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This paper investigates the thermodynamic properties of vacuum nonsingular black holes.
Considering the energy characteristics of the regularity spacetime, we use the modified first law of
black hole thermodynamics to calculate the black holes' Hawking temperature, entropy and heat
capacity. The obtained temperature is the same as that obtained by the surface gravity and tunneling
methods. Also, the entropy is satisfied with the Bekenstein-Hawking area law. Notably, the heat
capacity of large-mass black holes diverges, while that of small-mass black holes tends to zero, with
a phase transition point existing. Additionally, we consider the quantum gravity effect by using the
generalized uncertainty principle to study the quantum corrections of the thermodynamic properties
for the vacuum nonsingular black holes. The generalized uncertainty principle introduces a logarith-
mic correction term to the black hole entropy. Also, the temperature and heat capacity are
modified.

Keywords: thermodynamics of black holes: vacuum nonsingular black holes:
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1. Introduction. In general, black holes are characterized by the presence
of singularities within their interiors, the existence of singularities seems to be
unavoidable for almost all of the physically acceptable solutions of Einstein's
equation. However, there are some attempts to remove these singularities. The idea
of replacing a Schwarzschild singularity with a de Sitter vacuum goes back to the
1968 papers of Sakharov who considered p, =—p as the equation of state for super
high density and of Gliner who interpreted p, =—p as corresponding to a vacuum
[1,2]. In 1968 Bardeen presented the spherically symmetric metric of the same
form as the Schwarzschild and Reisner-Nordstrom metric, describing a non-
singular black hole [3]. "Non-singular" black holes refer to those where singularities
are absent. Specifically, these black holes' metric and curvature invariants remain
non-singular throughout spacetime. The regular black holes of Bardeen are
spherically symmetric and violate the strong energy condition. The violation of
an energy condition is the origin of the regularity of Bardeen's black hole [4].
With a de Sitter core, the internal region of regular geometries violates one
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condition of Hawking-Penrose theorems of singularity. Then, with such a vio-
lation, the existence of a singular point is not a necessary consequence of the
theorems of singularity. Later, other regular solutions with spherical symmetry
were proposed by Dymnikova, Bronnikov, and Hayward [5-9]. Now, many regular
black holes have been proposed and their intriguing properties including thermo-
dynamics that are different from those of singular black holes were studied (see
[10] as a review and references therein). The vacuum nonsingular black hole,
provided by Dymnikova, is an important and feasible example of a black hole
with a regular center, where the de Sitter core smoothly connects to the exterior
geometry of Schwarzschild [5-7]. In the classical framework of general relativity,
the vacuum nonsingular black hole provides an important new perspective for
understanding static spherically symmetric black holes. This black hole's spacetime
structure and thermodynamic properties have garnered attention [11-14].

The discovery of black hole thermodynamics has profoundly influenced our
understanding of the relationship between general relativity and quantum field
theory. The concept of Hawking radiation has changed our understanding of black
holes [15]. It reveals that black holes are not just the result of gravity, but also
have thermodynamic properties. Historically, black holes were considered com-
pletely irreversible systems without temperature or entropy. However, the theory
of Hawking radiation suggests that black holes have a temperature and emit
particles over time, gradually losing mass. This discovery links black holes to
thermodynamics, indicating that they also follow the laws of thermodynamics
[15,16]. In the thermodynamics of black holes, the temperature is obtained from
the first law of black hole thermodynamics. The entropy for the black hole is
given by Bekenstein's area law [17]. For the acquisition of Hawking radiation, in
addition to Hawking's initial method, there is also the tunneling method that
provides black hole radiation. A particle may cross the event horizon by quantum
tunneling in the tunneling method. Two methods can be employed to derive the
tunneling result: the first, pioneered by Parikh and Wilczek, is the null-geodesic
method, and the WKB (Wentzel-Kramers-Brillouin) method is used [18,19]; the
second, developed by Agheben et al., relies on the Hamilton-Jacobi ansatz [20].
In this paper, we will adopt the former approach to calculate Hawking temperatures
for the vacuum nonsingular black holes. Then, based on the first thermodynamics
law of the black hole, we calculate the temperature and derive the entropy and
heat capacity of the regular black hole. The calculations reveal an inconsistency
between the temperature derived from the first law of thermodynamics and that
obtained through surface gravity and tunneling methods. In the lectures [21-25],
by examining the internal energy characteristics of regular black holes, it is pointed
out that the traditional first law of black hole thermodynamics is no longer used
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and needs to be revised. The correction form of the first law of black hole
thermodynamics was provided by Ma et al. [21,22]. The deviation relies on the
general structure of the energy-momentum tensor of matter fields. When the black
hole mass parameter M is included in the energy-momentum tensor, the tradi-
tional form of the first law is modified by an additional factor. Here, in the
vacuum nonsingular spacetime, by utilizing the corrected first law of black hole
thermodynamics, consistency was established for black hole temperature results
obtained through surface gravity, tunneling, and the first law of thermodynamics.
Additionally, the applicability of the Beckenstein-Hawking area law was verified.

