopems: 2.3. Honycrum

o x4+l - 1.
27!‘ ""2):_ H "':’ ()” Lutn =1, tae S ('7") = sup Z aran(-r)
n<nN

Myete 1) < ny < ... < 0y, 1e HOMEpA, i1 KOTOPbIX

8., NT#0 u A, g1 tae A, = suppyn.
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O NNIOKASThHOW SKBUBAJIEHTHOCTU MAYKOPAHTEI HACTUYHLIX CYMM

Ornernsi. uto vakux n, pouko k + 1 wryk. Ecam yuecrs, 1o dyukuim a,,x,, ()
HUPHHUMAKYT HOCTOMHHbIE SHAYCHIIN HA 1, TO 1HOJ1Y 1M
- i
. -min §° < 25*(x] ax |y (x)
Té‘}‘l“ﬂ.kﬂ.l <2 Téllls (x) <28%(x) n ln; La"' Xn A7)

=1

<S*(z), am rel

C.eposarenpno. nosyaaen

(2.34) D aifR@) <Ak +1) (ST @2+ Y alfir) rel
n=1 nd,ct
"

(2.35) Si(z) == sup | Z ay\nlr) <2.8%(z). r€l.

N ja,cTmgN
Vyureipas, 4To

o @t~ ISTORLm,

nA.Cf Ly(1)
2 !
w3 (2.34), (2.35) nonyma f, (30 a2x2(7)) " dr < Cpi [ (57 (2))Pdx.
AllAIOT "TII0 ZoKAIBIBACTCA Hepavetictso [, (5*(x))Pdr < Cy, iAo e X () ? dr

Tem CaMbIM JOKA3AJIN CJIeLY 01iee COOTHOMEHHe

« %
/; (8°(x))Pdz ~pi fl (gu?,xf,(z)) dr,

NPHYEN NOCTOSIRHBIE 3K BRBAJICHTHOCTH 34BHCAT He 0T canmofi [, a o1 panra I, Teopema
AoKadana.

B reopemax 2.1 u 2.3, Boobine 1osops, MIKOPAITY pPsifa HEIb3s SAMEHUIL CYM-
MOfl pAJa. JdeficTBNTE 1110, H3BECTHO. YITO B IPOCTPANHCTAC L[o. 1] e cymectyer Ges-
ycuosHelx 6a3ncos (em. [11]). Orcioaa cateayer, 9To cyulecTBYIOT GyRKIMIL ¢, € L.

;

TAKMC, ITO !

~ 4 :
Zaﬁﬁ(') € Ly. rae a, =/ d(x)f, (z)der.
n=l) Q)
H
o t .
Zbﬁx'ﬂ() €L, rac b, =[ ¥(x)yn(r)dr.
nel n
CrenonaTeanno

13" anpull % (3" a20?) 1.

e {p, }-cucrensa Xaapa nau ®pankiauna,

57



I I. TEBOPKSHH, K. A. KEPAAH

B cayuae p > 1. i3 Gesvenosuois Gasuciocti cacremsl Xaapu 8 upocrpancrse Ly,

4 KoscrpyKLn (pyHKuiE Xaapa. st o6ore ABOMHHOTO iHrepsaia [ numeem

\i
Z QnXn ~p Z n:\,"l

A.ct Lw(” a.ct / L1

I

(2306

Hirepecro 6bl:10 (b BBISCKI b, HMEET .11 aHAI0r cooTHowenns (2.36) ans cucre-
bt DpanimHa. 118 YCTAHOB/ICHMs Takol SKXBHBAJEHTHOCTH Heobxouumo (K aocia-

TOINO) YCTANOBHTL alator cooTHowenuh (2.3), (2.4) ans cyMmnl Z{n]CI i)

Abstract. In this paper we prove that the majorant of partial sums and the Paley
functiou of Frauklin series have equivalent norns in the space L,(I), p > 0. provided
that the “peak” intervals of Franklin functions with non-vanishing coefficients lie in

/. Examples of series emphasizing that this condition is essential are also given.
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ON L"-INTEGRABILITY OF A SPECIAL DOUBLE SINE SERIES
FORMED BY ITS BLOCKS

XIl. Z. KRASNIQI

University of Prishtina. Prishtina. Kosovo
E-mail: zhevat. krosnigi@uni-pr.edu

Abstract. In this paper we deal with a special double sine trigonomietric seriesy
formed by its hlocks. ‘T'his type of trigonomietric series is of particular interesi since
its blocks always are bounded. that is, under some additions] assumptions the sum-

function of such series always exists. We give rome conditions under which such sum-
function is integrable of power p € {2,3,...}. as well as is integrable with some

natural weight.

MSC2010 numbers: 42A16. 42A20), 28A25.
Keywords: Sine series: [unction of bounded variation; series hy their blocks.

1. INTRODUCTION

Let Ay = {n,} and Ay = {r,} be two strictly incressing sequeuces of natural

numbers 1 = n; < nya <My < --andl =71, < ry r3y < satisfying the
conditions:
-~ -~
i !
— < +oc  and § = < 40oc.
" . rJ
(LR} =1

Considering the special double sine series

e sin ka sin £y
P

k=lé=1
we form the following series |
o |Miga—lrpga-

sl F N k. sin £y,
(L1) SRS _"M.‘_’_Q

r=1 j=1| kmn, 2I=r,

According to the weli-known estiinate

’

sinkzx
R

k=un

(1.2) rgl’ <00, U<rgm,

v
< —.
34 ]

the series (1.1) couverges for all (2. y) und its swn Gy, 4, {(r, y) is a continuous function
on (0, 7] x (0. x]. This fact is of particular interest and therefore this is the main reason

why we have formed the series {1.1).
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In the one-dimensional case such series has been considered by Telyakovskii [L]
and Trigub |3]. In particular. Telyakovskii [2] has considered the guestion: when the

sum-function gy, (z) of the series

o [Ri¢1—l
S = sinkxr
k=11] Ak=ny

belongs to the spaces L?[0. %] for p=2.3,...7

Specifically, in |2] was proved the following theorem.

Theorem 1.1. For any natural p = 2.3,... the function ga, () belongs fo the space
:

) : 1= 4 .
L0 7] if the series S Lom, " s convergent, where mn; = min(n,, 741 — 7+ 1).

] il

It the same paper was considered the problem of integrability of the function
ga, () with weight £ under natural condition 0 < 4 <. 1. Among others, the

following result was proved in [2]

Theorem 1.2. If for v € (0,1) the series
o
1
Y —m)]
™

is convergent, then the integrol [ Joga, (x)de converges.

Note that guestions pertaining to trigonometric series formed by their blocks were
considered in 4] - [6], and still receive considerable attention. The main aim of this
paper is to extend the ubove results to two-dimensional case. In order to do this we
will use the technique developed in |2], the estimate (1.2) and the following inequality
see |2] page 818)

Megr—-1
sinkxr A /1
(1.3) o= g-—minl—,m,‘), O<zx<n.
' k“;‘,. k n, \x J

wlere A is an absolute constant. Here and in the sequel we write (G5, 4, € L”, p 2 1,

if the integral [ [ 154, A (€, ¥)|"dzdy is finite.

