Ζ**ϤՅԿԱԿԱՆ ՍՍΖ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԳԵՄԻԱ** <u>ΑΚΑ</u>ДЕМНЯ НАУК АРМЯНСКОЙ ССР

<u>ԲՅՈՒՔԱԿԱՆԻ ԱՍՏԳ</u>ԱԴԻՏԱՐԱՆԻ ՀԱՎՈՐԴՈՒՄՆԵՐ СООБЩЕНИЯ БЮРАКАНСКОЙ ОБСЕРВАТОРИИ

ЧРИЧ XXXVIII ВЫПУСК

питицииналь рабраяр Ц. с. «Шаверониви» Ответственный редактор В. А. АМБАРЦУМЯН

*

Г. С. Бадалян, Л. К. Ерастова

ТРЕХЦВЕТНЫЕ НАБЛЮДЕНИЯ НЕСТАЦИОНАРНЫХ ЗВЕЗД В ОБЛАСТИ NGC 2264

введение

В 1963—1964 годах в Бюраканской астрофизической обсерватории нами были проведены наблюдения звезд типа RW Возничего и родственных им объектов в области открытого скопления NGC 2264. Цель работы — получить некоторое представление об изменениях блеска переменных и их цветах за вышеупомянутый период времени.

Наблюдательный материал был получен на метровом телескопе системы Шмидта Бюраканской обсерватории.

Область по возможности фотографировалась в трех цветах в одну и ту же ночь, хотя это не всегда удавалось.

Всего обработано 18 пластинок: 8 в синем, б в желтом и 4 в ультрафиолетовом цветах.

В качестве стандарта использовалось рассеянное звездное скопление NGC 2251 [1]. Поскольку стандарт и исследуемая область расположены на той же пластинке, то в поправках за атмосферную экстинкцию не было необходимости.

Измерялись переменные примерно до V = 17"

Обработка негативов производилась на объективном микрофотометре МФ-2А по методике, описанной в [2]. Для построения характеристических кривых использовали не менее 15 звезд. Перед началом основных измерений в исследуемой области скопления NGC 2264 был выбран ряд звезд в качестве звезд сравнения. Однако оказалось. что часть из них, по всей вероятности, переменные. Поэтому мы отказались от их использования в работе для указанной цели.

Для того чтобы добиться приблизительного соответствия с системой UBV, были использованы сочетания сортов пластинок и фильтров, описание которых приведено в табл. 1.

Таблица 1

1 C 10		and the second produces the	
№ пл.	J. D.	Сорт пластинов	Фильтр
93	2438 348.470	Kodak OeF	Schott GG 11
101	351.464	Agfa astro uns.	Schott UG 2
103	351.484	Kodak OaF	Schott GG 11
119	352.446	Agfa astro uns.	Schott UG 2
120	352.464	Agfa astro uns.	Schott UG 2
122	352.509	Kodak OaF	Schott GG 11
125	352.573	Agfa astro uns.	_
126	352.595	Agfa astro uns.	_
131	353.384	Agfa astro uns.	-
132	353.401	Agfa astro uns.	
136	353.484	Kodak OaF	Schott GG 11
144	355.464	Agfa astro uns.	-
155	377.339	Agfa astro panchrom.	Schott GG 11
158	377.391	Agfa astro uns.	_
165	732.473	Agfa astro special	
168	733.338	Agfa astro special	Schott UG 2
169	733.384	Agfa astro panchrom.	Schott GG 11
170	733.438	Agfa astro special	
	a contract of the second		

В табл. 2, 3 и 4 приведены данные об изменениях блеска переменных в В-, V-, U-цветах соответственно. Таблицы

and the second second

Таблица 2

Приме-№ авсады 125 126 131 132 144 158 165 170 чання 4 17"56 W 1 17"75 <17"9 <17^m9 17^m57 17.69 <17"6 <17"4 LH., 1 17.56 17.52 17.47 17.51 17.60 17.31 17.28 17.29 LH, 2 17.16 17.06 16.77 16.98 17.06 16.96 16.36 16.61 LH₂3 16.17 16.02 16.34 16.34 16.00 15.90 15.81 15.81 16.18 LH, 4 16,16 16.07 16.14 15.84 16.02 15.91 15.90 17.80 LH, 5 17.80 <17.9 <17.9 <17.9 17.86 <17.6 <17.4 LH, 6 17.03 16.78 16.89 16.99 16.86 16.99 16 67 16.95 17.47 LH, 7 17.46 17.35 17.20 17.56 17 23 16.94 16.96 d <17.9 17.80 <17.9 <17.9 LH, 8 <17.9 17.82 <17.6 <17.4 a 13.71 KW 13.63 13.75 13 76 13.12 13.60 13.81 — LH. 9 <17.9 -17.9 16.92 16.87 17.58 17.06 <17.6 <17.4 17.17 LH, 10 16.90 <17.9 <17 9 17.37 17.42 17.18 17.22 <17 9 17.85 <17.9 <17.9 LH, 11 16.72 17.64 17.31 17 29 et. R 5 <17.9 17.83 <17.9 <17.9 17.78 17.64 <17.6 <17.4 16.77 LH, 12 16.85 <17.9 <17.9 16.67 16.48 16.16 16.49 LH, 14 -17.56 ____ Ь -------____ 17.31 R 6 17.40 17.62 17.23 17.42 17,47 17.25 17.35 Ь LH, 13 17.09 17,08 17.10 17.59 17.14 16.76 16,92 16.65 b

Оценки В-величии

№ звезды	125	126	131	132	144	158	165	170	Приме- чания
NU	17 ^m 84	17 ^m 87	<17 ^m 9	17 ^m 79	17 ^m 80	<17.9	17"40	17"38	- b
R 7	<17.9	<17.9	<17.9	<17.9	17.69	<17.9	<17.6	<17.4	
LH ₂ 15	17.15	17.18	16.94	17.14	17.21	17.24	17.03	17.04	Ь
LH, 17	17.20	16.85	17.06	17.23	17.08	17.28	15.90	16,10	c
W 5	17.65	17.48	17.16	17.48	17.38	17.29	17.17	16.95	e
LN	16.45	16.42	16.59	16.54	16.05	16.43	16.11	16.05	u
LH ₄ 19	17.19	16.96	16.90	17.06	16.72	17.05	16.96	17.00	e
LH, 20	17.59	17.70	17.53	17.68	17.64	17.06	<17.6	<17.4	e
LH _a 18	16.37	16.08	16.22	16.22	16.11	16.40	16.16	15.96	b
LH, 21	14.56	14.77	14.98	14.57	14.13	15.18	14.66	14.38	Ь
LH _a 22	16.19	16.11	16.15	16.27	15.86	16.05	15.36	15.55	a
W 7	16.97	17.00	17.09	17.28	16,69	16.93	16.36	16,50	e
LH _a 23	17.45	17.39	17.21	17.48	17.25	17.07	16.67	17.15	4
LH _a 24	-	-	17.24	_	_	17.27	17.21	17.15	e
LH ₄ 25	13.88	13.68	13.75	13.52	13.31	14.02	13.30	-	c
R 10	15.64	15.40	15.63	15.59	15.16	16.60	15.31	15.21	
LH, 27	15.92	15.80	15.37	15.46	15.60	15.74	14.99	14.86	c
LH, 26	16.66	16.52	16.45	16.65	16,50	17.28	16.63	16.69	0
LH, 28	17.65	17.85	<17.9	<17.9	<17.9	<17.9	<17.6	<17.4	c

№ звсяды	125	126	131	132	144	158	165	170	Приме- чания
LH, 31	17 ^m 10	17 ^m 08	17 ⁱⁿ 33	17 ^m 30	16 ^m 76	17 ^m 03	1672	17 ^m 00	c
LH, 30	16.72	16.79	16.73	16.84	16.57	16.33	16.26	16.19	
LH, 29	17.52	17.56	17.42	17.64	<17.9	17.38	<17.6	<17.4	
LH_ 32	17.45	-	17.07		17.24	17.12	16.83	16.91	
LH, 33	16.19	16.03	15.98	16.03	16.16	16.68	15.95	16.00	a
R 13	17.26	17.47	17.26	17.62	17.53	17.56	17.05	17.17	
LH, 34	17,46	17.39	17.48	17.54	17.36	17.36	17.07	17.27	a
LH_ 37	17.58	17.70	~17.9	<17.9	17.78	<17.9	16.87	17.12	Ь
LH_ 35	15.76	15.54	15.64	15.81	15.46	15.69	15.43	15.47	a
LH_ 41	16.60	16.57	16.56	16.79	16.65	16.49	16.42	16.39	a
LH_ 38	<17.9	<17.9	<17.9	<17.9	<17.9	<17.9	16.67	17.11	a
LH_ 43	14.92	15.00	15.36	15.49	14.26	14.93	15.02	14.73	a
W 13	17.68	17.60	17.21	-	17.61	17.60	17.44	17.34	
LH, 44	17.42	17.29	17.47	17.63	16.69	17.28	17.32	17.20	
LH_ 47	14.79	14.74	14.74	14.50	14.13	14.73	14.74	14.57	a
R 15	17.36	17.44	17.41	17.30	17.57	17.31	17.34	17.16	a
LH, 45	17.09	17.04	16.99	17.21	16.86	16.97	16.84	17.16	a
LH_ 46	_		_	-	-	17.79	-	-	
R 16	16.51	16.49	16.73	16.80	16.01	16.68	15.63	15.64	Ь

№ авсады	125	126	131	132	144	158	165	170	Приме-
R 17	16 ^m 83	16 ^m .85	16 ^m 76	1688	16 ^m 53	17"04	161103	16/196	
R 18	16.42	16.42	16.22	16.54	15.90	16 29	15 00	10,00	
R 19	16.44	16.26	16.51	16.55	15.79	15.84	15.50	15.44	
R 20	17.53	17.57	- 17.13	16.54		17 44	17 20	15,99	
R 21	17.69	17.73	17.44		17.80	17.47	17.20	17.39	
139	-	-		-	-		17.52	17.20	a
LH _a 48	17.21	16.96	17.07	17.24	17.26	17.33	17.07	17.30	c
V 357	16.42	16.33	16.34	16.44	16.06	16 49	15 75	17.11	a
R 23	17.39	17.15	17.48	17.46	16.86	17 11	16.50	15.05	a
R 24	16.72	16.68	16.86	16.90	16.23	16.72	16.05	16 14	C
LH, 52	14.50	-	14.60		13.92	14 43	15 30	10.19	C
R 25	16.24	16.18	16.50	16.38	15.53	16.82	15.55	15,51	
LH ₂ 51	16.93	16.97	17.20	17.09	16.76	16.62	16.07	15.50	C
LH ₂ 49	16.36	16.27	16.27	16.50	16 41	16.36	16.60	10.44	a
LH ₂ 53	14.16	14.30	14.37	14.20	13 62	14 16	14.09	10.00	
W 16	17.53	17.17	17.07	17.06	17 75	-17.0	14.23	14.00	
141	16.62	16.55	16.53	16.66	16 56	16.29	<17.0	17.36	
LH, 57	17.03	16.96	16.98	17.08	16.70	10.50	16.13	16.33	
143	17.09	17.09	17.05	17.11	17.04	17.00	16.61	16.78	
1					17.09.	17.02	17.00	16.99	

№ авсады	125	126	131	132	144	158	165	170	Приме- чания
LH ₄ 58	17 ^{.n} 48	17 ^m 32	17 ^m 05	17 ^m 34	1778	17'"19	17 ^m 6	<17 ⁱⁿ 4	1
LZ	16.53	16.32	16.58	16.41	16.32	16.46	15.83	16.16	
LH ₄ 60	15.50	15.54	15.24	15.23	15.50	15.58	14.51	14.25	
LH., 59	17.30	17.23	16.88	17.00	16.39	16.96	16.59	16.55	a h
LH, 61	-		14.66		13.84	14.69	14.93	14.87	1
W 19	17.79	17.66	<17.9	<17.9	<17.9	17.73	<17.6	<17.4	6
R 27	<17.9	17.90	<17.9	<17.9	<17.9	<17.9	<17.6	17.4	1
LH, 62	-	- *	15.83	_	16.01	15.51	15.53	15.46	h
LH, 64	<17.9	17.76	<17.9	<17.9	<17.9	17.85	<17.6	<17.4	
LH ₇ 66	16.89	17.03	16.80	16.83	16.03	16.42	16.13	16 29	
R 29	16.65	16.52	16.85	16.79	16.18	16.19	15.32	15.25	
LH ₇ 65	16.07	15.99	16.07	16.20	16.16	16.08	15.85	15.86	0
LH, 67	17.03	17.44	<17.9	<17.9	17.39	17.57	<17.6	17 45	
OU	17.56	17.65	17.54	17.74	17.52	17.58	<17.6	17.44	a
LH, 68	16.70	16.50	16.38	16.63	16,17	16.24	16.21	16.59	
LH, 69	<17.9	<17.9	<17.9	<17.9	<17.9	17.77	17.6	<17.4	
LH, 70	16.79	16.60	16.81	16.84	15.96	16.00	16.93	16.97	u u
LH, 71	17.26	17.23	17.07	17.22	17.21	16.99	16.90	16.87	a
LH ₂ 72	15.26	15.16	15.62	15.62	14.15	14 80	16.13	16.17	

		1	1 31 0	1	1	1		1	Приме-
№ звезды	125	126	131	132	144	158	165	170	чания
LH _a 73	16 ^m 08	16 ^m 00	16 ^m 09	16 ^m 12	15 ^m 59	16 ^m 00	15 ^m 91	15 ^m 89	
LH _a 74	16.97	16.82	16.80	16.95	16.97	16.86	16.68	16.88	
LH, 75	14.54	14.62	14.70	14.43	14.02	14.33	15.17	14.49	The second
LH, 77	15.11	15.02	14.98	15.14	14.38	14.90	14.92	14.86	1 62%
LH _a 76	16.58	16.34	16.50	16.61	16.10	16.53	16.61	16.42	10000
LH, 79	15.30	15.28	15.26	15.42	15.17	15.23	15.00	14.94	Read I
LH, 78	<17.9	<17.9	<17.9	<17.9	<17.9	17.58	<17.6	<17.4	and a s
R 32	16.85	16.86	16.56	16.85	16.51	16.67	16.53	16.57	2. 355 m
LH_ 80	17.35	17.37	16.75	16.92	17.35	<17.9	<17.6	<17.4	1 Seco
LH_ 81	17.12		17.20	-	16.76	16.17	17.12	17.29	
LH_ 82	16.72	16.60	16.59	16.78	16.49	16.22	16.38	16.29	The second
LH 83	16.27	16.08	15.74	15.89	15.57	16.18	15.62	15.65	Million F
V 373	15.79	15.67	15.60	15.55	15.46	15.65	-	15.27	1
LH _a 84		14.66	15.10	15.38	14.24	14.79	14.32	14.22	2

