<mark>ՀՍՑԿԱԿԱՆ ՍՍՀ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԳԵՄԻՍ</mark>. АКАДЕМИЯ НАУК АРМЯНСКО<mark>Й СС</mark>Р

сообщения бюраканской обсерватории

ФРИЧ L ВЫПУСК

Редакционная коллегия:

В. А. АМБАРЦУМЯН (главный редактор), М. Л. АРАКЕЛЯН, Л. В. МИРЗОЯН. М. А. МНАЦАКАНЯН (ответственный секретарь), Г. М. ТОВМАСЯН (зам. главного редактора)

C 1705040000 85—79

€ Издательство АН Армянской ССР. 1979

Թանկագին Վիկտոր Համազասպի

Բյուրականի աստղադիտարանի կոլեկտիվը ջերմորեն շնորհավորում է Ձեզ, աստղադիտարանի հիմնադրին և անփոփոխ ղեկավարին, բարեկամին և ուսուցչին՝ ծննդյան 70-ամյակի առթիվ և ցանկանում է Ձեզ երկար տարիների քաջառողջություն և ստեղծագործական նոր հաջողություններ ի փառս հայրենական գիտության և ի բարօրություն մեր ժողովրդի։

> ДИРЕКТОРУ БІОРАКАНСКОЙ ОБСЕРВАТОРИИ АКАДЕМИКУ В. А. АМБАРЦУМЯНУ

Дорогой Виктор Амазаспович!

Коллектив Бюраканской астрофизической обсерватории Академии наук Армянской ССР горячо поздравляет Вас, основателя и бессменного руководителя обсерватории, учителя и друга, с 70-летием со дня рождения и желает Вам крепкого здоровья на долгие годы и дальнейших творческих успехов во славу отечественной науки, на благо нашего народа!

э. Я. ОГАНЕСЯН

ГОЛУБЫЕ ОБЪЕКТЫ В ОКРЕСТНОСТИ М13. 1

1. Вводные замечания. Большое количество работ, целью которых было выяснение природы голубых объектов, находящихся на больших галактических шпротах, показывают, что яркие объекты представляют собой смесь звезд многих типов, среди которых—белые карлики, субкарлики, звезды с составными спектрами, голубые звезды главной последовательности и звезды, подобные звездам горизонтальной ветви шаровых скоплений; некоторая же доля слабых голубых объектов, как показано в [1], являются квазизвездными объектами. Последнее обстоятельство сильно повысило интерес к слабым голубым объектам, находящимся на больших галактических широтах. Большое разнообразие этих объектов делает целесообразным разностороннее их исследование.

В настоящее время для статистического рассмотрения вопроса очень важно накопление наблюдательных данных о слабых голубых звездах и объектах с ультрафиолетовым избытком. Для ряда звезд проведены спектральные исследования. Результаты фотоэлектрических измерений опубликованы в работах [2—4].

Задача настоящей работы—отбор и фотометрическое исследование голубых объектов в окрестности шарового скопления М13. Подобное исследование ранее проводилось для области вокруг М92 [5].

M13—одно из ближайших к нам шаровых скоплений, расположенное на промежуточных галактических широтах ($s=+40^\circ$). Выбор области вокруг M13 для настоящего последования объясняется тем, что наличие в этом скоплении фотоэлектрических стандартов, установленных с целью фотометрии звезд самого скопления, облегчает задачу и повышает точность исследования.

2. Наблюдательный материал. Выбранная для исследования область в окрестности М13 размером 36 квадратных градусов была разбита на четыре части, каждая из которых в одном из своих углов содержит шаровое скопление М13, звезды которого использовались нами для стандартизации пластинок. Перекрытие соседних площадок при этом составляет примерно 45%, так как скопление нельзя было располагать слишком близко к краю пластинки, чтобы не сказалось влияние

ошибки поля на используемые в качестве стандартов звезды скопления.

В настоящей работе приведены результаты исследования одной из этих четырех площадок размером 16 квадратных градусов, расположенной к юго-западу от М13. Ее координаты: $a_{1930} = 16^h 35^m 2$, $a_{1930} =$ +35°30'.

Наблюдения проводились в трех участках спектра, соответствующих цветам U, B, V, на 40-52" телескопе системы Шмидта Бюраканской астрофизической обсерватории. При этом были использованы следующие сочетания фотоэмульсий и светофильтров (табл. 1).

	+ 1-1-9-	Таблица 1		
Цветовая система	Пластинка	Фильтр		
U B V	Zu—2 Zu—2 Kodak OaD	UG2 GG13 GG11		

На основании специально проведенного исследования наблюдательного материала для стандартных звезд М13 было выяснено, что полученная таким образом цветовая система практически не отличается от системы UBV.

3. Отбор голубых объектов. Понски голубых объектов производились путем попарного сравнения фотопластинок, полученных в различных цветах, при помощи блинк-компаратора производства фирмы Цейсс. Для обнаружения некоторых относительно ярких голубых объектов использовались снимки, полученные на том же телескопе в сочетании с объективной призмой, на которых по сравнительной длине и яркости коротковолновой части спектра можно судить об интенсивности синей и ультрафиолетовой областей и выделить голубые объекты. Для получения этих снимков использовались пластинки Kodak II AD, угол преломления объективной призмы 1°.5. Остальные данные приведены в табл. 2.

	Таблица 2		
Дата наблюдения	Время экспозиции		
27—28. V. 1966 17—18. V. 1969 22—23. V. 1969	2 ^h 33 ^m 3 ^h 33 ^m 0 13 —1 13 1 15 —2 15		

В результате просмотра пластинок для фотометрирования было отобрано 249 объектов. Следует отметить, что исследование распространялось до величины 19 ^m5 в цвете В, но в дальнейшем принимались во внимание лишь те объекты, у которых можно было определить звездные величины во всех трех цветах. Как показало фотометрированис, 39 из отобранных объектов имеют значительные показатели цвета. 24 из них были исключены из рассмотрения, а 15 оставлены при нашем исследовании для лучшей иллюстрации двухцветной диаграммы. Судя по показателям цвета и по спектральным снимкам, это обычные звезды класса А. Таким образом, в исследованной области было обнаружено 210 объектов, у которых по крайней мере один из показателей цвета В—V или U—B меньше либо же около нуля.

Разумеется, нами выявлена лишь часть имеющихся в исследованной области голубых объектов. Отметим, что по оценке Н. Рихтера и др. [6] при однократном блинковании может быть обнаружена лишь примерно седьмая часть всех голубых объектов в какой-либо области.

На рис. 1 представлена карта раопределения 225 выделенных объектов исследованной области.

N

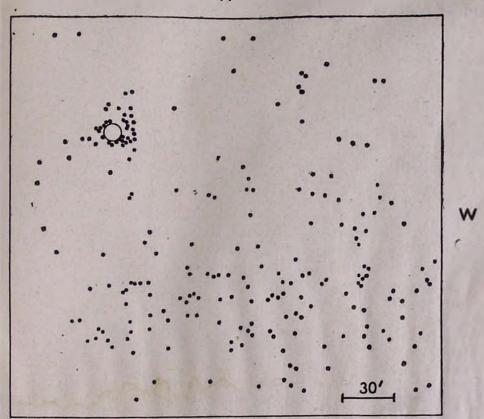


Рис. 1. Карта распределення исследованных объектов.

На этой карте отчетливо видна неравномерность распределения голубых объектов. Хорошо выделяется концентрация их в районе ша-

объектов.

рового скопления, а также значительно больше этих объектов в южной половине поля. Асимметрия наблюдается и в распределении голубых

звезд в окрестности М13.

В приложении 2 даны подробные карты отождествления с обозначенными на них объектами, исследованными в настоящей работе. Объекты находятся строго в центре кружков; в некоторых случаях они настолько слабы, что их следы не просматриваются на приведенных картах.

4. Фотометрические измерения. Для фотометрической обработки были отобраны 15 фотопластинок, по иять в каждом цвете, данные о

которых приводятся в табл. 3.

Таблица З

U	В	, v	
9—10.VI.196622 ^b 40 ^m —0 ^b 40 ^m 10—11.VI.1967 0 20 —2 20 12—13.VI.196723 55 —1 55 14—15.VI.1967 1 03 —3 03 26—27.VI.1967 1 53 —3 53	14—15.V1.1967 3 29 —3 49 16—17.VI.1967 3 24 —3 44	8— 9.VI.1\$6622 ^h 00 ^m —22 ^h 40 ^m 6— 7.VI.1967 2 21 — 3 01 10—11.VI.1967 2 40 — 3 20 12—13.VI.1967 2 07 — 2 47 16—17.VI.1967 2 30 — 3 10	

Измерения этих пластинок производились на объективном микрофотометре «Schnell» производства фирмы Цейсс. В качестве стандартов для построения характеристических кривых были использованы усредненные значения фотоэлектрических наблюдений ряда звезд из М13, выполненных в работах [2] и [4]. Полученные в результате обработки измерений данные приведены в таблице (приложение 1).

Среднеквадратическая ошибка измерений звездных величии оказалась равной 0™ 08.

5. Распределение объектов по яркости. На рис. 2 представлено распределение исследованных нами объектов по отдельным интервалам звездных величин. Любопытен провал в этом распределении около В=16 2 Возможно, отнасти это распределения около

В=16 т 2. Возможно, отчасти это результат того, что относительно яркие объекты были обнаружены не посредством блинкования, а по спектральным снимкам, так как у «передержанных» объектов при блинковании почти не обнаруживается разницы в цветах, которая хорошо заметна по спектрам, полученным с объективной призмой. Распределение же голубых объектов, обнаруженных блинкованием, представлено на этом рисунке пунктирной линией и не показывает провала. Понижение кривой распределения на этом рисунке после В=18 стественно объясняется неуверенностью в отборе более слабых голубых

Еще более необычно подобное распределение для объектов различных групп. Рассмотрим распределение объектов по яркости отдельно для области, непосредственно прилегающей к скомлению, и для фона. (Здесь и далсе под областью, непосредственно прилегающей к

скоплению, подразумевается круг раднуса 22' с центром в центре шарового скопления). Кроме того, разделим каждую из этих групп объектов на две равные по количественному составу части, отнеся к первой объекты с меньшими значениями U—V, а ко второй—с большими. Для области, прилегающей к скоплению, граничным является значение U—V——0т 1. Для остальных объектов, достаточно отдален-

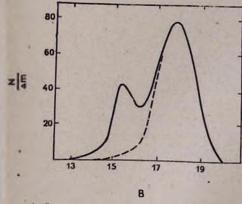


Рис. 2. Распределение исследованных объектов по отдельным интервалам звездных величии.

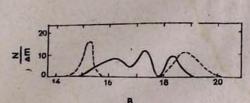


рис. 3. Распределение по яркости объектов из непосредственной окрестности скопления отдельно для объектов с U—V — 0m 1 (сплошная липия) и для U—V — 0m 1 (пунктирная липия).

ных от М13, граничное значение U-V равно $+0^m$ 25. (Переменные звезды при этом были исключены из рассмотрения). Тот факт, что эти граничные значения различны для объектов области, примыкающей к скоплению, и для объектов фона, говорит лишь, что вблизи М13 значительно большая доля объектов имеет существенно отрицательные значения U-V.

На рис. 3, где сплошной лишей представлено распределению более голубых объектов из окрестности скопления, а пунктирной—менее голубых из них, бросается в глаза совершенно различное распределение этих групи объектов по яркости.

Так, в интервале 15. 48 < 8 < 18. 45 нет пи одного объекта с U − V > 0 10, в то время как туда попадает большинство объектов с существенно отрицательными значениями U − V. Таким образом, распределение объектов по яркости (в цвете В), представленное на рис. З пунктирной линией, резко распадается на две части. Яркая часть совпадает с малым максимумом на рис. 2, но не обуславливает его полностью, так как и в распределении объектов, достаточно удаленных от скопления, также наблюдается малый максимум и провал у В 16. 2, как и на рис. 2, в чем нетрудно убедиться, просуммировав данные, приведенные на рис. 4. На этом рисунке сплошной линией представлено распределение по яркости объектов фона с U − V < +0 25, а пунктирной линией — с U − V >

+0^m. 25. Как видим, кривые распределения и здесь сильно отличны. Силошная линия показывает почти равномерное распределение объектов по звездным величинам на участке от 15^m до 19^m. Несколько выделяется лишь минимум при В = 17^m. 75. Пунктирная же линия показывает совсем иное, более концентрированное распределение с резко выраженным максимумом и именно при В = 17^m. 75.

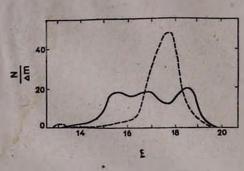


Рис. 4. Распределение по яркости объектов, достаточно удаленных от скопления (сплошная лишия — объекты с U-V < +0.725 и пунктирная—объекты с U-V > -10.725).

90% объектов с U-V

+0° 25 находятся в интервале

15° 05

В<19° 20, между тем

как такое же количество объектов с U-V>+0° 25 занимают вдвое меньший интервал

звездных величин 16° 50

18° 60. Логично предположить,

что среди исследованных объектов существует несколько

совершенно различных групи,

поэтому распределение их видимых величин, представленное на рис. 2, не должно

казаться неестественным.

6. Видимое распределение голубых объектов. Как отмечалось выше, видимое распределение отобранных для исследования сбъектов крайне неравномерно (см. рис. 1). Причем распределение объектов с В < 16™ 2 (до провала на рис. 2) более равномерно, небольшая их концентрация наблюдается только в районе М13. Более же слабые объекты, наряду с группировкой около скопления, показывают довольно значительную концентрацию к югу и, отчасти, к западу от скопления.

Этот факт в некоторой степени свидстельствует в пользу предположения о реальности провала в распределении общего количества исследованных объектов по отдельным интервалам эвсэдных величии, а именно, говорит о наличии в общем числе объектов, по крайней мере, двух различных групп.

Для того чтобы выяснить, не обусловлено ли неравномерное распределение объектов межзвездным поглощением в данной области, были сделаны подсчеты звезд в 18 различных илощадках (размером по 100 квадратных минут дуги). На схеме расположения карт под каждым номером карты (они даны в приложении) указано количество обнаруженных голубых объектов на ней и рядом в скобках приведены усредненные по двум площадкам этой карты подсчеты звезд, ниже-процентное содержание этих объектов относительно всех эвезд на данной карте (общее количество звезд было определено путем экстраполяции по подсчетам звезд в площадках), число обнаруженных перемен-

ных и процентное отношение их числа к общему количеству голубых объектов на данной карте. На первой (северо-восточной) карте, куда попадает шаровое скопление, процентное содержание—чисто условное число, так как оно относится не ко всем звездам, а к эвездам окружающего скопления фона. В районе скопления из-за большой плотности звезд певозможно ни подсчитать полное их количество, ни выявить многие голубые объекты.

	The second secon	
1 46(87) 0.64% 4 8.7%	11 8(65) 0.15% 1 12.5%	8(54) 8(54) 0.19 % 1 12.5 %
IV	V	VI
17.(64)	23(52)	21(87)
0.33%	0.55%	0.29%
1 000	3	3
5.9%	13.0%	14.3 %
VII	VIII	IX
18(87)	43(90)	37(58)
0.25%	0.60%	0.82%
5	10	12
27.8%	23.3%	32.5%

Как видно из приведенной схемы, подсчеты звезд не показали существенных различий в звездной плотности, хотя юг и юго-запад нашей области населены несколько плотнее. (Наибольшее и наименьшее значения плотности отличаются в 1.7 раза). Однако вряд ли перавномерное распределение голубых объектов в исследуемом поле можно объяснить межзвездным поглощением.

Различия же в процентном содержании этих объектов весьма значительны (в 5.5 раза), и это скорее говорит о реальности большей концентрации голубых объектов в юго-западном направлении.

Среди исследованных объектов было выявлено 35 переменных звезд. Интересно, что и они локализованы преимущественно в южной части поля, о чем достаточно хорошо свидетельствуют значения отношения числа переменных к числу исследованных голубых объектов на каждой карте.

В сводной таблице (приложение 1) значения показателей цвета U—В и В—V для этих переменных вычислены по усредненным значениям U, В и V и не могут быть сколько-нибудь уверенными, поэтому опи заключены в скобки.

7. Двухцветная диаграмма. Эгген и Сандейдж [7] построили стандартную диаграмму (U—B, B—V) для звезд главной последовательности. Черпотельная зависимость, полученная Метьюсом и Сандейджем [8], представляется прямой линией. Присоединив к своим наблюдениям данные работ [9] и [10], они пришли к заключению, что нанесенные на такую объединенную двухцветную диаграмму звезды могут быть раз-

делены на следующие группы, занимающие на ней вполне обособленные области:

І-эвезды главной последовательности,

II—субкарлики населения галактического диска и гало,

III-белые карлики типа В, А, С.

IV-квазизвездные объекты и некоторые виды переменных.

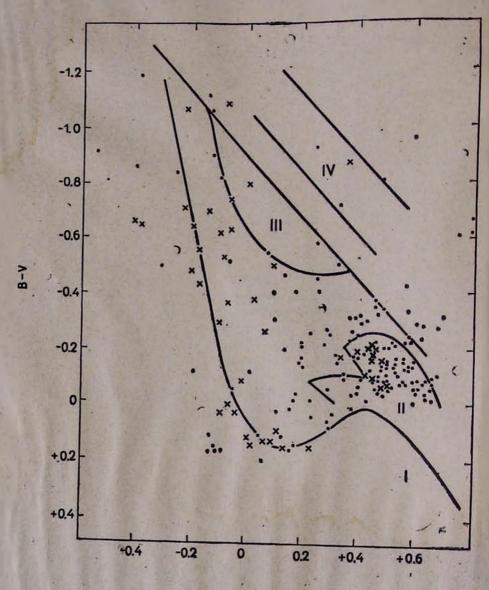


Рис. 5. Двухцветная UBV днаграмма.

U-B

Для анализа наших данных рассмотрим, как распределены на такой стандартной диаграмме исследованные объекты.

Местоположения вышеназванных четырех групп объектов обоз-

начены на днаграмме римскими цифрами.

Четвертая часть всех объектов располагается вдоль главной последовательности. Если считать их обычными О, В и А звездами, то можно оценить их расстояния. В большинстве случаев расстояния оказались слишком большими, поэтому лишь 8—10% исследованных звезд могут рассматриваться как обычные звезды главной последовательности. Относительное содержание А звезд, вообще говоря, должно быть весьма значительным, по при нашем отборе в число исследованных объектов вошла только небольшая их часть, в основном же они были отброшены как неголубые. Остальные же объекты, расположенные вдоль главной последовательности, это либо звезды гало, либо звезды шарового скопления. Среди них почти половина из непосредственной окрестности М13 (крестики на рис. 5).

Около половины всех объектов составляют группу субкарликов населения галактического диска и гало с показателями цвета от 0^т до U—В = —0^т 28. Следует отметить, что в эту группу, которая занимает область II, попали только две яркие звезды (В < 16 ^т 2) и лишь четверть звезд из окрестности скопления.

5% объектов можно отнести к бело-голубым карликам—область III. Полагая их среднюю абсолютную величину равной +12 m, мы определили расстояния до них, которые оказались в интервале 50—200 пс. Среднее расстояние этих объектов равно 160 пс.

Выше чернотельной прямой расположено около 40 объектов, 21 из которых, т. е. 9% всех объектов, находятся от нее достаточно далеко и могут быть отнесены к группе IV. Список этих объектов приведен в табл. 4. Часть их, возможно, имеет внегалактическую природу.

С возрастанием величины В процентное содержание этих объектов среди всех исследованных изменяется следующим образом: ярче 16™ 60 нет ни одного объекта с подозреваемой внегалактической природой. Затем до В≈19™ наблюдается довольно постоянное относительное содержание этих объектов (около 15%). Наконец, при В>19™ 20 отмечается 100%-ное их содержание. Если считать это обстоятельство реальным, а не влиянием значительной селекции в отборе сильно недодержанных объектов, то его, вероятно, следует объяснить тем, что в принципе голубые звезды слабее 19™ на высоких галактических широтах не должны наблюдаться, так как при абсолютной величине звезд сферической составляющей около 0™ они должны находиться за пределами Галактики, белые же карлики с их небольшими расстояниями и абсолютной величиной около 12™ должны быть ярче 19™.

Что касается голубых объектов, у которых B<19^т, процентное содержание объектов с подозреваемой внегалактической природой, определенное достаточно уверенно на основании наших данных, не подтверждает заключение Сандейджа [1] о том, что голубые объекть слабее 16 ^m, в основном, являются внегалактическими. Хотя следует

Таблица 4

№ звезды	В	U—B	В-К
11 35 39 43 45 47 48 58 86 107 116 126 138 142 148 153 154 159 160 8' 11'	17m 06 19.40 18.50 18.68 18.57 19.40 18.16 19.20 16.60 16.66 17.72 16.89 16.96 18.30 17.20 17.86 17.80 17.26 16.99 18.36	-()m 28 -0.32 -0.81 -0.66 -0.61 -0.62 -0.93 -0.67 -0.35 -0.43 -0.29 -0.30 -1.12 -0.51 -0.36 -0.72 -0.34 -0.96 -0.33 -1.09 -0.88	+0m 68 +0.70 -0.48 +0.53 +0.75 -0.80 -0.24 +0.80 -0.49 +0.57 +0.63 +0.61 -0.15 +0.33 +0.46 +0.33 +0.46 +0.33 +0.47 -0.89 +0.59 +0.47 -0.89 +0.35

иметь в виду, что в нашем случае среди голубых объектов должно быть немало «выходцев» из шарового скопления, которые несколько запижают относительное содержание объектов с подозреваемой внегалактической природой.

Весьма интересно то обстоятельство, что почти все перечисленные объекты (18 из 21) группируются на сравнительно небольшой площадке, составляющей 22% от общей площади исследуемого поля прасположенной в юго-западной части нашей области.

Некоторые объекты на двухцветной диаграмме занимают положение между главной последовательностью и областями белых карликов—III и субкарликов—II. Вероятно, их следует отметить в качестве кандидатов в белые карлики.

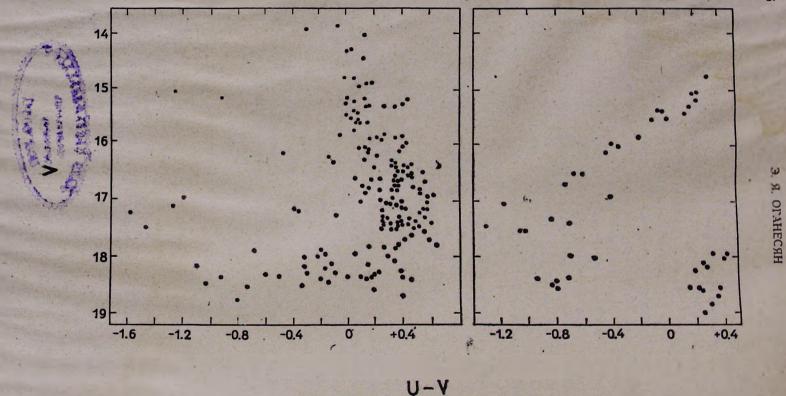
Несколько объектов на этой диаграмме расположены левее главной последовательности. У них положительные показатели U—В, но отрицательные В—V. Интересно, что все эти объекты паходятся в северо-восточной половине исследованного поля, где, за исключением области М13, голубых объектов обнаружено меньше. Однако даже избирательным поглощением, по-видимому, нельзя объяснить такое «покраснение» в ультрафиолете. И, кроме того, известные определения расстояния до М13 показывают, что поглощение в нем очень мало. По многим исследованиям [11—13] звезды скопления вообще не показывают никакого покраснения,

Заметно выделяются на двухцветной днаграмме сравнительно яркие объекты ($B < 16^m 2$). В основном, они (три четверти из них) расположены в полосе, вытянутой вдоль $U = V = +0^m 07$.

8. Диаграмма «цвет—светимость». Двухцветная UBV днаграмма не позволяет судить о светимости наших объектов, поэтому построим днаграмму «цвет—визуальная видимая величина». Диаграммы, построенные по различным показателям цвета, существенно не отличаются друг от друга. Для большей наглядности рассмотрим цвет U—V, так как этот показатель изменяется в значительном днапазоне.

На рис. 6 приведена днаграмма «U—V, V», построенная отдельно (а) для объектов, находящихся в достаточном отдалении от М13, и (б) для объектов из непосредственной окрестности скопления. Бросается в глаза различное распределение этих групи объектов на данной диаграмме. На участке днаграммы 15^m 5 V 17^m 9, 0^m U-V +0^m 6, куда попадает наибольшее количество объектов на рис. 6(а), совершенно отсутствуют объекты из окрестности скопления (рис. 6(б)).

На рис. 6(a) выделяются две полосы объектов. Одпа, более густонаселенная, полоса включает в себя объекты самой различной яркости, имеющие $U-V \geqslant 0^m$. У ярких объектов этой полосы отмечается некоторое тяготение к меньшим значениям U-V. В подавляющем большинстве объекты этой полосы являются промежуточными и крайними субкарликами, что следует из двухцветной диаграммы.


Вторая полоса, включающая в себя, в основном, слабые объекты, тянется на рис. 6(а) почти параллельно оси U—V. В составе звезд этой полосы белые карлики, О и В звезды главной последовательности и объекты, попадающие в группу IV на двухцветной диаграмме, но нет ни одного субкарлика. (Место перекрытия этих полос, естественно, не рассматривалось).

На рис. 6(б) объекты также явно разделяются на две группы. Основная их часть вытянута в полосу, которая простирается от ярких звезд с положительными значениями U—V к слабым и более голубым объектам. Это, по-видимому, так называемая голубая (горизоптальная) полоса шаровых скоплений.

Вторая же группа занимает обособленное положение в правой части диаграммы. Интересно, что все звезды из окрестности скопления, которые на двухцветной днаграмме попали в область субкарликов, вошли именно в эту группу, почти полностью (за исключением одной) состоящую из этих звезд.

Обе эти группы довольно хорошо совмещаются с днаграммой «цвет—светимость», построенной Баумом для М13 [2]. Отсюда напрашивается вывод, что все или почти все звезды, выделенные нами из общего списка как объекты, находящиеся в непосредственной окрестности скопления, действительно принадлежат этому скоплению. В пользу этого говорят и недавние исследования [14], согласно которым

а б Рис. 6. Диаграмма "цвет U—V—светимость V": а)—для объектов, удаленных от скопления, б)—для объектов из непосредственной окрестности М 13.

размеры шаровых скоплений значительно больше, чем полагалось рансе.

Расстояние М13 на основе диаграммы Герцширунга—Рессела было оценено в 7.1 кис, что находится в пределах известных оценок расстояния этого скопления 6.3—8.5 кис.

Заключение. На основании просмотра 15 снимков исследуемой области было отобрано и фотометрировано в трех цветах 249 объектов и произведен анализ результатов фотометрии и колориметрии 225 из них, позволяющий сделать следующие выводы;

- 1. Эти объекты показывают заметно неравномерное распределение по исследованной области, а именно, они концентрируются в районе скопления и в южной и юго-западной части области. Это обстоятельство, по-видимому, нельзя объяснить наличием существенного межзвездного поглощения, и концентрация объектов, особенно слабых, на юге и западе области имеет реальный характер.
- 2. Распределения исследованных объектов по яркости и по цвету имеют значительные неравномерности. Это особенно хорошо видно на диаграмме «цвет—светимость» и свидетельствует о существозании среди них различных групп.
- 3. Звезды из непосредственной окрестности скопления, скорее всего входят в его состав, хотя асимметрию в их распределении приходится объяснять присутствием структурных особенностей в строении скопления.
- 4. Среди исследованных объектов обнаружено 35 переменных зпезд.
- 5. Можно сделать некоторые выводы о составе объектов: половину их составляют субкарлики, среди остальных объектов имеются обычные О, В и А звезды главной последовательности І типа населения, звезды гало, члены шарового скопления и бело-голубые карлики. Наконец, примерно десятую часть общего количества, по-видимому, составляют объекты, имеющие внегалактическую природу. Объектов последних двух типов относительно больше в юго-западной части исследованной области. Что касается звезд главной последовательности, то в этой части их относительное содержание существенно меньше,

t. su. ՀՈՎՀԱՆՆԻՍՑԱՆ

ԵՐԿՆԱԳՈՒՅՆ ՕԲՑԵԿՏՆԵՐ M13 ԳՆԴԱՁԵՎ ԱՍՏՂԱԿՈՒՅՏԻ ՇՐՋԱԿԱՅՔՈՒՄ. I

Ամփոփում

Հոդվածում բերված են M13 գնդաձև աստղակույտի շրջակայքում 16 քառ. աստիճան տիրույթում դտնվող 225 օբյեկտի համար UBV լուսանկարչական լուսաչափության արդյունքները։

Կառուցված են «երկգույնանի» և «գույն-լուսատվություն» դիագրամ-

ները, որոնց Տիման վրա արված է ստացված տվյալների վերլուծություն։

Հետազոտված օբյեկտների կեսը ենթաթզուկներ են։ Մնացածները՝ սպիտակ-կապույտ թզուկներ, գլխավոր Հաջորդականության սովորական աստղեր, հալոյի աստղեր, հենց իրեն գնդաձև աստղակույտին պատկանող աստղեր և, հավանաբար, նաև արտագալակտիկ ծագում ունեցող օբյեկտներ։

Բերված․է օբյեկտների տեսանելի բաշխումը, ինչպես նաև նրանց պայծառության և դույների բաշխումը, որը հնարավորություն է տալիս զանազանել մի քանի տարբեր օբյեկտների խմբեր։

Հուսաչափական ուսումնասիրության ընթացքում Հայտնաբևրվել են նաև մի քանի փոփոխական աստղեր։

E. Y. HOVANISSIAN

BLUE OBJECTS IN THE VICINITY OF M13. I

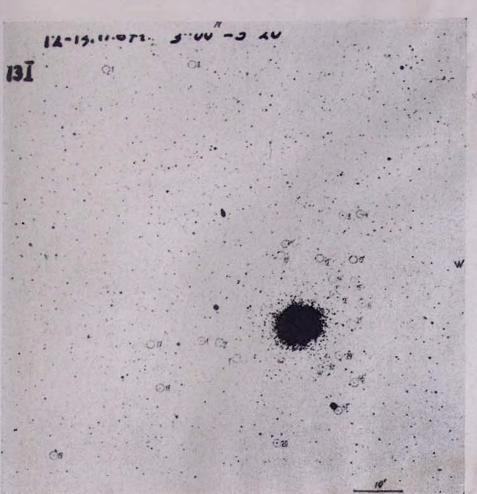
The results of photographic UBV photometry for 225 objects an area of 16 square degrees in the vicinity of the globular cluster M13 are presented.

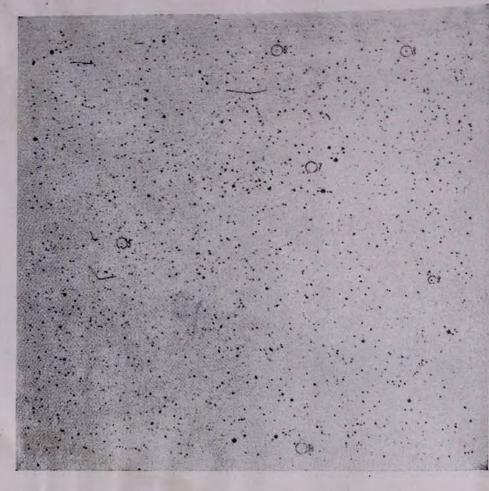
The "two-colour" and the "colour-luminosity" diagrams have been constructed on the basis of which the analysis of the obtained data has been made.

The half of the studied objects are subdwarfs. Among the others there are white-blue dwarfs, ordinary main-sequence stars, stars of the halo, stars of the cluster itself and possibly objects of extragalactic nature.

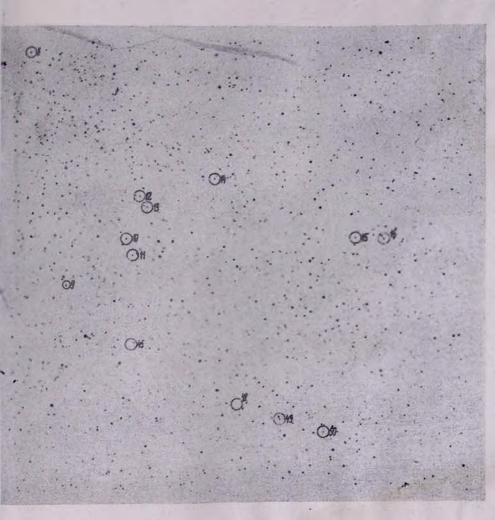
The apparent distribution of the objects as well as the distributions of the brightnesses and colours of the studied objects are presented and this makes possible to distinguish several different groups of objects.

A few variable stars were also detected in the result of the photometric study.

