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1. Beenenune

Kak W13BECTHO, pPas/fioXeHWs MO COBCTBEHHLIM (DYHKLUAM PErynspHbiX KpaeBblX
3aflay 419 06bIKHOBEHHbIX AN depeHUnanbHbIX YpaBHEHWI C rnagKuMm Kospguuym-
€HTaMM Ha KOHEYHOM OTPEe3KE PaBHOMEPHO CXOAATCA, eciv pasnaraemas QyHKuUuS
NpUHagnexunT o6nacTu onpefeneHns COOTBETCTBYHOLLErO onepaTopa. B nmpoTuMBHOM
XK€ Cnyvae MOXET HabnoaaTbCs ABeHNe, aHa/ornMyHoe aBneHnto Mnbbea gns Knac-
cunyeckux psgoB dypbe. Mofo6HbIE ABNEHMS, B YACTHbIX Cy4asX, Oblay U3yYeHbl B
page pa6ot (cm. JT.Mwno [1, 2], 1.6paHgonunu v J1. Konsauu [3] a Takxe [4, 5, 6]).

B HacToALeii paboTe BbIBNEHO ABNeHMe T1M66ca 415 KOMMOHEHT BEKTOP-(PYHKLNN

KpaeBoii 3afaun Ans cuctembl Jupaka

1D
@2 i2(-N)cosQ +i/i(-1)sinQ = Q

U (1) cos/? + Yi(1) sinft = O.
3


mailto:rafayel@instmath.sci.am

roe p v r [eiACTBUTENbHbIE Ha OTpe3ke [—1»1] QyHKLuL.

Vcxogs n3 uanyeckux coobpaxkeHuid, P. LLIMMTKOBCKN nokasan (cm. [7, 8]), uto
pa3noXeHust N0 COBCTBEHHLIM (PYHKLMAM CUCTEMbI [lMpaka He CXOAMTCA K pa3narae-
MO (PYHKLMM B KOHLAX MHTEpPBana, AaXKe ecim Kaxzaas KOMMOHeHTa 3TOW (yHKLMK
13 knacca C°°[—1,1], HO He YAOBNETBOPSIET KPAeBbIM YCOBUSAM.

Cregys [9 (cm. cTp. 71), npuBedeM HeKOTOpble, HEOOXOAUMbIE HaM, M3BECTHbIE
thakTbl 1 hopmynbl, cBs3aHHbIe € 3agadein (1.1)-(1.3). O6o3Haunm yvepes {A,}*! a0
{n,, = (nd,tn,2)'r }*|_@MHOXECTBO COGCTBEHHbLIX 3HAYEHWUIA M HOPMUPOBAHHbIX COb-
CTBEHHbIX BEKTOP-(PYHKLUMIA 3TOW 3afaun. He ymanss o6LHOCTA MOXeEM Npeanosno-
XUTb, 4TO Yncno A= 0 He SBNsETCA COBCTBEHHbIM 3HaYeHUeM. [l KpaTKOCTU psifbl
no co6CTBEHHbIM PyHKUMAM {vI} Oydem TakxXe HasbiBaTb pagaMmu ®ypbe, a COOTBET-
cTBYyHOLWME KOIDULMEHTHI - KO3thurLmeHTammn dypbe.

O nsa sektop dyHkuuu f{x) = (f/i(ar),/2(x))T 6 £ [-1,1] = £3[-1,1] x £a[~M]

BBEEM 0603HaueHus,

(1.4)
n=—~N

(1.5) _j V% (x)f{x)dx,
-1

Rn(/) = /(*) SN(f).

M3BecTHO [9] (cM. cTp. 82), UTO COBCTBEHHbIE BEKTOP-(PYHKUMM 3aa4m upaka ob-
pasyoT MOMIHYH OPTOrOHaNbHYH CMCTEMY B FMIb6epTOBOM npocTpaHcTBe  [-1,1],

T.e. () cxogutca K / no Hopme \

VIMeloT MecTo criegytolme acuMnToTUYeckune gopmynsl (cm. [9] cTp. 75, rae npu

BbiBoge hopmyn (1.7),(1.8) 6bina fonyllieHa oneyatka. 34ech NpuBeAeHa yTOUHeHHas
4



thopmyna):

(1.6) D, 4 00,
.7 Vn.i(z) = cos(E,, - Q)+ O ( *), -0 0,
(1.8) Vn,21X) = sin(gn (n %, -400,
roe

(1.9)

= f(z,

X

)= K(x+1) -\J (P(r)+r(r))dr.

OCHOBHbIM pPe3y/nbTaTOM HaCTOsLLEN paboThl ABASETCA

Teopema . MycTb p,r 6 CM—,1],/ 6

[1,1] v dyHKUMA  He yaoBneTBO-

psAeT KpaesblM ycnosusim, Torga, ecam B(f, —,a) 0 B Touke -1 uMelOT MecTO

COOTHOLUEHNA

aecwmB(f, 1,P) 0 To

rae

X 7)=1i(2)sin7 + /2(x) cos7.

3ameyaHue 1.1. Tak Kak Bce COGCTBEHHble (PYHKLUMUM YA0BNETBOPSIOT TPaHUYHbIM

YCNOBMAM TO €CNM PacCMOTPETb NPefen YCeueHHOro psfa TO W OH JOMXKeH yaoBne-

TBOPATbL 3TUM YCNOBUAM (ECIN CXOAUMOCTb paBHOMepHas). B cnyuae korga pas-

naraemas (PyHKLMA He YA0BNeTBOPAET rpaHuyHbIM ycnosuam, T.e. B(f, —,a) O

unn B(f, 1,/3) 0, To nMeeT MeCcTO aHanor ssneHnsa M'bbca B TepMmnHax HapyLue-

HNA TPaHNYHbIX yCI'IOBVIIZ.



3ameuyaHue 1.2. Ecnu PACCMOTPETb Pa3NO>KEHNS (1.4) NOKOMMNOHEHTHO, TO NErKo
MOOKHO BbISICHUTb (CneflyeT M3 [OKa3aTenbCcTBa Teopembl), 4TOo ecim Q O nnn
a = Tr/2 TO ogHa KoninoHeHTa psga SN(f) cxoaMTbCA paBHa4YepHO a A.ra Apyroin

MMeeT MeCcTO fBneHmns M'bbca B Touke -1 (cM. §3). BbileckazaHHOe MMeeT MeCTO

Tak>Ke B TOUKe 1 ecim /9= 0 unm /9 —7r/2.

3ameyaHune 1.3. BennumHa | /0 A -dt » 1.1-7898 3TO KOHCTAHTA KNAaCCUYECKOro

ABneHns mbbeca ans psgos dypebe.

3ameyaHue 1.4. A npeofoneHns aToro aeneHus B paboTe [10] 6bin npeano>KeH
MeTO[ YCKOPEHUS CXOAMMOCTM Pas3nodKeHuin No co6CTBEHHbIM BEKTOP-QYHKLUAM
3agaun (1.1)-(1.3), aHanornyHblii MmeToay KpbinoBa-Okroha yCKOPeHUs CXOAUMOCTW

Knaccuyeckoro paga ®ypee (cm [11, 12])
2. lokaszaTtenbcTBO TEeopembl

O603HaYnM

/*(*) = BLkf(x), k"Q,

roe L° -ToXAeCTBEHHBbI onepaTop.

Nemma 2.1. MycTtbp,r 6 C? 1[-1,1], p(9 i))F(B i) e NC[-1,1],/ 6 CJ[-1,1] u
6 07 [-1,1], npuyem q > 1. Torga ana koahduumeHTOoB Cr, onpefeneHHbIX B

(1.4), umeeT MecTO npefcTasnedne On=Pn+ Fn, rge

(2.1) p» - (1) ( )E K'-'"M-L.

k=0 k=Q
1

Fn= 4 11 vZ(x)L<+I(f(x))dx.
-1



[oka3zaTenscTso. Vimeem
1 1

=1 vI)F(x)dx = A 13 (/ (*)( ,2( )-p(zK,i(x))

1 -1
la(30 «i(*) + r(x)vni2(x)))dx.

WHTerpupys nocnegHee paBeHCTBO HO YacTaM, ii0nyUnMm:

CG=A1( ) ,()-TaC*Ka)[I!
1

A d M@0 @) - pOOFi(K) +WRX)(-F[(X) - F(X)F20)ckk

-1

= K?2'%(x)M*)\_| + K | Jvl{x)L{f{x))dx

-1

MoBTOPSs MHTErpUPOBaHMWE MO YacTAM ( pas, Nnonyynum Tpebyemoe.
PaccmMOTpuUM Tenepb (YHKLMIO

(2.2) *M o= (*V i)’

KoTopasi e y0BNeTBOPSeT KpaeBbIM YC/OBUAM B Touke X = 0 npu a

puUM ee pasnoxeHue no cucteme {u,(x)}:

N
(2.3) Sn(k)= "2 c,(K)vn,
n=-N

1
rae cn(/c) = /1 v9(x)K[3:)dX.

Paccmort-

Nemma 2.2. Ecnmp, 1 € Cl[—L1,1], TO KO3(hhnLMEHTbI pasno>KeHus pyHkumm (2.2)

MMET CrefyoLly acuMnTOTUKY
Cn(k) = V"AN1(cosa - sina) + a,,,

roe |9,,] < +00.



[JokasaTenscTso. Mcnonb3ys nemmy 2.1 Ana yHKUMKM (2.2) NONyUMM:
1

¢ =VvtWtfRoW vZi-VK'boi-I) +K 1jvZ{x)LI(K{x))dx =
-1
1

() (1r we(1)+n 1 to*-1(*(*)<= =
1
\/2A"1(coBa —sina) + O +K 1

YuutbiBaa ToT pakT uto L1(«(i)) e i/j[—1,1], nonyunm >xenaemblii pesynbtar. O

Mokaxkem Tenepb, 4To ecim p,r 6 C1! 1 1] n ¢yHKUMA K onpegeneHa B (2.2),

Toraa, ecnv a  J, AN QYHKUUM K UMeEeT MecTo siBfeHue Mmb6ca. PaccMoTpum

OLWMOBKY Npu NpMoAmKeHN QYyHKLUUN (2.2) ype3aHHbIM psgoMm

Anr(n) = K(x) - Sn(k) = Crvn(x)= A .
[PI>IV [»|En  ~a,2(X)Y

Mcnonb3ys nemMmy 2.2 1 aCUMITOTUKY COBCTBEHHBIX QYHKLWIA K, MOAYy4UM

(24) J2 Owni(x) = (cosa-sina) ~ — +a,) =
[nj>n7 In>W \ *5 /
\VV1f i + \
(cosa —sina) £ COS(m(XJr/Q <P,
AN\>N ™ /2 /

rae
=2 -(i+D- 1d 6O )

W3 (2.4) crepyer, 4To B
S*(«) = K(X) Y 0080~ 8lIna (W fn(s-f1)+y(»)M
Wbl 2 Vein(fn- 1) bv(a?)y

K+ — 2(coaa—sing) -sin(* )) ~ sin(fn(z + 1))
™ cos™i)) n + °(1)-



|n>Yv
psga ®ypbe Ana PyHKumm » —%x, T.e.

Pasgenum nHTepsan (—1,1] Ha ase yactn (—1,£], (£, 1] Tak, 4To 6bl Ha MHTepBase
(—1,£] BbinonHAnack oueHka \<p(X) —¥{—1)| < e, a Ha uHTepBane (£, 1] - oueHka

|2(X) —Sn (k)\ < e, ana goctato4Ho 60nbwKX N. Torga

(2.6) 1lini8up|5(5°(«),x,a)| = |B (a,-1,a)| -
]

M3 dopmyn (2.6) 1 (2.5) nonyynm >kenaemblii pesynbTaT.

AHANOTUYHBI/A Pe3yNbTaT MOXKHO MONYYUTb AN QYHKLUK
2.7)

KOTOpas UMeEeT CMHIYAPHOCTb B TOUKe 1.
Ecnm p,r 6 C1[1,1] n dyHKumMs g onpedeneHa B (2.7), Torga npu ¢ \ umeet

MeCTO siBieHne Mmb6bca, a UMEHHO

OTcloga NonyyeH cneayroLnin obLmii pesynbtat

Mpeanonoxmm a, \ , aHaNornyYHbIM 06pa3oM, MOXHO A0Ka3aTh B C/lyyae Koraa
a uam  pasHbl

PaccmoTtpum dyHKumio g(x) = /(x) — n(x) —H qg[x), rae

la(—1)cosq + /i(—)sino: 7 /a(l)co8a + /i(l)sina
« (-1)cosa + «r(-1)sina’ £ (1)cosa + gi(l)sina’

dyHKunsA g(x) OyaeT yLOBNETBOPSATb KPaeBbIM YCNOBUAM U UMEET HenpepbiBHYHO
nepByI0 NPOM3BOAHYIO, cnefoBaTenbHO pag 5ar(/(x) —kk(x) —Ha(x)) cxoanTes pas-

HOMEPHO, YTO U AOKa3bIBAET YTBEPXKAEHNE TEOPEMbI. O



3. UucneHHble unnoctpayunm

MpounncTpupyem ckaszaHHOe Ha npuMmepe HYHKLUUK K. 3aMeTUM TakXKe, 4To ecnu
a = 0, TO ofHa KOMIMOHeHTa B pasnoXxeHuu (2.3) cxoautcs paBHOMepHo, a [P>ras
BedeT K ABneHuto Nbbca. ANa unnoctpaunm aToro ABAeHWs PacCMOTPUM CUCTEMY
C HyNeBbIM MOTEHLMANoM, U nycTb a = 0, &—— - [1N9 stoi 33424l NErko MOXHO

BbIYNC/INTb COOCTBEHHbIE 3HAYEHWSI N COOCTBEHHbIE (*)yHKU'VIVI, a UMeHHO
An=" + £, =0,x1,%2....

a HOPpMKUPOBaHHbIE CO6CTBEHHbIE BEKTOP (*)yHKLl'VIVI NMEKT BN

PUC. 1. Owwnbka npubAMmKeHKs BTOPOIN KOMNOHEHTbI (YHKLMM K(X) KOHEUHOI
cymMmoii psiga Pypbe B OKPECTHOCTM TOYKM X = —I ¢ MCMonb3oBaHueM 5, 10, 20
K03 meHToB Dypbe

BbnarogapHocTb. ABTOpP BblpaxaeT 61arogapHocTb hoHgam KHyT n Anuc Bonel-
6epr v MopaH MycTadcoH 3a NpefoCTaBNeHHYH BO3MOXHOCTb nocewlatb Koponesckuii

TexHUYeCKUii Y HUBEPCUTET.

Abstract. The paper considers expansions by eigenfunctions ofthe boundary problem

for Dirac system. The Gibbs phenomenon for such expansions is revealed.
10



PNC. 2. Owwubka npubamKeHns NepBoii KOMMOHEHTbI PYHKLMM K(X) KOHeu-
HOVi cymmoli pspa dypbe B OKPecTHOCTM Toukn x = —4, npu N = 5, 10, 20
KoathhmumeHToB Pypbe (paBHOMEPHas OLUMOKA YMeHbLLAETCA ¢ pocTom N).
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1. Beepgenune

Mpu paccmMoOTpeHU BOMPOCOB, CBA3AHHbLIX C MHOT006pasusmu, KBasurpynnbl npes-
CTaBNAT Kak anrebpbl ¢ Tpems onepauusamm [1], 06aBNSAS K OCHOBHOW onepauum
elle fiBe LONONHUTENbHbIE onepauuun. Ecnu ocHOBHas onepauums ABMAETCA YMHOXe-
Hvem (¢), TO OCTasibHble [iBe OnepaLun Ha3blBaKOT NPaBbiM U NIEBbIM feneHneM. Ecnu
onepauus Keasurpynnosl 0603HaueHa vepe3 A, To Npasas 1 nesas 06paTHbIe orepaLum
0603HavaloTCA COOTBETCTBEHHO Yepes A 1un ~1A.