The quantization of gravity poses a significant challenge in theoretical physics,
and a quantum theory of gravity remains to be established. The existence of a
minimum observable length scale at the Planck length level is a common
prediction of various candidate theories of quantum gravity [26]. The concept of
a minimum length has led to numerous quantum gravity effects, one of the most
notable being the generalized uncertainty principle (GUP) [27-28], which suggests
modifications to the semi-classical description of black holes from an extension
of the Heisenberg uncertainty principle, which involves a deformation parameter
related to a minimal fundamental length [29]. Introducing the GUP into black
hole thermodynamics allows for studying quantum corrections to the thermody-
namic properties of black holes [30-39]. The GUP offers high-energy corrections
to black hole thermodynamics. Among these, the GUP can affect the quantum
tunneling process of particles on the black hole horizon, increasing the probability
of tunneling and giving quantum corrections to the thermodynamic quantities of
the black hole [40-42]. For the vacuum nonsingular black holes, including the
GUP effect in quantum tunneling calculations, reveal quantum corrections to the
thermodynamic quantities of the black hole, wherein, the quantum correction to
entropy is logarithmic.

The paper is organized as follows: Section 2 briefly introduces vacuum non-
singular black holes. Section 3 discusses the thermodynamic properties of regular
black holes using the modified first law of black hole thermodynamics. Section
4 discusses the GUP effects on the black holes' temperature, entropy, and hot
capacity. The last part is a summary and discussion. Where the speed of light
¢ in vacuum, the gravitational constant G, the Boltzmann constant k,, and the
reduced Planck constant 7% are set to 1.

2. Vacuum non-singular black holes. The general form of a static
spherically symmetric metric can be written as

ds? =— f(r)c2di*+ f(r) " dr?+ r2(d 07 +sin0d o? ). )

In Dymnikova's work [5], the stress-energy-momentum tensor is assumed to have
a specific form, which is given by
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3
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where g, represents the non-zero energy density of the vacuum, rg=2M and M
is the mass of the black hole as measured by a distant observer. r, is connected
with €, by the de Sitter relation

1"2 _ 3C4 3

0 8nGe, 3)

Integrating the Einstein field equations with the assumed form of 7, we

obtain the following

R,(r)
Slr)=1-=2==, “4)
where
Rg(r):rg(l—e_r /rorgj, (5)
the mass term m(r) given in [5] is of the form
4’
m(r):c—2 T'ridr. (6)

0

The quadratic invariant of the Riemann tensor ® > = R,p5R P has the form [3]
Rz(r) 3 _3/2. R (r) 2R (r) 9,3 32

2 g r/r(,rg g g r r/rorg

R = 4—6 + 4{—26 — 3 + 3 — 2 e N (7)

r 7 r r o Ty

when r=0, ® > does not diverge and remains finite, tending towards the de Sitter
value ®* :24/ r04, which should be the limit of spacetime curvature. All other
invariants are also finite. So the Dymnikova solution describes a spherically
symmetric black hole singularity-free everywhere, hence called a "non-singular
black hole".

For »>> rozrg, the vacuum non-singular black hole (5) is actually consistent
with the Schwarzschild solution. For r << rozrg, it is consistent with the de Sitter
solution. It provides an important new perspective for understanding static spheri-
cally symmetric black holes.