2. THE MAIN RESULTS

In this section we state and prove the main results of the paper. We first prove the

following result.
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Theorem 2.1, For any natural p = 2,3.... the function Ga,.A, belongs to the spuce
L7(0, 7} x [0.7]) if the serics -

o
S
1
L I Rl d i
1 convergent, where uy; = wmin(ng, 40 — 0, + 1) end sj=min{ry,rypy -7 + 1)

Proof. For arbitrary naturzl nmunbers M and N we have
NE

MON
ZZu.(.x)u,(ub’ drdy
e=1j=1 ]
- M M N N
/ / wy, (2)--- Z u.p(;r) Z iy, (y) - Z ua, (y)dody
= :P=l =l pomt

M N -
(2.1) P Z PIRE Z / / M L2) - (P, () -, () edy.
=1 Q0

’l]l—l Zp=1"
Next. we split the square [0,7] x [0.7] into the rectangles [0.a] x [0. 3], [U.a] x
[7.8]. [, 7] x [0.3] and [o0.7] x [3,7]. where a and 3 will be determined later in an

appropriate way, Using the estimates (1.3) we can write
a a
L[ ) @un ), ey

. . S
(22) < /12”/ [ Ty ~--—m"'"ims_ﬁdxdy=/12r'_’"" e L/ S

iy, ng, 149, i te) n, 7y T

(2.3) /ﬂ /, g () oo (), (y) -y, (y)duedy

-

<A™ ("my mi' 1 dedy my  omy,  A® b
e e GV s, AL ,

./ LT LR TS & w y, i, Ty r p-1

* 8
(2.4) / / W () - --uy, (2)wy, (7) - - u;, (y)drdy

<,;~ o S dedy A s, s, 00
g, my, n,’, ry, Ty, aP ngc<ay, T,  ry, p— 1

(2.5) /:/: tg () - ug (), (y) -y, (y)dedy

" g AW ad)'~r
< A 1 1 dedy . . ( T
AT P TRRERY I ORI €-7) L NS N AR {p
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Inserting the estimates (2.2)-(2.5) into (2 1) we obtain

M N M N
/ [ (ZZM.I':\M) (y) ] dredy < Alr Z Z Z
J o=l ta=1"31=1
\:~ { m, 8, M o Ny ny, ] afl P
M O S gt R
= \u,‘ ny, Ty Tin Tie, i e
\ 1 85, s,a' "3 1 (ad)'\~»
(2.6) +"-‘. ng T, rj, p—1 T, Mgy Ty, (P — 1)2 §°
- s /
Whence, choosing in (2.6) a = (m,, -, )" % aud 8 = (s5, < - &, )%, we find that

/MA N

/ / VZ"-‘“",W’} d:['dy<442"z Z Z

el tp=1 g1 =1
td

Y\"”"‘ R RILTS S A T\‘S“(""”J)
( ——

—; ng G, Ty TG, n;T,

=1 =1
Consequently. since the last series converges by assumption, the integrals
r

8% r e o

f{, ju ZZH,UMJ y) | dzdy

=1 =1

are hounded by a quantity that is independent of M. N. Therefore, based on the

double version of the Levi’s theorem. we conuclude that the function Ga, 1, belongs

to the space L7([0. 7] x [0.#]). O
The next result gives an answer to the following question: under what conditions

the function G, A, belongs to the space L7([0.7] x {0, n]) with weight £~ "y,
Y1.72 € ((] 1)?
Theorem 2.2. If for 1,72 € (0,1), the series Y02, 3%, =L-m" s)* 15 convergent,

2 ST

then the follounng integral converges
il e Ga, v lxy)
/ S drdy
0 Ju Lhyn
Proof. Bascd on the uniform convergence of the series (1.1) we have
4 n
G, . -

[ f ":\’(fu)lb‘dy—zz f [ U(I)uj(y) ‘ dy~

oJo  Fhym P kit INyn
Splitting the square [0.7] x [0.7] into the rectangles [0, ] x [0, Al [0 o] x [, By)
[ar. 7] x [0.8;] and [a;. 7] x [3,, 7). where o; and B; are determined by

(2.7) r:,=L and 3, = L
™y %'
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we find that

y, 03 ) e
o /J_“;(x_)ﬁ.(iyldrdu < A*/ j 4 drdy
U 0 :‘:‘71:‘/‘72 A Hu‘l: 7‘lrj

Migs,

A

" al n

- mm e

& AT ) :
il 'Mdrdy = /12// - 2 dzdy
a0 Ty o i et
s,
€ o Mg -n
1—‘72)7117
/" l "_‘“_’“_'_‘_.".){_,,1" < /“/a r® ™, d!‘f'}
o Jo, VY o Ju, TV e,y
3 LI g

(1 ~v)7 n,u

'

1 A |
/' /' wi{ ), (y a‘;dy</12// lztly € —— iy
J,, ] Iy Y, VYT iRa) T2 1,7

Fuml]y. using (2.7) and the latest estimates, we obtain

, [ CMA;(: U) ""'v“'- !
Jo J e ZZ\(1“71 W= v2) nar, Y 7Y

I 1}‘71

0 Ju =)yl
bd
A: | a—vual—'n I A Lk, al—ms—*:
'71(1 - 72) Ly ' (1 =7 )y2 ey
L - |
et T ) B 3D BE T e
YiY2 Ty T Il
e C = A2 . A i | Bl -
where (&= A4S mﬂ&{l‘_“'“_T.,- wii=n)' ="' wvn! } ~

The next statement supplements Theorem 2.1, and gives conditions under which

SO0l
J;Tl yh

is convergent for v,,42 € (0,1) aud = 2

the integral

Theorem 2.3. Ifp=2,3.... and v, € (1 — p. 1). then the mntegral

=G T,}
f/ —A"A’( "I)d.‘rtly
0 Jo Ny

s convergent provided that the seres

1‘1(1—1'!) 1-4(1-m)
ZL,,, "y 5

=1 y=1 3
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is convergent.