Ksasurpynna (Q; ¢) Ha3blBaeTCA U30TOMHOM KBasurpynne (Q; 0), ecAn CyLecTBy-
eT Takasl TpoWka nofactaHoBoK T = (a,/9,7) Ha MHOXecTBe Q, YTO BbINOJSIHAETCS
cooTHoweHwve 7(1 oy) = ax wiy. B Knacce KBasurpynn, U30TOMNHbIX Fpynnam, npes-
CTaBNAT UHTEPEC NNHENHbIE KBa3Urpynnbl BBeAeHHbIe B. [I. BenoycosbiM [2] B CBS3M
C MUCCNefoBaHMEM YPaBHOBELLEHHbIX TOXAeCTB B KBasurpynnax. Kesasurpynna (Q; )

Ha3blBaeTCs NMHeNnHoN Hag rpynnoii (Q; +), ecn oHa UMeeT BUA
(1.1) i-y = px+c+ipy,

rae ip,ip € Aut(Q\+),c- MKCUpoBaHHLI 3nemMeHT 13 Q.
13



BaXKHbI Knacc SMHelHbIX KBasWrpynn cocTaBasoT T-kBa3nrpynnbl. CornacHo
[3] T-kBa3nrpynna- aTo KBasurpynna c cooTHoweHuem (1-1), rge (Q, +)—abenesa
rpynna. I'. b. benssckoin n A. X. TabapoBbiM A0Ka3aHO, YTO (MPUMWUTMBHbIE) T-
KBa3Urpymnnbl COCTaBNAT MHOroobpasve [4,5].

BuHapHas anrebpa [Q;E) Ha3biBaeTCca 06paTMoii anrebpoii, ecim Kaxxaas ee orne-
paumsi A 6 E siBnseTca kBasurpynnoin (obpatumoit). B paboTe [6], no aHanorwi c
NMHEHBIMI KBa3UTpynnamu BBEAEHO MOHATWE NIMHENHON 06paTUMOii anrebpbl U 06-
patumoii T-anrebpbl, a TakXKe faHa MX XapaKTepu3aLus ¢ NOMOLLLH GOpMy/ BTOPOro
nopsiaka.

Pa3HbIMM aBTOpaMm M3yYasMcb NOAKNACCHI MMHENHbIX KBA3UTPYMN C OFpaHNyeHu-
MU Ha U30TOMHbIE UM FPYNMbl U HA KCMOMb3yeMble aBTOMOP(HM3MbI U aHTUAaBTOMOP-
tusmbl. Hanpumep, T-KBa3urpynnel, Mefua/bHble, NapaMefuanbHble KBasUrpynmbl
M T.4. paccMaTpuBanncb MHorumu astopamu(cm. [7-13]).

B HacTosLlen paboTe ¢ MOMOLLBIO (HOPMYn BTOPOro mopsgka, a umeHHo V3(V)—
TOX[ECTB, XapaKTepu3ylTCA HeKOTOpble KnacCbl 06paTMMbIX T-anrebp umetoLime
OrpaHNYeHNst Ha MCNoJb3yeMble aBTOMOPGU3MbI COOTBETCTBYHOLLE rpynnbl. Mony-
YeHHble pe3y/bTaThl ABAKTCA 0606LLeHNEM pe3yibTaToB cTaTby [13] 415 HEKOTOPLIX
KnaccoB obpaTuMbix T-anre6p u Npy Ux [0Ka3aTeNbCTBE UCMOMb3YIOTCS HEKOTOPbIE

MeTofbl JaHHO paboThbl.

2. XapakTtepusauyusa [-anresp

HanomHuMm [1], 4To KBa3MaBTOMOPMU3M (aHTUKBA3MABTOMOP(M3M) KBA3Urpynmnbl
(Q] ® 370 rnaBHas KOMNOHeHTa 7 aBToTonNMK (aHTMasToTONMKM) T = (a,/3,7) KBa3m-
rpynnbl (Q\¢), Te. 7(2 -y) = ax W0y (7(1 y) = ay ®ix). CornacHo nemme 2.5 [1],

ntoboii kBauasToMoOpgU3M rpynnbl (Q; +) nMeeT BUA
(2-1) 7* = Rblox = L.TgX,

rae 70, 70~ aBtomopgusmbl rpynnbl (Q; +), R& = x+8, L,x = 3+X. Kak 0TMe4eHo
B [2], yTBepXaeHue, aHanornyHoe nemme 2.5 [1], cnpaBeannBo u 1S aHTWKBa3WaB-
Tomopgusma 7. B aTom cnyyae 70 n 74 13 (2.1) ABNSOTCA aHTMaBTOMOpP(U3Mamm

rpynnbl (Q, +).



XopoLwo M3BeCTHO [1], UTO € KaXAol KBa3Urpynmnoin A cBs3aHbl Crefytolye naTh
KBasurpynn:
A\ 1A -\A ), (-M) LAY
rae A*(x,y) = A{y,x). Apyrunx obpaTHbIX onepauuii Ana A He cyulecTByeT. Takum
06pas3om, ¢ Kaxaoi obpatnmoli anrebpoii (Q:E) cBA3aHbl cnegytouive nATb 0bpaTu-

MbIX anreop:
(CIE D, (Q;1£), (Q:;-UE-X., (O;( 1E) 1), (QFE*),

Tae E 1= {A 1MAGE} »E={"MlyleE} LE1)={"™ 1" €E}
(-1E)-1 = {( 1) 1|0 € E}, E* = {A"\A 6 E}. Kaxxaasa us aTux anredbp Ha3blBaeT-
€A NapacTPog oM UCXOAHON anrebpbl.

Onas AeEwno6 C o6o3Haumm yepes La,a ([a,0) nesyto (NpaByto) TPaHCAALMIO

anre6pbl (Q; E), T.e. oTobpaxeHne La.a mx —»A(a,x) (Kn.a *x -> (, )).

Onpegenenue 2.1. [6]. O6paTumas anrebpa (Q; E) HasbiBaeTca T-anrebpoit, ecnm
Ka>kfaa ee onepauus A 6 E usoTonHa ogHoin M Toii >Ke abenesoit rpynne (Q;+),
npuyem 13oToNuUsa UMeeT BUA

(2.2) A(X,y) = ipAX + CA + ipnY,

rae ipA, ipa—asTomopdusmbl, rpynnbl (Q; +), ca— MKCUPOBAHHbLIN aneMeHT Q.

Teopema 2.1. na obpaTumoii anrebpbl (Q; E) cnegyrowme ycnosns 3KBMBaNEH THbI:
1) (< ;E)—ob6paTumas T-anrebpa, npuyem gnsa Bcex X, Y 6 E,

Y>XPvuSyx =
2) Ona Bcex X,Y 6 E, B anrebpe (Q\EU _1E), BbinonHaeTCcs cnegytowas op-

Myna BTOPOro nopsaka:

(2.3) X(Y(x, Y{y,mn),z) =X(Y(x, 1Y{u,«)), ~xY{Y{z,y), u)).

JokasaTenscTBo. 1) =-2). MycTtb (Q; E)- obpatuman T-anredpac ycnosuem pxpydyl=

Vy I Ons Bcex X ,Y 6 E. Mpexae Bcero 3ameTM, 4To U3 (2.2) cnegyer, yto
X~Ux,y) = -rp*vxx

~IX{x,y) = <fXIx - vrcXx - ipx"xyY-
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Torpga, X(Y(x, ~1Y{y,v)),z) =
= <PXPYX+ xey + <pxdy{dyly—<PjicY — Pyl'dyw) + cx + VXxz —

= <fiXVYx + VXCY + dx'dycpy'y - Px dyVy1r  'PXPy Py 1l®yu + °x + AXT’
XW x, 1Y(u,u)), LY(X(z,y),u)) =VXY-ix,1Y(u,u))+cx + tfr (Y(z,y),u) =

= X (Soyx + CY+ dpy(ipyln - 4>y<* - Vrl*n)) + c* + ®x{vy{vr* + <*+

myy) —ipy~cy —iPy*dyv) = Px'Pyx + Vxcy ~ PXOy'Pylr ~ ¥X/ ¥V IVW+

+CX + i>xz + Ox<PyINYY-

CnepoBaTenbHo, Gopmyna (2.3) BbinonHseTca B anrebpe (Q; EU 1E).

2) ™ 1. MycTb B 06paTumoii anredpe (Q; EU _1E) BblionHseTcs Gopmyna (2.3).
dukenpyem B (2.3) anemeHT u 1 onepaumn X = A, Y = B, rae A,B £ E, Torga

nonyuYnm:
Ai(A2(x,y),z) = n3(r,>U(l/,2)),

raefli(i.y) = A{xy), A2(x,y) = B{x, _1B(y,n)), A3(x,y) = A(B(x, “"(n.n)).}/),
A*(r,y) = 1B(B(v,x),ii).

W3 nocnefHero paBeHcTBa, No Teopeme benoycoBa 0 YeThbipex KBasurpynnax, ces-
3aHHbIX acCoLMaTMBHBLIM 3aKOHOM [2], kaxkgaa onepaumns [ (i = 1,2,3,4) n3otonHa
0JHOA 1 ToWA e rpynne. CnegoBate/ibHO, onepauuM An B M30TOMHbI O4HOV 1 TO Xe
rpynne v NOCKONbKY 3TW OnepaLmmn Npou3Bo/bHbI, TO Nt06as onepaums u3 £ N30TonHa
OAHOW 1 ToiA xe rpynne (Q; *).

Ona kaxgoro X € E onpegenvm onepauumu:

(2.4) xp/ = X{Rx\x, Lx\y),

roeau HeKoTopble 3eMeHThl M3 Q. 3Tu onepauum- Nynbl ¢ EAMHNYHBIM 31EMEHTOM
Ox = X(b,a) [L.Teopema 1.3], n oHu m3oTonHbl rpynne (Q;*), NO3TOMYy COrnacHo
Teopeme AnbepTa [1, Teopema 1.4], onepauun +— aBAAOTCA rpynnaMm AN Bcex
X eE.

Mepeiigem B (2.3) K onepauusm + :

Rx,a{RY,aX+ L~ Y (y,u)) + LXthz =

= Rx,a{R-Y,aX + Ly Y (u,u)) n+ Lx ,b(~1Y (Ry)az w)z Ly.bV, u))i
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Rx,a(x + Ly\Y (Y (y,u),u)) +zZ=
=Rx,a(x + Ly\Y {u,u)) +Lx"RyL{Ry"L x\ z + I'Y.bRy.uv).
B3sB B nocnefHem paBeHCTBe Z = OX U (PUKCUPYS 3NEMEHT U1, NOAyYaeM
Rx,a(x + Ly,bV) = Rx,a{X + Ly*bY (u,«)) + Lx.bRy*RY.aO + Ly,bRy,uV),
BaH
(2-5) Rx.a(x +y) = ax,yx +0x,YV,

rae ax,y Hfix,y nogcraHoBku MHOXecTBa Q. Tak Kak onepauuv X u Y npou3BO/b-

Hbl, Mbl MOXeM B (2.5) B3ATb X =Y, nonyunm:
(2-6) Rx,a(x +y) = QXXX + Px,xV-
M3 (2.5) n (2.6) nmeem:

X + v = Rx,a(ctx]yX + Px]yV)>

X +V = RxA<*X)xx + 0x*xv)’

aXxX,Xx + Px,XV = <*xyx + Px)yV'
Takum 06pa3om nosyyaem
2-7) X+y=T7x.yx + 6X,yy,
rge 7xX,Y = «xyOx.x un 6x.y = &x]yPx,x noacraHoBkM MHOXecTBa Q. Cnefosa-
TenbHO, 13 (2.5) n (2.6) nmeem
Rx,a(x +¥) = 1X,y<*x,yx + 6x,yPx,yV,

T.e. RX,a~ KBasnasTomMopgm3m rpynnbl (Q; +). MockonbKy onepaymmn X ,Y —npous-
BO/IbHbI, TO AN Nt060M onepaymmn X 6 E, Rx,a 6yaeT KBazamaBTOMOP3MOM KaXK oM
n3 rpynn (<9;+), rae Y 6 E.

3amkcupyem onepawmio -BF ANns HekoToporo B € E u B ganbHeiwem 6yaem obo-

3HauyaTb ee yepes +. CornacHo (2.4), ona onepaymii A e E, nmeem:
A(x,y) = RAax + ba.bY-

M3 nocnefHero paBeHCTBa, COrnacHo (2.7), Nony4vnm:



roe ©'8 = 7a.bRa.ol '8 = Sa.bLa.i, nogcTanoBKH MHOXecCTBa Q.
MokaxeMm, 4To ©*,8- kBasnasTomopdnam rpynnel {Q\ +). 414 3T0ro, npegcTaBnmM

thopmyny (2.3) B creaytoLieM BUAE:

(2.9) A(B(x,Y),z) = N(B(x'xB{u,n)), 1B(B(z, A(y, n)), n)).
3atukenpyem B (2.9) nepemeHHble Z = ¢, U = d K nepenuLlem ero ¢ NUCNoNb30Ba-

HWeM onepaLum + :

0?'o (Rb,oX + bB,bv) + 8*Bc = 0£8 B{x1B{d, d)) + 6$B B(y, d)),d),
eAB{x+y) = ©*8B(x, -'BfrdV +ef'3 ~IB{B[c, B(Lg*hy, d)),d) —©"BC.
M3 nocnegHero paBeHCTBa NOMyYaeM:

©78 (X +y)= an.ex +un.sYy,

roe  aB W uaB MOACTAHOBKM MHOXeECTBA Q, CefoBaTe/lbHO ©7'°— KBa3WaBTOMOP-

tumsm rpynnel (Q;+).
Jokaxem Tenepb, 4To OB —aHTUKBa3MaBTOMOpGu3M rpynnel (Q; +). Ana atoro,

BHOBb MepenuiiemM gopmyny (2.9) B TepMMHaX onepauumn +, noayunm:
&?B(HAB.aX + bB.by) + e£'Bz = 8?BB(x, -" (1 ,«)) + 8$B ~1B(B(z, B(Y, 1)), n),
8?B(M.,*x + bB.bv) +z = et'B(RB,ax + LB\B{u,u))+0 '3 ] ( §, 6 '))- +

L B,bRB,uy)-
B nocnefHem paBeHCTBe BO3bMEM U = a 1 BbIGepeM X Takum 06pasom, uTobel e f'B(Rg:ax+
LglbB{a, a)) = O, Torga nony4mm:

aABY +r1 = e"BRg)a{RBA"'B)~lz + LB,bRB,ay),

roe an,B- noAcTaHoBka MHoXecTBa Q, noatomy ef£'BRgla— aHTukBasmasTOMOp-
tusm rpynnel (Q; +) u cnegosatenbHo & B GyaeT aHTMKBA3MaBTOMOP(U3IMOM, MO-

cKonbKy Re,a- kBa3nmaBTOMOpP(M3M. TKKMM 06pa3oM MMeeM:
Oi'Bx = FAX * Ka,

eEBX = a + IpAx,
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rae ga— asTtomopgmam, a hA— aHTmasTomopgusm rpywiol (Q\+) n Ka, a 6 Q-

MoaTtomy 13 (2.8) nonyyaem
(2.10) A(X,y) = VAX + CA+ ®aVi

rge ca = Ki+tAm10CKOLKY onepauus A MpoM3Bo/ibHa, MOMYYaeM, UTo BCe OmepaLum
1“3 E MOryT 6bITb NpeAcTaB/eHbl B Byge (2.10) ¢ nomolLpto onepauum +. Mepenuiuem

thopmyny (2.9) B TepMmMHax onepauyun + ¢ UCNonb3oBaHNEM paBeHcTBa (2.10):
A{B(x,y),T) = valsx + <pnce + RUPsY + ca + Pa2>
A{B{x, ~1B(n,«)), ~1B{B(r,B(y,v.)),n)) = u>A<pex + U>ACs-U>A'i=BY>BICB -
-VADBVB"BY + WAMRY>a1 + CA- OnU>acB  1>nY>8d8M + PaRe 1dPs Ys Y+

+®Pa'PslPs cs + PAV~BDPBPBU + Palslcs + DI,

Takum obpasom
YaPeY+ CA=-'Pads'Pslce - YADRU>DBV + LWABYE M + CA- PaVeice-

-OaBHPs* + Pal>bds YsY + CAYEIPBCE + PAYEIPBDBM + Pa <k Xcs -

Bo3bMeM B nocneHeM paBeHCTBe 1 = 0, MOMyUNM:
(2.11) RPBY+ca= PadeVel* +CA- PaUslce + PaiPs Ps'Ps Y+

+PaVelds G +Pa Pslcs -

Monoxwum B (2.11) y = 0, nonyunm
(2.12) CA=-<PadsPg c8 +ca- ®a'Ps & + Pa4 D e + Pa'Ps I(6 -
MogctaBnasa (2.12) B (2.11) nonyyaem:
Y>ndeY - YUsndsY>sce + CA- PaVe G =
= ®a®sVe cB +CA- PaVe”" & + Pa'Ps”ds 'PBY-
Myctb, -y>ndsY>cB + CA- ®a'Ps” 8 = P, TOrga
PadsY+P=P+ ®aVsY sVBY,
nnu

(2n3) Np<pn®sY = bpPa Ve PsVey,
19



roe RpX = x +p, LpX =p + x. N3 (2.13) nmeem
Lp'RpV =*nV b BV B B WylV
noatomy L "R p —aHTnasToMopgusm rpynnsl (Q\+). CnegoBatensHo,
i-% {.x+y)=b;% y+b;% X
nnu
-p+X+y+p=-p+Y+p-p +X+p,
noatomy X +y =y + X, T.e. rpynna (Q; +)—a6enesa rpynna. Moatomy V'g = ®a 6

Aut{Q) +) 5 Lx = Rx ans Bcex x 6 Q. N3 (2.13) nonyyaem:

VndsVel= dnVe ds-

Cnegytouise yTBepXAeHMUs [0Ka3bIBAOTCS aHaI0MMYHO.

