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We investigate the influence of the helical compactification of spatial dimension on the local
properties of the vacuum state for a charged scalar field with general curvature coupling parameter.
A general background geometry is considered with rotational symmetry in the subspace with the
coordinates appearing in the helical periodicity condition. It is shown that by a coordinate trans-
formation the problem is reduced to the problem with standard quasiperiodicity condition in the
same local geometry and with the effective compactification radius determined by the length of the
compact dimension and the helicity parameter. As an application of the general procedure we have
considered locally de Sitter spacetime with a helical compact dimension. By using the Hadamard
function for the Bunch-Davies vacuum state, the vacuum expectation values of the field squared,
current density, and energy-momentum tensor are studied. The topological contributions are explic-
itly separated and their asymptotics are described at early and late stages of cosmological expansion.
An important difference, compared to the problem with quasiperiodic conditions, is the appearance
of the nonzero off-diagonal component of the energy-momentum tensor and of the component of
the current density along the uncompact dimension.

Keywords: topological Casimir effect: vacuum polarization: helical periodicity

conditions: de Sitter spacetime

1. Introduction. The topological effects play an important role in various
fields of physics. The latter include high-energy models with compact extra
dimensions and different types of condensed matter systems. As examples we
mention here the Kaluza-Klein type theories in supergravity and in string theories
and different types of topological structures of 2D materials. In field theories
formulated on background of spacetimes with nontrivial topology, in addition to
the field equations, periodicity conditions have to be imposed on the fields along
compact dimensions. As a consequence, the local physical characteristics of fields
depend on the global properties of the background geometry. In particular, that
is the case for the vacuum state of quantum fields. In models with compact
dimensions the influence of the periodicity conditions on the properties of
quantum vacuum is similar to that induced by boundary conditions on the field
operator in the Casimir effect and is known as the topological Casimir effect (for
reviews see [1-7]). It has been investigated for different topological classes and
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background geometries. The interest is motivated by applications in theories with
extra dimensions as a stabilization mechanism for moduli fields, in cosmology as
a possible source of dark energy driving the accelerated expansion of the Universe,
and in condensed matter physics as a source of generation of ground state stresses
and currents. Among other implications of compact dimensions we can mention
here new mechanisms for symmetry breaking, the generation of topological mass
in field theories and different types of instabilities (see, for example, references
[8-24]).

An interesting feature in theories with compact dimensions is the possibility
of inequivalent field configurations with different periodicity conditions [1,25,26].
The different conditions lead to different physical consequences. Among the
interesting directions in the studies of the topological Casimir effect is the
dependence of the physical characteristics of the vacuum state on the periodicity
conditions in the compact subspace. The most popular conditions in the literature
correspond to periodic and antiperiodic fields (untwisted and twisted fields). They
are special cases of more general periodicity conditions for charged fields with
general phases. For the values of the phase different from 0 and =© vacuum
currents appear along compact dimensions. Those currents have been studied in
[27-37] for locally Minkowski, de Sitter (dS) and anti-de Sitter (AdS) spacetimes
(for a review see [38]). More general helical conditions include an additional shift
along uncompact dimensions [39,40]. The vacuum energy in models with helical
conditions along compact dimensions with zero value of the phase has been studied
in [41-47]. The current density in the case of general phase is discussed in [48,49].

In the present paper we show that the characteristics of the vacuum in
problems with helical periodicity conditions can be generated by using the
corresponding results for standard quasiperiodicity conditions by a coordinate
transformation depending on the length of compact dimension and the helicity
parameter. The organization of the paper is as follows. In the next section the
problem setup is presented. The coordinate transformation is described and the
connection between the vacuum expectation values (VEVs) is given. As an example
of general procedure, in Section 3, a locally dS background geometry is considered.
The expressions of the Hadamard function, for the VEVs of the field squared,
current density and the energy-momentum tensor are presented. The main results
of the paper are summarized in Section 4.

2. Problem setup and coordinate transformation. Let us consider the
background geometry described by the (D+1)-dimensional line element
ds® = g, dx'dx" , where

8ir = 8ik (Xi), 81,.p-1=81,p = 0, Ep-1,p-1=&D,D > xi = (xo’xl,m,foz), (1)
with /=0, 1, ..., D-2. It will be assumed that the spatial coordinate x” is
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compactified to a circle with the length a, 0<x” <a and for the coordinate x”~'

one has —o < x?™' < +o00. No specific conditions will be imposed on the geometry
and topology of the subspace covered by the coordinates xi. We discuss the
dynamics of a scalar field (p(x) with curvature coupling parameter &, governed
by the equation

(¢%D,D,+ &R+ m? )op(x) =0, )
where D, =V, +ied; is the gauge-covariant derivative and e is the coupling between
the scalar and gauge fields. Since the background space has non-trivial topology,
in addition to the field equation one should specify the periodicity conditions along
compact dimensions. In the subspace (x”~',x”) we impose helical periodicity
condition

(p(xi,xD_l,xD+ a)zeia” (p(xi,xD_l+h, xD), (3)

with the helicity parameter 4 and constant phase o ,. In the special case h=0
the relation (3) reduces to a generic quasiperiodicity condition.