Proof. Using a similar technique as in the proof Theorem 2.1 we have

/ A/’——I—‘-'— (.Z'i,,_qrru,‘yl) or dy

A

2.8) —i Zz Zf] .yn“"(T) g (b, (v) - wy, (y)dedy,

1 =1 n=1 =1

for all p = 2.3... .. and natural nunbers A4, N
Again we split the square [0. 7] x [0, 7] into the rectangles [0, a] X [0. 8]. [0, a] x [x. 8]
{0, 7] and [a. #] x [3, 7]. where a and 3 arc determined as in T'heorem 2.1

Using the estimates (1.3) and taking into account that yp\y2 € (1 — p. 1), we can

o

write

[ [ o) w @), widedy

Jyn
2 T, me ~, SJ"

!P/ / PPl S - - - 'd'tdy
o &Ny on, T, Ty, Th

s
(2.9) AU M sy s, olTn8ITE
iy Xy g (Lot )

A o |
[[WH..(J") ui (T (y) - ug (y)dedy

< A% / " / Ty om, 1 diudy

= S0 3 M .,L'.“J r)a o 'Tjw rﬁ'N""
(2.10) <Dy T, A el -mgt-m-p

70 My, Wy - T (1= )¥ya+p—-1)"

N l
/-/o oy ..(4) ", (2w (y) - -, (y)dody
1 Spn 4, drdy

A
PO A A S
Joo Juo My 1Ty, Ty atl |p-y7;

(2~“-) < A T 'ﬁ_ al-n-rgl-m
T, Ty .,-J." (71 +l)_ 1)(1 . 72)|

i, -
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and

» - 1

f A FT wi, (1) S u (), () oy, (y)dzdy
o
< A% /" /" 1 1 dedy
o T TE ey ) il +P1j'n+l’
(2.12) A2 al-m-rRl-m2-p
. -

T Ty Ty, (AP D p— 1)
The above estimates along with
i I

ow ——— and 3= =
(s, -, )% (85, - 95,)%
imply
» » 1 N N P

/u /o ITW g;.:,u.(:)u,(y) ILlf’y

M M N N [N € e LAl
(g, m ) "¢ 5 ) *
< A(p, : : U
(NS D BEEED 3 DEEED - AT

=1 n=15=1 Jp=1
where A(p.~1.v2) is a constant that depends only on p, v, and 7.

Hence,
p

v 1 M N
/0/0 xym ZZ”"‘)“J(V) dzdy

[ A |
»

< Alp.y.m) i: i & ~

l—i(l—’h)sl* (1-721) )
=] jul
Finally, the use of the double version of the Levi's theorem implies the statement of
the theorem. : 0
Tt is clear that the conditions v;,72 > | —p in Theorem 2.3 are essential, therefore

in the next theorem we exaniine the boundary case vj,72 =1 -p.

Theorem 2.4. If p=2,3.... and v1.72 = 1 — p, then the integral
]nr n G"‘ o - S ")dxd.
o Jo  zu)"

is converyent prowded that the series
./ e l
> 2 ;- (loem)(logs;)
i=1 j=1 J

iy connergent.
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Proof. Observe first that in this boundary case the equality (2.8) reduces to the

following:

(2.13) / /: 50l l - (Y‘Zu.(xlu () | dedy

tm] el

N

A1
z ZZ Z/ ./ t:y)' Tyt () - g, ()M, (1) - “uj, (y)drdy.

13 =1 =1 =1

Also, for 4,.42 = 1 — p the estimates (2.9)-(2.12) take the following forms:

/ f (T!’,;_1$“"(' u,, (), (y) - - uy, (y)dedy
0 0

a M p
, 1 m m; s $ n, m; g s, (afB
*jAsz / _——l__i.i_J_IﬁdIdy=A2p u .._"i..-% ) -
(13}) P n,, ,, T T 4, ,, Ty Vi p

o - l ‘ ‘
/ / “ .y)l .,,'lh. (I) - u"(ﬂi)uh [y) g uj,,(y)(’.’l?dy
g |4
: 42”/ / Da T didy i, T, A nrlog%.

ST R .
7, i, T) - i, (@)17P 7 ns, ni, Ti T, P

T
[ [ e @ v tehun ), ()
n J0

<,42p]’" /” 1 %, fn dudy AT L sl iGN
3 ry, @YTP ey, T, Ty P

a do T, ony

/ d / . (—“-’;—— (1)1, (), (y) -y, )y
« ()

. * pm drd AQP
< A% f f : ! ‘ “1!{, < 101., log
Ny ooy, Ty Ty, (o) T My e Ty T, A’

respectively.

. =4 el .
Next, specifying a = (my, - -m,, ) » sud 8 = (;, -~ 3;,)7% we obviously have

n 1 T 1
log = =logm + =1 wooomi,) and  log = =logm + — log(s;, - -+ 85, ).
g7 =log pog(m o) €5 = logm+ 2 g( in)
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Using these equalities, the above estimates and the equality {2.13)), we obtain

oy M N »
./ojo (xy)=* EZ (w)uiy) | dady

l=l =1
N N ‘12', { 2
< !IZ” .'Z_‘ ,,z-:l z_ Ty, = { (; + logn)
p
+ (p + log ﬂ) [Z log(m,, ) + Zlog(s,“ l + & i Z log(re,, ) 1og(s,“]},
=1 n=l v=1u=1

Therefore, we have
* [ G}, a,i200)

Jo -f‘u (zy)'»
o =]

SKA®Y . ii

n=1 w=ln=
p-1

< KA ( ZE \. Z z log( m;)jog(%

\l:l F=1 ) } i=1 j=1
where K is an absolute positive constant. The proof is completed. O
Acknowledgment. The author would like to thank the anonymous referee for

ber ‘his remarks which improved the final form of this paper.

dxdy

~
I

z z log(m,, ) log(s

LT T AR M v

=1
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Ahstract. In the paper we study the Briick Conjecture tor a linear differential polynoinial.

MSC2010 numbers: 30D35.

Keywords: Meronorphic function. differential polynomial, sharing small function.

1. INTRODUCTION, DEFINITIONS AND RESULTS

Let f. g be nonconstant meromarphic functions defined in the open complex plane
C. For ¢ € CU {x} we say that f, g share the value @ CM (counting multiplicities)
if f. g have the same a-points with the samme multiplicities, and we say that f, g
share the value e IM (ignoring multiplicities) if f. g have the sume a-points bul the
nultiplicities are not taken into account.

The monograph (7] is a good source of standard notations and definitions of the

value distribution theory. We now introduce some notation and a definition.

Definition 1.1. Given a meromorphic function f. & number « € CU {a} and a

posttive nteger k.

(i) Nu(roa: f) (Ru(r.a:f)) denotes the counting function (reduced counling
function) of those a-puints of [ whose mulliplicilies are not less than k:
(i) Ny(r.a: f) ('IV,,,)(r‘ a; f)) denotes the counting function (reduced counting

function) of those a-points of f whose muliiplicities are not greater then k;

Definition 1.2. A mcromorphic function a = a(z) is called a small function of a
meromorphic function [ if T'(r.a) = S(r, ).

[u [5], R. Briick considered the uniqueness problem of an entire function when
it shares a single value CAl with its first derivative, and proposed the following

conjecture, which inspired a number of people to work on the topic.

}The work of the aecond author was supported hy DAE (NBIIM fellowship), India.
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Briick Conjecture: Let f be o nonconstant entire funclion salisfying v(f) < .
and let v(f) be nol u positive inleger, where v(f) is the hyper-onder of f. If [ and f°
share one finite value ¢ CM, then f' - a = ¢(f — a) for some constant ¢ # 0.

R. Briick (5] himsell proved the following resuit

Theorem A ([5]). Let [ be a nanconstant entire function. if f and f' sherc the
value 1 CM and N(r,0; f') = S(r, f), then f — 1 = ¢(f' — 1), where ¢ is a nonzero
constant.