MpepnoxeHue 2.1. Ana obpaTumoit anredpbl (Q; E) cneayroline ycnoems sKBuBa-
NEHTHbI:

1) (Q; E)—obpaTumasn T-anrebpa, npuyem gns scex X, Y 6 E umeem

VXovVxl= VXV X;
& Onsa Bcex X,Y e Ee obpaTumoii anrebpe (Q\EU 1E) BbINnonHsAeTCA cnegyto-

was dopmyna BTOPOro Nnopsaka:

X(Y(x,  IX(y,u)),z) =X(Y(x, "X M), -xX(X{z,y),u)).

Mpepgnoxenune 2.2. Ona obpaTumon anrebpbl (Q; E) cneaytowme ycnosus sKBuBa-
NEHTHBI:
1) {Q;E) obpaTuman T-anrebpa, npuuem gns sBcex X, Y € E umeem

Usxdvtbx = WVVIN
8) Ans Bcex X, Y 6 E B obpaTumoii anredbpe (Q\EU - 1E) BbINOAHAETCA Cnefyto-

Wwasa gopmyna BTOPOro nopsiaka:

X{LY(x, -IX(y,u)),z) = X(Y(x, -"Xfru)), 1Y(Y(z,y),u)).

MpepnoxeHue 2.3. na obpaTumoii anrebpbl (Q; E) cnegytowme ycnosus aKBuea-

NIEHTHbI:



1) (Q; E) obpaTwumasn T-anrebpa, npuyem gnsicex X, Y 6 E, u>xdx1<Px = dxUrydx1

2) Onsa Bcex X, Y 6 E e obpaTumoii anrebpe ((J; EUE 1) BbINONHAETCS Cneayto-

was ¢opmMyna BTOPOro nopsfka:

XX, Y{X-\u,y),z)) = X{X-\u,X{V,x)),Y{X-\u, «),*))m

Mpeanoxenune 2.4. Ans obpaTumoii anrebpol (Q; E) cnegyrowme ycnosus sKsuBa-
NEHTHbI:
1) (Q\E) obpaTumas T-anrebpa, npuyem ans scex X, Y G E nmeem
Px'Proxl= <px"<py\
2) Ansa scex X, Y CE B obpaTumoit anrebpe (Q; EUE 1) BbinonHseTca cnegyto-

was dopmyna BTOPOro nopsgka:

X(x,Y(X~\u,y),2)) = Y (y,X)), Y{X~I(u,«),r)).

MpegnoxeHue 2.5. Ans obpaTumoii anrebpsbl (Q; E) cnegytolime ycnosus sKsuBa-
NEHTHbI:
1) (Q; E) obpaTumasn T-anrebpa, npuyem ans scex X, Y € E nmeem
Ox'pydyl= vxV'yVy;
Ona Bcex X, Y € E B o6paTumoit anrebpe (Q\E UE 1) BbinoAHAETCS Cheayto-

was cdopmyna BTOPOro nopsiaka:

XX, Y(Y 1ny),z2)) = X(Y~\u, Y(v,*)),Y{Y~\u, n),r)).

MpuBeaeM npumMepbl 06paTUMbIX T-anTebp ¢ orpaHUYeHUssMU Ha aBTOMOP(U3MBI
COOTBETCTBYIOLLEN Fpynnbl Ans Kaxaoro cnyyas (Teopema 2.1 u MpeanoxeHus 2.2-
2.6). PaccmoTpum ueTBepHyto rpynny KneitHa K4 = {0,1,2,3}. Kak u3BecTHo, ee
rpynna aBToMopgusmoB nsomopgHa rpynne S3. O603Ha4MM aBTOMOP(U3MBI Tpyn-
nel K4(-): ip! = e, 2 = (12), ip3 = (23), ipt = (13), <6 = (132), w, = (123).
Myctb Aij(x,y) = <fiXm<pjy, i,j = 1,2,...,6. Torga, T-anre6pbl (/T4;{>U,3,>3 })
n(™{Nig.Ne.6.1a"}) - ynosnersopstoT Teopeme 2.1; (ACiK-A3*.-A3"}) - npeano-
XeHuto 2.2; { .4,A33}) - npegnoxenunio 2.3; {Ky { ,3, ,4}) - npeanoxeHunto

2.4; (#4,{ , |4} - npeanoxenHuto 2.5; {>13,4,-Aa.3}) - npeanoXxxeHunto 2.6.
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3. T-ANTEBPblI N CBEPXTOXAECTBA

B gaHHOM nmaparpade npuseaem Apyrue ycnoBus Ha aBTOMopdn3mbl, NpUBoASALLVe

K HEKOTOpPbIM Kfiaccam O6paTI/IMbIX T-anre6p, CBA3aHHbLIX C U3BECTHLIMU CBEPXTOX-

[IECTB&MI:
31 X(x, Y(y, ™)) = X(X(y, X).y),
32 X(x,Y(y.x)) = Y(X(y,x).y),
33) X(Y(x.y),Y(y.x))=y,

(3.4) AT(i,Y (ily))=X (¥ (x,y),il),
(3.5) XY (x,y) =Y (X(x,y).y),
(3.6) X(Y(x,y),Y(y.x)) =x.

MepBble TPY CBEPXTOXAECTBA Ha3blBAIOTCA CBEPXTOXAecTBamu CTeiHa, Apyrue
Tpu- cBepxTOXgecTBamm LLpegepa. OTmeTum, 4To B paboTe [14] B. [. Benoycosbim
NoApobHO nccnefoBaHbl KBA3UIpynbl ¢ COOTBETCTBYIOLLMMU TOXAecTBamMy CTeliHa 1

LWpegepa. CnefytoLme aBe NeMMbl OYEBUAHI.

Nemma 3.1. Ecnu B 06paTumMoii anredpe (Q; E) BbINONHAETCA OHO M3 CBEPXTOX-

pects (3.1) (3.5), To anrebpa {Q\E)—ugemnoTeHTHa.

Nemma 3.2. MycTb (Q; E) ngemnoTeHTHasa obpaTtumas T-anrebpa. Torga, Ans
noboro X 6 E, cx = 0 u gx + ®x = £ rae e— TOXKAECTBEHHas MOACTaHOBKa

MHO>KecTBa Q.

MpeanoxeHue 3.1. Ana obpaTumoii T-anre6pbl (Q; E) cneaytoLine ycnoBus 3KBu-
BaNEHTHbI:

1) O6paTu/nas anrebpa (Q; E) umeeT Bug

X{x,y) = ipxx + ¢pxY,
roe <px + xgy = & dy, dx by + dx = dxpy ans scex X,Y 6 E;
2) B obpaTumoii anrebpe (Q; E) BbinonHsieTca cBepxTOoXKAecTBO CTeiiHa (3.1).
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JokasaTenscTBo. 2) =al). MycTb B 06paTuMoit T-anrebpe BepHO CBEPXTOXAECTBO
(3.1). Torpga, cornacHo nemme 3.1, (Q\E) naemnoTeHTHas, a U3 neMmbl 3.2 Creayer,
uyto cx = 0 gns Bcex X 6 E. YuuTbiBas 310, Nepexoamm B ceepxtoxpaecTse (3.1) K

onepauun +, NoayunMm:
X (X,Y (y,x)) = ifixx + ipx(<fiYV + i>Yx) = <Pxx + ipx<PYY + pxdyx,
XY (y,X),y) = <px(<pyy + yx) + ipxy = VXVYY + Vxdyx + rpxv,
VH
(3.7 <pxX + X<PYV + ®x Py x = w=x<PYY+ V X yx + gxy.
Myctb i = 0, TOrga
IpXVYV = & B V+ ipxV, <fixdiy +dx = Tpxiy-
Monoxum B (3.7) y = 0:
tpx x + Tpxdpyx = Ipxapyx, (fix + Ipxcpy = tfiXIpY-
Mmnnukaumsa 1) =>2) nerko nposepsieTcs. |
MpeanoxeHune 3.2. Ans obpaTumoii T-anrebpsl (Q; E) cneaytouime ycnosus aKeu-

BaNlEHTHbI:

1) O6paTumas anreépa (Q; E) nmeeT Bug

X(X,y) = u>xx + ipxy,
rge ifix + dx @y = ffiY x, Oy + iY<gx = \BxiY gns scex X, Y 6 E;
2) B obpaTumoin anrebpe (Q; E) BbinonHseTCA cBepxTOoXKaecTBO CTeliHa (S.2).

[oka3aTensCcTBo. AHANIOrMYHO NMpesnoXeHuo 2.3. O

MpegnoxeHue 3.3. Ana obpaTumoit T-anrebpbl (Q; E) cnepytowine ycnosus aksu-
BaNeHTHbI:

1) ObpaTumas anre6pa (Q; E) umeeT Bug

X (x,y) = tfixx + hxy + cx,
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rge gxcy + dxcy +cx =0, pxdy + dxpY = e. Pxdy = [I>xPv (Jx = -*) <In\
Bcex X, Y € E;

B) B obpaTumoit anrebpe (Q;E) BbinonHaeTCA cBepxTodXKAecTBO CTeiiHa (3.3).
LokazaTenscTBo. 2) == 1). MycTb (Q; E) obpaTuman T-anrebpa CO CBEPXTOX.e-
ctBom CreitHa (3.3). CnegoBaTenbHO,

X(Y(X,Y), Y{y,X)) = bx(thyx + yy + cy) + dx IDyY+ Pyx + cy) + cx =
= (PxpYX + dx PyV+ OX&Y + DXPYV + dxDyX + dXCy +Cx = ¥-
Monoxum B nocnefHem paseHcTBe X =y = 0. Thraa
hxcy + px*y +cx = 0.
Mostomy ipxdhyx + dx Py Y+ OxpyY+ hxdyx —y. Mon0XKMM B NOCIEAHEM PaBEH-
ctBey =0:
hxpyx + dxdyx = 0, pxpy = L x Py-

Torpa ipxgyy + &x dyY- YeT.e. ipxpy + Pxdpy = £

Mmnnvnkaymsa 1) =>2). nerko nposepsieTcs. O

Jl0Ka3aTenbCTBO CNeLyHOLUMX NPeAN0XEHNA aHANOrMYHbI OKa3aTeNbCTBaM Mpefbl-
Ayuwnx.
MpegnoxeHue 3.4. Aina obpaTumoii T-anrebpsl (Q; E) cnefytowne ycnosms aKsu-

BaNEHTHbI:
1) O6paTumasn anre6pa (Q\E) nmeeT Bug

X(X,y) = ipxx + xV,
rae xdy = dxdy + ®x, px + Pxdy = dxdy Ans Beex X,Y 6 E, 0 (Q;+)-
rpynna 3KCNOHEHT bl [Ba,

B) B o6paTumoii anrebpe (Q; E) BbinonHaeTCcs cBepxTo>KaecTBO Lpeaepa ( . ).

MpepnoxeHue 3.5. Ansa obpaTumoin T-anrebpbl (Q\E) cnefytowime ycnoBus aKsu-
' BaJIEHTHbI;

1) ObpaTumasn anrebpa (Q; E) umeeT Bug
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X(x,y) = x + dxy,
roe xgy = |/ dDx + dy, VyVx = dOxdy + <Px ana Bcex X,Y eE, a (<3;+)~
rpynna sKCroHeHTbI [Ba;
2) B obpaTumoit anrebpe (Q; E) BbinonHAeTCA cBepxTOo>KAecTBO LLpeaepa (3.5).

Mpeanoxenune 3.6. Ans obpaTumoii T-anrebpsl (Q\E) cnegytoline ycnoBus aKeu-

BaNeHTHbI:
1) O6paTumasn anrebpa (Q\E) umeeT Bug

X{x,y) = §xx + px¥Y + cx ,

rge ipxcy + dxcy +cx = 0O, <pxdy = 3pxH*y (IJx = —x), <x<py + Ox Py = e 4nq
Bcex X,Y € E;
2) B obpaTumoii anrebpe (Q; E) BbinonHseTCsA cBepxToXKAecTBO Llpeaepa (3.6).

Abstract. In this paper usingthe second order formula, namely the V3(V)—identities,
we characterize some subclasses of the invertible algebras that are Unear over an

Abelian group and have restrictions on the use of the automorphisms ofthe corresponding

group.
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Abstract. For a compact and convex window, Mecke described a process of tessellations
which arise from cell divisions in discrete time. At each time step, one of the existing cells
is selected according to an equally-likely law. Independently, a line is thrown onto the win-
dow. If the line hits the selected cell the cell is divided. If the line does not hit the selected
cell nothing happens in that time step. With a geometric distribution whose parameter de-
pends on the time, Mecke transformed his construction into a continuous-time model. He
put forward two conjectures In which he assumed this continuous-time model to have cer-
tain properties with respect to their Iteration. These conjectures lead to a third conjecture
which states the equivalence of the construction of STIT tessellations and Macke’s construc-
tion under some homogeneity conditions. In the present paper, all three conjectures are pro-
ven. A key tool to do that is a property of a continuous-time version of the equally-likely
model classified by Cowan.

MSC2010 numbers: 60DO05.
Keywords: Random tessellation; stability by iterations; equally-likely model; Mecke’s
conjecture.

1. Introduction

The topic of this article are random tessellation processes in the plane. In general,
random tessellations are constructed by lines or line segments that are thrown onto
the plane under a certain probability law. In our context, line segments are always
intersections of lines and a so called cell within a compact and convex window. Both
the throwing of the lines and the selection of the cell to be divided are governed by
specific probability laws. The timing of the cell division may depend on the selection
rule for the cell to be divided.

In [4], Mecke developed a new process in discrete time in a convex and compact
window W: At the first time step, a line is thrown onto the window according to a

law Q dividing the window in two cells almost surely. At the second time step, one
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of the cells is selected for division according to an equally-likely law. Independently,
a line is thrown onto the window. the line intersects the selected cell, that cell is
divided into another two cells. If, however, the line does not intersect the selected
cell, although no new cell is created, another so-called quasi-cell arises. In any case,
the number of quasi-cells (real cells plus empty quasi-cells) is always the number of
time steps passed plus one.

At eqarb time step one of the quasi-cells (which if they are empty cannot actually
be divided) is selected with a probability equal to any other cell. If the line thrown
independently hits a real cell, that cell is divided into two real cells. If a real cell is
selected but the line does not hit it, the real cell remains; one new empty quasi-cell
is added. If an empty quasi-cell is selected, there automatically arise two new empty
quasi-cells.

Mecke proposed a way to transfer this process from discrete to continuous time
by assigning to an arbitrary time t a geometrically-distributed random number of
steps (dependent on t) in the discrete process. After formulating two conjectures, he
examined the special case of a homogeneous line measure to be used for the (potential)
cell division for which he stated another conjecture that his model in continuous time
has the same distribution as the STIT tessellation process introduced and examined
by Mecke, Nagel and Weifi in e.g. [5S}7].

While his last conjecture, Conjecture 3 regarding the homogeneous case, was proven
in [2J in rather lenghty terms, a by-product of that paper was a way to actually
understand Mecke’s construction as a process in continuous time. By this new access
however, which is related to the equally-likely model Cowan examined in [3], the
proofs of Mecke’s remaining conjectures could be undertaken.