Here we consider a simple configuration of the gauge field with 4, ,, A,= const.
These constant components of the gauge field can be excluded from the field
equation by the gauge transformation

A4 =A+0,0, olx)=e™¢(x), o=dp x"+4,x". 4)

In the new gauge one has 4/ =0 and D',=V, for /=D-1, D. Now the condition
(3) takes the form

(p’(xi, xP7 xP+ a)z e (p'(xi,xD_l+ h, xD), ©)

with the new phase

a,=0,—edy ht+Apa. (6)

The physical characteristics will depend on the quantities o, , A
of the combination.

In quantum field theory the periodicity conditions imposed on the field
operator modify the spectrum of vacuum fluctuations and the vacuum expectation
values of physical observables are shifted by amount that depends on the param-
eters of the compactification (the topological Casimir effect [1-7]). These effects
for the quasiperiodicity conditions, corresponding to the zero value of the helicity
parameter, =0, have been widely investigated in the literature for different local
geometries. Simple geometries with helical conditions in the case of zero phase
were discussed in [41-47]. In the discussion below we will show that the results
for the helical conditions can be obtained by an appropriate coordinate transfor-
mations from the formulas for quasiperiodicity conditions.

The helical condition identifies the spacetime points with the coordinates

p.1» A, in the form
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Ro.a) :(xi,xD_l,xDJr a) and Ry, o) =(xi,xD_l+ h, xD). Let us introduce new co-

ordinates x' in accordance with x' =x' for /=0, 1, ..., D-2, and
2
_pag a pg h a _ h p, a h
)CD IZ:XD 1+:XD+:I’l, )CD Z—:XD 1+:XD—T, (7)
a a a a a a
where

a=+a’+h*. ®)

The inverse transformation reads

_ _pa h_ h _p_ _
xDl:ngl_: D_p, xP=2zP l+ng )
a a a a
For the identification points in the coordinates x' one has
—I —=D-1 =D  — —I —=D-1 —
P(O,a)z(xl,x , X +a), P(h,o)z(xl,x , X ) (10)

The coordinate transformation (7) is a combination of the rotation by angle
0 =arctan(/a), 0<0<n/2, and the shift of the origin to the point x’' = (xi, —h,0).
The metric tensor is form-invariant under the transformation (7).

Now we can reformulate the problem of the investigation of the VEVs for the
field @(x) with helical condition (3) in the coordinate system X'. For the
corresponding metric tensor we still have

gik =§ik (31)7 §1,D4 = §1,D =0, gD—l,D—l =§D,D > (11)
with )_ci = xi. The field equation has the form (2) with the replacements
g, — g for the metric tensor and D, — D, =V, +ied, for the covariant deriva-
tive, where Zl:Ai for i=0, 1, ..., D-2, and

— a h — h a
Ap =—Ap+—=Ap, Ap=——Ap+—4p. (12)
a a a a

In the new coordinates the periodicity condition takes the form
ole 70 7+ a)=" (70, 50), (13)
which is a standard quasiperiodicity condition. This shows that we can use the
results for the VEVs in problems with quasiperiodicity condition (13) in order to
find the expectation values in problems with helical conditions. Let us specify this
procedure for the current density and the energy-momentum tensor. The
renormalized VEVs in the coordinate system x' we denote by <]’> = <]‘ (oc - Zl)>
and <]_" ik >:<7_" ik (a p,Zl)> for the current density and the energy-momentum
tensor, respectively. The corresponding expectation values < ji> :< ji(a 0o A )> and
<T”‘> - <T”‘ (. 4, )> in the original problem with helical periodicity condition (3)
are obtained by the coordinate transformation x' — x'.
We start with the current density. Note that in the coordinate system X' we
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can make a gauge transformation 4, = 4'+6,®, ¢(x)=e¢"“® ¢'(x) with the func-
tion ®= A4, x". In the new gauge one gets 4, , =0. Both the field equation
and the periodicity condition (13) are invariant under this gauge transformation
and the physical results do not depend on ZD_I . In the gauge ZD—I =0 the metric
tensor, the field equation and the periodicity condition in the coordinate system
x' are symmetric under the reflection x”' — —x”'. Assuming that the vacuum
state is also symmetric under this reflection, we conclude that the component of
the current density along the coordinate direction x”~' vanishes by the symmetry,
<]D ’1> =0. In this case the components of the current density in the coordinates
x' are expressed as
")

i =i . .D— hJ_D .
<j>:<]>:, i=0,1,..,D-2, <]D 1>:—%, <]D>:W. (14)

and the vacuum current density has a nonzero component along the uncompact

dimension x”™" as well. The components along compact and uncompact dimen-
sions related by the helical condition are connected by the formula

()= w5

This relation for the locally Minkowski bulk was obtained in [48] by direct
evaluation of the VEV using the corresponding mode functions.

