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This paper investigates the thermodynamic properties of vacuum nonsingular black holes.
Considering the energy characteristics of the regularity spacetime, we use the modified first law of
black hole thermodynamics to calculate the black holes' Hawking temperature, entropy and heat
capacity. The obtained temperature is the same as that obtained by the surface gravity and tunneling
methods. Also, the entropy is satisfied with the Bekenstein-Hawking area law. Notably, the heat
capacity of large-mass black holes diverges, while that of small-mass black holes tends to zero, with
a phase transition point existing. Additionally, we consider the quantum gravity effect by using the
generalized uncertainty principle to study the quantum corrections of the thermodynamic properties
for the vacuum nonsingular black holes. The generalized uncertainty principle introduces a logarith-
mic correction term to the black hole entropy. Also, the temperature and heat capacity are
modified.
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1. Introduction. In general, black holes are characterized by the presence

of singularities within their interiors, the existence of singularities seems to be

unavoidable for almost all of the physically acceptable solutions of Einstein's

equation. However, there are some attempts to remove these singularities. The idea

of replacing a Schwarzschild singularity with a de Sitter vacuum goes back to the

1968 papers of Sakharov who considered rp  as the equation of state for super

high density and of Gliner who interpreted rp  as corresponding to a vacuum

[1,2]. In 1968 Bardeen presented the spherically symmetric metric of the same

form as the Schwarzschild and Reisner-Nordstrom metric, describing a non-

singular black hole [3]. "Non-singular" black holes refer to those where singularities

are absent. Specifically, these black holes' metric and curvature invariants remain

non-singular throughout spacetime. The regular black holes of Bardeen are

spherically symmetric and violate the strong energy condition. The violation of

an energy condition is the origin of the regularity of Bardeen's black hole [4].

With a de Sitter core, the internal region of regular geometries violates one

ÒÎÌ 67 ÍÎßÁÐÜ, 2024 ÂÛÏÓÑÊ 4

À Ñ Ò Ð Î Ô È Ç È Ê À

DOI: 10.54503/0571-7132-2024.67.4-567

https://doi.org/10.54503/0571-7132-2024.67.4-567


568 D.MA  ET  AL.

condition of Hawking-Penrose theorems of singularity. Then, with such a vio-

lation, the existence of a singular point is not a necessary consequence of the

theorems of singularity. Later, other regular solutions with spherical symmetry

were proposed by Dymnikova, Bronnikov, and Hayward [5-9]. Now, many regular

black holes have been proposed and their intriguing properties including thermo-

dynamics that are different from those of singular black holes were studied (see

[10] as a review and references therein). The vacuum nonsingular black hole,

provided by Dymnikova, is an important and feasible example of a black hole

with a regular center, where the de Sitter core smoothly connects to the exterior

geometry of Schwarzschild [5-7]. In the classical framework of general relativity,

the vacuum nonsingular black hole provides an important new perspective for

understanding static spherically symmetric black holes. This black hole's spacetime

structure and thermodynamic properties have garnered attention [11-14].

The discovery of black hole thermodynamics has profoundly influenced our

understanding of the relationship between general relativity and quantum field

theory. The concept of Hawking radiation has changed our understanding of black

holes [15]. It reveals that black holes are not just the result of gravity, but also

have thermodynamic properties. Historically, black holes were considered com-

pletely irreversible systems without temperature or entropy. However, the theory

of Hawking radiation suggests that black holes have a temperature and emit

particles over time, gradually losing mass. This discovery links black holes to

thermodynamics, indicating that they also follow the laws of thermodynamics

[15,16]. In the thermodynamics of black holes, the temperature is obtained from

the first law of black hole thermodynamics. The entropy for the black hole is

given by Bekenstein's area law [17]. For the acquisition of Hawking radiation, in

addition to Hawking's initial method, there is also the tunneling method that

provides black hole radiation. A particle may cross the event horizon by quantum

tunneling in the tunneling method. Two methods can be employed to derive the

tunneling result: the first, pioneered by Parikh and Wilczek, is the null-geodesic

method, and the WKB (Wentzel-Kramers-Brillouin) method is used [18,19]; the

second, developed by Agheben et al., relies on the Hamilton-Jacobi ansatz [20].