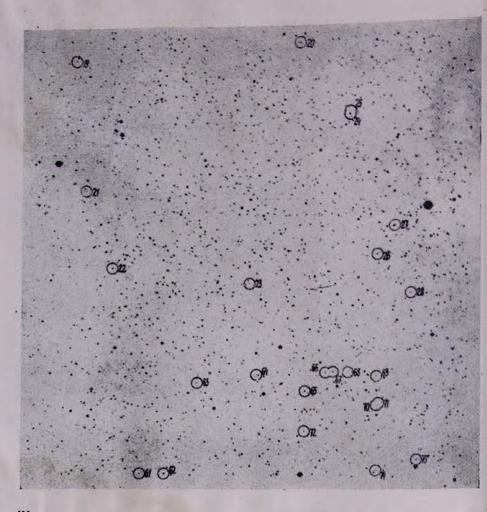

приложение 1

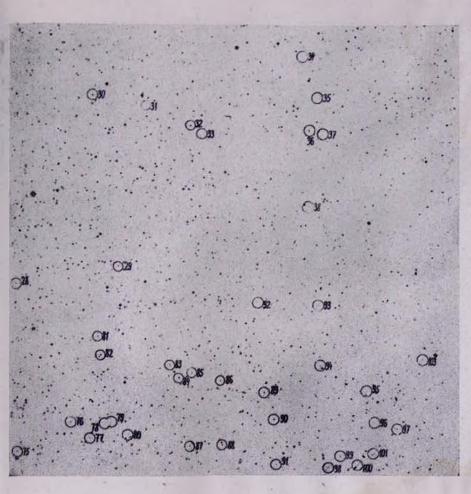

ТАБЛИЦА ЯРКОСТЕЙ И ПОКАЗАТЕЛЕЙ ЦВЕТА ИССЛЕДОВАННЫХ ОБЪЕКТОВ (номера со штрихами соотнетствуют объектам из непосредственной окрестности скопления)

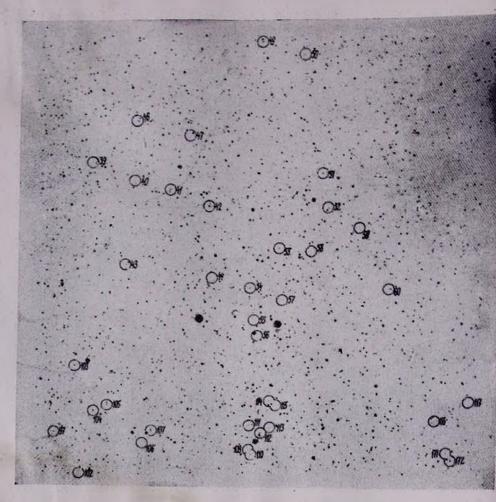
	скопления)						
X	В	U-B	B-V	. №	В	U—В	В-V
1	2	3	4	1	2	3	4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 22 32 42 25 27 28 29 30 31 32 33 34 35 36 37 38 9 40 41 42 43 44 45 46 47 48 9 51 52 53	16 ^m 96 16 39 15.34 15.69 17.58 15.49 18.80 15.50 18.50 15.64 17.06 16.03 16.52 15.68 15.95 14.19 17.48 15.83 16.06 13.71 16.25 15.70 17.94 14.17 18.5) 15.09 13.38 17.10 16.52 14.69 17.80 15.04 18.27 17.68 19.40 16.51 17.81 18.38 18.50 17.90 18.48 15.25 18.68 19.15 18.48 15.25 18.68 19.15 17.80 19.40 18.16 19.40 18.16 19.40 18.16 19.40 18.16 19.40 18.16 19.40 18.16 19.40 18.16 19.40 18.16 19.40 18.16 19.40 18.16 19.40 18.16	-0 ^m 93 (+0.20) +0.20 +0.20 +0.02 -0.02 +0.16 (-0.28) -0.16 -0.07 -0.05 -0.28 +0.11 +0.16 (-0.03) -0.20 (-0.43) -0.17 -0.26 -0.84 +0.17 -0.26 -0.84 +0.17 -0.07 -0.09 +0.15 +0.06 +0.01 -0.53 -0.10 -0.32 -0.12 (+0.29) (-0.52) -0.81 -0.18 -0.24 -0.66 (-0.07) -0.61 -0.41 -0.62 -0.93 -0.15 -0.19 -0.13	-0".55 (-0.01) +0.06 +0.11 +0.43 -0.11 (+0.45) -0.09 +0.40 -0.47 +0.68 +0.13 +0.16 (+0.37) +0.14 (-0.34) +0.66 +0.56 +0.17 -0.19 +0.38 +0.40 -0.26 -0.13 +0.31 +0.31 +0.41 +0.49 +0.11 +0.49 +0.11 +0.49 +0.11 +0.29 +0.16 -0.08 +0.35 (+0.37) +0.16 -0.08 +0.35 (+0.35) +0.11 +0.49 +0.11 +0.49 +0.11 +0.49 +0.11 +0.49 +0.11 +0.35 +0.10 +0.40 +0.53 (+0.35) +0.10 +0.11 +0.35 +0.10 +0.35 +0.10 +0.35 +0.10 +0.35 +0.10 +0.35 +0.35 +0.35 +0.35 +0.35 +0.35 +0.40 +0.40 +0.41 +0.32 +0.37 +0.31 +0.31 +0.31 +0.31 +0.31 +0.31 +0.31 +0.35 +0.35 +0.35 +0.40 +0.40 +0.40 +0.40 +0.40 +0.40 +0.53 +0.35 +0.35 +0.35 +0.35 +0.35 +0.35 +0.35 +0.35 +0.35 +0.37 +0.37 +0.37 +0.37 +0.31 +0.32 +0.35 +0.	54 555 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 97 98 99 90 91 91 92 93 94 95 96 97 97 98 99 90 90 91 91 91 91 91 91 91 91 91 91	17.33 18.26 18.50 17.99 19.20 18.37 18.18 17.07 14.43 17.90 15.48 17.90 15.48 17.90 15.48 17.15 16.94 17.15 16.94 17.15 17.33 18.34 17.17 17.12 17.00 14.68 16.63 15.32 17.16 16.94 17.15 17.33 18.34 17.79 17.12 17.00 14.68 16.63 15.32 17.04 15.93 16.69 17.15 17.32 17.04 15.93 16.69 17.32 17.04 15.86 17.32 17.04 15.86 17.57 16.69 17.16 17.57 16.48 15.86 16.85 17.03 18.26 17.37 16.92 17.76	-0.12 -0.26 -0.31 (-0.26) -0.67 -0.90 -0.08 -0.23 (+0.12) -0.15 -0.38 -0.28 -0.17 -0.04 -0.13 -0.23 -0.06 -0.13 -0.05 -0.23 -0.06 -0.13 -0.16 -0.09 -0.47 -0.14 -0.17 -0.86 -0.27 -0.32 -1.06 -0.17 -0.15 -0.09 -0.47 -0.15 -0.19 -0.27 -0.35 -0.16 -0.17 -0.15 -0.09 -0.47 -0.15 -0.19 -0.27 -0.35 -0.16 -0.17 -0.15 -0.19 -0.24 -0.22 -1.19 -0.06 -0.11 -0.15 -0.25 -0.30 -0.32 -0.06	-0.35 +0.30 +0.10 (+0.63) +0.63 +0.59 (-0.02) +0.50 +0.46 +0.52 +0.55 +0.48 +0.52 -0.46 +0.40 +0.40 +0.40 +0.50 +0.50 +0.40 +0.50 +0.50 +0.40 +0.50 +0

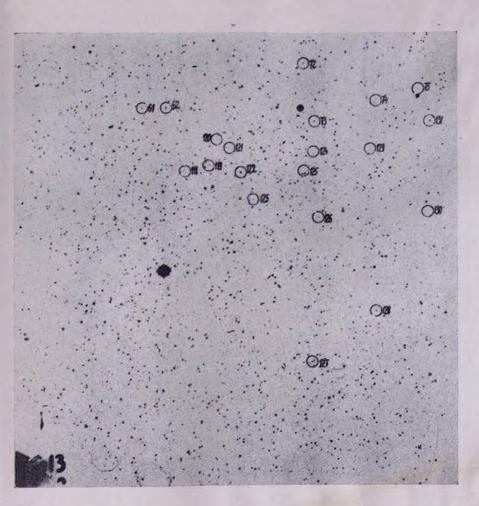

Продолжение таблицы

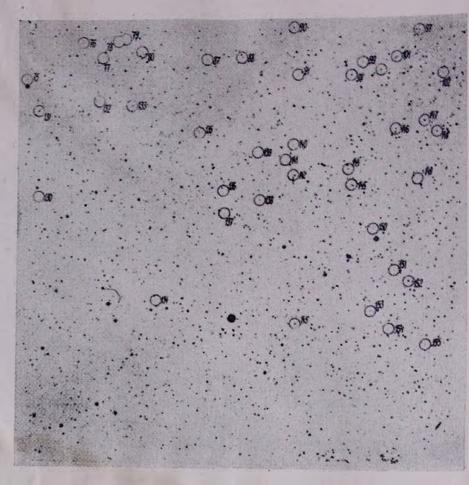
ПРИЛОЖЕНИЕ 2 КАРТЫ ОТОЖДЕСТВЛЕНИЯ ИССЛЕДОВАННЫХ ОБЪЕКТОВ

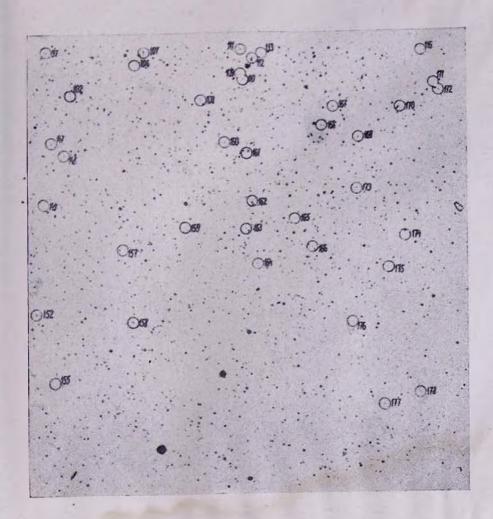



H


П


ΙV


v


VI

VII

VIII

IX

ЛИТЕРАТУРА

- 1. A. Sandage, Ap. J., 141, 1560, 1965,
- 2. W. A. Baum, A. J., 59, 422, 1954.
- 3. A. Brown, Ap. J., 122, 146, 1955,
- 4.H. Arp. H. L. Johnson, Ap. J., 122, 171, 1955.
- 5. Р. Г. Мнацаканян, К. А. Саакян, Сообщ. Бюраканской обсерватории, 44, 43, 1972.
- 6. Н. Рихтер, Л. Рихтер, Р. Цинер, Симпознум МАС 29, 355, 1968.
- 7. O. J. Eggen, A. R. Sandage, Ap. J., 141, 821, 1965.
- 8. T. Matthews, A. K. Sandage, Ap. J., 138, 30, 1963.
- 9. A. Slettebak, K. Baher, J. Stock, Ap. J., 131, 195, 1961.
- 10. A. R. Klemola, A. J., 67, 740, 1962.
- 11. З. И. Кадла, Астрон. ж., 45, 541, 1968.
- 12. R. D. McClure. R. Racine, A. J., 74, 1000, 1969.
- 13. D. L. Crawford, J. V. Barnes, A. J., 74, 1008, 1969.
- 14. Л. В. Жуков, Астрон. ж., 46, 389, 1969.

н. л. иванова

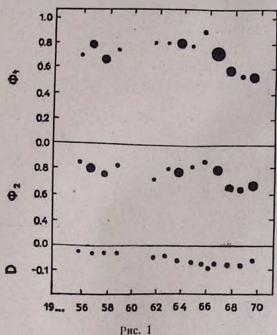
наблюдения гаммы касснопен

Систематические наблюдения звезд типа Ве, часть которых явля ется спектрально-переменными, представляют несомненный интерес. В настоящем сообщении приводятся результаты наблюдений известног представителя этого типа— такеснопен. Наблюдения непрерывног спектра производились на бесщелевом спектрографе АСИ-5 Бюраканской обсерватории. Анализ липейчатого спектра основан на щелевы спектрограммах, полученных с 1.5 м телескопом Верхиего Прованса.

1. Распределение энергии в непрерывном спектре. Для псследова ния изменений в непрерывном спектре 7 Кассиопеи в 1956—1970 го было получено 80 спектров на 10° телескопе Бюраканской обсервато

рии (дисперсия 150 А/мм у Н7).

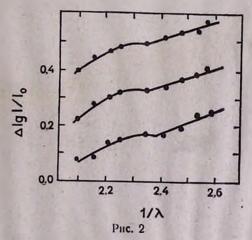
Абсолютные спектрофотометрические градиенты определялись для двух спектральных областей: № 3000—3600 (Ф₂) и № 4000—4800 (Ф₁) Для звезды сравнения в Кассиопси абсолютные градиенты взяты из работы Барбье и Шалонжа [1]: Ф₁=1.17 и Ф₂=1.45. Полученные зна чения абсолютных градиентов, усредненные по годам, приведены на рис. 1. Из рисунка видно, что в течение первых 11 лет абсолютные спектрофотометрические градиенты испытывали небольшие колебания около значений Ф₁=0.72 и Ф₂=0.76. Эти величины близки к значениям, типичным для нормальных звезд типа В0, для которых приняты [2] Ф₁=0.74 и Ф₂=0.78. Отсюда можно сделать вывод, что оболочка такасснопей в этот период была настолько тонка, что практически не влияла на распределение энергии. Следует отметить, что в сентябре 1966 г., одновременно с возрастанием блеска на 0 м 4, наблюдалось понижение цветовой температуры.


На спектрах, полученных в сентябре 1970 г., отчетливо виден скачок интенсивности непрерывного спектра на длине волны λ 4350. Он иллюстрируется рис. 2, где приведено относительное распределение энергии, т. е. зависимость $\Delta lgJ = lgJ_T - lgJ_s$ от $1/\lambda$. На спектрах, полученных ранее, этот скачок не наблюдался. Подобное явление наблю-

дала И. Купо в звезде типа Ве х Змесносца [3].

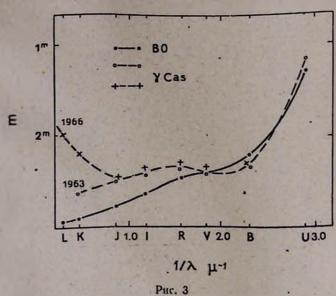
Приведенные на рис. 1 величины бальмеровского скачка

$$D = \lg \frac{J_{3647+4}}{J_{3647-4}}$$


изменялись за время наблюдений в пределах от—0.02 до—0.11. Исследование распределения энергии в непрерывном спектре

7 Касснопен в 1953—1954 и 1960—1968 гг. [4] показало заметное, по сравнению с нормальной звездой типа ВО, покраснение в визуальной области спектра. Это подтверждает результат Джонсона [5, 6], со-

гласно которому избыток интенсивности излучения, по сравнению с пормальными звездами типа ВО, значителен, возрастает с ростом длины волны и изменяется со временем (рис. 3).


Инфракрасные наблюдения у Кассиопеи, выполненные нами на Бюраканской астрофизической станции АОЛГУ в 1971—1972 гг. [7] в полосах Ј ($\lambda_{s\phi}$ = 0.9 μ) и К ($\lambda_{s\phi}$ = 2.2 μ), показали, что в эти годы временами наблюдалось еще более значитель-

ное, чем обнаруженное Джонсоном, покраснение. В фильтре К были

ное, чем солье в пределах $1^m 9 - 2^m 4$ ($2 = \pm 0.1$).

2. Спектрофотометрия линий. В сентябре и декабре 1971 г. в фокусе куде 1.5 м телескопа обсерватории Верхнего Прованса (Франция) с дифракционной решеткой (дисперсия 12 А/мм) А. Терзяном были получены и предоставлены в наше распоряжение 22 спектра — Кас-

сиопен (табл. 1). В качестве источников спектров сравнения использовались неоновая лампа и железная дуга. Записи спектров сделаны на микрофотометре Цейсса, снабженном ФЭУ и электронным потепциометром. На координатомере «Ascorecord» были измерены и отождествлены 50 линий (табл. 2).

Линин Н_а, Н_в, Н_т, НеІ 5876 A показывают двойные эмиссионные пики. Слабая эмиссия видна также в лициях Н_в и Н_в. Линии поглощения бальмеровской серии прослеживаются до Н_{зв}.

Кроме линий, приведенных в табл. 2, на пластинке от 6 декабря были обнаружены двойные эмиссионные пики со следующими длинами волн коротковолновых (V) и длинноволновых (R) компонентов:

V	R
6319	6321
6346	6349
6387	6389

Этп линии отождествить не удалось. Резкие неотождествленные эмиссионные линии 13. 6320, 6386 и 6387 наблюдались также в спектре \$ Тельца [8]. Одновременно с появлением вышеупомянутых линий про-

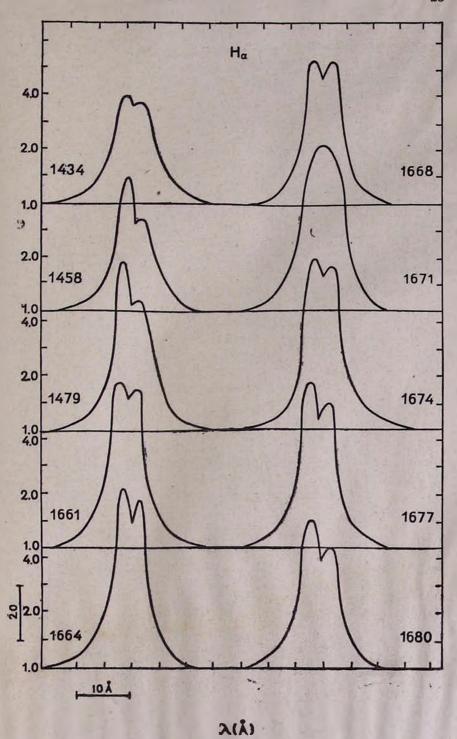


Рис. 4

изошло значительное изменение распределения энергии в непрерывном спектре 7 Кассиопен, выразившееся в возрастании интенсивности, особенно заметном в области от H_a до H_b .

Из построенных профилей линий H₂ (рис. 4), H₅ (рис. 5) и 5876

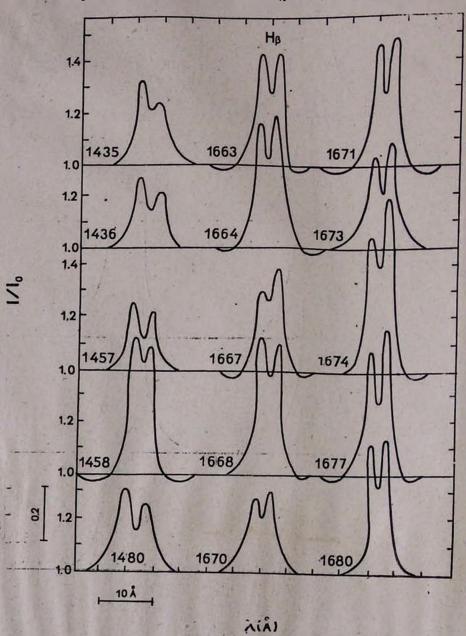
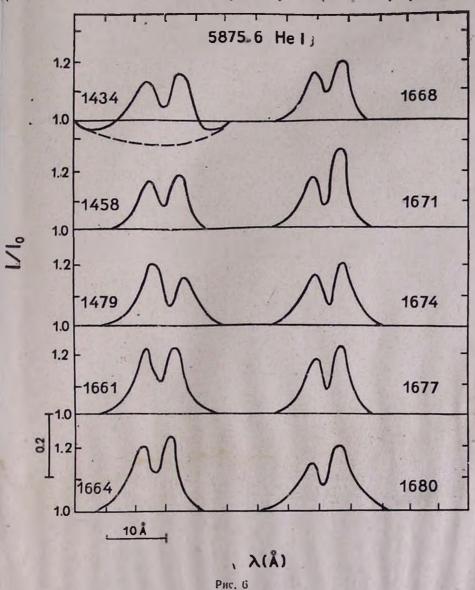



Рис. 5

ПеІ (рис. 6) можно сделать некоторые выводы о характере движения выброшенной из звезды материи. Из рис. 4 видно, что в профиле линии Н_■ для 9 дат отношение V/R больше единицы, что должно соответствовать удалению поглощающей материи от наблюдателя. На пластинке поставление поставления оболочки не прослеживается.

Изучение изменений в профиле Н_з показывает для разных моментов наблюдения, попеременно, приближение или удаление материи относительно наблюдателя. В ряде случаев (наиболее уверенный на

N.	Номер плас-	Дата, 1971	Средний мо- мент наблю-	Продолжитель- ность наблю- дения	Сорт пластинок: Kodak
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1434 1435 1436 1437 1457 1458 1479 1480 1660 1661 1663 1664 1667 1668 1670 1671 1673 1674 1676 1677	22.9 22.9 22.9 22.9 27.9 27.9 28.9 28.9 2.12 3.12 3.12 5.12 6.12 7.12 8.12 9.12	23 ¹ 100 ^m 23 34 23 41 19 55 22 17 23 14 ————————————————————————————————————	2 ^{m14s} 0 40 0 24 3 00 7 30 37 00 11 00 10 28 10 00 14 00 11 00 13 00 9 00 16 00 20 00 24 00 28 00 10 00 18 00 12 00 15 00	103aF IlaOch IlaOch IlaOch IlaOch IlaOch 103aF IlaO IlaO 103aF IlaO

Таблица 2

7 40 14 14				
λυΑ	Элемент	хиЛ	Элемент	
3705.9 + 3705.0	H ₁₆ , Hel	4143.8	Hel	
3712.0	H ₁₅	4153.0	SII	
3717.0	H ₁₄	4162.0	SII	
3727.3	loij l	4340.5	Hr	
3734.4	H ₁₃	4345.4	Oil	
3770.6	Hii	4366.9	Oll	
3797.9	H _{1Q}	4387.9	Hel	
3805.8	Hel	1414.0	OII	
3819.6	Hel	4437.0	Hel	
3835.4	H _o	4447.0	NII	
3867.5	Hel	4471.5	Hel	
3888.6	H ₈	4491 3	011	
3926.5	Hel	4552.7	SIIII	
3954.6	OII	4567.9	Silii	
3964.7	Hel	4574.8	Silli	
3970.1) H.	4590.0	OII	
4009.3	Hel	4638.8	OII	
4026.0	Hel	4641.8	Oll	
4069.9	Oll	4649.1	Oll	
4088,9	SIIV	4861.3	Ha	
4089.3	011	5875.6	Hei	
4097.3	NIII	6562.8	Ha	
4101.7	H ₀	6678.3	Hel	
4105.0	OII	5896.0	Nai	
4120.9	Hel	5890.0	Nat	

пластинке 1674) для H_{q} V/R было больше единицы, а для H_{5} —меньше единицы. Возможным объяснением этого факта может служить пред положение, что на различных глубинах в оболочке звезды имеют место различные декременты бальмеровских линий. Характер изменений профиля 5876 HeI (рис. 6) свидетельствует о более быстрых изменениях отношения V/R, чем в линиях водорода. Различия в поведении отношения V/R в линиях водорода и гелия могут быть приписаны стратификации излучения оболочки. За время наблюдений какой-либо регулярности в изменениях структуры двойной эмиссии линий водорода и гелия замечено не было.

Исследованные нами спектры 7 Кассиопеи, полученные в САО Е. Л. Ченцовым на 60 см рефлекторе Цейсса (дисперсия 29 А/мм), показали, что в ноябре—декабре 1972 г. и январе 1973 г. отношение V/R сохранялось больше единицы.

Отсутствие более быстрых изменений отношения V/R может быть результатом малого времени разрешения фотографических наблюдений. Действительно, согласно Хатчингсу [9], при фотоэлектрических наблюдениях 7 Кассиопеи с дисперсией 2.3 А/мм профили Н₃ и Н₂ показывали быстрые изменения структуры двойной эмиссии даже в течение двух последовательных ночей.

В табл. 3 приведены величины эквивалентных ширин для четырех эмиссионных линий. Для сравнения в табл. 4 даны значения W₂, полученные рядом авторов в предыдущие годы. Сравнение результатов показало, что в последние годы эмиссия в водородных линиях γ Кассионен значительно возросла.

Таблица 3

№	Номер плас- тинки	W _{Ha}	W _{H3}	W _{H_T}	W. 876 Hel
1	1434	17.4	-	-	0.75
2	1436		1.28	**-	
2 3	1437	-	1.34	-1721	
4	1457	_	0.95		_
4 5 6 7	1458	18.1	2.70		_
6	1479	21.7	-	0	1.21
7	1480		2.70	0.40	_
8 9 10	1661	23.5	- \	- 3	1.50
9	1663		3.00	0.40	_
10	1664	23.40	2.50	4 4 5 1 - 1 1 1	1.10
11	1667	- CO CO II	2.40	0.40	
12	1668	21.50	2.20	-	1.20
13	1670	-	1.30	0.40	_
14 15	1671	16.80	2.00	0.30	_
15	1673	_	2.20	0.30	_
16	1674	20.80	2.30	-	1.10
17	1677	22.70	2.30	_	_
18	1680	21.60	2.00		0.90

Определенный по формуле Инглисса-Теллера Igne, где ne —электронная плотность после внесения поправок за дополнительное влия-

ние электронов на замывание последних линий серии [10], оказалс равным 13.70.

Таблица

Дата	-H _x	Нз	5876 Hel	Авгор
1941 31.10.1952 13.11.1952 31.12.1952 2.1 .1953 17.10.1953	4.8 15.9 20.1 19.0 12.0	1.6 . 1.4 1.5 1.5	1.4)	А. А. Боярчук [II] И. М. Конылов [12] Э. Р. Мустель, Л. С Галкин, И. М. Копы лов [13]
1955	13.0	1.1		А. А. Боярчук [14]

3. Обсуждение результатов. Теоретическое объяснение характера физических процессов, происшедших в 7 Кассиопей в течение периода активности 1935—1940 гг., дано в работе В. Г. Горбацкого [15]. Согласно [15], продолжающийся длительное время интенсивный выбром материи привел к образованию вокруг звезды протяженной оболочки С ростом толщины оболочки увеличивается доля коротковолнового излучения, перерабатываемого посредством процесса флюоресценции возрастают блеск и интенсивность эмиссионных линий и уменьшаются цветовая температура и величина бальмеровского скачка. Затем, с какого-то момента, мощность выброса и, соответствению, толщина оболочки становятся меньше, вследствие чего уменьшается блеск и интенсивность эмиссионных линий и растет цветовая температура и величина бальмеровского скачка.

После 1940 г. в 7 Кассиопен не произошло каких-либо существенных изменений физических условий, однако и в относительно спокойный период в ней наблюдались нестационарные процессы достаточно сложного характера.

Распределение эпергии в непрерывном спектре в фотографической и ультрафиолетовой области изменялось в небольших пределах и мало отличалось от распределения эпергии в обычных звездах типа ВО. Незначительное понижение температуры, сопровождаемое увеличением блеска на 0^{то} 4, иаблюдалось в 1966 г. Возможно, это явление связано с некоторым возрастанием интенсивности выброса материи из звезды. Однако этот процесс был достаточно кратковременным и не привел к образованию мощной оболочки. Разница в значениях абсолютных градиентов, полученных рядом наблюдателей, вероятно, связана не с реальным колебанием температуры, а с выбором нуль-пункта, т. е. градиента звезды сравнения.

Согласно данным настоящей работы и ряда других [5, 6], с возрастанием длины волны в непрерывном спектре такисиопен наблюдается значительное увеличение интенсивности, особенно заметное в области спектра 0.67—2.20 р. Покраснение в данном интервале длин

воли в 1971—1972 гг. возросло по сравнению с 1963 и 1966 гг. что, возможно, связано с увеличением количества околозвездной материи. Подобного покраспения не наблюдается в нормальных звездах типа ВО.

В период вспышки 1935—1940 гг. и образования мощной оболочки бальмеровский скачок уменьшился до значения-0.30 [15]. В 1941 г., через два года после выброса последней оболочки, D, согласно наблюдениям Барбье и Шалонжа [1], был равен +0.11, т. е. даже больше, чем у нормальных звезд типа ВО. Величина D, меняющаяся после 1941 г. в пределах от 0.00 до-0.11, и характер изменения этой величины свидетельствуют в пользу предположения о постоянном присутствии у звезды тонкой оболочки переменной плотности. Эта оболочка вызывает появление резких линий поглощения, разделяющих эмиссионные линии водорода на два компонента, отношение интенсивностей которых, как известно, является мерой движения оболочки в целом или какой-то ее части. Как следует из результатов данной работы, а также из результатов исследований, охватывающих период в несколько десятилетий. процесс движения масс газа в атмосфере, характеризуемый отношением V/R, является, по-видимому, нерегулярным. По смещениям линий поглощения оболочки видно, что в атмосфере звезды происходит, попеременно, движение материи то к наблюдателю, то к звезде.

Результаты исследований 7 Кассиопен в течение последних 40 лет позволили глубже познать природу этой звезды и вообще звезд типа Ве. Однако до сих пор остается неясным вопрос о причинах выброса материи и роли в этом процессе вращения и магнитных полей.

Считаю приятным долгом выразить благодарность доктору А. Терзяну и Е. Л. Ченцову за предоставление спектров γ Кассиопеи и Н. К. Андреасян за помощь в обработке.

Ն. Լ. ԻՎԱՆՈՎԱ

ԴԱՄՄԱ ԿԱՍԻՈՊԵԱՅԻ ԴԻՏՈՒՄՆԵՐԸ

Ամփոփում

Հոդվածում բերված են դ Cas սպեկտրոֆոսումետրիկ 1956—1970 ԹԹ. ուսումնասիրության արդյունքները՝ էներգիայի բաշխումը անընդհատ սպեկ-տրում, էմիսիոն գծերի պրոֆիլները և էկվիվալենտ լայնությունները (Ha, Ha, Ha և 5876 Hel), V/R հարաբերության արժեքը և ուրիշ պարա-մետրեր։

N. L. IVANOVA

THE OBSERVATIONS OF GAMMA CASSIOPEJA

Summary

The results of spectrophotometric investigation of γ Cas are given. The energy distribution in continuous spectrum of γ Cas in 1956—70, the profiles and equivalent widths of the emission lines H_a , H_b , H_b , and 5876 Hel, the value of ratio V/R and other parameters are presented.

ЛИТЕРАТУРА

- 1. D. Barbler, D. Chalonge, Ann. d'Ap., 4, 13, 1941.
- 2. Л. Аллер. Астрофизика, 1, 183, 1955.
- 3 И. Д. Купо, Астрон ж., 36, 827, 1959.
- 4. N. L. Ivanova, I. D. Kupo, A. Ch. Mamatkazina, Non-Periodic Phenomena in Variable Stars, IAU Colloquium, Budapest, 215, 1968.
- 5. H. L. Johnson, Bol. Obs. Tonantzintla Tacubaya, 3, 305, 1964.
- 6. H. L. Johnson et al., Commun. Lunax Planet Lab., 99, 1966.
- 7. Н. Л. Иванова, Т. Н. Худякова, АЦ, 762, 1973.
- 8. T. van der Wel, Astron. and Astr., 4, 341-356, 1970.
- 9. J. B. Hutchings, Non-Periodic Phenomena in Variable Stars, IAU Colloquium, Budapest, 250, 1968.
- 10. И. М. Копылов, Изв. КрАО, 26, 234, 1961.
- 11. А. А. Боярчук, Изв. КрАО, 20, 118, 1958.
- 12. И. М. Копылов, Изв. КрАО, 12, 164, 1954.
- 13. Э. Р. Мустель, Л. С. Галкин, И. М. Копылов, Изв. КрАО, 11, 59, 1954.
- 14. А. А. Боярчук, Изв. КрАО, 16, 143. 1976.
- 15. В. Г. Горбацкий, Астрон. ж., 26, 307, 1949.

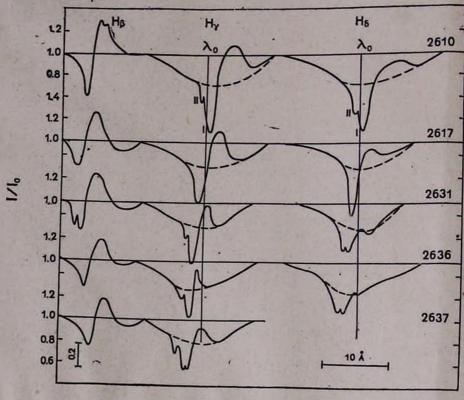
Н. Л. ИВАНОВА, А. Н. ХОТНЯНСКИЙ

СПЕКТР HD 187399

1. Введение. Нестационарная звезда НD 187399 принадлежит к двойным системам, в спектре которых видны линии одного, менее массивного компонента. Спектральный класс главной звезды оценен как В9е3 III [1]. Профили водородных и гелиевых линий—сложной структуры. Необнаруженный до сих пор второй компонент имеет массу больше, чем 1.4 №⊙, и массивней главной звезды [2].

Настоящая работа содержит результаты исследования пяти спектров HD 187399, полученных летом 1975 г. (табл. 1) в фокусе куде 2-метрового телескопа Шемахинской обсерватории с дисперсиями 4 и 8 А/мм в спектральной области $\lambda\lambda$ 3600—4900 на пленке А—500.

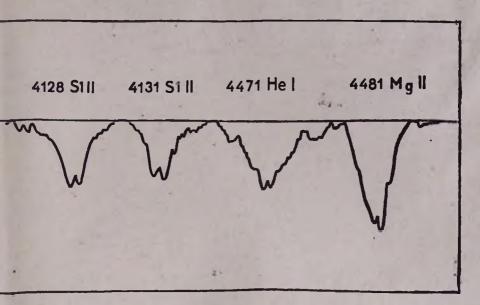
Таблица 1


N	Номер плас- тинки	Дага	J. D.	Фаза	Дисперсия, А/мм
1	2610	28/27.6	2442590	0.950	8
2	2617	29/30.6	593	0.067	8
3	2631	4/5 .7	599	0.281	4
4	2636	7/8 .7	602	0.388	8
5	2637	8/9 .7	603	0.420	8

Записи спектров сделаны на микрофотометре «Лирифо» Шемахинской обсерватории с увеличением в 40 раз. Одновременно производилась запись спектра сравнения, в качестве которого снималась железная дуга. Лучевые скорости измерялись по записям, что позволило определить смещения отдельных компонент линий. Вероятная ошибка измерений ±2.1 км/сек.

2. Линии спектра. В спектре HD 187399 присутствуют линии H, Hel, Call, MgII, Sill, Fell, Crll, Till.

Наиболее выдающимися являются линии водорода, имеющие сложную структуру. На рис. 1, где приведены профили H_{\sharp} , H_{7} и H_{3} , видны


широкие линии поглощения звезды В9 (они обозначены пунктиром) эмиссионные, с сильным поглощением с коротковолновой стороны (профиль типа Р Лебедя), линии оболочки I и более слабая линия поглощения II неизвестного происхождения. Эквивалентные ширины линий поглощения водорода в спектре главной звезды почти не изменились по сравнению с результатами наблюдений 1971—1974 гг. [3]: среднее значение W_H, равно 2.75A.

Puc. 1

Линии HeI, подобно водородным, имеют сложную структуру. В линии 1. 4471 на спектрограмме с дисперсией 4 А/мм отчетливо видна двойная структура, наблюдаемая также и в линиях SiII и MgII (рис. 2).

Среди линий спектра обращает на себя внимание сложный характер изменений линии К Call (рис. 3). На спектрограмме с большой дисперсией в этой линии отчетливо видны 3 компонента.

PHC 2.

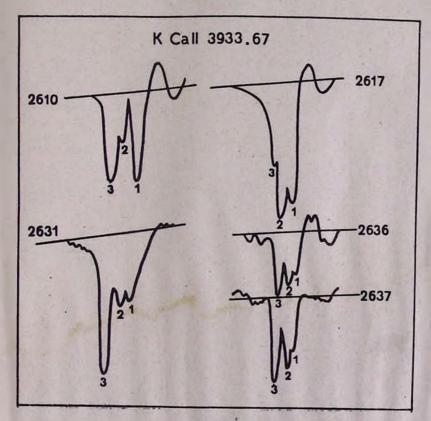


Рис. 3

3. Лучевые скорости. По линиям MgII, HeI, SiII, FeI, TiII и широким линиям поглощения водорода (пунктир на рис. 1) были определены лучевые скорости, характеризующие, в основном, скорость движения звезды В9 по орбите. Эти скорости V_r^* , редуцированные, согласно [4], к центру Солнца, приведены в табл. 2. Здесь также приведены скорости V_r I(H), определенные по глубокому компоненту поглощения водорода I, и V_r II(H)—по более слабому компоненту поглощения II.

1. 1.12				Таблица 2	
Ne	Номер	V _r ·	V _r I(H)	V _r II(H)	
	пластанки		км/сек		
1 2 .3 4 5	2610 2617 2631 2636 2637	-153.6 - 54.6 + 52.8 + 46.2 + 43.3	-91.5 -92.7 -89.8 -95.4 -85.0	-172 0 -169.3 -186 6 -200.0 -172.0	

В настоящее время имеется большое количество наблюдательных данных, относящихся к скорости расширения оболочки, проявляющей себя наиболее глубокими линиями поглощения (рис. 1,1).

Для проверки предположения о принадлежности оболочки 1 звезде В9 [5] мы построили график зависимости смещений $\Delta \lambda$ от фазы P.

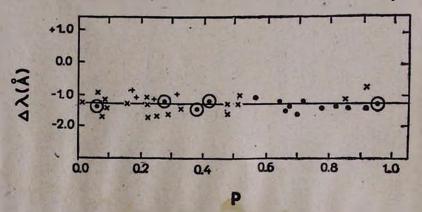


Рис. 4. Зависимость Δλ от Р по данным Хатчингса (+), Ивановой, Хотиянского (⋅), Меррила (×) и данной работы (⊙)

Из рис. 4 видно, что значения скоростей оболочки колеблются в пределах ошибок около среднего значения—90.0 км/сек и никак не связаны с фазой звезды В9. По-видимому, оболочка I (или поток) расположена вне орбиты звезды В9, возможно, вокруг двойной системы в целом,

Скорости, определенные для данного периода наблюдений по смещениям компонента водорода II, изменяются незначительно. Однако, эсли добавить сюда значения скоростей, измеренных по спектрограммам более ранних наших наблюдений [3] (табл. 3), то можно заметить, что скорости меняются в достаточно большом интервале: от—230.0 до +50.0 км/сек. Возможно, компонент II принадлежит «невидимой» звезде двойной системы. Однако для проверки этого предположения необходимо иметь достаточное число наблюдений, охватывающих большой промежуток времени.

