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Abstract. This paper discussed the digitization of some analytical solutions of the fundamental 
equation of non-relativistic quantum mechanics, the Schrödinger equation, in the Python 
programming environment. The main objective of the work is to automate the solution of several 
known analytically solvable problems of quantum mechanics and ensure their use in more 
complex problems. For this purpose, the Python programming environment was chosen, which, 
due to the large number of libraries and flexibility, is currently widely used in solving physical and 
mathematical problems. In the program we propose, which is available on the GitHub platform, it 
is solved easily. The problem of determining the probability of the spatial distribution of an 
electron in a hydrogen-like atom is discussed. The Schrödinger equation is presented in the 
spherical coordinate system. The wave function, describing the electron's state, quantized energy 
values, and probability density, is derived analytically. A recursive function was written in Python 
to handle the series coefficients defining the wave function. Utilizing relevant libraries, the 
resulting program constructs electron spatial distribution functions for different excitation levels. 
The paper then examines two one-dimensional tunneling scenarios and provides the tunneling 
coefficients in analytical form. A Python program was developed to plot the dependence of these 
coefficients on the particle's coordinate and energy. All the code is available on GitHub. 

 
Keywords: hydrogen atom, helium ion, spatial distribution, tunneling effect  
 
DOI: 10.54503/18291171-2024.17.3-43 
1. Introduction 

 
We can discuss conserved energy when the quantum system is in a time-independent force 

field. In quantum mechanics, energy takes on discrete values and is determined from the differential 
equation of eigenvalues and Eigen functions. That equation was named Schrödinger's equation. It 
contains the Hamiltonian operator on the left-hand side, defined by either the momentum or 
coordinate operators in the case of the coordinate and momentum representations, respectively. In 
the time-independent case, this equation is more straightforward for non-rotating systems. This 
means that if we do not consider the dependence of the wave function on ϑ and ϕ, then for the states 
we are discussing, the angular momentum is also zero, and therefore 𝑙 = 0. Thus, states were 
studied where the orbital quantum number is zero: 𝑙 = 0,𝑛 = 1, 2, …. The radial part of the 
Schrödinger equation, where the potential energy contains the term ℏ

2𝑙(𝑙+1)
2𝑚𝑟2

, due to the angular 
momentum [1, 2]. The case 𝑙 = 0 is used to generalize the case 𝑙 ≠ 0.  The Schrödinger equation 
[3, 4], a cornerstone of quantum physics, allows for determining the wave function that describes a 
quantum system's state, thereby enabling the calculation of probability density. As a second-order 
inhomogeneous linear differential equation with partial derivatives, it can be challenging to solve 
analytically [5]. The nonlinear form of the Schrödinger equation is discussed in Ref. 6. The first 
integral of the Hamilton operator is the Laplace operator. Depending on the symmetry of the 
problem, it can be presented in a Cartesian, cylindrical, or spherical coordinate system. In the first 
question presented in the paper, the Laplace operator is brought into the spherical coordinate system 
because the hydrogen atom has spherical symmetry. The results of this problem can be applied to 
the study of heavier atoms and molecules, especially when describing their "inner" electron states. 
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In the second question, one-dimensional potential barriers are discussed, and bringing the Laplace 
operator into the Cartesian coordinate system is advisable. Tunneling problems are essential in 
researching conductors, semiconductors, and alpha decay properties. Tunneling is also significant in 
the study of the behavior of elementary particles when the latter is located in the superdense matter 
in stars [7]. Numerical solutions in the Python programming environment are given to generalize 
the solutions to the problems discussed. The Python environment was chosen because it is widely 
used to solve physical and mathematical problems [8]. It can help solve quantum mechanical issues 
such as the two-particle problem, the problem of solving the Schrödinger equation for molecules 
(adiabatic approximation), etc. 
 
 
2. Problem 1: Statement and analytical solution 

 
The form of the Laplace operator depends on the specific problem at hand. For problems 

exhibiting spherical symmetry, the spherical coordinate system is particularly convenient. 
Hydrogen-like atoms are examples of such systems, where the electron exists within the 
electrostatic field of a nucleus with charge 𝑞𝑁 = 𝑍𝑒: 𝑈(𝑟) = −𝑍𝑒2

𝑟
, where 𝑟 is the radius-vector of 

the electron. If the electron's energy is less than zero, 𝐸 < 0, it is localized in the potential hole 
𝑈(𝑟). The electron's motion is finite, and its energy is quantized, as determined by solving the 
fundamental equation of quantum mechanics. The Laplace operator, which is part of the 
Schrödinger equation, appears as follows in the Cartesian coordinate system: ∆= 𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2
+ 𝜕2

𝜕𝑧2
. 