In this paper, we will adopt the former approach to calculate Hawking temperatures

for the vacuum nonsingular black holes. Then, based on the first thermodynamics

law of the black hole, we calculate the temperature and derive the entropy and

heat capacity of the regular black hole. The calculations reveal an inconsistency

between the temperature derived from the first law of thermodynamics and that

obtained through surface gravity and tunneling methods. In the lectures [21-25],

by examining the internal energy characteristics of regular black holes, it is pointed

out that the traditional first law of black hole thermodynamics is no longer used
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and needs to be revised. The correction form of the first law of black hole

thermodynamics was provided by Ma et al. [21,22]. The deviation relies on the

general structure of the energy-momentum tensor of matter fields. When the black

hole mass parameter M is included in the energy-momentum tensor, the tradi-

tional form of the first law is modified by an additional factor. Here, in the

vacuum nonsingular spacetime, by utilizing the corrected first law of black hole

thermodynamics, consistency was established for black hole temperature results

obtained through surface gravity, tunneling, and the first law of thermodynamics.

Additionally, the applicability of the Beckenstein-Hawking area law was verified.

The quantization of gravity poses a significant challenge in theoretical physics,

and a quantum theory of gravity remains to be established. The existence of a

minimum observable length scale at the Planck length level is a common

prediction of various candidate theories of quantum gravity [26]. The concept of

a minimum length has led to numerous quantum gravity effects, one of the most

notable being the generalized uncertainty principle (GUP) [27-28], which suggests

modifications to the semi-classical description of black holes from an extension

of the Heisenberg uncertainty principle, which involves a deformation parameter

related to a minimal fundamental length [29]. Introducing the GUP into black

hole thermodynamics allows for studying quantum corrections to the thermody-

namic properties of black holes [30-39]. The GUP offers high-energy corrections

to black hole thermodynamics. Among these, the GUP can affect the quantum

tunneling process of particles on the black hole horizon, increasing the probability

of tunneling and giving quantum corrections to the thermodynamic quantities of

the black hole [40-42]. For the vacuum nonsingular black holes, including the

GUP effect in quantum tunneling calculations, reveal quantum corrections to the

thermodynamic quantities of the black hole, wherein, the quantum correction to

entropy is logarithmic.

The paper is organized as follows: Section 2 briefly introduces vacuum non-

singular black holes. Section 3 discusses the thermodynamic properties of regular

black holes using the modified first law of black hole thermodynamics. Section

4 discusses the GUP effects on the black holes' temperature, entropy, and hot

capacity. The last part is a summary and discussion. Where the speed of light

c in vacuum, the gravitational constant G, the Boltzmann constant k
B
, and the

reduced Planck constant   are set to 1.

2. Vacuum non-singular black holes. The general form of a static

spherically symmetric metric can be written as

     . sin 222221222   ddrdrrfdtcrfds (1)

In Dymnikova's work [5], the stress-energy-momentum tensor is assumed to have

a specific form, which is given by
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where 0  represents the non-zero energy density of the vacuum, r
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Integrating the Einstein field equations with the assumed form of t
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The quadratic invariant of the Riemann tensor 


 RR2R  has the form [5]
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when r = 0, 2R  does not diverge and remains finite, tending towards the de Sitter

value 4
0

2 24 rR , which should be the limit of spacetime curvature. All other

invariants are also finite. So the Dymnikova solution describes a spherically

symmetric black hole singularity-free everywhere, hence called a "non-singular

black hole".

For grrr 2
0 , the vacuum non-singular black hole (5) is actually consistent

with the Schwarzschild solution. For grrr 2
0 , it is consistent with the de Sitter

solution. It provides an important new perspective for understanding static spheri-

cally symmetric black holes.