Another important characteristic of the vacuum state is the expectation value
of the energy-momentum tensor. Again, assuming that the vacuum is symmetric

with respect to the reflection ¥ — —x”"', we conclude that (7"?')=0 for
i# D-1. By using the transformation rule for the second rank tensor, for the
components of the energy-momentum tensor we get (i, k=0, 1, ..., D-2)
o)
) =(T*), ik=0,1,.,D-2, (TP)=-2(r"P" :_< , (16)
(r)=( (r)=-2ro - AL

for the components with one or two indices in the subspace (x°,x',...,x?7%) and

<TD_1,D_1> i a2<TD71’D71> . h2<fDD>

a*+h? a*+h?
B B p2 (710 2 /7DD (17)
<TD—1,D>:a2¢ihh2 <TD—1,D—1>_<TDD>]’ <TDD>: <a2+h2 >+aa§+ h2>

for the components in the subspace (x”7',x?).

Note that the condition (3) can also be interpreted as a helical periodicity
condition along the compact dimension x”~' with the length 4, with the helicity
parameter @ along the uncompact direction x”, and with the phase —a - This
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shows that there is a duality between the models with the sets (a, 4, a,) and
(h, a, —a.,). In the dual models the roles of the dimensions x”~' and x” are
interchanged. The duality is also seen in the VEVs (14), (16), and (17).

3. Models with locally dS spacetime. As an application of the general
procedure described above let us consider a background spacetime with local dS
geometry. The dS spacetime is among the most popular geometries in quantum
field theory in curved spacetime. In particular, that is motivated by important
applications in inflationary models of the early Universe and in models of
accelerating expansion at recent epoch. In inflationary coordinates the correspond-
ing line element reads

ds® = dt*— 2" i(dxi)z
= > (18)

i=1
where the constant o determines the curvature radius of the spacetime. It is
expressed in terms of the cosmological constant A by the formula a® = D(D— 1)/ 2A.
For the remaining spatial dimensions we take —owo<x' <40, i=1, .., D-1.
Introducing a conformal time t in accordance with ©=-a et/ , the line element
is written in a conformally flat form

2 D
ds? = g, dx'dx* = Z—z[d v —Z(dx")z}, (19)

i=1
where m :|r|. For the scalar curvature in the field equation (2) one has
R :D(D—l)/ o’ . The VEVs of the field squared and energy-momentum tensor
in the model with a single compact dimension and periodic condition along it
were studied in [50]. The general case of spatial topology R” x(Sl)q , ptqg=D,
has been discussed in [51,52]. The vacuum currents for quasiperiodic conditions
with general phases are investigated in [30]. For simplicity here we consider the
special case p=D-1 and ¢g=1, assuming that the only compact dimension
corresponds to the coordinate x” along which the quantum scalar field obeys the
condition (3). In the discussion below we will work in the coordinate system (19).

3.1. Hadamard function and the VEVs of the field squared and
current density. The local characteristics of the vacuum state |O> for a quantum
scalar field o(x) are obtained from the two-point functions. They describe the
correlations of zero-point fluctuations at different spacetime points x and x'. As
a two-point function we will take the Hadamard function defined as the VEV

G(x,x')=(0lo(x)o’ (x')+ o' (+")o(x) 0). (20)
For dS spacetime different vacuum states have been considered in the literature.

Among them the Bunch-Davies vacuum is distinguished by the following two
properties: it is maximally symmetric and is reduced to the Minkowski vacuum
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in flat spacetime in the slow expansion limit. Here we assume that the field (x)
is prepared in the Bunch-Davies vacuum state. The Hadamard function G(x,x')
in the problem at hand for the coordinates x' is obtained from the expression
in [30] as a special case. Transforming to the coordinates x' we get

G<x,x'>=(2§2;;—3”1ffdzz[z_v (=), (=) K, (1)1, 2]

IS E e v v arvcayecy | B

n=—% “AxD|2 +n2(a2+ h2)+ Zn(anD—hAxD_l)JD/z_1

where xD:(xl,...,xD), Axp=xp—x), Ax' =x'=x"", I,(z) and K (z) are the
modified Bessel functions [53] with the order

= [p*/a- DD+ 1) - m* 02" (22)
The function £, (y) in (21) is defined by f,(v)=y*K,(v). The n=0 term in
(21) corresponds to the Hadamard function G (x, x ) in the dS spacetime without
compactification and the remaining part is induced by the helical compactification.
The expression for Gy (x, x’) in terms of the hypergeometric function is well
known from the literature.