Тоблица 3

Ne .	Номер пластинки	V _r II (H) no H _Y	V _r II (H)
1	1760	4 6.9	7.3
2	2389	34.5	+ 29.2
3	2391	+ 7.0	+ 0.0
4	2402	-197.0	-197.0
5	2449	+ 48.3	+ 51.2
6	2463	-221.2	-228.0

 11_3 измерений 27 линий на спектрограмме, снятой с дисперсией 4 $A/_{MM}$, выведена средняя скорость звезды в данной фазе $V_x = 52.8$ и вероятная ошибка $p = \pm 2.1$ км/сек.

По некоторым линиям звезды В9 на этой же спектрограмме (табл. 4) определена скорость расширения еще одной оболочки, несомненно принадлежащей звезде В9. Эта скорость оказалась равной

$$V_{\text{DSCUL}}^{\text{OGO.1.}} = V_{\text{r}}^{\text{OGO.1.}} = -21.0 \text{ km/cek.}$$

Таблица 4

№ п/п	й отождест- иленная	Элемент	V _{расш} , км/сек
1	3862.6	Sill	-25.8
2 3	4128.0	Sill	-23.7
	4130.9	SIII	-23.2
4 5	4416.8	Fell	-21.7
5	4471.5	Hel	-16.7
6	4481.3	Mg11	-20.0
	4520.2	Fell	-23.7
8	4534.2	Fell	-18.8
9	4541.5	Fell	16.9
10	4549.5	Fell	-16.8
11	4558.1	Crll	23.8

Линия К Call состоит, как видно из записи в почернениях (рис. 3), из нескольких компонентов, измерение смещений которых позволяет определить их лучевые скорости.

Из табл. 5 и рис. 3 следует, что в спектре HD 187399 присутствуют следующие линии K Call:

Номер иластин- ки	V ₁	V ₂	V ₃
2610 2617 2631 2636 2637	-11.7 9.4 +50.1	-92.6 -62.9 +27.2 -50.2 -48.9	-150.6 - 85.8 - 10.8 - 12.5 - 12.0

а) межзвездный кальций, средняя скорость которого

$$V_{\text{MCM3R}} = -11.3 \text{ km/cek};$$

 б) компонент, имеющий скорость, совпадающую с орбитальной скоростью главной звезды, и принадлежащий, следовательно, звезде В9;

в) компонент (рис. 3, пластинка 2631) оболочки главной звезды

со скоростью расширення-22.9 км/сек;

г) компонент со средней скоростью—89.2 км/сек, наблюдающийся на спектрограммах 2610 и 2617, принадлежит, возможно, той же оболочке, что и I(H).

Заключение. Из результатов настоящего исследования следует,

что в спектре звезды HD 187399 прослеживаются две оболочки.

- 1. Оболочка, средняя скорость расширения которой равна— 21 км/сек, принадлежит главной звезде В9. При наблюдениях в 1971 и 1974 гг. эта оболочка не прослеживалась и, по-видимому, появилась позднее.
- 2. Расширяющаяся со средней скоростью—90 км/сек оболочка (или поток), окружающая, по всей вероятности, всю систему.

Кроме того, в водородных линиях присутствует компонент, имеющий переменную скорость, который принадлежит, возможно, «невидимой» звезде системы.

Ն. Լ. ԻՎԱՆՈՎԱ, Ա. Ն. ԽՈՏՆՑԱՆՍԿԻ

HD 187399-Ի ՍՊԵԿՏՐԸ

Ամփոփում

HD 187399 սպեկտրում չափված են տեսազծային արագու**թյու**նները և H, Hel, Mgli, Sill, Call գծերի պրոֆիյները։

Այս սպեկտրալ-կրկնակի սիստեմում հայտնաբերված են երկու թաղանթներ 21 կմ/վրկ, 90 կմ/վրկ արագություններով, Բացի այդ, ջրածնային գծերում ներկա է փոփոխական արագություն ունեցող բաղադրիչ, որը հավանաբար, պատկանում է համակարդի «անտեսանելի» աստղին։

N. L. IVANOVA, A. N. KHOTNIANSKII

THE SPECTRUM OF HD 187399

Summary

Radial velocities and line profiles of H, He I, Mg II, Si II, Ca II in the spectrum of HD 187399 are measured.

Two envelopes with $-21 \frac{\text{km}}{\text{sec}}$, $-90 \frac{\text{km}}{\text{sec}}$ and one H-component with variable velocities in this spectral-binary system have been discovered.

ЛИТЕРАТУРА

- 1. P. Swings, O. Struve. Ap. J., 97, 194, 1943.
- 2. V. L. Trimble, K. S. Thorne, Ap. J., 156, 1013, 1969.
- 3. Н. Л. Иванова, А. Н. Хотнянский, Астрофизика, 12, 623, 1976.
- 4. Г. Г. Ленгауэр, Изв. ГАО, 189, 42, 1971.
- 5. J. B. Hutchings, P. G. Laskarides, M. N. RAS, 155, 357, 1972.

м. А. ЕРИЦЯН

ПОЛЯРИМЕТРИЧЕСКИЕ И ФОТОМЕТРИЧЕСКИЕ НАБЛЮДЕНИЯ ЗВЕЗД EV LAC AD LEO ВО ВРЕМЯ ВСПЫШКИ

В настоящем сообщении приводятся результаты поляриметрических и фотометрических наблюдений звезды EV Lac, полученные с 29 ноября 1972 г. по 4 января 1973 г. и с 23 июля по 4 августа 1973 г., а также звезды AD Leo, наблюдавшейся с 9 по 17 марта 1972 г.

Наблюдения велись на электрополяриметре с быстровращающимся поляризационным модулятором [1], смонтированным на 16" рефлекторе Бюраканской обсерватории. Во время наблюдений были использованы желтые и синие фильтры, максимальная пропускаемость которых, соответственно, приходится на длины воля 5500 Å и 4500 Å

В качестве приемника светового излучения использовался фотоэлектронный умножитель типа ФЭУ-79 с мультищелочным фотокатодом и ЕМІ—9502А с сурьмяно-цезиевым фотокатодом. Сводка наблюдений приведена в таблице.

Звезда EV Lac наблюдалась 80 часов, а AD Lco 9.5 часа. За это время было зарегистрировано 6 всиышек у EV Lac и одна вснышка у AD Lco.

При определении амплитуды вспышки звезды EV Lac был учтен дополнительный световой поток от ее компоненты, для чего использовались данные, приведенные в работе [2].

Кривые блеска вспышек приведены на рис. 1 и 2, где по оси абсцисс отложено мировое время, а по оси ординат—величина $i_3 = \frac{n_{\rm ac}}{n_{\rm num}} - 1$.

После обработки результатов поляриметрических наблюдений звезды EV Lac и AD Leo выяснилось, что поляризация во время вспышки не отличалась от поляризации вне вспышки и находилась в пределах ошибок измерений ($\sigma_p = \pm 0.4 \div 0.6\%$, $\sigma_0 = \pm 5 \div 10^\circ$).

Это говорит в пользу сделанного ранее предположения [3—5] о том, что поляризация вспыхивающих звезд (EV Lac, AD Leo) во время вспышки с малой амплитудой незначительна.

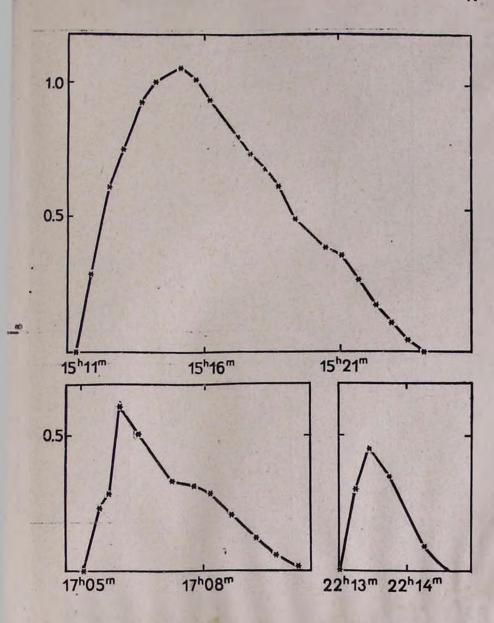


Рис. 1. Кривые блеска вспышек EV Lac и AD Leo, зарегистрированные в 1972 г.

UT

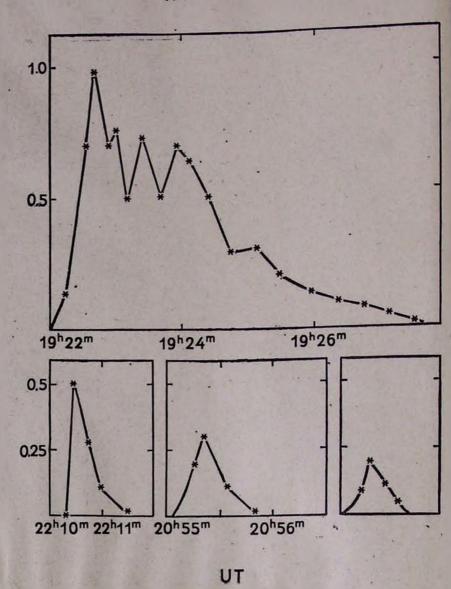


Рис. 2. Кривые блеска вспышек EV Lac, зарегистрированные в 1973 г.

Таблица

Зветда	Дата наблю- дений	Прозолжите ность наблю	ль- дений	Время макси- мума	Продол- житель- ность вспышки	Исполь- зование свето- фильтра	Использованный фотоумножитель
EV Lac	9 X.72	16.55—19.45		_		CIIH.	ФЭУ—79
	30.X.72	16.0018.25	_	_		ж.	, , ,
		18.30-18.45	_		-		
		18.5019.05	-	_	_		14.
	2.0	19.10-21.00		_			
	4.XI.72	17.05-18.20	_	-	_		
	5.X1.72	17.50-21.00	_		~-		
	6.XI.72	15.35—16 50		_			
	9.X1.72	15.20 16.30	-				
		15 52-18.50			-		
		19.00-19.36		_			
		19.42—21.15		17.00			
	10.X1.72	16.50 - 20.10	0.5	17.06	5-0мин,		
	29.X1.72	15.17 -21.10	_				
• 76	30.X1.72	16.1321.35	0.75	15.15	12	•	•
	1.XII.72	15.08—17.50	0.75	19.19	13мин.		
	3,X11.72	15.50 - 17.10				•	
	7.X11.72	18.30 - 20.15 15.23 - 17.10	_			•	•
	1.XII.12	17.35 - 20.10					•
	8.XII.72	15.00—15.07		_		•	
-	0.AH 12	17.1518.15	-			•	
7	4.1.73	15 30 - 16.30	_			• 15	
	23.VII.73	19 12-20.43				ж.	E.Ñ1
	24.VII.73	18.55 21.30				,	6.41
	25.V11.73	19.00 - 22.00	0.28	20.55.15	50сек.	•	
	26. VII.73	18.35 - 23.00	0.20	_	_	•	•
	27.VII.73	18.40-23.15	0.45	22.10.20	1 mini.		•
	28.VII.73	18.30 - 23.30		_			•
•	29.VII.73	18 55 22.35		_	_	20 1 1	
	20171110	22.45-24-05	_		= = 0		
	30.VII .73	18.35 - 20.15		_			
	31.VII .73	18 30 - 21.35	0.2	22 18.30	1		
	3.VIII.73	19.15 21.00	-	_	_		
	4 VIII.73	19.00 -20.00	0.75	19.22.30	5.5мин.		
AD Leo	9.111 .72	17.50-22.20	_	_	46.	син.	ФЭУ-79
	10.111 .72	16.45-18.45	-		_		
		18.50-20.08			_		
	-	20.18- 22.25	0.45	22.13.30	1.5		
		22.40 - 23.00	-	_			
-	15.111.72	16.45 20.28	_	000 00	_		
	12.1	20.33-21.24	-		_		
	16.111.72	16.40—19.08			- 1		
		20.36-22.00	- 0	_	_		
	17.111.72	17.27—17.50	_	_			
- 1							

U. 2. br1.83UV

AD LEO ԵՎ EV LAC ԱՍՏՂԵՐԻ ԼՈՒՍԱՉԱՓԱԿԱՆ ԵՎ ԲԵՎԵՌԱՉԱՓԱԿԱՆ ԳԻՏՈՒՄՆԵՐԸ

Ամփոփում

Աշխատանքում բերված են EV Lac և AD Leo աստղերի լուսաչափական և բևեռաչափական դիտումների արդյունքները։ Դիտված 89,5 ժամվա ըն-Թացքում գրանցվել է 7 բռնկում, որոնց արդյունքները բերված են աղյուսակ 1 և 1,2 նկարների վրա։

Դիտումների ժամանակ բևեռացման արժեքները չեն տարբերվել աստղի Հանգիստ վիճակում եղած բևեռացման արժեքից և եղել են չափման սխալի

սահմաններում ($\sigma_0 = \pm 0.4 \pm 0.6\%$, $\sigma_0 = \pm 5 \pm 10^\circ$):

M. A. ERITSIAN

POLARIMETRIC AND PHOTOMETRIC OBSERVATIONS OF THE STARS EV LAC AND AD LEO

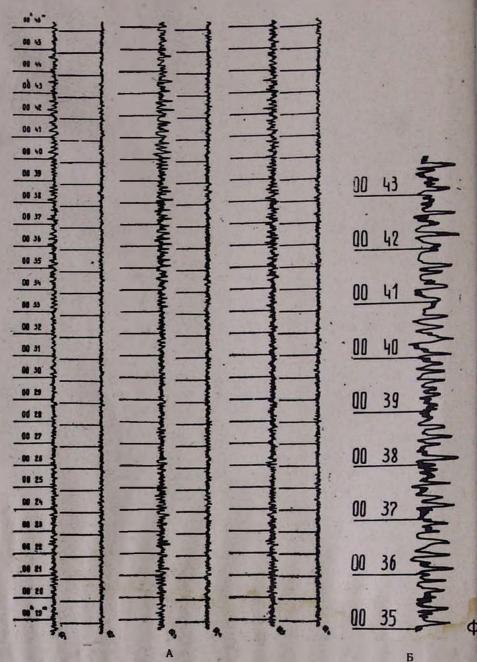
Summary

The results of photometric observations of the flare stars EV Lac and AD Leo are given. It is shown that as well during the flares as out of them, no polarization, exceeding the observational errors $(\sigma_p = \pm 0.4 \div 0.6\%, \sigma_0 = \pm .5^{\circ} \div 10^{\circ})$.

ЛИТЕРАТУРА

- 1. М. А. Ерицян, Сообщ. Бюраканской обсерватории, 43, 31, 1971.
- 2. П. Ф. Чугайнов. Изв. КрАО, 26, 171, 1961.
- 3. К. А. Григорян, М. А. Ерицян, Сообщ. Бюраканской обсерватории, 42, 41, 1970.
- 4. К. А. Григорян, М. А. Ерицян, Асгрофизика, 7, 302, 1971.
- 5. М. А. Ерицян, Сообщ. Бюраканской обсерватории, 46, 23, 1975.

B. A. CAHAMЯII


ОБ ОДНОМ ИНТЕРЕСНОМ СЛУЧАЕ ИОНОСФЕРНОГО МЕРЦАНИЯ НЕИЗВЕСТНОГО РАДИОИСТОЧНИКА

28 октября 1973 г. на индийском радиотелескопе в Утакамунде [1] шаблюдалось довольно интересное и вместе с тем не совсем понятное явление: на частоте 327 Мгц было зарегистрировано четкое мерцание неизвестного радиоисточника.

В этот период проводились регулярные наблюдения области Плеяды с целью поиска радиовспышек звезд в ней. Антенна радиотелескопа направлялась на звезду Альциона ($\alpha_{1950} = 03^{h}46^{m}55^{s}$, и пепрерывно следила за ней в течение ~ 9 часов в сутки. Диаграмма антенны охватывала область ~ 1.3 кв. градуса вокруг этой Между интервалами от 00^h17^m до 00^h47^m индийского стандартного времени (18^h 47^m до 19^h 17^m универсального времени) наблюдалось достаточно интенсивное, вероятно, ионосферное мерцание источника, который не удавалось отождествить с каким-либо известным радиоисточником. При этом в промежутке времени от 00^h 27^m до 00^h 33^m был как бы перерыв активности, мерцание почти прекратилось, а затем оно вновь продолжалось с большой силой. Запись сигнала приведена на рисунке. Сигнал записывался на выходе 12 каналов радиометра. На рисунке приведены лишь выходные сигиалы 6 каналов, в которых зарегистрировалось мерцание. Каждый канал соответствует определенному лучу 12-лепестковой диаграммы антенны, ориентированной вдоль круга склонений. Соседние лучи смещены по отношению друг к другу ~ 3', и склонение возрастает от 1-го луча к 12-му.

Все каналы работают по схеме переключения фазы, и поэтому, как и ожидается, сигналы на выходе каналов Ф1 и Ф5 по фазе противоположны сигналу канала Ф3. На выходе каналов Ф2 и Ф4 сигнал отсутствуст. Это может иметь место тогда, когда источник находится на максимуме луча Ф3. Отметим, что звезда Альциона в это время находилась на максимуме луча Ф7, т. е. склонение мерцающего источника $3 \approx 23^{\circ}49'$. По прямому восхождению мерцающий источник был смещен по отношению к Альционе не более, чем на один градус дуги.

Максимальная амплитуда мерцания составляет — 4 единицы потока. Эта величина получилась путем сравнения сигналов мерцающего

А-Запись сигнала неизвестного мерцающего радиоисточ ника. Время индийское стандартное, которое опережает сигнала на выходе ка всемирное время на 5 час. 30 мин. Буквой Ф с последующей цифрой обозначены соответствующие каналы коррелометра.

Б-Отрезок записи Фэ в большом масщтабе,

источника и источника сравнения 3С190, поток которого на частоте 327 Мгц составляет 9,8 единиц (1единица потока = 10^{-26} вт/м² Γ ц). О мере мерцания трудно судить, так как при слежении нельзя оценить величину невозмущенного потока. Как мы увидим ниже, это не удавалось сделать также из последующих наблюдений, когда упомянутая область несколько раз пропускалась через неподвижную диаграмму антенны.

Весьма странным является тот факт, что в области, охваченной диаграммой направленности антенны, в главном каталоге радиоисточников [2] не имеется ни одного радиоисточника, поток превышает 0,3 единицы на частоте 327 Мгц. Более того, чтобы выяспить, какой именно источник был записан, на следующий день та же самая область многократно сканировалась днаграммой антенны, и тоже не было найдено радноисточника, поток которого превышал бы пределы чувствительности радиотелескопа (~ 0,8 единицы при сканироваини). Следует также отметить, что эта же самая область и, приблизительно, в то же время суток непрерывно наблюдалась до и после этого явления в течение 16 дней и ни разу подобного случая мерцания не было обнаружено. Такое мерцание не наблюдалось также при повторном наблюдении той же области осенью 1974 г. в течение 15 дней. Особого изменения солнечной активности также не было в указанный выше день, и, кроме этого, явление наблюдалось намного позже захода солица, когда последнее находилось в диаметрально противоположном направлении по отношению к месту наблюдений. По этой причине становится маловероятным наличие мерцания известного нам радиоисточника на неоднородностях межпланетной плазмы.

Возникает естественный вопрос, от какого источника исходил этот почти регулярный по частоте, мерцающий радиосигнал. Тот факт, что сигнал имел внеземное происхождение, не вызывает сомнения, так как фазы на выходе отдельных каналов радиометра соответствуют именно излучению космического радиоисточника или радиоисточника, который, находясь в дальней зоне, медленно перемещается через диаграмму антенны. Они через канал противоположны, что не должно иметь места при аппаратурных неустойчивостях или при радиопомехах земного происхождения. Последние, кстати, практически не наблюдаются в районе радиотелескопа. Этот сигнал не может быть результатом пролета через диаграмму антенны искусственных летательных анпаратов, так как нетрудно подечитать, что такие аппараты не могут так долго находиться в пределах диаграммы антенны.

Поскольку целью наших наблюдений был поиск радиовспыхивающих звезд в Плеядах, то возникает естественное предположение о том, что, возможно, имела место радиовспышка звезды в ней, которая и ответственна за наблюдаемые мерцания. Мощность такой вспышки составляла бы ~ 5,1011 вт/м²стер., что является вполне приемлемой

величиной для вспышек звезд [3]. Продолжительность вспышки, рав ная 30 мин., также находится в пределах допустимого. А средниј период мерцания, равный ~ 15 сек., вполне соответствует характерному периоду мерцания радиоисточников на поносфере Земли. Веским аргументом против такого предположения является отсутствие замет ного подъема общего уровня принимаемого сигнала. Это может иметь радионсточни место, когда появившийся в результате вспышки начиет мерцать на ноносфере Земли со стопроцентной интенсивностью Такая мера мерцания на ионосфере Земли или на неоднородностях околосолнечной плазмы вообще не исключена. Все же трудно с уверенностью утверждать (или отрицать), что в данном случае имело месте именно такое глубокое мерцание. Ослабление мерцания в середине записи нельзя объяснить исчезновением причин, вызывающих мерцание радиоисточника. Иначе в это время наблюдался бы подъем общего уровня записи. Если допустить, что в наблюдаемом агрегате звезд действительно имела место радновспышка, то одновременно следует допустить, что вспышка была двойная. Такие вспышки в отдельных случаях наблюдаются. Не исключена также возможность, что исчезновение мерцания в середине записи является результатом сложения ноносферного и межзвездного мерцания радиоисточника. Интервал ослабления мерцания, равного ~10-12 мин., соответствует характерному периоду межзвездного мерцания радиоисточников.

Приведенный выше анализ показывает, что для объяснения реаль-

но наблюдаемого явления возникают определенные трудности.

4. U. VULUUSUL

ԱՆՀԱՑՏ ՌԱԴԻՈԱՂԲՅՈՒՐԻ ԻՈՆՈՍՖԵՐԱՅԻՆ ԱՌԿԱՑԾՄԱՆ ՄԻ ՀԵՏԱՔՐՔԻՐ ԴԵՊՔԻ ՄԱՍԻՆ

Ամփոփում

Հոդվածում բերված են Բազումքի աստղակուլտի ուղղության վրա գտնվող անհայտ ռադիոաղբյուրի իոնոսֆերային առկայծումների գրանցման տվյալները, որոնք ստացվել են 327 Մհց հաճախությունում հնդկական ռադիոդիտակի վրա։

V. A. SANAMIAN

ABOUT ONE INTERESTING CASE OF IONOSPHERIC SCINTILLATIONS OF UNKNOWN RADIOSOURCE

Summary

The results of ionospheric scintillation of unknown radiosource on direction of the stellar cluster Pleades carried out on the Indian radio telescope at 327 MHz are adduced.

ЛИТЕРАТУРА

- 1. G. Swarup, N. V. S. Sarma, M. N. Josi, V. K. Kapahi, D. S. Baggi, S. H. Damle S. Anathakrishnan, V. Balasubramanian, S. S. Bhave, R. P., Sinha, Nature Phys Sci., 230, 185, 1971.
- 2. R. Dixson, Ap. J. Suppl. Ser, 180, 20, 1970.
- 3. B. Lovel, The Observatory, 84, 191, 1964.

Г. В. АБРААМЯН, Л. Г. АХВЕРДЯН

НАБЛЮДЕНИЯ СВЕЧЕНИЯ НОЧНОГО НЕБА В БЮРАКАНЕ

Бюраканская астрофизическая обсерватория АН Арм. ССР (БАО) расположена на склоне горы Арагац в 30 км от города Еревана и непосредственно вблизи села Бюракан. Очевидно, что освещение Еревана и Бюракана является причиной увеличения яркости свечения ночного неба БАО, особенно в направлении города и села.

В данной работе получены данные о свечении ночного неба БАО. Наблюдения были проведены с помощью одноканального электрофотометра, установленного на 0,5-метровом телескопе АЗТ-14А, в полосах U, B, V международной фотометрической системы в безлунные

ночи 1/2 октября 1976 г. и 22/23 февраля 1977 г.

По результатам наблюдений были построены карты распределения яркости свечения ночного неба БАО в U (рис. 1а н 1б). В (рис. 2а и 2б) и V (рис. 3а и 3б). Как видно из приведенных рисунков, зоны I менее всего подвержены влиянию наземных источников, а зоны III—более всего.

В таблице приведены U, B, V величины яркости свечения ночного неба БАО с одной квадратной секунды в зените.

Таблица

Дата наблюдения	U	В	v
1/2 октября 1976 г.	21.64	22.24	21.42
22/23 февраля 1977 г.	21.64	22.34	21.65

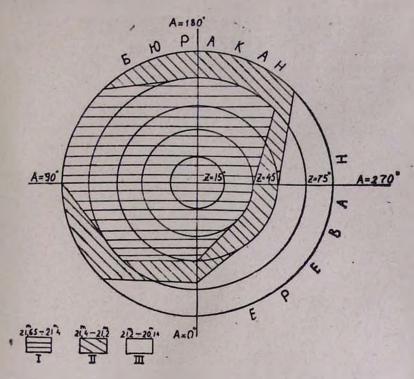


Рис. 1а. Карта распределения яркости свечения ночного неба БАО в U. 1/2 октября 1976 г.

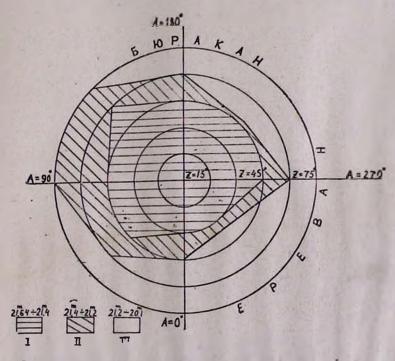


Рис. 16. Карта распределения яркости свечения ночного неба БАО в U. 22/23 февраля 1977 г.

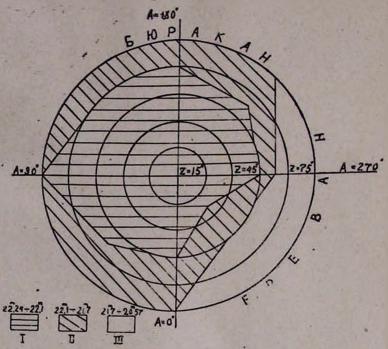


Рис. 2a. Карта распределения яркости свечения ночного неба БАО в В, 1/2 октября 1976 г.

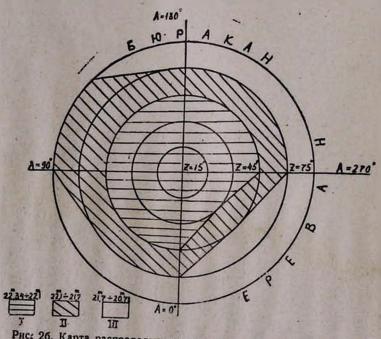


Рис: 26. Карта распределения яркости свечения ночного неба БАО в В. 22/23 февраля 1977 г.

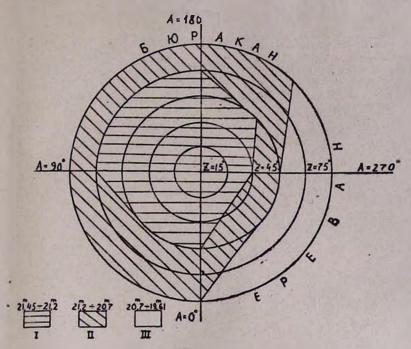


Рис. За. Карта распределения яркости свечения ночного неба БАО в V. 1,2 октября 1976 г.

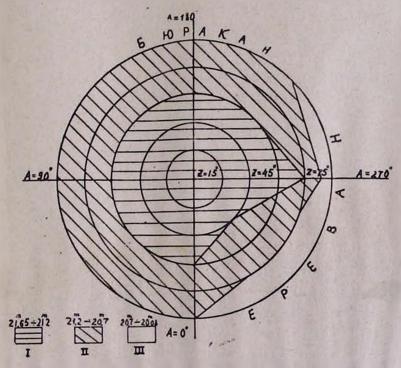


Рис. 36. Карта распределения яркости свечения почного неба БАО в V. 22 23 февраля 1977 г.

2. 4. UPPULLUBUS, L. S. LUMABOSBUS

բցուրականի Գիշերացին երկնքի Ճարագացթտան դիջուտները

Ամփոփում

Հոդվածում բերված են Բյուրականի գիշերային երկնքի ճառագայթմա դիտումների արդյունքները՝ U, B, V շերտերում։

H. V. ABRAHAMIAN, L. G. HACHVERDIAN

BYURAKAN NIGHT SKY OBSERVATIONS

Summary

In this paper the results of Byurakan Astrophysical Observators nitgh sky observations in U, B, V bands are given.

Р. А. ВАРДАНЯН

ПОИСКИ ЦЕПОЧКООБРАЗНЫХ ГРУПП ГАЛАКТИК НА КАРТАХ ПАЛОМАРСКОГО АТЛАСА

В последние годы в Бюраканской обсерватории проводятся поисжи и исследование компактных групп компактных галактик [1—8].

113 проведенного статистического анализа этих групп мы пришли к выводу [9], что они в большинстве являются сплюснутыми системами, вследствие чего наиболее вероятной является вытянутая форма проекций этих групп на небесной сфере. Основываясь на том, что компактные галактики, входящие в компактные группы, сравнительно красные [10], нами на картах Паломарского атласа были проведены поиски (на высоких галактических широтах) (/b/>30°) вытянутых по форме (цепочкообразных) объектов групп, которые содержат четыре шли более членов, причем для этих групп выполняются следующие условия:

- 1. Отношение большой оси к малой больше трех. Большой осью считается отрезок, соединяющий два наиболее удаленных объекта группы. Малой—отрезок, соединяющий две наиболее удаленных провекции объектов группы на прямую, перпендикулярную к большой оси.
- 2. Группы достаточно компактные, т. е. среднее расстояние между членами групп меньше 30".
- 3. Члены большинства групп краснее, чем объекты фона. При этом на О-картах Паломарского атласа их яркости предельно слабые.

При выполнении вышеуказанных условий можно предполагать, что выбранные нами группы объектов с большей вероятностью являются относительно далекими физическими системами.

Список подобных групп объектов, обнаруженных на картах Паломарского атласа, представлен в таблице. А карты отождествления, снятые с Паломарских Е-карт, представлены на рис. 1—28.

Члены каждой группы пронумерованы на картах отождествления, в порядке убывания их яркости.

Отметим, что для отдельных групп не выполняется какое-нибудь одно из вышеприведенных условий, однако выполнение оставшихся двух условий настолько очевидно, что мы все же включили их в наш список.

При просмотре Паломарских карт оказалось, что члены большинства групп являются компактными галактиками (например, № 1—3, 5,

10 и т.д.), хотя мы не исключаем возможности, что видимая компактность галактики иногда может быть обусловлена большим расстоянием,

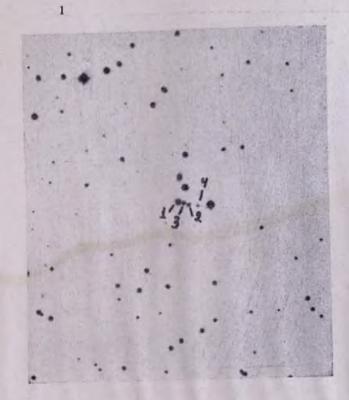
В списке пять групп (№ 6, 19, 22, 25, 26) содержат объекты, которые трудно отличить от звезд. Несмотря на это, мы их включили в наш список, учитывая, что если при дальнейшем исследовании члены хотя бы одной из таких групп окажутся галактиками, то такая группа

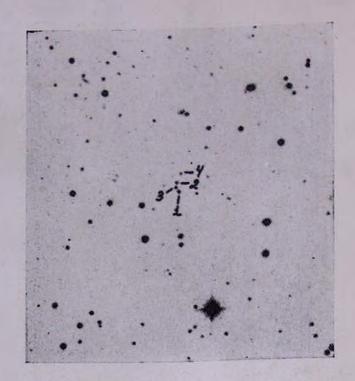
может оказаться весьма интересной. Являются ли по крайней мере некоторые из отобранных нами групп галактик ядрами далеких скоплений галактик, слабые члены которых уже не видны, или все они по существу представляют собою бедные системы? Этот вопрос будет решен после более детального изучения задачи о распределении ярких членов галактик внутри скоплений галактик. Если окажется, что яркие члены, принадлежащие к скоплениям галактик, не составляют плоскую систему, как это имеет место в случае с компактными группами компактных галактик, то можно будет предполагать, что как цепочкообразные группы компактных галактик, так и компактные группы компактных галактик являются своеобразными плоскими и бедными системами, не имеющими ничего общего со скоплениями галактик.

Разрешение этого вопроса весьма важно. Мы надеемся вернуться к

нему в дальнейшем.

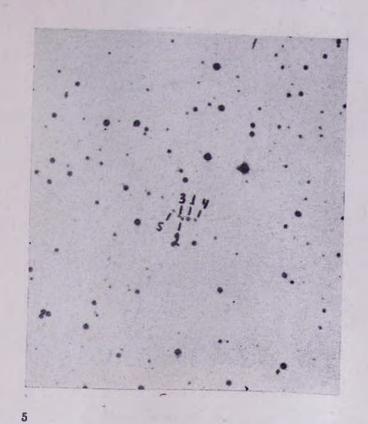

Tabauna

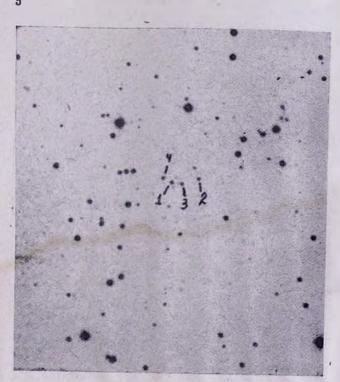

14	Координаты (2, б) и количество и галактик в группах								
M	α (1950)	à (19 5 0)	u.	Ne	α (1950)	ઠ (1950)	n		
1 2 3 4 5 6 7 8 9 10 11 12 13	00 ^h 18 ^m 2 00 31 .4 09 05 .0 09 12 .5 09 28 .5 09 43 .3 09 48 .7 09 50 .5 09 51 .3 10 04 .3 10 11 .0 10 41 .9	+22°25′ +02 00 +64 28 +05 27 +05 00 -02 04 +32 23 -11 26 -23 35 +01 58 +46 00 +11 48 +46 02	5 4 4 6 5 4 5 10 4 7	15 16 17 18 19 20 21 22 23 24 25 26 27	10 ^b 57 m 4 11 11 1 11 16 4 11 23 0 11 24 9 11 39 3 12 00 2 12 09 9 12 16 7 12 42 4 12 56 0 12 59 0 13 31 8	+08°41′ -09 17 -10 06 -00 03 +72 53 -25 18 -07 51 -06 58 -07 07 +29 25 +36 46 +10 54 -23 39	6 5 4 4 4 5 4 4 6 4 4 6 6		
14	10 50 . 6	-10 44	6 8 .	28	14 33 . 5	+36 10	6		

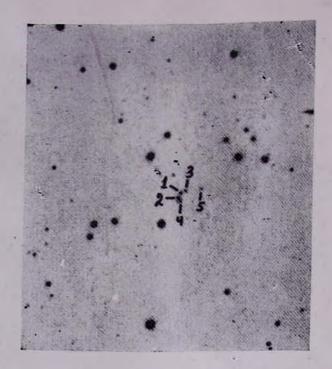

Примечания к таблице

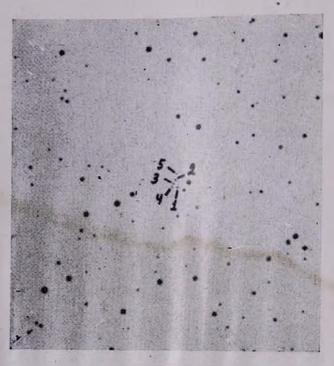
- 1. Изолированная цепочка компактных галактик. Объект № 1 может оказаться звездой.
- 2. Изолированная цепочка красных компактных галактик. Объекты на О-карте Паломарского атласа значительно ярче предельной величины.