Considering entire functions of finite order, L. Z. Yang [9] proved the following

theorem.

Theorem B ([9]). Let [ be a nonconstant entire function of finale order, and let
a{# 0) be a finite constant. If f and f'*) share the value @ CM. then f—a = (%) —a),

where ¢ 15 6 nonzero constant end k > 1 is an integer

In 2005, A. B. H. Al-khaladi [2]| extended Theorem A to the class of meromorphic

Tunctions and proved the following resull,

Theorem C (|2]). Lel f be a nonconstant meromorphic function satisfying N'(r.0; ') =
S(r, f). If f and f' shere the value 1 CM, then f — 1 = ¢(f' — 1) for some nonzero

constant c.

Also, in [2| were considered the following examples, showing that the value sharing

cannot be relaxed from CM to IM. and the condition N (r,0; /) = S(r. f) is essential.

Example 1.1. Let f =1+ tanz. Then f'—1=(f-1)2and N(r.0; f) = 0. Clearly
f and f’ share the value 1 IN but the conclusion of Theorem C does uot hold.

-
-

T8 Then fand f’ share the value 1 CM and N(r, 0: ') #

S(r, f). It is easy to verify that f' —1 = g -:r‘ (f-1).

Examplc 1.2. Let f =

A. H. H. Al-khaladi [1] also observed by the following example that in Theorem A

the shared value cannot be replaced by a shared small function.

Example 1.3. Let f = 1+ ¢ and n = Then a is a small function of

f and f —a, f* — a share the value 0 CM a;(l N(r,0; f') = 0. Also, we see that
L,
Isem=T=e)
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Cousidering the sharing of small functions, A. H. H. Al-khaladi [1] proved the

following result.

Theorem D (|1]). Let f be a nonconstant entire function satisfying N(r,0; ') =

S(r.f), and let a (# 0, ) be a meromorphic small function of f Iff—aand f'-a
\ o ;

share the value 0 CM. then f—a = (1 + ﬁ) (f' —a). where l+; = e”, ¢ is a constant

and 3 v an entire function.
For higher order derivatives. A. H. H. Al-khaladi |3] proved the following theorem.

Theorem E (|3]). Let f be a nonconstant entire function satisfying N(r.0; f*)) =
S(r, /) (k > 1). and let a(# 0.00) be a meromorphic smaIl function of f. If f — «
and f%) — q share the value 0 CM. then f —a = (1 + — )(f(k) a), where P,

is a polynomial of degree at most k — 1 and 1 + ’—““— #0.

Recently A. H. H. Al-khaladi [4] extended Theorem E to meromorphic functions.
A natural extension of a derivative is a linear differential polynomial. For a transcendental

meromorphic function f we denote by L = L{f*}) a linear differential polynomial of

the formm
(11) L=L{f* = apf® 4 g f*+) 4 ... 4 apffkﬂ!)'
where ap,¢1... . ap (# 0) are constants, and k(> 1) and p(> 0) arc integers such

that p=0ifk=1and0<p<k-2if k> 2
In the present paper we consider the problem of sharing a small function by a
meromorphic [unction and a linear differential polynomial in conformity with Briick

conjecture. The following theorem is the main result of the paper.

Theorem 1.1. Let f be a transcendental meromorphic function and let the differential
polynomial L = L(f¥). given by (1.1), be nonconstant. Suppose that f —a and L —a
share 0 CM. where o (# 0,0c) is a small function of . If N(r,0; f*)) = S(r, f), then

f—n=(|+-’l:-)([;—ﬂ),
where Py 13 a polynomial of degree at most k — 1 and | + —— P. : #0.

The following example shows that the condition N(r,0; f (")) = 8(r, f) is csscutinl
in Theorem 1.1,
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Example 1.4. Let £ be a nonconstant polynomial, and let f = lj%: Then f' =
c“(P+ P + P'c?)
(I +e)2
CMbut f' - P/ =

, and hemwee N(r,0: /') # S(r, f) Also. f — P’ and f* — P’ share 0

By (f - P). where T(r. P') = S(r, [).

2. LEMMaAS

In this scction we present somc necessary lemmas to be used in the proof of

Theorem 1.1.

Lemma 2.1. Let [ be ¢ nonconstont meromorphic function end let L = L(f™),
given by (1.1), be nonconstant. If f —a and L —a share 0 CM, where a = a{z)(# 0.20)
i8 a smell function of f, then one of the following assertions holds.
(i) f—a= (l + 5‘-"—) (L — a), where Pi_y is a polynomal of degree al most
k—1 andl+5a;'§u.
(i) T(r, f*) < (k+p+ 1D)N(r,00: f) + N(r,0: f®)) + N(2,0; [} 4 Sz )

'L % Then h is an entire function and the poles of f are precisely

Proof. Let h =
the zeros of h. Now differentiating

(2.1) f—a=hL —ah

k-times we get
(2.2) &~ a®) = (hLY*®) — (ha)!®.

We now consider the following cases.
CasE 1. Let. a™ % 0. We put
L (L™ (ha)®

L (1]
Since W = ‘h:}' . 7“-'5 - ‘A;r— » ;‘:—) we have m(r, W) = S(r, f).

We first suppuse that W # 0. Let zg be a zero of f&) — o®) and o) (2g) # 0.0c.
Then from (2.2) we see that 2g is a zcro of (AL)*) — (ha)®). Hence W(zp) = 0 and

we have
Fir0:/® -a®) < N@o;W)+S0r 1)
S T(W)+S(r/f)
- = N@EW)+S0f)
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Also
(2.5) N(r.W) < (k +p)N(r, 00; f) + N(r,U; f‘k)) + S(r. f).

By Nevanlinna's three small functions theorem (sce |7]. p. 47}, and formulas (2.4)
and (2.5), we get

T(r. f*)) € (k+p+ )N (r.00: f) + N(r, 0: f5) + N 0: f2) + 8(r, f),

which is (ii).

Now let " = 0. Then from (2.2) and (2.3) we get

(f &) — aR)jah) = (ha)(“(f(“ - o).

Since f*) —a¥) £ 0. we obtain (ha)® = o). lntegrating the last equality k-times
we get ha = a + P (z), where Py_(z) is a polynomial of degree at most & — 1. So
Mo and henee f —a = (1 + Ay ) (L — a), which is (i).

h=1+
a
Cask II. Let @** = (. Then e is a polynomial of degree at most k — 1. From (2.2)
we get f5) = (RL)*) — (ah)® and hence

h1)&) 310
(2.6) 1 _ (kD) (ah)

YU YT
i T (hL)'™ fak)™ :
Putting F= ' G = —W and b= W from (2.6) we get
1 b
Differentiating (2.7) we obtain
1 A ¥ b F
2.8) _ 23 ot TR e
(&) R h F'F'F
It follows from (2.7) and (2.8) that
29 Sy
(29 l—:. =G + TL
! 7
where A = b £+b’—b. E.
h F

We first suppose that G = 0. Then by integration we get hL = Qg_,, where

Qi1 = Qi—1(2) is a polynomial of degree at most k — 1. Putting h = {
{2.10) : (f—ao)L = (L - a)Qx-,-

Since ¢ is a polynomial. from (2.10) we see that f is an entire function. Hence h

-0
we get
-a

is an entire funcrion having no zeros. We put h = ¢", where a is an entire function,

andso f=a+h(L—-e)=a+Qr;—at" and L = Q,_ e It follows from the
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definition of L that L = R(a'. a')e", where R{«¢’, o') is a differential polynomial in ¢’

and ', llence
(2.11) . R(a'. o) = Qu_y.