Таблица З

	-	Oue	HXW A-RCYE		_	
ул звезти	93	103	122	136	155	169
W 1	16 ^m 07	_	-	_	16 ^m 43	16 ^m .10
LH, 1	15.83	-	-	-	15.83	15.63
LH, 2	15.42 -	15.42	-		15.57	15.05
LH ₃	14.79	14.65	-		14.52	14.55
LH _c 4	15.08	-	-	-	14.95	14.84
R 1	16.37	16.49	-	-	16.48	16.29
R 2	16.74	16.33	<16.8	<17.0	16.49	16.65
LH 5	16.65	16. 6 0	16.19	16.65	16.84	16.01
LH, 6	15.47	-	-	-	15.52	15.17
LH. 7	16.49	-	-	-	16.57	16.13
LH, 8	16.26	- 1	_	-	16.08	16.05
KW.	-	13.11	_	13.18	13.13	13.15
LH _a 9	16.05	15.96	<16.8	16.26	16.32	16.14
LH, 10	16.30	16.89	<16.8	<17.0	17.00	16.85
LH, 11		—			-	
R 5	<16.9	16.99	16.27	16.96	16.53	16.72
LH. 12	14.76	14.79	14.77	16.28	14.79	14.61
LH, 14	16.79	-	—	-	16.90	17.13
R 6	15.53		_		15.55	15.53
LH 13	15.23	15.52		_	15.33	15.22
NU	16.65	_		_	16.73	16.45
R 7	16.34			- 1	16.33	16.35
LH 15	16.07	-		-	16.12	15.88
LH 17	15.52		-	-	15.46	14.87
LH 16	16.71	16.89	<16.8	16.71	16.81	16.90
W 5	14.99	_		-	15.03	15.01
LN	14.90	_	-		15.04	15.01
LH 19	15.25		_	- 1	15.03	15.24
LH 20	15.99	_			15.68	19.94
LH. 18	14 44	14.48	14.47	14.40	14.61	14.59
LH ₂ 21	•	-	_	-	13.44	13.54
LH _e 22	16.39	15.70	15.64	15.73	16.05	15.08

)ценки V-величин

Г. С. БАДАЛЯН, Л. К. ЕРАСТОВА

N. MLESES	93	103	122	136	155	169
	3 (11)76		-	-	14 ^m 66	14 ^m 65
111	1470	15 57	15 59	15.70	15.99	15.73
LH_ 23	15.41	15.57	10.02	-	15.27	15.55
LH 24	15.88	10.09		_	13.12	-
LH_ 25	-	12.90	14 07	14.07	14.95	13.96
R 10	14.20	13.97	11.07	_	13.76	13.65
LH_ 27	13.50	14.02	15 50	15.44	16.23	15.37
LH, 26	15.55	14.92	15.57		16.84	17.21
LH, 28	16.60	-		1	14.81	15.24
LH ₂ 31	14.85	-	15 22	15 33	15.28	15.08
LH, 30	15.37	15.03	15.09	16 10	16.15	16.12
LH, 29	15.96	10.11	13.90	10.10	-	. 14.75
LH ₂ 32	15.17	14.10	14 57	14 52	14.79	14.61
LH, 33	14.24	14.10	14.57	16 64	16.93	16.65
K 13	<10.9	10.45	15.02	16.01	16.17	15.68
	16.05	15.71	15.72	10.01	16.31	16.45
	10.00	14 19	14 13	14 28	14.27	14.22
LU ² 32	14.14	14.12	-16.8	<17.0	16.44	<17.2
	16.05	14 70	14 81	14 89	14 89	14.88
111 20	16.07	14.77	16 12	16 53	16 41	14.91
	16.25	16.00	-16.8	16.54	16.84	16.70
	10.55	10.77	10.0	13 71	13 75	13.44
LΠ _α 43	15 64	15.52	15 43	15.62	15.83	15.43
	15.04	15.50		15.02	16.12	15.90
LIX, 11 IH 42	-16.9	16.92	16 60	16.95	<17.0	17.25
14 47	10.5	12 90	10.00	12 97	13.06	12.93
D 15	15.06	14.88	14 97		15 17	15.03
14 45	16 13	15.04	16 35	15 71	16.06	15 60
1H 46	16.30		10.55	15.71	16 74	16 31
R 16	14 52	_			14 33	14.78
R 17	15 55	15.03			15 49	15 38
R 18	14.29	14 46	14 56	14 60	14 57	14 68
P 10	14.88	14 17	14.50	14.60	14 25	14 20.
A 19	11.00	14.17		14.04	11.45	A

НАБЛЮДЕНИЯ НЕСТАЦИОНАРНЫХ ЗВЕЗД

. № звезды	93	103	122	136	155	169
R 20	16 ^m 03	15 ^m 76	16 ^m 03	15".85	16 ^m 01	15 ^m 48
R 21	16.49	15.90	15.86	15.87	16.13	16.00
139	15.73	-	-	-	15.67	15.65
LH, 48	15.49	15.28	15.31	15.64	15.62	15.56
R 22	16.38		- 15-		16.47	16.81
V 357	14.55	-	-	-	14.58	14.36
R 23	15.10	_	-		14.91	15.08
R 24	14.56	-	_	_	14.74	14.77
LH ₇ 52		-		-	13.67	13.12
R 25	14.33		-	_	14.71	14.43
LH, 51	14.90	-	_	-	15.04	14.92
LH, 49	15.60	15.32	15.23	15.28	15.69	15.61
LH ₁ 53	-	12.92	_	13.39	13.12	12.90
W 16	16.64	<17.1	16.58	17.01	<17.0	17.2
141	14.74	14.71	14.76	14.66	14.77	14.75
LH; 57	15.51	15.38	15.58	15.48	15.56	15.21
143	15.15	15.64	15.27	15.16	15.52	15.19
LH, 58	15.34	15.32	16.52	15.80	15.53	15.84
LZ	14.39	14.48	14.29	14.48	14.53	14.24
LH, 60	13.60	_		-	14.07	13.40
LH, 59	14.76	14.73	14.86	14.77	14.91	15.02
LH, 61	_	12.86	-		13.10	_
W 19	16.51	16.44	16.22	16.45	16.45	16.33
R 27	16.53	16.24	16.26	16.17	16.20	16.22
LH, 62	13.85	13.72	14.00	13.84	14.02	_
LH, 64	16.71	16.36	16.52	16.65	16.25	16.75
LH, 66	15.42	-	_	_	15.26	15.04
R 29	14.09	14.17	14.37	14.46	14.26	13.60
LH, 65	15.11	14.52	14.69	14.73	14.89	14.71
LH, 67	16.39	16.39	16.37	16.31	16.41	16.07
UO	15.73	15.61	15.53	15.59	15.83	15.52
LH_ 68	14.85	14.78	14.68	14.84	14.75	14.77
LH 69	<16.9	<17.1	<16.8	<17.0	16.86	17.11
	-					

Г. С. БАДАЛЯН, Л. К. ЕРАСТОВА

<u>э/.</u> Исезие	93	103	122	136	155	169
	1	141160	15 08	15""04	14 ^m 72	15 ^m 10
LH_ 70	15.10	14 00	15.00	15 51	15.80	15.54
LH, 71	15.73	15.59	13.77	11.02	13.66	14.20.
LH, 72	_	13.90	13.85	14.0-	14 52	14.74
LH ₂ 73	14.27		-	-	15.97	15.07
LH _a 74	15.27	15.17	—	-	10.00	12 91
LH, 75	-		-	-	13.29	10.01
LH 77		13.36	_	—	13.58	13.21
IH 76	15.14	15.07	14.92	15.04	15.14	14.85
IH 79	13 94	13.84	14.00	14.05	14.11	13.68
111 79	16 57	16.92	16.84	16.35	16.56	16.10
L.n. 10	15 27	15 20	15 23	15 40	15.21	14.90
K 52	15.27	15.20	10.10		_	16.61
LH, 80	10.22	_			15.87	15.90
LH_ 81	16.67	-	_	-	14 02	14 08
LH ₂ 82	14.63	-		-	14.00	1/ 20
LH_ 83	14.45	14.61	14.75	14.54	14.70	14.50
V 373		12.93	-	13.05	13.05	12.81
LH _x 84	-	13.08	-	13.85	13.61	13.35

построены следующим образом: второй столбец таблицы дает обозначения переменных по [3]—[7]. Порядок обозначений следующий: за основу принимался списох [3] (LH 1, LH, 2, \cdots LH, 84). Если звезды в нем не оказывалось, то приводится ее номер по [4] (R 1, R 2, \cdots R 32). Если звезды не было и в этом списке, то дается номер Вольфа (W 1, W 3 и т. д.) или Уокера (139, 140) из работы [5]. Для ранее открытых переменных, не вошедших ни в один из вышеупомянутых списков, приводится окончательное обозначение из [6] или [7] (LN, LZ, V 357 и т. д.). Звезды расположены в порядке возрастания прямых восхождений, приведенных к равноденствию 1900 года по р: боте [8].

НАБЛЮДЕНИЯ НЕСТАЦИОНАРНЫХ ЗВЕЗД

Оденки U-величин										
и сезае и	101	119	120	168						
	-	-	_	_						
	-		-	-						
LH _a 2	<16 ^m 8	<16 ^m 8	<16 ^m 7	16 ^m 53						
LH _a 3-	16.26	16.18	16.53	16.45						
LH _a 4	16.21	16.16	16.28	15.97						
LH _a 7	16.78	16.72	16.60	<16.7						
KW	13.77	13.72	13.72	13.80						
LH _a 9	16.51	<16.8	<16.7	<16.7						
LH, 10	16.77	16.79	<16.7	16.53						
LH, 14	<16.8	<16.8	<16.7	16.54						
LH, 13	16.78	<16.8	<16.7	16.25						
LH _a 15	16.48	16.51	16.54	<16.7						
LH, 17	16.35	16.26	16.50	16.76						
LN	16.59	16.58	16.64	16.26						
LH _a 20	16.64	<16.8	<16.7	<16.7						
LH _a 18	16.68	<16.8	16.58	16.52						
LH, 21	14.98	14.93	15.00	14.97						
LH ₂ 22	15.50	15.40	15.55	15.04						
LH, 25	13.51	13.52	13.39	13.12						
R 10	15.89	15.66	16.10	15.82						
LH ₂ 27	15.80	15.92	15.97	15.67						
LH, 26	15.41	16.14	16.28	16.22						
LH, 30	16.28	16.35	16.47	15.87						
LH, 33	16.42	16.22	16.53	16.21						
LH_ 35	15.96	15.94	16.23	15.96						
LH_ 41	<16.8	16.46	16.59	16.18						
LH_ 38	<16.8	<16.8	<16.7	16.20						
LH_ 43	15.47	15.36	15.64	15.61						
LH_ 44	16.56	<16.8	<16.7	<16.7						
LH. 47	15.52	15.58	15.75	15.57						
LH. 45	<16.8	<16.8	<16.7	16.38						

Таблица 4

Г. С. БАДАЛЯН, Л. К. ЕРАСТОВА

N5	101	119	120	168
Ля звезды	101			
R 16	16729	16 ^m 64	<16 ^m 7	15 ^m 82
- P 18	16 61	16.78	<16.7	16.39
R 10	16 35	16.55	16.68	16.33
V 357	16.50	16.64	16.67	16.17
P 24	16.71	16.73	<16.7	16.35
14 52	15 32	15.48	15.73	15.99
R 25	16.33	16.18	16.53	16.05
14 51	16.50	16.68	<16.7	16.31
1 H 49	15.83	15.59	15.94	16.42
LH 53	14.51	14.60	14.55	14.43
LH 57	16.35	16.77	<16.7	16.33
LH 58	16.08	<16.8	<16.7	16.50
LH. 60	15.39	15.39	15.48	14.33
LH 61	14.46	14.45	14.47	15.18
LH 66	15.65	16.32	16.51	15.79
R 29	16.56	16.73	<16.7	15.95
LH_ 65	15.42	15.66	15.67	15.58
LH_ 68	16.33	16.30	16.70	16.46
LH_ 70	15.86	16.14	16.43	<16.7
LH. 72	15.26	15.22	15.47	15.82
LH 73	16.17	16.40	16.66	16.14
LH_ 75	15.10	15.10	15.31	15.33
LH_ 77	15.16	15.20	15.37	15.15
LH_ 76	15.92	16.23	16.32	16.36
LH 79	15.38	15.45	15.71	15.66
LH, 81	16.55	16.39	16.65	<16.7
LH_ 82	16.29	16.74	<16.7	16.64
LH_ 83	16.02	16.24	16.34	15.69
V 373	16.44	16.42	16.54	16.56
LH ₂ 84	14.78	15.14	15.31	14.56

НАБЛЮДЕНИЯ НЕСТАЦИОНАРНЫХ ЗВЕЗД

краткие выводы

а) При первом взгляде на таблицы бросается в глаза, что ряд звезд имеет довольно большие изменения блеска, иногда превышающие 1^{то} в В. Отметим следующие наиболее интересные случаи.

LH, 9

Звезда показала сильное ослабление блеска на пластинках 119, 120, 122, 125, 126 (пластинки сняты в одну ночь во всех трех цветах). Она настолько уменьшилась в блеске, что измерить ее было невозможно. Изменение блеска в В, по-видимому, превышает 1^{то}, поскольку предельная звездная величина В-пластинок, доступная измерениям, равна 17^{то}. В. Розино отмечает у звезды довольно сильные колебания блеска, напоминающие по характеру U Близнецов. Период подъема или спуска блеска занимает несколько дней [4]. Таким образом, можно говорить об одновременном падении блеска во всех трех цветах.

LH₂ 10

На пластинках 131, 132 и 136 звезда не поддается измерению из-за слабости. Уменьшение блеска в В превышает 1^m.