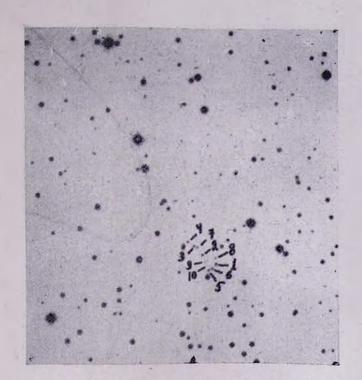

В красных лучах. Север сверку. Восток слева. Масштаб 1 мм = 8%.9.

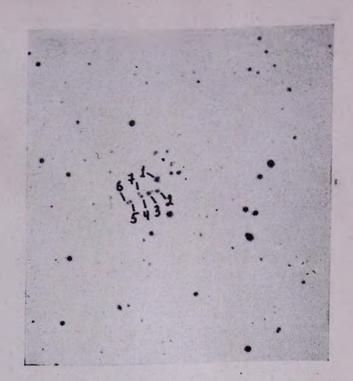


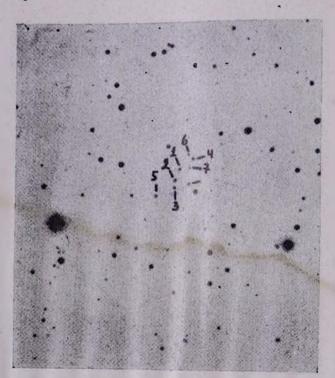


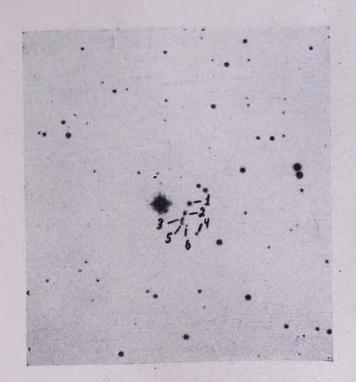


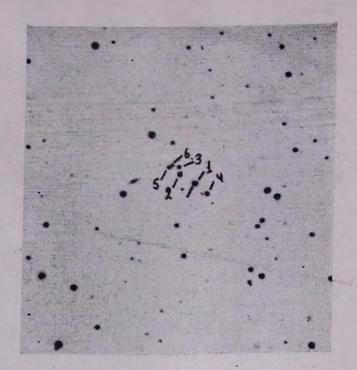


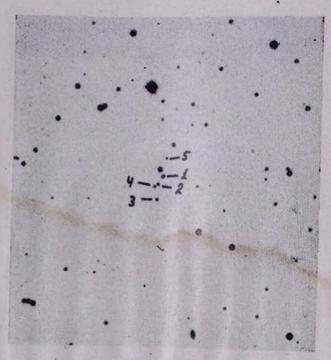


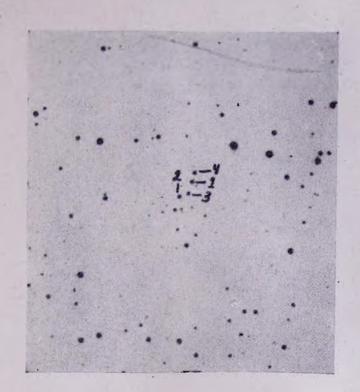


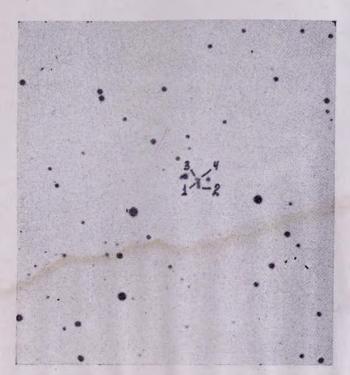


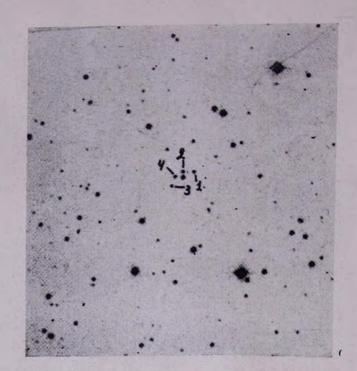


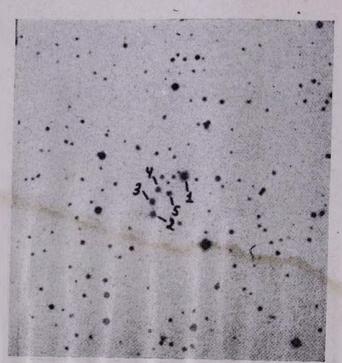


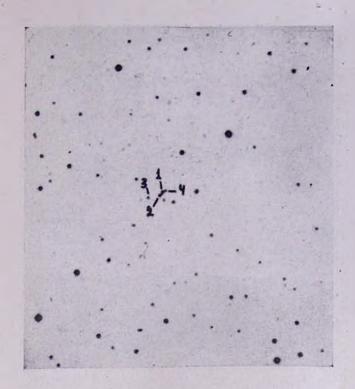


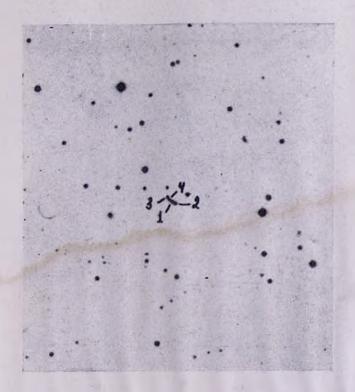




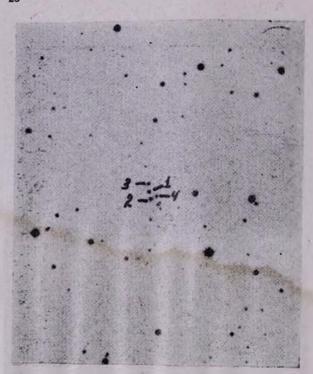


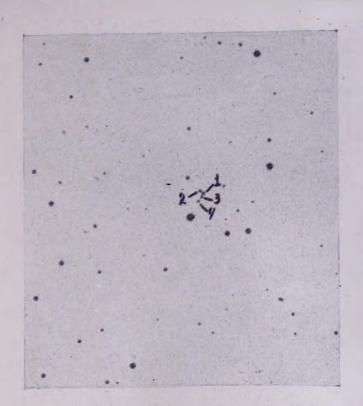


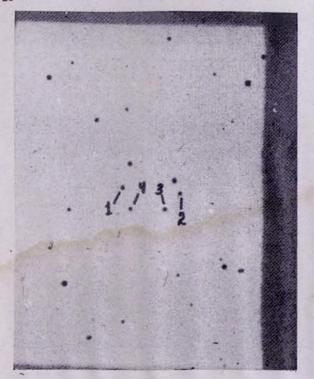


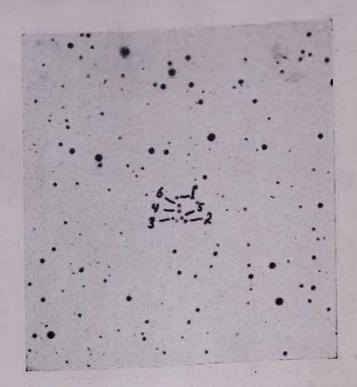












- 3. Цепочка достаточно красных компактных галактик.
- Плохо изолированная цепочка достаточно красных галактик, галактики № 1 и 4 компактные, № 5 и 6 могут оказаться звездами.
- 5. Плохо изолированная цепочка компактных галактик.
- 6. Плохо изолированная цепочка достаточно красных компактных объектов.
- 7. Пзолированная цепочка красных галактик. Объект № 1 красный.
- Изолированная ценочка компактных галактик. Объект № 1 на Паломарской О-карте значительно ярче предельной величины и может оказаться звездой.
- 9. Изолированная цепочка галактик.
- 10. Плохо изолированная цепочкообразная группа красных компактных галактик. Объекты на Паломарской О-карте значительно ярче предельной величины.
- Плохо изолированиая цепочка красных галактик. Объект № 1 на Паломарской О-карте значительно ярче предельной величины.
- 12. Плохо изолированная группа красных галактик.
- 13. Изолированная цепочка красных галактик. Объекты на О-карте Паломарского атласа значительно ярче предельной величины.
- Плохо изолированная группа красных компактных галактик. Объекты № 1, 2, 4, 5 составляют цепочку.
- 15. Изолированная цепочка красных галактик.
- Изолированная цепочкообразная группа достаточно красных компактных галактик.
- Плохо изолированная цепочка краспых компактных галактик.
 Объекты на О-карте Паломарского атласа значительно ярче предельной величины.
- Изолированиая цепочка галактик. Объект № 1 на О-карте Паломарского атласа значительно ярче предельной неличины.
- 19. Изолированная цепочка достаточно красных компактных объектов.
- 20. Плохо изолированная цепочкообразная группа красных компактных галактик. Объекты на О-карте Паломарского атласа значительно ярче предельной величины.
- 21. Плохо изолированная группа красных компактных галактик.
- 22. Изолированная цепочка красных компактных объектов.
- Плохо изолированная цепочка компактных галактик. Объекты № 1,
 3 на О-карте Паломарского атласа значительно ярче предельной величины. Объект № 2 может оказаться звездой.
- 24. Плохо изолированная группа достаточно красных компактных галактик. Объект № 4 не компактен.
- 25. Изолированная группа красных компактных объектов. Объекты на О-карте Паломарского атласа значительно ярче предельной величины. Оъект № 3 компактиая галактика. Группа может быть не физической.

компактных 26. Изолированная цепочкообразная группа красных Паломарского атласа объектов. Объекты № 1, 2 на О-карте значительно ярче предельной величины.

27. Плохо изолированная цепочка красных компактных галактик. Объ-

ект № 2 не компактен.

28. Плохо изолированная цепочка слабых галактик. Объект № 1 голубой.

ր. Ա. ՎԱՐԴԱՆՑԱՆ

ՇՂԹԱՅԱՁԵՎ ԳԱԼԱԿՏԻԿ ԽՄՔԵՐԻ ՈՐՈՆՈՒՄԸ ՊԱԼՈՄԱՐԻ ՔԱՐՏԵԶՆԵՐԻ ՎՐԱ

Ամփոփում

Աշխատանքում բերվում է Պալոմարի քարտեզների վրա՝ /b/>30° տիրույթում գտնվող 28 շղթայաձև գալակտիկ խմբերի ցուցակը և նույնացման քարտեգները։

R. A. VARDANIAN

SEARCH FOR CHAIN-SHAPED GROUPS OF GALAXIES ON THE PALOMAR ATLAS PRINTS

Summary

The list and Charts for 28 Chain-Shaped groups of galaxies found in the $|b| > 30^{\circ}$ regions of the Palomar Atlas Prints are presented.

ЛИТЕРАТУРА

- 1. Р. К. Шахбазян, Астрофизика, 9, 495, 1973.
- 2. Р. К. Шахбазян, М. Б. Петросян, Астрофизика, 10, 13, 1974.
- 3. Ф. Б. Байер, М. Б. Петросян, Г. Тирш, Р. К. Шахбазян, Астрофизика, 10, 327, 1974.
- 4. М. Б. Петросян, Астрофизика, 10, 471, 1974.
- В. А. Амбарцумян, Г. Ч. Арп, А. А. Хог, Л. В. Мирзоян, Астрофизика, 11, 193, 1975.
- 6. Ф. Б. Байер, Г. Тирш, Астрофизика, 11, 221, 1975.
- 7. Ф. Б. Байер, Г. Тирш, Астрофизика, 12, 7, 1976.
- 8. Ф. Б. Байер, Г. Тирш. Астрофизика, 12, 409, 1976.
- 9. Р. А. Варданян, Ю. К. Мелик-Алавердян, Астрофизика. 14, 195, 1978.
- 10. А. Т. Каллоглян, Ф. Бернген, Астрофизика, 10, 21, 1974.

М. А. МНАЦАКАНЯН

К РЕШЕНИЮ ЗАДАЧ ПЕРЕНОСА ИЗЛУЧЕНИЯ В ПОЛУБЕСКОНЕЧНЫХ СРЕДАХ

Посвящается 70-летию академика В. А. Амбарцумяна

1. Оператор инвариантности

Пусть через границу полубесконечной среды выходит некое излучение с распределением f_o (по углам, частотам и т. д.). Поместим перед полубесконечной средой слой толщиной τ . Тогда из суммарной полубесконечной среды после всевозможных рассеяний выйдет излучение с другим распределением f_{τ} . Введем оператор $Y(\tau)$, действие которого сводится к следующему:

$$f:=Y(z)f_0. \tag{1.1}$$

Другими словами, оператор $Y(\tau)$ определяет вероятность (для линейных задач) выхода из полубесконечной среды квашта, первоначально летевшего на глубине τ в сторону границы.

Очевидно, что Y(O) = I—единичный оператор. Поэтому в случае бесконечно тойкого добавляемого слои оператор $Y(d\tau)$ можно представить в виде разложения

$$Y(d\tau) = I - Gd\tau. \tag{1.2}$$

Оператор G описывает то изменение, которое происходит с выходящим из среды излучением при добавлении перед полубесконечной средой бесконечно тонкого слоя. В каждой конкретной задаче он легко строится из физических соображений с использованием определения (1.2).

Пусть — оператор Амбарцумяна, определяющий излучение полубесконечной среды с квантами, поглощенными на ее границе. Если Ad— оператор поглощения кванта отдельным слоем d-, то, очевидно,

$$Y(dz) = I - Adz + \varphi Adz. \tag{1.3}$$

Сравнивая с (1.2), находим

$$G = (I - \varphi)A. \tag{1.4}$$

После того, как построен оператор G, мы легко можем решить разные задачи для полубесконечной среды, используя иден инвариантности Амбарцумяна. Соответствующие уравнения инвариантности составляются при помощи оператора G, поэтому мы будем называть

G оператором инвариантности.

Операторы Y, G и ф представляют собой аналоги переходных матриц и производят суммирование (интегрирование) по соответствующим параметрам первичных квантов. Оператор A обычно является оператором умножения на функцию от параметров начального состояния кванта (до поглощения). Здесь и ниже для операторов мы не вводим специальных обозначений, думая, что это не приведет к недоразумениям.

Перейдем к составлению уравнений инварпантности. Мы подразумеваем только задачи об излучении, выходящем из полубесконечной среды. В качестве иллюстраций мы ограничимся их применением к простейшим задачам переноса для полубесконечной среды. Конкретные результаты, в основном, известны, их можно найти в классических трудах В. А. Амбарцумяна [1], В. В. Соболева [2, 3]-и В. В. Иванова [4], однако наша работа оправдывается физической прозрачностью и математической простотой выводов. В этой связи мы надсемся распространить в дальнейшем развиваемый аппарат на случаи нелинейной и сферической задач теории рассеяния света.

Операторы Y и G введены в работах [5—10], имеющих целью свести задачи переноса излучения в слое конечной оптической толщи-

ны к соответствующим задачам для полубесконечной среды.

Настоящая статья написана на основе конспекта лекций, прочитанных автором на семинарах раднофизического факультета и студентамтеоретикам физического факультета Ереванского гос. университета.

2. Уравнения инвариантности

Рассмотрим следующие задачи для однородной полубесконечной

среды. Рассмотрение ведется в вероятностной трактовке.

Задача Милна. Пусть в полубесконечной среде с чистым рассеянием $\lambda=1$ бесконечно глубоко расположен источник (поглощен квант). Нужно найти распределение u выходящего из среды излучения. Добавив к границе полубесконечной среды бесконечно тонкий слой, мы получим ту же задачу Милна для суммарной полубесконечной среды и, следовательно, прежнее распределение выходящего излучения. Поскольку изменений в выходящем излучении при этом не происходит, то действие оператора G сводится к нулевому:

$$Gu = O. (2.1)$$

Этим уравнением описывается решение задачи Милиа.

Равномерное распределение источников. Пусть в полубесконечной среде задано равномерное распределение первичных источников с плотностью ε , и нас интересует распределение u выходящего из среды излучения. Добавим перед средой бесконечно тонкий слой с той же плотностью источников ε . Под влиянием добавленного слоя в среде «теряется» распределение $Gud\tau$, но дополнительно излучается vdt—в результате же выходящее излучение должно остаться прежним, ибо мы имеем прежнюю постановку задачи. Иными словами, решение этой задачи оводится к уравнению

$$Gu = \varphi \varepsilon.$$
 (2.2)

Экспоненциальное распределение источников. Рассмотрим более общую задачу—полубссконечную среду с экспоненциальным распределением первичных источников по глубине τ с плотностью $\epsilon e^{-\mu \tau}$. Пусть u—выходящее из среды излучение. Добавим бесконечно тонкий слой $d\tau$ с плотностью источников $\epsilon 1(+\mu d\tau)$, продолжающей исходное экспоненциальное распределение. Мы получим суммарную полубесконечную среду опять с экспоненциальным распределением источников, но с плотностью, всюду в $(1+\mu d\tau)$ раз большей. Поэтому распределение выходящего излучения, в силу линейности задачи, будет равно $(1+\mu d\tau)u$. С другой стороны, оно равно излучению $Y(d\tau)u$, вышедшему под влиянием добавленного слоя $d\tau$, и излучению самого добавленного слоя— $\tau \epsilon d\tau$. Следовательно, решение этой задачи описывается уравнением

$$(1 + \mu d\tau)u = Y(d\tau)u + \varphi s d\tau,$$

$$Gu + u\mu = \varphi s.$$
(2.3)

Уравнение (2.3) при µ=0 переходит в (2.2) и при ==0 в (2.1).

или

Свечение полубесконечной среды определяется оператором Амбарцумяна φ/λ . Если p—индикатрися рассеяния (функция перераспределения по частотам и т.п.), а R—оператор отражения от полубесконечного слоя, то, очевидно,

$$\varphi = \frac{\lambda}{2} \varphi^* p, \text{ где } \varphi^* = I + R. \tag{2.4}$$

Диффузное отрижение. Квант, падающий на границу полубесконечной среды, поглощается с экспоненциальной по глубине плотностью вероятности $Ae^{-A\tau}$. (Напомним, что $Ad\tau$ есть вероятность поглощения отдельным слоем $d\tau$). Этим первичным распределением обусловлено выходящее излучение. Поэтому задача о диффузном отражении сводится к задаче об экспоненциальном распределении при $\mu \to A$. $z \to A$;

$$GR + RA = \neg A. \tag{2.5}$$

Используя (1.4) и (2.4), можно (2.5) переписать в виде

$$AR + RA = \varphi A \varphi^*. \tag{2.6}$$

Принцип обратимости для оператора диффузного отражения в вероятностной трактовке можно записать в виде:

$$AR = A^+R^+.$$

Транспонирование означает перемену местами параметров начального и конечного состояний. С учетом этого $RA = A^+R$ и уравление (2.6) для оператора отражения принимает вид

$$(A+A^+)R = \varphi A \varphi^*. \tag{2.7}$$

Из этого соотношения, учитывая, что A есть оператор умножения на функцию, находится оператор отражения R, а подстановка его в (2.4) приводит к функциональному уравнению Амбарцумяна для φ .

Точечный источник. Вероятность выхода кванта, первоначально летящего на глубине τ , определяется величиной $Y(\tau)$. Если речь идет о первоначально поглощенном кванте, то эту величину обозначим через $P(\tau)$. Отметим несколько физически очевидных, но важных соотношений между этими величинами:

$$Y(\tau_1 + \tau_2) = Y(\tau_1) Y(\tau_2), \qquad (2.8)$$

$$P(\tau) = Y(\tau)\varphi, \tag{2.9}$$

Если посредством X доопределить Y и для квантов, первоначально летевших в глубь среды, то

$$P(\tau) = \frac{\lambda}{2} X(\tau) \rho. \tag{2.10}$$

Световой режим в глубоких слоях. Пусть квант поглощен на большой глубине $\tau\gg 1$ в полубесконечной среде. Распределение и выходящего излучения найдем из условия, что добавление бесконечно тонкого слоя уменьшает излучение в некоторое число $(1-k)d\tau$ раз (эргодичность), оставляя относительное распределение неизменным:

$$Gu = ku. (2.11)$$

Если квант первоначально движется внутри среды, то выходящее излучение определяется величиной $Y(\tau)$, причем для больших глубин относительное распределение \overline{Y} удовлетворяет уравнению:

$$G\overline{Y} = k\overline{Y}.$$
 (2.12)

Как следует, например, из (2.8), $Y(\tau) = Ye^{-k\tau}$.

Произвольное распределение источников. Пусть в полубесконечной среде, заполняющей область ($-\infty$, τ) задано распределение кван-

тов с плотностью g(z). Пусть g(z)=0 при z<0 и фиксирована на всей положительной полуоси z. Обозначим выходящее из среды излучение

через $u(\tau)$.

Добавим перед полубесконечной средой бесконечно тонкий слой d- с плотностью $g(\tau+d\tau)$. Вышедшее из суммарной полубесконечной среды распределение будет равно $u(\tau+d\tau)$. С другой стороны, оно складывается из излучения, выходящего в результате воздействия добавленного слоя $d\tau$: $Y(d\tau)u(\tau)$ и дополнительного излучения $\varphi g(\tau+d\tau)d\tau$ самого добавленного слоя $d\tau$. Следовательно,

$$u(\tau + d\tau) = Y(d\tau)u(\tau) + \varphi g(\tau)d\tau,$$

$$\frac{du(\tau)}{d\tau} + Gu(\tau) = \varphi g(\tau), \qquad (2.13)$$

нлн

с начальным условием u(0)=0. Если $g(\tau)=0$, то (2.13) при Y(0)=I переходит в уравнение для $Y(\tau)$.

Случаю неоднородной среды посвящен шестой параграф статьи.

3. Одномерная среда

В этом параграфе мы рассмотрим задачу монохроматического рассеяния в одномерной однородной полубесконечной среде и исследуем вопрос критичности слоя конечной толщины.

3.1. Изотропное рассеяние. В данном случае A=1, а $G\equiv k$ есть число:

$$k=1-\gamma, \tag{3.1.1}$$

где ϕ —вероятность выхода кванта, поглощенного на границе. Задача Милна (2.1) дает тривиальное k=0 при λ =1.

При равномерном распределении источников, согласно (2.2),

$$\dot{u} = s\varphi/k. \tag{3.1.2}$$

При экспоненциальном распределении из (2.3) имеем

$$u = \varepsilon \frac{\varphi}{\mu + k}. \tag{3.1.3}$$

Свечение дается формулой (2.4):

$$\varphi = \frac{\lambda}{2} (1 + R),$$
 (3.1.4)

где R определяется из (2.5) или (2.7):

$$R = \frac{\varphi}{1+k} = \frac{\varphi^*}{\lambda}. \tag{3.1.5}$$

Из (3.1.1) и (3.1.5) имеем

$$\varphi = 1 - k = \frac{\lambda}{1 + k},\tag{3.1.6}$$

откуда находим постоянную затухания k:

$$k = \sqrt{1 - \lambda}. \tag{3.1.7}$$

Согласно (3.1.5),

$$R = \frac{1 - k}{1 + k}. (3.1.8)$$

При распределении g(т) источников пз (2.13) имеем:

$$u(\tau) = \varphi \int_{0}^{\tau} e^{-k(\tau - \tau')} g(\tau') d\tau'.$$
 (3.1.9)

3.2. Критическая толщина слоя. При $\lambda > 1$ задачи для полубесконечной среды теряют физический смысл, однако можно написать формальные решения, представляющие собой аналитическое продолжение соответствующих формул на комплексную плоскость (k). λ имеет смысл среднего числа частиц, генерируемых при поглощении одной частицы.

В (3.1.7) введем

$$k = t\overline{k}$$
, rae $\overline{k} = \sqrt{\lambda - 1}$. (3.2.1)

Тогда вероятность диффузного отражения (3.1.8)

$$R = \frac{1 - k}{1 + k} = \frac{1 - i\bar{k}}{1 + i\bar{k}} = e^{-2l \arctan k}.$$
 (3.2.2)

Рассмотрим, например, задачу о вероятности выхода p_{τ} кванта, поглощенного в середине слоя толщины τ . Согласно уравнениям, связывающим свойства слоев конечной и полубесконечной толщин [5,6]:

$$P\left(\frac{\tau}{2}\right) = p_{\tau} + Z(\tau) p_{\tau},$$

где $P(\tau)$ —вероятность выхода кванта с глубины τ полубесконечного слоя, а $Z(\tau) = Y(\tau)R = Re^{-k\tau}$ (см. [5,6]). Отсюда

$$p_{\tau} = \frac{P(\tau/2)}{1 + Z(\tau)} \,. \tag{3.2.3}$$

Мы видим, что комплексная величина

$$Z(\tau) = e^{-i\bar{k}\tau - 2i\operatorname{arct}g\bar{k}} \tag{3.2.4}$$

при условии тетр, где

$$\tau_{kp} = \frac{1}{\bar{k}} \left(\pi - 2 \operatorname{arctg} \bar{k} \right), \tag{3.2.5}$$

принимает эначение Z—-1,при котором знаменатель (3.2.3) обращается в нуль. Этому соответствует бесконечное (в среднем) число генерируемых в среде частиц, т. е. спонтанный вэрыв.

Приведем без вывода также выражение для критической толщины

слоя с границей, отражающей долю а излучения:

$$\tau_{sp} = \frac{1}{k} \arctan \frac{\sin 2\varphi}{\alpha - \cos 2\varphi}, \qquad (3.2.6)$$

где ç—arctgk,

The first

ШЛП

$$\tau_{kp} = \frac{1}{\sqrt{\lambda - 1}} \operatorname{arctg} \frac{2\sqrt{\lambda - 1}}{(\alpha + 1)\lambda - 2}.$$
 (3.2.7)

3.3. Анизотролное рассеяние. Пусть х есть вероятность того, что при рассеянии квант сохранит прежнее направление движения, а a—полетит в обратном, причем $x + a = \lambda$.

Введем вероятности ϕ_+ и ϕ_- выхода из среды кванта, поглощенного на границе, в зависимости от того, двигался он до поглощения в сторону выхода из среды или в обратном направлении.

Так как оператор G по своему смыслу относится к кванту, первоначально движущемуся в направлении выхода из среды, то

$$G \equiv k = 1 - \varphi_+. \tag{3.3.1}$$

В формулу же (2.5) для диффузного отражения входит ф_

$$R = \frac{\varphi_-}{1+k}.\tag{3.3.2}$$

Согласно (2.4)

$$\varphi_{+} = x + aR, \quad \varphi_{-} = a + xR.$$
 (3.3.3)

Из последних трех соотношений легко получаем

$$R = \frac{a}{1 - x + k} \tag{3.3.4}$$

н $(1-x)^2-k^2=a^2$, откуда

$$k = \sqrt{(1-x)^2 - a^2} = \sqrt{1-\lambda} \sqrt{1+\lambda - 2x}.$$
 (3.3.5)

Во всех задачах о первичных источниках нужно учесть направление полета кванта перед поглощением.

Критическая толщина слоя для 1>1 дается величиной

$$\tau_{kp} = \frac{1}{\overline{k}} \left(\pi - \operatorname{arctg} \frac{\overline{k}}{1 - x} \right), \quad x < \frac{\lambda + 1}{2}, \quad (3.3.6)$$

где $k = t\overline{k}$. Из (3.3.6) видно, что, как и следовало ожидать, с ростом a. т. е. с увеличением вытянутости «индикатрисы» рассеяния назад, увели-

чивается среднее число рассеяний (блужданий «взад-вперед»), а следовательно, уменьшается критическая толщина слоя.

Если
$$x \geqslant \frac{\lambda+1}{2}$$
 , то $\tau_{kp} = \infty$.

4. Трехмерная среда

Мы рассмотрим однородную трехмерную среду с изотропным и анизотропным монохроматическим рассеянием. В обоих случаях $A=1/\zeta$, где ζ —косинус угла между направлением движения кванта и внешней нормалью к границе среды.

4.1. Изотропное рассеяние. В этом случае ядро оператора G,

очевидно, имеет вид

$$G(\eta, \zeta) = \frac{\delta(\eta - \zeta)}{\zeta} - \frac{\lambda}{2} \frac{\varphi(\eta)}{\zeta^2}. \tag{4.1.1}$$

Мы обозначили вероятность выхода кванта, поглощенного на границе, через $\frac{\lambda}{2}$ $\phi(\eta)$, где ϕ —функция Амбарцумяна.

Действие оператора G, например, на функцию $\eta \varphi(\eta)$ дает

$$G(\eta\varphi) = \int_{0}^{1} G(\eta,\zeta) \zeta \varphi(\zeta) d\zeta = \varphi(\eta) \left(1 - \frac{\lambda}{2} \int_{0}^{1} \varphi(\zeta) d\zeta\right) = \sqrt{1 - \lambda} \varphi(\eta). \tag{4.1.2}$$

Здесь использовано следующее ниже выражение (4.1.11). В частности, при $\lambda = 1$:

$$G(\eta \varphi) = 0. \tag{4.1.3}$$

В задаче Милна распределение выходящего излучения определяется уравнением (2.1): Gu=0. Сравнивая с (4.1.3), находим

$$u(\eta) = C\eta \varphi(\eta). \tag{4.1.4}$$

Сравнивая с (4.1.2) уравнение (2.2) для задачи о равномерно распределенных источниках, находим:

$$u(\eta) = \varepsilon \frac{\eta \varphi(\eta)}{\sqrt{1 - \lambda}}.$$
 (4.1.5)

При экспоненциальном распределении из (2.3) находим

$$u(\eta) = \frac{\eta \varphi(\eta)}{1 + \mu \eta} \left(\varepsilon + \frac{\lambda}{2} u_{-1} \right), \tag{4.1.6}$$

где $u_{-1} = \int_0^1 u(\zeta) d\zeta/\zeta$ определяется из самого выражения (4.1.6). Если использовать (4.1.10), то найдем, что

$$u(\eta) = \exp\left(\frac{1}{\mu}\right) \frac{\eta \varphi(\eta)}{1 + \mu \eta}. \tag{4.1.7}$$

Вероятность диффузного отражения определяется из (2.7):

$$R(\eta,\zeta) = \frac{\lambda}{2} \eta \frac{\varphi(\eta)\varphi(\zeta)}{\eta + \zeta}.$$
 (4.1.8)

Подстановкой (4.1.8) в (2.4), т. е., в

$$\varphi(\eta) = 1 + \int_{0}^{1} R(\eta, \zeta) d\zeta,$$
 (4.1.9)

получается функциональное уравнение Амбарцумяна

$$\varphi(\eta) = 1 + \frac{\lambda}{2} \eta \varphi(\eta) \int_0^1 \frac{\varphi(\eta) d\eta}{\eta + \frac{1}{2}}.$$
 (4.1.10)

Отсюда следует, что (см.[1]),

$$\frac{\lambda}{2} \, \varphi_0 = 1 - \sqrt{1 - \lambda}. \tag{4.1.11}$$

. 4.2. Световой режим в глубоких слоях. В задаче о световом режиме на больших глубинах из (2.11) имеем

$$u(\eta) = \frac{\lambda}{2} u_{-1} \frac{\eta \varphi(\eta)}{1 - k\eta}.$$
 (4.2.1)

Деля на η и интегрируя, находим условие для определения постоянной k:

$$\frac{\lambda}{2} \int_{b}^{1} \frac{\varphi(\mu)}{1 - k\mu} d\mu = 1. \tag{4.2.2}$$

Выражение для $Y(\tau,\eta,\zeta)$ получено в [6,7]. Здесь же мы ограничимся исследованием асимптотического поведения $Y(\tau,\eta,\zeta)$ при больших τ . Из (2.12) следует, что

$$\overline{Y}(\eta,\zeta) = C(\zeta) \frac{\eta \varphi(\eta)}{1 - k\eta}.$$
(4.2.3)

Используя свойство симметрин (см. [7])

$$\zeta\varphi(\zeta)Y(\tau,\eta,\zeta) = \eta\varphi(\eta)Y(\tau,\zeta,\eta), \tag{4.2.4}$$

находим

$$Y(\tau,\eta,\zeta) \approx \frac{\lambda}{2} C e^{-k\tau} \frac{\eta \varphi(\eta)}{(1-k\eta)(1-k\zeta)} = \frac{P(\tau,\eta)}{1-k\zeta}, \tag{4.2.5}$$

так как

$$P(\tau,\eta) = Y(\tau,\eta,0). \tag{4.2.6}$$

Постоянная С находится из соотношения (2.8) при 5,5 >> 1

$$\frac{\lambda}{2} C_{\delta}^{1} \frac{\mu \varphi(\mu)}{(1 - k\mu)^{2}} d\mu = 1, \tag{4.2.7}$$

Очевидно, что постоянная u_{-1} в (4.2.1) равна C.

Используя соотношение (2.9) при т≫1, снова приходим к условию (4.2.2), а используя соотношение (2.10)

$$P(\tau,\eta) = \frac{\lambda}{2} \int_{-1}^{1} Y(\tau,\eta,\zeta) d\zeta \tag{4.2.8}$$

при $\tau\gg 1$, получаем другое, эквивалентное условие

$$\frac{\lambda}{2k} \ln \frac{1-k}{1+k} = 1. \tag{4.2.9}$$

4.3. Анизотропное рассеяние. Введем вероятность $\frac{\lambda}{2}$ $K(\eta, \cdot)$ выхода в направлении η кванта с поверхности при условии, что он был поглощен в направлении ξ .

Нетрудно видеть, что

$$G(\eta,\zeta) = \frac{\delta(\eta-\zeta)}{\eta} - \frac{\lambda}{2} \frac{K(\eta,\zeta)}{\zeta}.$$
 (4.3.1)

Для очень больших глубин (2.11):

$$u(\eta) (1 - k\eta) = \frac{\lambda}{2} \eta \int_{0}^{1} K(\eta, \zeta) u(\zeta) d\zeta, \qquad (4.3.2)$$

причем k находится из условия разрешимости этого уравнения. Рассмотрим задачу диффузного отражения (2.5):

$$R(\eta,\zeta) = \frac{\lambda}{2} \frac{\eta}{\eta + \zeta} \left\{ K(\eta,-\zeta) + \int_0^1 K(\eta,\mu) \ R(\zeta,\mu) d\mu \right\}. \tag{4.3.3}$$

Связь между K и индикатрисой p получается из (2.4)

$$K$$
 и индикатрисой p получается из (2.4)
$$K(\eta,\zeta) = p(\eta,\zeta) + \int_{0}^{1} R(\eta,\eta') \ p(\eta',\zeta) d\eta'. \tag{4.3.4}$$

Заметим, что в последних формулах свойство симметрин ζR (η , ζ) не использовано.

