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Abstract. Recently Bose-Einstein condensation has gathered a popularity and interest. An 

interesting theoretical phenomenon closely related to BEC and condensation is Frohlich's dynamic 

condensation phenomenon, proposed as a reoccurring mechanism in biophysics. This phenomenon 

studied classically brings forth a hypothesis that dynamic emergence of condensation requires 

nonlinear interactions. Working in the purely quantum regime I show the correctness of the 

hypothesis for a broad class of initial states as well as show a way for condensation to emerge 

from linear dynamics if the initial state has very large or very long-range quantum correlations. 
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1. Introduction 

 

Bose-Einstein condensation (BEC) is a phase transition observed in quantum thermodynamic 

matter, where the occupation number in a single mode takes on a macroscopic value under some 

critical temperature. This phenomenon is paradigmatic for superconductivity and superfluidity, and 

has applications in quantum technologies, optical-lattice studies etc [1-5]. A significant application 

for BEC is the ability to make ultra-precise measurements. The high coherence of the BEC states 

can be used to drastically improve the precision of interferometry [6-8]. 

More than a half of century ago (i.e. much before the recent surge of interest related to BEC in 

atomic gases), Frohlich suggested that a phenomenon of BEC can be realized for non-linearly 

interacting, non-equilibrium phonons under influx of energy [9-11]. He was motivated by general 

features of order and coherence associated with BEC, and proposed that it can have direct 

applications in those biophysical situations, where a large-scale coherence is involved, e.g. 

conformational motion in biopolymers or impulse propagation in nerves. 

Frolich's BEC is a dynamic phenomenon, where instead of lowering the temperature below its 

critical value (which is the standard scenario of equilibrium BEC), the system is dynamically 

brought to a state where a single mode has a macroscopic occupation number. This phenomenon 

has been derived using a classical model for the phonons and the bath, where it has been shown that 

the non-linearity of interactions between different modes is required for the emergence of the 

condensate. This phenomenon has also been derived in a quantum system with nonlinear 

interactions [12-14]. 

The ideas of Frohlich so far did not find direct applications in biophysics. Nevertheless, deep 

physical features of his approach invite further considerations that will certainly enrich our 

understanding of BEC itself. Starting from Frohlich's works, we revisit here the important topic of 

nonlinearity as a requirement for dynamical realization of BEC. Note that in the theory of BEC, the 

nonlinearity is commonly interpreted as the cubic term in the Gross–Pitaevskii equation [15]. Such 

a term comes from the mean-field approach, where the Schroedinger equation for a many-boson 

system is converted into a nonlinear equation for a single effective quasi-particle. Here, we 

understand the nonlinearity more fundamentally, as the non-quadratic terms in inter-mode 

interaction Hamiltonian. Our definition of nonlinearity can also exist for just two bosonic modes 
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and provides an important resource for quantum thermodynamic tasks [16]. In particular, it has 

been shown (for a general class of initial states in boson systems) that a linear evolution in bosonic 

systems increases the mean number of excitations, a phenomenon that can be associated with the 

noise increase [17, 18]. Likewise, noise reduction is possible due to non-linear inter-mode 

interactions [18]. 

My main result here is that in a closed system for a large class of states, the phenomenon of 

BEC is dynamically impossible if all interactions are linear and initial conditions do not contain 

implanted inter-mode correlations. I relate the mechanism of this result to the maximal work-

extraction problem. I also show that linear interactions can lead to condensation for an initial state 

that does not satisfy the mentioned condition. Thereby, I make Frohlich's classical hypothesis about 

the relevance of nonlinearity for BEC more precise in the quantum regime. 

 

2. Setup and Dynamics 

 

A closed many-mode boson system is described by the Hamiltonian (   ) 
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where   is the number of modes,    is the frequency of the mode (in ascending order),      
  are 

the annihilation and creation operators, and    is the interaction Hamiltonian. The commutation 

relations read 
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where     is the Kronecker delta. We take an interaction Hamiltonian depending on some external 

control parameter      such that                      . We start from some general non-

equilibrium initial state   (density matrix) that satisfies the following properties 
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I consider (3) as a reasonable candidate for a quasi-stable (hydrodynamic type) non-

equilibrium stationary state. Indeed, note that in the interaction representation with respect to (1) we 

get      
     , i.e. the terms involved in (3) are rapidly oscillating except for the third equation 

when      . 