Given the Hadamard function, the VEVs of physical observables are obtained
taking the coincidence limit of the arguments of the Hadamard function or its
derivatives. We start with the VEV of the field squared <(p(pT>=<O|(p(pT|O>. It is
obtained in the limit <(p(p*>:limx,_m G(x,x')/2. This limit is divergent and a
renormalization is required. The compactification scheme under consideration does
not change the local geometry and the divergences are the same as in the dS
spacetime without compactification. The corresponding part in the Hadamard
function (21) is presented by the n=0 term. Separating the topological contri-
bution and taking the coincidence limit the VEV is decomposed as

<(p(pT> - <(p(PT>dS * <(p(pT>c ’ (23)

where the renormalized VEV <(p(p*>ds in dS spacetime has been already studied
in the literature. By the maximal symmetry of the Bunch-Davies vacuum state,
it does not depend on spacetime coordinates. The topological contribution <(p(p*>c
is directly obtained from the part in (21) with n=0 in the coincidence limit:

=Dy D=2 o ~
<(P(PT>C = o ,[ dzzF, )Z%(;p)fD/Z—l( 2 (24)

( D/2+1( )0/2 1 p

with the notations
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_nz hz
Yn M a’+ (25)

and
F,(2)=[1,()+ 1,(2))K, (2). (26)

The VEV (24) is an even function of the phase o o This corresponds to the
periodicity with respect to the magnetic flux enclosed by the compact dimension,
with the period equal to the flux quantum. In addition, the mean field squared
<q>2> is invariant under the change (a h,a ) (h,a,—cx p). This is a manifes-
tation of the duality mentioned above.

For a charged scalar field the operator of the current density is given by

Jj, =iefo! Do~ (D, ) o] . (27)
The corresponding VEV can be obtained in two different ways. The first one
corresponds to the limiting transition (in the gauge where A4 = 0)

1= Letim(,~&)6(x ) %)

by using the Hadamard function (21). Note that the limit in the right-hand side
of (28) with the dS Hadamard function vanishes and the renormalization for the
current density is not required. In the second way, the vacuum current density
is obtained from the corresponding result for quasiperiodic condition, given in [30],
by the coordinate transformation (14). For the nonzero components we get

and < jD’1>=—h< J > /a. Here, y, is defined by (25). The physical components

of the current density, denoted here by Jp ! g, are connected to the contravariant

components by the relation < Jip > (cx/n)< . The components < e > and < . 1>
are odd functions of the phase a ,- In particular, the current density vanishes
for half-integer values of the parameter o In agreement with the duality
mentioned at the end of the previous section, the current densities are invariant
under the change (a,h,oc p)—>(h>a,—oc p) with the change of the roles of the

coordinates (x”7!, xD)—> (xD, xP

3.2. Vacuum energy-momentum tensor. Finally, we turn to the VEV
of the energy-momentum tensor. In the gauge with 4, =0 it is obtained from the
Hadamard function (21) with the help of the formula (again, in the gauge with
zero gauge potential)

<Tzk> = )},igiaia;c G(x, x,)"' |:[é _%jgik Vlvl —&V,V, - éR[ki|<(P2> ) (30)
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where R, =Dg, / o’ is the Ricci tensor for the dS spacetime. Alternatively, the
VEV is derived by the coordinate transformation from the results in the coordinate
system x' with standard periodicity condition. The corresponding formulas in the
special case o , =0 are obtained from the results of [51]. Generalizing for o »#0
and using the transformation rules (16) and (17) one finds

<];k>:<Tik>dS +<];k>c’ 1)

where <Tk >dS = constSf is the corresponding VEV in the dS spacetime without

1

compactification. The topological contribution for the vacuum energy density reads

207 PnP2 s cos(na )
<T°0>c - (2n) D/2+1( )D/Z 12 D2 IdZZF )fD/2 1), (32)
with the notation
F(O)(z)= %Z[ZF\:(Z)]’-‘:- D(% - 2&] ZFV'(Z)+ 2(m2 a’ - z? )FV (z), (33)
where the prime stands for the derivative with respect to z. For the vacuum
stresses along the directions x', with i=1, 2, ..., D-2, one gets (no summation
over i)
A 20,77y P2
T) = -
< >c (ZTE)D/2+1(a2+h2)D/2 1
o cos(na )°° 2 F( ) (34
XZTfIdZZ F(Z)fD/Z—l(yn) ;]Z—fp/z( n)
n=l N 0 n (a +h )
where
1 N D '
P[22 J LRGN +| 200 -2 |ariCe). 35)

Now we turn to the components of the topological part in the vacuum energy-
momentum tensor with one or two indices in the subspace (x”',x?). The off-
diagonal components <T D> , with i=1, 2 , D-2, vanish: <T D> =0. For the
diagonal components in the subspace (x”',x”) we find