Как в свое время показал В. А. Амбарцумян [1], в случае двучленной индикатрисы рассеяния, когда

$$K(\eta,\zeta) = \varphi_0(\eta) + x_1 \varphi_1(\eta)\zeta, \tag{4.3.5}$$

при чистом рассеянии, $\lambda = 1$, величина ϕ_1 тождественно равна нулю, а $K(\eta,\zeta)$ совпадает с $\phi(\eta)$ для сферической индикатрисы. Далее следовало, что функция отражения от полубесконечной среды в этом случае такая же, как при сферической индикатрисе.

Из (4.3.1) мы видим, что в рассматриваемом случае оператор инвариантности совпадает с таким же для сферической индикатрисы. Поскольку решения всех задач для полубесконечной среды однозначно определяются оператором С, то мы заключаем, что вообще любая

задача для полубесконечной среды в случае чистого рассеяния с двучленной индикатрисой имест то же решение, что и со сферической индикатрисой.

Несколько подробнее этот случай будет рассмотрен в готовящейся к печати работе автора по анизотропному рассеянию в слое конечной оптической толщины.

5. Некогерентное рассеяние

Рассматривается изотропное некогерентное рассеяние с функцией перераспределения по частотам g(x,x'). Коэффициент поглощения A = a(x'). Далее $a(x) = \int g(x,x')a(x')dx'$, $\int a(x)dx = 1$.

5.1. Одномерная среда. Пусть $\frac{\lambda}{2} \varphi(x,x')$ вероятность выхода кван-

та, поглощенного на границе с частотой x', на полубесконечной среды с частотой x. Тогда ядро интегрального оператора G есть

$$G(x, x') = \alpha(x') \delta(x - x') - \frac{\lambda}{2} \alpha(x') \varphi(x, x').$$
 (5.1.1)

При экспоненциальном распределении источников частоты x' с плотностью $\varepsilon e^{-\mu \tau}$ из (2.3) для распределения выходящего излучения u(x, x') имеем:

$$\left[\mu + \alpha(x)\right] u(x, x') = \frac{\lambda}{2} \varepsilon \varphi(x, x') + \frac{\lambda}{2} \int \varphi(x, x'') \ \alpha(x'') \ u(x'', x') dx''. \tag{5.1.2}$$

В задаче о диффузном отражении $\epsilon \to \alpha(x')$, $\mu \to \alpha(x')$ из (2.7):

$$\left[\alpha(x) + \alpha(x')\right] R(x, x') = \frac{\lambda}{2} \alpha(x') \varphi(x, x') + \frac{\lambda}{2} \int \varphi(x, x'') \alpha(x'') R(x'', x') dx''.$$
(5.1.3)

Причем для $\varphi(x, x')$ можно, согласно (2.4), написать

$$\varphi(x, x') = g(x, x') + \int R(x, x'') \ g(x'', x') dx''. \tag{5.1.4}$$

В случае полного перераспределения по частотам

$$\varphi(x, x') = \varphi(x), \quad g(x, x') = \alpha(x),$$

и все уравнения существенно упрощаются. Например,

$$R(x, x') = \frac{\lambda}{2} \frac{\varphi(x)\varphi(x')}{\alpha(x) + \alpha(x')}, \qquad (5.1.5)$$

$$\varphi(x) = \alpha(x) + \frac{\lambda}{2} \varphi(x) \int \frac{\varphi(x')\alpha(x')}{\alpha(x) + \alpha(x')} dx'.$$
 (5.1.6)

5.2. Трехмерная среда. В задаче о некогерентном изотропном по углам рассеянии в трехмерной среде $A = \frac{\alpha(x')}{\epsilon}$. Введем вероят-

ность $\frac{\lambda}{2}$ $\varphi(\eta; x, x')$ того, что квант частоты x', поглощенный на границе полубесконечной среды, выйдет из нее с частотой x в направлении η . Очевидно.

$$G(\eta_{i}(x,x,x')) = \delta(\eta - \zeta) \ \delta(x - x') \frac{\alpha(x')}{\zeta} - \frac{\lambda}{2} \varphi(\eta_{i},x,x') \frac{\alpha(x')}{\zeta}. \quad (5.2.1)$$

Уравнение для э-функции (2.4) имеет вид

$$\varphi(\eta, x, x') = \int \varphi^*(\eta, x, x'') \ g(x'', x') dx'', \tag{5.2.2}$$

гле

$$\varphi^*(\eta, x', x'') = \delta(x'-x'') + \int R(\eta, \mu, x', x'') d\mu,$$

а для вероятности диффузного отражения (2.7):

$$\left[\frac{\alpha(x)}{\eta} + \frac{\alpha(x')}{\zeta}\right] R(\eta, \zeta; x, x') = \frac{\lambda}{2\zeta} \int_{\gamma} \varphi(\eta; x, x'') \alpha(x'') \varphi^*(\zeta; x', x'') dx''.$$
(5.2.3)

В случае полного перераспределения по частотам задача описывается отношением $z=\mu/\alpha(x)$. Вводя вместо $\varphi(\eta;x)$ величину H(z), нетрудно видеть, что

$$G(z, z') = \frac{\delta(z-z')}{z'} - \frac{\lambda}{2} H(z) \frac{a(z')}{z'},$$
 (5.2.4)

где

$$a(z) = \begin{cases} \int_{0}^{2} \alpha^{2}(x) dx, & |z| \leq 1, \\ 2\int_{0}^{2} \alpha^{2}(x) dx, & |z| > 1, \end{cases}$$
 (5.2.5)

 $a \qquad \qquad \alpha \left(x(z) \right) = \frac{1}{|z|}.$

Множитель a(z) появляется при переходе от двойного интегрирования по d', dx' к одинарному по dz.

Действие оператора G, например, на функцию zH(z) даст

$$G(zH) = H(z) - \frac{\lambda}{2} H(z) \int_{0}^{\pi} H(z') \ a(z') dz' = \sqrt{1-\lambda} \ H(z).$$
 (5.2.6)

В случае полного перераспределения по частотам имеется известная аналогия с задачей монохроматического рассеяния по углам [4].

6. Неоднородная среда

Пусть на полуоси $\tau < 0$ расположена полубесконечная среда с $\lambda = \lambda_0 = \text{const.}$ Добавим к ней на положительной полуоси $\tau > 0$ слой толщины τ с переменной $\lambda(\tau)$. Суммарная полубесконечная среда в пределе $\tau \to \infty$ фактически представляет собой полубесконечную среду с заданным распределением в ней пеоднородности $\lambda(\tau)$. При со-

тавлении уравнений инвариантности мы будем менять край среды т, итрезая или добавляя слой.

Вероятность $\varphi(\tau)$ выхода из среды кванта, поглощенного на границе неоднородной полубесконечной среды, зависит от поведения (τ) во всей среде и посредством λ зависит от положения границы τ .

Оператор G определяется снова из (1.4) и является функцией τ .

Рассмотрим задачу об экспоненциальном распределении источнихов. Выходящее излучение обозначим через $u(\tau)$. Добавим бесконечно тонкий слой $d\tau$. Тогда из новой среды выйдет $u(\tau + d\tau)$.

Поместим в добавленном слое источники в количестве $\varepsilon(1+\mu d\tau)$. Из новой полубесконечной среды должно выйти излучение $(1+\mu d\tau) \times u(\tau+d\tau)$. С другой стороны это излучение складывается из $Y(d\tau)u(\tau)$ —гого, что прошло под действием добавленного слоя $d\tau$ и излучения $\varepsilon(1+\mu d\tau)\varphi(\tau)d\tau$ самого слоя $d\tau$. Поэтому

$$(1 + \mu d\tau) \ u(\tau + d\tau) = Y(d\tau)u(\tau) + (\epsilon \varphi(\tau)d\tau.$$

Отсюда получаем искомое уравнение

$$\frac{du(\tau)}{d\tau} + Gu(\tau) + \mu u(\tau) = \varepsilon \varphi(\tau). \tag{6.0}$$

Начальным условием служит значение u для полубесконечной среды с $\lambda = \lambda_0$. В частности, можно принять $\lambda_0 = 0$ и u(0) = 0.

6.1. Одномерная среда. В этом случае $G = k(\tau)$, причем

$$k(\tau) = 1 - \varphi(\tau). \tag{6.1.1}$$

Уравнение (6.0) имеет вид

$$\frac{du(\tau)}{d\tau} + \left[1 + \mu - \varphi(\tau)\right] u(\tau) = \varepsilon \varphi(\tau). \tag{6.1.2}$$

Опо легко разрешимо в квадратурах, если известно р:

$$u(\tau) \ q(\tau) = u(0) + \varepsilon \int_{0}^{\tau} \varphi(t)q(t)dt, \qquad (6.1.3)$$

где

$$q(t) = \exp\left\{t\mu + \int_{0}^{t} k(t') dt'\right\}.$$
 (6.1.4)

При р→ 0 получаем решение задачи о равномерном распределении источников, а еще при с → 0—решение задачи Милна.

Для задачи о диффузном отражении в (6.1.2) полагаем $\epsilon = \mu = 1$, u = R и используем выражение (2.4):

$$\frac{dR(\tau)}{d\tau} = \frac{\lambda(\tau)}{2} \left(1 + R(\tau) \right)^{3} - 2R(\tau). \tag{6.1.5}$$

Такому же уравнению Риккати удовлетворяет функция φ(τ):

$$\frac{d\varphi(\tau)}{d\tau} = \varphi^{3}(\tau) - 2\varphi(\tau) + \lambda(\tau). \tag{6.1.6}$$

Пусть в слое конечной толщины $\lambda(\tau)$ монотонно растет, скажем, от 0 до 1. От этого слоя спереди можно срезать такую часть, чтобы отражение от оставшегося слоя было максимально — R_{max} . Обозначим через λ_m значение λ в этой точке среза. Интересно, что величина R_{max} совпадает с отражением от такой полубесконечной среды, в которой всюду $\lambda=\lambda_m$. Это и аналогичное утверждение для величины рочевидным образом следуют из приведенных уравнений.

6.2. Трехмерная среда. Оператор С зависит от т и имеет вид

$$G(\tau, \eta, \zeta) = \frac{\delta(\eta - \zeta)}{\zeta} - \frac{\lambda}{2} \frac{\varphi(\tau, \eta)}{\zeta}, \qquad (6.2.1)$$

где $\varphi(\tau, \eta)$ —вероятность выхода кванта с поверхности полубесконсчной среды, зависящая от распределения $\lambda(\tau)$.

В задаче о диффузном отражении полагаем в (6.0) $\epsilon = \mu = 1/\zeta$

$$\frac{dR(\tau, \eta, \zeta)}{d\tau} + \left(\frac{1}{\eta} + \frac{1}{\zeta}\right)R(\tau, \eta, \zeta) = \frac{\lambda(\tau)}{2}\varphi(\tau, \eta)\left\{\frac{1}{\zeta} + R_{-1}(\tau, \zeta)\right\}, (6.2.2)$$

где $R_{-1}(\tau, \zeta) = \int_0^1 R(\tau, \eta, \zeta) \frac{d\eta}{\eta}$. Начальным условнем служит решение этой задачи для полубесконечной среды с $\lambda = \lambda_0$. В частности, если $\lambda_0 = 0$, $R(0, \eta, \zeta) = 0$.

Ввиду симметрии величины $(R(\eta, \zeta), \text{ согласно } (2.4), \text{ имеем}$

$$1 + \zeta \int_0^1 R(\tau, \eta, \zeta) \frac{d\eta}{\eta} = 1 + \int_0^1 R(\tau, \zeta, \eta) d\eta = \varphi(\tau, \zeta). \tag{6.2.3}$$

Поэтому

$$\frac{dR(\tau, \eta, \zeta)}{d\tau} + \left(\frac{1}{\eta} + \frac{1}{\zeta}\right)R(\tau, \eta, \zeta) = \frac{\lambda(\tau)}{2\zeta} \varphi(\tau, \eta) \varphi(\tau, \zeta), \qquad (6.2.4)$$

или, интегрируя, находим

$$R(\tau, \eta, \zeta) = \frac{1}{2\zeta} \int_{0}^{\tau} \lambda(\tau') \varphi(\tau', \eta) \varphi(\tau', \zeta) e^{-(\tau - \tau')} \left(\frac{1}{\eta} + \frac{1}{\zeta}\right) d\tau'. \quad (6.2.5)$$

Подставляя (6.2.5) в (6.2.3), получаем уравнение для ф:

$$\varphi(\tau, \eta) = 1 + \frac{1}{2} \int_{0}^{\tau} h(\tau') \varphi(\tau', \eta) e^{-\frac{\tau - \tau'}{\eta}} \int_{0}^{1} \varphi(\tau', \tau) e^{-\frac{\tau - \tau'}{\zeta}} \frac{d\zeta}{\zeta} d\tau'. \quad (6.2.6)$$

При $\lambda_0 = 0$ полученные уравнения переходят в соответствующие уравнения для неоднородного слоя конечной оптической толщины τ .

7. Оператор Х

Обратимся к задаче о нахождении поверхностной функции Грина $X(\tau)$ в полубесконечной среде. Что касается этой задачи для слоя конечной толщины, то решать ее практически мы предпочитаем путем [5], использующим ее связь с задачей для полубесконечного слоя [8,9]. Тем

не менее, с целью иллюстрации оператора инвариантности в п. 7.3 мы найдем поверхностную функцию Грина для слоя конечной толщины. В п. 7.4 мы кратко остановимся на случае задачи о шаровом слое, а в п. 7.5—на нелинейной задаче.

7.1. Полубесконечная среда. Пусть $X(\tau)$ —вероятность выхода из полубесконечной среды кванта, летевшего на глубине τ . В зависимости от того, двигался ли квант первоначально в сторону выхода из среды или обратно—в глубь среды, введем отдельные обозначения $Y(\tau)$ и $Z(\tau)$. Очевидно, что

$$Z(\tau) = Y(\tau)R, \tag{7.1.1}$$

а также что Z получается из Y формальной заменой направления движения кванта на обратное.

Согласно принципу обратимости оптических явлений; $X(\tau)$ определяет внутренний световой режим в полубесконечной среде при ее параллельном освещении.

Величина У удовлетворяет дифференциальным уравнениям

$$-\frac{dY(\tau)}{d\tau} = GY(\tau) = Y(\tau)G, \ Y(0) = I, \tag{7.1.2}$$

следующим из (2.8) при $\tau_1 \to 0$ и $\tau_2 \to 0$. Очевидно, что величина $X(\tau)$ удовлетворяет уравнению

$$-\frac{dX(\tau)}{d\tau} = GX(\tau) = P(\tau) \tag{7.1.3}$$

с условнем X(0) = I, если квант первоначально летит к выходу, и X(0) = R, если квант первоначально летит в глубь среды. Уравнение (7.1.3) вместе с (2.10) фактически представляет собой основное уравнение теории переноса без источников.

В ряде случаев (когда квант забывает свою предысторию до акта

рассеяния) из соотношения коммутативности (7.1.2):

$$GY = YG \tag{7.1.4}$$

пеносредственно следует элементарное выражение для Ү.

Подставляя сюда выражение (1.4) для G, получаем

$$AY - YA = \varphi AY - Y\varphi A. \tag{7.1.5}$$

С учетом (2.9) и вводя обозначение F согласно

$$FA = AY, (7.1.6)$$

находим

$$AY - YA = (\varphi F - P)A. \tag{7.1.7}$$

Рассмотрим следующие частные задачи.

7.2. Частные задачи. Одномерная среда

$$Y(\tau) = e^{-k\tau}, Z(\tau) = Re^{-k\tau},$$
 (7.2.1)

где k определяется из (3.1.7) или (3.3.5).

В *трехмерной задаче* при сферической индикатрисе рассения для диффузной части У из (7.1.4) получаем

$$Y(\tau, \eta, \zeta) = \frac{\lambda}{2} \eta \varphi(\eta) \frac{F(\tau, \eta) - F(\tau, \zeta)}{\eta - \zeta} + \delta \qquad (7.2.2)$$

где

$$F(\tau, \eta) = \eta \int_{0}^{1} X(\tau, \mu, \eta) d\mu/\mu.$$
 (7.2.3)

Заметим, что $Z(\tau, \eta, \zeta) = Y(\tau, \eta, -\zeta), P(\tau, \eta) = X(\tau, \eta, 0).$

При полном перераспределении по частотам в одномерной среде

$$Y(\tau, x, x') = \frac{\lambda}{2} \alpha(x') \ \varphi(x) \frac{F(\tau, x) - F(\tau, x')}{\alpha(x') - \alpha(x)}, \tag{7.2.4}$$

где F(z, x) дается выражением типа (7.2.3).

В трехмерной среде при некогерентном рассеянии

$$Y(\tau, \eta, \zeta; x, x') \left[\frac{\alpha(x')}{\tau} - \frac{\alpha(x)}{\eta} \right] = \frac{\alpha(x')}{\tau} P(\tau, \eta; x, x') - \frac{\lambda}{2\tau} \int \alpha(x'') \varphi(\eta, x, x'') F(\tau, \zeta; x'', x') dx''$$

$$(7.2.5)$$

где*

(7.2.6)

$$F(\tau, \zeta; x'', x') = \zeta \int Y(\tau, \eta, \zeta; x'', x') d\eta/\eta.$$

При полном перераспределении по частотам и сферической индикатрисе рассеяния в трехмерной среде

$$Y(\tau, z, z') = \frac{\lambda}{2} z H(z) \frac{F(\tau, z) - F(\tau, z')}{z - z'} a(z'). \tag{7.2.7}$$

В случае неоднородной одномерной среды

$$Y(\tau) = \exp\left\{-\int_{0}^{\tau} k(t)dt\right\} = e^{-\zeta + \tau}, \qquad (7.2.8)$$

где < k > - среднее значение k в слое.

7.3. Слой конечной толщины. Введем оператор инвариантности

$$G(\tau_0) = [I - \varphi(\tau_0)]A \tag{7.3.1}$$

для слоя конечной толщины τ_0 . Пусть с левой его границы выходит квант. Добавим к слою слева другой слой толщиной τ и обозначим через $x(\tau, \tau_0)$ вероятность выхода этого кванта через границу суммарного слоя $(\tau_0 + \tau)$.

Аналогично (2.8), очевидно, имеет место полугрупповое свойство

^{*} При замене (на— , н т=0 из (7.2.5) следует (5.2.3).

$$x(t+\tau, \tau_0) = y(t, \tau_0 + \tau) x(\tau, \tau_0). \tag{7.3.2}$$

Из симметрии левой части относительно t и т следует

$$y(t, \tau_0 + \tau) \ x(\tau, \tau_0) = y(\tau, \tau_0 + t)x(t, \tau_0). \tag{7.3.3}$$

Вводя обозначение

$$G(\tau_0) = -\frac{\partial y(0, \tau_0)}{\partial \tau} \tag{7.3.4}$$

устремив $t \rightarrow 0$, в частности, для у(τ , τ_0) получаем уравнение

$$-\frac{\partial y(\tau, \tau_0)}{\partial \tau_0} = G(\tau_0 + \tau) \ y(\tau, \tau_0) - y(\tau, \tau_0) \ G(\tau_0), \tag{7.3.5}$$

бобщающее соотношение коммутативности (7.1.4).

С другой стороны, из физических соображений, очевидно,

$$\frac{\partial y(\tau, \tau_0)}{\partial \tau_0} = \psi(\tau_0 + \tau) A z(\tau, \tau_0). \tag{7.3.6}$$

 \hat{V} 13 сравнения (7.3.5) и (7.3.6) с учетом (7.3.1) и соотношения $\hat{V}\varphi = p$ окончательно находим

$$y(\tau, \tau_0)A - Ay(\tau, \tau_0) = [p(\tau, \tau_0) - \varphi(\tau_0 + \tau)F + \psi(\tau_0 + \tau)F]A. \quad (7.3.7)$$

Здесь введены величины F и \overline{F} , согласно обозначениям

$$FA = Ay, \quad FA = Az. \tag{7.3.8}$$

Заменив в (7.3.7) направление ζ первомачального движения кванта на обратнос, найдем выражение для z, переходящее в частности, при $\tau = 0$, в выражение для оператора отражения от конечного слоя:

$$Ar + rA = \varphi A \varphi^* - \psi A \psi^*. \tag{7.3.9}$$

Для изотронного монохроматического рассеяния из (7.3.7) имеем

$$\frac{\eta - \tau}{\eta} y(\tau, \tau_0, \eta, \tau) = p(\tau, \tau_0, \eta) - \frac{\lambda}{2} \varphi(\tau_0 + \tau, \eta) F(\tau, \tau_0, \tau) + \frac{\lambda}{2} \psi(\tau_0 + \tau, \eta) \tilde{F}(\tau, \tau_0, \tau), \qquad (7.3.10)$$

а для некогерентного рассеяния, $A = \frac{\alpha(x')}{\xi}$:

$$\begin{bmatrix}
\frac{\alpha(x')}{\tau} - \frac{\alpha(x)}{\eta}
\end{bmatrix} y(\tau, \tau_0, \eta, \tau, x, x') = \alpha(x')p(\tau, \tau_0, \eta, x, x') - \frac{\lambda}{2} \int \varphi(\tau_0 + \tau, \eta, x, x'') \alpha(x'') F(\tau, \tau_0, \tau, x'', x') dx'' + \frac{\lambda}{2} \int \psi(\tau_0 + \tau, \eta, x, x'') \alpha(x'') \tilde{F}(\tau, \tau_0, \tau, x'', x') dx''.$$
(7.3.11)

При == 0 отсюда, в соответствии с (7.3.9), следует

$$\left(\frac{\alpha(x)}{\tau_{i}} + \frac{\alpha(x')}{\xi}\right) r(\tau_{0}, \tau_{i}, \xi, x, x') = \frac{\lambda}{2\xi} \int \left[\varphi(\tau_{0}, \tau_{i}, x, x'') \alpha(x'') \varphi^{*}(\tau_{0}, \xi, x'', x') - \frac{\lambda}{2\xi} \right] \left[\varphi(\tau_{0}, \tau_{i}, x, x'') \alpha(x'') \varphi^{*}(\tau_{0}, \xi, x'', x') - \frac{\lambda}{2\xi} \right]$$
(7.3.12)

$$= \psi(\tau_0, \tau_1, x, x'') \ \alpha(x'') \ \psi^* \ (\tau_0, \ldots, x'', x') \ dx''$$

Любопытно отметить, что выводу частных результатов, аналогичных (7.3.10) и (7.3.12), недавно посвящены отдельные работы [11, 12].

7.4. Шаровой слой. Как и в случае плоскопараллельных слоев, нетрудно установить линейную связь между решениями соответствующих задач для шаровых слоев конечной и «полубесконечной» толщин. При этом в роли последних выступают шар и бесконечная среда с шаровой полостью.

Пусть раднус полости равен R. Аналогично случаю плоскопараллельного полубесконечного слоя здесь имеет место полугрупповое соотношение, по виду совпадающее с (7.3.3) для слоя толщины $\tau_0 = R$:

$$X(t+\tau, R) = Y(t, R+\tau) X(\tau, R).$$
 (7.4.1)

Поэтому справедливы аналоги (7.3.4—7.3.5): $G(R) = -\frac{\partial Y(0, R)}{\partial \tau}$,

$$-\frac{\partial Y(\tau, R)}{\partial R} = G(R+\tau) Y(\tau, R) - Y(\tau, R) G(R), \qquad (7.4.2)$$

где $G(R) = [I - \varphi(R)]A$. Аналогичные результаты справедливы и для второго случая полубесконечного слоя—шара. Подробное исследование задачи о шаровом слое будет дано в отдельной работе.

7.5. Нелинейная задача. Для нелинейных задач X зависит также от интенсивности излучения и. Вместо полугруппового свойства (2.8) теперь будем, очевидно, иметь

$$X(\tau_1 + \tau_2, u) = Y[\tau_1, X(\tau_2, u)].$$
 (7.5.1)

Рассмотрим величину $Y(d\tau, u)$. Учитывая, что Y(0, u) = u, имеем

$$Y(d\tau, u) = u - G(u)d\tau, \tag{7.5.2}$$

где обозначено

$$G(u) = -\frac{\partial Y(0, u)}{\partial \tau}. \tag{7.5.3}$$

Устремляя в (7.5.1) поочередно $\tau_1 \to 0$ и $\tau_2 \to 0$, находим

$$\frac{\partial Y(\tau, u)}{\partial \tau} = -G[Y(\tau, u)], \qquad (7.5.4)$$

$$\frac{\partial Y(\tau, u)}{\partial \tau} = -\frac{\partial Y(\tau, u)}{\partial u} G(u). \tag{7.5.5}$$

Из сравнения последних двух уравнений получаем

$$G\left[Y(\tau, u)\right] = \frac{\partial Y(\tau, u)}{\partial u}G(u). \tag{7.5.6}$$

Введем первообразную

$$V(u) = \int \frac{du}{G(u)}. (7.5.7)$$

огда из (7.5.4) находим

$$\frac{dY(\tau, u)}{G(Y)} = -d\tau, \tag{7.5.8}$$

ли, интегрируя по т от 0 до т,

$$V[Y(\tau, u)] = V(u) - \tau.$$
 (7.5.9)

Вводя обратную функцию V^{-1} , окончательно имеем

$$Y(\tau, u) = V^{-1} \{ V(u) - \tau \}. \tag{7.5.10}$$

8ная оператор G отсюда можно получить оператор Y, а также $Z(\tau,u)=Y[\tau,R(u)]$. Для линейных задач $X(\tau,u)=X(\tau)u$.

լլ և լրևկցևկևնցևն

ւկի<mark>սևՆվեՐՋ ՄԻՋ</mark>ԱՎԱՅՐԵՐՈՒՄ ՏԵՂԱՓՈԽՄԱՆ ՏԵՍՈՒԹՅԱՆ ԽՆԴԻՐՆԵՐԻ ԼՈՒԾՄԱՆ ՄԱՍԻՆ

Udhnhaid

Հողվածում առաջարկվում է կիսանվերջ միջավայրից դուրս եկող ճառագայթման վերաբերյալ զանազան խնդիրների լուծման նոր մեթոդիկա։ Փաստորեն կառուցված է պարզ մաթեմատիկական ապարատ, որը հիմնվում է ինվարիանտության G օպերատորի հասկացողության վրա, և ըստ էության իրենից ներկայացնում է ոչ այլ ինչ, եթե ոչ ինվարիանտության ապարատ՝ Համբարձումյանի սովորական իմաստով։ Որպես օրինակներ, դիտարկվում են տեղափոխման տեսության համարյա բոլոր հայտնի պարզագույն խնդիրները կիսատարածության վերաբերյալ։

M. A. MNATSAKANIAN

ON THE SOLUTION OF RADIATION TRANSFER PROBLEM IN SEMIINFINITE MEDIUMS

Summary

Here is presented the new methodic for the solution of the radiative transfer problem in semiinfinite shells. The common mathematical apparatus based on the introducing of the invariancy operator G is constructed in this article. In fact it is the Ambartsumian's invariancy in the usual sence. As illustrations nearly all the known ordinary tasks are considered.

ЛИТЕРАТУРА

- 1. В. А. Амбарцумян, Научные труды, т. 1, Ереван, Изд. АН Арм. ССР, 1960.
- 2. В. В. Соболев, Перенос лучистой энергии в атмосферах звезд и планет, М., ГИТЛ, 1956.
- 3. В. В. Соболев, Рассеяние света в атмосферах планет, М., «Наукс», 1972.
- 4. В. В. Иванов, Перенос излучения и спектры небесных тел, М., «Наука», 1969.
- 5. М. А. Мнацаканян, ДАН СССР, 225, № 5, 1049, 1975.
- 6. М. А. Мнацаканян, Сообщ. Бюраканской обсерватории, 46, 93, 1975.
- 7. Э. Х. Даниелян, М. А. Мнацаканян, Сообщ. Бюраканской обсерватории, 46, 101, 1975.
- 8. М. А. Мнацаканян, Астрофизика, 11, 659, 1975.
- 9. М. А. Мнацаканян, Астрофизика, 12, 451, 1975.
- 10. Н. Б. Енгибарян, М. А. Мнацаканян, ДАН СССР, 217, № 3, 533, 1974.
 - 11. Э. Х. Даниелян, Астрофизика, 12, 579, 1976.
 - 12. О. В. Пикичян, Сообщ. Бюраканской обсерватории, в печати.

Р. Р. АНДРЕАСЯН

ТАБЛИЦЫ НЕКОТОРЫХ ФУНКЦИЙ ТЕОРИИ ПЕРЕНОСА ИЗЛУЧЕНИЯ

В последнее время было показано [1], что все задачи переноса в слое конечной оптической толщины связываются с соответствующими задачами для полубесконечной среды интегральными уравнениями Фредгольма. При монохроматическом рассеянии в однородной среде со сферической индикатрисой [2] ядро этих уравнений $Z(\tau, \eta, \tau)$ элементарно выражается через две функции двух переменных $F(\tau, \eta)$ и $F(\tau, \eta)$. Функция $Z(\tau, \eta, \tau)$ сама описывает режим излучения в полубесконечной среде при освещении параллельными лучами. Кроме того функции $F(\tau, \eta)$ и $F(\tau, \eta)$ играют важную роль при получении некоторых приближенных формул для задач переноса в слое конечной оптической толщины [6, 7].

В связи с этим нам кажется целесообразным подробное табулирование вышеупомянутых функций, для которых в [2] приводятся следующие выражения:

$$F(\tau, \eta) = e^{-\frac{\tau}{\eta}} + \int_0^{\tau} e^{-\frac{\tau - \tau'}{\eta}} \Phi(\tau') d\tau', \tag{1}$$

$$\bar{F}(\tau, \eta) = \int_{\tau}^{\tau} e^{-\frac{\tau'-\tau}{\eta}} \Phi(\tau') d\tau'. \tag{2}$$

Использование формул (1) и (2) для вычислительных целей подразумевает знание резольвентной функции Ф(¬т) на всей полуося (0, ∞) с дальнейшим интегрированием по оптической глубине. Однако если воспользоваться явным выражением для Ф(¬т) [3]

$$\Phi(\tau) = Ce^{-k\tau} + \frac{\lambda}{2} \int_{0}^{1} \frac{e^{-\frac{\tau}{\eta}} d\eta}{R^{2}(\eta) \varphi(\eta) \eta},$$
 (3)

$$C = \left[\frac{\lambda}{2} \int_{0}^{1} \frac{\varphi(\eta)\eta d\eta}{(1-k\eta)^{2}}\right]^{-1} \tag{4}$$

Н

$$R^{2}(\eta) = \left(1 + \frac{\lambda}{2} \eta \ln \frac{1 - \eta}{1 + \eta}\right)^{2} + \left(\frac{\pi \eta \lambda}{2}\right)^{2}, \tag{5}$$

то из (1) и (2) легко получить более удобные формулы для величии $F(\tau, \eta)$ и $\tilde{F}(\tau, \eta)$:

$$F(\tau, \eta) = \frac{1 - \eta(k + C)}{1 - k\eta} e^{-\frac{\tau}{\eta}} + \frac{C\eta}{1 - k\eta} e^{-k\tau} + \frac{\lambda}{2} \eta \int_{0}^{1} \frac{e^{-\frac{\tau}{\mu}} - e^{-\frac{\tau}{\eta}}}{R^{2}(\mu) \varphi(\mu)} \cdot \frac{d\mu}{\mu - \eta}, (6)$$

$$\tilde{F}(\tau, \eta) = \frac{C\eta}{1 + k\eta} e^{-k\tau} + \frac{\lambda}{2} \eta \int_{-R^2(\mu)}^{\tau} \frac{e^{-\frac{\tau}{\mu}}}{R^2(\mu) \varphi(\mu)} \cdot \frac{d\mu}{\mu + \eta}. \tag{7}$$

В работе приводятся таблицы $F(\tau, \eta)$ и $F(\tau, \eta)$. При вычислениях использованы таблицы $X(-\eta)$ в двухстах точках [4], с помощью которых была вычислена функция Амбарцумяна $p(\eta) = \frac{k}{\sqrt{1-\lambda}(1+k\eta)X(-\eta)}$.

Значения k взяты из [5]. Интегральные части в выражениях (6) и (7) вычислялись по формуле Симпсона. Интегрирование проводилось в 100 и затем 200 точках. Имея в виду, что при интегрировании по формуле Симпсона ошибка пропорциональна $\sim (\Delta \mu)^5$, где $\Delta \mu$ шаг интегрирования, была оценена точность вычислений. Данные в таблицах значения приводятся с точностью единицы последнего знака.

Чтобы избежать бесконечностей, которые могут получиться при вычислениях по формулам (5), (6) и (7), значения μ сдвинуты от их точных значений на 10^{-8} .

Таблицы функций $F(\tau, \eta)$ и $\bar{F}(\tau, \eta)$ приводятся для значений: $\lambda = 0.7; 0.8; 0.9; 0.95; 0.99; 1, <math>\tau = 0.01; 0.05; 0.1; 0.2(0.2)1(0.5)3; 4; 5,$

 $\eta = 0.05(0.05)1; \frac{1}{k}$

В таблицах даются также значения k и С (4). Вычисления проводились на ЭВМ «Наири-2» ЕРГУ.