From (2.11) we see that T(r.e”) = S(r,e”). yielding a contradiction. Therefore
G 2o

If 1 is a constanl. say ¢, then f — a = ¢(L ~ a). which is (i).

Now we suppose that 4 is nonconstant and & = 0. Then by integration we wet
ah = P._,, where »_| = P,_(z) is a polynomial of degree at most k — 1

Since h is an entire function and a is a polynomial of degree at most k — 1. the

2
equality h = ——" implies that a is  factor of Pc_;. and heuce
a

(2.12) h=Qp .

where Q7 _, = J%_,(2) is a polynomial of degree at most k —¢ (£ > 1)

If =p is a pole of f. then zy is a zero of & with multiplicity k 4 p. which is impossible
by (2.12). So, f is an entire function, and hence h is an entire function having ne
zeros. Therefore from (2.12) we see that h is a constant, which is impossible.

’

GF
Now we supposce that b 2 0. Let A = 0, then from (2.9) we get C 4 = . By

integration we obtain Gh = R and hence

h

(2.13) (hL)®) = K f8)

where i is a nonzero constz'ml,.

Again, Z = = = () implies by integration hb = MF | and so

h d -3
(2.14) (ah)® = Ars®,
where A{ is 4 nonzero constapt.

Since e is a polynomial and £ is an entire function. we see from (2.14) that [ is an
entire function. So. i is anu entire function Laving no zeros and we can put h = °
where a is en entire function.

Integrating {2.13) A-times we get

(2.15) hL=Kf+P_,,

where Py = P;_(2) 1s a polynomial of degree at inost & — 1.
Since hL = f — a + ah, from (2 15) we get

(2.16) (1-K)f=a(l-e")+ P,
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k=1

If R = 1. from (2.16) we see that ¢® =1+ . which is impossible. Hence K # 1.
Now from (2.16) we get
: ae® a+ Py
- F=%=1" &=
Therefore from {1.1) we have

(2.18) L = R(a")e”,

where R{a’)(# 0) is a differential polynomial in o' with polynomial cocflicients.
From {2.15) we obtain

- [ = Ka Ka+l’k',1e‘"
(2.19) K1 K-1 = °

It follows from (2.18) and (2.19) that
Rio 1™ = Ka , Kae+Pp,
WS SEE K-1
This implies T(r,e”) = §(r,e"), yielding a contradiction Therefore A £ 0.

‘hi,” 'l 1
» + % F) implies m(r, 4) = S(r, f). Also. the paoles

Now observe that A = b(

ah)\k) s
of A are contributed by: (i) the poles of b = . (ii) the poles of n and (iii) the
(k+1)
poles of IF; f e Since 7t is entire and the zeros of h are precisely the poles of

/. and cach zero of h is of multiplicity & + p. we get

‘N(r. 4) < (k + )N, : ) + N(r.0; f¥) + S(r. f).
Therefore
(2.20) T(r. 4) < (k + DN(r.c0: f) + F(r. 0; f*) + 8(r, f).

From (2.9) and (2.20) we get
mir k) $ min k)4 m(n.G + Gh) S T(.A) +56.1)
< tk+ )N(r.00i f) + N(r,0: f¥) + S(r, f).
So. by the first fundamental theorem. we obtain
T(r. f*) < (k + V)N oc: f) + N(r,0; f®) + Nz, 0; f¥) 4 S(r, f).

which implies (ii). This completes the proof of Lemma 2.1. O
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Lemma 2.2 (|2]). Let k be a positive integer and [ bc a meromorphic function
(oY) NIT

such that f*) is nat constant. Then cither ([""’) = C(f'. )\) for som«

nonzero constant ¢ or

kNyy(r,oc; f) < N g(r,00: f) + Nyy(ro A f9) + N(r.0; 440 + S(r, f).

where X is a constant.

Lemma 2.3 ([10], p.39). Let f be a nonconstant meromorphic function in the comples

plane and let k be a positive integer. Then
N(r.0; fR)) < N(r.0; f) + kN(r,00; f) + S(=. f).

Lemma 2.4 ([8]). Given a transcendentul meromorphic function f and a constant

K > 1. Then there exists a set M(I) whose upper logarithmic density 1s al most
O(K) = min{(2e" 1~ 1)7L, (1 + e(K - 1) exple(l — K)))}

such that for every positive integer k.

gl ., .
lim sup ;-—-‘L-lb— < 3ek.
racosdMIK) [(r-ﬂ ))

Lemma 2.5. Let f be a transcendental meromorphic function such that N(r.0: f(!') =
S(r, f). If f~a and a) f1V —a share 0 CM, where ¢ = a(z)( 0. %) is a small function

of f and a; is @ nonzero constan!, then

Nyy(r,0; %) € Wia(r.00: f) + S(r, f)

Proof. If a+¢’ & 0, then using the method of |4] (pp. 349 - 351). we get N)y(r. 0: =
S(r, f). and the resuit follows. If @ + o' # 0, then again using the metliod of M| (pp.
351 - 354), we get Nyy(r,00: f} = S(r, f). Now by Lemma 2.3 we obtain

NE0: /@) < N@R0; O+ N(r.x: ) + S(r. f)
Na(r,x: )+ S(r. f).

it

Since Nyy(7, 0; @) < N(r,0; f%), the lemma. is proved. O

Lemma 2.6 ([6]). Let f be a transcendental meromaorphic function and k be a positive
integer. Then

kN (r,00; f) S N2, 0: f5) + Q + &)N(r. 00 f) + S, ),

where € 15 any fired positive number
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3. Puoor oF Turonren 1.1

Proof. First we verify that

ksl K42
(3.1) (1) e (™)
where ¢ # 0 is a constant. Indeed, if (3.1) does not lold, then we gel
yao A1
o Y i (k)

Differentiating (3.2) and then using (3.2) we obtain

(f(k+n))‘2 {f(lﬂ)\' o
fuc) o

\7@ ) TEeT

Integrating twice we get
1

f(k) o )
(Cz+ Dk + 1)}

where € # 0 and D are constants. This is impossible because f is transcendental.

Let & > 2. We suppose that
T f%) < (k+p+ 1)R(r, 00 f) + B(r, 0; fB) 4 N(r, 0; fF) + S(r., f).