LH, 12

Сильное ослабление блеска на пластинках 131, 132, 136, т. е. параллельно в В- и V-цветах. К сожалению, снимка в U нет.

LH, 17

Отмечено сильное усиление блеска одновременно в U, B, V ночью 3.12.1964 года.

LH₂ 22

Звезда сильно усилилась в блеске в U-, B-, V-цветах одновременно, что заметно по пластинкам 168, 169, 170. 2-47

R 10

Отмечено резкое ослабление блеска звезды 14.12.1963 года (пластинки 155 и 158) в В и V лучах. К сожалению, нет соответствующей U-пластинки. 19.11.1963 года та же звезда показала резкое изменение своего блеска всего за 25 минут (обратить внимание на пластинки 119 и 120).

LH₂ 26

Звезда сильно ослабла в блеске одновременно в В и. V, что ясно видно по пластинкам 155 и 158.

R 13

На пластинке 93 замечается сильное уменьшение блеска звезды. К сожалению, нет соответствующих снимков в U и B.

LH. 38

Звезда сильно увеличила свой блеск в U, B и V, что оценивается по пластинкам 168, 169 и 170.

LH. 58

Замечается резкое ослабление блеска звезды в ночь на 19.11.1963 года в V- и U-цветах (негативы 119, 120, 122). На пластинках 125 и 126 в В, снятых в ту же ночь, ничего подобного не произошло.

LH_a 60

Замечается резкое усиление блеска во всех цветах в ночь 3.12.1964 года.

R 29

Отмечено достаточно заметное поярчение звезды в U-, В- и V-цветах 3.12.1964 года.

LH₂ 80

Звезда очень ослабла и исчезла на пластинках 155 и 158.

НАБЛЮДЕНИЯ НЕСТАЦИОНАРНЫХ ЗВЕЗД

Итак, для каждой из вышеописанных звезд мы отметили по одному резкому изменению блеска (ослаблению или поярчению). В остальном каждая звезда показала небольшие колебания блеска около какого-то среднего значения (кстати, именно по отношению к нему и отмечается резкое колебание блеска звезды). Можно, по-видимому, считать, что резкие изменения блеска не такое уж редкое явление для этих звезд, если они обнаруживаются при таком небольшом количестве наблюдений.

Аишь за одним исключением наблюдаемые резкие изменения блеска происходили одновременно во всех цветах. К сожалению, невозможно установить продолжительность этих колебаний блеска. Можно лишь предположить, что на это требуется, по крайней мере, несколько часов (начало экспозиции первой пластинки — конец экспозиции последней в одну ночь).

Имеется один случай, а именно LH₂ 58, где отмечено сильное ослабление блеска звезды в U- и V-цветах (пластинки 119, 120, 122), в то время как на В-пластинках (125 и 126) звезда не ослабла. Из вышеописанного трудно поверить в то, что имело место изменение блеска только в Uи V-цветах при его постоянстве в В. Здесь мы, вероятно, имеем просто дело с очень быстрым явлением. На снимках 119, 120 и 122 звезда зафиксирована в момент сильного ослабления блеска. К моменту экспонирования пластинок 125 и 126, снятых в В, звезда находилась уже в состоянии, близком к среднему блеску. Если вто так, то звезда увеличила свой блеск не более чем за час. Кстати, в [4] отмечается, что звезда очень сильно меняется в блеске.

Надо отметить, что при фотометрировании мы столкнулись с большой трудностью: скопление окутано довольно сильной эмиссионной туманностью. Никаких редукций за туманность не вводилось. Ее влияние на снимках в желтом и ультрафиолетовом цветах ничтожно, в синем заметно и иногдз очень сильно. В табл. 2 оценена сила фона туманности вокруг каждой звезды в трехбальной системе (a—слабая, b—умеренная, с—сильная). Надо заметить, что все перечисленные случаи резких изменений блеска профотомет-2°

рированы уверенно, так как все звезды, за исключением LH 17, находятся либо вообще вне туманности, либо в очень слабых ее частях. Для LH 17 данные менее надежны. Можно ручаться лишь за качественную картину.

в) Ряд звезд за время наших наблюдений не показал сколько-нибудь значительных изменений своего блеска. К ним например, относятся звезды LH, 1, LH, 4, LH, 6, LH, 45, LH, 27, LH, 48, LH, 74, KW, LN, LZ, OU Mon. Часть этих звезд ранее наблюдалась и их переменность сомнению не подлежит. По-видимому, они в период наших наблюдений находились в относительно стабильном состоянии.

НАЕЛЮДЕНИЯ НЕСТАЦИОНАРНЫХ ЗВЕЗД

Интересно отметить, что Розино [4], наблюдавший некоторые из этих звезд, а именно LH. 15, LH₂ 27, LH. 48, KW, отмечает небольшие колебания блеска, т. е. характер изменений их блеска очень похож на наблюдавшийся в 1955 — 1956 годах.

24. 3. NGC 2264 աստղակույտի անկայուն աստղերի B–V, V դիաղրաժ, 20.11.1963 թ.

Знезды LH, 6, LH, 21, LH, 25, LH, 74 не считаются до сих пор переменными. Их переменность лишь подозревается, так как они имеют в спектрах вмиссию в H₂. Мы

тоже не можем подтвердить переменность их блеска, поскольку наблюденная амплитуда изменений блеска недостаточно велика. Все же, поскольку звезды типа RW Возничего часто имеют длительные периоды стабильности, контроль за ними необходим.

Рис. 5. Диаграмма U – B, B – V нестационарвых звезд скопления NGC 2264, 4.XII.1964 г. 24. NGC 2264 U-B. B-V

с) По имеющимся данным были построены диаграммы V, B - V и B - V, U - B. Для получения значений V, B - V

ԱՆԿԱՅՈՒՆ ԱՍՏՂԵՐԻ ԴԻՏՈՒՄՆԵՐ

и U — В были выбраны снимки, снятые в одну и ту же ночь друг за другом. Диаграммы построены в предположении, что все переменные принадлежат к скоплению. Стандартная главная последовательность проведена по [5]. Оказалось, что большинство переменных расположено выше и правее главной последовательности. Это еще раз указывает на молодость всего комплекса звезд в скоплении NGC 2264.

2. Ս. ԲԱԴԱԼՅԱՆ, Լ. Կ. ԵՐԱՍՏՈՎԱ

ԱՆԿԱՅՈՒՆ ԱՍՏՂԵՐԻ ԵՌԱԳՈՒՅՆ ԴԻՏՈՒՄՆԵՐ NGC 2264 ՏԻՐՈՒՅԹՈՒՄ

Ամփոփում

Ներկա աշխատունվունում բերված է NGC 2264 տիրույնում RW Կառավարի տիպի փոփոխական աստղերի երեջ գույնում կատարած դիտումների արդլունջները։ Դիտումները կատարվել են 1963–64 նվականներին Բլուրականի աստղադիտարանի մեկ մետրանոց Շմիդտի դիտակով։

Որոշվել են փոփոիսականների աստղալին մեծութվունները կապուլտ, դեղին և ուլտրամանուշակագույն ճառագալթներում տարրեր ժամանակների համար, որոնը բերված են .11 2, 3 և 4 աղլուսակներում։

Ստացված արդյունըներից երևում է, որ ուսուքնասիրվող աստղերի մի մասի պալծառուԹյունը փոփոխվում է չափազանց ուժեղ։

Նուլն գիշերում կատարված, երևը դուլնի դիտումներից որոշվել են B—V և U—B գուլնի ցուցիչները և նրանց հիման վրա էլ կառուցվել են B—V, V և B—V, U—B դիագրամաները։

Ստացված դիագրամաները միանգամայն իրար նման են՝ փոփոխականների մեծ մասը գտնվում է գլխավոր հաջորդականութլունից վերև, որը մեկ անգամ ևս հաստատում է, որ NGC 2264-ի տիրուլթում գտնվող աստղերի կոմպլեջսը շատ երիտասարդ է։

2. 0. คนานเรนน. 1. 4. อกแขรกงน

H. S. BADALIAN, L. K. ERASTOVA

THREE-COLOR OBSERVATIONS OF THE NON-STABLE STARS IN THE REGION OF NGC 2264

Summary

The results of three-color observations of RW Aurigae type stars in the region of NGC 2264 are presented.

The observations were made during 1963 - 1964 with the 40" Schmidt telescope at the Byurakan observatory.

The magnitudes and their variations are measured for 115 variables in blue, yellow and ultraviolet (tables 2, 3, 4).

According to the results obtained the variations in light of some stars are very strong. By means of three-color observations carried out in the same night the colors B - V and U - B were determined.

It is essential to note that all color-magnitude diagrams are very similar. The majority of variables are above the standard main sequence which again confirms that the variables in the region of NGC 2264 are very young.

ЛИТЕРАТУРА

- A. A. Hoag, H. L. Johnson, B. Irtarte, R. I. Mitchell, K. L. Hallam and S. Sharpless, Publications of the US Naval Observatory, Second series, 17, 412, 1961.
- 2. Г. С. Бадалян, Л. К. Ерастова, Сообщения Бюраканской обсерваторин, 36, 55, 1964.
- 3. G. H. Harbig, Ap. J., 119, 483, 1954.
- 4. L. Rosino, C. Grubissich e P. Maffai, Co. Asiago, N 82, 1957.
- 5. M. F. Walker, Ap. J., Suppl. series, 2, 365, 1956-
- 6. Б. В. Кукаркин, П. П. Паренаю, Ю. И. Ефремов, П. Н. Холопов, ОКПЗ, 1, 344, 1958.
- 7. Б. В. Кукаркин, Ю. И. Ефремов, П. Н. Холопов, Первое дополнение к ОКПЗ, 52, 1960.
- 8. M. Petit, Co. Asiago, N 119, 19, 1961.

м. А. КАЗАРЯН

КОЛОРИМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ЯДЕР ПЛАНЕТАРНЫХ ТУМАННОСТЕЙ

Трудности проведения фотометрических и колориметрических исследований ядер планетарных туманностей общеизвестны. Основная трудность связана с тем, что очень часто ядра приходится наблюдать на довольно ярком фоне туманности. Этим и следует объяснить малочисленность подобных исследований, а также невысокую точность большинства из имеющихся оценок яркостей ядер планетарных туманностей [1]. Только недавно появилось сообщение Эйбелла [2] об электрофотометрических наблюдениях ядер некоторых планетарных туманностей, выполненных на 60" и 100" телескопах в U-, B-, V-лучах. Однако наблюдения Эйбелла, результаты которых еще не опубликованы, охватывают в основном ядра им же обнаруженных туманностей. Подавляющее количество туманностей в этом отношении остается по-прежнему не исследованным.

Еще в 1964 году в Бюраканской обсерватории были начаты наблюдения ядер планетарных туманностей в фотографических и фотовизуальных лучах, посредством 8-12" и 21" телескопов системы Шмидта. В настоящей статье приводятся предварительные результаты наблюдений, произведенных в период с августа 1964 г. по декабрь 1965 г.

Исследованы ядра 20 планетарных туманностей, данные о которых приведены в табл. 1. Наблюдательный материал получен на пластинках Astro-platte (Zu-2) Spezia! в фотографических лучах, и на пластинках Kodak OAD, Ko-

М. А. КАЗАРЯН

Таблица 1

-						10.
NGC, IC или по B-B	t _{рg} (в мин.)	n _{pg}	Пластинка	^f pт (в мин.)	npr	Телескоп
40	2	11	Astro platte panchromat.	10	10	8-12*
246	2	5	Kodak OAD	12	11	
B-B 13	7	9	Kodak IIa-D, Kodak IIa-E	10	8	21-21
1501	5	8	Kodak IIa-D	10	5	
1514	1	13	Kodak Ila-E	3	7	8-12"
B-B 39	10	7	Kodak IIa-D	15	6	21-21
B-B 40	4	4	Kodak OAD	6	4	8-12"
B-B 41	4	4		6	4	u
B-B 481	2	10	Kodak IIa-E	4	12	
2371-2	5	4	Kodak IIa-D	10	4	21-21"
6804	4	7	Kodak IIa-E	7	6	8-12"
6857	4	7		7	7	
B-B 538	7	5	Kodak IIa-E. Kodak IIa-D	30	4	21-21"
7008	3	5	Kodak IIa-E	13	4	8-12"
B-B 551	15	5		30	4	21-21*
B-B 554	2	15		10	11	8-12"
7293	5	5	Kodak IIa-E. Kodak IIa-D	20	6	
IC 1470	2	11	Kodak IIa-F	3	8	
7635	0.5	10		3	10	.,
B_B 578	12	5	92 VI	30	5	21 21#
0 -0 570	14	5	99 48	30	2	21-21

dak IIa-D, Kodak IIa-E — в фотовизуальных лучах, в сочетании с шоттовскими фильтрами GG 14 и GG 11. В качестве звезд сравнения использованы звезды NPS. Данные о средних экспозициях (t_{pg} и t_{pr}) и число наблюдений (n_{pg} и n_{pr}) в фотографических и фотовизуальных лучах соответственно приведены в табл. 1. Наши наблюдения в основном охватывают туманности, видимые размеры которых больше 30 - 40''.

Оптимальная экспозиция фотографирования ядра была подобрана для каждой туманности в отдельности. Для ярких ядер снималась цепочка, состоящая из двух-трех изображений, а затем выбирались среди них изображения, по возмож-

ИССЛЕДОВАНИЕ ПЛАНЕТАРНЫХ ТУМАННОСТЕП

ности свободные от следов туманности. В противном случае учитывалось влияние слабых следов туманности и, как показывали контрольные измерения, результаты оказались в хорошем согласии с теми случаями, когда измерялось чистое от следов туманности изображение ядра. Только для очень ярких туманностей учет влияния туманности на яркость ядра становится невозможным. Однако в подавляющем большинстве случаев (для приведенных в табл. 1 туманностей) необходимость учета следов туманности на яркость ядра отпала благодаря тому, что использованные нами телескопы не являются светосильными.

Наши системы фотографических звездных величин для обоих телескопов почти не отличаются от интернациональной системы. Поэтому цветовые уравнения обусловлены в основном используемыми фотовизуальными системами. Для системы 21" телескоп — пластинка Kodak-E — фильтр GG 11 цветовое уравнение было получено Б. Е. Маркаряном [3]. Те же телескоп и фильтр в сочетании с пластинкой Kodak-D дают визуальную систему, которая не отличается от международной.