Given the spherical symmetry of the problem, it is convenient to express the Laplace operator in 
spherical coordinates. The relationship between spherical and Cartesian coordinates is as follows: 
𝑥 = 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, 𝑦 = 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑, 𝑧 = 𝑟𝑐𝑜𝑠𝜃. In the case under discussion, rotations and time 
dependence are not considered. The wave function is independent of the rotation angles 𝜃 and 𝜑, as 
well as time, and is determined solely by the radial vector 𝜓(𝑟). The Laplace operator has the 
following form: ∆= 𝜕2

𝜕𝑟2
+ 2

𝑟
𝜕
𝜕𝑟

. Calculations have been performed in parabolic coordinates [9] and 
on an elliptical basis [10]. 

By applying conditions from Eq.(2) to Schrödinger's stationary Eq.(1) and considering that 
𝐸 < 0, which implies 𝑘2 > 0, Eq.(3) will be obtained. 
 

𝑑2𝜓
𝑑𝑟2

+ 2
𝑟
𝑑𝜓
𝑑𝑟

+  2𝑚
ℏ2
�𝐸 + 𝑍𝑒2

𝑟
�𝜓 = 0,    (1) 

 
𝜎 = 2𝑚𝑍𝑒2

ℏ2
,𝑘2 = −2𝑚𝐸

ℏ2
,     (2) 

 
𝑑2𝜓
𝑑𝑟2

+ 2
𝑟
𝑑𝜓
𝑑𝑟

+  𝜎
𝑟
𝜓 = 𝑘2𝜓.     (3) 

 
By making the substitution 𝐹(𝑟) = 𝑟𝜓(𝑟) and considering the identity ∆𝜓(𝑟) = 𝑑2𝜓

𝑑𝑟2
+ 2

𝑟
𝑑𝜓
𝑑𝑟
≡

1
𝑟
𝑑2(𝑟𝜓)
𝑑𝑟2

= 1
𝑟
𝑑2𝐹
𝑑𝑟2

, Eq.(3) will take the following form: 
 

𝑑2𝐹
𝑑𝑟2

+ 𝜎
𝑟
𝐹 =  𝑘2𝐹.      (4) 

 
As 𝑟 → ∞, the second term on the left side of Eq.(4) becomes smaller than the first term, 

allowing it to be written as follows: 
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𝑑2𝐹
𝑑𝑟2

= 𝑘2𝐹.       (5) 
 

The solution to Eq.(5) takes the form 𝐹~𝑒±𝑘𝑟. 𝐹~𝑒𝑘𝑟 diverges as the radius increases, which 
does not satisfy the wave function's standard conditions. It is more convenient to seek the solution 
with 𝐹 = 𝑒−𝑘𝑟𝑓(𝑟). In this case, the wave function can be represented as: 
 

𝜓(𝑟) = 1
𝑟
𝑒−𝑘𝑟𝑓(𝑟).      (6) 

 
By substituting 𝐹(𝑟) into Eq.(4) and performing mathematical transformations, we derive the 

differential Eq.(7) for the function 𝑓(𝑟), whose solutions take the form of power series as presented 
in Eq.(8). 
 

𝑑2𝑓
𝑑𝑟2

− 2𝑘 𝑑𝑓
𝑑𝑟

+ 𝜎
𝑟
𝑓 =  0,     (7) 

 
𝑓(𝑟) = ∑ 𝐴𝑠𝑟𝑠∞

0 .      (8) 
 

Upon inserting Eq.(8) into Eq.(7), we derive the equation ∑ [𝐴𝑠+1𝑠(𝑠 + 1) − 2𝑘𝑠𝐴𝑠 +∞
𝑠=0

𝜎𝐴𝑠]𝑟𝑠−1 = 0, which must hold for all 𝑟 values. This implies that all coefficients preceding 𝑟𝑠−1 
are zero. Specifically, when 𝑠 = 0, it follows that 𝐴0 = 0. For other values of 𝑠, a recursive formula 
in Eq.(9) is obtained, linking successive coefficients in the series from Eq.(8). 
 