Since N(r,0; f*)) = S(r, f), we get from above

(3.3) T(r.fM) < (k+p+ )(r 0. f) + 57, f).
Also, from Lemma 2.6 we obtain for 0 < ¢ < L -1,
p+1

kN(r.00: f) < (1 4+ €)N(r, 00; f) + S(r. f).
Heuce from (3.3) we obtain
m(r, [9) + N(r,20: ) & 2o (1 4 €)N(r,00: ) + S(0. f)
and so m(r, f&) + N(r.ac: f) = S(r, f). Therefore
(3.4) T(r, f*) = 8(r. f).

Let A(K) he defined as in Lemma 2.4. By (3.4) we can choose a sequence v, — 00

(k)
such that r,, & M(A) and Jim Tira. ')
n 0 T(Tmf)
Next, let k = 1. We suppose

= 0. This contradicts Lemma 2.4.

T(r. %) < 2N(r.00; f) + F(r,0: fV) + N(r,0; F1) + S(r. f).
Since N(r,0: fV) = §(r. f). we obtain

m{r. [ ) + N(r,0; f) < N(r, 00, f) + S(r. f)
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and so
(3.5) m{r. f) + Na(r,o: f) = S(r, f).
By the second fundamental theoremn we get in view of (3.5)

T(r,f(”) < Nir.1: £ 4+ N(r, 0: f(l)) +T\’(1iw:f] -~ N(#0: %) 4 S(r. f)

and so

(3.6) mir, b; f) + N(r,0: 1) € Nyy(r,oc: f) + S(r, ).
Now by Leinma 2.2 and (3.5) we get for A=0

(37) Ny(r.o0; f) < F(r,0: @) + S(r. 1)
From (3.6) and (3.7) we get

(3.8) Np(r.0; f2)) = S(r. f).
By (3.5). (3.8) and Lemma 2.5 we obtain

(3.9) N(r.0; f@) = S(r, f).

Hence by (3.5), (3.7) and (3.9) we get N{(r,oc; f) = S{r, f), and s0 by (3.5) we have
Tir, f'') = S(r, ), which is (3.4) for k = 1. Similarly using Lemmna 2.4 we arrive at

a contradiction. Therelore by Lemma 2.1 we obtain

3]

® ~

10.

]-u'—’(l-ff‘;l)(l_-nl
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Abstract. In this paper we study the existence and uniqueness of positive

solutions for nonlinear fractional differential equation boundary value probleins

by using new fixed point results of mixed monoténe operators on cones.

MSC2010 numbers: 30D35.

Keywards: Fractional differential equation; normal cone; boundary value problem;
mixed monotone operator.

1. INTRODUCTION

hurecent years. houndary value problems for nonlincar fractional differential equations
with a variety of boundary couditipns have been investigated by many rescarchers.
Fractional differential equations appear naturally in various fields of science and
engincering. and thus constitute an important field of research (see [I  3]). As a
matter of fact. fractional derivatives provide a powerful tool for the description of
memory and hereditary properties of various materials and processes. A significant
feature of a fractional order differential operator. in contrast to its counterpart in
classical caleulus. is its nonlocal behavior. meaning that the future state of a dynamical
system or process based on the fractional differential operator depends on its current
stale as well its past states. In other words, differential equations of arbitrary order
are capable of deseribing memory and hereditary properties of certain important
materials and processes. This aspect of fractional calculus has contributed towards
the growing popularity of the subject, Mixed monotone operators were introduced by
Guo and Lakshmikantham in [4]. Their study has wide applications in the applied
sciences such as engineering, biological chemistry techuology, nuclear physics and
in mathematics (see [G  8|). Various existence and uniqueness theorems of fixed
points for mixed monotone operators have been obtained by a number of authoss
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(see [9]  [12]). Bhaskar and Lakshmikanthain, |9], established some coupled fixed
point theorems for mixed monotone operators in partially ordered mietric spaces and
discussed a question of existence and uniqueness of a solution for a periodic boundary
value problem. Recently Y. Sang. [13], proved some new existence and uniqueness
theorems of a fixed point of mixed wonotone operators with perturbations

In this paper, by applying Sang's results. we obtain some new results on the
existence and uniqueness of positive solutions for some nonlinear fractional differential
cquations via given boundary value problemns.
We first introduce some notations, definitions and known results to be used in the
paper.
Definition 1.1 ([1, 2]). For a continuous function f : [0.0c) ~» R. the Caputo
dervative of fractional order v is defined by

] (A
an ) g . — n~c-| (u;n». db
$O = o [ - o 1
where n — | < a < [a] + | and [a] denotes the integer part of a.

Definition 1.2 (|1. 2]). The Riemann-Liouville fractional derivative of order a for
a continuvous function [ is defined by

oy . i d n i -{(8) = .
DI = s () /0 Toperds.  n=la ¢ L.

where the right-hand side is defined pointwise on (0.oc

Definition 1.3 ([1, 2]). Let [a,b] be an interval in R and o > 0. The Riemann-
Liouville fractional order integral of a function f € L'([a,b]. R) is deined by
v fle

ds.
¥a) J, (E-35) )

I =
whenever the integral exists.

Let (E,] - [|) be a Banach space which is partially ordered by a cone P C E. that
is, z < y if and only if y — z € P. If £ # y, then we denote z < y or 2 > y. Also.
the zero clement of E we denote by . Recall that a non-empty closed convex sct
P C E is called a cone if it satisfies the conditions: (i) 7 € P, A >0 = Ar e P
(i) r€ P. -1 € P=>1=20. A cone P is called normal if there exists a constant
N > 0 such that § < = < y implies || z [|[€ N | y || Also, we define the order
interval [z;, 2] = {z € E|r; < ¢ < 72} for all 21,22 € E. We say that an operator
A E = E is increasing whenever z < y implies Ar < Ay.

Definition 1.4 ([4, 5]). Let D C E An operator A: D x D — D is said lo be a
mized monotone operator if A(x,y) is increasing in & and decreasing in y. thal is,
wi,vi € D(i=1,2), u; € uz,v; 2 vy implies A(u;. v1) € Aua, v2).
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An element r* € D is called a fixed point of A if it satisfies A(2”.x*) = 2*. For
h > 8 we define P, = {z € E| FA e >0; M <z < puh}.

In this paper. using the existence and uniqueness results for the solution of the
following operator equation
(1.1 Az, 2)+ Br = .
where 4 is a mixed monotone operator, B is sublinear and E is a real ordered
Banach space. obtained in [13] by the partial ordering theory and monotone itcrative
technigue, we study a question of existence and uniqueness of positive solutions for

nonlinear fractional differential equation boundary value problems.

Theoren 1.1 ([13|). Let P be ¢ normal cone in E. A : P x P - P be a mized
monotone operglor, and let B - E — E be sublincar. Assume that for alla < t < b,
there ezist two positive-valued functions T(t) end ¢(t, z. y) defined on un interval (a.b)
such that

H) 1:(a.b) = (0,1) is surjection;

Hy) ot a.y) > () for all t € (a,b), v,y € P;

(Hy) A(r(t)z. :’T)”) ot e y)A(z. y) for all t € (a,b), .y € P:

Hy) (I - B)™' . E - E ezists and is an increasing operator.