3. Thermodynamics of vacuum non-singular black holes. In this

section, we discuss the thermodynamics of non-singular black holes. We calculate

the temperature using the surface gravity method, the quantum tunneling method,

and the first law of thermodynamics. One will observe discrepancies between the

temperature obtained from the first law of thermodynamics and those derived
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through two other methods. By employing the corrected first law of black hole

thermodynamics as provided in reference [21], we obtain a black hole temperature

consistent with surface gravity and quantum tunneling methods, yielding entropy

by the Beckenstein-Hawking area law. Further computation of the black hole's

heat capacity suggests the possibility of establishing thermodynamically stable

vacuum nonsingular black holes, contrary to Schwarzschild black holes.

Firstly, we calculate the temperature using the surface gravity method. The

temperature of a black hole is a characteristic quantity of its event horizon, which

can be derived from the surface gravity on the event horizon. The surface gravity

on the black hole horizon is a conserved quantity determined by the geometric

structure of the horizon. The calculation is as follows [15]

  , 
4

1

4

1

2 h

h

rr

rrrrtt

ttr rg
gg

g
T





 
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
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







(8)

here,   represents the surface gravity, r
h
 stands for the location of the event

horizon. Making a simple change to equation (4) and calculating according to (8),

we have

. 
4
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23

rrr

rrrr
T

gh

ghh




 (9)

Using (1) and (4) and setting 0][  hrrttg , we can obtain the black hole's

horizon radius, which is

 .12
2

0
3 2Mrr

h
heMr  (10)

Fig.1. The metric (4) has two event horizons located for r
0
 = 1.
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Equation (10) does not have an analytical solution. Fig.1 shows that r
+
 is the

external event horizon, and r_ is related to the inner event horizon which is the

Cauchy horizon. The metric (4) also showed that two horizons are movable. From

equations (9) and (10), it can be seen that neglecting vacuum energy, letting

2
0r , one can respectively obtain the Schwarzschild cases of r

h
 = 2M and

MT  81 .

The temperature of the black hole can also be determined using the quantum

tunneling method of Hawking radiation [19,20]. For this, the metric is expressed

in the Painlevé form to eliminate coordinate singularities, which can be achieved

through a suitable transformation [43]

 
 

, 
1

dr
rf

rf
tt 


 (11)

this change (1) into

     . sin12 2222222  ddrdrdtdrrfdtrfds (12)

Form equation (12), the radial null geodesic equation of massless particles can

be derived as

  , 11 rf
dt

dr
r  (13)

the positive and negative signs in the equation describe the outgoing and ingoing,

respectively.

The WKB approximation describes semi-classical approximate solutions to

wave equations. For particle tunneling through a potential barrier, the WKB

approximation expresses the tunneling probability related to the imaginary part of

the tunneling action [19,20]. Specifically, the tunneling probability of a particle

through a potential barrier under the WKB approximation is given by

  , Im2 Se (14)

where   is the tunneling probability,  SIm  is the imaginary part of the action.

In this expression, the negative exponent indicates the probability of exponential

decline with increasing barrier width. The imaginary part of the action is typically

expressed as

    , ImImIm
2

1

2

1 0
  
r

r

p

r

r

r

r

drpddrrpS (15)

where p(r) is the classical momentum of the particle at position r, and r
1
 and

r
2
 are the positions on either side of the barrier.

Continuing the solution, we use the Hamiltonian canonical equation

rr dpddpdHr  , where   represents the energy of the tunneling particle.
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Substituting this into equation (15) and changing the order of integration, we

obtain

  . ImIm
0
 

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

out

in

r

r

dr
r

d
S

 (16)

Expanding equation (13) in a Taylor series around the horizon and retaining

only the leading order term, we can substitute this approximation into the radial

motion equation (15) for the practice, leading to

 
  
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Using the Residue Theorem, we have the following integral concerning r

 
   
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In the limit of the WKB approximation, the tunneling probability will take the

following form

    . exp2Imexp  S (19)

Therefore, Hawking's temperature is

 
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rf
T h
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In conclusion, the black hole temperature obtained through the quantum

tunneling and surface gravity methods is the same.