𝐴𝑠+1 = 2𝑘𝑠−𝜎
𝑠(𝑠+1)

𝐴𝑠,  𝑠 = 1,2,3, …    (9) 
 

The wave function 𝜓(𝑟) remains finite when the coefficients of the series from Eq.(8) start 
becoming zero from a specific point: 𝑠 > 𝑛,𝐴𝑛+1 = 0 , which brings to the following equation: 
2𝑘𝑛 − 𝜎 = 0. Taking into account Eq.(2), this condition determines the energy value at the 𝑛–th 
level as: 
 

𝐸𝑛 = −𝑚𝑒4

2ℏ2
∙ 𝑍

2

𝑛2
,  where 𝑛 = 1,2,3, …    (10) 

 
It is important to highlight that Eq.(10) yields the same result as that for the hydrogen atom 

with atomic number 𝑍 = 1, derived within Bohr's semi-classical theory. Hence, the energy levels 
are quantized according to Eq.(10), and the electron wave function can be expressed as follows: 
 

𝜓𝑛(𝑟) = 1
𝑟
𝑒−𝑘𝑛𝑟𝑄𝑛(𝑟),       

 
𝑄𝑛(𝑟) = 𝐴1𝑟 + 𝐴2𝑟2 + 𝐴3𝑟3 + ⋯+ 𝐴𝑛𝑟𝑛 = ∑ 𝐴𝑠𝑟𝑠𝑛

𝑠=1 ,   
 

𝐴𝑠+1 = 2𝑘𝑛𝑠−𝜎
𝑠(𝑠+1)

𝐴𝑠,        
 

𝜎 = 2𝑚𝑒2

ℏ2
= 2

𝑎
,𝑘𝑛 = �−2𝑚𝐸𝑛

ℏ2
= 1

𝑎𝑛
.    (11) 

 
3. Problem 1: Results and discussion 
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In the specific scenario when 𝑛 = 1, the wave function for the ground state is defined as: 
𝜓1(𝑟) = 𝐴1𝑒−𝑘1𝑟, and 𝑘1 = 𝑍𝑚𝑒2

ℏ2
= 𝑍

𝑎
. The coefficient 𝐴1 is determined by the normalization 

condition of the wave function: ∫|𝜓|2𝑑𝑉 = ∫ 𝐴12
∞
0 𝑒−2𝑘1𝑟4𝜋𝑟2𝑑𝑟 = 1, from which we get 𝐴1 =

�𝑘13

𝜋
= � 𝑍3

𝜋𝑎3
. Therefore, the wave function for in the ground state of the hydrogen atom with 𝑍 = 1 

is determined by the following formula: 𝜓1(𝑟) = � 1
𝜋𝑎3

𝑒−𝑘1𝑟, where 𝑘1 = 1
𝑎
. 

The probability of the electron's spatial distribution is determined by |𝜓1(𝑟)|2𝑑𝑉 [11, 12], 
representing the probability of detecting an electron within the volume 𝑑𝑉. Utilizing the spherical 
coordinate system, this probability within a spherical shell of radius 𝑟 and thickness 𝑑𝑟 is given by 
[13] 
 

𝑑𝑊1(𝑟) = 𝑤1(𝑟)𝑑𝑟 = 1
𝜋𝑎3

𝑒−2𝑟/𝑎4𝜋𝑟2𝑑𝑟.   (12)  
 

It is a known fact that an exponential function decreases faster than a power function can 
increase. This indicates that the probability density 𝑤1(𝑟) = 𝑑𝑊1/𝑑𝑟 achieves its maximum value 
at a certain 𝑟. The value of 𝑟 corresponding to that maximum density can be determined from the 
following equation: 𝑑𝑤1(𝑟)

𝑑𝑟
= 0. Using Eq. (12), the following quantity is obtained: 𝑟𝑚𝑎𝑥 = 𝑎 = ℏ2

𝑚𝑒2
. 