Furthermore. for anyt € (o,b) the function ¢(t. 2.y) is nonmncreasing in x for fized y,
and nondecreasing in y for fized . In addition. supposc that there exist h € P — {4}

and ty € (a,b) such that

. M LOLY
r(to}h < (1 — B)~' A(h, h) ¢ ZI TR,
Then the follounng assertions hold: -

(i) there are ug. vg € Py and r € (0.1) such that roy < ug < vg and
< (= B) ' Alwyw) € (1 - B)™' Ave, ) S 20
(11) the equation (1.1) has a unique solution x*  [ug, vo);
(w11) for uny wmnitial volues Ty, yy € Pr, construcling successively the sequences
Zn = - B) "Alza 1. ¥n-1)- Un={ - B)"'Alyu—r.®n1). n=1.2...,

we have ||z, —r* |20 and || g, —2* |20 as n = oc.

2. MAIN RESULTS

We study the existence and uniqueness of a solution of a fractional differential
cquation on & partially ordered Banach space with two types of boundary conditions
and two tvpes of fractional derivatives. We first study the existence and uniqueness

of a positive solution for the following fractional differential equation:
i

(2.1) %nﬂ)= Jihalt)ult)), te0,l],3<as4,
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subject to conditions
2.2) u(0) = «'(0) = (1) = v'(1) =

where D is the Riemann-Liouville fractional derivative of order .
Consider the Banach space of continuous fuuctions on [0, 1] with sup norm aud set
= {y € C[0,1] : min,cjp1y(t) 2 0}. Then P is a normal conc. The next two
lenimas were proved in [14].

Lemma 2.1 (|14]). Given y € C[0.1] and a number a such that 3 < a < 4. Then
the unique solulion of the following fractional differential equation boundary value
problem.

(2.3) %u(l) = f(t, y(¢)). te0.l]. 3<a<4.
u(0) ='(0) =u(1) =u'(1)=0
is given by

1
mn=£omammmwa

where
(o (G u""o(n».r"r-"u. Bslo-2MI-tl 0 ey
(2.4) G(t,s) ={ Dy o
(L-4)" 9" *(s-t)+{a—2)(] - t)sl
:(n) 0<t<s<1

If f(t.u(t)) = 1, then the unique solution of (2.3) 13 given by
ug(t) = fo' G(t.s)ds = l'mt" 2(1 —1)2.

Lemma 2.2 ([14]). The Green's function G{t,s) has the following properties:
(1) G(t,s) > 0 and G(L.3s) is continuous for1,s € [0.1];
[ =201 2} Mok )
{2) i—‘ﬁ-'— <G(f ‘i)( T(a
where Mo = max{a ~ 1.(a — 2)2}. h(t) ="~ 2(1 - )2, k{s)=s%(1—s)""%

Now we are ready to state and prove our first main result.

Theorem 2.1. Let f{t. u(t). v(t)) € C([0.1] x [0. 00) x [0.00)) be an increasing in u

and decreasing in v function. Assume that for all @ < t < b therv enst two posilive-

valued functions T(t) and p(t.u,v) defined on an interval (a, b) such that:

(1)) 7 : (a.b) = (0,1) is surjection;

(H2) plt,u,v) > 7(t) for all t € {a,b), u,veE P;

(H) [} Gt )55, m()u(w), 50()) 2 lts ) fi Gt ). uls), o()is.

Furthcrmore, for any t € (a,b) the function o(t, u,v) is nonincreasing in u for fized

v, and nondecreasing in v for fized u. In addition, suppose that there exist h € P— {6}
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An element z* € D is called a fixed point of A if it satisfies A(2*.x*) = z*. For
h > 8 we define P, = {x € E| A u>0; M <z < phl

In this paper. using the existence and uniqueness results for the solution of the
following operator equation
(1.1) A(x,2) + Br = .
where 4 is a mixed monotone operator, B is sublinear and K is a real ordered
Banach space, obtained in [13] by the partial ordering theory and monotone iterative
technique, we study a question of existence and uniqueness of positive solutions for
nonlinear fractional differential equation boundary value problems.

Theoremn 1.1 (|13]). Let P be a normal cone in E. A : Px P = P be a mured
monolone operator, and let B : E — E be sublineer. Assume that for ell a < ¢ < b,
there exist two positive-valued functions 7(t) and ¢(t, z. y) defined on an interval (a.b)
such that

(1)) 7 :(a.b) = (0. 1) is surjection;

(Hy) o(t.x.y) > 1(t) for all t € (a,b), T.y € P:

(H3) A(r(f)z, _—{‘,—5;4/}) >t w ) Al y) for all t € (a.h), .y € P:

(Hy) ({ - B)™" - E > E czists and is an increasing operalor.

Furthermore, for any t € (a,b) the function ¢(t. r.y) is nonincreasing in = for fized y,
and nondecrcasing wn y for fized x. In addition. supposc that there cxist h € P — {6}
and !y € (a,b) such that

(to)h < (I — B) " A(h 1) & "“""‘f‘-[jn')'"""”h.

Then the following assertions hold: -

(i) there are ug, g € P and r € (0. 1) such that reg < ug < v and
4 Uy S J = 3)7]/1(1&0.??()) <_: (I ] B)_l.‘l(l'(), llu) $ Uy,

(ii) the equation (1.1) has 6 unique solution z° [uu,vo] .

(1) for any initial values £y, yo € Py, construclting successively the sequences

Ip = {I - B)UIA(IPI-I'?IH—I)t Yn = (l ~ B)_1A(yn_1.:vn_|). n= 1.2,. L.

we have || 2, —x* |50 and || gy, — 2" |20 as n > oc.

2. MAIN RESULTS

We study the existence and uniqueness of a solution of a fractional differential
equation on a partially ordered Banach space with two Lypes of boundary conditions
and two types of fractional derivatives. We first study the existence and uniqueness

of a positive solution [lor the following fractional differential equation:
o

2.1) Dot = stu0,ue),  tel,l), 3<as4,
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subject Lo condilions
(2.2) u(0) = +'(0) = (1) = /(1) =0,

where D@ is the Riemann-Liouville fractiona! derivative of order a.

Consider the Bauach space of continuous functions on [0, 1] with sup norm and set
P = {y € C{0,1] : minjgyy(t) > 0}. Then P is a normal cone. The next two
lemmas were proved in |14].

Lemma 2.1 ({14]). Given y € C[0.1] and « number «v such that 3 < a < 4. Then
the unique solulion of the following fractional differentiol equation boundary value
problemn

@3 Doult) = ). telo.1]. 3<ast
u(0) = u'(0) = u(1) = /(1) = 0,

is given by

u(t) = / G(t.5)f(s. y(s))ds.

where
[0 o 4 ) i it | L 1 b Lot 2 L L fEcscte
ol . .
(2.4) G(ts)={ . a
b {1 =s) 2 Upetioda - 24 ) ~1)4
Tin) ! 0<t<s< 1.

If f(t.u(t)) = 1, then the unique solution of (£.3) ts given by
wo(t) = Jo Gt s)ds = byt =21 - 1)2.