Для 8-12" телескопа, в сочетании с пластинками Kodak OAD и Kodak IIa-Е и фильтром GG 14— цветовые уравнения получаются в следующем виде:

$CI = 0.825 (m_{pg} - m_{pg})$	$)-0^{m}057,$	(Kodak OAD),	(1)
--------------------------------	---------------	--------------	-----

 $CI = 0.854 (m_{IR} - m_{PS}) - 0^{m} 080$, (Kodak IIa-E). (2)

 Эти соотношения выведены в результате решения системы уравнений, составленных на основании расхождений оценок блеска красных и белых звезд NPS.

Так как стандартная область (NPS) и ядра планетарных туманностей обычно снимались на разных зенитных расстояниях, то произведен учет атмосферного поглощения обычным способом.

Весьма трудным является вопрос об учете межзвездного поглощения. Он требует знания расстояний до туманностей, которые недостаточно хорошо известны. Учет поглощения в фотовизуальных (A_{sv}) или в фотографических

(A_{per}) лучах можно произвести по формуле П. П. Паренаго [4], куда входят расстояние *г* объекта и поглощение в фотовизуальных лучах a_n на один *кпс*. При этом значения a_n определены А. С. Шаровым на основании электрофотометрических наблюдений звезд ранних спектральных классов [4], а расстояния туманностей — по [5, 6, 7]. Параметр 3, входящий в формулу П. П. Паренаго, принимался равным 100 *пс*. Связь между A_{per} и A_{pg} дается в [8], в удобном для наших расчетов виде.

Расстояния для четырех туманностей, входящих в табл. 1, неизвестны. Можно, однако, воспользовавшись формулой Шкловского, произвести грубую оценку расстояний этих туманностей путем сравнения их поверхностных яркостей на картах паломарского атласа с поверхностными яркостями других, хорошо изученных планетарных туманностей, для которых известны потоки энергии в лучах H₂ и массы. Приняв, что массы туманностей одинаковы, получим расстояния

	Таблица 2				
Туманность по В-В [1]	r (в пс.)				
40	1080				
41	460				
538	1060				
578	480				

для упомянутых четырех планетарных туманностей, которые приведены в табл. 2; точность этих оценок можно считать достаточной для внесения интересующей нас поправки за межзвездное поглощение.

Результаты обработки наших наблюдений приведены в табл. З, где m_{pg} и m_{pg} — звездные величины

в интернациональной системе, а m_{pg} и m_{pv}° — те же величины, но исправленные за межзвездное поглощение; n_p и n_v — число наблюдений; σ_p и σ_v — среднеквадратические ошибки яркости ядра. СІ и СІ[°] суть наблюдаемый и исправленный за межзвездное поглощение показатель цвета.

Наши измерения в некоторых случаях хорошо совпадают с данными других наблюдений. Так, например, согласно электрофотометрическим наблюдениям Холла [9], яркость ядра туманности NGC 7635 в V-лучах равна 8^{т67}, что практически совпадает с полученной нами величиной (8^{т68}). Показатель цвета ядра туманности В — В 578 на картах Пало-

Таблица З

NGC, IC или по B -B	m _{pg}	n _n	3µ	mpp	n _g	а _с ,	CI	m _{pg}	mpo	CI
40	11 ^m 51	5	±0 ^m 11	11 ^m 39	5	±0 ^m 06	-0 ^m 12	9 ^m 57	9 ^m 90	-0"33
246	11 0	5	0 09	11 81	5	0 06	-0.81	11 00	11 81	-0 81
B-B 13	15 01	5	0 08	14 48	4	0.04		13 40	13 24	+0 16
1501	14 57	5	0 07	14 35	5	0 09	+0 22	12 43	12 68	-0 25
1514	9 88	5	0 06	9 57	7	0 07	+0 31	-8 08	8 17	-0 09
B-B 39	15 63	4	0 12	14 89	5	0 11	+0 74	12 73	12 67	+0 06
B-B 40	12 32	4	0 08	12 12	4	0 07	- 0 20	10 87	10 99	-0 12
B-B 41	12 42	4	0 04	12 08	4	0 14	+0 34	11 73	11 54	+0 19
B-B 481	11 80	7	0 11	11 08	7	0 12	- 0 72	10 01	9 69	+0 32
2371-2	14 26	4	0 10	14 87	4	0 09	0 61	13 86	14 56	-0 70
6804	13 63	5	0 07	13 68	4	0.05	0 05	12 09	12 50	-0 41
6857	13 56	4	0 09	13 08	5	0 12	+0 48	11 42	11 41	+0 01
B_B 538	15 65	1	0.08	15 89	3	0 09	-0 24	15 13	15 48	-0 35
7008	13 04	. 5	0 13	13 12	4	0 05	0 08	10 48	11 12	0 64
R_R 551	16 14	3	0 12	15 22	4	0 07	+0 92	10 04	10 46	-0 42
B-B 554	12 42	8	0.08	13 33	7	0 08	-0 91	11 74	12 75	-1 01
7903	12 96	4	0.05	13 79	3	0 11	-0 83	12 96	13 79	-0 83
10 1470	12 50	6	0.11	- 13 30			+0 14	11 33	11 83	-0 50
7695	8 66	5	0.12	8 68	5	0 11	-0 02	5 88	6 49	-0 61
B-B 578	15 53	3	0 10	15 87	3	0 10	0 34	14 84	15 33	0 49

марского атласа был оценен Миллером [10], он оказался равным $CI = -0^{m}31$ и хорошо совпадает с нашим результатом $(-0^{m}34)$.

Яркость ядра IC 1470 в фотовизуальных лучах невозможно было определить из-за сильного влияния фона цектральной части туманности в лучах H₁. Но известен спектральный тип ядра этой туманности — О7 [1], которому соответствует нормальный показатель цвета — 0^m52 в международной системе. При помощи фотографической величины и нормального показателя цвета определена фотовизуальная звездная величина.

Заметим, что для учета влияния межзвездного поглощения на яркость ядра Эйбелл [2] использует следующее соотношение:

$$\mathbf{C} = \mathbf{m}_{pg} - \mathbf{m}_{pr} = -1^{\mathsf{m}}_{\cdot}\mathbf{0} \tag{4}$$

(в интернациональной системе этому соответствует CI = = - 0^m62), где m_{pr} - фотокрасная величина ядер. Наблюдая фотокрасные и фотографические величины ядер и учитывая соотношение (4), он определяет избыток цвета, а затем, обычными методами, поглощение в любых системах звездных величин. Однако мы знаем, что спектры ядер планетарных туманностей часто сильно отличаются друг от друга. Поэтому предположение о равенстве их цветов является слишком грубым и необоснованным. Оно может привести к выводам, отличающимся от действительности. Поэтому болееправильно определить цвета из наблюдений, а поправки за межзвездное поглощение найти другими способами. Конечно. применяемый нами способ, основанный на формуле Паренаго, не является идеальным, но следует отметить, что расстояния наших туманностей находятся в пределах, в которых, по Шарову [4], можно применять формулу Паренаго, используя выведенные им значения а. Например, вычисление по способу Эйбелла дает в случае туманности В - В 39 расстояние, равное 15700 лс, а для туманности В-В 41-около 3700 пс. Если попытаться по этим расстояниям вычислить массу этих туманностей, принимая даже ле = 100 см-3, тоона оказывается порядка 100 солнечных масс.

ИССЛЕДОВАНИЕ ПЛАНЕТАРНЫХ ТУМАННОСТЕЙ

ТЕМПЕРАТУРЫ, АБСОЛЮТНЫЕ ЗВЕЗДНЫЕ ВЕЛИЧИНЫ. БОЛОМЕТРИЧЕСКИЕ ВЕЛИЧИНЫ И РАДИУСЫ ЯДЕР

Если принять, что ядра планетарных туманностей излучают как абсолютное черное тело, то связь между показателем цвета и температурой в интернациональной системе имеет следующий вид [11]:

$$- CI = \frac{8150 - 0.83 T}{T}.$$
 (5)

Найденные из этого соотношения, с помощью наших значений CI, температуры характеризуют распределение внергии в широком спектральном интервале (3400 – 7000 A) и скорее всего близки к эффективной температуре. Формула (5) дает действительную температуру ядер до значения $CI > -0^m 4$, однако, начиная со значения $CI < -0^m 4$, формула (5) дает только лишь оценку (меньше своего действительного значения) температуры ядра, так как поправочный член, пренебрегаемый в (5) (см. [11]) уже играет значительную роль для определения температур соответствующих $CI < -0^m 4$. Абсолютные звездные величины в фотографических и фотовизуальных лучах вычислены обычным способом.

Представляет интерес также определение болометрических звездных величин ядер. Для этого сперва надо определить болометрическую поправку Δm_b из следующего соотношения:

$$\Delta m_{b} = -B \cdot C = 2.5 \log \frac{\int_{0}^{0} I_{\lambda} S_{\lambda pv} d\lambda}{\int_{0}^{0} I_{\lambda} d\lambda} + C, \qquad (6)$$

где I_{λ} — функция Планка, $S_{\lambda \mu g}$ — кривая пропускания в фотовизуальной системе, C — постоянная для поправки нуль-пункта системы, она определяется из условия $\Delta m_b = 0$ при

М. А. КАЗАРЯН

 $T = 6500^{\circ}$ K. Формула (6) в [12] приведена к более упрощенному виду:

$$\Delta m_b = -B \cdot C = -42.63 + 10 \log T + \frac{29500}{T} + x_{pv}, \qquad (7)$$

 $r_{Ae} x_{pv} = 2.5 \log \left(1 - e^{-\frac{1}{T}} \right)$

По известным абсолютным звездным величинам в фотографических или фотовизуальных лучах можно определить радиусы ядер, если опять принять, что ядра излучают, как абсолютно черное тело. Имеем (см., например, [12]):

$$\log R/R_{\odot} = \frac{5\,900}{T} - 0.036 - 0.2 \,\,\mathrm{M}_{pv} + 0.2 \,\,x_{pv}, \qquad (8)$$

где R и R_{\odot} — радиусы ядер и Солнца соответственно.

При вычислении радиусов ядер в формуле (8) вместо T принималась температура, полученная из показателей цвета.

Температуры, абсолютные звездные величины в фотографических и фотовизуальных лучах, болометрические поправки, болометрические величины и радиусы ядер планетарных туманностей, вычисленные соответственно формулами (5), (7), (8), приведены в табл. 4. Там же приведены расстояния туманностей, определенные разными авторами. В табл. 4 приведенные болометрические величины для ядер, у которых CI — 0^m4, являются минимальными, а радиусы — максимальными.

В табл. 4 для сравнения приведены данные О'Делла [6], для абсолютных фотографических величин, болометрических величин и радиусов некоторых из исследуемых нами ядер.

Дисперсия радиусов планетарных туманностей довольно большая — от 9.0 R_{\odot} до 0.01 R_{\odot} . Однако большинство из приведенных в табл. 4 ядер имеют радиусы меньше солнечного.

Так как определить температуры ядер В — В 554 и NGC 7293 невозможно, то при оценке их радиусов температура принималась равной 40 000 К.

					Таблица 4						
NGC, IC	CI	$T \times 10^{4}$	r (п пс)	M _{pg}	M _{pv}	B·C	M _b	M _{pg} [6]	M _b [6]	RR	R R. [6]
40	-0 ^m 33	1 ^m 63	11 ^m 90	-0 ^m 81	-0 th 48	-1 ^m 18	1 ⁱⁿ 66	-1 ^m 3	-4 ^m 1	2 ^m 42	1.59
246	0.81	40.75	430	+2.83	+3.64	-12.37	-8.73		-1.5	0.10	0.21
B-B 13	+0.16	0.82	1650	-3.30	+3.14	-0.09	+3.05	-8.3	+1.9	1.14	0.08
1501	-0.25	1.40	1450	+1.62	+1.87	0.86	+1.01	+1.0	-2.1	0.95	0.54
1514	-0.09	1.10	1320	-2.53	-2.44	-0.46	-2.90	_	-	9.30	_
B B 39	0.06	0.92	3170	+0.22	+0.16	0.20	-0.06	_	_	4.23	_
B-B 40	-0.12	1.15	1080	+0.70	+0.82	-0.70	-0.12		-	2.00	_
B-B 41		0.80	460	+3.32		0.08	3.05		-	1.08	-
B-B 481	+0.32	0.71	600	+1.12	+0.80	-0.03	+0.77	-	-	4.27	-
2371-2	-0.70	6.27	1500	+2.98	+3.68	-5.36	-1.68	+1.3	-2.2	0.13	0.44
6804	-0.41	1.94	1850	+0.75	+1.16	-1.64	-0.48	0.0	-3.0	0.94	0.87
6857	+0.01	0.97	910	-1.62	+1.61	0.26	+1.35	-	-	1.73	_
BB 538	-0.35	1.70	1060	+5.00	+5.35	-1.31	+4.04	-	-	0.16	
7008	0.64	4.30	1040	+0.39	+1.03	-4.08	-3.05	+1.7	-1.6	0.54	0.37
B-B 551	-0.42	1.99	3170	-2.47	-2.05	-1.66	-3.71	-		4.08	
B-B 554	-1.01	_	2780	-0.48	+0.53		-	-	-	0.20	-
7293	-0.83	-	120	+7.56	+8.39	_	_	+7.1	-0.2	0.01	0.01
IC 1470	-0.50	2.47	1200	+0.93	+1.43	-2.33	-0.90	+0.4	-2.4	0.68	0.78
7635	-0.61	3.70	140	+0.15	+0.76	-3.57	-2.81	-	-	0.68	
B-B 578	0.49	2.40	480	+6.43	+6.92	-2.28	14.64	-	-	0.06	
		4									

По оценкам Г. А. Гурзадяна [13] радиус ядра NGC 7293 находится в интервале $0.05 \div 0.3 R_{\odot}$. Таким образом, среди ядер планетарных туманностей встречаются такие (NGC 7293, B — B 578), у которых размеры и некоторые физические особенности близки к белым карликам.