-1-D__D-2

() <§>ydzz{ )

27_[ D/2+1( +h )0/2 st

z 2 5 - n 36
2B 1B ) L )H ”

nz(a2+h2) a+h a’+n’

and



524 R.M.AVAGYAN ET AL.

-1-D,_D-2

(), - S e it )

2n)D/2+1( h )0/2 1
211 Fv(z) Da’ ) fD/Z—l (yn) (37)
75 oyl T Ton)-a’yr === |,
n (a +h ) a+h a+h
with y from (25). In addition to the diagonal components, the helical periodicity
condition induces a nonzero off-diagonal component <T 5) ’1> - It is obtained from

the diagonal components in the coordinate system X' by the transformation given
by (17):

-1-D,.D * cos(n(x )

_ -4
<TDD 1>c:( D/z(:( nh )D/2+1Z

j dzzF, ()2 o a2+ D)) 38y

All the components of the vacuum energy-momentum tensor are even functions
of o o Note that the parameter v defined by (22) can be either nonnegative
real number or purely imaginary. The integral representations given above are valid
in the range Rev <1. This restriction follows from the condition of the conver-
gence of the integrals over z in the lower limit. Note that off-diagonal com-
ponents of the vacuum energy-momentum tensor may arise also in models with
quasiperiodic conditions (see [54]).

It can be explicitly checked that the topological part of the vacuum energy-
momentum tensor obeys the trace relation

<7;i>c = [D({; -&p )Vlvl + m2]<(P2>C , (39)

where &, =(D—1)/4D is the value of the curvature coupling parameter for a
conformally coupled scalar field. For a conformally coupled massless field the
topological contribution <7}k> is traceless. The anomaly in the trace is contained
in the pure dS part <T 5>ds :

Note that the parameters a and 4 are the coordinate lengths. The correspond-
ing physical (proper) lengths measured by an observer at rest in the coordinates
x' are given by ag, =oa/n and h =ah/n. The VEVs <(P(P> < j(’p)>, and
<Ti" >c depend on a, h, and n in the form of the ratios a/n and A/n. The latter

are the proper lengths measured in units of the curvature radius o .

3.3. Conformally coupled massless field and the asymptotics. For
a conformally coupled massless field one has v=1/2 and F,(z)=1/z. The
integrals are evaluated by using the formulae [55]
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_[dny/z Idyy fD/z 1( ): (D_ 1).([ dny/%1 (y) = 2D/2_1«/EF(DT+IJ : (40)

For the VEVs of the field squared and physical component of the current density
one gets

(o0") - r(D-1)2)(n/a)”" iCOS( nd )

Zn(D”)/z(a +h )D b2 n=l -

(), 2D oS smbE) () gy

») (D412 (a2+ hz)(D+1)/2 o D (/.-

The expressions for the energy density and stresses along the directions x', i=

1, 2, ..., D-2, are simplified to (no summation over i=0, 1, ..., D-2)
<T[> o r((D+1)2)(n/a)”*! icos(n&p)
e TC(D“)/Z (a2+h2)(D+1)/2 ot P (42)

For the diagonal components of the energy-momentum tensor in the subspace
(xP1,xP) we find

() :{1_%}@?}0 L (1) = {1-%}@?}0 . (43)

Finally, the expression for the off-diagonal component is reduced to

(157, = e ). )

For a conformally coupled massless field the problem on the dS bulk is
conformally related to the corresponding problem in the locally Minkowski
spacetime, with the same parameters a, A, o P and the VEVs are connected by
the standard formulae

1\ (1) .o\ (M) A1)
R ad Y S S
¢ (OL/T])D_I Pl (a/n)D ¢ ((l/n)D+1
In the special cases o »,=0 and o p=T the current density vanishes and the series
in the expressions for the field squared and energy-momentum tensor are expressed
in terms of the Riemann zeta function. Depending on the values of the parameter
a,, the VEVs can be either positive or negative. In particular, the topological
contribution to the energy density is negative for an untwisted field (a, =0) and
positive for twisted field (o, =n). For some intermediate Value of a, the VEVs
become zero. The vacuum pressure along the direction x', i=0, 1, ..., D-2,

is given by —<T.[> and it is equal to the energy density with an opposite sign.
c

1
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This corresponds to the equation of state of the cosmological constant type in the
subspace (x°,x',...,x”7%). That is not the case for general conformal coupling and
for massive fields.