In this paper, after a short introduction into Mecke’s construction (section 2), the
distribution of the lifetime beyond an arbitrary point in time of a convex set within
a cell of a fixed tessellation in Mecke’s continuous-time model is calculated (section

3). This allows the proofs in section 4.



2. The Mecke process

Throughout this paper, we will consider, in the Euclidian plane, a compact and
convex polygon W C R2 with non-empty interior. Let pC,A] be the measurable space
ofall lines in R2 where the cralgebra is induced by the Borel cralgebra on a parameter

space of ac. For a set A ¢ R2 we define
[Al ={peX:aMA?1>}.

Let Q be a non-zero locally finite measure on [IK ij] which is not concentrated on one
direction but which is bundle-free, i.e. there is no point x 6 R2 such that Q([{x}]) =
Q{g £IK:5 {x} 0}) > 0. Let additionally Q([W]) > 0 hold.

2.1. Mecke’s process in discrete time. Let there be fines 7 =1,2,..., that are
1.1.d. according to the law Q([W]) 1Q(- [TV]). Further let us use, independently of
7 independent aj,j = 1,2,... where ofj is uniformly distributed on the set {1.....j}.
Ifaline does not contain the origin o then 7+ shall be the open halfplane bounded
by 7j which contains the origin. Correspondingly, 7J is the open halfplane bounded
by 7j which does not contain the origin. As the distribution of 77 is bundle-free, we
can neglect the possibility of 73 going through the origin as the probability of this is
zero.

Letbe Cog =W, 61,1 =W and , =W 7f.Forn = 2,3,... we define
C,,-u ifj 6 {I,.;.,n},; ~ot,,

Cnj= Cn-ie. 7- ilj = &

. C,_ixatnN7+  ifj=n+l

These entities Cnj are called quasi-cells. Some of these quasi-cells are empty. Those
quasi-cells that are not empty will be called cells.

From this, we can deduce a random process: After each decision time , n =
1,2,..., we consider the tessellation T,, consisting of the quasi-cells , ,..., , +.
This decision time is called the n-th decision time accordingly. If, at that decision
time, the number of cells (i.e. non-empty quasi-cells) actually changes, that decision
time iscalled a jump time. Obviously, the fc-th jump time is that decision time at

which the number ofcells reaches k + 1. Let us denote therandom closedset of the
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closure of the union of cell boundaries that are not part of the window’s boundary at

a step n for the tessellation T,, as
n+l
yrin,#)~i)a& bl \avr.

Then (yj*(n, W) :n 6 N) is called the Mecke process in discrete time. Here, N =

{0,1,2,...} is the set of the natural numbers.

2.2. The Mecke model in continuous time. In [4, Section 4], Mecke introduces a
mixed line-generated tessellation model such that the tessellation T4at the continuous
time t 6 [0,00) corresponds to the tessellation 7v[t)  the discrete random time v(t)

where for the distribution of i/(t)
PL)=Kky=e~l (1 B H*, Kk=0,1,..

holds. Mecke used Q([W]) = 1 for his considerations. Fbr general Q, i.e. where
< ([*4) = 1 is not necessarily true any more, the distribution is

@.1) P(«/(i) = k) = e-Sd"'»4(l L E=01,...

This is the geometric distribution with parameter the model (which yields a
random tessellation for any fixed time t but cannot yet be described as a process) thus
has the characteristics Q and tQ([W]). (In Mecke’ paper, these characteristics were
Q and t due to Q([W]) = 1. Here, to have a connection between the characteristic and
the exponential function’s exponent, the characteristic is called tQ([W]).) A possible
interpretation is that the decision times are no longer at equidistant discrete times
n = 1,2,... Instead, the law describes how many decisions take place until the time
t. The v{t) are assumed independent of all other random variables that are used in
the construction of the Mecke process.

2.3. The sum of exponentially-distributed random variables. While there
are more general results for the distribution of a sum of exponentially-distributed
random variables with unequal parameters (e.g. see [lj), for the special case needed
here the following calculations allow a quick understanding. If a random variable X

is exponentially distributed with parameter A we will write X ~ £(A).
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Lemma 2.1. Letn 6 N\ {0} befixed. Let further Sn = Tj be the sum of
independent exponentially distributed random variables T\, with Tj ~ Z(jR) for
j =1,2...n and afixed R > 0. Then

P(Sn <t)= Jf nRe~nxR{exR - 1)” 1 =e-nn(e‘n- 1)" = (L - e~iR)n.
0

Proof. The proofis by induction. For n = 1, obviously

holds which is true according to the condition T\ rJ£(4).
Let the lenuna be true for n. Then, because of S,,+i = Sn+ T+ with T,+i ~
£ ((n + 1)) and the independence of S,, and Tn+i, for the density of S,,+i

/s.«W [sn+T,+1 (")
= fo fsn(u)/t,+1{x- u)du
= /* nfe~m/i(ewl- 1)n_1(n +1)Re-"n+1*x~"Rdu
= (n+ 1)Ae-(n+1)*i /* nReuR(eurR - I)n~Idu
= (n+ DOe-("+1A1[(en1- 1) ) =
= ( + 1)fe-("+130(e*n - 1)"

holds. Integration yields the second equation, straightforward calculation the third

equation in the lemma. ]

Lemma 2.2. Let Nt = max{n :£"= Tj < t) denote the number of Tj ~ £{jR),
j = 1,2,..., which have consecutively expired until the time t. Then fork = 0,1,2,...

(2.2) P{Nt = k) = e~tR (I e~tR)k.
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Proof. From the distribution of the S*,fc = 1,2,  one gets
P(/l« = k)

= P(5* <t < Sk+i)

= P(Sk<t)- P(S*+i<1)

= (I —e~tR)k—(I ~

= (I —e~tR)k (I —(1 —e~tR))

= e-tR{l-e tR)k
For Nt = 0, the result follows from Lemma 2.1 immediately. O

2.4. The Mecke process in continuous time. Comparing the equations (2.1)
and (2.2), we see that with Nt = i/(t) and R = Q([W]) both yield the same result.
Therefore, the Tj from Lemma 2.2 with Tj ~ £(?'Q([W])) can be interpreted as the
(continuous-time) waiting times for the quasi-state of the tessellation to change from

a quasi-state with j quasi-cells to a quasi-state with j + 1 quasi-cells.

Definition 2.1. Let us have a window W C R2. Let (ydv(n,W) : n e N) be the
Mecke process in discrete time as described in section 2.1. Let (Nt : t > 0) be the
process of the number of expired random variables Tj ~ £('Q([W])) as in Lemma

2.2. Then for every t e [0,00) we define
YaM(t,W) = YAM(Nt, W)

and the Mecke process in continuous time as (Y~ t, W) :t > 0).

3. The waiting time until a convex set is hit in the Mecke process in

CONTINUOUS TIME

We now give a formula for the waiting time of a convex set within a cell in the
Mecke process in continuous time to be hit by a line.
Let us have a fixed time s. We work on the condition that, at this time, the tessellation

has n quasi-cells, thus Ta = Tn_i. Fbr the waiting time Tjf in this state, ~
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£(nQ([W1)) holds. In this fixed tessellation with n quasi-cells, let us have k (real’)
cells.
Let these cells be called Ci,..,CK Let Sj C Cj ¢ W,j = 1,...,/t, be a convex set
within a cell Cj, created Let these cells be called C \, C K For eachj = 1,..., K, we
define

Sj =CjnK
with K being a fixed convex set. Thus, Sj is a convex set within the cell Cj, created
determinietically from Cj. It is possible for some (or all) of the Sj to be equal to Cj.
We will only examine non-empty S;j.
Let us denote by Xs} the waiting time for such a set Sj to be hit by a line for the
first time after the time s. It may be possible that the cell Cj is hit by a line but the
set Sj is not. In this case, the waiting time for Sj to be hit shall not begin anew but
rather be extended until it is actually hit. The waiting time until the set Sj is hit is
the waiting time T ff if and only if the cell Cj that contains Sj is selected for division
in this step (i.e. an = j in Mecke’s construction) and the set Sj C Cj is hit by the
line. The probability for this to happen is

PO = On, 7 0Sj CCje T, x)= 8HSE8jy-

If the set is not hit (which happens with probability 1 —n waiting time
for the set to be hit is the sum of the waiting times if and only if the
waiting times and T, +1 have passed and the set is hit in the (n + I)-th division

step the probability of which is
P(j=0On+usSj 7,+i 0SjCC,eTn)=

and so on. The waiting times are independent of each other.
In general, one gets

P(*s, <"c«"eT,_1=T1%

—

Let us first calculate what one gets for P <'tj or the density of this

respectively:



Lemma 3.1. The following equation holds:

32 why. ('B,Ne - ‘" ”'-kQi[w]" dI-
Proof. We use the abbreviation 5* = T ~ . It is sufficient to show that for

the density /5*(x) of the probability distribution

(33 l«(°) -

holds.
The proofis by induction over k.
For the base case k = n, because of T** ~ £(nQ([W])) the equation fs%(x) =

nQ{[W])e-nQ(W)* should hold, Indeed,

[s"(D)= (@ ™~ (n - DICITV] (eQmM)X " O""" e~nQmM)X =
Let now equation (3.3) be true for any k. Then for A+ 1, due to the convolution

formula (the waiting times are independent of each other)
I *>()
= JB* (k-ln)l (nﬁjl)l
XQ([W]) (e«(W>* _ )* e-fcQ(W]U(A + i)(5([*])e- (fer )« (lvI)(*-*)du

Xe~~0([M)tte-(fe+ DAV + o0 IVILHEI[IV)) Udu
= I~ {"e~ (+)oM)s(<3(TO2/; (e«0"P>" - 1)* " eO(W)“du
= in-iiir (fer)QQWhag * y«?(rH1))3

XE(* +1- n)Q(H) (O(W)«- I)fneO(W)»du

: =

= bl-n)\K ile-t"W *"gHW ]) (ee(W), _1)"-«
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holds what is exactly what equation (3.3) yields for kK + 1. [l

Theorem 3.1. Let a time s be fixed. At this time 8, let us have a tessellation T*
with an arbitrary number of cells. Let a convex set Sj be contained in the cell Cj

(Sj ¢ Cj ¢ W). For the waiting time Xsj for this convex set Sj to be hit from the

time s on,
(3.9) P(XSj<t\SjcCjeT*=1-
holds. I
4  *e
Proof. Let us first keep .the number n of quasi-cells fixed. For equation (3.1) we
get (at some point we will abbreviate A = 1—e £)M'vDl)
P (Xsj fs CCj€Tn_i=T%

= E£,, *irB (M )/, - D-"“.-“W D .L*
X F(O< »)1
- «M Iy 13i,*1 £ (e0UY»»-- 1)*-"

* <*s*[ne (< «)]

= « M SifE*, i («O<I“ i)°
V' Oijwl)

- TZoA@R-8B»»»-)*T(n+k- W ) dx
- AT TET O 4N jroy'' 4 TWS B 5%

o(ls.) [ e—=o(wW])* g-u(l-A) - -1dudx

, Jo Jo
r(-aw ;

w g([s,D
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<3([S|D [ e~wn~ ~ ldvdx
~T (" M)J Je
#QGH [tenQ(w])*(i_A)8M'nr (n 8T )<b
) m

= @([—SjI)J[ e_1}([sj,)da: = 1-e *“jts>1).
0
Equation (a) follows from the substitution v —u(l —A).
Let us now have a time a. The probability that there are exactly n quasi-cells in the

tessellation T* (or that 7' = T,,_i) is just

Kkn—1
nr =Tn-l) - (1
Thus, we get
P(x3j <t\S,CCje T») = Fp"™ =5V.-0 (! - e-f® »»)

= El=ie-ea"W (1- e-*W)*)" 1(1- e*3(())
= (1_c«3(ftl)) * je-OCW)4(1- (.-««™')*)"1
= i.e-ipas3fg.

Thus the theorem is proven. O

It is worth to mention that (as shown by the last equation) the result does not depend
on the number of quasi-cells n at the time a For translation-invariant Q, this result
is the same result one has for the STTT process. Obviously, the lifetime of a cell cj
(which is a convex set contained within a fixed cell, namely cj) can be described in

this manner as well.

4, Proofs of Mecke’s Conjectures

4.1. Conjecture 1. Lemma 2.2 makes clear the relation between those properties
Mecke calls 'characteristics’ and the waiting time in a state with n quasi-cells. Let us
have a tessellation in a window W with characteristics  and t; then we get

ik
P(tft = *)=e-* (1 e “f)

Theorem 4.1. (Mecke's Conjecture 1) Let Ty/ be a mixed line-generated tessellation

in W with characteristics Q and tQ{\W\), and let W be a window with W C.W and
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Q([Wr]) > 0. Then the cutout o/7w in W can be interpreted as a mixed line-generated
tessellation in W with characteristics

0= M) and I = tQ([fr)).

Proof. We will first examine the tessellation 7w in W with characteristics Q and
<Q([W]). For the probability that until a time t the convex subset W ¢ W was hit,
according to equation (3.4)

P(Xu, <t)y=1-e 0~ * .

we condition on W being hit the hitting line has distribution AQ(-FIIWY) = .
Let us now examine the tessellation 7, in W with characteristics Q = —  Q(-
[W]) and t = tQ([$]). The distribution of the number of decisions £4(f) until time t
is

P(P(«) =k) =e {(l - e *)* = (1
From this, we can deduce the lifetime of the first cell W to be
P(X* <t)=1-

Thus, the distribution of the lifetimes of TV is the same in 7w and 7$,; additionally,
the distribution of the segment dividing W is identical as well.
Let us now have 7w C\W = 7$, at an arbitrary time. Then, in Tw there exist
the cells Cells{7w) = {Ci',...,C”r} and accordingly in 7$, the cells Cells(7") =
W,..,C™ W} \ {0} Note that some of the intersections C™ W can be
empty; therefore the empty set is taken out of the set in order to have only real’ cells
with non-empty interior in Cells(7").
We now examine a cell C e Cells{7w) with C W 0. This cell has, as calculated
above, the lifetime Xc¢ ~ £(Q([C])). If we take a look at this cell’8 intersection with
the subwindow W we have a waiting time XCn* ~ £(Q([CnlIV])) for this convex set
to be hit. For the distribution of the dividing line we have, due to the conditioning
on the division of the set, "i*Q([C7 W]q([cort)B[-nCnW]) = Q(-n [C]).
In the tessellation 7$,, we have acell C= C W with a lifetime , ~ £(Q([C])) =
£(Q(.[C W]))- For the distribution of the line dividing C we have Q(- [ 1.
So, the. waiting time for the set C W in Tyy to be hit and the lifetime of the

cell C W in7 respectively are identically distributed. Because of Q(- [C]) =
37



Q(-0 [CnW]) = Q(-n[C]) the distributions of the dividing lines are identical as well.
Under the condition of the equality W = 7* the distributions of the time of
the next segment falling in W are identical in both considered windows as are the
distributions of that next segment. As we always start in the same configuration of
an empty subset W C W and window W respectively, the theorem is proven. O

4.2. Conjecture 2. Let us first define the iteration and its symbol ffl.

Definition 4.1. fl4, Subsection 4.3, Remark],) Let 7* be a mixed line-generated
tessellation with distribution law Pl and 7e such a tessellation with law P’. Let
further ¥i.Ya,... be a sequence of U.d. copies of 7* which are independent ofT1 Let
{Zu ..., ZK} be the set of cells of 71 and be the set of cells of forn=1,2.....

Then the set of cells

n=I
is a new tessellation and its distribution law is denoted by P I ffl P*.
With this definition and Theorem 4.1, Mecke’e Conjecture 2 can be proven in quite

a straightforward manner:

Theorem 4.2. (Mecke's Conjecture 2) The class of all mixed line-generated tessellations
(related to Q) as a whole is stable under iteration in the following sense: Every
operation of iteration maps the mentioned class into itself, i.e. an iterated mixed
line-generated tessellation is again a mixed line-generated tessellation. 1f the mixed
line-generated tessellation 7t is iterated according to the law P® of 7B then the law

Pt LLUP* of the outcome fulfils
P‘EP‘=P*‘“+J.

Proof. Let 7* be a tessellation with the cells Cells(7*) = {ZIt..., ZK}. Then each
of those cells Zj has a lifetime Xz} ~ £(Q([Zj])) which is (under the condition of
the existence of these cells) independent of the other lifetimes which because of the
memorylessnese of the exponential distribution does non depend on the time the cell
was created before the tune t. After the lifetime has expired (provided it is smaller
than a), a segment of a line with distribution [Zj]) falls into the cell.