Показатели цвета ядер изученных нами туманностей находятся в пределах от -1^т00 до - 0^т30. Наиболее важным и интересным является то, что существуют ядра планетарных туманностей с очень малыми значениями показателя цвета, порядка -1"0. Это относится, например, к нарам туманностей NGC 7293 и В - В 554, показатели цвета которых оказались равными — 0^m83 и — 1^m01 соответственно. На это обстоятельство следует обратить особое внимание; столь малые значения CI не могут быть объяснены излучением черного тела даже при бесконечно высокой температуре. По-видимому, здесь мы имеем дело либо с нетепловым изучением, либо же ядра являются звездами типа Вольф-Райе с интенсивными эмиссионными линиями, которые оставляют значительное влияние на показатели цвета. Довольно малый показатель цвета получается для ядра NGC 246, излученного Аллером [14]. В спектре ядра этой туманности присутствуют трудновозбуждаемые эмиссионные линии 3811 OVI и 3838 OVI. Аллер отмечает, что это ядро является самым высоковозбужденным среди встречающихся до сих пор объектов с линиями поглощения. Эти данные также свидетельствуют о наличии высокой температуры во внешних слоях ядра этой туманности. Аномально голубой цвет имеют также другие ядра, приведенные в табл. 4.

Наряду с этим имеется и другая крайность. Это—аномально красные ядра планетарных туманностей. В случае ядра туманности В — В 481 показатель цвета равен $+0^{m}32$, что соответствует излучению черного тела при температуре 7000 К, то есть звезде типа F7. Для этого ядра в каталоге [1] дается спектральный тип М или WN 7. Показатель цвета, полученный нами, не соответствует ни одному из. этих классов.

<u>ՄԻԳԱՄԱԾՈՒԹՅՈՒՆՆԵՐԻ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆ</u>

Снечение туманностей с красными ядрами непонятно, если оставаться в рамках обычных представлений. Объяснение этому факту можно найти при предположениях, что либо эти ядра состоят из красной и голубой компоненты (в этом случае свечение туманности вызывается голубой звездой), либо же свечение этих туманностей имеет другую природу.

Выражаю благодарность Г. А. Гурзадяну за проявленный интерес к работе и полезные советы.

Մ. Ա. ՂԱՉԱՐՅԱՆ

ՄՈԼՈՐԱԿԱՉԵՎ ՄԻԳԱՄԱԾՈՒԹՅՈՒՆՆԵՐԻ ՄԻՋՈՒԿՆԵՐԻ ԳՈՒՆԱՉԱՓԱԿԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆ

Ամփոփում

20 մոյորակաձև միգամածությունների միջուկների համար Բլուրականի աստղադիտարանի Ց—12" և 21" դիտակների վրա կատարվել են դիտումներ ֆոտոդրաֆիկ և ֆոտովիդուալ ճառագալթներում։

Հիշլալ օբլիկտների Տամար ստացվել են միջաստղալին կլանումից ազատված ֆոտոդրաֆիկ և ֆոտովիղուալ աստղալին մեծություններ, ինչպես նաև գուլնի ցուցիչները (աղլուսակ 3)։

[⁵υդուննլով, որ միջոսկննրը ճառագայթեում են բացարձակ սև մարմնի օրենքով, որոշվել են միչուկների ջերմաստիճանները, րոլամետրիկ մեծութելունները և շառավիղները, որոշվել են նաև նրանց րացարձակ մեծութելունները (աղլուսակ 4):

ՔՆՆարկելով դիտողական արդյուն քները արվել են եղրակացություններ՝

Շատ փոքր (< – 0⁸⁰) զուլնի ցուցիչներով միջուկները ունեն ոչ ջերմալին լնուլթ կամ ներկալացնում են Վոլֆ-Ռանի տիպի աստղեր ուժեղ էմիսիոն գծերով, որոնց ազդեցութլունը գույնի ցուցիչների վրա պգալի է։ Կարմիր գուլնի ցուցիչ ունեցող միջուկները հավանարար կրկնակի աստղեր են կարմիր և կապուլտ կոմպոնենտներով (միգամածութլան լուսավորվածութլունը պալկոմպոնենտներով (միգամածության լուսավորվածութլունը պալնանավորված է կապուլտ կոմպոնենտով) կամ ալդպիսի միջուկներ 3.

บ. น. านฐนครแป

ունեցող միդամածությունների լուսավորվածությունը ունի ուրի։ ֆիզիկական բնույթ։

Միջուկների մեջ կան այնպիսիները, արոնը իրենց որոշ ֆիզիկական պարամետրերով հիշեցնում են սպիտակ թեզուկներին (NGC 7293, B – B 578):

M. A. KAZARIAN

THE COLORIMETRIC INVESTIGATION OF THE NUCLEI OF PLANETARY NEBULAE

Summary

Twenty nuclei of the planetary nebulae have been. observed with 8-12'' and 21'' Shmidt cameras at the Byurakan Observatory in photographic and photovisual rays. For these objects the photographic and photovisual magnitudes corrected for interstellar absorption and the color indices were obtained (Table 3).

Assuming that the nuclei radiate as a black body the temperatures, bolometric magnitudes and the radii of the nuclei were calculated. (Table 4).

The absolute magnitudes were also calculated.

It was suggested, that either the radiation of the nuclei with lowest color indices ($< -0^m 80$) has nonthermal nature or they are the Wolf-Raye stars with strong emission lines, which have some influence on the color indices.

The nuclei with red color indices are probably double stars with red and blue components (the luminescence of the nebulae is presented by the blue components).

Certain physical features of some of the nuclei (NGC 7293, B-B 578) make them similar to the white dwarfs.
ՄԻԳԱՄԱԾՈՒԹՅՈՒՆՆԵՐԻ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆ

ЛИТЕРАТУРА

1. Б. А. Воронцов-Вельяминов, Сообщения ГАИШ, 118, 4, 1962.

2. G. O. Abell, P.A.S.P., 76, 382, 1964.

- 3. Б. Е. Маркарян, Сообщения Бюраканской обсерватории, 24, 3, 1958.
- 4. А. С. Шаров, Астрономический журнал, 40, 900, 1963.

5. C. R. O'Dell, Ap. J., 138, 67, 1963.

6. Л. П. Метик, Р. Е. Гершберг, Известия КрАО, 31, 112, 1964 г.

7. Б. А. Воронцов-Вельяминов, Астровомический журнал. 27, 885, 1950.

8. М. А. Казарян, Сообщения Бюраканской обсерватории, 36. 3, 1964.

9. J. S. Hall, Public. Naval Observatory, 17, 1958.

10. F. O. Miller, Ap. J., 109, 537, 1949.

11. Д. Я. Мартынов, Курс практической астрофизики, М., 1960.

 Т. А. Алекян и др. Курс астрофизики и звездной астрономии, том II, М., 1962.

13. Г. А. Гурзадян, Сообщения Бюраканской обсерватории, 34, 59, 1963.

14. L. H. Aller, Ap. J., 108, 452, 1948.

Р. А. Варданян, Р. А. Епремян, М. А. Казарян, Э. Е. Хачикян

НАБЛЮДЕНИЯ КОМЕТЫ ИКЕЯ-СЕККИ В БЮРАКАНЕ

В ноябре 1965 года в Бюракане были выполнены фотометрические и поляриметрические наблюдения кометы Икея-Секки. Результаты наблюдений приведены в табл. 1 и 2.

ФОТОГРАФИЧЕСКИЕ НАБЛЮДЕНИЯ

Фотографические наблюдения кометы Икея-Секки выполнены на 21" телескопе системы Шмидта на пластинках Astro-Platte Spezial без фильтра. В качестве фотометрических стандартов служили внефокальные изображения звезд NPS, полученные непосредственно перед фотографированием кометы. Кроме двух удачных снимков 5 и 6.XI.1965 г., получены также два снимка кометы сквозь облака (1.XI.1965 и 3.XI.1965), которые не фотометрировались и использованы лишь для определения грубых координат кометы.

Негативы обработаны на микрофотометре МФ-2. Изображение кометы измерялось по разрезам, параллельным друг другу, направление которых совпадало с линией север — юг. Использована квадратная диафрагма со стороной, равной 28.5 в угловых единицах (масштаб 21" телескопа — 114" на 1 жм).

Комета Икея-Секки снималась под утро в лучах восходящего Солнца и находилась в это время на юго-востоке в направлении города Еревана, огни которого заметно осве-

Рис. 1а. Изофоты кометы согласно наблюдению от 5.XI.1965 г. 3.4. 1.а. Чранфарр развативар былымыр 5.XI.1965 Р. артовати

Рис. 2a. Изофити кометы согласно наблюдению от 6.XI.1965 г. 24. 2m. 9-ранијарр рукфитикру блабандару 6.XI.1965 р. уразвићи

НАБЛЮДЕНИЯ КОМЕТЫ ИКЕЯ-СЕККИ

щают эту часть небосвода. Эти обстоятельства, а также большое значение зенитного расстояния кометы должны внести в определение яркости кометы ошибки, точный учет которых представляет большую трудность. Учет атмосферного поглощения производился обычным методом (см., напркмер, [1]).

Рис. 16. 24. 1_Р.

Для каждого снимка кометы построены изофоты в шкале относительных интенсивностей. Карты изофот представ-

Гис. 20. 64. 2µ.

лены на рис 1а и 2а, где даны также масштаб и размер диафрагмы. Значение интенсивности 1.0 соответствует 22.5 с квадратной секунды дуги. Для большей ясности, изофоты центральных областей кометы приведены отдельно на рис. 16 и 26.

На рис. 1а и 16 крестиком отмечена область с интенсивностью 40, а на рис. 2а и 26 — с интенсивностью 33.

Интегральная яркость кометы оценивалась сложением яркостей всех измеренных областей.

В табл. 1 приведены полученные таким образом интегральные фотографические величины кометы, время наблюдения, а также ее грубые координаты и позиционный угол радиуса-вектора комета — Солнце, вычисленный по формуле, данной в [1].

Построены также кривые падения яркости (фотометрические сечения) в направлениях на север (пунктирная линия), юг (сплошная линия), восток (точка и тире) от ядра, которые представлены на рис. З и 4. По оси абсцисс отложены расстояния от ядра r, а по оси ординат — НАБЛЮДЕНИЯ КОМЕТЫ ИКЕЯ-СЕККИ

Дата	Время наблюдений (всемирное)		2	5	mpg	ę
наодюдения	окаран	конец				
1. XI.65	2 ^h 19 ^m	2 ^h 23 ^m	2 ^h 19 ^m 41 ^s	-18'21'	_	86 55'
3. XI "	2 27	2 33	10 11	-19 32	-	87 54
5. XI "	2 08 -	2 20	2 57	-20 44	1 ^m 37	88 43
6. XI "	2 03	2 13	11 59 23	-21 19	1.94	89 10

Рис. 4. Зависимость / от r 6.Xl. 1965 г. 14. 4. / иши/шал. В лаби r-hg (6.Xl. 1965);

относительные интенсивности *I* в произвольных единицах, Так как в направлении на запад, т. е. в направлении хвоста кометы, падение интенсивности происходит медленно, то для этого направления построены отдельные кривые, которые представлены на рис. 5. По оси абсцисс отложены уже log *r*.

Фотографии кометы приведены на рис. 6 и 7.

41

Таблица 1

ЭЛЕКТРОПОЛЯРИМЕТРИЧЕСКИЕ НАБЛЮДЕНИЯ

Электрополяриметрические наблюдения выполнены на 20" телескопе АЗТ-14 в сочетании с электрофотометром. Поляризация излучения головы и хвоста кометы измерена через красный (Анар = 6300 A), желтый (Анара, = 5400 A) и синий

Рис. 5. Зависимость I от log r (сплошная линия соответствует ваблюдению от 5.ХІ.1965 г., а пунктирная — от 6.ХІ.1965 г.).

24. 5. Ι ημοφημοδης βητώρ log r-by (5nd . 4 hor and mημισιμοφωώνας δ 5.XI. 1965 β. ημασιμύρ, μαη ημασηβάρ-6.XI. 1965 ημασιμύρ):

($h_{sdep} = 4500 \text{ A}$) фильтры. Использованы две круглые диафрагмы размерами 2 и 5 мм, что соответствует 52" и 130" в угловых единицах. Непосредственно после каждого наблюдения кометы регистрировался фон неба. Продолжительность одного наблюдения кометы с учетом фона неба составляла 5 мин. Результаты измерений представлены

НАБЛЮДЕНИЯ КОМЕТЫ ИКЕЯ-СЕККИ

Рис. 6. Фотография кометы Икся-Секки. 5.XI.1965 г. 54. 6. 1463-1164/6 драживар (политирия 5.XI.1985 р.)

Рис. 7. Фотография кометы Икся-Секки. 6.X1.1965 г. 24. 7. 1945-Шафир арыш Гари Гасиш'й Цирр. 6.X1.1963 И.

Р. А. ВАРДАНЯН И ДР.

Таблица 2

Дата наблюдення	P ⁰ /0	()°	Фильтр	Размер днафрагыы	Область наблюдення
3 XI 1965	6.7	172	Сненй	2 м.м	Голова
J.M.1705	8.4	11			
i	10.5	176	Красный		-
	7.4	172	Желтый	**	**
4.XI.1965	13.0	178		5	Хвост
1	7.3	2			Голова
- 1.	10.0	0	Красный		
- 1	7.9	178	Желтый	2	29
5.XI.1965	15.0	172	Красный	5	Хвост .
	11.0	2		2	**

в табл. З, где даны: дата наблюдений, степень поляризации в процентах, позиционный угол плоскости преимущественных колебаний электрического вектора, фильтр, размер диафрагмы и область наблюдения. Среднее время наблюдения — 2^h15^m всемирпого времени для всех дней наблюдений.

При измерениях головы кометы центр диафрагмы электрофотометра совмещался с центром наиболее ярхой части головы. При измерениях хвоста диафрагма располагалась в самом начале хвоста (около головы).

По результатам наблюдений поляризации кометы в различных цветах построены кривые зависимости степени поляризации (p) от длины волны для головы (кружочки) и хвоста кометы (точки), которые приведены на рис. 8. Для каждого цвета значения p усреднены по всем дням наблюдений. Как видно из рис. 8, наблюдается определенная зависимость между p и h, а именно: с увеличением длины волны степень поляризации увеличивается. Что такая зависимость не является результатом инструментальной ошибки, показывают наблюдения Крабовидной туманности в тех же лучах, выполненные непосредственно перед наблюдениями кометы и представленные на том же рисунке (крестики). У Крабовидной туманности такой зависимости не наблюдается (средняя ошибка измерения p и θ составляет $0.5^{0}/_{0}$ и 4.5 соответственно).