At the early stages of the cosmological expansion one has T——o and n
is large. In order to find the asymptotics of the VEVs in that limit it is convenient
to introduce a new integration variable u =z/n in the expressions for the VEVs.
The function F,(z) becomes F,(um) and its argument is large. By using the
asymptotic of the modified Bessel functions for large argument it can be shown
that F, (z)z 1/z for z>>1. This asymptotic coincides with the exact expression
for a conformally coupled massless scalar field. Replacing Fv(z):l/z in the
expressions for the field squared, current density, and off-diagonal component
<T § ’1> , we see that the leading terms in the expansion over 1/n coincide with
the cofresponding expressions for a conformally coupled massless field, given by
(41) and (44). In the expression (32) for the energy density, in the leading order,
one has F (O)(z) ~ -2z and the corresponding asymptotic, again, coincides with the
result (42) for i=0. In the components (36) and (17) we have F(z)z -2 D(&— &p )/z
and the terms involving the function F,(z)~1/z contain additional factor m>.
Hence, the latter term dominates in the asymptotic and the leading terms coincide
with (43). We conclude that in the limit T— —oo, corresponding to ¢ — —o, the
leading asymptotics of the topological contributions of the VEVs coincide with the
corresponding result for a conformally coupled massless field and the effects of
gravity on those contributions are weak. In the limit under consideration the
dominant contribution to the total VEV (31) comes from the topological part.

The late stages of the expansion correspond to ¢ — +o and n— 0. Again,
introducing a new integration variable u =z/n, we expand the function F, (u n)
for small values of the argument. For v>0 one has F,(un)ox (un)™ and the
topological terms in the VEVs tend to zero monotonically, like n”™" for the
VEVs of the field squared and energy-momentum tensor and like n”**?" for the
current density. For purely imaginary v, v=i |v , and for small m we have
F,(un)=Re[(2/un)” T(v)/T(1-v)]. In this case the topological VEVs tend to zero
with oscillating behavior. The amplitudes of the oscillations decay as nD for the
field squared and energy-momentum tensor and as nD*z in the case of the current
density.

4. Conclusion. We have studied the topological Casimir effect in models
with compact dimension along which the field operator obeys helical periodicity
condition given by (3). A general background is considered with the metric tensor
invariant under the rotations in the plane (x”',x”). In addition, the presence
of a gauge field is assumed with constant covariant components A, and 4, We
can pass to the new gauge with zero values of those components. In that gauge
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the field operator obeys the helical condition (5) with the new phase (6) depending
on the components 4, , and 4,. The corresponding contribution can be interpreted
in terms of the magnetic flux enclosed by the compact dimension. We have shown
that by the coordinate transformation (7) the problem with helical periodicity
condition is reduced to the problem with standard quasiperiodicity condition (13)
with the same phase. The length of the corresponding compact dimension is

expressed as Va’+h* .

The procedure we have described allows to find the VEVs of physical
observables in the topological Casimir effect for helical periodicity conditions by
using the corresponding results for quasiperiodic conditions. That is done by the
standard transformation of the tensors under the coordinate transformation (9). As
important local characteristics of the vacuum state we have considered the VEVs
of the current density and energy-momentum tensor. Their transformation laws
are given by (14), (16), and (17). As an example of general prescription the locally
dS spacetime is considered with a single compact dimension x” and helicity shift
along the direction x”'. The geometry is described by the line element (19).
The corresponding problem with general number of toroidally compactified dimen-
sions has been considered in [30,51]. In [51] the VEVs of the field squared and
energy-momentum tensor were studied for periodic and antiperiodic conditions.
The VEV of the current density in the case of quasiperiodic conditions with general
phases is considered in [30].

In the problem at hand the properties of the vacuum state are encoded in
two-point functions describing the correlations of the vacuum fluctuations in
different spacetime points. As a two-point function we have taken the Hadamard
function. In the problem with helical condition in locally dS spacetime that
function is expressed as (21). As local characteristics of the scalar vacuum we have
considered the expectation values of the field squared, current density and energy-
momentum tensor. In the corresponding expressions the parts induced by the
compactification are explicitly separated. The field squared and energy-momentum
tensor are even functions of the phase o , in the periodicity condition, whereas
the current density is an odd function. An important difference of the helical
compactification is the presence of nonzero off-diagonal component <T [l,) ’1> of
the energy-momentum tensor. At the early stages of the dS expansion the VEVs
are dominated by the topological contribution and at those stages the influence
of gravity on the local characteristics is weak. The corresponding asymptotics are
conformally related to the VEVs on the locally Minkowski bulk. At late stages,
depending on the parameter v, the topological parts in the VEVs decay mono-
tonically or oscillatory and the pure dS contributions dominate.
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TOIMOJOT'MYECKUN DDPDEKT KASUMUPA B
MOIEJIAX CO CIIMPAJIBHBIMUW KOMITAKTHBIMH
PASMEPHOCTAMMU

P.M.ABAKAH!2, A A.CAAPAH!?, J.A.CUMOHAH!, I'T. APYTIOHAH!