𝑟𝑚𝑎𝑥 is the distance from the nucleus in a hydrogen atom where the probability of finding an 
electron is highest. For hydrogen-like atoms, the value of 𝑟𝑚𝑎𝑥, given 𝑍, is determined by the 
formula: 𝑟𝑚𝑎𝑥 = 𝑎 = ℏ2

𝑚𝑍𝑒2
. Here are the numerical evaluations: 𝑎 = 0.529 𝐴0 = 0.529 ∙ 10−8 𝑐𝑚. 

This implies that the dimensions of the hydrogen atom are 𝑑 = 2𝑎 ≈ 1 𝐴0, which aligns with 
experimentally obtained dimensions. 

For the second excited level, 𝜓2(𝑟) = (𝐴1 + 𝐴2𝑟)𝑒−𝑘2𝑟 is derived, where 𝐴2 is obtained from 

the recursive Eq. (11): 𝜓2(𝑟) = 𝐴1 �1 − 𝑟
2𝑎
� 𝑒�−

𝑟
2𝑎�, and the coefficient 𝐴1 is determined by the 

normalization condition: ∫|𝜓2|2𝑑𝑉 = ∫ |𝜓2|2∞
0 4𝜋𝑟2𝑑𝑟 = 1, 𝐴1 = 1

√8𝜋𝑎3
. It's noteworthy that the 

wave function 𝜓2(𝑟) has a zero value at a distance equal to twice the Bohr radius, specifically when 
𝑟 = 1 𝑘2⁄ = 2𝑎. The probability of detecting an electron at a distance 𝑟 from the nucleus is 
determined by the following formula: 𝑑𝑊2(𝑟) = 𝑤2(𝑟)𝑑𝑟 = 𝐴12(1 − 𝑟

2𝑎
)2𝑒−𝑟/𝑎4𝜋𝑟2𝑑𝑟. 

The function 𝑤2(𝑟)  exhibits four extrema: two maximums and two minimums. The first 
minimum, observed in both 𝑛 = 1 and the current case, coincides with the center of the atom, 𝑟 =
0. The second minimum occurs at a distance equal to twice the Bohr radius, 𝑟 = 2𝑎, where the 
wave function 𝜓(𝑟) for the first excited state becomes zero. The maximum values of the probability 
density occur at the following distances 𝑟: 𝑟1 = �3 ∓ √5�𝑎. 

In the ground state (𝑛 = 1), the wave function 𝜓1(𝑟) has no node within the interval 0 < 𝑟 <
∞. In contrast, the first excited state (𝑛 = 2) wave function 𝜓2(𝑟) has one node. As the value of the 
quantum number 𝑛 increases, the number of nodes increases. There will be 𝑛 − 1 nodes in the 𝑛–th 
state. States with higher quantum numbers, corresponding to higher energies, involve more intricate 
electron spatial distribution probability functions. This study aims to numerically compute and 
visually represent these functions, complementing the analytical expressions for spatial distribution 
probability across any excited state and for any value of 𝑍. It's worth noting that obtaining these 
functions analytically for large quantum numbers is quite challenging. Calculating the coefficients 
𝐴𝑠+1 for each subsequent term in the polynomial 𝑄𝑛(𝑟), as determined by Eq.(11) using the 
recursive approach, becomes complex. Therefore, digital methods are employed to solve this 
problem efficiently. 
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A program was created in Python that defines a recursive function to determine the 
coefficients of the polynomial 𝑄𝑛(𝑟) = 𝐴1𝑟 + 𝐴2𝑟2 + 𝐴3𝑟3 + ⋯+ 𝐴𝑛𝑟𝑛  (𝐴𝑠+1, 𝑠 = [1,𝑛]). Next, 
the polynomial 𝑄𝑛(𝑟)  and the wave function 𝜓𝑛 were constructed. Using the definition of 
probability, the function 𝑤𝑛(𝑟) = |𝜓𝑛(𝑟)|2 was determined for each 𝑛. Different intervals of the 
distance from the nucleus, 10−20 < 𝑟 < 𝑁 ∗ 𝑎, were selected for various ground and excited states. 
The center of the atom corresponds to 𝑟 = 0, where the program encounters a division by zero 
error. Therefore, the starting point for the calculations was set to 10−20. The spatial distribution 
probabilities 𝑤1(𝑟), 𝑤2(𝑟), and 𝑤3(𝑟) were plotted using the Matplotlib.pyplot library in Python 
for 100 points within the specified ranges of distances from the nucleus. The Python Numpy library 
was utilized to store the data. The Python code is available on GitHub [14]. 
 