3. Thermodynamics of vacuum non-singular black holes. In this
section, we discuss the thermodynamics of non-singular black holes. We calculate
the temperature using the surface gravity method, the quantum tunneling method,
and the first law of thermodynamics. One will observe discrepancies between the
temperature obtained from the first law of thermodynamics and those derived
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through two other methods. By employing the corrected first law of black hole
thermodynamics as provided in reference [21], we obtain a black hole temperature
consistent with surface gravity and quantum tunneling methods, yielding entropy
by the Beckenstein-Hawking area law. Further computation of the black hole's
heat capacity suggests the possibility of establishing thermodynamically stable
vacuum nonsingular black holes, contrary to Schwarzschild black holes.

Firstly, we calculate the temperature using the surface gravity method. The
temperature of a black hole is a characteristic quantity of its event horizon, which
can be derived from the surface gravity on the event horizon. The surface gravity
on the black hole horizon is a conserved quantity determined by the geometric
structure of the horizon. The calculation is as follows [15]

K 1 0.8 L,
7T =—=——v--—L28 | =
Coam dn-ge,| e (8)

here, 1« represents the surface gravity, r, stands for the location of the event
horizon. Making a simple change to equation (4) and calculating according to (8),
we have

3 2, .2
3r,=3r,+rgr,

S ——— ©)

Anr,r,ry

Using (1) and (4) and setting [g]-, =0, we can obtain the black hole's
horizon radius, which is

ry=2M(1- /25 ). (10)
-
6 L
ry
s 4+ 1
2 L
r_
0 Co L 1 1 )y
0 2 4 6 8
M

Fig.1. The metric (4) has two event horizons located for r,= 1.
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Equation (10) does not have an analytical solution. Fig.1 shows that r, is the
external event horizon, and r is related to the inner event horizon which is the
Cauchy horizon. The metric (4) also showed that two horizons are movable. From
equations (9) and (10), it can be seen that neglecting vacuum energy, letting
r02 —> o0, one can respectively obtain the Schwarzschild cases of r,=2M and
T.=1/8nM .

The temperature of the black hole can also be determined using the quantum
tunneling method of Hawking radiation [19,20]. For this, the metric is expressed
in the Painlevé form to eliminate coordinate singularities, which can be achieved
through a suitable transformation [43]

t—>t—.[—“l;(rf) @ dr, (11)

this change (1) into
ds® = = f(r)de*+ 2T [ () drdr+ dr*+ r*(d 6> +5in°0d ). (12)

Form equation (12), the radial null geodesic equation of massless particles can
be derived as

P ey ) (13)

dt
the positive and negative signs in the equation describe the outgoing and ingoing,
respectively.

The WKB approximation describes semi-classical approximate solutions to
wave equations. For particle tunneling through a potential barrier, the WKB
approximation expresses the tunneling probability related to the imaginary part of
the tunneling action [19,20]. Specifically, the tunneling probability of a particle
through a potential barrier under the WKB approximation is given by

T o e—ZIm(S)/h ’ (14)

where I' is the tunneling probability, Im(S) is the imaginary part of the action.
In this expression, the negative exponent indicates the probability of exponential
decline with increasing barrier width. The imaginary part of the action is typically
expressed as

] " Py
Im(S)= Imjp(r)dr = ImJ- J'dp;dr , (15)
n n 0
where p(r) is the classical momentum of the particle at position r, and r, and
r, are the positions on either side of the barrier.
Continuing the solution, we use the Hamiltonian canonical equation
r=dH/dp, =d ®'/dp, , where o' represents the energy of the tunneling particle.



THERMODYNAMICS OF BLACK HOLES 573

Substituting this into equation (15) and changing the order of integration, we
obtain

Im(S)= Imj j —dr. (16)

Expanding equation (13) in a Taylor series around the horizon and retaining
only the leading order term, we can substitute this approximation into the radial
motion equation (15) for the practice, leading to

o’r 2
Im(S)=||———drd ®'.
G Ny e K a7

Using the Residue Theorem, we have the following integral concerning r

¢ 2n 21w
Im(S)=Im[——~do' =——. 18
I76)" "7 a9
In the limit of the WKB approximation, the tunneling probability will take the
following form

[ oc exp(— 2Im(S)) = exp (- Bo). (19)
Therefore, Hawking's temperature is
S '(” h)
T, =—"2=T_.
" 47 * (20)

In conclusion, the black hole temperature obtained through the quantum
tunneling and surface gravity methods is the same.