Afterwards, the process goes on with its cells and their exponentially-distributed
38



lifetimes until time s. Thus, one gets the resulting tessellation 7t+.

According to Theorem 4.1, one can interpret the cutout TWDZj of Tw with characteristics
Q and sQ([W]) as a process 7zj with characteristics Q = Q(g 1) * [Z]) and

s = sQ([Zj]). If one considers a cell Zj now, its lifetime is £(Q([Z]]))-distributed as
verified in the proof of Theorem 4.1; after this lifetime’s expiry, a segment falls with
the corresponding line having a distribution Q = [ZiD.

This cutout process runs independently in all cells Zj,j = 1,...,«, with the same
lifetime and segment distribution as in the process T*+*. Thus, because the processes

are identically distributed,

ptflp* =ptta

holds as claimed in Mecke’s Conjecture 2. O

5. Conclusion

From Theorem 4.1 and Theorem 4.2 we can deduce

Theorem 6.1. (Meckes Conjecture S) Let A be a non-zero loadly-finite translation-
invariant measure not concentrated on one direction and W a window with 0 <
A([W]) < oo. Then, the STIT construction and the Mecke construction with Q = A
are equivalent in the sense that they yield identically-distributed tessellations within

the window W.

Proof. The equivalence of the STIT and the Mecke construction follows from
Theorem 4.2 for the given translation-invariant measure J1 as the property PIfilP’ =
Pt+a is the defining property of the STIT tessellation, namely to be stable with
respect to iteration, and from the fact that the STIT tessellation is unique in this

property, as per [6, Corollary 2]. O
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1 Introduction

We consider the system of Laguerre functions defined by
L%v) = e"*4)(i/),y 6 R+ = (0.00), K6 N,

where (y) = (yatke~v)W/(k\yae v) is the usual Laguerre polynomial of degree
K. For ¢ > —1 this system forms an orthonormal basis in L2(R+) when we choose

the normalizing constants
clta = y/IM(k+1)/T(a+k+1), k6N

This produces a formal expansion / = YlkLo < f>"k > which is convergent in
norm at least for f 6 L2(R+).

The main object in the theory of Laguerre function expansions is the set of
transplantation operators, defined for a,f) > —1 and / € L2(R+) by

A= i</, >
k=0
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The IP boundedness of such operators was first established by Kanjin [7]. Recently,
G. Garrigds et al. [5] extended the Kanjin’s result to the power weighted spaces (see
also [16]).

The purpose of this paper is to establish a generalized weighted transplantation
thpnrpm for Laguerre function expansions, which extends the corresponding result by

G. Garrigds et al. [5]. The main result of the paper is the following theorem.

Theorem 1.1. Let-1 <a < and 1< p <o0o0. Then the operators TE and T$

admit bounded extensions to the weighted space () wheneverw{x) = (1 +i)n'ipd

with —8 — —p+ § ont"7 ~

We remark that in the special case 7 = 0, Theorem 1.1 has been proved by G.
Garrigds et al. (see [5], Theorem 1.4). So, our result extends essentially the main
result of [5]. Also, the proof of Theorem 1.1 is curried out by using arguments similar
to one used in [5].

To prove Theorem 1.1, we need to establish new weighted multiplier theorems
for Hermite function expansions in Rd and Laguerre function expansions in R+.
respectively. Recall that the Hermite functions in Rd are defined by

d
%(*) = dk.de-I*1F2M 8 * (@%), k = (*1,e+ kn)ki 6N,

where A*(£) = (-1)fet,.DW(e~<,) is the usual Hermite polynomial in R and N =
{0,1,2, «s<}. Normalizing by dv,d = M 1:i(2A"1\A )~ 1/2i the system {TTK}x becomes
an orthonormal basis in L2(Rd) and a complete system of eigenvectors for the Hermite
operator -1 + |®3.

Theorem 1.2. Let 1< p <00 andm 6 i°°(Nd) be such that
(11 [A°m(k)] < Ca(l + |k[)-H, k e Nrf, Va e Nd,

where Aa is a difference operator. Consider the operator Tmf = £ km(k) </, Tir >
»wr, defined at least for f 6 L2(Rd). Then Tm admits a bounded extension to the
weighted space 1S(u) whenever w(z) = (1 + |®)7/i(*) with i 6 Av{Rd) and 7 6 R,
where 1, 6 Ap(Rd) stands for the Muckenhoupt class.
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We remark that in the special case 7 = 0, Theorem 1.2 has been proved in [5]
under weaker conditions (see [5], Theorem 1.G ). But, our Theorem 1.2 cannot be

deduced from the conditions imposed in [5].

Theorem 1.3. Leta >—1, 1<p < o0 andm e C°°[0,00) be such that
(1.2) [E>'m(Ol < C2(1+ )1 >0,16 N.

Consider the operator Tmf = J2k>0m(k) < },L% > , defined at least for f €
L2(R+). Then Tm admits a bounded extension to the weighted space 1?{ui) whenever

u(x) = 1+ x)inxw6 with f — < <1-j+ 8 and7eR.

We remark that in the special case 7 = 0, Theorem 1.3 has been proved in [5],
Theorem 1.8.

The paper is organized as follows. In Section 2 we prove Theorem 1.2 by using a
new class of weights Ap(<p). In Section 3 we establish Theorem 1.3. The main result
of the paper - Theorem 1.1 is proved in Section 4. Finally, Section 5 is devoted to the
applications of Theorems 1.1-1.3 to the boundedness property of the Littlewood-Paley

5-functions associated with the Laguerre expansions.

2. Multipliers for Hermite expansions

In this section we prove Theorem 1.2. First we introduce some notation and
properties of the new weight function class Ap{ip).

Throughout the paper, Q(X, t) denotes a cube centered at x and of the side length
t. Given a cube Q = Q(x,t) and a number A> 0, we will write AQ for the A-dilate
cube, which is the cube with the same center x and with side length At. Given a
Lebesgue measurable set E and a weight w, |E| will denote the Lebesgue measure
of E and w(E) = fEudx. The symbol ||/[|x,p(b) denotes (fRd\f(y)\pu{y)dy)1iv for
0 < p <00, and ||/||x,i.~(b) denotes %%A Iw({a: € Rd : |/(i)| > A}). The letter C
denotes constants that are independent of the main parameters involved, but whose
value may vary from line to line. For a measurable set E, by xe we denote the
characteristic function of E. By A ~ B we mean that there exists a constant C > 1
such that 1/C < A/B <C.

In this section, we let ip(t) = (1 + t)Bofor 0> 0and t > 0.
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A weight always a positive function which is locally integrable. We say that
a weight w belongs to the class Ap{ip) for 1 < p < oo, if there is a constant C such

that for all cubes Q = Q(x, r) with center x and side length r

bl ra/,"H (wml" *® *)”’
Also, we say that a nonnegative function u belongs to the class A- ) (or satisfies
the Ai(<p) condition), if there exists a constant C such that for all cubes Q

Mv{w){x) < Cw(x), a.e. x 6 Rd.

where

Since V'(I0OI) > 1. we have Ap(Rd) ¢ Ap{tp) for 1 < p < oo, where Ap(Rd) denotes
the class of classical Muckenhoupt weights (see [4]). It is well known that if w 6
= Up>i Mx)dx is a doublingmeasure, that is, there exist a

constant C > O such that for any cube Q
w(2Q) < Cw{Q).

Now we list some properties of weights w e Aoo(<p) = Up”i A(vOi aiTilar to that of
classical Muckenhoupt weights.

Lemma 2.1. For any cube Q ¢ Rd the following assertions hold:

(i) If 1<Pi <P3 <o00, thenA™ip) c

(i) w€ Ap(®) if and only if A where V? + 1/p = 1.
(iii) 1fui, 6 Ai(ip), p > 1, then e Ap{<p).

(iv) IfueAp for 1<p < oo, then

\fW v vm »)'*,

In particular, iff = xe for any measurable set E C Q, then
\E\
vdQDIQI \Ww(QjJ
Remark 2.1. It follows from the definition of Ap(ip) and Lemma 2.1 (iii), that if

n 6 Ap(<®, thenu(x)dx generally is not a doubling measure. Indeed, letO < 7 < fo/d,
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it is easy to check thatu(x) = (I + |x])~(d+7) g <»(Rrf) andu(x)dx is not a doubling
measure, but w{x) = (1 + | |) (<+) 6 Ai{(p).

It is easy to see that the set of all Schwartz functions, denoted by S, is dense in

) forw 6 ("™ and 1 < p < 0o0. Hence, we always can assume that / € S if
/ € ~(w) for 1 < p <oo.
Lemma 2.2. Let 1< pi <00 andu e Am(<p). Then for pi <p < oo the inequality
holds:
[ \Mu>f(x)\pw(x)dx <Cp f \f(x)\pw(x)dx.
Jr* Jr*
Further, let 1 < p < 00, thenu e Ap(<) if and only if

w({x e Rd: M M{x) > A}) < I,\Ap \f(x)\pu>(x)dx, A> 0.

Hd
The dyadic sharp maximal operator M*,n/(r) is defined by

M A f{x = su f \f{x) - fQ\dx+ su 1 \fldx
) *eg,Fr)<i IY1 Jq(x0,t) x) ° er,Fr)>i \ACIQHIMVI }q(xo,t)
- el P<i B W) Jqeo V)~ e\ + 5 qipsi RIRALRA Jq 0,0 V7
where Q denotes a dyadic cube and Iq —  1q f{x)dx. Similarly, we define the sharp

maximal operator M~ f(x") for an arbitrary cube with sides parallel to the coordinate
axes.
Lemma 2.3. Let 1<p < 00, w6 -A004 and f E~(w), then
I< /b (U<C |K 4/||E, (DB

Here M £f(x) denotes the dyadic maximal operator. Lemmas 2.2 and 2.3 follow
from [19].

Note that |/(x)| < Mfif(x) a.e. x € Rd and ME,n/(x) < AfE/(x) for x 6 Rd. By
Lemma 2.3, we have
Proposition 2.1. Let1<p < 00, w6 Aoco(y3) and f € then

H/Hpm < WM?0b>bl < C|[|M /|| (bI).
In order to prove Theorem 1.1, we need to introduce some vector-valued spaces. Let

X be a Hilbert space with norm |-|x, and let ||/|| * (b)) denote (/R |/(y)Ixw(y)dy)Vp

for 0< p < oo.



Consider the Bochner integral operator T, defined by
THx) = [ K{xy){y)dy,
b
where the X-valued kernel K satisfies the foUowing conditions (for N > nfc, + 1):
(0 W (x,2)X <cNW- *rd(i +\x-*|) ",
(i) \K(x,2)-K(x0,2)\x <CN{l+1IxS~)» _ Ad+l, if 2]*-*ol < \x-z\.

The next result can be deduced from Lemmas 2.2 and 2.3, and Proposition 2.1.

Proposition 2.2. If the Bochner operator T is bounded from Lp(Rd) into L"(Rd),

then for any r > 1,
M I{ATf\x){x) < CMv,rf{x),

where Mv,Tf[x) = [M¥(]/|r)(i)]1/r, and, as a consequence, the inequality
IT/llz*m < C||/[lj»M

holdsforl<pi<p<oo and w6 API().

For the proofs of the above stated results we refer to [19].
Now we proceed to prove Theorem 1.2. We define the Hermite ~-function and
ne-function, respectively, by the following formulas:
ila
«(NF)= o Wira=)r. 1=1.2-

|.|J|*)= J?d08°|a‘ 1A>11

where T, = e-*(-n+M2) denotes the Hermite heat semigroup.

Denoting by T,(y, z) the kernel of T,, we can write
M.T.T f{z)dz.

For convenience, we change the variable e = t3 in the definition of g and g*, and
denote by Qt(y,z) the new(normalized) kernels tM 5 ~]|,= t=for Z> 1. It is easy
to check that these kernels are symmetric and satisfy the inequalities (see [20], pp.
98-99):
@ 1Qt(v,*)] < Ci~de~frf-v|S10< t< 1,
(b) |Qt(v,*)] < C2-dte-b*-i'la, t > 1,
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(c) \Qtb) + h, z) - Bt(y, r)I+ |<3t(y,z + h) —Qt(y, z)| < C7it~d~1le~*‘|x~wa, for
O<t<1 Vi<t
(d) |Qt(y+ h,z)- Qt(y,z)I+\Qt(y,z+h)- Qt(y,z)\ < CN2 ne bl*vir, fort >
1, VI/i| < t, where C, a and b are positive constants, independent of x, y, t.
To prove Theorem 1.2 it is convenient to look at the functions g and g' as vector-
valued singular integrals. Let A denote the Hilbert space L2(R+,di/t), and B denote
the Hilbert space L2(R+ x Rd,dtdy/tn+1).
Consider the operator Gi : L2(Rd) >mL\ (Rd) defined by

G\f{x) = f Ki(x,2)f(z)dz,
J
where K\(x,z) is the -valued kernel: K\(x,z) := {Qt(x,z)}t, and the operator
G2 :L2(Rd) -» L |(R d) defined by
G2f{x) = Jﬁ?« Ku{x, z)f(z)dz,

where K2(x,z) is the B-valued kernel:
K2(x,z) :=j (1+ ™ t

Observe that \G\J{x)\a = gi(x) and |<? /()] = gj(x). Therefore, the boundedness
of and in () areequivalent to the boundedness of G\ from bp{w) into LA{u)
and G2 from * ) into LB( ), respectively. Moreover, boundedness holds for the
Muckenhoupt weights for 1 < p < oo (see [5]). Hence, in order to apply Proposition

2.2, we need to establish the following lemmas.

Lemma 2.4. There exist positive constants ¢\ and  such that
() \Ki(x, y)\A < cifrc- y\-de-°~x-~\
(i) \K\{x,y) - Ki{xo,y)\a < ci Ad+ie~ A XV 2% *o| < IF- V-

Proof. We use the above stated inequalities (a)-(d), and fist prove the assertion
(i). Note that



Using the inequality (a), for I\ we have

/1

=1

<Ce ‘M J o {t+{x_yDh2d+1dt
li- yM

Now using the inequality (b), for 1 we obtain

h <C /°°e te_abk v*— < C7e-g*«'12< CT—
N < 1*-viIm

Ib prove the assertion (ii), first note that
\K\[X,y) -3fi(zo,y)]i
=1 @®,V)2y +£ \Qt(xy) - Qt(x0,y)\2
=+ ] -

If I®- M > li then by the inequality (c), for 13 we have

h <C

W xq\2 —iEadl
Ix —y3(*fi)

IfJ*-y|< 1, an application of the inequality (c) yields

Hevl /1%« IN
B3 s o ARTp-7729y A

- N

+c/f
J G AT W SR t
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To estimate /4, we apply the inequahty (d) to obtain
l.sc £°\,- n|k-e-*|-»\a<c

This completes the proof of Lemma 2.4.
Lemma 2.5. Let >4, N\ = d(j —1) and N2 = d(% —1) —1, then there exist
positive constants C7ar,, Cn3 such that

(i) \K3(x,r)\a8 < CMJa z\ d(l+ |*-*|) *

(ii) \Ki{x,z) - K2{x,Zg)\b < C» ™ + |9 _ 30" ¥ _ z\d+I» 2lz >

Is-*1.
The proof is similar to that of Lemma 2.4, and hence, is omitted.

Theorem 2.1. Let 1 < p\ <p < 00 and w 6 Ap, (<p). Then, for | > 1there is a

constant C > 0 so that

Hst()I[j>M < C|J/IliP ().

Obviously, Theorem 2.1 is a consequence of Lemma 2.4 and Proposition 2.2.

As an immediate consequence of Theorem 2.1 we can state the following result.
Corollary 2.1. Let 1 < pi < p < 00 and ui € API{<p). Then for I > 1 there is a
constant C > 0 so that

C-4yi/l™nn < |MN|lj>(w) < CWA\Lp(U.
Theorem 2.2. Let 1< pi <p < 00 and w6 Ap, (<p). Then for each A > 2(fio + 4)

there is a constant C >0 so that

TTb>b <c\\n”bl.
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Proof. Adapting the arguments used in [15], pp. 43-44, and using a duality argument
and Lemma 2.5 and Proposition 2.1, we obtain the desired result.
As a consequence of Theorem 2.2, we have the following result.