	_	
$\lambda = 1$	F(z,	τ_i

				17			
1:	0.01	0.05	0.1	0.2	0.4	0.6	0.8
0.05	0.1265	0.1131	0.1058	0.0987	0.0929	0.0904	0.0890
0.10	2352	2167	2057	1944	1845	1800	1776
0.15	3375	3159	3025	2881	2752	2692	2659
0 20	4363	4125	3973	3806	3652	3580	3540
0.25	5327	5073	4907	4722	4548	4465	- 4418
0.30	6275	6008 6934	5831 6746	5630	5439	5348	5296
0.35	7210	7851	7656	6533	6328	6228	6172
0.40	8136	8762	8560	7432 8327	7214	7108	7047
0.45	9055	9668	9460	9219	8098	7986	7921
0.50	9967 1.0874	1.0570	1.0357	1.0108	8980 9861	8862 9738	8795 9667
0.55	1.0674	1468	1251	0995	1.0741	1.0613	1.0540
0.65	2677	2363	2142	1881	1619	1.0013	1411
0.70	3573	3256	3031	2764	2496	2361	2283
0.75	4467	4146	3918	3647	3373	3234	3153
.0.80	5359	5034	4803	4528	4248	4107	4024
0.85	6248	5921	5687	5408	5123	4979	4894
. 0.90	7136	6806	6569	6287	5998	5850	5764
0.95	8022	7690	7451	7165	6871	6722	6634
1.00	8907	8572	8331	8042	7745	7593	7503

1	1.0	1.5	2.0	2.5	3.0	4.0	5.0
0.05	0.0882	0.0873	0.0869	0.0867	0.0867	0.0866	0.0866
0.10	1762	1744	1738	1735	1733	1732	1732
0.15	2639	2615	2606	j 2602	2600	2599	2598
0.20	3515	3486	3474	3469	3466	3465	3464
0.25	4390	4355	4342	4336	4333	4331	4330
0.30	5264	5225	5209	5203	5199	5197	5197
0.35	6137	6094	6077	6069	6066	6063	6063
0.40	7009	6963	6944	6936	6932	6929	6929
0.45	7881	7831	7811	7803	7799	7796	7795
0.50	8752	8700	8679	8669	8665	8662	8661
0.55	9623	9568	9546	9536	9531	9528	9527
0.60	1.0494	1.0436	1.0413	1.0402	1.0397	1.0394	1.0393
0.65	1364	1304	1280	1269	1264	1260	1259
0.70	2233	2172	2146	2135	2130	2126	2125
0.75	3103	3039	3013	3002	2996	2992	2991
0.80	3972	3907	3880	3868	3862	3858	3857
0.85	4841	4774	4747	4734	4729	4724	4723
0.90	5710	5641	5613	5601	5595	5590	5589
0.95	6579	6509	6480	6467	6461	6457	6455
1.00	7447	7376	7346	7333	7327	7323	7321

λ=1 F(τ, η)

			v-1 1 (-)	· .			
1.	0.01	0.05	0.1	0.2	0.4	0.6	0.8
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.65 0.70 0.75 0.80 0.85 0.90	0.8513 9391 9704 9864 9962 1.0027 0074 0110 0138 0160 0178 0193 0206 0217 0227 0227 0227 0227 0242 0249 0255 0260	0.4560 7180 8379 9054 9487 9787 1.0008 0177 0310 0418 0507 0582 0646 0701 0749 0791 0829 0862 0892	0.2408 5266 6991 8029 8820 9352 9761 1.0077 0324 0531 0704 0851 0977 1085 1181 1265 1340 1406 1466 1520	0.1224 3261 5117 6551 7643 8491 9159 9703 1.0157 0528 0847 1122 1362 1571 1755 1919 2066 2198 2318 2427	0.0955 2097 3470 4844 6086 7172 8112 8924 9628 1.0242 0780 1257 1257 12679 2057 2396 2691 2981 3380	0.0914 1869 2943 4104 5265 6368 7385 8308 9144 9899 1.0577 1195 1263 2726 3151 3541 3899 4230 4537	0.0896 1804 2759 3781 4840 5892 6909 7570 8767 9598 1.0369 1080 1737 2343 2904 3424 3907 4355 4773 5162

1/2	1.0	1.5	2.0	2.5	3.0	4.0	5.0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95	0.0886 1777 2686 3634 4617 5615 6604 7566 8486 9360 1.0184 0958 1684 2364 3000 3596 4155 4678 5170 5632	0.0874 1749 2628 3513 4412 5325 6248 7170 8086 8985 9862 1.0712 1532 2320 3075 3798 4490 5150 5781 6383	0.0869 1740 2611 3483 4360 5242 6130 7023 7917 8808 9691 1.0562 1417 2253 3068 3860 4629 5373 6093 6789	0.0868 1736 2604 3473 4343 5215 6089 6967 7847 8728 9607 1.0480 1346 2202 3046 3874 4686 5481 6258 7015	0.0867 1734 2601 3468 4336 5204 6074 6945 7818 8692 9565 1.0438 1307 2170 3026 3874 4710 5535 6346 7143	0.0866 1733 2599 3465 4332 5198 6065 6932 7799 8667 9536 1.0404 1272 2139 3004 3866 4723 5575 6421 7260	0.0866 1732 2598 3464 4331 5197 6063 6929 7796 8662 9529 1.0396 1262 2129 2995 3860 4724 5586 6444 7300

		_	
λ==0.	99	F(:	, 7)

1 "	0.01	0.05	0.1	0.2	0.4	0.6	0.8
0.05	0.1159	0.1018	0.0938	0.0852	0.0767	0.0716	0.0679
0.10	2125	1927	1802	1660	1508	1413	1342
0.15	3013	2779	2622	2436	2228	2094	1991
0.20	3852	3591	3409	3187	2929	2760	2627
0.25	4655	4372	4170	3917	3615	3412	- 3251
0.30	5429	5128	4909	4628	4285	4051	3863
0.35	6179	5863	5628	5322	4942	4678	4464
0.40	6908	6578	6329	6001	5586	5293	5054
0.45	7618	7277	7015	6666	6218	5897	5634
0.50	8312	7960	7686	7318	6838	6491	6205
0.55	8990	8628	8344	7957	7447	7074	6765
0.60	9654	9282	8988	8584	8045	7648	7317
0.65	1.0304	9924	9620	9199	8633	8212	7859
0.70	0942	1.0553	1.0240	9804	9210	8767	8393
0.75	1568	1171	0850	1.0398	9779	9312	8918
0.80	2182	1778	1448	0982	1.0338	9849	9435
0.85	2785	2374	2037	1556	0988	1.0378	9944
0.90	3377	2960	2615	2121	1429	0898	1.0445
0.95	3960	3536	3184	2677	1962	1411	0938
1.00	4532	4102	3743	3224	2487	1915	1424

7	1.0	1.5	2.0	2.5	3.0	4.0	5.0
0.05	0.0648	0.0585	0.0534	0.0488	0.0447	0.0376	0.0316
0.10	1282	1160	1058	0968	0886	0745	0627
0.15	1904	1724	1573	1439	1318	1108	0932
0.20	2514	2278	2079	1902	1743	1465	1233
0.25	3113	2823	2577	2358	2161	1816	1528
0.30	3701	3358	3066	2806	2 571	2162	1819
0.35	4279	3884	3547	3247	2975	2501	2105
0.40	4846	4402	402 i	3681	33 73	2836	2386
0.45	5405	4911	4486	4107	3764	3165	2663
0.50	5953	5411	4944	4527	4149	3488	2935
0:55	6493	5901	5395	4940	4527	3807	3203
0.60	7024	6389	5839	5347	4900	4121	3467
0.65	7546	6866	6276	5747	5267	4429	3727
0.70	8060	7336	6706	6141	5629	4733	3982
0.75	8566	7798	7129	6529	5984	5033	4234
0.80	9064	8253	7546	6911	633 5	5327	4482
0.85	9555	8702	7957	7288	6680	5618	4727
0.90	1.0038	9143	8361	7658	7020	5904	4967
0.95	0513	9578	8760	8024	7355	6186	5204
1.00	0982	1.0007	9152	8384	768 5	6463	5438

C=1.5105 k=0.172511

λ=0.99 F(=, τ,)

			V=0.83 1 (.	17			
1	0.01	0.05	0.1	0.2	0.4	0.6	0.8
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.65 0.65 0.70 0.75 0.85 0.90 0.95	0.8497 9371 9684 9848 9942 1.0012 0054 0090 0118 0140 0158 0173 0186 0197 0207 0216 0222 0229 0235 0240	0.4495 7043 8289 8966 9396 9692 9912 1.0080 0213 0321 0410 0485 0550 0603 0651 0693 0730 0763 0794 0820	0.2316 5132 6837 7862 8646 9173 9578 9891 1.0136 0341 0512 0657 0783 (889 0984 1068 1142 1207 1267 1321	0.1105 3058 4861 6260 7328 8158 8811 9345 9790 1.0153 0467 0736 0972 1177 1358 1519 1663 1792 1910 2018	0.0806 1816 3083 4373 5548 6582 7479 8256 8931 9520 1.0036 0496 0901 1265 1591 1873 2155 2400 2623 2828	0.0739 1532 2462 3499 4555 5569 6510 7369 8150 8856 9492 1.0073 0600 1079 1516 1917 2285 2623 2937 3227	0.0696 1418 2199 3064 3983 4913 5822 6689 7501 8259 8963 9615 1.0219 0778 1296 1776 2219 2638 3025 3387

1:	1.0	1.5	2.0	2.5	3.0	4.0	5.0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.85 0.85 0.90	0.0663 1343 2053 2816 3630 4475 5327 6163 6972 7743 8477 9168 9819 1.0431 1004 1542 2048 2522 2969 3389	0.0597 1206 1828 2470 3136 3830 4547 5277 6014 6746 7467 8173 8859 9522 1.0161 0776 1366 1932 2473 2992	0.0543 1097 1661 2237 2828 3434 4059 4701 5356 6020 6687 7354 8016 8670 9312 9942 1.0556 1154 1736 2301	0.0497 1003 1518 2042 2578 3125 3685 4259 4259 4847 5446 6054 6668 7286 7286 7286 7905 8521 9133 9738 1.0335 0922 1498	0.0455 0918 1389 1869 2359 2857 3366 3887 4418 4961 5514 6077 6646 7221 7798 8377 8955 9531 1.0103 0670	0.0382 0771 1167 1571 1981 2399 2825 3259 3702 4153 4614 5084 5084 6542 7042 7547 8056 8569 9083	0.0322 0649 0982 1321 1666 2018 2376 2740 3112 3491 3877 4270 4672 5081 5498 5921 6352 6789 7232 7680

	-	
$\lambda = 0.95$	F(=,	7,)

T	0.01	0.05	0.1	0.2	0.4	0.6	0-8
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.75 0.80 0.85 0.90 0.95 1.00	0.1015 1830 2557 3227 3853 4444 5005 5539 6050 6539 7010 7462 7898 8318 8724 9117 9497 9865 1.0221	0.0873 1627 2314 2953 3555 4125 4667 5185 5681 6157 6615 7056 7482 7888 8289 8672 9044 9404 9753 1.0091	0.0788 1492 2143 2753 3330 3879 4402 4903 5383 5845 6289 6718 7131 7531 7917 8290 8652 9003 9343 9673	0.0692 1330 1929 2495 3033 3547 4039 4511 4964 5401 5822 6229 6621 7001 7368 7723 8068 7723 8068 8402 8726 9041	0.0588 1142 1669 2171 2651 3112 3555 3981 4787 5170 5539 5897 6243 6578 6902 7217 7523 7819 8108	0.0522 1018 1492 1946 2381 2800 3203 3592 3967 4329 4679 5017 5345 5662 5969 6267 6557 6837 71110	0.0471 0921 1353 1767 2165 2548 2917 3274 3618 3950 4271 4583 4884 5176 5459 5733 6000 6258 6510 6754

1	1.0	1.5	2.0	2.5	3.0	4.0	5.0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.65 0.65	0.0429 0841 1236 1615 1980 2332 2672 3000 3316 3623 3919 4205 4483 4752	0.0347 0680 1001 1310 1608 1896 2173 2441 2700 2951 3194 3429 3657 3877	0.0284 0557 0820 1074 1318 1555 1783 2003 2216 2423 2623 2623 2816 3004 3186	0.0234 0458 0675 0884 1085 1280 1468 1650 1826 1996 2161 2321 2475 2626	0.0193 0378 0557 0729 0895 1056 1211 1361 1507 1647 1783 1915 2043 2167	0.0131 0258 0380 0498 0611 0721 0827 0929 1029 1125 1218 1308 1395 1480	0.0090 0176 0260 0340 0418 0493 0565 0635 0703 0769 0832 0894
0.75 0.80 0.85 0.90 0.95 1.00	5013 5267 5512 5751 5983 6208 k=0.37	4092 4300 4502 4698 4888 5074	3362 3534 3700 3862 4019 4172	2771 2913 3050 3184 3313 3439	2288 2404 2518 2628 2735 2840	1562 1642 1720 1795 1868 1939	1068 1123 1176 1227 1277 1326

λ=0.95 F(τ,η)

1	0.01	0.05	0.1	0.2	0.4	0.6	0.8
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.55 0.60 0.65 0.70 0.70 0.85	9342 9654 9818 9912 9982 1.0024 0060 0087 0109 0128 0143 0156 0167 0176 0186 0192	0 4404 6931 8167 8838 9265 9560 9778 9945 1.0077 0184 0272 0346 0411 0464 0511 0553 0590	0.2192 4951 6628 7636 8409 8929 9329 9637 9878 1.0080 0249 0392 0517 0621 0715 0798 0871	0.0957 2801 4534 5886 6921 7727 8362 8880 9315 9667 9973 1.0235 0465 0665 0841 0998 1139	0.0636 1491 2627 3814 4908 5876 6720 7452 8090 8648 9137 9573 9958 1.0304 0614 0879 1150	0.0552 - 1168 1934 2828 3761 4670 5522 6304 7018 7667 8252 8789 9276 9719 1.0124 - 0496 0838	0.0495 1022 1620 2314 3079 3871 4659 5418 6135 6808 7436 8021 8563 9067 9534 9968 1.0373
0.90 0.95 1.00	0198 0204 0210.	0623 0653 0679	0935 0994 1047	1264 1379 1484	1383 1596 1791	1153 1444 1715	0750 1102 1430

15	1.0	1.5	2.0	2.5	3.0	4.0	5.0
0.05	0.0449	0.0362	0.0295	0.0243	0.0200	0.0136	0.0093
0.10	0922	0739	0603	0495	0408	0278	0190
0.15	1433	1135	0924	0759	0625	0426	0291
0.10	2006	1554	1260	1033	0851	0580	0396
0.25	2643	2006	1614	1320	1086	0740	0506
0.30	3324	2493	1989	1622	1333	0907	0620
0.35	4027	3013	2389	1940	1592	1082	0739
0.40	4728	3557	2811	2276	1864	1265	0863
0.45	5415	4118	3255	2631	2150	1457	0994
0.50	6076	4685	3716	3002	2451	1658	1131
0.55	6709	5252	4190	3389	2767	1870	1274
0.60	7309	5814	4671	3790	3096	2052	1425
0.65	7876	6364	5156	4200	3438	2325	1583
0.70	8412	6901	5642	4619	3791	2568	1749
0.75	8915	- 7421	6124	5042	4152	2822	1924
0.80	9389	7925	6601	5468	4520	3085	2106
0.85	9836	. 8412	7071	5895	4894	3357	2297
0.90	1.0255	8880	7531	6320	5272	3636	2495
0.95	0651	9330	7982	6742	5652	3923	2702
1.00	1024	9762	8422	7160	6033	4217	2915

		~	
λ=	0.9	F(t, 7	1)

			v-0.9 1 (c)	17			
1/2	0.01	0.05	0.1	0.2	0.4	0.6	0.8
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.65 0.70 0.75 0.80 0.65 0.95	0.0901 1603 2217 2772 3283 3757 4201 4618 5012 5386 5740 6078 6399 6707 7001 7282 7552 7812 8061 8301	0.0762 1403 1977 2501 2986 3439 3865 4266 4644 5005 5347 5673 5984 6281 6566 6839 7101 7353 7595 7827	0.0677 1268 1805 2299 2759 3190 3596 3979 4343 4688 5017 5330 5629 5916 6190 6453 6706 6949 7183 7407	0.0579 1103 1585 2033 2454 2849 3223 3577 3913 4234 4539 4831 5109 5377 5633 5878 6115 6342 6560 6771	0.0471 0907 1315 1698 2059 2400 2724 3032 3326 3605 3873 4129 4374 4608 4834 5051 5259 5459 5653 5839	0.0402 0778 1132 1466 1782 2081 2366 2637 2896 3143 3380 3606 3823 4032 4232 4424 4609 4787 4959 5125	0.0350 0680 0991 1285 1564 1829 2081 2322 2551 2771 2981 3183 3376 3561 3740 3911 4076 4235 4388 4536

1	1.0	1.5	2.0	2.5	3.0	4.0×10-1	5.0×10-1
0.05	0.0309	0.0230	0.0174	0.0132	0.0101	0.0596	0.0351
0.10	0599	0447	0339	0258	0197	1161	0685
0.15	0875	0654	0495	0378	0289	1699	1002
0.20	1135	0849	0644	0491	0376	2211	1305
0.25	1383	1036	0786	0600	0459	2700	1593
0.30	1619	1214	0921	0703	0538	3166	1868
0.35	1843	1383	1050	0802	0614	3611	2131
0.40	2058	1545	1173	0896	0686	4037	2382
0.45	2262	1700	1292	0986	0755	4445	2623
0.50	2458	1848	1405	1073	0821	4835	2854
0.55	2646	1991	1513	1156	0885	5210	3075
0.60	2825	2127	1617	1235	0946	5570	3287
0.65	2998	2258	1717	1312	1005	5916	3491
0.70	3163	2383	1813	1385	1061	6248	3688
0.75	. 3323	2504	1905	1456	1115	6568	3877
0.80	3476	2621	1991	1524	1168	6876	4058
0.85	3623	2733	2080	1590	1218	7173	4234
0.90	3766	2841	2162	1653	1266	7459	4403
0.95	3903	2945	2242	1714	1313	7735	4566
1.00	4035	3046	2319	1773	1358	8001	4723

C=0.9951

k=0.525429

^{*} Приведенные множители $\times 10^{-1}$ относятся к соответствующим столбцам.

λ=0.9 F(τ,τ)

1	0.01	0.05	0:1	0.2	0.4	0.6	0.8
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.86 0.85 0.90	0.8445 9316 9628 9792 9885 9997 1.0033 0060 0083 0101 0116 0129 0140 0149 0159 0165 0172 0177 0183	0.4329 6839 8066 8733 9157 9449 9666 9832 9963 1.0069 0157 0231 0296 0348 0395 0437 0473 0506 0536	0.2094 4807 6460 7456 8220 8733 9128 9433 9671 9871 1.0038 0180 0303 0406 0499 0581 0653 0716 0774 0827	0.0848 2607 4286 5601 6611 7398 8018 8525 8525 8520 9295 9594 9850 1.0076 0271 0444 0598 0736 0859 0971	0.0521 1266 2309 3420 4454 5374 6178 6878 7488 8022 8491 8910 9279 9611 9909 1.0161 0425 0650 0855 1042	0.0434 0933 1590 2385 3232 4068 4857 5585 6252 6860 7408 7913 8372 8790 9171 9522 9846 1.0143 0419 0675	0.0375 0783 1264 1848 2511 3212 3918 4604 5256 5871 6447 6985 7485 7485 7951 8383 8785 9161 9511 9838 1.0144

						- 10	
1	1.0	1.5	2.0	2.5	3.0	4.0	5.0
0.05	0.0329	0.0243	0.0184	0.0140	0.0107	0.0063	0.0037
0.10	0681	0502	0378	0288	0220	0129	0076
0.15	1072	0778	0585	0444	0339	0199	0117
0.20	1529	1078	0805	0611	0466	0273	0161
0.25	2055	1411	1043	0788	0601	0352	0208
0.30	2633	1782	1302	0979	0745	0436	0257
0.35	3240	2189	1585	1186	0899	0526	0310
0.40	3854	2624	1894	1410	1066	0622	0366
0.45	4461	3083	2226	1652	1247	0725	0426
0.50	5049	3552	2578	1915	1442	0836	0490
0.55	5616	4027	2947	2193	1651	0955	0560
0.60	6156	4501	3326	2486	1875	1085	0635
0.65	6668	4970	3714	2792	2112	1224	0716
0.70	7153	5430	4105	3109	2361	1372	0804
0.75	7609	5878	4498	3433	2620	1531	0899
0.80	8040	6315	4889	3762	2888	1699	1000
0.85	8447	6737	5276	4096	3164	1876	1109
0.90	8829	7144	56 58	4430	3446	2062	1225
0.95	9191	7537	6034	4766	3732	2255	1348
1.00	9533	7916	6403	5100	4021	2455	1478

λ=0.8 F(τ,τ)

						1 11	
1	0.01	0.05	0.1	0.2	0.4	0.6	0.8
3.05	0.0732	0.0604	0.0525	0.0433	0.0331	0.0268	0.0222
1.10	1280	1096	0969	0813	0630	0512	0426
1.15	1746	1524	1362	1155	0903	0737	0614
9.20	2182	1905	1716	1466	1154	0945	0789
0.25	2526	2252	2039	1752	1387	1139	0953
0.30	2858	2568	2335	2016	1603	1320	1105
0.35	3173	2861	2610	2262	1805	1489	1248
0.40	3459	3132	2865	2491	1994	1648	1383
0.45	3725	3385	3104	2705	2172	1798	1510
0.50	3973	3621	3327	2907	2339	1938	1629
0.55	4206	3843	3537	3096	2497	2072	1743
0.60	4424	4051	3734	3275	2646	2198	1850
0.65	4630	4248	3921	3444	2788	2317	1951
0.70	4825	4434	4097	3605	2922	2431	2048
0.75	5009	4610	4265	3757	3049	2538	2140
0.80	5184	4777	4423	3901	3170	2641	2228
0.85	5349	4936	4574	4039	3286	2739	2311
0,90	5507	5087	4718	4170	3396	2833	2391
0.95	5657	5231	4855	4295	3501	2922	2467
1.00	5801	5369	4986	4414	3602	3007	2540

3		1.5	2.0×10^{-1}	2.5×10-1	3.0×10-1	4.0) (10-1	5.0×10 ⁻¹
0.00	0.0195	0.0124	0.0845	0.0582	0.0403	0.0195	0.0095
0.05	0.0186	0.0124	1632	1124	0779	0378	0.0035
0.10	0358		2365	1630	1130	0548	0267
0.15	0518	0346		2104	1459		
0.20	0666	0447	3051		1768	0708	0345
0.25	0805	0540	3694	2549		0858	0419
0.30	0934	0628	4298	2967	2058	0999	0488
0.35	1056	0711	4867	3361	2332	1132	0553
0.40	1171	0789	5104	3732	2590	1258	0614
0.45	1279	0863	5911	4083	2835	1377	0672
0.50	1381	0932	6390	4416	3066	1489	0727
0.55	1478	0998	6845	4731	3285	1596	0779
0.60	1569	1061	7277	5031	3494	1697	0829
0.65	1656	1120	7687	5315	3692	1794	0876
0.70	1739	1177	8077	5586	3880	1886	0921
0.75	1818	1231	8449	5844	4' 60	1973	0964
0.80	1893	1282	8804	6091	4232	2057	1005
0.35	1964	1331	9143	6326	4396	2137	1044
0.90	2032	1378	9467	6551	4552	2213	1081
	2098	1423	9778	6767	4702	2287	1117
0.95 1.00	2160	1466	1.0075	6973	4846	2357	1152

= 0.6811

k=0.710412

 $\lambda=0.8$ $F(\tau,\tau)$

		7=0.9 L(-	<u> </u>			
0.01	0.05	- 0.1	0.2	0.4	0.6	0.8
0.05	0.4216 6700 7911 8571 8991 9280 9495 9660 9789 9895 9982 1.0055 0119 0171 0217 0258 0295 0327 0357 0383	0.1952 4595 6214 7191 7939 8443 8831 9131 9364 9561 9725 9864 9985 1.0087 0179 0258 0330 0391 0449 0501	0.0699 2338 3938 5201 6174 6932 7531 8021 8433 8766 9056 9304 9523 9712 9879 1.0029 0162 0281 0390 0490	0.0378 0981 1899 2908 3860 4713 5463 6118 6690 7192 7632 8027 8374 8688 8969 9201 5456 9669 9863 1.0040	0.0297 0656 1176 1847 2584 3324 4031 4687 5292 5846 6346 6808 7229 7613 7964 8287 8585 8859 9114 9351	0.0243 0517 0862 1314 1854 2442 3046 3642 4212 4753 5263 5741 6187 6603 6991 7352 7691 8006 8301 8578

1:	1.0	1.5	2.0	2.5	3.0	4.0×10-1	5.0×10-1	
0.05	0.0203	0.0134	0.0091	0.0063 0130	0.0043	0.0210 0436	0.0102 0213	
0.10	0427 0687	0280 0441	0297	0204	0141	0681	0332	
0.15 0.20	1012	0622	0415	0284	0196	0947	0461	
0.25	1411	0835	0548	0372	0256	1236	0601	
0.30	1868	1085	0699	0470	0323	1552	0755	
0.35	2362	1373	0873	0582	0397	1900	0923	
0.40	28/1	1692	1071	0709	0481	2287	1109	
0.45	3382	2038	1294	0853	0575	2721	1316	
0.50	3881	2399	1537	1014	0683	3210	1547	
- 0.55	4367	2772	1799	1192	0803	3763	1808	
0.60	4833	3149	2074	1385	0936	4388	2104	
0:65	5276	3526	2361	1592	1082	5091	2440	
0.70	5699	3899	2655	1811	1240	5875	2821	
0.75	6097	4264	2953	2039 2275	1408 1586	6742 7691	3251 3734	
0.80	6475	4622	3253 3554	2516	1772	8720	4272	
0.85	68 3 3 71 6 9	4971 5310	3851	2761	1965	9825	4866	
0.90 0.95	7109	5637	4147	3010	2164	1.1003	5518	
1.00	7790	5954	4439	3259	2368	2248	6226	

10	$\lambda=0.7$ $F(\tau,\eta)$											
1	0.01	0.05	0.1	0.2	0.4	0.6	0.8					
0.05	0.0600	0.0486	0.0414	0.0332	0.0242	0.0188	0.0150					
0.10	1035	0870	0757	0617	0456	0357	0286					
0.15	1397	1198	1054	0869	0649	0510	0409					
0.20	1710	1486	1317	1095	0824	0649	0523					
0.25	1988	1743	1553	1300	0984	0778	0627					
0.30	2238	1975	1768	1487	1131	0896	0724					
0.35	2464	2187	1965	1659	1267	1006	0814					
0.40	2671	2381	2145	1818	1393	1108	0898					
0.45	2862	2561	2312	1965	1510	1203	0976					
0.50	3038	2727	2467	2102	1620	1292	1049					
0.55	3202	2881	2612	2229	1722	1376	1117					
0.60	3355	3025	2747	2349	1818	1454	1182					
0.65	3497	3160	2873	2461	1909	1528	1243					
0.70	3631	3287	2992	2567	1994	1598	1300					
.0.75	3757	3406	3104	2667	2074	1663	1355					
0.80	3875	3518	3210	2761	2150	1726	1406					
0.85	3987	3624	3309	2850	2222	1785	1455					
0.90	4093	3721	3404	2934	2291	1841	1501					
0.95	4193	3820	3493	3014	2356	18 4	1545					
1.00	1288	3910	3579	3090	2418	1945	1587					

7 5	1.0	1.5×10-1	2.0×10 ⁻¹	2.5×10-1	3.0×10-	4.0×10-	2 5.0×10-2
0.05	0.0122	0.0748	0.0473	0.0303	0.0196	0.0834	0.0358
0.10	0232	1432	0907	0582	0377	1603	0688
0.15	0333	2062	1307	0840	0544	2314	0994
0.20	0426	2642	1677	1079	0699	2974	1278
0.25	0512	3180	2021	1300	0843	3588	1543
0.30	0592	3680	2340	1506	0977	4160	1789
0.35	0666	4146	2638	1699	1102	4695	2020
0.40	0735	4581	2917	1879	1219	5197	2236
0.45	0799	4988	3179	2049	1329	5667	2439
0.50	0860	5371	3424	2208	1433	6110	2630
0.55	0917	5731	3655	2357	1530	6528	2810
0.60	0970	6070	3873	2498	1622	6922	2979
0.65	1021	6390	4079	2632	1709	7294	3140
070	1068	6692	4274	2758	1792	7647	3292
0.75	1113	6979	4459	2878	1870	7982	3437
0.80	1156	7251	4634	2992	1944	8300	3574
0.85	1196	7509	4800	3100	2014	8602	3705
0.90	1235	7755	4959	3203	2082	8890	3829
0.95	1272	7989	5110	3301	2145	9164	3947
1 00	1307	8212	5253	3394	2206	9426	4060
C 0 4520	10 /	0.00605					

C 0.4538

λ=0.7 F(=,τ,)

1	0.01	0.05	0.1	0.2	0.4	0.6	0.8
		0.4124	0.1841	0 0590	0.0284	0.0212	0 0167
0.05	0.8371	6589	4428	2138	0789	0483	0361
0.10	9240	7784	6019	3679	1618	0913	062
0.15	9550	8439	6984	1901	2554	1500	099
0.20	9712	8855	7717	5844	3445	2161	145
0.25	9806	9143	8214	6581	4250	2835	196
0.30	9876	9356	8596	7164	4960	3484	250
0.35	9918	9519	8891	7640	5581	4091	303
0.40	9955	9647	9122	8041	6125	4652	355
0.45	9980	9752	9315	8366	6603	5167	404
0.50	1.0002	9838	9477	8647	7023	5633	450
0.55	0021	9910	9614	8890	7399	6065	494
0.60	0036	9974	9734	9103	7731	6459	535
0.65	0048	1.0(25	9833	9288	8030	6819	573
0.70	0059	0072	9924	9451	8299	.7148	609
0.75	0069	0112	1.0003	9596	8517	7451	642
0.80	0079	0149	0073	9726	8765	7731	674
0.85	0084	0149	0134	9842	8969	7988	703
0.90	0091		0190	9948	9154	8228	730
Ū.95	0097	0211		1.0046	9324	8451	756
1.00	0102	0236	0242	1.0040	9024	10401	100

7	1.0	1.5	2.0	2.5	3.0	4.0×10	5.0×10-
0.05	0.0135	0.0082	0.0052	0.0033	0,0021	0 0091	0.0039
0.10	0287	0173	0109	0069	0045	0190	0082
0.15	0471	0275	0172	0110	0071	0299	0128
0.10	0718	0395	0243	0154	0099	0419	0180
0.25	1039	0543	0325	0205	0131	0553	0237
0.30	1420	0727	0424	0263	0167	0702	0300
0.35	1843	0948	0543	0332	0209	0871	0371
0.40	2285	1201	0685	0414	0259	1065	0452
0.45	2734	1482	0850	0511	0317	1291	0545
0.50	3176	1780	1036	0624	U386	1558	0654
0.55	3609	2092	1240	0753	0466	1873	0781
0.60	4026	2411	1459	0896	0559	2246	0933
0.65	4424	2732	1690	1053	0662	2681	1114
0.70	4805	3052	1930	1222	0777	3185	1329
0.75	5165	3367	2175	1400	0902	3759	1581
0.80	5507	3678	2424	1587	1036	4404	1876
- 0.85	5832	3982	2674	1780	1178	5120	2214
0.90	6138	4278	2924	1977	1328	5903	2599
0.95	6428	4564	3174	2179	1483	6753	3031
1.00	6704	4842	3421	2384	1644	7665	3511

			Fa(t)	<u>(</u>)			
1 2	0.01	0.05	0.1	0.2	0.4	0.6	0.8
0.99 0.95 0.9 0.8 0.7 0.6 0.5 * 0.4×10 ⁻¹ 0.3×10 ⁻¹	4.5816 1.8093 1.1487 0.6763 0.4635 0.3341 0.2437 1.7508 1.1868	4.5128 1.7479 1.0926 0.6293 0.4240 0.3013 0.2171 1.5418 1.0334	4.4459 1.6893 1.0406 0.5868 0.3890 0.2727 0.1941 1.3644 0.9046	4.3350 1.5950 0.9586 0.5220 0.3369 0.2310 0.1613 1.1143 0.7263	4.1508 1.4458 0.8337 0.4283 0.2645 0.1748 0.1183 0.7953 0.5044	3.9903 1.3229 0.7352 0.3587 0.2132 0.1366 0.0900 0.5913 0.3666	3.8430 1.2159 0.6527 0.3036 0.1742 0.1085 0.0698 0.4493 0 2730
1/2	1.0	1.5	2.0	2.5	3.0	4.0	5.0
0.99 0.95 0.9 0.8 10-1 0.7 × 10-1 0.6 × 10-1 0.5 × 10-2 0.4 × 10-2 0.3 × 10-2	3.7049 1.1204 0.5817 2.5860 1.4350 0.8706 5.4814 3.4605 2.0646	3.3890 0.9188 0.4405 1.7580 0.9034 0.5157 3.0899 1.8697 1.0715	3,1049 0,7567 0,3359 1,2099 0,5784 0,3123 1,7884 1,0429 0,5771	2.8464 0.6244 0.2570 0.8381 0.3739 0.1916 1.0521 0.5930 0.3180	2.6103 0.5157 0.1970 0.5827 0.2432 0.1185 0.6255 0.3416 0.1779	2.1961 0.3524 0.1161 0.2835 0.1039 0.0460 0.2256 0.1162 0.0575	1.8479 0.2410 0.0686 0.1386 0.0448 0.0181 0.0828 0.0404 0.0191
			Fa(+,	k)			1
7	0.01	0.05	0.1	0.2	0.4	0.6	0.8
1.00 0.99 0.95 0.9 0.8 0.7 0.6 0.5 0.4	1.0362 1.0324 1.0272 1.0231 1.0168 1.0119 1.0078 1.0041 1.0009 0.9979	1.4445 1.1231 1.0999 1.0804 1.0529 1.0321 1.0153 1.0*11 0.9890 0.9782	1.4608 1.2205 1.1695 1.1314 1.0790 1.0410 1.0109 0.9863 0.9657 0.9479	1.4715 1.3846 1.2795 1.2043 1.1054 1.0368 0.9847 0.9436 0.9103 0.8825	1.8586 1.6623 1.4403 1.2915 1.1084 0.9902 0.9055 0.8419 0.7929 0.7537	2.2271 1.9017 1.5543 1.3340 1.0781 0 9222 0.8155 0.7317 0.6817 0.6376	2.5869 2.1148 1.6363 1.3482 1.0302 0.8466 0.7259 0.6420 0.5817 0.5364
N T	1.0	1.5	2.0	2.5	3.0	4.0	50
1.00 0.99 0.95 0.9 0.8 0.7 0.6 0.5 0.4×10-1 0.3×10-1	2.9419 2.3067 1.6938 1.3424 0.9727 0.7696 0.6411 0.5545 4.9401 4.4967	3.8194 2.7112 1.7591 1.2721 0.8140 0 5896 0.4594 0.3775 3.2378 2.8644	4.6902 3.0271 1.7461 1.1582 0.6596 0.4401 0.3224 0.2518 2.0953 1.8008	5.5585 3.2700 1.6830 1.0272 0.5233 0.3229 0.2231 0.1675 1.3450 1.1345	6.4256 3.4510 1.5887 0.8942 0.4089 0.2341 0.1530 0.1102 0.8584 0.7090	8.1584 3.6626 1.3551 0.6513 0.2417 0.1198 0.0704 0.0469 0.3454 0.2746	9.8907 3.7200 1.1103 0.4573 0.1386 0.0599 0.0318 0.0197 0.1375 0.10_5

[•] Приведенные множители относятся к соответствующим строкам.

. Ռ. Ռ. ԱՆԴՐԵԱՍՑԱՆ

ՏԵՂԱՓՈԽՄԱՆ ՏԵՍՈՒԹՅԱՆ ՈՐՈՇ ՖՈՒՆԿՑԻԱՆԵՐԻ ԱՂՅՈՒՍԱԿՆԵՐ

Ամփոփում

քերվում են F(-, -, և F(-, -, -) ֆունկցիաների աղյուսակները և - խ տարբեր արժեքների համար։ Այս ֆունկցիաների միջոցով պարզորեն արտահայտվում է Ֆրեդհոլմի հավասարման Z(-, -, -, -, -) կորիզը, որը կապ է հաստատում վերջավոր և կիսանվերջ հաստության շերտերում մոնոքրոմատիկ ճառագայթման տեղափոխման խնդիրների միջև իզոտրոպ ցրման դեպքում։ Z(-, -, -, -, -) ֆունկցիան նկարագրում է պուգահեռ ճառագայթներով լուսավորված

կիսանվերջ շերտի ներքին ռեժիմը։ Բացի այդ F(τ, դ) և F(τ, ε) ֆունկցիաների միջոցով գրվում են տեղափոխման խնդիրների քվազիասիմպտոտիկ լուծումները վերջավոր օպտիկական հաստության շերտի համար։

R. R. ANDREASIAN

TABLES OF SOME FUNCTIONS OF RADIATIVE TRANSFER THEORY

Summary

Tables of $F(\tau, \eta)$ and $F(\tau, \xi)$ functions for various values of λ are given. The kernel-function $Z(\tau, \eta, \xi)$ of Fredhol's equation couplind the radiative transfer problems for medium of finite optical thickness with hat of semi-infinite medium is easily expressed in therms of these functions for the case of monochromatic isotropic scattering. The function $Z(\tau, \eta, \xi)$ describes the radiation field in semi-infinite medium illuminated by parallel beams. In addition, the quasiasymptotic solution of radiative transfer problems for medium of finite optical thickness may be written in terms of $F(\tau, \eta)$ and $F(\tau, \xi)$ functions.