Интересно отметить, что подобного характера поляризация наблюдается также у некоторых отражательных туманностей [2].

Отметим, также, что Н. Л. Иванова на $10^{\prime\prime}$ спектрографе АСИ-5 (дисперсия 175 А *мм* у H₇) получила очень слабый спектр головы кометы (рис. 9). Из-за слабости спектра сделать какие-либо количественные оценки очень трудно. Однако довольно хорошо заметны две яркие широкие полосы, принадлежащие, по-видимому, излучению цианна (CN IV, λ 3875 — 83 A) и углерода (С₂, λ 4737).

Рис. 9. Спектр кометы. 5.ХІ.1965 г. Сверху приведен спектр звезды сравнения типа АО (коротковол::овая часть справа).

Նկ. 9. Գիսավորի սպեկտրը. 3.XI.1983 թ.։ Վերևում բերված է AO տիպի ճամեմատական աստղի սպեկտրը (ղեպի աջ ալիբային երկարությունը նվաղում է)։

ԻԿԵՅ-ՍԵԿԻԻ ԳԻՍԱՎՈՐԻ ԴԻՏՈՒՄՆԵՐԸ

թ. Ա. ՎԱՐԴԱՆՑԱՆ. թ. Ա. ԵՓՐԵՄՅԱՆ. Մ. Ա. ՎԱՉԱՐՅԱԵ. Է. Ե. ԽԱՉԻԵՅԱՆ

իկեց_Սեկիի ԳԻՍԱՎՈՐԻ ԳԻՏՈՒՄՆԵՐԸ ԲՅՈՒՐԱԿԱՆՈՒՄ

Ամփոփում

Բերված են Իկել-Սեկիի գիստվորի լուշաչափական և րևեռաչափական դիտումների արդյունընհրը։

R. A. VARDANIAN, R. A. EPREMIAN M. A. KAZARIAN, E. E. KHACHIKIAN

OBSERVATIONS OF IKEY-SEKY COMET IN BYURAKAN

Summary

The results of photometric and polarimetric observations of the lkey-Seky comet are presented.

ЛИТЕРАТУРА

1. Л. В. Мирзоян, Э. Е. Хачикян, Сообщения Бюраканской обсерваторин, 26, 35, 1959.

2. T. Gehrels, Lowell obs. Bull., No 105, 300, 1960.

В. Е. Караченцева, И. Д. Караченцев

УРАВНЕНИЕ И СРЕДНИЕ ХАРАКТЕРИСТИКИ СПИРАЛЬНЫХ РУКАВОВ ГАЛАКТИК

1. Наблюдаемая структура спиральных рукавов галактик довольно сложна, и это является значительным препятствием при попытках уяснить проблему их происхождения. Однако в первом приближении для построения модели рукавов можно использовать некоторое эмпирическое уравнение спирали и статистические параметры, наилучшим образом описывающие наблюдаемую форму спиральных рукавов.

Изучением формы спиральных рукавов у нескольких близких галактик занимался ряд исследователей (см. [1]). Наиболее обстоятельной работой, посвященной этому вопросу, является диссертация Данвера [1]. По измерениям на фотопластинках рукавов 98 галактик Данвер получил уравнение спирали в полярных координатах в виде

$$\rho = \rho_0 \, e^{z\varphi} \tag{1}$$

(логарифмическая спираль).

2. После опубликования Паломарского атласа стало возможным провести измерения спиральных рукавов галактик на более обширном и однородном материале. В настоящей работе было измерено 237 спиральных рукавов: 116 галактик с двумя рукавами и 5 однорукавных. 50 галактик имеют номера по каталогу NGC (табл. 1), среди них у 11 известны лучевые скорости.

Измерения спиральных рукавов галактик проводились на синих картах Паломарского атласа, где контрастность и

СПИРАЛЬНЫЕ РУКАВА ГАЛАКТИК

Список в	азмеренных г	a a a the
NGC	3958	4986
694	3982	5002
.776	3987	5085
851	3992	5123
1398	4025	5149
2421	4079	5154
2558	4303	5194
2582	4440	5247
2608	4475	5364
2633	4504	5829
2649	4519	5876
3183	4535	IC
3227	4579	230
3455	4652	257
3507	4654	4205
3684	4780	4470
3905	4878	4479
3930	4939	

Тиблица 1

. длина рукавов больше, чем на красных картах. Для измерений были отобраны галактики с видимым малым наклоном оси симметрии к лучу зрения, с достаточно четкой и неразветвленной спиральной структурой и угловым диаметром 1'; в основном это объекты типов Sc и Sb по Хабблу с числом рукавов не более двух.

Радиусы-векторы точек на средней линии спирального рукава* измерялись через интервалы $\frac{\pi}{8}$ угловой координаты

Как правило, контуры спиральных рукавов определяются расположением ассоциаций горячих звезд. Ввиду размытости рукава приходится вводить понятие некоторой средней линии рукава как квазивепрерывной последовательности центров областей с максимальной концентрацией яркости.

-4-47

•. Отсчет утловой координаты начинался от точки, в которой спиральный рукав выходил из области передержки на карте вокруг ядра галактики. Поскольку пересечение линии спирального рукава с границей области передержки определялось индивидуальным распределением яркости в каждой данной галактике, то нуль-пункт отсчета угловой координаты φ был величиной условной, случайным образом меняющейся от галактики к галактике. Максимальное значение угла соответствовало точке, где порог чувствительности карты еще позволял уверенно различать рукав на окружающем фоне. Сопоставление двух серий измерений показало, что суммарные погрешности определения координат, вызванные размытостью рукава, неточностью наведения на центр галактики и случайной ошибкой отсчета, составляют в среднем $\Delta \varphi = \pm 0.06$ и $\Delta \varphi = \pm 2^\circ$.

3. Распределение 237 рукавов по видимым угловым протяженностям ϕ_m представлено на рис. 1. Зависимость $N(\phi_m)$ имеет максимум около $10 \frac{\pi}{8}$ с асимметрией по отношению к нему в сторону больших значений ϕ_m . Среднее значение угловой протяженности рукавов равно $11.1 \frac{\pi}{8}$, или 250°, с дисперсией $\phi_m = 114^\circ$. Заметим, что сравнение $N(\phi_m)$ со случайным пуассоновским распределением при указанном среднем показывает, что по критерию χ^2 согласие хуже, чем в 1 из 10° случаев.

Было также построено распределение 116 двурукавных галактик по разностям в угловых протяженностях первого и второго рукавов. Распределение оказалось непохожим на нормальное гауссово распределение. Среднее значение $\overline{| \overline{\tau}_{m_1} - \overline{\tau}_{m_2} |}$ получилось равным 27.5, что заметно меньше, чем у Данвера (67.2).

4. Сведения об аналитической форме среднего спирального рукава по измерениям $\rho(\phi)$ можно получить двояким. образом.

1) Для каждого рукава в отдельности следует подбирать такое теоретическое уравнение спирали с соответствующими параметрами, чтобы сумма уклонений наблюдаемых значений $\wp(\varphi_l)$ от теоретической кривой была минимальной; затем выбрать уравнение, удовлетворительно описывающее наибольшее число случаев, и, применяя его снова ко всем рукавам, определить средние значения входящих в это уравнение параметров. Такой способ был использован Данвером [1].

Недостаток этой процедуры усреднения состоит в том, что при исправлении наблюдаемой зависимости $\rho(\varphi_i)$ за эффект наклона галактики возникает следующая неопределенность. Связь между измеряемыми координатами р, с и истинными координатами в плоскости галактики р', с выражается соотношением

$$\rho' = \rho V \overline{1 + tg^2} \omega \sin^2 \varphi,$$

$$tg \varphi' = tg \varphi \sec \omega,$$
(2)

где w — утол наклона плоскости галактики к плоскости, перпендикулярной к лучу зрения. Угол w приходится подбирать таким образом, чтобы исправленные значения ρ_i наилучшим образом согласовывались с предварительно выбранной теоретической кривой. Опыт учета влияния наклона показывает, что при разных значениях w можно добиться одинаково хорошего согласия исправленных величин ρ_i с разными теоретическими кривыми. Особенно велика указанная неопределенность для спиралей с небольшой угловой протяженностью.

2) В данной работе использовался иной способ усреднения. Для каждого дискретного значения φ_i (через $\frac{\pi}{8}$)

вычислялась средняя величина ρ по всем спиральным рукавам, и зависимость $\rho(\varphi_i)$ представлялась в прямоугольных координатах (рис. 2 и 3). Эффект наклона давал волну переменной амплитуды с периодом т. Поскольку отсчет угловой координаты начинался от области передержки, а величина последней случайным образом менялась от галактики к галактике, то при таком усреднении "волны наклона" со случайными фазами взаимно компенсировались. Из соображений корректности усреднения совокупность спиральных рукавов разбивалась на группы по угловой протяженности φ_m . Чтобы при каждом φ_i усреднялось одно и то же число значений ρ , часть $\rho(\varphi_i)$ с *i* больше некоторого минимального в данной группе приходилось отбрасывать.

5. На рис. 2 черными кружками обозначены средние значения $\overline{\rho}(\varphi_l)$ для 78 рукавов, у которых угловая протя-

женность $\varphi_m \gg \frac{3\pi}{2}$. Из рисунка видно, что усредненные величины хорошо ложатся на линейную зависимость

$$\rho = \alpha \left(\varphi + \varphi_0 \right), \tag{3}$$

то есть в среднем рукава залактик описываются архимедовой спиралью. Если провести усреднение для самых протяженных спиралей, то зависимость $\overline{\rho}(\varphi)$ также получается

линейной. На рис. З представлены результаты усреднения для 19 спиральных рукавов, у которых ρ измерено для 20 или более значений угловой координаты φ . Процедура усреднения была здесь несколько изменена: совмещались не начальные точки рукавов, а конечные, т. е. φ_m и $\rho(\varphi_i)$ для каждого рукава выражались в долях $\rho(\varphi_m)$. Вертикальными линиями у каждой точки отмечены интервалы среднеквадратичных погрешностей, вычисленных по уклонениям $\frac{\rho(\varphi_i)}{\rho(\varphi_m)}$ у индивидуальных рукавов от среднего значения. Аналогичным образом были обработаны и группы спиралей с малой угловой протяженностью. В каждом случае усредненная зависимость $\overline{\rho}(\varphi)$ также оказалась линейной.

Для всей совокупности спиралей средние значения коэффициентов a и φ_0 в (3) получились равными $a = 0.45 \pm 0.04$ и $\varphi_0 = 0.62 \pi \pm 0.07 \pi$.

6. На рис. 2 изображена логарифмическая спираль с ковффициентом x = 0.30, приводимым Данвером в качестве

среднего значения по 190 рукавам. Как видно, логарифмическая спираль плохо представляет зависимость $p(\varphi)$. Вероятно поэтому Данвер и отметил в [1], что "у большинства спиральных рукавов заметна тенденция к уменьшению коэффициента x при переходе от области ядра к внешним частям рукавов". Такая зависимость $x(\varphi)$ должна приподнимать первые точки у экспоненты и опускать последние, то есть приближать логарифмическую спираль к архимедовой.

Следует отметить, что представление формы рукава уравнением $\rho = \rho_0 e^{x_{\overline{\tau}}}$ в некотором смысле удобнее, чем уравнением $\rho = a (\overline{\varphi} + \overline{\varphi}_0)$. В первом случае масштабный фактор входит только в ρ_0 , а * характеризует степень разворота

рухава; в линейном представлении оба фактора объединяются в коэффициенте а.

7. Чтобы выразить параметр а архимедовой спирали в линейной мере, было проведено усреднение $\wp(\varphi_l)$ отдельно для галактик с известными лучевыми скоростями. У всех галактик, за исключением М51, лучевые скорости больше 1000 км сек, что позволило определять расстояния до них по зависимости v = hr (h = 75 км сек⁻¹ мпс⁻¹). Зависимость \wp в кпс от φ_l для 22 спиральных рукавов представлена на рис. 4. Из-за уменьшения числа усредняемых членов дисперсия $\wp(\varphi_l)$ с ростом φ_l возрастает. Крестиками обозначены те $\wp(\varphi_l)$, для которых число усредняемых членов было меньше половины. Прямая линия проведена по 15 наиболее унеренным точкам. Как и в предыдущих случаях, линейность зависимости $\wp(\varphi_l)$ проявляется достаточно отчетливо и выражается формулой

$$p = 0.98 (z - 0.86 \pi),$$
 (4)

где р выражено в кпс, а с в радианах. Из (4) следует, что расстояние между смежными ветвями у двурукавной галактики составляет в среднем 3.08 кпс^{*}.

8. Представляет интерес безразмерное отношение l/Rдлины спирального рукава к радиусу галактики. Если определить R как $l(T_m)$, то для l можно записать выражение:

$$l = \int_{0}^{R} \sqrt{1 + \frac{p^{2}}{a^{2}}} d\rho = \frac{1}{2} R \left\{ \sqrt{1 + \frac{R^{3}}{a^{3}}} + \frac{a}{R} \ln \left| \frac{R}{a} + \sqrt{1 + \frac{R^{2}}{a^{2}}} \right| \right\}.$$
(5)

Ввиду того, что не все галактики расположены анфас, полученное значение а несколько занижено. Если углы наклона галактик не превышают 45⁵, то коэффициент а следует умножить на фактор 1.17.

в. Е. КАРАЧЕНЦЕВА, И. Д. КАРАЧЕНЦЕВ

Поскольку $R = a (\varphi_m + \varphi_0)$, для отношения l/R получаем-

$$l/R = \frac{1}{2} \left\{ V \overline{1 + (\varphi_{m} + \varphi_{0})^{2}} + (\varphi_{m} + \varphi_{0})^{-1} \ln \left| (\varphi_{m} + \varphi_{0}) + V \overline{1 + (\varphi_{m} + \varphi_{0})^{2}} \right| \right\}.$$
(6)

Подставляя в (6) $\overline{\varphi_m} = 1.39 \pi$ (из рис. 1) и $\overline{\varphi_0} = 0.62 \pi$, имеем $\overline{l}/R = 3.4$. Для спиралей с известными лучевыми скоростями вто отношение несколько больше: $\overline{l}/R = 4.2$. А согласно Данверу $\overline{l}/R = \sqrt{1 + \frac{1}{x^2}} = 3.5$.