Corollary 2.2. Let 1<p < oo and (x) = (I + |[x])'Twith 171 < A). Then there exists
a constant C > 0 such thatfor each A> 2(A) + 4)

WPVIU'H - ~1/IbH-

Proof. Note that bI(x) = (1 + |x|)7 € Ai(ip) if -00< 7 < ft- Applying Theorem
2.2, we get
|Ca/||lz*H ~ C|[/IIE*M-
This implies
\ AN
Thus, Corollary 2.2 is proved.
Theorem 2.3. Letuj(x) = (1+ |i])7/i(x) with fi 6 Ap(Rd) (Muckenhoupt class) and

7 e R. Then there exists a positive constant Ao depending on 7 and . such that for
each A> Ao
Hillicm + HsalU-h A c\\f\\Lp(U).

Proof. Using the results from [5], we obtain

IMIz00 + ii5aii£*oo -
where \i 6 Ap(Rd). By the properties of the Muckenhoupt class Ap(Rd) (see [4]),
there exists e > O such that
(21) 51| ML) + iiSaib»(m+)) » ¢ LLb*Net+ )Y
On the other hand, for wi(x) = (1 + |x|)7(1+e>/" and Ao = 2(I71+ 4)(1 + e)le, by
Corollaries 2.1 and 2.2, we have
(2-2) Ibllbsio*) + W 511 X )<cu /L"),

Putting together (2.1) and (2.2), we obtain the desired result.

Tb prove Theorem 1.2, we also need the following result proved in [5].
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Proposition 2.3. Let A> 2 and Tm be as in Theorem 1.2. Then for all 1 > d\/2+ 1
we have
9iiTmf){x) < Cgl(f)(x), a.e. x e Rd.

Proofof Theorem 1.2. Combining Corollary 2.1, Theorem 2.3 and Proposition 2.3
we have, for / G Cc(Rd)

UT*/bm <Obl TwM\\n) < c\lW\W\e*{w) <cuy/bwm
provided that w, | and Asatisfy the conditions of Theorem 2.3 and Proposition 2.3.
The proof is complete.
Using the same transference principle as in Corollary 3.4 from [6], we obtain a
counterpart of Theorem 1.2 for Laguerre expansions when a = ~ —1.

The next two lemmas were stated in [5].

Lemma 2.6. Leta = where n 6 N+. Then for some constants a* € R, Kk =

1,2 eeo, the following equalities hold;

mkfc(z2)= X) “k4HakMM* VzeRd, fc=i,2---.
[k|=*

We shall need the following elementary fact.
Lemma 2.7. For every f e L"O, 00) we have
Jr«/(N 2)M ~id~2)dz = 01}0 f(t)dt.

Corollary 2.3. The assertion of Theorem 1.3 remains valid when a — andn is

a positive integer.

Proof. Let m(£) be as in Theorem 1.3. The function M (f) = m((fi H-— fd)/2)
restricted to the lattice Nd defines a multiplier (Af(k)} which satisfies the conditions

(12)

By Lemma 2.6 we have
(rm)(N2)=E E m(k) < f’L%><**i*w\z\a>* 6 Rd.
fc=0 |k=fc

Letw(z]) = (L + |z])7|z|pi for7 6 R and - f —£ <i <1—£ + 8« Observing that
we can use Lemmas 2.4 and 2.5 to apply Theorem 1.1
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to obtain
P-Abm -jfIff-flw M *)"

M(2K) < f’Li> <Rk()
k=0[K|=*

|2]0,,-(d-2)w(|z|2)dz

d-2)(5-1 2d
. E E < /’ bK > <"1<>>72k(2) |Z|( )( )W(|Z| ) z
T It feQ|K=fe
< CIINi'Chy»)!

Thus, Corollary 2.3 is proved.

3. Multipliers for Laguerre expansions

In this section we prove Theorem 1.3. The strategy is to deduce the result from

the special <oxo> discussed in Corollary 2.3, by using interpolation of the following

analytic family of operators
()

Tmf=E m*<f > wbere Ze C > 1-
=0

We first recall the definition of Kanjin’ operators T “+<e and prove their boundedness
for the range of 1&i7(R+).

In this section we will use the following notation from [5, 7]. We denote M{B) :=
(1 + |6])weck® for suitably large constants N and c. The constants appearing in the
section such as C, cor N may depend on a, p, 6and 7, but are independent of € R.
Finally, it is also convenient to denote the admissible range of indices by
(CRY

*={Q ,M ,7) 6(0,1) X(—1,000 xRxR: - - <S<1- &

We first state the boundedness of T °+w in L*7(R+) for special values of a.
Observe that (see [7], p. 539), the Laguerre polynomials can be extended to complex
parameters z 6 C with Rez > —1 by the formula

EMM _ ni% x+ke"} y* T(k+z+1) {yY
k W k\ly*e-v Fk-j +Dr(j+z+10 jl v>U’

and likewise for the corresponding Laguerre functions we have
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Moreover, the following lemma is true, which was proved in [7].

Lemma 3.1. Leta > —1 and f € C7 (0,00). Then for each N > 1 there exist a

constant C > 0 and a number ko € N such that for all Kk > ko and 8e R

(3.2) 1</, W%+e > I< C(1+ |5])4W+ae f @I(1 + k)~N.

Using this lemma one can define the complex transplantation operators
00
T*f=J2< f,Lk> L% Rez> 1, a>-1,
*:O
at least for functions / 6 Cq°(R+).

For every a > —1 and ©6 R we define a multiplier by
(3.3)
Observe that Ais an analytic function of when Ref > -1 - a. The following result
has been proved in [5].
Lemma 3.2. Let a > —1. Then the function A(E) defined by (3.3) belongs to
C°°(0, 00) and satisfies

sup (1+ K|)'E>'AQ] < Ci(l+ N)', VBB R, 1=10,1,2, eee,
€e[0,00)

where the constants Ci are independent of @

We prove Theorem 1.2 under the following assumption on the indices (*,a, <§7).

Assumption (A). The point (£, a, 5,7) is so that the multiplier operator T \f =

EA(A)</,LE>b*.withA = ADeasin (3.3), is bounded on Lf7(R+) and satisfies
k=0

HTa/lU;, < C7i(1+ WAL /TN, VOB R,

for some constants C,c,N > 0, where

Remark 3.1. It follows from Corollary 2.3 and Lemma 3.2 that the Assumption
(A) is fulfilled for parameters from the set A (see (3.1)) of the form ( , 6,7),

whenever n € Z+. Moreover, the Assumption (A) also holds for (5,a, 0,0) and for
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alla > - 1, and, by the duality, it holds for afixed ( , 6,-y) if and only if it is true
for (y,a,-6,-7).
In order to prove Theorem 1.3, we also need the following complex interpolation

result.

Lemma 3.3. Let PO = (—,00,<50,70) and Pi = (-, c*i, <G, 71) be two fixed points
from A for which the assertion of Theorem 1.2 holds. Then the assertion of the

theorem must also hold atthe points P={+,a,6,7) of the form

(3.4) P=(1 tPb+tPi, t6 (01).

Proof. As in Lemma 3.20 from [5], we define
a(z)= (L- z)ao+ zati, 6{z) = (1- z)SO+zSu and 7(z) = (1 - z)70 + 271,

for complex zZ*=a+i©and 0 < B < 1 Recall that M(0) = (1+ |0])NecW for suitably

large constants N and c. By Lemma 3.1, the operator
T AT = f>(fc) < fLVIT>4 HT= (TZHIYTATZ iTf
is well defined and bou;ded at least when / € La(R+). We define an analytic family
of operators by letting
S,F(y) = VW@ + v)*)IT“<)(P(N)i-{M (1 + x)-iW)(y)

at least for F € L2(0,00).

Now we are going to show that {S*} satisfies the conditions of Stein’s interpolation
theorem (see [2]). To this end, observe first that, given any two subsets E\,
compactly contained in (0,00), the function

>->t>(z) =< S (XEh),XB, >

is well defined whenever 0 < Rez < 1, and satisfies

(3.5)
PWI < I[iECV iW(i+x) TWXBI)|]2]|(y-"W(l +y) 7« XE2)||2
< CEZ||(77;)+HQI- a0)e)*T“WmraW i(“i-“o)e(a *(*)(I + i) - 7WXBI)||2
< CBjM (0)|[(x-™) (I + 2)-'rW XBi)||2
<CEiCb,M(8),

by the L2 boundedness of TLf+1T, Va > —.
54



Next, we show that the function is holoinorpliic in a neighborhood of the strip
S := {0 < Rez < 1}. Indeed, since ||[7m~||im y isuniformly bounded in the compact
sets of S, similar to (3.4), it is enough to show the holomorphy of z «-+< SX~, G >
for all F, G e C£°(0, 00). Denoting f(x) = x~4W (I + X)7"F(x), g(y) = y~s=\I +
y)~/WG(y) and a(z) = a + tr, we can write
<SXF,G> -< Tmz)(f),g >=<TAT riT{ f) " +iT{g) >
=Y ,mk<J Lk~iT><g LB+iT>
=]Tme<*",(e)(I + *)YWF ,Ljw ><y-sw{l+yywF,L"w >.
K

Since the series converges uniformly when z belongs to a compact set of §, it is easy

to show the holomorphy of the map
reb5un<xHAC>(1+ {) >= Jr XH(‘>(L+ X)) F A x )L \x)dx,
o

forall F 6 C” (0, 00).

Combining this with (3.4) we conclude that @® is holomorphic in the strip {0 <
Rez < I}, continuous in the closure and has admissible growth for complex interpolation.
To verify the conditions of Stein’s interpolation theorem (see [2]), we only need to

show the boundedness of the operator Sx at the limiting bands
So, : LPO{R+) -» °Ne+) and SlHe:L (R+) -m ' (R+).

When Rez = 0 we use the assumption that Theorem 1.2 (and hence Assumption (A))
holds for the point po- Then, both T£° and bounded in L" 70 and
in L \ _7Q which implies

s n

| + X)7<«>F)||i£ 10

=mwiifiu.
When Re z = 1, we have a similar result. Thus, by Stein’s theorem 5, must be
bounded in I"*(R+) for = + and all a 6 (0,1). Letting s = t and using
(3.4), we have pt=p, a(t) = a and 5(t) = 5.
Moreover, such boundedness translates into

ITO Ilb; Hyd(t)(i+ v)7(02S (0 (id(t)(i+ *)7(t)/(a:)*-4{t)(i+ ® )" 7()i>

115, (x4() (L + x) ") ()"
M4 (1 +x)7%/(x)[lip = M |/]U jt,
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showing that the assertion of Theorem 1.2 holds for the point P = 7). This

completes the proof of Lemma 3.3.
Proofof Theorem 1.3. We need to show that the operator is bounded in 7

for every fixed P = 6 When a > 0, o = an := and n is
an integer so that a,,_i < a < a,,, then we easily find two points from A of the
form PO = (pittn—+"0i70)i Pi = (piant”ii7i) and some t € (0,1) to satisfy p =
(1- t)Po 4-tP\. When -1 < a < 0, one can choose a number ao close enough to -1,
and interpolate between the points PO = (5, a0, 0,0), Pi = (£, 0, <G, 71). By Corollary
2.3, the assertion of Theorem 1.3 holds for points Po and Pi, and therefore, by Lemma
3.3, it must also hold for the point P. Theorem 1.3 is proved.

4, Proof of Theorem 1.1

In order to prove Theorem 1.1, we need the following result.

Theorem 4.1. Leta > -1, 7 6 R and ©€ R. Then the operator TE+IB can be
boundedly extended to L$7(R+) forall1 <p <ooand 8§ —J <£<1 —j + f.
Moreover, there exist constants C,c > 0 and a number N € N(depending only on

a,p,6,7) such that

(4.1) [Z A1, < C(1+ Ne NeMWA\Ln, VO6 R.

The proof of the theorem follows the scheme proposed by Garrigds et al. in [5] and
Kanjin in [7]. Obviously, under Assumption (A), it is enough to show (4.1) for the

operator

fatie* y ( r(fcda+1) \1la +H$
“ wrn +a+1 +i0)) <f,Lk >Lk

instead of Tg+i$.

Following [5] and [7], we can define for e > 0 the operators

Go«()=Y"' (—+Q+1) \ 2 , + +B>
yr(H a+ | +e+tf)j </,L* >L~*

so that TE+ief(x) = hm Ge,ef(x) for aUx > 0, at least / € C7*(0,00) by Lemma

3.1. Moreover, the following remarkable formula holds (see [7]):

Tw Cm'* (¢ ) W(f)~7-
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Adapting the arguments used in [5], pp. 260-263, we can obtain the following result.

Proposition 4.1. Leta > —1,7 6 R and letp,S be such that5> —  ~. Then,
there exist constants C,c > 0 and a number N € N (depending only on a,p, 6, ) such
that

\GeAui,, w + B ONTW(\MDYL,, + II/(*)*"*1Iy,).
forall®@6R and all0<e< 1

Proofof Theorem 4.1. By Lemma 3.2 all the multipliers A= Aa.e in (3.3) satisfy the
conditions of Theorem 1.3. Hence, Assumption (A) is satisfied for all e A,
and we can infer Theorem 4.1 immediately from Proposition 4.1 and Fatou’s lemma.
Indeed, using these facts, for / 6 C* (0,00) and with some constant C (independent
of €) we obtain

AL, = \Txfs +ief\\LA

< cM m fs+ie'th’n
<CM(®) lim||G9¢/|L j7

< CM(8) lim (\\f(x)x* + W\ f(x)x-i\W\A
<cmM T nph
The proof is complete.
We also need the following lemma proved in [5].

Lemma 4.1. Leta > -1 andz = a+ir witha > -1. Then the operator T* is
bounded in L2{R+).

Proofof Theorem 1.1. We fix /3> Qo > -1 so that -£<6<1- j+ -
Hence, we need only to show that t£0 and T£° are bounded operators in LE7(R+).
We let P := (i, a,5,7), which clearly belongs to A. It is easy to see that there exist
two other points in A of the form Pqg = (j*a0,<50>70) and P\ = (j.aj.0.0), and
some t € (0,1) such that P = (1 —t)Po + tP\. This can be done explicitly if ai is
chosen sufficiently large, by taking JO= <&/(1—t) and = mAs in Section 3, we
use the notation a(z) = (1 - z)qO+ S(z) = (1- 2)S0and 7(z) = (1 —2)70 for
zecC.

By Lemma 4.1, we can define the analytic family of operators

SX= yapx)a + YTMT?2M(P(X)x-aM(1 +i)-7w)(y), 0<Rez<l,
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at least for F e £“ (0, 00). Then, arguing as in Section 3, we conclude that S- satisfies

the conditions of Stein’s theorem, where the boundedness of the operators
Sie : ) “*U* (R+) and Si+ie mPO(R+) -> L70(R+)

follows from Theorem 4.1 and Lemma 4.1, respectively. Thus, St must be bounded
in ' = Lf, which translates into

WTSofWa  41& (* (2~tNe (1+ * ) (1_thB/(*))li>
To<jfur(mon (i +*)(Q~ /( )u*

This proves the required i f  boundedness for the operators TgQforany >ao > - 1.
The boundedness of T% follows by duality. Indeed, if (£,a0,S,-y) e A, then an
elementary algebraic manipulation shows that (jjr.ao,—<J—r) £ A as well, where
i =1- A Then, forall/ e C* (0, 00) we have
N72enut = sup  f o TATX)XI (I + x)'Ig{x)dx
n llelll= Jo

= Nsup” f{y)Tgj(xs(l +x)'rg)dx

< I (1+y)7/(v)iib» |s8up_i 11~( (1+ )75))| 17

MVA\LSYyM 8P 134(1+a07y)IEN

= M \\fh’i y-

Theorem 1.1 is proved.

5. Applications

In this section, Westudy the Littlewood-Paley (/-functions for the Laguerre semigroup.
Consider the heat diffusion semigroup e~tL associated with the Laguerre operator
L = INe . Similar to the classical case, treated in [16], -functions of order 1= 1,2, —
can be defined by

I’ * } [
The main purpose of section is to extend Theorem 5.4 from [5] to our case. More

precisely, we are going to prove the following result.
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Theorem 5.1. Leta>—,7 €R, 1<p < o0, and 6 be such that -/p —a/2 <
S<1—I/p +al/2. Then for every | = 1,2, «e¢ there is a positive constant C such
that

. <\gia)fh r < . f 6.C“ (0,00).