Lemma 2.2 (|14]). The Green's function G(t, 3) has the following properties.
{1) G(t,s) > 0 and G(t.s) is continuous for 1,5 € [0.1]:

(2) f"-?!hf")'”-) < G(t. .'J) < ﬁ:’:'tlsl’

where Mg = max{a —1,{a — 2)?}, A(t) =t""3(1—t)2. k(s)=s*(1-3)"""
Now we are ready to state and prove our first main result.

Theorem 2.1. Let f(t. u(t). v(t)) € C([0.1] x [0.0c) x [0.00)) be an increasing in u

and decreasing in v function. Assume thet for all a < t < b there enst two positive-

valued functions 7(t) and o(t, u,v) defined on an interval (a.b) such that:

(Ih) 7 : (a,b) = (0,1) is suryection;

(H3) p(t,u,v) > 7(t) for all t € (a,b), u,vE P;

(H3) f(,l G(t, 5)f (s, T(hu(s), sfru(s)) 2 lt,w,v) fol G(t. 5)f(s. u(s), v(s))ds.

Purthermore, for any t € (a,b) the function (¢, u,v) 3 nonincreasing in u for fized

v. and nondecreasing in v for fized u. In addition, suppose that there exvisth € P— {6}
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and ty € (a,b) such that
! [} .——”,“_ L7{ty)h)
(2.5) {to)h < / G(t,s)f (s, h(s), h(s))ds < 5(—°—-‘-—g—(i—h.
0 Tto)

Then the follounng asserizons hold:

(i) therc are ug,vg € Py and r € (0. 1) such that rvy < ug < vy, und

wo < [ GIt, 9)£(s, uo(s). va(s))ds < f; G(t. )1 (s, vo(s), u(s))ds < vn,

{11) the problem (2.1). (d.d) has o unique solution x™ in [uy. vol, .

(11i) for any initial values ug. 19 € Py andn =1,2.. .., constructing successively the

4

sequences
1
o = | G.8) (3. %n=1(5) Vnm (8))ds, wp = / G(t,8)f (8. vu—1(2), un—(8))ds,
0 0
we have || up —u* |2 0 and || v, — 2% |- 0 as n = oo.

Proof. By Leuuna 2.1. the problein is equivalent to equation u(f) = ["' G(t, s)f(s,y(s))ds.
where G(t. s) is defined] by (2.4). Define the operator A : P x P — E as follows:
A(uft), o(t)) = fo (2.8)f(s,u{s}.v(s)}ds, and observe that « is a solution for the
problem if and only if « = A(u.u).

Next. it is easy to see tliat the operator A is increasing in « and decreasing in

v on . Hence. under the assumptions of the thcorem we have A('r(t)u. +v)
dlte =8 ritIA)

vt v)A(u,v) for all 1 € (a.b). u, v € P and 7(tg)h < A(h,h) € ——','f,“l—

Thus. the vperator A satisfies all the conditions of Theorem 1.1, and hence A has a
unique positive solution (u*,#*) such that A(u*,u*) = u*, 2" € [ug. vy). a

Example 2.1. Consider the following periodic boundary value problem:

(2.6) DEu(t) = f(1, u(t), u(t)) = g(t) + u(t) + —](3 Le 0,1,
t

u(0) = «'(0) = u() =4'(1) =0,
where ¢(f) is continuous on {0, 1] with 388.625 < g(1) < 63728.
For every A € (0,1) and u,# € P we have
[, G(t. 5)[g(=) + An(s) + ——ds = A Jo Gt 9)[52 + u(s) + Vr‘ml_ds

52 +uln) 4~
S A e i G la(6) )+ el

We note that
B y(s) + —pdae I_

N  Avisl A %
A< p(huv)= A ) File 'T, jn G(t, s)gls) + uls) + W'(h <.

By means of some calculations. we can conclude that for any A € (0. 1) the function
¥ is nonincreasing in u for fixed v and nondecreasing in v for fixed 1.
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So, it is enough to verify that the condition (2.6) of Theorem 2.1 is satisfied. Putling
w=wv=h =1, and taking inlo account that 3, = ming, fol G(t. s)ds = 0.00001
and My = maxc, ) f(: G(t, 9)ds = 0.004, we can casily get
278 < 0.00001 x 390.625 < T, G(t, 9)lg(s) + w(s) + 7h]ds
< 0.004 x 63730 g+ s€[0,1],
implying that the coudition (2.5) of Theorem 2.1 holds. Therefore, we can apply this

theorem to conclude that the problem in the example has a unique solution.

Now, we study the existence and uniqueness of a positive solution for 1he following
fractional differential equation:

(2.7) ‘DUyy=h(t), 1€l0,T]. T>1.

subject to
T
(2.8) y{0) +/ y(&)ds = y(T).
(i}

Lemma 2.3 ([15]). Let 0 <« € ) and let h € C([0. T|.R) be a given function. Then
the boundary value problem (2.7), (2.8) has a unigue solution quen by

r
o) = / G(t, )h(s)d.

where G(t. e) is the Green's function given by

—(1- 3)® +al(t—s)" ! (¥ ) s c
G(t 3) TT(n+1) + TT(a) 0<e<t,

(T-s1" (T‘ )"
T (et TT(n tss<T

By using arguments similar to those applied in the proof of Theorem 2.1. it can casily
be verified that Theorem 2.1 remains (rue for Green function defined in Lemma 2.3,

Example 2.2. Consider the following boundary value problem

“Diu(t) = f(t. u(t), u(t)) = y(t)u(t)* + u(t)"‘g, telo.],

i
u(0) +/ u(s)ds = u(l).
0
where g(t) is continuous on [0, 1] with 0.6378 < g(t) < 2.89967
For every A € (0.1) and u,v € P we have

@9) [ oD} + (onPlas 22 [ Gr. 012

+u(s) + 7—714»-\ / G, -mq(n)(—) + () T lds

> AZOCEN + (nie) ¥
als)u(s)® + v(s) T

/ (,‘(l,g)(g(,n)u(;l i 4 winl (.2 ldx
0
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Note thal N
als ) "I' )J + ()n-(s))";i'

-y
g(shu()? +u(&) T
By means of some calculations. we can conclude that for any A € (0,1) the function

2 < p(Auv)=A

s nonincreasing in u for fixed ¢ and nondecreasing in v for fixed u.
So. it is cnough to verify that the condition (2.5) of Theorem 2.1 is satisfied.
Putting « = » = k = L. and taking into account that My = mingeg g fu G(t,s)ds =
| . 3 )
iand M, = nAXtefy, ] _ﬁ: ('(t s)ds = 3. we can easily get 270 < 1 x1.6378 <

+8 r
fy Gt $)o()u(s)’ +ufb;'1ds»_#xssos gﬁ(ﬁg_] .u.z_rz;z__' P

[0.1] implying that the condition (2.5) of Theoremn 2.1 holds. Thercfore. we can apply

this theorem to couclude that the problew in the exainple has a unique solution.
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