The first law of thermodynamics provides another way to calculate the black
hole temperature. For a vacuum spacetime with spherical symmetry, the first law
of black hole thermodynamics can be expressed as

SM=T,3S, (21)

where S is the entropy of the black hole and 7, is the thermodynamic temperature
of the black hole. Then, by utilizing the properties of the implicit function and
equation (10), we have

F(M,r)=2M (1= /295 ), —o. (22)

Using the derivative property of implicit functions, obtain dM/dr, through
equation (22). In this way we can obtain

_dﬂ_ 1 dﬂ_ rg(3r,f—3rh2rg+r02rg)
s 2mr, dr, 47trh2(rh3—rh2rg+r02rg)

It is seen that the temperature according to the first law of black hole

H

(23)
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thermodynamics differs from the temperature obtained from the surface gravity
method and the tunneling method. The Dymnikova black hole is not a vacuum
solution of the Einstein field equations. The three methods yield two different
temperatures for the black hole, while the surface gravity and tunneling effects give
the same result.

Furthermore, if we require the vacuum non-singular black hole to satisfy the
first law, then the entropy is not the Beckenstein-Hawking entropy. Resolving the
contradiction between entropy and area requires considering the contribution of
matter fields. Since the Dymnikova black hole is a solution of the Einstein
equations, we tend to believe that the entropy of the black hole should follow
the form of the Beckenstein-Hawking area law and that a modification of the black
hole temperature obtained from the traditional laws of thermodynamics is nec-
essary.

In [21], the authors studied the thermodynamics of the regular black hole and
pointed out the existence of a correction factor in equation (21). Thus, the
modified first law of black hole thermodynamics is [21]

A
C(M,r,)8M =785 24)

where C(M,r,) is a corrected factor, and
T, 0T
— 257
C(M,Vh)—l+4TE;!‘V oM dr. (25)
Then, for regular black holes, the first law of black hole thermodynamics has a
correction term compared to the traditional first law of thermodynamics and the
entropy satisfies the area law [23-25]. In the case of 7 being independent of
mass, the correction term will vanish.
For vacuum non-singular black hole (1), substituting equation (2) into equation
(25), the correction factor as

4 2 3
v,y =T,
c(M,r,)= £~ &, (26)

ol

Thus, substituting the correction factor (26) into equation (24) directly gives the
corrected form of the temperature as

3r-3r22M+ rozrg

T, =C(M,1,)T,; = 27)

41'crhrgr02
This is consistent with the results obtained from the other two methods, that is
T,-T -T. (28)

Furthermore, using the corrected first law of black hole thermodynamics and
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substituting equations (26) and (27) into equation (29), we verify that the entropy
of a vacuum non-singular black hole satisfies the area law

C\M,r A
S:I—(Th h)sznr,f:Z. (29)
The heat capacity of a black hole provides information about the thermody-
namic stability of the system. Next, we calculate the heat capacity of a vacuum
nonsingular black hole to understand its local stability. The heat capacity of a

black hole is defined as

-1

0S 0S| oT

C,=T—=T—|—| . (30)
oT or, \ 0,

For a Schwarzschild black hole, substituting the temperature (7},)

the equation (29) into the equation (30), we have

(CV )Sch = —2nrh2 . (1)

A negative heat capacity indicates that a Schwarzschild black hole's thermo-
dynamic system is unstable [44]. When the black hole loses energy, its mass and
surface area decrease, but its temperature increases. As a result, the increased
temperature makes the black hole more prone to radiate energy. As the radiation
rate is related to the temperature, the black hole losing energy will radiate faster,
leading to instability. Eventually, a radiation explosion occurs as the black hole
radius approaches zero.

Substituting the temperature (27) and the entropy (29) into equation (30), we
get

1/(8nM) and

Sch

o 27 rh2 (rgro2 + r,,2 (— et Ty )) (rgro2 +3 rh2 (— Tt 7 ))

v

r04rg2 +2 rozrgrhz (rg -7 )+ 3 rh4 (— rg2 + rhz) (32)

We can see that when r02 — oo of without considering vacuum energy, this
equation gives the result (31) of Schwarzschild black hole.