  
Fig. 1. (a) The probability distribution function of finding an electron in a hydrogen atom in the ground state 

(𝑛 = 1; curve 1) and the first excited state (𝑛 = 2; curve 2). (b) Spatial probability distribution for an 
electron in a hydrogen atom (curve 1) and a helium ion (curve 2) in the second excited state 𝑛 = 3. 

 
Fig.1(a) blue line (curve 1) represents the probability of the electron's spatial distribution in 

the hydrogen atom's ground state (𝑛 = 1). The figure shows that the probability peaks at 𝑟 = 𝑎, 
corresponding to the Bohr radius. This indicates that the Bohr radius is significant as it represents 
the distance from the nucleus where the electron is most likely to be found in the ground state. The 
probability density decreases exponentially for distances beyond this point, making detecting the 
electron at greater ranges unlikely. The red line (curve 2) illustrates the spatial distribution 
probability of the electron in the hydrogen atom's first excited state (𝑛 = 2). The dotted lines 
indicate the distances from the nucleus in the hydrogen atom where the probability of finding the 
electron is highest. The figure shows that there are 𝑛 − 1 nodes for each state where the probability 
of detecting the electron is zero, corresponding to the quantum number 𝑛. The spatial distribution 
probability of an electron in a hydrogen-like atom (𝑍 ≠ 1) was also determined. 

Fig.1(b) shows the spatial distribution probabilities of the electron in the second excited state 
(𝑛 =  3) for the hydrogen atom (blue line) and the ionized helium atom 𝑍 = 2, 𝐻𝑒+ (red line). As 
the atomic number 𝑍 increases, the probability of the electron distribution at the given excitation 
level decreases. This occurs because the coefficients determining the wave function decrease with 
the increasing value of  𝜎, which, according to Eq.(2), is directly proportional to 𝑍. Consequently, 
as 𝑍 increases, the spatial distribution probability of the electron diminishes. 
 
4. Problem 2: Statement and analytical solution 
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Quantum tunneling, a non-equilibrium process, is one of the most fascinating topics in 
quantum physics. It has been studied in various microscopic systems, including alpha decay of the 
nucleus [15], quantum cosmology [16], and tunneling in Josephson junctions [17]. The 
experimental observation of macroscopic quantum tunneling of a Bose-Einstein condensate in a 
hybrid trap is discussed in [18]. Due to the tunneling, it is possible to explain the theory of the early 
formation of the Universe [19]. In Ref. 7, it is experimentally shown that solid 𝐻2𝑂 is formed by 
surface 𝑂𝐻 +  𝐻2 reaction, which is possible due to tunnel transitions. 

 

 
Fig. 2. Passage of a quantum particle through a one-dimensional potential barrier: (a) triangular and (b) parabolic, each 
of length 𝑙. The barriers reach a maximum height of 𝑈0, and the particle with energy 𝐸 travels in the 𝑥 > 0 direction. 

 
The traversal of a quantum particle with specific energy through one-dimensional potential 

barriers (tunneling) is explored through solutions to the stationary Schrödinger equation in 
Cartesian coordinates. This approach represented a direct pathway toward attosecond time-resolved 
imaging of electron motion in atoms and molecules [20]. In this study, we focus on time-
independent scenarios. Fig.2 depicts triangular and parabolic potential barriers. 

For a one-dimensional particle passing through a potential barrier of arbitrary shape between 
lengths |𝑎, 𝑏|, the probability can be expressed using the Eq.(13) 
 

𝐷 = 𝐷0𝑒𝑥𝑝 �−
2
ℏ ∫ �2𝑚(𝑈(𝑥) − 𝐸)𝑑𝑥𝑏

𝑎 �.   (13) 
 

By ignoring changes in the quantity 𝐷0 concerning the exponent and setting it to 1, the 
transmission coefficient of a particle with energy 𝐸 through the potential barrier shown in Fig.2(a) 
can be determined. This involves substituting the potential energy from 𝑈(𝑥) = 𝐸 + 𝑈0

𝑙
𝑥 into 

Eq.(13) and integrating between points F and C. The analytical calculations and the resulting 
expression are provided in Eq.(14): 

 