В заключение подчеркнем, что линейное уравнение (3) представляет формулу спирального рукава лишь статистически. Иногда (NGC 5247, IC 239) для описания ружава лучше подходит логарифмическая спираль. В некоторых случаях встречаются весьма причудливые формы рукавов, а у NGC 4654, например, ход одного рукава совершенно не похож на ход другого.

ՍՊԻՐԱԼ ԳԱԼԱԿՏԻԿԱՆԵՐԻ ԹԵՎԵՐ

Վ. Ե. ԿԱՐԱՉԵՆՑԵՎԱ. Ի. Դ. ԿԱՐԱՉԵՆՑԵՎ

ՍՊԻՐԱԼ ԳԱԼԱԿՏԻԿԱՆԵՐԻ ԹԵՎԵՐԻ ՀԱՎԱՍԱՐՈՒՄ ԵՎ ՄԻՋԻՆ ԽԱՐԱԿՏԵՐԻՍՏԻԿԱՆԵՐ

Ամփոփում

Պալոմարի ատլասի քարտեղների վրա 237 գալակտիկաննրի սպիրալ խների ուսումնասիրու խլունից արվում է եղրակացու խյուն, որ սպիրալ խնհ ձևը միջինում լավ է նկարագրվում Արքիմեդի սպիրալի հավասարմամբ՝ $\gamma = a (z + z_0): Յուլց է տրվում սպի$ րալի հավասարման որոշման ժամանակ միջինացման ձևի նշանակու խլունը։ Տրվում է սպիրալ խների խվի բաշխումը ըստ մաքսի $մալ անկլունալին տարածվածու խլունների <math>z_m: Spilari և նն նաև.$ սպիրալ խների որոշ միջինացված պարամետրեր։

V. E. KARACHENTSEVA, I. D. KARACHENTSEV

THE EQUATION AND THE AVERAGE CHARACTERISTICS OF THE ARMS OF SPIRAL GALAXIES

Summary

From the mesurements of the 237 spiral arms of the galaxies on the Palomar Sky Survey prints a conclusion is made, that the shape of the spiral arms is well described by Archimed's spirals equation $\rho = \alpha (\gamma + \gamma_0)$.

The importance of the method of averaging by the determination of a spirals equation is examined. The results of Danver's work [1] are discussed critically.

The distribution of spiral arms of different galaxies according to their maximal angular lenghts $=_m$ is presented; meam values of some parameters of the spiral arms are given.

ЛИТЕРАТУРА

1. C.-G. Danver, Annals of the observatory of Lund. No 10, 1942.

Ж. М. Лорецян

О КОРРОЗИЙНОЙ УСТОЙЧИВОСТИ НЕКОТОРЫХ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ ДЛЯ АСТРОНОМИЧЕСКИХ ЗЕРКАЛ

Для исследования возможности применения в астроприборостроении зеркал из алюминиево-магниевого сплава с хромовыми и никелевыми покрытиями нами был проведен цикл химических испытаний. В лаборатории были искусственно созданы условия, имитирующие коррозийное влияние окружающей атмосферы и специальных химических растворов на астрономические зеркала.

Исследование коррозийной стойкости сплава АМг 6Л, хромовых и никелевых покрытий на этом сплаве, а также зеркальной бронзы сравнительно со сталью 3 X 13, из которой в настоящее время изготовлено зеркало диаметром 720 мм в Пулковской обсерватории, проводилось в различных средах. В качестве коррозийной среды были выбраны следующие растворы:

1. 30 раствор поваренной соли, имитирующий влияние влажного морского воздуха на металлические зеркала.

2. Раствор соляной кислоты концентрации pH = 2.6, имитирующий влияние кислотности воздуха на металлические зеркала.

3. Растворы щелочи NaOH концентрации 10 и 20⁰, применяемые для снятия алюминиевого слоя, который наносится на астрономические зеркала с целью повышения отражательной способности. Тончайший слой чистого алюминия

О ЕСРРОЗИПНОЙ УСТОИЧИВОСТИ МАТЕРИАЛОВ

Наносится в вакууме на полированную поверхность зеркал. Алюминиевые слои имеют большую стойкость и механическую прочность, но со временем они тускнеют, теряют высокую отражательную способность, а иногла разрушаются. Поэтому возникает необходимость снятия старого алюминиевого слоя для повторного алюминирования. Классическим метолом снятия алюминиевого слоя является его растворение и шелочной среде. Для снятия "свежих", т. е. недавно нанесенных слоев, обычно употребляют 20% раствор, а для "старых" - 10° раствор щелочи. Исходя из этого. испытания производились с двумя концентрациями раствора едкого натрия. Испытания проводились на деталях диаметром 60 мм, толщиной 11 - 12 мм, рабочая поверхность которых была отшлифована и отполирована под плоскость. Продолжительность испытаний составляла 24 часа. Оценка коррозийной стойкости зеркал проводилась визуально и, кроме того, до и после испытаний поверхность зеркал фотографировалась на универсальном микроскопе "Неофот" Цейсса при десятихратном увеличении.

Результаты испытаний приведены в табл. 1.

Для выявления влияния коррозии на качество полированной оптической поверхности исследуемых образцов была определена их отражательная способность до и после химических испытаний. Определение отражательной способности поверхностей производилось на специально собранной установке, оптическая схема которой указана на рис. 1.

Принцип работы следующий. Монохроматическое излучение, выходящее из монохроматора, пройдя через кварцевую пластинку 2, отражалось от поверхности кварцевой пластинки 3 и падало на фотоэлемент 4. Регистрируемая на фотоэлементе лучистая энергия отсчитывалась по шкале гальванометра 5. Для определения отражательной способности поверхности исследуемого образца 6 пластинка 3 поворачивалась в положение II, а пластинка 2 ныводилась из оптической схемы. При этом световой пучок из монохроматора, пройдя через пластинку 3 и отразившись последовательно от поверхности образца 6 и от поверхности пластинки 3, падал на фотоэлемент 4. Принимая показание гальва-

Таблица 1

	Раст	вор			
Матернал	3º/o NaCi	HC1, <i>pH</i> 2.6	20º/ ₀ NaOH	10º/o NaOH	
Сталь ЗХ13	Несколько коррознйных точек коричневого цвета	Коррозни нет	Коррозии нет	Коррозни вет	
Спавв АМгбА	Множество коррозийных точек	Поверхность потускнелв	Происходит бурное растворение силава. Поворх- ность на этом месте опустилась от общего уровпя и стала шероховатой		
Зеркальная бронза	Коррозии нет	Цвет поверхности стал бледно-коричневым	Цвет поверхности ст структура поверхи	ал темпо-корнчиевым, видиа ности	
Хромовос покрытие		Коррс	эзии нет. Края пор вси	ідасим	
Никслевос покры- тие		Поперхность погускиела. Края пор вспучены	Коррозии нет. Кран	пор вспучены	

о коррозииной устоичивости материалов

нометра при работе по первой оптической схеме за 100°_{0} светового потока, показание при введении в схему исследуемого образца с пересчетом на проценты определяло отражательную способность (коэффициент отражения ρ) поверхности образца. Для выравнивания оптической длины пути обеих схем в первом случае перед монохроматором устанавливалась пластинка 2, идентичная пластинке 3. Отражательная способность поверхности исследуемых образцов определялась для 3 световых волн:

 $h_1 = 458 \text{ нык};$ $h_2 = 550 \text{ нык};$ $h_3 = 660 \text{ нык}.$

Оптическая схема, указанная на рис. 1, определяла лишь приближенное значение коэффициента отражения, но

она вполне достаточна для сравнительных характеристик на коррозийную устойчивость исследуемых металлических образцов.

Полученные значения коэффициента отражения представлены в табл. 2.

Ж. М. ЛОРЕЦЯН

Таблица 2

	7. N.M.K	До экс- пери- мевта	Раствор				
Материал			3º/0 NaCl	HCl pH=2.6	20º/0 NaOH	10 ^r y NaOH	
	458	52	52	52	52	52	
Crean 3X13	550	54	54	54	54	54	
Clans Sills	660	57	57	57	57	47	
	458	56	56	20	0	4	
Эспкальная бронза	550	60	60	30.5	0.75	4.75	
September 1	660	67	67	41	1	6.2	
Электролитическое	458	58	58	58	58	58	
хромовое покры-	550	62.5	62.5	62.5	62.5	62.5	
тне	660	66	66	66	66	66	
	458	44	44	24	42	42	
Никелефосфатное	550	- 49.5	49.5	49	48.5	48.5	
покрытие	660	55.5	55.5	32.5	54	54	
	458	18	11	0	0	0	
Сплав АМгбА	550	22.5	12.5	1.5	0	0	
	660	26	14.5	2	0	0	

Козффициент отражения р, %

Результаты испытания показали, что наиболее коррозийноустойчивым среди исследуемых материалов оказался влектролитический хромовый слой на алюминиево-магниевой основе. Однако при наличии пор в покрытии растворы щелочи или кислоты, проникая через поры к сплаву АМг бЛ, реагировали с ним и ухудшали тем самым сцепляемость пленки к основанию, что приводило к вспучиванию хрома у края пор. Отражательная способность хромированной поверхности при воздействии химических растворов не изменялась. Никелевая пленка, нанесенная химическим способом, также достаточно устойчива к применяемым коррозийным средам. Но

о коррозипной устоячивости материалов

при действии разбавленной соляной кислоты поверхность зеркала становилась мутной и не прочищалась при протирке фланелевым полотном. Поры на никелевом покрытии при воздействии растворов кислоты или шелочи приводили к тем же отрицательным последствиям, что и при хромовом покрытии. Отражающая способность никелированной поверхности при воздействии кислотного раствора уменьшилась в 1.7-1.8 раза. Зеркало из стали 3X13 устойчиво к коррозии. Но некоторые участки зеркала имели точечные коррозии, возникающие из-за наличия шлаковых включений или из-за обеднения хромом этого участка. Отражающая способность стальной поверхности остается в общем неизменной при воздействии применяемых растворов. Зеркальная бронза малоустойчива к коррозни в щелочном и кислом растворах, поверхность зеркала темнеет в обоих растворах. При воздействии кислотного раствора на поверхность зеркальной бронзы отражательная способность уменьшается в среднем 2 раза, а корродирование поверхности от воздействия в 20% NaOH фактически лишает возможности отражаться световым лучам от поверхности. Сплав АМгбЛ бурно реагирует с растворами шелочи и относительно слабее с кислотой. Наблюдается полное отсутствие отражающей способности корродированной поверхности.

Результаты экспериментов позволили выяснить, что для изготовления астрономических металлических зеркал из рассматриваемых материалов наиболое пригодным в коррозийном отношении является хромовое покрытие на сплаве АМгбЛ. Возможно также применение никелефосфатного покрытия, но при условии малой кислотности окружающего воздуха. Однако как на хромовых, так и на никелевых слоях недопустимы поры. Следует отметить, что при разалюминировании рабочей поверхности зеркала из сплава АМгбЛ с хромовым или никелевым покрытием остальная часть зеркала должна быть тщательно изолирована от воздействия щелочи. Зеркало из стали ЗХ13 устойчиво к коррозии, но инородные включения и наличие участков, обедненных хромом, приводят к коррозии рабочей поверхности. Неудовле-

ó**3**

творительны в коррозийном отношении бронзовые зеркала, что и было причиной быстрого тускнения астрономических зеркал из данного сплава в прошлом. Совершенно неприемлемы зеркала из алюминиево-магниевого сплавов АМгбЛ без применения покрытий.

В заключение следует отметить, что эксперименты проводились нами при содействии старшего инженера Г. Г. Лаврентьевой.

Ժ. Մ. ԼՈՐԵ8ՑԱՆ

ԱՍՏՂԱԳԻՏԱԿԱՆ ՀԱՅԵԼԻՆԵՐԻ ՀԱՄԱՐ ՄԻ ՔԱՆԻ ՄԵՏԱՂՅԱ ՆՅՈՒԹԵՐԻ ԿՈՐՈՉԻՈՆ ԳԻՄԱՑԿՈՒՆՈՒԹՅԱՆ

ՄԱՍԻՆ

Ամփոփում

Հետազոտվել է խրոմով և նիկելով պատված AMr6A համաձուլված քի աստղագիտական հայելիներ պատրաստելու հնարավորու թյունը։ Արհեստականորեն ստեղծվել են պայմաններ, որոնք ընդօրինակում են շրջապատող միջավայրի և հատուկ լուծուլ թների կորոզիոն ազդեցու թյունը աստղագիտական հայելիների վրա։ Ընտրված է եղել հետևյալ լուծուլ թներ՝

1. 3% NaCl լուծուլ թը, որը ընդօրինակում է ծովալին օդի ազդեցու թլունը։

2. HCl լուծուլթը, pH = 2.6 կոնցենտրացիալով, որը ընդօրինակում է օդի թթվալնությունը։

3. 10 և 20% NaOH լուծուլ Թները, որոնք գործածվում են հայելու մակերեսից փոշիապատված ալլումինի հանման համար։ Համեմատելու համար փորձերը կատարվել են նաև հայելյա բրոնղի և 3 X 13 պողպատի վրա։

Փորձնրը Թույլ տվնցին հայտնաբերել, որ աստղագիտական հայնկիներ պատրաստելու համար կորոզիոն դիմացկունության տեսակետից ամենից պիտանի է խրոմապատված մակերեսը։ Կիրառնլի է նաև նիկելապատված մակերեսը, բալց ալդ դեպքում պահանջվում է օդի փոքր խթվալնություն։

Վատ քիմիական դիմացկունուβլուն ունի AMr6Λ համածուլված քը։

հոբոգիոն ԴիՄԱՑԿՈՒՆՈՒԹՑԱՆ ՄԱՍԻՆ

Դրա համար էլ խրոմապատված և նիկելապատված մակերեսների վրա անթուլլատրելի են ծակոտիները։ 3 X 13 պողպատից պատրաստված հայելիները ունեն բավարար կորոզիոն դիմացկունութլուն։ Անբավարար է քիմիական դիմացկունության տեսակետից հայելլա բրոնղը։

G. M. LORETSIAN

ON THE CORROSIVE DURABILITY OF SOME METALLIC MATERIALS FOR ASTRONOMICAL MIRRORS

Summary

The possibility of making astronomical mirrors from the alloy AMg6L with chrome or nickel filme is investigated. Artifical conditions were created imitating the corrosive influence of the surrounding medium and of special solutions on astronomical mirrors. The following solutions were chosen: a) $3^{0}/_{0}$ solution NaCl which imitates the sea air; b) the solution of HCl with a concentration pH = 2.6, which imitates the acidity of the air; c) 10° and 20° of NaOH solutions which are used to remove the aluminium layer. For the comparison experiments were also made with mirror bronze and 3 X 13 steel as well. The investigations have shown that chrome film surface is more suitable for the astronomical mirrors. Nickel film surface is also used but in this case less acidity of the air is required. The alloy AMg6L has a bad chemical durability. Therefore, pores are unacceptable on chrome and nickel films. The mirrors made of 3X13 steel are quite corrosive durable. The mirror bronze has a bad chemical durability.