HccnenoBaHo BIMSHWE CIMPAIbHON KOMITAKTU(UKALMKA MTPOCTPAHCTBEHHOM
pa3MepHOCTH Ha JIOKaJbHbIE CBOMCTBA BAKYYMHOTO COCTOSTHUS TS 3apsIKEHHOTO
CKaJIIPHOTO TIOJIST ¢ OOIIMM MapaMeTpOM CBSI3M ¢ KPUBHM3HOM. PaccMmarpuBaeTcs
o011as ¢GoHOBasg TEOMETPUS C BpalllaTeIbHOM CUMMETPHEN B MOAIIPOCTPAHCTBE C
KOOPIWHATAMM, TOSIBISIOIIMMHUCS B YCJIOBUM CIIUPATbHON TEPUOTUIHOCTH.
IlokazaHo, 4TO ¢ Mpeobpa3oBaHMEM KOOPAWHAT 3ajadya CBOOWUTCI K 3amadye co
CTaHIApTHBIM YCIOBUEM KBa3UIEPUOIMYHOCTU B TOM K€ JIOKAJTLHOM TeOMETPUN U
¢ 3(PEeKTUBHBIM PaTHyCOM KOMITAKTU(MDHUKALINN, OTpeaeIsieMbIM IJTMHOW KOMITAaKTHON
pa3MepHOCTH W TapaMeTpoM CITMpaJbHOCTA. B KauecTBe NMpUMEHEHMS OOIIEi
MPOLEAYPHI PACCMOTPEHO JIOKAIBHO ¢ CHUTTEpOBCKOE MPOCTPAHCTBO-BPEMSI CO
CIIMPAJIBHON KOMITAKTHOM pa3MepHOCThI0. Mcrmonb3ys pyHKIMo Amamapa Uit
BaKyyMHOTO cocTossHUS baHua-JI3Brca, M3ydaloTcsl BaKyyMHBIE CpeqHIe KBaaparta
ITOJIS, TUTOTHOCTH TOKA W TEH30pa SHEPTMHU-UMITYJIbCA. SIBHO BBIAEIEHBI TOIOJIOTH-
YecKWe BKJIAAbI, M OMWCAHbl MX ACHUMMTOTHKM Ha PAaHHUX W TTO3THUX CTAIUSIX
KOCMOJIOTUYECKOTO paciIMpeHus. BaskHbIM OTJIMUMEM TT0 CpaBHEHUIO C 3amadeii ¢
KBa3UITEPUOIUYECKMMU YCIIOBUSMH SIBIISIETCS TTOSIBTIEHNE HEHYJIEBOI HeIMAaroHaIbHON
KOMITOHEHTHI TeH30pa SHEPTUH-UMITYJIbca 1 KOMITOHEHTHI TDIOTHOCTH TOKa BIOJb
HEKOMITAKTHOTO M3MEepEeHUS.

KitoueBnie cioBa: monoaoeuueckuti Kazumup sgpghexm: noaspuzauyus eaxyyma:
yeaosue cnupatbHou nepuooudHOCmuU: 8pemMs-npocmpancmeo
de Cummepa



25.

26.

27.
28.
29.
30.
31.

TOPOLOGICAL CASIMIR EFFECT 529
REFERENCES

. V.M.Mostepanenko, N.N.Trunov, The Casimir Effect and Its Applications

(Clarendon, Oxford, 1997).

E.Elizalde, S.D.Odintsov, A.Romeo et al., Zeta Regularization Techniques with
Applications (World Scientific, Singapore, 1994).

K.A.Milton, The Casimir Effect: Physical Manifestation of Zero-Point Energy
(World Scientific, Singapore, 2002).

A.A.Bytsenko, G.Cognola, E.Elizalde et al., Analytic Aspects of Quantum
Fields (World Scientific, Singapore, 2003).

M.Bordag, G.L.Klimchitskaya, U.Mohideen et al., Advances in the Casimir
Effect (Oxford University Press, Oxford, 2009).

Lecture Notes in Physics: Casimir Physics, edited by D.Dalvit, P.Milonni,
D.Roberts, F. da Rosa (Springer, Berlin, 2011), Vol. 834.

. F.C.Khanna, A.P.C.Malbouisson, J.M.C.Malbouisson et al., Phys. Rep., 539,

135, 2014.

. M.J.Duff, B.E.W.Nilsson, C.N.Pope, Phys. Rep., 130, 1, 1986.
. R.Camporesi, Phys. Rep., 196, 1, 1990.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

A.A.Bytsenko, G.Cognola, L.Vanzo et al., Phys. Rep., 266, 1, 1996.
L.H.Ford, T.Yoshimura, Phys. Lett. A, 70, 89, 1979.

J.Scherk, J.H.Schwarz, Nucl. Phys. B, 153, 61, 1979.

L.H.Ford, Phys. Rev. D, 22, 3003, 1980.

D.J.Toms, Phys. Rev. D, 21, 928, 1980.