The first law of thermodynamics provides another way to calculate the black

hole temperature. For a vacuum spacetime with spherical symmetry, the first law

of black hole thermodynamics can be expressed as

, STM H  (21)

where S is the entropy of the black hole and T
H
 is the thermodynamic temperature

of the black hole. Then, by utilizing the properties of the implicit function and

equation (10), we have

    . 012 ,
2

0
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h
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Using the derivative property of implicit functions, obtain hdrdM  through

equation (22). In this way we can obtain
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It is seen that the temperature according to the first law of black hole
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thermodynamics differs from the temperature obtained from the surface gravity

method and the tunneling method. The Dymnikova black hole is not a vacuum

solution of the Einstein field equations. The three methods yield two different

temperatures for the black hole, while the surface gravity and tunneling effects give

the same result.

Furthermore, if we require the vacuum non-singular black hole to satisfy the

first law, then the entropy is not the Beckenstein-Hawking entropy. Resolving the

contradiction between entropy and area requires considering the contribution of

matter fields. Since the Dymnikova black hole is a solution of the Einstein

equations, we tend to believe that the entropy of the black hole should follow

the form of the Beckenstein-Hawking area law and that a modification of the black

hole temperature obtained from the traditional laws of thermodynamics is nec-

essary.

In [21], the authors studied the thermodynamics of the regular black hole and

pointed out the existence of a correction factor in equation (21). Thus, the

modified first law of black hole thermodynamics is [21]

  , 
4

 ,
A

TMrMC hh  (24)

where  hrMC  ,  is a corrected factor, and
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t
t

h dr
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T
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Then, for regular black holes, the first law of black hole thermodynamics has a

correction term compared to the traditional first law of thermodynamics and the

entropy satisfies the area law [23-25]. In the case of t
tT  being independent of

mass, the correction term will vanish.

For vacuum non-singular black hole (1), substituting equation (2) into equation

(25), the correction factor as

  .  ,
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g

ghghh
h
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rrrrrr
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
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Thus, substituting the correction factor (26) into equation (24) directly gives the

corrected form of the temperature as
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2
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ghh
Hhh




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This is consistent with the results obtained from the other two methods, that is

. th TTT   (28)

Furthermore, using the corrected first law of black hole thermodynamics and
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substituting equations (26) and (27) into equation (29), we verify that the entropy

of a vacuum non-singular black hole satisfies the area law

 
. 

4

 , 2 A
rdM

T

rMC
S h

h

h   (29)

The heat capacity of a black hole provides information about the thermody-

namic stability of the system. Next, we calculate the heat capacity of a vacuum

nonsingular black hole to understand its local stability. The heat capacity of a

black hole is defined as

. 

1

 
























hh r

T

r

S
T

T

S
TC (30)

For a Schwarzschild black hole, substituting the temperature    MT Schh  81  and

the equation (29) into the equation (30), we have

  . 2 2
hSch rC  (31)

A negative heat capacity indicates that a Schwarzschild black hole's thermo-

dynamic system is unstable [44]. When the black hole loses energy, its mass and

surface area decrease, but its temperature increases. As a result, the increased

temperature makes the black hole more prone to radiate energy. As the radiation

rate is related to the temperature, the black hole losing energy will radiate faster,

leading to instability. Eventually, a radiation explosion occurs as the black hole

radius approaches zero.

Substituting the temperature (27) and the entropy (29) into equation (30), we

get

     
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We can see that when 2
0r  of without considering vacuum energy, this

equation gives the result (31) of Schwarzschild black hole.