Proof. The proofis similar to that of Theorem 5.4 from [5]. So, we only give a sketch
of the proof. Since the first inequality follows from the usual polarization argument,
we need only to prove the second inequality. We first consider the case 1= 1. For
simplicity we write g(f) = g[a\f), and drop the superscript (a) when reference to
such index is clear. Recall that the kernel ht(x,y) of e~tL is given explicitly by

**»*) =S e~tffc+r )ifc(V)E*(*)=fz7ep{“ fr7(w +2)}/*( 71\ ) *

where r = e t, la = i~aJa(is), and Ja is the usual Bessel function of order a (see
[10)).

We first claim that the assertion of the theorem is true when a = s" . Indeed,
denoting ®(x) = |i|2, it is easy to see that for x € Rd (see [10]):

=@ (L)

Hence <?(N(| |12) = 4 (-™)] |“, where g\ was defined in Section 2. Following the
same lines as in the proof of Corollary 2.1, the claim can be obtained from Proposition
21.

To prove the assertion for any index a > -1, we split the operator into two parts

as follows:
172

where to is a sufficiently large number to be chosen later. In the remaining part of
the proof, we will need the following result, proved in [5]: there exist a small number
ro 6 (0, ro) and a constant C = C(a, ro) > 0 such that

(5.1) 0<sup d <Crhrynr'zhe-b+'V8 Vy, 2>0.

r<ro
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We begin with the operator ), and choose to such that «“* = r0. By (5.1) we

have
9()) f(NO \f(z)\dz
tdt\ \f{z)\dz
2 nv-
| (»*)] rilnr(ir| 1N1*)N»
<C [ y°1*ra'2e-b+a)/a\f(z)\dz.
Hence,

So

x [/ + 2)~Tp'dz

and both integrals are finite since —1/p —a/2 <S<1—I/p + a/2 and 7 € R.

Now we turn to the operator <* which we need to write as a linear vector-
valued operator in order to use transplantation. Let H denote the Hilbert space
L2((0,00), *)- Consider the mapping G :L2{R+) ¥ L2(R+;H) defined by

G(f) = Ga)(/) = 1 e L2(RY).

Since g(f) = |G (/)|h, the Lj7 boundedness of g is equivalent to the boundedness of

G from into Lgn (R+\H). Likewise we define

G.(f) = Gia) = { ~ (e “ti(a)/)X(0,to](*)}t>0.

Finally, wc denote by Tp the vector-valued extension of the transplantation operator
to L2(R+; ff), defined as follows

3?2({/*}>0) = {1?2(/*)}*>0, {*}>0e L2(R+;tf).
By Krivine’s theorem (see, e.g., [8]), the vector-valued operator is bounded in
N FJ(H+;4)  and only if is bounded in £7( +). Denote by M the vector-
valued extension of the multiplier operator M f = m{k) < , > if, where

m(e) = mit is easy to see that this multiplier satisfies the conditions of Theorem
1.



Given a > —1, we choose /3= %—1, for some positive integer n such that P > a.
It is known that (see [5], p. 272):

Gia) = 720 Np-aoMo o T%,
where

= {~"~(, 1<) } >0, {NNbo e b2(K+:9).

Applying Theorems 1.1 and 1.3, we can obtain the boundedness of these operators in
LJ7 or jLI7(R-(;;H) when — —f<<5<| —£+ § and 7 € R. Thus, Theorem 6.1 is
proved for | = 1.

Now we proceed to prove the Lj7 boundedness of gi when | > 2. Observe first
that by the previous result we know the boundedness of G : Lj7 -> Lj7(R+;4),
which by Krivine’e theorem implies the boundedness of the vector-valued extension
G: LMN(H) -+ 18rr(H xH) given by

{/.}.*> -> {Gfs}s>0= }

Thus, we obtain the boundedness for the composition operator 0G : LEn{H)
JLE7(# XH). Note that \Go Gf\jjxH = gPa(/)2 (see [5], p. 273). Combining all the
above facts we obtain the desired estimate ||< (/)||«,.* < C||/||fI7. Similar arguments
and induction yield the same conclusion for gi for all 1 > 1. This completes the proof
Theorem 5.1.
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Abstract. In this paper, we study the problem of existence of positive solution to the fol-
lowing boundary value problem: D°+u"(t) —g(t)f(u(t)) —0, te (0,1), ti"(0) = u"(l) = 0,
qu(0) —bu'(0) = cu(l) + du'(l) = bin(£<). where jD"+ is the Riem-
ann-Liouville fractional derivative of order 1< tr <2 and / is a lower eemi-contlnuoua fun-
ction. Using Krasnoselskii’s fixed point theorems in a cons, the existence of one positive
solution and multiple positive solutions for nonlinear singular boundary value problems is

established.
MSC2010 numbers: 34A08; 35B09; 47H10

Keywords: Cone; Multi point boundary value problem; Fixed point theorem; Riemann-
Liouville fractional derivative.

1. Introduction

The purpose of this paper is to study the problem of existence of positive solutions
for the following m-point boundary value problem for fractional differential equation

E>*+(%) g(f(u(t)) = o, te (o.1),
(1D lu"(0) = u™(l) =0,

a«(o) 6u'(o) = E N 2mM (&),

cu(i) + di(i) = EE72M6).
where is the Riemann-Liouville fractional derivative of order 1<a<2, m>2
(me N), abc,d >0, p=a+bc+ad >0 & € (0,1), a*,6*€ (0,+00) (t =
1,2,...,m -2),ge C((0,1); [0,+00)) and 0 < fg g(r)dr < 00, and / is a nonnegative,
lower semi-continuous function defined on [0, +00).

Fractional differential equations have been of great interest recently. This is because

of both the intensive development of the theory of fractional calculus itself and

N. N. thanks Razi University for support.


mailto:nyamoradi@razi.ac.ir

the applications of such constructions in various scientific fields, such as physics,
mechanics, chemistry, engineering, etc. For details we refer to [5, 8, 9] and references
therein.

The solution of differential equations of fractional order is much involved. Some
analytical methods have been developed, such as the popular Laplace transform
method [21, 22], the Fourier transform method [16], the iteration method [23], and
Green function method [15, 24]. Numerical schemes for solving fractional differential
equations also were introduced (see, e.g. [3, 4, 18]). A great deal of effort has been
expended over the last years in attempting to find robust and stable numerical as
well as analytical methods for solving fractional differential equations of physical
interest. The Adomian decomposition method [20], homotopy perturbation method
[19], homotopy analysis method [2], differential transformation method [17] and varia-
tional method [6] are relatively new approaches to provide analytical approximate
solutions to linear and nonlinear fractional differential equations.

The problem of existence of solutions of initial value problems for fractional order
differential equations have been studied in the literature (see [1, 11, 21, 23, 27] and
the references therein).

In [13], Liu and Jia have investigated existence of multiple solutions for the problem:

+P)ew) + 2/~ «(0) =0. *>0, 0<a<1,
<p(0)ti*(0) = O,
limt_»oo u{t) = °° g(t)u(t)dt,

where °D%+ stands for the standard Caputo’s derivative of order a. Some existence
results for the problem (1.1) with a = 2 were obtained by Yanga et al. [25] and Zhao
et al. [28].

In [12], Liu has considered existence of positive solutions for the following generalized

Sturm-Liouville four-point boundary value problem:

«'(*) + g(Of(u(t)) = 0, 16 (0,1),
au(0) -  '(0) = aiu(fi),
cu(l) + du'(l) = &iu(fc),

by using the fixed points of strict-set-contractions.
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In [26], Zhou and Chua have studied the following fractional differential equation
with multi-point boundary conditions
('D'Mt) = f{t, u(t), (Ku)(®), (Hn)(1)), t6 (0.1),
Sau(0)- '(0) =
(cu(l) +du'(l) = )
where D%t is the Caputo’s fractional derivative of order 1 < a < 2. By using
the contraction mapping principle and the Krasnoselskii’s fixed point theorem, the
existence of solutions was established.
In this paper, motivated by the above-mentioned works, and using Krasnoselskii’s
fixed point theorems in a cone, we show that the problem (1.1) has positive solutions.
The remainder of the paper is organized as follows. In Section 2 we state some
preliminary facts needed in the proofe of the main results. We also state a version of
the Krasnoselakii’s fixed point theorem. In Section 3, we state the main results of the
paper, that establish existence of at least one or multiple positive solutions for the
problem (1.1). Finally, in Section 4 we discuss an example that illustrates the main

results of the paper.

2. Preliminaries

In this section, we present some notations and preliminary lemmas that will be
used in the proofe of the main results.

We work in the space C([0,1]) with the norm | || = maxo<t<i |u(t)|. We make the
following assumptions:

(HI) / e C(]0, + 00); [0, +00));

(HI*) / is a nonnegative, lower semi-continuous function defined on [0, +00), i.e.,
there exist I C [0,+00) such that for all xn € /, xn -4 xq as n —* 00, one has
f(xo0) < limn, f(x-). Moreover, / has only a finite number of discontinuity points
in each compact subinterval of [0, +00).

(H2) g e C((0,1);[0,+00)) and 0 < g(r)dr < +00. Moreover, g(t) does not
vanish identically on any subinterval of [0, 1];

(H3) a,b,c,d > 0, p = ac+ bc+ ad > 0, & e (0,1), aithi € (0,+00) (i =

1,2,....m- 2),p- E5I72 >0,p- Efei2bKE<) > 0and 4 < 0, where
4= - 12 p- E<Ili2“tvVCf)
p-T N b ill -SiwW fi)
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and fort £ [0, 1]
( ip(t) = b+at and tp)=c+d-rt

are linearly independent solutions of the equation x*'(t) = 0, t £ [0,1]. Observe that

is non-decreasing on [0, 1] while is non-increasing on [0, 1].

Definition 2.1. Let X be a real Banach space. A non-empty closed set P C X is
called a cone of X if it satisfies the following conditions:

(1) X£ P, 4> 0 implies fix € P,

(&re6P,-xeP impliesx = 0.

Definition 2.2. The Riemann-Liouville fractional integral operator of ordera > 0

of a function f £ L1(K+) is defined as

where () is the Euler gamma function.

Definition 2.3. The Riemann-Liouville fractional derivative of order a (n —1 <

a < ,n£Njis defined as

where the function f{t) has absolutely continuous derivatives up to order (n - 1).
Lemma 2.1. ([7\). The equality D%t+1%t+f(t) = f(t), 7 > 0 holds for f £ L"O, 1).

Lemma 2.2. (\7\). Leta > 0. Then the differential equation

has a unique solution u{t) = cii0 1+ 3 2+ eee+ afR, i=1,..,n, and

n—l<a<n.

Lemma 2.3. ([7]). Leta > 0. Then the following equality holds for n £ 21(0,1),
L&u £2™ 0,1)

lo+Do+u{t) = u(t)+ dt@ 1+ c3t° 2+ =m+ Cnta~n,

where G€ R, <= 1,... ,n, andn- 1< a <n.
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Now we present the Green function for a boundary value problem involving fractional
differential equation.
Observe first that for y(t) = u''(t) the problem

~tC)- () () =0, t6(0,1),
Wt (0) = u(l) = 0,

becomes into the problem

“«()(«(*)) = 0, te (0,1),
(1] \y(o) =y() =0,

Lemma 2.4. If (HI) and (H2) are satisfied, then the boundary value problem (2.2)
has a unique solution given by

23) Y(<) = - J/ H{t, e)s(s)/(u(s))ds,
[0]

where
- -1-~ )-1 O<ax<ic<l|
(4 A I- . O<t<acx 1.’
Proof. According to Lemma 2.3 we can write
y(t) = 1 +(g(t)f(u(t))j - c\ta~l - a f 2
= rfcj/a(* - s)t~1g(s)f(u(s))ds - dt° 1 Qta 2.

Since a —2 < 0, in view of the boundary condition y(0) = 0, we must set = 0
ifa = 2, and if a < 2 then in order to have cjt 2 well defined we must choose

= 0. Also, using the boundary condition j/(I) = 0 we must set ci = fo(l —
s),r- 1g(s)f(u(s))ds.

Thus, the unique solution of problem (2.2) is given by

ve) = ( 3a-lg{s)f(u{8))ds - — (i - a)a-1p(a)/(u(a))de

--Jr [* E_a_:_]:(_l______a_)%_]_-_:g_:_a)ﬁ_} 5 (SW(U (a))c ie yf I [-ﬂl---.%_z___}g (53/‘\[:/('” {'s))d S

= - [ 4d(i,a)5)/(n(a))ria.
Jo
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Lemma 2.5. If (H3) holds, then fory e C[0,1] the boundary value problem

V(1) = y()» <6 (0,i),
(2.5) " au(0) - bu'(0) = *«(&),
cu(l) + du'(l) = ESI12M ft).

has a unique solution given by
26 O = [lJ g{t.s)y{s)ds + A(y(@)d () + S(i/(a)ip(t)],

where
/

27 0(*.-)- {

E£72* f{G&-MO* p EE£i2<w(6)

28 AVM) = £ EnTomifo G((i s)y(s)ds - £<=72M fc)
. . CEE*u4«6) EE28IINGte)n(s)*
(29) G« =V ST EX 3w (&) H Zfbifi G(b,a)V(s)de

Proof. The proof is similar to that of Lemma 5.5.1 in [14], and it is omitted. O
We assume that ©6 (0, §), and for convenience, we set

r=»M A>.£Db
Aj = min{"mn_ep(i), * ~ )1 A3 = max{l, [i<pll, [M]>

Lemma 2.6. Letp, [/ 0 and ©G (0,5), then the following inequalities hold:

(2.10) 0< G(t,s) < G(a,a), fort,s [0,1],
and
(2.11) G(t,a) > AiG?(a,a), for t6 [6,1- and a6 [0,1].

Proof. The inequality (2.10) is obvious. So, we have to verify only the inequality
(2.11). To this end, observe that fort 6 [0,1 —¢] and a 6 [0,1] we have

G(ts) = (W, 0<8<t<l—Q
G(*.5) 0<t< 8<1,

> (S
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Proposition 2.1. Fort,s g [0,1] we have
0 <HA(*,B)<HA(*,B)<

Proposition 2.2. Let ©6 (0, ), then there exists a positive function g 6 C(0,1)
such that

emmeH(tss) > e(@)d(a,a), a6 (0,1).

Proof. For ©6 (0,5) we define

gi(t.a)
gi(t,a)

Then we have

#f 1(l —a)™1—(t—a) 1, O<a<t<lI,

0O<f<acx< 1.

- %ita) = (a-D)(~ 2(1-a 1- (t- a) 2

implying that ffi(-,a) is non-increasing for all a € (0,1]. Also, taking into account
that (-, @) is non-decreasing for all s 6 (0, 1), we can write

se (0A
BT TBAM) = Tin{~~" ,en~}, a6 [Bl- 6)
B€ [1—s,1).
a6 1)
a6 (0,wm),
" 8 £ IM1).

where 0 </x<1 —0 is a solution of the equation
- A) 1-(1-0- mM1=sa_1(1- mI 1-

It follows from the monotonicity of <Land  that

max A(i,a) = A(a,a) = ——— ----—-mm-m- , a6 (0,1).
Therefore, setting
iibl ¢ ™~ ™ b ¢

1(1) elM ),



Remark 2.1. It follows Lemmas 2. and 2.5 that ) is a solution of the

problem (1.1) if and only if
(2.12) )=f G{t,s)W(s)ds+ A(W (s))Ne + B(W{a)Mt),

where W(s) = ft H{s, T)g{j)f{u{i))dT.

Lemma 2.7. Let (HI), (H2) and (HS) befulfilled. Then the solution n of the problem
(1.1) satisfies the following conditions:

(iy )>0fort€ [0,1],

(U) mine<t<i-euW ~ [||u1||.

Proof, (i) By Lemma 2.6, Proposition 2.1, formulas (2.3) and (2.6)-(2.9), we have
G(t,s) >0, ~(«)>0, A(W(a))>0, B(W(s))>0,

implying that ) > 0 fort 6 [0,1].
(if) By Lemma 2.6 and formula (2.12) for t 6 [© 1 —& we have

) Jf 1G(t,5)W(s)ds + A(W{8)W t) + B (W {a))<p{t)
o
> Al J[ G{3,5)W{s)ds + A(W(s))ip{t) + B(W(s))v(t)
0
> b G(s,s)W(e)da+ ~"-A3[A(W(a))+B(W(e))]

F[\] G(a, s)W{a)d8 + A3[X(W(e)) + BOK(«)]]

\%

> m i
This imphes mina<i<i_e ) > IMix||. Lemma 2.7 is proved.
Next, for ©e (0,5) we choose a cone K = Ko in Cx([0,1]) by setting

K=Ke={u€G[0,1 )>0,swun_ ) > [|v|},
and define an operator T by

(213)  (TuT = I G(Ls)W(e)da+ A(W ()W) + B(IY (2)M*),

where W(s) = 1H(a,T)g(T)f(u(r))dT.
It is clear that the existence of a positive solution for the system (1.1) is equivalent
to the existence of nontrivial fixed point of T in K.