As shown in Fig.2 (black curve), the heat capacity will approach zero as the
black hole tends to the external one and diverges at the point where the
temperature of the black hole takes the maximum. In the study referenced as [45],
which investigates Bardeen and Hayward geometries, the discontinuity in the heat
capacity of rotating black holes (RBHs) indicates a phase transition. We can also
observe that the phase transition of the vacuum non-singular black hole occurs
at r,=2.242. For large black holes, the heat capacity is negative, indicating that
the thermodynamic system is unstable. In contrast, the heat capacity for small
black holes is positive, indicating that the black hole may reach thermodynamic
equilibrium with the surroundings. At the critical point of r, =2.242, there may
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Fig.2. The black curve represents C , the black dashed curve represents (C,),, for A =0.4,
and the black dotted curve represents (C ), for A =0.8. Here /=1, M=1 and r,= 1.

exist a phase transition from a larger black hole to a smaller one, which is a
second-order transition.

4. Quantum corrections to black hole thermodynamics. In this
section, we will consider the GUP effect thermodynamic quantities related to
vacuum non-singular black holes. The Heisenberg uncertainty principle can be
extended to the GUP in the following form [26-28,30]

AxAp>1+ th Ap?, (33)

where A is a dimensionless quantum gravity parameter, and /, ~ 10 m corre-
sponds to the Planck length scale. When A tends to zero, the GUP return to
the standard uncertainty relation leads to the results of Hawking's semiclassical
method. We can rewrite the GUP as

Ax ancr
>_ "7 11— _
APEow 2 e (34)
Considering / p <<Ax, we expand equation (34) using a Taylor series
aos Ly 2201
p_A_x + A +.... (35)

Using the Heisenberg uncertainty principle, we have the particle energy o >1/Ax .
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Considering the GUP given by equation (35), the energy correction is

W0
Ogup 0| 1+ 5 | (36)

Ax

up to second order in /. Substituting equation (36) into equation (19), we obtain
the particle tunneling probability corrected by the GUP as

4o 41m Vo
I'=exp| — GUP_ | — exp| — 1+ 2.
p[ /() } p! hf’(rh){ Ax’ @7
Comparing (37) with the Boltzmann factor exp (— (o/T), we obtain the quantum-
corrected Hawking temperature

2

-1
2
TGUP=Th[1+ "l J , (38)

Ty

where T, is given by equation (27). It can be seen that GUP reduces the
temperature of vacuum nonsingular black holes.
Using the modified first law of thermodynamics (24), the entropy of a vacuum
non-singular black hole can be expressed as
C (M , rh)

Seur = ImdM , (39)

ignoring the integration constant, the result can be expressed as

2 M, a4 ¥
SGUP ZTE(Vh +Tlnrh]=Z+EIHA. (40)
Where the first term is the contribution from the traditional black hole entropy,
and the second term is the GUP correction term. The correction is the logarithm
of the black hole's area, consistent with related research findings [46-49]. The
correction term reflects the influence of the correlation between position and
momentum on the black hole entropy when considering the GUP. Ignoring the
GUP effect by letting L — 0, then the quantum-corrected entropy (40) reverts
to the Beckenstein-Hawking area law (29).
Taking into account the GUP effects the formula (30) for the black hole's
heat capacity can be written as

oS
(Cv )GUP =Toup 2 TGUP .
GUP

Substituting equations (40) and (38) into equations (41), we get

(41)
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2 r04rg2 (4 " - 112, 73)

n(rg ro2 + rh2 (— gt ))(rg ”02 +3 rh2 (— gt ))(4 rh2 + l; 22 )2
4r, roz (rg — rhz )rh2 (4 rhz +5 112, 22 )

T (rg r02 + rh2 (— ret+ 1, ))(rgr02 +3 rh2 (— ret+ 1 ))(4 rh2 + l; 2 )2

6<r -7, )rh4 (4 rgrh2 +4 rh3 +322 Z; -7, 22 Z; )

g
Tc(rgr02 + rhz (— ret+ 1y ))(rgroz +3 rhz (— gt 1y ))(4 rhz + l; 22 )2

This is the heat capacity of vacuum non-singular black holes under the influence
of the GUP. It can be observed that when A —0, (CV)GUP can be restored to
equation (32), which is consistent with the heat capacity results obtained without
considering the GUP correction. Moreover, Fig.2 demonstrates that, in general,
there is no significant distinction between (CV)GUP and C,.