As shown in Fig.2 (black curve), the heat capacity will approach zero as the

black hole tends to the external one and diverges at the point where the

temperature of the black hole takes the maximum. In the study referenced as [45],

which investigates Bardeen and Hayward geometries, the discontinuity in the heat

capacity of rotating black holes (RBHs) indicates a phase transition. We can also

observe that the phase transition of the vacuum non-singular black hole occurs

at r
h

 = 2.242. For large black holes, the heat capacity is negative, indicating that

the thermodynamic system is unstable. In contrast, the heat capacity for small

black holes is positive, indicating that the black hole may reach thermodynamic

equilibrium with the surroundings. At the critical point of r
h

 = 2.242, there may
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exist a phase transition from a larger black hole to a smaller one, which is a

second-order transition.

4. Quantum corrections to black hole thermodynamics. In this

section, we will consider the GUP effect thermodynamic quantities related to

vacuum non-singular black holes. The Heisenberg uncertainty principle can be

extended to the GUP in the following form [26-28,30]
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where   is a dimensionless quantum gravity parameter, and mlp
3510  corre-

sponds to the Planck length scale. When   tends to zero, the GUP return to

the standard uncertainty relation leads to the results of Hawking's semiclassical

method. We can rewrite the GUP as
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Considering xl p  , we expand equation (34) using a Taylor series
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Using the Heisenberg uncertainty principle, we have the particle energy x 1 .
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
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Considering the GUP given by equation (35), the energy correction is
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up to second order in l
p
. Substituting equation (36) into equation (19), we obtain

the particle tunneling probability corrected by the GUP as
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Comparing (37) with the Boltzmann factor  Texp , we obtain the quantum-

corrected Hawking temperature
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where T
h
 is given by equation (27). It can be seen that GUP reduces the

temperature of vacuum nonsingular black holes.

Using the modified first law of thermodynamics (24), the entropy of a vacuum

non-singular black hole can be expressed as

 
, 

 ,
 dM

T

rMC
S

GUP

h
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ignoring the integration constant, the result can be expressed as
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Where the first term is the contribution from the traditional black hole entropy,

and the second term is the GUP correction term. The correction is the logarithm

of the black hole's area, consistent with related research findings [46-49]. The

correction term reflects the influence of the correlation between position and

momentum on the black hole entropy when considering the GUP. Ignoring the

GUP effect by letting 0 , then the quantum-corrected entropy (40) reverts

to the Beckenstein-Hawking area law (29).

Taking into account the GUP effects the formula (30) for the black hole's

heat capacity can be written as

  . 
GUP

GUP
GUPGUP T

S
TC




 (41)

Substituting equations (40) and (38) into equations (41), we get
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(42)

This is the heat capacity of vacuum non-singular black holes under the influence

of the GUP. It can be observed that when 0 ,  GUPC  can be restored to

equation (32), which is consistent with the heat capacity results obtained without

considering the GUP correction. Moreover, Fig.2 demonstrates that, in general,

there is no significant distinction between  GUPC  and C .

In addition, by directly setting 2
0r  in equation (42), we obtain

 
 

, 
4

4
2

222

2222

ph

ph

GUP
lr

lr
C




 (43)

which corresponding to the Schwarzschild black hole heat capacity when consid-

ering the GUP effects. Then, setting 0 , equation (43) can also be reduced

to the heat capacity equation (31) of the Schwarzschild black hole.