D.J.Toms, Phys. Rev. D, 21, 2805, 1980.

P.Candelas, S.Weinberg, Nucl. Phys. B, 237, 397, 1984.

S.D.Odintsov, Sov. J. Nucl. Phys., 48, 1148, 1988.

Y. Hosotani, Annals Phys., 190, 233, 1989.

1.L.Buchbinder, S.D.Odintsov, Int. J. Mod. Phys. A, 04, 4337, 1989.
1.L.Buchbinder, S.D.Odintsov, Fortschr. Phys., 37, 225, 1989.

M. Quiros, arXiv:hep-ph/0302189.

A.Linde, J. Cosmol. Astropart. Phys., 10, 004, 2004.

C.J.Cao, M. van Caspel, A.R.Zhitnitsky, Phys. Rev. D, 87, 105012, 2013.
L.M.Abreu, C.A.Linhares, A.P.C.Malbouisson et al., Phys. Rev. D, 88, 107701,
2013.

C.J.Isham, Proc. R. Soc. Lond. A, 362, 383, 1978; Proc. R. Soc. Lond. A,
364, 591, 1978.

R.Banach, J.S.Dowker, J. Phys. A, 12, 2527, 1979; J. Phys. A, 12, 2545,
1979.

S.Bellucci, A.A.Saharian, V.M.Bardeghyan, Phys. Rev. D, 82, 065011, 2010.
S.Bellucci, A.A.Saharian, Phys. Rev. D, 87, 025005, 2013.

E.R.Bezerra de Mello, A.A.Saharian, Phys. Rev. D, 87, 045015, 2013.
S.Bellucci, A.A.Saharian, H.A.Nersisyan, Phys. Rev. D, 88, 2013.
S.Bellucci, A.A.Saharian, N.A.Saharyan, Eur. Phys. J. C, 75, 378, 2015.



530 R.M.AVAGYAN ET AL.

32. E.R Bezerra de Mello, A.A.Saharian, V.Vardanyan, Phys. Lett. B, 741, 155, 2015.

33. S.Bellucci, A.A.Saharian, V.Vardanyan, Phys. Rev. D, 96, 065025, 2017.

34. S.Bellucci, A.A.Saharian, V.Vardanyan, JHEP, 11, 092, 2015.

35. S.Bellucci, A.A.Saharian, V.Vardanyan, Phys. Rev. D, 93, 084011, 2016.

36. S.Bellucci, A.A.Saharian, D.H.Simonyan et al., Phys. Rev. D, 98, 085020, 2018.

37. S.Bellucci, A.A.Saharian, H.G.Sargsyan et al., Phys. Rev. D, 101, 045020, 2020.

38. A.A.Saharian, Symmetry, 16, 92, 2024.

39. K.R.Dienes, Phys. Rev. Lett., 88, 011601, 2001.

40. K.R.Dienes, A.Mafi, Phys. Rev. Lett., 88, 111602, 2002.

41. C.-J.Feng, X.-Z. Li, Phys. Lett. B, 691, 167, 2010.

42. X.-H.Zhai, X.-Z.Li, C.-J.Feng, Mod. Phys. Lett. A, 26, 669, 2011.

43. V.K. Oikonomou, Commun. Theor. Phys., 55, 101, 2011.

44, X.-H.Zhai, X.-Z.Li, C.-J.Feng, Mod. Phys. Lett. A, 26, 1953, 2011.

45. X.-H.Zhai, X.-Z.Li, C.-J.Feng, Eur. Phys. J. C, 71, 1654, 2011.

46. G.Aleixo, H.F.Santana Mota, Phys. Rev. D, 104, 045012, 2021.

47. A.J.D.Farias Junior, H.F.Santana Mota, Int. J. Mod. Phys. D, 31, 2250126,
2022.

48. A.A.Saharian, D.H.Simonyan, H.H.Mikayelyan et al., J. Contemp. Phys., 58,
341, 2023.

49. S.Bellucci, E.R.Bezerra de Mello, A.A.Saharian, Phys. Rev. D, 89, 085002, 2014.

50. A.A.Saharian, M.R.Setare, Phys. Lett. B, 659, 367, 2008.

51. S.Bellucci, A.A.Saharian, Phys. Rev. D, 77, 124010, 2008.

52. A.A.Saharian, Int. J. Mod. Phys. A, 24, 1813, 2009.

53. Handbook of Mathematical Functions, edited by M.Abramowitz and 1.A.Stegun
(Dover, New York, 1972).

54. A.A.Saharian, R.M.Avagyan, G.H.Harutyuynyan et al., Astrophysics, 67, 231,
2024,

55. A.P.Prudnikov, Y.A.Brychkov, O.l Marichev, Integrals and Series (Gordon and
Breach, New York, NY, USA, 1986), Volume 2.