ЛИТЕРАТУРА

- 1. М. А. Мнацаканян, ДАН СССР, 325, 1049, 1975.
- 2. Э. Х. Даниелян, М. А. Мнацаканян, Сообщ. Бюраканской обсерватории, 46, 101, 1975.
- 3. И. Н. Минин, ДАН СССР, 120, 1, 1958.
- 4. К. Кейз, П. Цвейфель, Линейная теория переноса. М., «Мир», 1972.
- 5. J. L. Carlstedt, T. W. Mullikin, Ap. J, Suppl. Ser., 12, 113, 1966.
- 6. М. А. Мнацаканян, Астрофизика, 11, 659, 1975.
- 7. М. А. Мнацаканян, Астрофизика, 12, 451, 1976.

ПРЕОБРАЗОВАНИЕ ЧАСТОТЫ ВВЕРХ КАК МЕТОД ДЕТЕКТИРОВАНИЯ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ В АСТРОНОМИИ

1. Введение. В 1962 г. Армстронгом [I] было показано, что взаимодействии в нелинейной среде двух плоских воли может возникнуть излучение на суммарной или разностной частоте, причем интенсивность этого излучения пропорциональна интенсивностям взаимодействующих воли. В последующие годы были выполнены многочисленные эксперименты, подтвердившие возможность генерации разностной частот в различных нелинейных материалах [2]. Для некоторых нелинейных материалов возможно взаимодействие инфракрасного излучения с видимым излучением какого-либо квантового генератора. При этом суммарная или разностная частота также оказывается в видимой области спектра, т. е. происходит визуализация инфракрасного излучения. Даже при сравнительно небольшой квантовой эффективности этого процесса оказывается возможным детектировать таким образом весьма слабые инфракрасные потоки, так как процесс преобразования характеризуется весьма низким уровнем собственных шумов. Существенно, что при этом не требуется охлаждения детектора, в то время как обычные приемники инфракрасного излучения работают при низких температурах. Характерными особенностями преобразования частоты являются также четкие пространственные и частотные избирательности по отношению к преобразуемому инфракрасному излучению, а также возможность регистрации излучения в режиме счета фотонов.

Отмеченные выше особенности инфракрасного детектора на основе преобразования частоты привлекли к нему внимание астрономов. В частности, в работе [3] описываются наблюдения галактического центра в ближнем ИК диапазоне с помощью нелинейного преобразователя и квантового генератора на аргоне. В работе [4] для наблюдений звезд в ИК диапазоне использован преобразователь с квантовым генератором на алюмо-итприсвом гранате YAG:Nd+3. Наконец, в работах [5] и [6] применяются соответственно непрерывный квантовый генератор на Не—Ne и импульсный генератор на рубине. Каждый из

этих преобразователей имеет свои особенности, которые делают его применение целесообразным для определенного круга астрономических задач. Для выбора наиболее подходящего варианта преобразователя необходимо знать его основные параметры. Исходя из этого, настоящей работе вычислены все существенные для астрономических применений параметры различных преобразователей. Полученные результаты дают возможность не только выбрать наиболее подходящий для данной задачи тип преобразователя, но и сравнить приемники на основе преобразования частоты вверх с другими инфракрасными де-

2. Нелинейные материалы, используемые при преобразовании ИК изличения. Наиболее употребляемыми материалами для преобразования инфракрасного излучения являются кристаллы ниобата лития LiNbO3, йодата лития LiIO3 и прустита Ag3AsS3 [7]. Область пропускания ниобата лития примерно от 0,4 до 5 микрон. Этот кристалл обладает большой нелинейностью, оптически однороден, однако при температурах ниже 450°K подвержен возникновению оптически наведенных неоднородностей [8]. Кристалл йодат имеет тот же диапазон прозрачности, что и ннобат лития, не уступает ему по нелинейным свойствам и не подвержен возникновению оптически наведенных неоднородностей. Его недостатком является высокая гигроскопичность [9], [10], Кристалл прустит пропускает излучение в днапазоне от 0,6 до 13 мик рон. Непрозрачность этого кристалла в значительной части видимої области спектра ограничивает возможности его применения, поэтому в настоящей работе рассматриваются только первые два кристалла: ниобат лития и йодат лития.

3. Ширина полосы преобразуемого ИК излучения. Наиболее важной для астрономических применений особенностью преобразования в нелинейных кристаллах является четкая спектральная избирательность процесса преобразования. Согласно теории ислинейного преобразования, разработанной в работах [11—13] и др. эффективность пре-

образования пропорциональна
$$\sin\left(\frac{\Delta kL}{2}\right)/\left(\frac{\Delta kL}{2}\right)$$
, где $\Delta k=k_3-k_3-k_1$

причем индексы 1, 2 и 3 относятся соответственно к преобразуемому ИК излучению, лазерной накачке и суммарной частоте; k_1 — волновые вектора, L—длина нелинейного кристалла. Отсюда нетрудно получить эффективную ширину полосы преобразуемого ИК излучения, определяемую по уровню 0,4 от максимальной интенсивности сигнала [14]:

$$\Delta \lambda = \frac{\lambda_1^2}{L\left(n_{3e} - n_{10} + \lambda_1 \frac{\partial n_{10}}{\partial \lambda_1} - \lambda_3 \frac{\partial n_{3e}(\theta)}{\partial \lambda_3}\right)} \tag{1}$$

где n_{10} , n_{20} —показатели преломления для обыкновенных волн, а n_{3e} — для необыкновенных, причем [12]:

$$n_{3e}(\theta) = \frac{n_{30} n_{3e}}{(n_{30}^2 \sin^2 \theta + n_{3e}^2 \cos^2 \theta)^{1/4}}$$
 (2)

где θ —угол, образованный направлением распространения волн лазерной накачки и ИК излучения, которые предполагаются коллинеарными, с оптической осью кристалла, а n_{lo} и n_{le} определяются следующими выражениями [7]:

а) ниобат лития

$$n_0^2 = 4,9130 + \frac{0,1173 + 1,65 \cdot 10^{-2} T^2}{\lambda^2 - (0,212 + 2,7 \cdot 10^{-2} T^2)^2} - 2,78 \cdot 10^{-2}\lambda^2,$$

$$n_e^2 = 4,5567 + 2,605 \cdot 10^{-7} T^2 + \frac{0,097 + 2,7 \cdot 10^{-8} T^2}{\lambda^2 - (0,201 + 5.4 \cdot 10^{-8} T^2)^2} - 2,24 \cdot 10^{-2}\lambda^2;$$
(3)

б) йодат лития

(4)

$$n_o^2 = 2,083648 + \frac{1,332068\lambda^2}{\lambda^2 - 0,035306} - 0,008525\lambda^2,$$

$$n^2 = 1,673463 + \frac{1,2452 \cdot 29\lambda^2}{\lambda^2 - 0,028224} - 0,003641\lambda^2.$$

Результаты численных расчетов ширины полосы преобразуемого ИК излучения приводятся на рис. 1—2 и в табл. 1—4. Эти расчеты показывают, что ширина полосы увеличивается с увеличением длин волн накачки и преобразуемого инфракрасного излучения. Следовательно, наилучшее разрешение может быть достигнуто при наиболее коротковолновой накачке.

Ширина полосы преобразуемого излучения увеличивается в том случае, когда взаимодействующие волны не являются плоскими. Для сфокуспрованных пучков ширина полосы определяется выражением [15]:

$$\Delta \lambda = \frac{\frac{1}{L} + \frac{n_{3e}}{4\lambda_3} \left[1 - \left(\frac{n_{3e}}{n_{30}} \right)^2 \right] (\psi_1 + \psi_2)^2}{n_{10} - n_{3e} - \lambda_1 \frac{dn_{10}}{d\lambda_1} + \lambda_3 \frac{dn_{3e}(\theta)}{d\lambda_3}} - \lambda_1^2,$$
 (5)

где 🌵 — полный угол расходимости волны в кристалле, причем

$$\psi_l = \frac{D_l}{a_l n_l + \frac{L}{2}} \,, \tag{6}$$

где D_l —аппертура пучка на фокусирующей линзе, a_l —расстояние от фокусирующей линзы до передней грани кристалла.

4. Зависимость частоты преобразуемого ИК излучения от ориен-7—453 тации и температуры кристалла. Возможность применения преобразования для астрономических спектральных исследований связана с тем обстоятельством, что частота преобразуемого НК излучения зависит от направления распространения взаимодействующих волн в кристал-

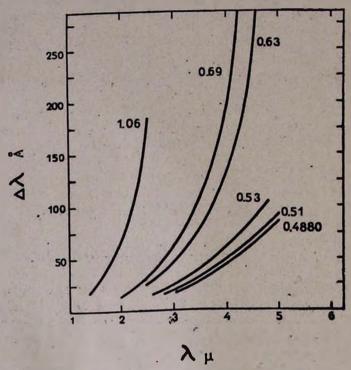


Рис. 1. Зависимость ширины полосы от длины волны преобразуемого излучения для кристалла LINbO₃ при Т=460° К для различных длии воли накачки.

ле, а также от температуры кристалла. Зависимость угла синхронизма от частоты преобразуемого излучения имеет вид [16]:

$$\theta = \arccos \sqrt{\frac{\left(\frac{\lambda_{1} + \lambda_{2}}{\lambda_{1} n_{20} + \lambda_{2} n_{10}}\right)^{2} - \left(\frac{1}{n_{3e}(\theta)}\right)^{2}}{\left(\frac{1}{n_{30}}\right)^{2} - \left(\frac{1}{n_{3e}}\right)^{2}}},$$
(7)

где показатели преломления определяются по-прежнему выражениями (2), (3) и (4). Рассчитанные по этой формуле перестроечные кривые приводятся на рис. 3—4, а также в табл. 1—4.

Как показывают расчеты, чувствительность преобразователя к углу увеличивается с увеличением длины волны преобразуемого ИК излучения. Так, для сканирования в окне прозрачности земной атмосферы у 1,6 микрон необходимо поворачивать кристалл примерно на

20 градусов, в то время как для окна прозрачности у 5 микрон соответствующий угол составляет всего 2 градуса. Так как число разрешаемых спектральных элементов в каждом окне составляет несколько десятков, то точность установки кристалла, необходимая для регистрации спектров с максимальным разрешением, достигает для окна у 5 микрон долей минуты.

Другой метод перестройки преобразователя основан на том факте,

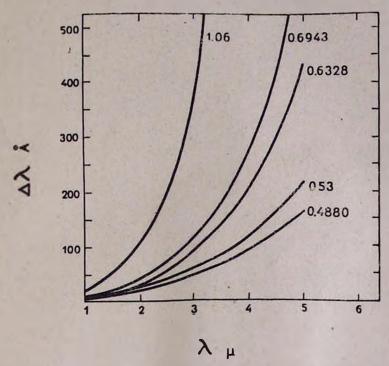


Рис. 2. Зависимость ширины полосы от длины волны преобразуемого излучения для кристалла LIJO₃ для различных длин воли накачки.

что показатели преломления кристалла ннобата лития зависят от температуры, как это следует из выражений (3). Используя эти значения
показателей преломления и формулу (2), нетрудно получить зависимость длины волны преобразуемого ИК излучения от температуры
кристалла для различных углов с оптической осью. Результаты этих
расчетов приводятся в табл. 1—4. Расчеты показывают, что для стабилизации частоты преобразуемого излучения необходимо поддерживать
температуру кристалла на заданном уровне с точностью порядка 0,1
градуса. Диапазон температур, необходимый для сканирования по
частоте в пределах одного окна прозрачности земной атмосферы, составляет несколько сот градусов.

5. Пороговая чувствительность приемника с нелинейным преобра-

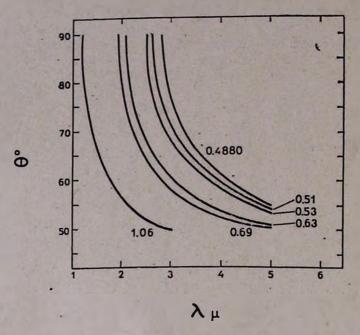


Рис. 3. Зависимость длины волны преобразуемого излучения от угла в между направлением распространения волны и оптической осью кристалла LiNbO₃ для различных длин волн накачки.

зованием. Пороговая чувствительность нелинейного детектора, определяемая как эквивалентный шуму поток, равна:

$$NEP = \frac{NEP_{\phi \circ y}}{\eta},\tag{8}$$

где $NEP_{\Phi \, \text{ву}}$ —пороговая чувствительность фотоумножителя, используемого для регистрации преобразованного в видимый диапазон излучения, а η —эффективность этого преобразования. Эффективность преобразования в приближении плоских волн равна:

$$\eta = \frac{512\pi^5 d^3 L^2 W}{c n_1 n_2 n_3 \lambda_1 \lambda_3 A},\tag{9}$$

где d—нелинейная восприимчивость кристалла, равная 5,1 для ниобата лития и 11,9 для йодата лития, W—мощность лазера накачки. A—площадь поперечного сечения каустики пучка накачки. Формула (9) для эффективности преобразования справедлива до значений плотности мощности порядка 1 Мвт/см². При дальнейшем повышении плотности мощности наступает насыщение.

Таким образом, для достижения наилучшей пороговой чувствительности необходимы квантовые генераторы, создающие плотности мощности накачки порядка нескольких Мвт/см². Непрерывные квантовые

генераторы, такие как ЛГ-36, ЛГ-106М и др., дают плотность мощности на несколько порядков меньше указанного значения. Приближаются к этому значению плотности мощности импульсные генераторы, работающие в режиме свободной генерации. Однако при расчете пороговой чувствительности детектора с нелинейным преобразованием при импульсной накачке необходимо учитывать, что формула (9) применима в этом случае только для времени интегрирования, не превышающего длительность одного импульса генератора, т. е. примерно 10-3 сек. Поток ИК излучения, который еще можно зарегистрировать за время,

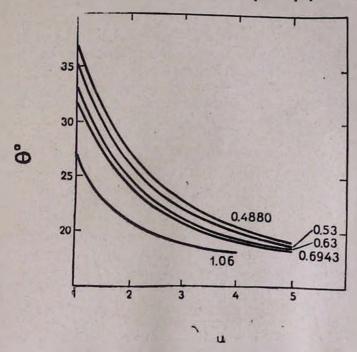


Рис. 4. Зависимость длины волны преобразуемого излучения от угла и между направлением распространения волны и оптической осью кристалла LiJO₃ для различных длин воли накачки.

много большее периода повторений импульсов генератора, равен пороговой чувствительности в импульсе, деленной на корень квадратный из произведения числа импульсов на длительность одного импульса. Так как число импульсов генератора равно отношению времени интегрирования к периоду повторения импульсов, то пороговая чувствительность детектора, т. е. отнесенный к единице времени пороговый поток, оказывается в этом случае больше пороговой чувствительности в импульсе в корень квадратный из отношения периода повторения импульсов к их длительности.

Исходя из этих соображений были рассчитаны пороговые чувствительности нелинейных детекторов с различными генераторами накачки. Пороговая чувствительность фотоумножителя, регистрирующего излучение на суммарной частоте, принята равной 10^{-18} вт/гц¹². Эта величина соответствует обычному ФЭУ-79, работающему в режиме счета фотонов при температуре около нуля градусов по Цельсию. Результаты расчетов эффективности преобразования и пороговой чувствительности приводятся в табл. 1—4. Эти расчеты показывают, что пороговая чувствительность приемника с нелинейным преобразованием частоты не уступает пороговой чувствительности других типов приемников 11К излучения [17]. Однако при сигналах, превышающих пороговые, данный приемник, из-за своей низкой квантовой эффективности, уступает другим приемникам, которые могут иметь КПД существенно больше.

6. Заключение. Рассмотренные нелинейные кристаллы ниобат лития и йодат лития позволяют детектировать ИК излучение в следующих окнах прозрачности земной атмосферы [18]: 1.4—1.8; 1.9—2.5; 3.0—4.2; 4.5—5.5 микрон. Выполненные расчеты параметров нелинейного детектора в каждом из указанных окон прозрачности приводятся в табл.

1-4 и позволяют сделать следующие выводы:

а) Нелинейный преобразователь ИК излучения дает возможность регистрировать спектры инфракрасных источников с разрешением до 10 ангстрем, относительным разрешением до 10^{-3} и с числом разрешаемых спектральных элементов порядка 10^2 в каждом окне прозрачности. Разрешение увеличивается с уменьшением длины водны накачки.

б) Поворотом кристалла на угол до 20° или нагреванием кристалла ннобата лития на несколько сот градусов можно сканпровать по

частоте в пределах каждого окна прозрачности.

в) Поддерживая температуру кристалла ниобата лития с точностью порядка 0.1° и точностью установки угла, образованного оптической осью кристалла с направлением распространения излучения, до долей угловой минуты, можно стабилизировать частоту преобразования.

- г) Эффективность преобразования инфракрасных квантов в видимые составляет величину порядка $10^{-5}-10^{-7}$. Так как относительная ошибка измерения сигналов, значительно больших, чем пороговые, обратно пропорциональна квадратному корню из квантовой эффективности, то при регистрации таких сигналов нелинейные детекторы уступают в точности измерения другим приемникам, эффективность которых может быть существенно выше.
- д) Пороговая чувствительность нелинейных ИК детекторов не уступает пороговой чувствительности применяемых в астрономии приемников ИК излучения. Наилучшая пороговая чувствительность достигается при использовании импульсных генераторов накачки.
- е) Нелинейные инфракрасные детекторы позволяют регистрировать ИК излучение в режиме счета фотонов. Таким образом, это единственный приемник, позволяющий проводить квантово-статистические исследования в рассматриваемом здесь инфракрасном диапазоне.

Таблица 1

	1000	1.	1=1.4÷1.8 M	икрон			
LuJoa	λ ₃ μ λ ₃ μ Δν ₁ Δ 0 град θλ Α στραμ γ ₁ NEP HT γ ru	0.4880 0.3730 4.2 8—14 28—32 500 5.4·10-5 10-14	0.5145 0.3893 4.7 9-15 28-31.5 500 2.5 10-5 2.4 10-14	0.53 0.3981 5.0 10—17 27.5—31 500 2.4·10-2 7.2·10-15	0.6328 0.4534 7.4 14—25 25.5—29 550 1.10—6 5.1·10—12	0.6943 0.4891 8.9 1731 25-28 660 0.8-10-2 1.8-10-16	1.06 0.6376 20.8 37—73 21.5—23.5 1000 5.3·10-2 1.0·10-16
LINDO	\(\lambda_{3}\mu\) \(\lambda_{3}\mu\) \(\lambda_{4}\mu\) \(\lambda_{5}\mu\) \(\lambda_{7}\mu\) \(\lambda_{6}\mu\) \(\lambda_{7}\mu\) \(\lambda_{6}\mu\) \(\lambda_{7}\mu\)	0.4880 0.3730 — — — — —	0.5145 0.3893 — — — — —	0.53 0.3981 — — — — —	0.6328 0.4534 — — — — —	0.6943 0.489! 4.20 10—13 73—90 25 117.6 0.21	1.06 0.6376 13.4 17.5—45 59—70 22 181.8 0.15 1.1·10—16
		/.	ı==1.9÷2.5 м	икрон		T a 6	лица 2
LIJOs	Азн Азд см-1 АлА 0 град О град О град 7, вт NEP √ гц	0.4880 0.3994 4.5 1629 24.527.5 1875 2.7-10-5 2.1-10-14	0.5145 0.4170 5.1 18-31 24-27.1 1920 1.4·10-5 4.2·10-14	0.53 0.4280 5.5 19—36 23.8—26.7 1935 1.2·10-2 1.3·10-15	0.6328 0.4914 8.3 29 56 22.5—25 2222 0.6 · 10 - 6 1.7 · 10 - 12	0.6943 0.5277 10.2 36—80 21.8—24.4 2307 5.10-2 4.10-16	1.06 0.7153 27.1 94—250 19.4—21.1 3530 2.8·10—2 1.5·10—16
LiNbO ₃	λ_{3}^{1} λ_{2}^{1} λ_{1}^{2} λ_{1}^{2} λ_{1}^{2} λ_{1}^{2} λ_{1}^{2} λ_{2}^{2} λ_{3}^{2} λ_{4}^{2} λ_{5}^{2} λ_{6}^{2} λ_{7}^{2}	0.4880 0.3994 — — — —	0.5145 0.4170 2.1 11—15 73—90 11 182 2.6·10—5 4.2-10—14	0.53 0.4280 2.2 12—25 71—90 18 190 2.8·10-2 5.4·10—16	0.6328 0.4921 3.5 13—30 65—90 22 240 1.5·10—6 3.9·10—13		1.06 0.7153 20.6 55-200 53-58 42 1200 0.8 · 10-1 0.9 · 10-15

-		λ,	=3.0 : 1 .2 ui	крон			
LIIO3	%214 Ама см-1 Ама см-1 Ама б град д). А д0 град	0.4880 0.4297 5.3 15.8—100 19.8—22.5 4444 10—5 5.10—14	0.5145 0.4501 6.1 38—115 19.6—22,2 4650 0.5·10—5·	0.53 0.4620 6.6 39-125 19.5-22 4800 0.5 · 10 -2 3.3 · 10 -15	0.6328 0.5382 10.9 87—230 19—21 6000 2·10—7 3.5·10—12	0.6943 0.5820 14.4 110-460 18.7-20.5 6660 1.8·10-2	18.2—18.7 20000 1.2-10-2
LINDO3	7 гц	0.4880 0.4297 2.4 17—43 59—77	0.5145 0.4501 2.8 22—60 57.5—72	0.53 0.4620 3.2 25—70 56.8—70	0.6328 0.5382 6.3 45—160 52—60	0.6943 0.5820 9.4 60—260 5258	1.06 0.8189
l'IN	On A rpan ¬ NEP → NEP → ¬ ¬ ¬	666 3.10-5 1.7·10-14	814 1.4·10-5 3.8·10-14		1500 0.64 · 10 - 6 1. 1 · 10 - 12	4.8.10-16	and the same of th
		λ	₁ =4.5÷5.5 ม	икроп		Таб	лица 4
	1						

		λ	1=4.5÷5.5 M	икроп	-	-66	
LIJO3	\(\lambda_{\text{\tinx}\\ \text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\texi}\tex{\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\texi}\tex	0.4880 0.4429 3.4 120—160 19—19.4 12500 5·10-6	0.5145 0.4647 4.4 140—190 18.9—19.2 15000 2.8 · 10 ⁻⁶ 2 · 10 ⁻¹³	16660 2.7·10-3	18.4—18.7 20000 1.3·10 -7	18.3—18.5 25000	
LINBO	\(\lambda_{3}\tmu\) \(\lambda_{3}\tmu\) \(\lambda_{1}\tmu\) \(\l	0.4880 0.4429 6.4 62-87 54.9-57.2 100 2174 1.7·10-5 3.1·10-14	0.5145 0.4647 7.7 75—112 53.8—56 100 2272 0.8·10—5 6.7·10—14	0.53 0.4773 8.6 85—125 53.2—55.2 100 2500 0.8·10—2 2.2·10—15	0.6328 0·5591 17.2 240—440 50.4—51.4 120 5000 3.9·10-7 2·10-12		1.06

Примечания к табл. 1-4

Табл. 1—4 приведены для четырех окон прозрачности земной атмосферы: 1.4—1.8. 1.9—2.5; 3.0—4.2; 4.5—5.5 микроп и для шести типов накачки:

0.4888; - непрерывный аргоновый лазер мощностью 1вт;

0.5245/ - пепрерывный аргоновый лазер мощисстью 0.5вт;

0.53µ-вторая гармоника импульсного лазера на YAG:Nd+3 мощностью 0.5 вт;

0.6328µ-непрерывный лазер на Не-Ne мощностью 0,03вт;

0.6943--импульсный лазер на рубине мощностью 1квт;

1.06;4—нипульсный лазер на YAG:Nd+3 мощностью 1квт.

Первые восемь строк относятся к кристаллу LIIO3, а следующие девять строк к кристаллу LINbO3. В таблицах даны построчно значения соответственно длины волны накачки; длины волны суммарного излучения; шприны полосы преобразуемого излучен, я в см—1 и в ангстремах; ориентации кристалла для преобразования ИК излучения; значения производной $\frac{\partial L_1}{\partial \theta}$, характеризующей возможность перестройки преобразователя по частоте изменением ориентации кристалла; значения эффективности преобразования и порог чувствительности приемника. Кроме того, для кристалла LINbO3 в шестой строке приведены значения производной $\frac{\partial L_1}{\partial T}$, характеризующей возможность перестройки преобразователя по частоте путем изменения температуры кристалла.

ցոթ. գ. ՄԵԼԻՔ-ԱԼԱՎԵՐԴՅԱՆ, Ա. Ն. ՖՐԱԴԿԻՆ

ՀԱՃԱԽԱԿԱՆՈՒԹՅԱՆ ՁԵՎԱՓՈԽՈՒՄԸ ՎԵՐ, ՈՐՊԵՍ ԱՍՏՂԱԳԻՏՈՒԹՅԱՆ ՄԵՋ ԻՆՖՐԱԿԱՐՄԻՐ ՃԱՌԱԳԱՑԹՄԱՆ ԸՆԴՈՒՆՄԱՆ ԵՂԱՆԱԿ

Ամփոփում

Հոդվածում նկարագրված է ինֆրակարմիր ճառազայթման աստղադիտական ընդունիչ, որն օգտագործում է ոչ գծային բյուրեղում ճառագայթման ձևափոխում։ Հաշվված են այդ ընդունիչի և նրա կոնստրուկցիայի հիմնական տվյայները։

YU. K. MELIK-ALAVERDIAN, A. N. FRADKIN

UP-CONVERTION AS A METHOD OF DETECTING OF INFRARED RADIATION IN ASTRONOMY

Summary

The astronomical receiver of infrared radiation based on nonlinear up-conversion is considered. Principal parameters of this receaver are calculated and the basic principles of its construction are formulated.

ЛИТЕРАТУРА

1. I. A. Armstrong, N. Bloembergen, Phys. Rev., 127, 1918, 1966.

2. 1. Warne. Opto-Electronics, 3, 37, 1971.

- 3. H. A. Smith, H. Mahr, IQEC Japan. 10, 82, 1970.
- 4. T. R. Gurski, H. W. Epps, S. P. Maran, Nature, 249, 638, 1974.
- 5. Г. Н. Агабабян, Ю. К. Мелик-Алавердян, Г. М. Товмасян, АЦ, 876, 4, 1975.
- 6. Г. Н. Агабабян, Ю. К. Мелик-Алавердян, Тезисы докладов II Всесоюзной научнотехнической конференции по фотометрии, М., 1976.
- 7. Д. Н. Никогосян, Квантовая электроника, 4, 5, 1977.
- 8. Ю. С. Кузьминов, Ниобат и танталат лития, М., «Наука», 1975.
- 9. M. Nash, I. Bergman, G. Boyd. E. Turner, J. Appl. Phys., 40, 1501, 1969.
- 10. M. Nash. I. Bergman, G. Boyd, E. Turner, J. Appl. Phys., 40, 5201, 1969.
- 11. С. А. Ахманов, Р. В. Хохлов, Проблемы нелинейной оптики, М., «Наука», 1964.
- 12. Ф. Цернике, Дж. Мидоинтер, Прикладная нелинейная оптика, М., «Мир», 1976.
- 13. G. Boyd. D. Kleinman. J. Appl. Phys. 39, 3597, 1968.
- 14. Е. Н. Антонов, Письма в ЖЭТФ, 14, 23, 1971.
- 15. Е. Н. Антонов, В. Г. Колошников, Оптика и спектроскопия, 36, 4, 1974.
- 16. В. Д. Волосов, А. Г. Калинцев, Оптика и спектроскопия, 37, 2, 1974.
- 17. Г. В. Хозов, Новая техника в астрономии, 5, 105, 1975.
- 18. Р. Хадсон, Инфракрасные системы, М., «Мир», 1972.

РАСЧЕТ ОПТИМАЛЬНОГО АСТРОНОМИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ ЧАСТОТЫ

Впервые о применении в астрономии преобразователя сообщалось в работе [1]. Одним из важнейших параметров преобразователя является эффективность преобразования, которая зависит от миогих факторов: от типа используемого нелинейного кристалла и его длины, мощности лазерной накачки, особенностей полей лазерной волны и волны инфракрасного излучения. Детальный расчет эффективности преобразования для случая взаимодействия излучений двух лазеров выполнен в [2], где показано, что существует искоторая онтимальная фокусировка, при которой эффективность преобразования максимальна. Развитая в [2] теория не может быть астрономическому преобразователю, так как в фокусе телескопа расходимость преобразуемого инфракрасного излучения определяется не дифракцией, а, главным образом, турбулентностью атмосферы [3]. В настоящей работе выполнен расчет эффективности преобразования именно для данного случая. Использовано приближение гауссовской плоской волны [4], т. е. принято, что электрическое поле сфокусированных в область взаимодействия воли описывается выражением:

$$E(r,z)=E_0 \frac{\exp\left\{-r^2\left[\frac{1}{w^2(1+\xi^2)}\right]\right\}}{\sqrt{(1+\xi^2)}}$$
, (1) где E_0 —амплитуда, $\xi=\frac{2z}{b}$, w —перетяжка пучка в фокусе, r —расстоя-

где E_0 —амплитуда, $\epsilon = \frac{2z}{b}$, w—перетяжка пучка в фокусе, r—расстояние от оси пучка, b — так называемый конфокальный параметр, который будет определен ниже.

Согласно теории нелинейного преобразования, напряженность поля па суммарной частоте для случая взаимодействия обыкновенных волн равна [5]:

$$E_3 = -i \frac{8\pi w_3^2 d}{k_3 c^2} \int_{-\frac{L}{2}}^{\frac{L}{2}} E_1(r, z) E_2(r, z) \exp\left[i(k_3 - k_2 - k_1)z\right] dz, (2)$$

где d—нелинейная восприимчивость кристалла, k—волновые числа, L—длина кристалла, а $\frac{1}{w_3^2} = \frac{1}{w_2^2} + \frac{1}{w_1^2}$, причем индекс 1 относится к преобразуемому инфракрасному излучению, 2-к излучению накачки,

3-к излучению на суммарной частоте.

Подставляя (1) в (2), найдем для случая фазового согласования $(k_3=k_1+k_2)$ напряженность электрического поля суммарной волны:

$$E_3 = -l \frac{16\pi w_3^2 d}{k_3 c^2} E_{01} E_{02}. \int_0^{\frac{L}{2}} \exp \left\{ -r^2 \left[\frac{1}{w_1^2 (1+\xi_1^2)} + \frac{1}{w_2^2 (1+\xi_2^2)} \right] \right\} dz. (3)$$

Переходя от напряженности электрического поля E к мощности излучения P и принимая во внимание, что $P_1 = S_1$ D^2 , где D—входная апертура телескопа, а S_1 —плотность потока преобразуемого инфракрасного излучения, находим мощность преобразованного излучения:

$$P_{2} = \frac{cn_{3}}{2\pi} / E_{2} /^{3} = \frac{1638\pi^{4} d^{3} S_{1} P_{3} D^{3}}{n_{1} n_{2} n_{3} ch_{3}^{2} w_{1}^{2} w_{2}^{2}} \int_{0}^{\pi} dr^{3}$$

$$\left[\int_{0}^{\frac{1}{2}} \exp\left\{-r^{2} \left[\frac{1}{w_{1}^{2} (1+\xi_{1}^{2})} \frac{1}{w_{2}^{2} (1+\xi_{2}^{2})} \right] \right\} dr \right]^{2} dr$$

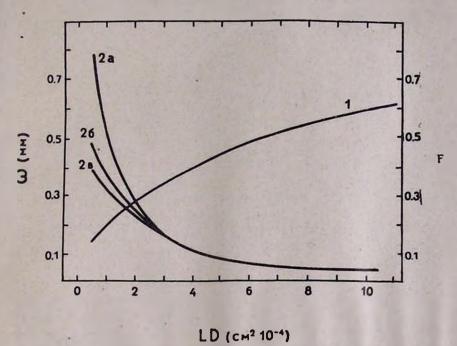
$$\sqrt{(1+\xi_{1}^{2})} \sqrt{(1+\xi_{2}^{2})}$$
(4)

где п-показатель преломления кристалла.

Учитывая, что конфокальный параметр $b_2 = \frac{w_2^2}{\lambda_2}$ излучения накачки обычно больше длины кристалла, примем в дальнейшем $1+\xi_2=1$. Конфокальный параметр инфракрасного излучения, определяемый как расстояние, на котором фокальная перетяжка удвапвается, вычисляется по формуле:

$$b_1 = \frac{w_1^2}{D \operatorname{tg} \alpha},\tag{5}$$

где а—угловой размер изображения звезды, определяемый обычно турбулентностью атмосферы.


Нетрудно убедиться в том, что эффективность преобразования зависит не от длины кристалла L и диаметра телескопа D в отдельности, а от их произведения LD. Для этого произведем в (4) замену переменной $\frac{2z}{L} \rightarrow x$, и в результате получим:

$$P_{3} = \frac{4096\pi^{4}d^{2}S_{1}P_{2}L^{2}D^{2}}{n_{1}n_{2}n_{2}ci_{2}^{2}}F(w_{1}w_{2}LD), \tag{6}$$

де функция $F(w_1, w_2, LD)$ представляет собой интеграл:

$$\tilde{f}(w_1 w_2 LD) = \int_0^\infty dr^2 \left[\int_0^1 \frac{\exp\left\{-r^2 \left[\frac{1}{w_1^2 \left(1 + \frac{L^2 D^2 x^2 t g^2 \alpha}{w_1^4}\right) + \frac{1}{w_2^2} \right] \right\}} dx \right]^2 dx \right] (7)$$

Значения функции $F(w_1, w_2, LD)$ вычислялись с помощью вычисительной машины ЕС 1030. Эти расчеты показали, что эффективность реобразования инфракрасного излучения в видимый диапазон моноонно увеличивается с уменьшением w_2 по крайней мере для предтавляющих практический интерес значений $w_2 > 0,1$ мм.

Зависимость оптимального значения w_1 от LD, 2a, 26, 2в—зависимости $F(LD, w_1)$ для оптимального значения w_1 при $w_2 = 0.1$, 0.2 и 0.3 мм соответственно.

Зависимость F от w_1 имеет максимум, положение которого зависит от параметра LD и почти не зависит от w_2 . Зависимость этого оптимального значения w_1 от параметра LD приводится на рисунке. На этом же рисунке показана зависимость F от w_3 и LD для оптимального значения w_1 .

Сопоставляя приведенные на рисунке кривые с формулой (6), нетрудно видеть, что максимальный сигнал, который можно получить преобразованием излучения источника с данной плотностью потока S при $LO{\approx}5.10^4$ см³, не зависит от w_2 и увеличивается с увеличением длины кристалла L примерно как L^2 . С увеличением входной апертуры телескопа этот сигнал увеличивается примерно как D^3 . При меньших значениях LD преобразованный сигнал P_3 хоть и увеличивается с L и D, но медленнее. Например, при $w_2 = 0,1$ мм и $LD \approx 10^4$ см² $P_3 \sim LD$.

Приведенные в настоящей работе соотношения дают возможность подобрать оптимальную для данного телескопа и имеющегося кристалла схему преобразования, а также оценить ожидаемую эффективность

преобразования и величину преобразованного сигнала.