5. Conclusion. This paper investigates the thermodynamic properties of

vacuum non-singular black holes. We find that the temperature obtained using the

traditional first law of thermodynamics is inconsistent with those obtained using

the surface gravity and tunneling methods. By considering the modified form of

the black hole thermodynamic given in the [21], we get consistent results and

ensure the validity of the Beckenstein-Hawking area law. Furthermore, using the

corrected thermodynamic first law, we derive the heat capacity of vacuum non-

singular black holes, indicating that these black holes may exhibit thermodynamic

behaviors different from traditional Schwarzschild black holes. Under certain

conditions, the heat capacity of vacuum non-singular black holes can be positive

and then the black hole may reach thermodynamic equilibrium with the surround-

ings. Finally, we consider the quantum gravity effects manifested by the GUP

and study the thermodynamics of vacuum non-singular black holes using the

modified first law of black hole thermodynamics. In particular, the GUP intro-

duces a logarithmic correction term to the black hole entropy.
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ÒÅÐÌÎÄÈÍÀÌÈÊÀ È ÅÅ ÊÂÀÍÒÎÂÀß ÊÎÐÐÅÊÖÈß
ÂÀÊÓÓÌÍÎÉ ÍÅÑÈÍÃÓËßÐÍÎÉ ×ÅÐÍÎÉ ÄÛÐÛ

Ä.ÌÀ, Ò.ÕÎ, ×.ËÞ

Â äàííîé ñòàòüå èññëåäóþòñÿ òåðìîäèíàìè÷åñêèå ñâîéñòâà âàêóóìíûõ

íåñèíãóëÿðíûõ ÷åðíûõ äûð. Ó÷èòûâàÿ ýíåðãåòè÷åñêèå õàðàêòåðèñòèêè

ðåãóëÿðíîãî ïðîñòðàíñòâà-âðåìåíè,  èñïîëüçîâàí ìîäèôèöèðîâàííûé ïåðâûé

çàêîí òåðìîäèíàìèêè ÷åðíûõ äûð äëÿ ðàñ÷åòà òåìïåðàòóðû Õîêèíãà, ýíòðîïèè

è òåïëîåìêîñòè ÷åðíûõ äûð. Ïîëó÷åííàÿ òåìïåðàòóðà ñîâïàäàåò ñ òåìïåðàòóðîé,

ïîëó÷åííîé ìåòîäàìè ïîâåðõíîñòíîé ãðàâèòàöèè è òóííåëèðîâàíèÿ. Êðîìå

òîãî, ýíòðîïèÿ óäîâëåòâîðÿåò çàêîíó ïëîùàäè Áåêåíøòåéíà-Õîêèíãà. Ïðèìå÷à-

òåëüíî, ÷òî òåïëîåìêîñòü ÷åðíûõ äûð áîëüøîé ìàññû ðàñõîäèòñÿ, â òî âðåìÿ

êàê òåïëîåìêîñòü ÷åðíûõ äûð ìàëîé ìàññû ñòðåìèòñÿ ê íóëþ, ïðè ýòîì

ñóùåñòâóåò òî÷êà ôàçîâîãî ïåðåõîäà. Êðîìå òîãî, ýôôåêò êâàíòîâîé ãðàâèòàöèè

ðàññìàòðåí èñïîëüçîâàíèåì îáîáùåííîãî ïðèíöèïà íåîïðåäåëåííîñòè äëÿ

èçó÷åíèÿ êâàíòîâûõ ïîïðàâîê òåðìîäèíàìè÷åñêèõ ñâîéñòâ â ñëó÷àå âàêóóìíûõ

íåñèíãóëÿðíûõ ÷åðíûõ äûð. Îáîáùåííûé ïðèíöèï íåîïðåäåëåííîñòè ââîäèò

ëîãàðèôìè÷åñêèé ïîïðàâî÷íûé ÷ëåí â ýíòðîïèþ ÷åðíîé äûðû. Òàêæå

ìîäèôèöèðóþòñÿ òåìïåðàòóðà è òåïëîåìêîñòü.

Êëþ÷åâûå ñëîâà: òåðìîäèíàìèêà ÷åðíûõ äûð: âàêóóìíûå íåñèíãóëÿðíûå ÷åðíûå

      äûðû: îáîáùåííûé ïðèíöèï íåîïðåäåëåííîñòè: ìîäèôèöèðî-

    âàííûé ïåðâûé çàêîí òåðìîäèíàìèêè ÷åðíûõ äûð
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