Lemma 2.8. Suppose that the conditions (HI) and (Al) hold, then T(K) C K and
T :K ¥ K is completely continuous.



Proof. By (2.13), for any u 6 K we have (Tu)(t) > 0, and for t e [0,1] we can
write

(T« = f Gt a)W(@)da+ AMW{a))yp(t) + B(W(@))ip(t
< J G(s,s)W(s)da + A3[>1("(s)) + B("(s))].
[0
Thus,

[ITn|| < }0 G (s,5)™(s)ds + A3[A(W(s)) + B(W(a))]-

On the other hand for t € [0,1 —§ we have

(Tu)(t) JF G(t,a)W(a)da + A(W(s))ip(t) + B(W(s))ip(t)
o

> i J[ G(a, a)W(a)da + A(W(@))r/>(t) + B(W(a))y>(t)
[¢]
> AXJIo G{a, a)W{a)ds + ?‘Is *A3[A(W(a)) + B(W(e))]

> T[Y G(a,a)W(a)d« + A3[i4(W'(e))+B(W'(a))]]
> ruriu,.

This implies TK C K. Using standard arguments and Arzela-Ascoli theorem it
can be easily verified that T : K K is completely continuous, so we omit the
details. Thus, Lemma 2.8 is proved.

As it was mentioned above, our approach to the existence of positive solutions
for boundary value problems for fractional differential equations is based on the
Krasnoselskii’s fixed point theorems in a cone. For completeness of the presentation
here we state the following Guo-Krasnoselskii fixed point theorem in a cone (see [10]).

Theorem 2.1. Let E be a Banach space and K Q E be a cone in E. Assume that Hi
and are open subsets of E such that O e fij and fii C . LetT :K (™~ \)

K be a completely continuous operator. Then under each of the following conditions
the operator T has afixed pointin K ( \ \):

(A) |ITull < |u]l, Vué KM gMi and ||Tu|| > [Ju]], Vu 6 K ML 2;

(B) ||Tul] > W, Vu€ K 9Mi and ||Tu|| < | |, Vu€ K
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3. Main results
))((_

We define = {u 6 Kiu]l< 1}and 0 ,={ueK :||u||= 1}, where
I > 0. Observe that if n e alifort6 [©1- €, then we have I'/ < u< I. Also, for

convenience, we introduce the following notation:

/, = inf{~lue[n,Z]}, /" =sup{~plue [0,i]},
/,;c = liminf /« = limsup”~”; ( :=0+ or +00),

u-*¢ wu -u-*e «
Y = min gfs)

LW @ L U[(FOoEn) L taT)* ) +n” +n>E@)
. i

In the theorems that follow, we always assume that the assumption (Hi) is fulfilled.

Theorem 3.1. Suppose that then exist constants r,R > 0 with r < TR forr < R,
such that the following two conditions are satisfied:

(w)y ro<-,

(H5) fR> M.
Then the problem (1.1) has at least one positive solution u € K, such that

0<r<HI <R.

Proof. Case 1. We prove the result assuming that (HI) is satisfied. Also, without
loss of generality, we can assume thatr < ' forr < 4.
By (H4), Proposition 2.1, and formulas (2.8) and (2.9), for n 6 fir we have

AMW) < (rfa)(*)(@ Dhr YZ-x<HtiG(b,8)(SIg(T)dT)ds p Y Z ? bIV&)

n YZ~i3bijSG(b,s)(£Eg(T)dT)ds -YZibMb)
(31> “Bg® "I
and
B(W) < e fL - YZLi <41In G(&>s)(fn g(r)dr)ds
a P~T*Li G(£i,s)(f0 g(r)dr)d8

. ( Sf 1 -7



Therefore, by (H4), Lemma 2.6, and formulas (2.13) - (3.2), for t € [0,1] and u 6 fir
we can write

(Tu)(t) Jfol G(t, 8)W (8)d8 + A(W(s))rp{t) + B(W (e)Mt)
- 9{r)dr)

+r™)(i)<a_lwrlvw + B g ¢ (a~1>mr5*HO

MNa)tya~)wr[(jo GMas)ds){Jo 9(r)drj +/13l + /138]
= r= ull
This implies that ||Tu|| < ||u]| for u 6 fir.

On the other hand, by (H5), Proposition 2.2 and formulas (2.8), (2.9) and (2.13),
for u 6 Ma we have

A(w) > W eYa-')MK TZ~12bl Gui.ly, 199(T)dryds p Er.iswte)

A E™T2b j;-eGte,S)(/;-% (r)dr)dS -iz i2M 6)
(33) = (f~))e 162(a 1)(,"1)mir~-
and
m > N -AMR - £ £ “aBuKif) *1Y °(C "W 1*gNe)d°
A P-1£?2L1 i) EE?bifo 0( 8)( }-°g(r)dr)ds
(34) =

Therefore, by (H5), Lemma 2.6 and formulas (2.13), (3.3) and (3.4), fort 6 [0,1] and
n € Mg we have

(Tu)(t) JI G{t,s)W(a)d8 + A{W(a))i>(t) + B(W(s))<p{t)
o

> Ma[~y(1 - eLWe)( g(r)dr) + A2A + N213]
R=IN-
This implies that ||Tul| > |u|| for n 6 Mg.

Therefore, by Theorem 2.1, it follows that T has a fixed pointn in K (Mg\ Mr).

This means that the problem (1.1) has at least one positive solution uE K satisfying

0<r<|ul <R.
Case 2. When (HI*) holds, by applying the linear approaching method on the
domain of discontinuous points of / we can construct a sequence satisfying
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the following two conditions

(i) fj 6 C[0,00) and 0 < fj < fj+i on [0>°°)i
(i) lim™-foofj =f>3 = I»2....... “ Pointwisely convergent on [0,00).
According to the Case 1, for f = fj the problem (1.1) has a positive solution uj(t)

given by

ujity = jf* G(t, 8)( A(a, 1)a(r)/, («n(r))~r)ds

H=12 fa G(6 =)(/q 5 (@ (r)/i(«i(T))*-)A, p- < ¥()
T L E”T2bif Gft,8)(jdA(@, TI(r)M AL A8 -2Zi Mb)
¥o(*) 1z ?2* Jqg <?(ft,«)(jd A (8iT)B(r)/,(8,(T))Nr)N

P Er=T2M (6) ErM=T2bilo <%, *)(J? A(a, T)*(1)/, (ii,(T))*-)N

= J {.,8)( H (8, T)g(T)fj(uj(T))dT~ds + rI>{H)Aj + tp(t)Dj,

forall t € [0,1] and r < ||uj|| <R, where r and R are independent ofj.

By uniform continuity of G(t, a) on [0,1) x [0,1], and <p(t), ip(t) on [0, Ij, for any
small enough e > 0 there exists S > 0 such that for , e [0,1] and |ii — \ < §
one has |G(ti,a) - G(t2,a)] < e, [v>(*i)- 4{ \ < eand |V>(ii)— { )\ < e Thus, for
* 6,1 and |ti -\ <6 we can write

M*i)-«i(*a)l < |G (ti,s)-G (t2,a)] * ( H(a,T)a(T)b(w(T))iT)<I8
+AjiI>(ti) - Wil + Bj\tp{t{) - <p(t2)|

S »m ¥ ) eetmMFnewtF(exe

Thus, {itjjjli are equicontinuous on [0,1], and hence by Arzela-Ascoli theorem

there exists a convergent subsequence of {u”~}”~. For convenience, we denote this

convergent subsequence by {uj}”, and without loss of generality, we assume that

Ihnj-too Vj(t) = u(t), Vtc [0,1], and r <|ju|] <R. By Fatou’s Lemma and Lebesgue
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POSITIVE SOLUTIONS FOR MULTI-POINT BOUNDARY VALUE PROBLEMS
dominated convergence theorem we have
ton uj(i) > f G(t,a)f [ H(,T)a(T) lim fj(u}(r))drgds
J-¥00 Jq \Jgq i ¥00/

E=12 /«occus)(flHa Dy Iim " TIrr~rda p- ££73M<)
,Cl| E ~i2biJo G(dua)(£ H(s,r)g(r) lim ~ fj(uj(r))dr)ds - ZZ 2M fc)

Sv(t) - HZ R2<ylldi) Eill2GIn Gfo,s)(/g H(s, r)p(r) limj-too />(uJ(r))dr)ds
N A P EEiI2M 6) EilT2bifo G(ti, a)(fo H(s, Da(™) lim ~» /,(uj(r))dr)ds

implying
(3.5) ) > 5 G{t,e)W(*)de + A(W (*M t) + B(W ((e))V(i),
o

where W (s) = fj H(8,T)a(T)/m(T)NT.
On the other hand, by the conditions (i) and (ii) we have

()< {, ) H(amamHAmn](T)NeT)ds
W EM=T27/n <7(&«)(/q H (.,r)fl(r)/(e.(r))dr)de p- L, 2<M6)
A E"T 2o <2(fi. *)(1? A< T)*(r)/(«,(r))*)N ESI M 6)

Mt) - E"T2<H®E) Efci2«@/glG(ti,s)(/n A(«, T)p(r)/j(ti(T))dr)de
A P Ei=72M fO E,t72b-£ G((i,3)(1d A (3, T)g{r)fj(u(r))dr)ds

By the lower semi-continuity of /, we can pass to the limit, in the above inequality as

j —* 00 to obtain
) < G(,3){ H(s,T)g(Mf(u(T))dr)ds

w(*) EN 2G1/g G(6,)K 1 H{a 1)a(r)/(«(T))<iT)iB p- M 6)
A E fci2bifo G((i a)(fo H(s,T)g(T)f(v(T))dT)d3 - M 6)

. ?2(%) E™72%*«*) ES.T28*/n 0(6,a)(jJ A(a, r)e(r)/(u(r))dr)de
A P IT=2M &) T™ ? bifo G(&, a)(fj H[a, r)g(r)f(u(T))dr)ds

Therefore

(3.6) ) < ElG(t, a)W(a)da + A{W (3))rP(t) + B(W(a))<p(t),
o

where W(s) = JJ A (8,1)$(1)/(n(T))«iT.
Finally, by (3.5) and (3.6) we obtain

) = JF G{t, a)W(s)ds + A(W())rI>{t) + B(W(a))<p{t),
o



where H/(s) = H[8,T)a{Tm){n{T))(iT.
Therefore ) is a positive solution of the problem (1.1). This completes the proof

of Theorem 3.1.
Similarly, we can prove the following theorem.

Theorem 3.2. Assume that there exist constants r,R > 0 withr < TR forr < R,
such that the following two conditions are satisfied:

(w>*) F <w,

(HS*) fp. > M.
Then the problem (1.1) has at least one positive solution n € K such that

O<r<|u <R.

Theorem 3.3. Assume that one of the following two conditions is satisfied:
(He) f° < n, /oo > f,

(H7) fo> f, /"<«
Then the problem (1.1) has at least one positive solution.

Proof. Itis enough to prove the assertion of the theorem for nonnegative and continuous
on [0, 00) functions. Then using the arguments of the proof of Theorem 3.1 we can
extend the result to the case of nonnegative and lower semi-continuous on [0, 00)
functions.

We show that (H6) implies (H4) and (H5). Suppose that (H6) holds, then there
exist r and R with 0 < r < 7R, such that

— <w, O<u<r and — >~ u>T/0.
u u r ~'D'

Hence
I(«) < <wr, O<wu<r

and

/(«) > —u>y vr -
implying (H4) and (H5). Therefore, by Theorem 3.1 the problem (1.1) has at least
one positive solution.
Now suppose that (H7) holds, then there exist 0 < r < R with Mr < uR such
that



and
(3.8) N<w, u>R.

By (3.7), it follows that

/(u) > ~-u>A"Tr=Mr, Tr<u<r.

So, the condition (H5) holds for r > 0. As for (H4), we consider two cases.

(i) If f{u) is bounded, then there exists a constant D > 0 such that /(u) < D for
0 < u < 00. By (3.8) there exists a constant /1> R with Mr < uR < Aw satisfying
N> tax{4, —}, such that f{u) < D < Xu for 0 < n < J1, implying (H4).

(ii) If/(u) is unbounded, then there exist\i > R with Mr < uR < Aiw such that
/(u) < /(J1i) for 0 < u < Ai. This yields /(u) < /(Ai) < Ajw for 0 < n < Ai. Thus,
condition (H4) holds for Ai.

Therefore, by Theorem 3.1, the problem (1.1) has at least one positive solution.
Theorem 3.3 is proved.

Remark 3.1. It is easy to see that the assertion of Theorem 3.3 remains valid under
each of the following conditions: either f° = 0 and /«> = +o00 or fo = +o0 and

00 —

Now we are going to give some conclusions about the existence of multiple positive
solutions. In the theorems that follow we assume that the assumptions (HI1*), (H2)
and (H3) are fulfilled.

Theorem 3.4. Assume that one of the following conditions is satisfied:
(H8) N'<w,
(H9) 0> and /,,0 >

Then the problem (1.1) has at least two positive solutions satisfying

O<|exiff <r <]l |

Proof. By the proof of Theorem 3.3, we can take 0 < rj < r < I't such that
f(u) > r\M for 1>i < u < ri and f{u) > r™M for 1> < n < r?. Therefore, by
Theorems 3.2 and 3.3, it follows that problem (1.1) has at least two positive solutions
satisfying0O< | [[<r<| | O
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Theorem 3.5. Assume that one of the following conditions is satisfied:

(HKO) /a > M,
(HU) f° <u and f°° < w.
Then the problem (1.1) has at least two positive solutions satisfying

0 < fluill < R< ||«all-

Theorem 3.6. Assume that (H6) (or (H1)) holds, and there exist constantsrb r2 > 0
with r\M < r3u (orn < 1>2J such that (H8) holds for r = r2 (orr = n) and (H10)
holds for R = ri (or R = r2). Then the problem (1.1) has at least three positive

solutions satisfying

0<|uil]<n <|M | <r2< |us|.

Theorem 3.7. Letn = 2k + 1, k € N. Assume (H6) (or (HI)) holds. If there exist
constantsri,l"2,... ,rn-i > 0 withry < I'rm+i, forl<i< fc-1 and < r2jw
forl<i <k (orwithr2<l1<Tr<forl<i<k andruM < r2<iw for1<i <
k —1) such that (H10) (or (H8)) holdsforru-i, | <i <k and (H8) (or (H10)) holds
for T2i, 1 <i<k. Then the problem (1.1) has at least n positive solutions

satisfying

0 < Juiff <ri < [[tral] <12 < eee < |[u,-i]| <r,,_i < [|u,l.

The proofs of Theorems 3.5 - 3.7 are similar to that of Theorem 3.4, and so are

omitted.

4. An Example.

In this section we discuss an example that illustrates the main results of the paper.
Example. Consider the following singular boundary value problem

fEX+(U"W)- - {))=0, 16 (0,1),
(41) lu"(0) = u"(l) = 0,
U o)-U(0) = it,(A),

where
*55 0 < tx< 10,
I**)= < (n+e-“, n<u<n+1 n= 10,11,...,20,
ens, n> 21.
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We note that

a=b=c=d=1 p=3 m=3 £i=" 3
ti=h = /o = +(D /,,0 = 4-00, -, ()=*
Let 0 = 5, then we have
131" NI/ 944(3 -2\/2)1?2’
where 7= minj<,<| A(a, a).
By calculating, we can let 4y = So, / TC> and f0 > Choosing r = 10,

we get

fr=supl” |u6 [0,r]l = 0.105409 < 0.2157519 = w,

showing that (H8) and (H9) are fulfilled. It is easy to see that (HI*), (H2) and (H3)
are satisfied as well. So, we can apply Theorem 3.4 to conclude that the problem (4.1)
has at least two positive solutions 14, e K satisfying 0 < ||«i|| <4< || |l
Acknowledgments. The author would like to thank the anonymous referees for
valuable suggestions and comments.
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