ցրե, 4, ՄԵԼԻՔ-ԱԼԱՎԵՐԴՅԱՆ, Ա. Ն. ՖՐԱԴԿԻՆ

ՀԱՃԱԽԱԿԱՆՈՒԹՅԱՆ ԱՍՏՂԱԳԻՏԱԿԱՆ ՁԵՎԱՓՈԽԻՉԻ ՕՊՏԻՄԱԼ ՀԱՇՎԱՐԿ Ամփոփում

Հոդվածում կատարված է դիտակի կիղակհտում ինֆրակարմրից դեպի

տեսանելի տիրույթը ձևափոխման էֆեկտիվության հաշվարկ։

Ստացված առնչությունները հնարավորություն են տալիս տվյալ դիտակի և ոչ գծային բյուրեղի դեպքում ընտրել օպտիմալ ձևափոխման սխեմա, հաշվել փոխակերպման սպասվելիք էֆեկտիվությունը և ձևափոխված ազդանշանի մեծությունը։

YU. K. MELIK-ALAVERDIAN, A. N. FRADKIN

THE CALCULATION OF OPTIMAL ASTRONOMICAL UP-CONVERTOR

Summary

The efficiency of OOE conversion in the telescope focus of infrared radiation into visible optical region is calculated. Provided correlations alows to choose for given telescope and nonlinear cristall the optimal scheme of conversion and to calculate the efficiency of conversion and the value of transformed signal.

ЛИТЕРАТУРА

1. H. A. Smith, H. Mahr, IQEC Japan, 10, 82, 1970.

2. G. O. Boyd, O. A. Kleinmann, J. Appl. Phys., 39, 3597, 1968.

- 3. Д. Я. Мартынов, Курс практической астрофизики, М., «Ф.—М.», 1960.
- 4. А. М. Гончаренко, Гауссовы пучки света. Минск, «Н. н Т.», 1977.
- 5. J. A. Armstrong, N. Bloembergen Phys. Rev. 127, 1918, 1960.

В. Г. ПАНАДЖЯН

АМПЛИТУДНЫЙ МОДУЛЯТОР С ДВУМЯ ВЫХОДАМИ

В модуляционных радиометрах необходимым элементом является амплитудный модулятор, предназначенный для амплитудной модуляции принятого антенной измеряемого шумового сигнала. Причем в одноканальных модуляционных радиометрах необходимо иметь модулятор с одним выходом, а в двухканальных радиометрах—модулятор с двумя симметричными выходами. Благодаря полному использованию мощности измеряемого шумового сигнала, двухканальные модуляционные радиометры обладают в √2 раза высокой чувствительностью, чем одноканальные модуляционные радиометры [1].

В амплитудных модуляторах используется принцип переключения входа приемника с антелной и эквивалентом антенны с частотой моду-

лирующего сигнала ω.

Ниже описывается амплитудный модулятор для двухканальных модуляционных радиометров, рассчитанный на два симметричных выхода. Этот модулятор нами был разработан для двухканального модуляционного радиометра на длину волны $\lambda = 75$ см и испытан на радиотелескопе Бюраканской астрофизической обсерватории.

Модулятор, схема которого приведена на рисунке, представляет собой переключающее устройство, которое с частотой модулирующего сигнала ω попеременно подключает на выходы 1 и 2 антенну и эквивалент антенны. Причем, когда антенна подключается к выходу 1, эквивалент антенны подключается к выходу 2 и наоборот, т. е. выходы 1 и 2 работают со сдвигом фаз на π.

Описанный модулятор конструктивно представляет кольцо из коаксиальной линии с волновым сопротивлением 75 ом, разбитое на восемь равных частей длиной 1/4. Между разъемами «вход»—«выход» размещены четверть волновые отрезки линий, концы которых соединены переключающими диодами D₁—D₄. Входы «антенна» и «эквивалент антенны» и выходы 1 и 2 равнозначны, поскольку они симметричны относительно переключающих диодов.

Для удобства сборки внутреннего провода коаксиальной линии

модулятор выполнен из двух полуколец, соединяемых между собой уни-

версальными высокочастотными разъемами P_1 и P_2 .

Переключающие дноды питаются от общего источника модулирующего сигнала. В простейшем случае, когда модуляция осуществля-

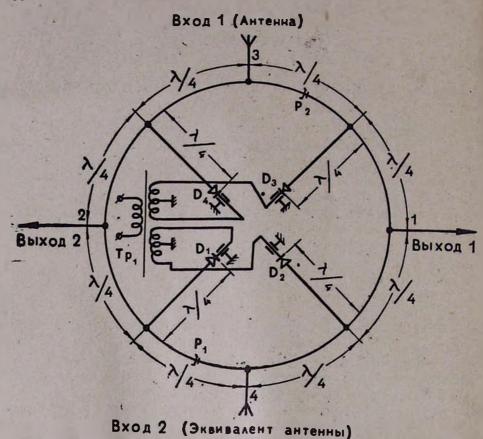


Схема двухканального амплитудного модулятор а с двумя симметричными выходами; 1,2—выходы, 3,4—входы антенны и эквивалента антенны, P_1 , P_2 —высокочастотные разъемы, D_1 — D_4 —переключающие диоды.

ется сигналом синусоидальной формы частоты ω , диоды $D_1 - D_4$ можно питать от двух вторичных обмоток трансформатора Tp_1 , имеющих заземленные средние точки (см. рисунок).

4. 9. 441442844

ԵՐԿՈՒ ՍԻՄԵՏՐԻԿ ԵԼՔՈՎ ԱՄՊԼԻՏՈՒԴԱՅԻՆ ՓՈԽԱՆՋԱՏԻՉ

Ամփոփում

Հողվածում նկարագրված է հրկու սիմնտրիկ հլքով ամպլիտուդային փոիւանջատիչ, որը նախատնսված է Բյուրականի աստղադիտարանի Գրեհեմի [1] հրկկանալ ռադիոմհտրի համար։

V. G. PANAJIAN

AN AMPLITUDE MODULATOR WITH TWO OUTPUTS Summary

· A modulator with two symmetric outputs for the Graham radiometer of the Byurakan Astrophysical Observatory is discribed.

ЛИТЕРАТУРА

1. M. H. Graham, Proc. IRE, vol. 46, 1966, December 1958,

К ВОПРОСУ О ВЫЧИСЛЕНИИ р- ФУНКЦИИ АМБАРЦУМЯНА

В теории изотропного рассеяния света большую роль играет функция Амбарцумяна, введенная им в 1942 г. [1]. Эта функция фигурирует при нахождении решений почти всех задач теории переноса излучения в полупространстве.

К настоящему времени проведены подробные исследования этой функции: имеются подробные таблицы, получены асимптотические и явные интегральные представления. Ссылки на эти работы опускаются ввиду их многочисленности, их можно найти в любой монографии, посвященной вопросам теории переноса излучения.

В работе [1] для ф-функции приводится следующее уравнение:

$$\varphi(\eta) = 1 + \frac{\lambda}{2} \eta \varphi(\eta) \int_0^1 \frac{\varphi(\mu)}{\mu + \eta} d\mu, \qquad (1)$$

в котором λ—вероятность выживания кванта при элементарном акте рассеяния. Там же это уравнение решалось численно методом итераций и, в частности, было выяснено, что сходимость последовательных приближений заметно ухудшается при значениях параметра λ близких к единице. При этом для улучшения сходимости (для 0,95 ≪ 1) уравнение (1) модифицировалось и проводился ряд искусственных приемов.

Для функции Амбарцумяна можно получить другое уравнение, выгодно отличающееся от (1) тем, что сходимость последовательных приближений осуществляется быстрее и, что также важно, скорость сходимости практически не зависит от \(\lambda\).

Для получения нового уравнения воспользуемся двумя хорошо известными соотношениями, связывающими ϕ -функцию с резольвентной функцией Соболева $\Phi(\tau)$:

$$\varphi(\eta) = 1 + \int_0^{\pi} e^{-\frac{\tau}{\eta}} \Phi(\tau) d\tau$$
 (2)

H

$$\Phi(\tau) = Ce^{-k\tau} + \frac{\lambda}{2} \int_{0}^{1} \frac{e^{-\frac{\tau}{\mu}} d\mu}{R(\mu)\mu\varphi(\mu)}.$$
 (3)

Последнее соотношение получено Мининым в [2]. В нем обозначено

$$R(\mu) = \left(\frac{\lambda \pi \mu}{2}\right)^2 + \left(1 - \frac{\lambda}{2} \mu \ln \frac{1 + \mu}{1 - \mu}\right)^2 \text{ if } C = \frac{1}{\frac{\lambda}{2} \int_{0}^{1} \frac{\varphi(\mu) d\mu}{(1 - k\mu)^2}},$$
(4)

а k находится из условия $\frac{\lambda}{2k} \ln \frac{1+k}{1-k} = 1$.

Подставляя (3) в (2) и интегрируя по оптической глубине, получим*

$$\varphi(\eta) = 1 + \frac{C\eta}{1 + k\eta} + \frac{\lambda}{2}\eta \int_0^1 \frac{d\mu}{R(\mu)\varphi(\mu)(\mu + \eta)}.$$
 (5)

С точки зрения численного решения методом итераций это уравнение по сравнению с (1) обладает очевидными преимуществами. Во-первых, вненнтегральная часть гораздо ближе к ф-функции и в известном смысле является се аппроксимацией, получающейся из (2) заменой Ф(т) ее асимптотикой. Это должно привести, вообще говоря, к уменьшению числа итерации. Во-вторых, поскольку в интегральной части ф-функция стоит в знаменателе, то сходимость последовательных приближений должна осуществляться попеременно снизу и сверху. Последнее обстоятельство позволяет оценить погрешности вычислений.

Для нахождения φ -функции из полученного выше уравнения исобходимо иметь величнну C. Из соотношения (4) видно, что ее можно вычислить параллельно с вычислением φ -функции. Однако предварительное задание этой величины значительно улучшает сходимость последовательных приближений при численном решении уравнения (5). Величину C можно найти также из известного соотношения

$$C = \frac{1}{2k\varphi\left(\frac{1}{k}\right)} \left| \frac{dk^2}{d\lambda} \right|.$$

Значения же φ -функции в точках $\frac{1}{k}$ можно взять из таблиц, приводимых в [3], или вычислить из явных интегральных представлений этой функции (см., например, [4]).

Нами были проведены вычисления φ-функции как из уравнения (5), так и общепринятым методом. В результате выяснилось, что независимо от параметра λ уравнение (5) обеспечивает заданную точность при гораздо меньшем числе итераций по сравнению с уравнением (1). Конкретнее, при вычислении нашим способом число итераций практически не зависит от λ и составляет порядка двух, трех. При этом

^{*} Уравнение (5) следует из формулы (7) публикуемой в этом номере статьи Р. Р. Андреасяна при $\tau = 0$ (прим. ред.),

обеспечивается точность в несколько единиц пятого знака. Для вычисления же φ -функции общепринятым способом с той же точностью число итераций, необходимых для сходимости последовательных приближений, составляет порядка 6—7 для λ =0,8 и очень быстро растег с ростом λ . В обоих случаях в качестве нулевого приближения принималось $\varphi_0(\eta)=1$.

Предложенный способ* более эффективного вычисления не является самоцелью (ибо, как уже говорилось, существуют подробные таблицы ф-функции), а преследует вполне конкретные практические цели. Как уже отмечалось выше, при решении любой задачи теории изотропной диффузии излучения в полубесконечной среде мы всегда сталкиваемся с ф-функцией. Поэтому при конкретных машинных расчетах при наличии эффективного способа гораздо выгоднее вычислять эту функцию по ходу решения основной задачи, чем вводить обширные таблицы.

В заключение отметим, что в случае анизотропного рассеяния для обобщенных H^{m} -функций Амбарцумяна—Чандрасекара имеет место уравнение

$$H^{m}(\eta) = 1 + \eta H^{m}(\eta) \int_{0}^{1} \psi^{m}(\mu) \frac{H^{m}(\mu)}{\mu + \eta} d\mu.$$
 (6)

Для них можно получить уравнение, аналогичное (5): Оно имеет вид

$$H^{m}(\eta) = 1 + C\delta_{om} \frac{1}{1 + k\eta} + \eta \int_{0}^{1} \frac{\psi^{m}(\mu)d\mu}{R^{m}(\mu)H^{m}(\mu)(\mu + \eta)}.$$
 (7)

Злесь

$$\mathcal{R}^m(\mu) = \left[\pi \mu \psi^m(\mu) \right]^2 + \left[T^m(\mu) \right]^2; \ T^m(\mu) = 1 + \mu \int_{-1}^{1} \psi^m(\nu) \frac{d\nu}{\nu + \mu},$$

k—находится из условия

$$T^{0}\left(\frac{1}{k}\right) = 0$$
, a $C = \frac{1}{\int_{0}^{1} \psi^{m}(\mu) \frac{H^{m}(\mu)}{(1-k\mu)^{2}} d\mu}$ (8)

Нами также были проведены вычисления H^m -функций из уравнений (7) и (6) и сравнение сходимостей в обоих случаях. Рассматривалась двучленная индикатриса вида $x(\gamma) = 1 + \cos\gamma$. При этом (см. [5], стр. 151).

[•] В книге К. Кейз, П. Цвайфель. «Линейная теория переноса» (М., «Мир», 1972) приведен итерационный процесс (см. формулу (31) на стр. 152), который обладает всеми преимуществами метода данной статьи и в то же время требует гораздо меньшего объема вычислений (прим. ред.).

$$\psi^0(\eta) = \frac{\lambda}{2} \left[1 + (1 - \lambda) \eta^3 \right]; \ \psi^1(\eta) = \frac{\lambda}{2} \left(1 - \eta^2 \right).$$

В результате выяснилось, что наш способ выгоднее применять при вычислении основной азимутальной гармоники обобщенной функции Амбарцумяна—Чандрасскара. Что касается высших гармоник, то итерационный процесс в обоих случаях сходится очень быстро.

Ռ. Ռ. ԱՆԴՐԵԱՍՑԱՆ, Է. Խ. ԴԱՆԻԵԼՑԱՆ

ՀԱՄԲԱՐՁՈՒՄՑԱՆԻ գ-ՖՈՒՆԿՑԻԱՅԻ ՀԱՇՎՄԱՆ ՎԵՐԱԲԵՐՅԱԼ

Ամփոփում

. Հողվածում Համրարձումյանի թ-ֆունկցիայի համար դուրս է բերվում նոր ֆունկցիոնալ հավասարում։ Այդ հավասարումով թ-ֆունկցիայի հաշվումը ավևլի էֆհկտիվ է հայտնի հղանակների համեմատ։ Արդյունքը ընդհանրացվում է նաև ոչ իզոտրոպ դեպքի համար։

R. R. ANDREASIAN, E. KH. DANIELIAN

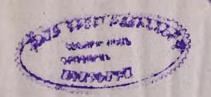
ON CALCULATION OF AMBARTSUMIAN'S \(\varphi\)-FUNCTION

Summary

In the paper a new equation for the Ambartsumian φ -function is derived. The evaluation of the φ -function from this equation appears to be more effective than that based on the other known equations. The obtained result is generalized for the case of anisotropic scattering i. e. the appropriate equation for the Ambartsumian—Chandrasekhar's H^m —functions is used.

ЛИТЕРАТУРА

- 1. В. А. Амбарцумян, Научные труды, т. І, Ереван, Изд. АН Арм. ССР, 1960.
- 2. И. Н. Минин, ДАН СССР, 120, 63, 1958.
- 3. I. Kuščer, Canad. J. Phys., 31, 1187, 1953.
- 4. В. В. Соболев. Астрофизика, 3, 433, 1967.
- 5. В. В. Соболев, Расстояние света в атмосферах планет, М., «Наука», 1972.


ՀԱՑԿԱԿԱՆ ՍՍՀ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԴԵՄԻԱ

АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

РВПІРІЦІЦТЬ ЦІЗЧІЦТЬ ЗІЦДПРЭПЬІТЬЕР СООБЩЕНИЯ БЮРАКАНСКОЙ ОБСЕРВАТОРИИ

прич L ВЫПУСК

голубые объекты в окрестности мізл	5
НАБЛЮДЕНИЯ ГАММЫ КАССИОПЕН	22
СПЕКТР HD 187399	33
поляриметрические и фотометрические наблюдения звезд	
EV Lac II AD Leo BO BPEMS BCIIIIIIKI M. A. Epuysh	40
OF OTHER WAY TELESCOPE OF THE STATE OF THE S	
ОБ ОДНОМ ИНТЕРЕСНОМ СЛУЧАЕ ИОНОСФЕРНОГО МЕРЦАНИЯ НЕ-	46
ИЗВЕСТНОГО РАДИОНСТОЧНИКА . В. А. Санамян	
НАБЛЮДЕНИЯ СВЕЧЕННЯ НОЧНОГО НЕБА В БЮРАКАНЕ Г. В. Абраамян, Л. Г. Ахвердян	50
I. D. MUDUUMAN, VI. I. MADOPUAN	00
ПОИСКИ ЦЕПОЧКООБРАЗНЫХ ГРУПП ГАЛАКТИК НА КАРТАХ ПАЛО-	55
МАРСКОГО АТЛАСА	00
к решению задач переноса излучения в полубесконечных	59
CDETAY	09
таблицы некоторых функции теории перепоса ного чения.	-
Р. Р. Анореасян	79
ПРЕОБРАЗОВАНИЕ ЧАСТОТЫ ВВЕРХ КАК МЕТОД ДЕТЕКТИРОВАНИЯ	
инфракрасного излучения в астрономии то. к. мехик-	
Алавероян, А. Н. Фраскин	95
РАСЧЕТ ОПТИМАЛЬНОГО АСТРОНОМИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ	
илстоты Ю. К. Мелик-Алавероян, А. П. Фроскин	107
амплитулный молулятор с двумя выходами . в. г. начасжи	111
к вопросу о вычислении ф.функции амбарцумяна .	
Р. Р. Андреасян, Э. Х. Даниелян	114

ቦበዺԱՆԴԱԿՈՒԹՑՈՒՆ

է. 3m. Հովճաննիսյան Երկնագույն օբյեկտներ M 13 գնդաձև աստղակույտի շրջակայթում. 1	5
Ն I իվանովա <i>- Գամմա Կասիոպեայի դիտումները</i>	22
Ն. Լ. Իվանովա, Ա. Ն. Խոտնյանսկի—HD 187399-ի սպեկարը	33
Մ. Հ. Երիցյան-AD Leo և EV Lac աստղերի լուսանկարչական և թևեռաչափական դիտում-	
bbnn	40
վ. Ա. Սանամյան—Անհայտ ռադիսաղբյուրի իոհոսֆերային առկայծման մի հետաքրքիր	20
դեպքի մասին	46
2. վ. Արբանամյան, Լ. Գ. Հախվերդյան—Բյուրականի գիշերային երկնքի ճառագայիման	
դիտումները	30
Ռ. Ա. Վաողանյան <i> Շղթալաձև գալակտիկ խմբերի որոնումը Պալոմարի քարտեզների վրա</i>	55
Մ. Ա. Մնացականյան-Կիսանվերը միջավայրերում տեղափոխման տեսության խնդիրևերի	
լուծման մասին	59
Ռ. Ռ. Անդբեասյան— <i>Տեղափոխման տեսության որոշ ֆունկցիաների ազյուսակներ</i> .	29
Bat. 4. Մելիք-Ալավհագյան, Ա. Ն. Ֆաադկին—Համախականության ձևափոխումը վեր, որպես	
աստղագիտության մեջ ինֆրակարմիր ձառագայթման ընդունման հղանակ	95
8սւ. Կ. Մելիք-Ալավեւդյան, Ա. Ն. Ֆրադկին <i>-Հանախականության աստղագիտական ձևա-</i>	
փոխիչի օպտիմայ Հաշվարկ	107
Վ. Գ. Փանաբյան — Երկու սիմետրիկ ելբով ամպլիտուդային փոխանջատիչ	111
Ռ. Ռ. Անդրիասյան, Է. Խ. Դանիհլյան_2ամբարձումյանի «- ֆունկցիայի հայվման վերա-	
рырды јшј	114

CONTENTS

E. Y. Hovanissian—Blue Objects in the Vicinity of M13. I
N. L. Ivanova—The Observations of Gamma Cassiopeja
N. L. Ivanova, A. N. Khotnlanski—The Spectrum of HD 187399
M. A. Eritsian— Polarimetric and Photometric Observations of the Stars EV Lac and AD Leo V. A. Sanamian—About One Interesting Case of Ionospheric Scintillations of Unknown Radiosource II. V. Abrahamian, L. G. Hachverdian—Byurakan Night Sky. Observations R. A. Vardanian—Search for Chain—Shaped Groups of Galaxies on the Palomar Atlas Prints M. A. Mnutsakanian—On the Solution of Radiation Transfer Problem in Semiinfinite Mediums. R. R. Andreasian—Tables of Some Functions of Radiative Transfer Theory Ju. K. Melik-Alaverdian, A.N. Fradkin—UP-Convertion as a Method of Detecting of Infrared Padiation in Astronomy 95
Lac and AD Leo V. A. Sanamian—About One Interesting Case of Ionospheric Scintillations of Unknown Radiosource H. V. Abrahamian, L. G. Hachverdian—Byurakan Night Sky. Observations R. A. Vardanian—Search for Chain—Shaped Groups of Galaxies on the Palomar Atlas Prints M. A. Mnutsakanian—On the Solution of Radiation Transfer Problem in Semiinfinite Mediums. R. R. Andreasian—Tables of Some Functions of Radiative Transfer Theory Ju. K. Melik-Alaverdian, A.N. Fradkin—UP-Convertion as a Method of Detecting of Infrared Padiation in Astronomy 95
Unknown Radiosource
 H. V. Abrahamlan, L. G. Hachverdian—Byurakan Night Sky. Observations 50 R. A. Vardanian—Search for Chain—Shaped Groups of Galaxies on the Palomar Atlas Prints M. A. Mnutsakanian—On the Solution of Radiation Transfer Problem in Semiinfinite Mediums. R. R. Andreasian—Tables of Some Functions of Radiative Transfer Theory Ju. K. Melik-Alaverdian, A.N. Fradkin—UP-Convertion as a Method of Detecting of Infrared Padiation in Astronomy 95
R. A. Vardanian—Search for Chain—Shaped Groups of Galaxies on the Palomar Atlas Prints
R. A. Vardanian—Search for Chain—Shaped Groups of Galaxies on the Palomar Atlas Prints
lomar Atlas Prints
M. A. Mnutsakanian—On the Solution of Radiation Transfer Problem in Semiinfinite Mediums. 8. R. Andreasian—Tables of Some Functions of Radiative Transfer Theory. 95 95 96 97 98 98
finite Mediums
R. R. Andreasian—Tables of Some Functions of Radiative Transfer Theory
Ju. K. Melik-Alaverdian, A.N. Fradkin-UP-Convertion as a Method of Detecting of Infrared Padiation in Astronomy
of Infrared Padiation in Astronomy · · · · · · · 95
In K Malib Alayerdian A N Fradkin-The Calculation of Optimal Astronomical
UP-Convertor · · · · · · · · · · · · · · · · · · ·
V G. Panajtan—An Amplitude Modulator with two Outputs
R. R. Andreasian, E. Kh. Danielian On Calculation of Ambartsumian's 7-Function 114

УДК 523.82

Голубые объекты в окрестности М13.1. Оганесян Э. Я. «Сообщения Бюраканской обсерватории», 1978 г., вып. L. стр. 5.

Приведены фотометрические данные в системе UBV для 225 объектов в области размером 16 квадратных градусов, прилегающей к скоплению M13.

Построены «двухцветная диаграмма» и диаграмма «цвет—светимссть», на основании которых сделан анализ полученных данных. Половину исследованных объектов составляют субкарлики. Среди остальных—бело-голубые карлики, обычные эвезды главной последовательности, звезды гало, звезды шарового скопления и объекты, возможно, имеющие внегалактическую природу. На основе распределения объектов по яркости и цвету, а также по их видимому распределению можно выделить несколько различных групп.

В результате фотометрического исследования выявлено также несколько переменных звезд.

Таблиц 4, рисунков 6, приложений 2, библиографий 14.

УДК 523.872.

Наблюдения гаммы Кассиопеи. Иванова Н. Л. «Сообщения Бюраканской обсерпатории», 1978 г., вып. L, стр. 22.

В работе даны результаты наблюдений ткасснопен с бесщелевым спектрографом АСИ-5 Бюраканской обсерватории и с 1.5 м телескопом Верхнего Прованса (Франция): распределение энергии в непрерывном спектре в 1956—1970 гг., профили и эквивалентные ширины эмисснопных линий На, Нэ, Нт и 5876 Hel, величины отношения V/R.

Таблиц 4, рисунков 6, библиографий 15.

УЛК 523.872

Спектр . Н D 187399. Иванова Н. Л., Хотнянский А. Н. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 33.

Работа содержит результаты исследования пяти спектров знезды НD 187399, полученных в фокусе куде 2-метрового телескопа Шемахинской обсерватории с дисперсиями 4 и 8 А/мм в спектральной области λλ 3600—4900. Измерены лучевые скорости изучены профили Н, HeI, MgII, SiII, CaII. Установлено, что в двойной системе имеются две оболочки, одна из которых принадлежит главной звезде В9 и имеет среднюю скорость —21 км/сек, вторая, по-видимому, окружает всю систему и расширяется со средней скоростью—90 км/сек. В водородных линиях обнаружен компонент,

имеющий переменную скорость и принадлежащий, возможно, «невидимой» звезде системы.

Таблиц 5. рисунков 4. библиографий 5.

удК 523.841

Поляриметрические и фотометрические наблюдения звезд EV Lac и AD Leo во время вспышки. Ерицян М. А. «Сообщения Бюраканской обсерватории», 1978 г., вып. L. стр. 40.

В настоящей работе приведены результаты поляриметрических и фотометрических наблюдений вспыхивающих звезд EV Lac и AD Leo. За 89,5 часа наблюдения было зарегистрировано 7 вспышек, сводка наблюдений и кривые блеска которых приведены в таблице и на рисунках.

Результаты поляриметрических наблюдений во время вспышки не отличались от результатов поляризации в спокойном состоянии этих звезд и находились в предслах опшбки измерения ($\sigma_p = \pm 0.4 \pm 0.6\%$, $\sigma_p = \pm 0.4 \pm 0.6\%$).

Таблица 1, рисунков 2, библиографий 5.

УЛК 523.164

Об одном интересном случае ионосферного мерцания неизвестного радиоисточника. Санамян В. А. «Сообщения Бюраканской обсерватории» 1978 г., вып. L, стр. 45.

Приводятся данные поносферного мерцания неизвестного радиоисточника, находящегося в направлении звездного скопления Плеяды. Сигнал регистрировался на частоте 327 Мгц с помощью Индийского радиотелескопа.

Рисунок 1, библиографий 3.

УДК 523.105

Наблюдения свечения ночного неба в Бюракане. Абраамян Г. В., Ахасрдян Л. Г. «Сообщення Бюраканской обсерватории», 1978 г., вып. L, стр. 50.

В работе приведены результаты наблюдений ночного неба Бюраканской астрофизической обсерватории в U, B, V полосах.

Таблица 1, рисунков 3.

УДК 523.855

Поиски цепочкообразных групп галактик на картах Паломарского атласа. Варданян Р. А. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 55.

Приводятся список и карты отождествлений 28 цепочкообразных групп галактик, найденных на картах зон [в]>30° Паломарского атласа.

Таблица 1, рисунков 28, библиографий 10.

УДК 523.035

К решению задач переноса излучения в полубесконечных средах. Мнацаканян М. А. «Сообщения Бюряканской обсерваторин», 1978 г., вып. L, стр. 59.

, Предлагается новая методика решения различных задач о выходящем из полубесконечной среды излучении. Фактически построен математический аппарат, основанный на введении оператора инвариантности G, обладающий физической прозрачностью и, по сути дела, представляющий собой не что иное, как аппарат инвариантности в обычном смысле Амбарцумяна. Даются иллюстрации на примерах почти всех хороню известных простейших задач теории переноса излучения в полупространстве. Библиографий 12.

УДК 523.035

Габлицы некоторых функций теории переноси излучения. Андреасян Р. Р. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 79.

Приводятся таблицы функций $F(\tau,\tau)$ и $F(\tau,\xi)$ для разных значений λ . При изотропном монохроматическом рассеянии в однородной среде посредством этих функций элементарно выражается ядро $Z(\tau,\tau,\xi)$ уравнения Фредгольма, связывающего задачи переноса в слое конечной оптической толщины с соответствующими задачами для полубесконечной среды. Функция $Z(\tau,\tau,\xi)$ сама описывает режим излучения в полубесконечной среде, освещенной параллельными лучами. Кроме того, с помощью функций $F(\tau,\tau)$ и $F(\tau,\xi)$ записываются квазнасимптотические решения задач переноса для слоя конечной оптической толщины.

Таблиц 13, библиографий 7.

УДК 522.59

Преобразование частоты вверх как метод детектирования инфракрасного излучения в астрономии. Мелик-Алавердян Ю. К., Фрадкин А. И. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 95.

Рассмотрен астрономический приемник инфракрасного излучения, основаниый на нелинейном преобразовании излучения. Рассчитаны основные параметры этого приеминка и сформулированы основные требования к его конструкции.

Таблиц 4, рисунков 4, библиографий 18.

УДК 522.59

Расчет оптимального астрономического преобразователя частоты. Мелик-Алавердян Ю. К., Фрадкин Л. И. «Спобщения Бюраканской обсерватории», 1978 г., вып. L, стр. 107.

В работе выполнен расчет эффективности ООЕ преобразования в видимый днапазон инфракрасного излучения в фокусе телескопа. Получениые соотношения позволяют выбрать оптимальную для данного телескопа и имеющегося нелинейного кристалла схему преобразования и рассчитать ожидаемую эффективность преобразования и величину преобразованного сигнала.

Рисунок 1, библиографий 5.

УДК 523. 164

Амплитудный модулятор с двумя выходами. Панаджян В. Г. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 111.

Описывается схема двухканального амплитудного модулятора с двумя симметричными выходами, разработанияя для двухканального модуляционного радиометра Грэхема Бюраканской астрофизической обсерватории.

Рисунок 1, библиография 1,

имеющий переменную скорость и принадлежащий, возможно, «невидимой» звезде системы.

Таблиц 5, рисунков 4. библиографий 5,

УДК 523.841

Поляриметрические и фотометрические наблюдения звезд EV Lac и AD Leo во время вспышки. Ерицян М. А. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 40.

В настоящей работе приведены результаты поляриметрических и фотометрических наблюдений вспыхивающих звезд EV Lac и AD Leo. За 89,5 часа наблюдений было зарегистрировано 7 вспышек, сводка наблюдений и кривые блеска которых приведены в таблице и на рисунках.

Результаты поляриметрических наблюдений во время вспышки не отличались от результатов поляризации в спокойном состоянии этих звезд и находились в пределах

ошибки измерения ($\tau_p = \pm 0.4 \div 0.6\%$, $\tau_0 = \pm 5 \div 10^\circ$). Таблица 1, рисунков 2, библиографий 5.

УДК 523.164

Об одном интересном случае ионосферного мерцания неизвестного радиоисточника. Санамян В. А. «Сообщения Бюраканской обсерватории» 1978 г., вып. L, стр. 45.

Приводятся данные ноносферного мерцания неизвестного радиоисточника, находищегося в направлении звездного скопления Плеяды. Сигнал регистрировался на частоте 327 Мгц с помощью Индийского радиотелескопа.

Рисунок 1, библиографий 3.

УДК 523.105

Наблюдения свечения ночного неба в Бюракане. Абраамян Г. В., Ахосрдян Л. Г. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 50.

В работе приведены результаты наблюдений ночного неба Бюраканской астрофизической обсерватории в U, B, V полосах.

Таблица 1, рисунков 3.

УДК 523.855

Поиски цепочкообразных групп галактик на картах Паломарского атласа. Варданян Р. А. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 55.

Приводятся список и карты отождествлений 28 цепочкообразных групп галактик, найденных на картах зон [в]>30° Паломарского атласа.

Таблица 1, рисунков 28. библиографий 10.

УДК 523.035

К решению задач переноса излучения в полубесконечных средах. Мнацаканян М. А. «Сообщення Бюраканской обсерваторин», 1978 г., вып. L, стр. 59.

Предлагается новая методика решения различных задач о выходящем из полубесконечной среды излучении. Фактически построен математический аппарат, основанный на введении оператора инвариантности G, обладающий физической прозрачностью и, по сути дела, представляющий собой не что нное, как аппарат инвариантности в обычном смысле Амбарцумяна. Даются иллюстрации на примерах почти всех хороню известных простейших задач теорий переноса излучения в полупространстве.

Библиографий 12.

УДК 523.035

Габлицы некоторых функций теории переноса излучения. Андреасян Р. Р. «Сообщения Бюраканской обсерватории», 1978 г., вып. L, стр. 79.

Принодится таблицы функций $F(\tau,\eta)$ и $F(\tau,\xi)$ для разных значений λ . При изотропном монохроматическом рассеянии в однородной среде посредством этих функций элементарно выражается ядро $Z(\tau,\eta,\xi)$ уравнения Фредгольма, связывающего задачи переноса в слое конечной оптической толщины с соответствующими задачами для полубесконечной среды. Функция $Z(\tau,\eta,\xi)$ сама описывает режим излучения в полубесконечной среде, освещениой параллельными лучами. Кроме того, с помощью функций $F(\tau,\eta)$ и $F(\tau,\xi)$ записываются квазнасимптотические решения задач переноса для слоя конечной оптической толщины.

Таблиц 13, библиографий 7.

УДК 522.59

Преобразование частоты вверх как метод детектиропания инфракрасного излучения в астрономии. Мелик-Алавердян Ю. К., Фрадкин А. Н. «Сообщения Бюраканской обсерватории», 1978 г., вып. L., стр. 95.

Рассмотрен астрономический приемник инфракрасного излучения, основанный на нелинейном преобразовании излучения. Рассчитаны основные параметры этого приемника и сформулированы основные требования к его конструкции.

Таблиц 4, рисунков 4, библиографий 18.

УДК 522.59

Расчет оптимального астрономического преобразователя частоты. Мелик-Алавердян Ю. К., Фрадкин А. II. «Сообщения Бюраквиской обсерватории», 1978 г., вып. L, стр. 107.

В работе выполнен расчет эффективности ООЕ преобразования в видимый диапазон инфракрасного излучения в фокусе телескопа. Полученные соотношения позволяют выбрать оптимальную для данного телескопа и имеющегося нелинейного кристалла схему преобразования и рассчитать ожидаемую эффективность преобразования и величину преобразованного сигнала.

Рисунок 1, библиографий 5.

УДК 523. 164

Амплитудный модулятор с двумя выходами. Панаджян В. Г. «Сообщения Бюрвканской обсерватории», 1978 г., вып. L, стр. 111.

Описывается схема двухканального амплитудного модулятора с двумя симметричными выходами, разработанияя для двухканального модуляционного радиометра Грэхема Бюраканской астрофизической обсерватории.

Рисупок 1, библиография 1,

УДК 523.035

К вопросу о вычислении ү-функции Амбарцумяна. Андреасян Р. Р., Дана Э. Х. «Сообщения Бюраканской обсерватории». 1978 г., вып. L, стр. 114.

В работе приводится новое функциональное уравнение для функции Амбарцум Вычисления φ -функции из этого уравнения оказались эффективнее известных с бов. Результат обобщается на случай анизотропного рассеяния, т. е. приводится логичное уравнение для H^{m} -функции Амбарцумяна—Чандрасскара. Библиографий 5.