 

2.1. Linear Heisenberg evolution 

 

The interaction Hamiltonian    being quadratic in the creation and annihilation operators 

leads to a simple linear time evolution in the Heisenberg picture of said operators. For          

and          operators it results in 
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4) 

 

where from the commutation relations 
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5) 

 

we get 
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6) 

 

Thus the change in the occupation number of mode   equals 

 

 

                
         

    

     
        

        
         

          
   

 

     

     
      

(7) 

 

Following the derivations in [18] we arrive to the equation 
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8) 

 

Equations (6, 7, 8) show that the occupation number of a single mode can be increased in a 

linear process by any value desirable. This, however, is achieved by pumping a specific mode      

or by beneficially swapping    with   
 
 via    , which results in an increase of the occupation 

numbers in several modes. A simple example of the latter can be obtained by the matrices     

written in block matrix form as 
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where    is the     dimensional identity matrix and 

 

           

     
          

   

   
   

(10

) 

 

This evolution achieves a change in the occupation number of the first two modes              . 

Evidently both of the discussed cases can infinitely pump energy into specific modes to raise 

their occupation numbers and this is not of particular interest to condensation. Below we will 

discuss the cases where the mean boson number of the closed system is kept constant. These states 

are of particular interest for molecular BEC [4, 5] and  trapped boson systems [19]. 

 

 

3. Constant mean boson number 

 

From (7) using (6) we find that the only type of linear dynamics that preserves the mean 

boson number is          and unitary  , therefore, 
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where            
 
 is a double stochastic matrix. Now the change in energy and the change in the 

occupation number of some fixed mode are equal to 
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3.1. Maximum occupation in one mode 

 

As     in (12) is a linear equation from a double stochastic matrix it arrives to an extremum 

on the vertices, i.e. the permutation matrices. From this it follows that the maximum final 

occupation number in a fixed mode is 

 

                   (13) 

 

therefore, to make the occupation number of a single mode a macroscopic value we need to already 

have a macroscopic occupation number in a different mode. In other words, in a closed system a 

condensed state cannot emerge from linear interactions which keep the mean boson number 

constant with the given initial conditions (3). 

 

3.2. Maximum work extraction 

 

The work extracted from the system can be found by        . The maximal work 

available for extraction from a system via linear interactions (Gaussian ergotropy) has been 

calculated in [16]. It is interesting to see what this value will be with the addition constraints of (3) 

and of constant mean boson number. In this regime the maximum amount of work that can be 

extracted from the system corresponds to the minimum of    from    . As this is once again a 

linear equation, similar to the previous section an extremum corresponds to a permutation matrix. 

Thus, the maximum work extracted equals to 
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where              is the sequence       in an ascending order.  

Let us take   to be a macroscopic number while all       are finite and small. If       are 

initially uniformly distributed random variables              and      
 

 
 then on average the 

maximum extracted work will be of order 
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i.e. a macroscopic amount of work can be extracted from such system via linear interactions that 

keep the mean boson number constant. 

 

 

3.3. Relaxed initial constraints 

 

Now assume the third constraint on the initial state in (3) is relaxed, meaning    
         is 

not diagonal. Using    
    

     
     we find that   is a Hermitian matrix and from (4) we can 

write its time evolution 
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where     . Then using        we can find 
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where     are the eigenvalues of matrix   and    is another double stochastic matrix which means 

that    majorizes      . Once again we can find the maximum occupation in a single mode and the 

maximal available work making    a permutation matrix. This means that the maximum 

occupation in a single mode is less than or equal to the maximum eigenvalue of matrix  . This 

mechanism relies on the fundamentally quantum correlations between the creation and annihilation 

operators of different modes in the initial state. To have macroscopic eigenvalues while the 

diagonal values are not macroscopic would require a macroscopic amount of modes   and the 

matrix to either have macroscopic non-diagonal values (macroscopic quantum correlation) or be 

non-sparse, i.e. have a macroscopically large amount of finite quantum correlation. 

 

4. Conclusions 

 

Frohlich's mechanism of dynamic Bose-Einstein condensation in biological systems is an 

underdeveloped topic limited by the experimental technology of its time. I show that the necessity 

of classical non-linearity in Frohlich's condensation is transformed to a necessity of non-linear 

evolution in a closed quantum system for a broad class of initial states. The simplest 

thermodynamic derivation of a BEC in an ideal gas is done using the grand canonical ensemble. It 

is then assumed that a non-equilibrium state can be brought to a BEC state via coupling it with a 

thermal bath. An important consequence of my results is that this assumption fails for a linearly 

coupled thermal bath such as the Caldeira-Leggett model [20, 21]. However, I also show that there 

is a mechanism for a more relaxed class of initial states where condensation via linear interactions 

could be achievable. This mechanism requires very large or very long-range quantum correlations 

in the initial state. 
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