−2
ℏ∫ �2𝑚(𝑈(𝑥) − 𝐸)𝑑𝑥𝑥2

𝑥1
= −2

ℏ ∫ �2𝑚�𝐸 + 𝑈0
𝑙
𝑥 − 𝐸�𝑑𝑥 = −2

ℏ√2𝑚𝑥2
𝑥1

∙ ∫ �𝑈0
𝑙
𝑥𝑑𝑥𝑥2

𝑥1
=

−2
ℏ√2𝑚 ∙ �𝑈0

𝑙
∙ ∫ √𝑥𝑑𝑥

𝑥2
𝑥1

= −2
ℏ
�2𝑚𝑈0

𝑙
∙ 𝑥

3
2
3
2

|𝑥1
𝑥2 = − 4

3ℏ
�2𝑚𝑈0

𝑙
∙ �𝑥2

3
2 − 𝑥1

3
2� = − 4

3ℏ
�2𝑚𝑈0

𝑙
∙

��𝑙 −  𝐸
𝑈0
𝑙�

3
2 − 0

3
2� = − 4

3ℏ
�2𝑚𝑈0

𝑙
∙ 𝑙√𝑙 ∙ 1

𝑈0�𝑈0
(𝑈0 − 𝐸)

3
2 = − 4

3ℏ √2𝑚 ∙ 𝑙
𝑈0

(𝑈0 − 𝐸)
3
2  

𝐷 = 𝑒𝑥𝑝 �− 4√2𝑚
3ℏ

∙ 𝑙
𝑈0

(𝑈0 − 𝐸)
3
2�         (14) 

To determine the transmission coefficient of a particle with energy E through the potential 
barrier shown in Fig.2(b), we need to substitute the potential energy function 𝑈(𝑥) = 𝑈0 �1 − 𝑥2

𝑙2
� 



Numerical Solutions of Certain || Armenian Journal of Physics, 2024, vol. 17, issue 3 

49 

into Eq.(13) and integrate between the coordinates 𝑥1 and 𝑥2. The analytical calculations and the 
resulting expression are provided in Eq.(15): 
 

−2
ℏ∫ �2𝑚�𝑈0 �1 − 𝑥2

𝑙2
� − 𝐸�𝑑𝑥𝑥2

𝑥1
= −2√2𝑚

ℏ ∫ �𝑈0 − 𝑈0
𝑥2

𝑙2
− 𝐸 ∙ 𝑑𝑥𝑥2

𝑥1
=

−2√2𝑚
ℏ𝑙 ∫ �𝑈0𝑙2 − 𝑈0𝑥2 − 𝐸𝑙2 ∙ 𝑑𝑥𝑥2

𝑥1
= −2√2𝑚

ℏ𝑙 ∫ �(𝑈0 − 𝐸)𝑙2 − 𝑈0𝑥2 ∙ 𝑑𝑥
𝑥2
𝑥1

=

−2�2𝑚𝑈0
ℏ𝑙 ∫ ��1 − 𝐸

 𝑈0
� 𝑙2 − 𝑥2 ∙ 𝑑𝑥𝑥2

𝑥1
. 

 
Perform the following assignment: �1 − 𝐸

 𝑈0
� 𝑙2 ≡ 𝑎2;  𝑎2 = 𝑥1,2

2 , 
 

−2�2𝑚𝑈0
ℏ𝑙 ∫ √𝑎2 − 𝑥2 ∙ 𝑑𝑥 = −2�2𝑚𝑈0

ℏ𝑙
(�𝑥√𝑎

2−𝑥2

2
+ 𝑎2

2
𝑎𝑟𝑐𝑠𝑖𝑛 𝑥

𝑎
)�
𝑥1

𝑥2𝑥2
𝑥1

= −2�2𝑚𝑈0
ℏ𝑙

�0 +

𝑎2

2
𝑎𝑟𝑐𝑠𝑖𝑛 𝑥2

𝑎
− (0 + 𝑎

2

2
𝑎𝑟𝑐𝑠𝑖𝑛 𝑥1

𝑎
)� = −2�2𝑚𝑈0

ℏ𝑙
�𝑎

2

2
arcsin(1) − 𝑎2

2
arcsin(−1)� = −2�2𝑚𝑈0

ℏ𝑙
𝑎2

2
2 ∙

arcsin(1) = −2𝑎2�2𝑚𝑈0
ℏ𝑙

∙ 𝜋
2

= −𝑎2�2𝑚𝑈0
ℏ𝑙

∙ 𝜋 = −𝑙2 �1 − 𝐸
 𝑈0
� �2𝑚𝑈0

ℏ𝑙
∙ 𝜋 = −𝜋𝑙

ℏ
( 𝑈0 − 𝐸) ∙ �2𝑚

𝑈0
; 