In addition, by directly setting ro2 — o0 in equation (42), we obtain

(242202 Jaf
n-N0 4

(Cv )GUP ="

- (42)

-1

(Cy )oup =—2m (43)
which corresponding to the Schwarzschild black hole heat capacity when consid-
ering the GUP effects. Then, setting A — 0, equation (43) can also be reduced
to the heat capacity equation (31) of the Schwarzschild black hole.

5. Conclusion. This paper investigates the thermodynamic properties of
vacuum non-singular black holes. We find that the temperature obtained using the
traditional first law of thermodynamics is inconsistent with those obtained using
the surface gravity and tunneling methods. By considering the modified form of
the black hole thermodynamic given in the [21], we get consistent results and
ensure the validity of the Beckenstein-Hawking area law. Furthermore, using the
corrected thermodynamic first law, we derive the heat capacity of vacuum non-
singular black holes, indicating that these black holes may exhibit thermodynamic
behaviors different from traditional Schwarzschild black holes. Under certain
conditions, the heat capacity of vacuum non-singular black holes can be positive
and then the black hole may reach thermodynamic equilibrium with the surround-
ings. Finally, we consider the quantum gravity effects manifested by the GUP
and study the thermodynamics of vacuum non-singular black holes using the
modified first law of black hole thermodynamics. In particular, the GUP intro-
duces a logarithmic correction term to the black hole entropy.
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TEPMOINHAMUWKA WU EE KBAHTOBA/l KOPPEKLIMA
BAKYYMHOHNW HECHUHIYJIAPHOW YEPHOW JbIPbI

A.MA, T.XO, Y.JIIO

B naHHO# cTaTbhe McCCIEayIOTCS TEPMOIAVMHAMUYECKUE CBOMCTBA BAKYYMHBIX
HECUHTYJISIPDHBIX YEPHBIX AbIP. YUYWUThIBASs SHEPreTUUECKUE XapaKTePUCTUKU
PETYJISIPHOTO MPOCTPAHCTBA-BPEMEHH, MCIOJb30BaH MOMUMULIMPOBAHHBIN MEPBBIN
3aKOH TEPMOAMHAMUKHN YEPHBIX JBIP Ul pacyeTa TeMIepaTypbl XOKWHIa, SHTPOIIMU
U TETUIOEMKOCTY YepHbIX AbIp. [TomyueHHass TemriepaTypa COBIafaeT ¢ TEMIIEPaTypoid,
MOJyYEHHOW METOJaMU MTOBEPXHOCTHOW IpaBUTALIMM U TYHHeJIMpoBaHus. Kpome
TOTO, SHTPOIMS YIOBJIETBOPSIET 3aKOHY Iiomany bekeHirelHa-XokuHra. [Tpumeya-
TEJbHO, YTO TETUIOEMKOCTb YEPHbIX JbIP OOJBIION MacChl paCXOAUTCS, B TO BpeMsl
KaK TETJIOEMKOCTb YEPHBIX JBIP MaJOM MacChl CTPEMMUTCS K HYJIO, MPU 3TOM
CYILIECTBYET ToUKa (hazoBoro nepexona. Kpome toro, achdekT KBAaHTOBOI IpaBUTALIUU
paccMaTpeH UCIOJIb30BaHUEM 0000I11eHHOTO MPUHIMIA HEONPeaeIeHHOCTH 1151
WU3YYECHUST KBAHTOBBIX MOIMPABOK TEPMOJMHAMUYECKMX CBOWCTB B CIIy4ae BaKyYyMHBIX
HECUHTYJISIPHBIX YepHBIX AbIp. OOOOILEHHBI MPUHLIMIT HEONPEAeIEHHOCTU BBOAUT
Jiorapu(MUYECKUI TMOMPaBOYHBIM WieH B B3HTPOMUIO YEpPHOU AbIpbl. Takxke
MOAUMUIUPYIOTCS TeMIlepaTypa U TeIIOEMKOCTb.

KittoueBble CITOBa: mepMOOUHAMUKA YEPHBIX Obip: BAKYYMHble HeCUHEYASAPHbIE YepHble
Obipbl: 0000UIeHHBLIL NPUHUUN HEONpedeaeHHOCMU: MOOUpUUUPO-
BAHHbBIU NEPeblll 3aKOH MePpMOOUHAMUKU HepHbIX Oblp
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