𝐷 = exp� −𝜋𝑙
ℏ
∙ �2𝑚

𝑈0
( 𝑈0 − 𝐸)�.        (15) 

 
 
5. Problem 2: Results and discussion 

 
Using the Numpy and Matplotlib libraries in the Python programming environment, a program 

was created to plot the tunneling coefficients of particles as a function of energy 𝐸 in two scenarios. 
The graphs were generated using 100 data points. The following designations were used in the 
calculation program: 𝑚𝑒𝑐2 = 0.511 𝑀𝑒𝑉, 𝑙 = 2𝐴0, ℏ𝑐 = 197 𝑀𝑒𝑉 ∙ 𝑓𝑚, 1𝑓𝑚 = 10−15𝑚, 
considering the electron as the particle. The discussed quantities are presented in units of 𝑒𝑉 and 𝑚. 
Fig.3 shows the tunneling coefficients of a particle with triangular and parabolic potential barriers 
as a function of the particle's energy. It is noted that the tunneling coefficient for a triangular-shaped 
barrier is greater than that for a parabolic-shaped barrier at the same energy value. 

Fig.4(a) shows the tunneling coefficients of a particle with triangular and parabolic potential 
barriers as a function of the barrier width. The figure shows that the tunneling coefficient is smaller 
for the same barrier width when the barrier is triangular. Specifically, for 𝑥0 = 0.5 ∙ 10−10𝑚, is 
𝐷(𝑥0) = 0.1 for the triangular barrier (blue curve) and approximately 𝐷(𝑥0) ≈ 0.3 for the 
parabolic barrier (red curve). Additionally, the tunneling coefficient quickly approaches 0 if the 
barrier width exceeds two angstroms (𝑥 > 2 ∙ 10−10𝑚). Fig.4(b) shows the tunneling coefficients of 
a particle with triangular and parabolic potential barriers as a function of the barrier width when the 
particle mass is 2000 times greater than the rest mass of the electron: 𝑚𝑛𝑢𝑐𝑙𝑜𝑛 ≈ 2000𝑚𝑒. At the 
same barrier height, the tunneling coefficient decreases significantly for widths 𝑥 > 4𝑝𝑚. 
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Fig. 3. Dependence of the tunneling coefficient 𝐷 on the energy 𝐸 of a particle passing through triangular-

shaped (blue curve) and parabolic-shaped (red curve) potential barriers. 
 

  
Fig. 4. Dependence of the tunneling coefficient 𝐷 on the width of the barrier 𝑥 for (a) particle and (b) 

nucleon passing through triangular-shaped (blue curves) and parabolic-shaped (red curves) potential barriers. 
 
 
6. Conclusions 

 
The paper explores stationary problems of the Schrödinger equation. The initial focus is 

deriving the probability distribution of electrons in the hydrogen atom within a spherical system, 
determined by recursive coefficients. Using Python, probability distribution curves for electrons in 
hydrogen atoms and helium ions were plotted based on distance. The analysis reveals that the 
probability of electron distribution at a given excited level decreases as the atomic number 𝑍 
increases. This occurs because the coefficients governing the wave function decrease with the 
increasing magnitude of 𝜎, which, as per Eq.(2), varies directly with 𝑍. 

The second part of the study addresses the transmission of a quantum particle with specific 
energy through two types of potential barriers: triangular and parabolic. Utilizing a Python program, 
tunneling coefficients were computed under varying particle energies and distances. The results 
indicate that the tunneling coefficient is smaller for the same barrier length when the barrier is 
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triangular. It was further shown that the tunneling coefficient is higher for a given particle energy 
when the barrier is triangular. Similar analyses were conducted for nucleons (𝑚𝑛𝑢𝑐𝑙𝑜𝑛 ≈ 2000𝑚𝑒), 
revealing that the tunneling coefficient decreases as the barrier width exceeds 𝑥 > 4𝑝𝑚 at a 
constant barrier height. 
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