5-47

Ж. М. Лорецян

ИССЛЕДОВАНИЕ НА ТЕРМОСТОЙКОСТЬ МИКРОПОВЕРХНОСТИ АСТРОНОМИЧЕСКИХ ЗЕРКАЛ, ИЗГОТОВЛЕННЫХ ИЗ СПЛАВА АМг6Л С ХРОМОВЫМ И НИКЕЛЕВЫМ ПОКРЫТИЯМИ

Для определения влияния высоких в низких температур, разности коэффициентов линейного расширения алюминиевого сплава, электролитического хрома и химического никеля на качество микроповерхности зеркал нами был проведен цикл испытаний на полированных зеркалах из сплава АМгбА с хромовыми и никелевыми покрытиями, имеющими различную толщину. Испытания проводились при температуре - 95°, + 20°, + 60°, + 100° С. Повышенная температура (+ 60° и + 100° C) получалась в лабораторном термостате типа III — 005. Заданная температура автоматически поддерживалась с помощью контактного термометра ТК-6 с точностью ± 1°. Испытания образцов при низкой температуре проводились в герметично закрытом ящике с твердой углекислотой CO2 (сухой лед). Образцы располагались между брусками углекислоты. Температура измерялась с помощью термометра с пределами измерений от - 20° до - 100° С. Время выдержки при + 100° С - 6 часов: при + 60° С - 8 часов, при - 95° С - 20 часов. Нагрев деталей в термостате до требуемой температуры происходил постепенно, начиная от комнатной температуры. Охлаждение до комнатной температуры также проходило постепенно в термостате. В табл. 1 указаны наибольшая и наименьшая

ИССЛЕДОВАНИЕ МИКРОПОВЕРХНОСТИ ЗЕРКАЛ

толщина покрытия испытываемых образцов непосредственно после нанесения "а", а также после шлифовки и полировки "б".

Таблица 1

67

2	№ образцов						
Покрытие	1 2		3	4	5		
Хром "а" "б"	47 ⊹ 40 10 · · 15	55÷45 30÷20	85÷100 30∻50	100÷120 50÷80	220÷240 120÷140		
Никель "6"	30÷35 10÷15	40-÷45 15÷20	50÷70 35÷40	65÷75 40∻50	-		

Толщина покрытий в михронах

Качество микроповерхности проверялось визуальным просмотром, а также фотографированием на универсальном микроскопе "Нвофот" Цейсса при 200-кратном увеличении до и после испытаний.

Результаты испытаний для хромовых покрытий, выполненных в режиме молочного хромирования, приведены в табл. 2.

Результаты экспериментов локазывают, что у зеркал со слоями хрома от 10 до 50 мк (после полировки) при вышеуказанном цикле термических испытаний микроповерхность не изменилась. При толщине слоя хрома от 50 до 120 мк на поверхности зеркала после прогрева образовались трещины. Следовательно, существует предельная толщина хромового слоя на сплаве АМгбЛ, применяемого в качестве рабочей отражающей поверхности астрономического зеркала. При превышении этого предела на поверхности зеркала возникнут микротрещины. Образование микротрещин на хромовом покрытии можно объяснить следующим образом. Как известно, в электролитическом слое хрома возникают внут-5*

Таблица 2

Температура	1	2	3	4	5	Примочание
+20° ℃	Поверхность чистая, без трещия	Поверхность чистая, без трещип	Поперхпость чистая, без трещип	Поперхпость чистая, без трещия	Поверхность нокрыта наутивой трещин	Толцины покрытия для образцов указа пы в табл. 1
4+60° C		11		Появидись трещины	Новых трещин пе заметно	
+100° C		55	Появились трещины	Нопых трещин не заметно	Появнаясь повые трещины	
-95° C	11	10	Нопых трещип пс заметно	Новых трещии ис заметно	Новых трещип не заметно	

ИССЛЕДОВАНИЕ МИКРОПОВЕРХНОСТИ ЗЕРКАЛ

ренние напряжения, достигающие больших значений (3700 - 6000 кг см²) и зависящие от режимов нанесения, толщины, природы и состояния подкладки. В данном случае режимы нанесения, природа и состояние подкладки для всех толщин были одинаковыми. В слоях хрома до толщины 100 - 120 лк непосредственно после нанесения микротрещин не наблюдалось а выше, например, при 220 мк, были заметны паутины трещин. Эти трещины образовались в процессе электролиза из-за превышения величины внутреннего напряжения предела прочности хромового слоя на разрыв.

На величину остаточного внутреннего напряжения хромового слоя совместное существенное влияние оказывают изменение температуры и разность коэффициентов линейного расширения α сцепляемых материалов. Чем значительнее разница в величинах коэффициента α , тем больше внутренние напряжения, возникающие при изменении температуры. Известно, как велика разница в величинах коэффициента линейного расширения электролитического хрома и сплава АМг6Л: у электролитического хрома $\alpha = 6.25 \cdot 10^{-6}$ 1 ирад., а у сплава АМг6Л $\alpha = 23.8 \cdot 10^{-6}$ 1/ирад.

Из результатов эксперимента следует, что для получения качественной микроповерхности на зеркалах, изготов ляемых из алюминиево-магниевого сплава с хромовым покры тием, недопустимо нанесение слоя хрома толще, чем 85 — 100 км.

Результаты испытания показывают, что при малых толщинах нанесенного хрома (до 50 лк) величина внутреннего напряжения не превышает предел прочности хромового слоя на разрыв и поэтому разрушения слоя не наблюдаются. Но с увеличением толщины покрытия (50 жк и выше) градиент температуры вызывает внутри покрытия напряжения, превышающие предел прочности электролитического хрома на разрыв, что приводит, в конечном счете, к появлению паутины микротрещин на поверхности покрытия.

Микроповерхность химического никелевого слоя на алюминиево-магниевой основе, как при предельно нанесенны х толщинах, 65 75 мк (после обработки 40 - 50 мк), так и

при наименьших толщинах нанесения, $30 \div 35$ мк (после обработки — $10 \div 15$ мк), при изменении температуры в пределах от — 100° С до — 95° С не изменялась. Следовательно, при данном интервале температуры (— $90^{\circ} \div -100^{\circ}$) и толщины (до 65 - 75 мк) возможно получение качественной микроповерхности на никелевом слое, нанесенном химическим способом.

В заключение следует отметить, что термические испытания на исследуемых образцах проводились нами при содействии старшего инженера Г. Г. Лаврентьевой.

Ժ. Մ. ԼՈՐԵՑՑԱՆ

ԽቦՈՄՈՎ ԵՎ ՆԻԿԵԼՈՎ ՊԱՏՎԱԾ АМг6Л ՀԱՄԱՉՈՒԼՎԱԾՔԻ8 ՊԱՏՐԱՍՏՎԱԾ ԱՍՏՂԱԳԻՏԱԿԱՆ ՀԱՅԵԼԻՆԵՐԻ ՄԱԿԵՐԵՍԻ ՋԵՐՄԱՅԻՆ ԴԻՄԱՑԿՈՒՆՈՒԹՅԱՆ ՀԵՏԱՉՈՏՈՒՄ

Ամփոփում

Ջերմաստիճանի փոփոխումների և АМr6Л համաձուլված քի, էլնկտրոլուծուլթական խրոմի, քիմիական նիկելի գծալին ընդարձակման գործակից а տարբերությունների աղդեցություն ունը հայելիների մակերեսի վրա որոշելու համար կատարված է փորձառական աշխատանք։ Հայելիները պատրաստված են եղել АМr6Л համաձուլված քից, պատված էլեկտրոլուծուլթական խրոմի և քիմիական նիկելի տարբեր հաստության շերտերով։ Փորձերը կատարվել են – 95°, + 20°, + 60°, + 100° С ջերմաստիճանի տակ։ Փորձերի արդլուն քները ցույց են տալիս, որ այն հայելիները, որոնք պատված են 10 + 50 մև խրոմի շերտով, իրենց մակերևսի որակը չեն փոխում։ Իսկ 50 մև ավելի շերտո դեպքում հայելու մակերեսի վրա առաջանում են ճեղջված քներ։ Ճեղջված քների գոյացումը րացատըրվում է պատված քի մեջ մեծ ներքին լարումների առաջացումով։

հրջճար դրայիսնումն աջ դի ամենաշխեր է հատվամ շրափ ընդեր Արա Հասութուն շրափ ունենունը, այն ճար դրային լահաշուղըը Հասութուս շրափ դրչ, շիկել առաջարություն չի խամբառը Հրողության փափախումն աչ չի ամպեցություն չի խամբառը։

G. M. LORETSIAN

AN INVESTIGATION OF THERMOSTABILITY OF THE MICROSURFACES OF ASTRONOMICAL MIRRORS MADE FROM THE ALLOY AMg6L WITH A CHROME AND NICKEL FILM

Summary

An investigation of the influence of temperature changes and the difference of coefficient of the linear expantion a of alloy AMg6L, of electrolytic chrome and of chemical nickel on the quality of microsurfaces of the mirrors was made. The mirrors were made from the alloy AMg6L, covered with a film of chrome or nickel of varions thicknesses. The investiration has been carried out at -95° , $+20^\circ$, $+60^\circ$ and +100° C. It was shown that the mirrors covered with 10-50 p of chrome have not changed their microsurface quality. In the cases of films with thicknesses more than 50 µ cracks appear on the mirror surface. The temperature variations have no influence on the quality of nickel films. The origin of the cracks can be explained by the large internal strains in the chrome films. The more the difference between the coefficient z of the film material and of the mirror itself, the more are the inner strains which originate in the film.
Ж. М. Лорецян

О МАТЕРИАЛАХ ДЛЯ АСТРОНОМИЧЕСКИХ ЗЕРКАЛ

Для получения высококачественных отражательных астрономических телескопов большую роль играет правильный выбор материала для зеркальных объективов.

Основными критериями для оценки выбора материала астрономического зеркала являются:

1. Устойчивость зеркала к деформациям, возникающим при его изготовлении и эксплуатации.

2. Стабильность по времени механических, химических и оптических характеристик материала зеркала.

3. Податливость материала к механической и оптической обработке.

4. Возможность изготовления крупных зеркал.

5. Экономичность и легкодоступность материала зеркала.

Ниже мы рассмотрим все вышеуказанные критерии применительно к разным материалам.

Различают два вида деформаций астрономического зеркала:

a) Термические деформации, возникающие из-за появления внутренних напряжений в зеркале при изменении температуры окружающего пространства;

б) Механические деформации, возникающие из-за воздействия внешних нагрузок и от собственного веса при недостаточной разгрузке зеркала.

О МАТЕРНАЛАХ ДЛЯ АСТРОНОМИЧЕСКИХ ЗЕРКАЛ

§ 1. ТЕРМИЧЕСКИЕ ДЕФОРМАЦИИ АСТРОНОМИЧЕСКИХ ЗЕРКАЛ

Применяемые в настоящее время астрономические зеркала из стекла имеют один существенный недостаток. Стеклянные зеркала из-за малой теплопроводности, при изменении температуры окружающего зеркало пространства, не успенают быстро и равномерно выравнять температуру по всей своей толще. Выравнивание температуры наступает быстрее в крайнйх, соприкасающихся с окружающим пространством зонах, и медленнее — в середине зеркала. Из-за неравномерного распределения температуры в толще зеркала возникают термические деформации.

Термические деформации являются проблемой механики упругих тел. Каждый элемент объема зеркала при изменении температуры стремится изменить свой объем в соответствии с коэффициентом линейного расширения материала х. Но если соседние элементы объема обладают разными температурами, то возникают упругие силы, которые деформируют зеркало. Чем больше коэффициент х, тем больше сила, деформирующая рабочую поверхность зеркала.

Для уменьшения неравномерности распределения температуры в зеркале необходимо, чтобы материал зеркала обладал способностью быстро распространять температуру по всему объему зеркала. Это свойство материала характеризуется его температуроспособностью q, которая равна:

$$q = \frac{\lambda}{Cd},\tag{1}$$

где λ — теплопроводность, C — удельная теплоемкость и d — удельный вес материала.

Чем выше температуропроводность материала зеркала, тем меньше деформация зеркала.

Деформации зеркала противостоит упругость материала зеркала. Упругость материала характеризуется модулем упругости Е. Чем больше модуль упругости Е, тем меньше деформация зеркала.

При изменении температуры окружающего зеркало пространства наибольшие деформации наблюдаются на внешней крайней зоне зеркала. Край зеркала быстрее принимает температуру окружающего пространства, в то время как внутренняя масса зеркала дольше сохраняет свою первоначальную температуру. Поэтому края зеркала быстрее оседают от общего уровня при понижении температуры и выпячиваются при повышении ее. Этот вид термической деформации в астрономии получил название "эффекта края". По величине "вффекта края" можно судить о стойкости астрономических зеркал к термическим деформациям при переменных температурах.

Для уменьшения "эффекта края" рекомендуются следующие мероприятия [1]:

1. Уменьшение толщины зеркала. Согласно данным Веллмана [2], изменение температуры по времени на поверхности толстого и тонкого зеркала почти одинаково, внутри же толстого зеркала - во много раз медленнее, чем у тонкого. Поэтому тонкие зеркала менее подвержены появлению внутренних термических деформаций. Но уменьшение толшины астрономических зеркал имеет предел, который обусловлен двумя обстоятельствами. Во-первых, утоньшение зеркала не должно препятствовать высоким требованиям к механической устойчивости зеркала при его изготовлении и эксплуатации: из-за малой жесткости тонкие зеркала деформируются от собственного веса и от внешних нагрузок. Во-вторых, утоньшение зеркала не должно благоприятствовать появлению второго вида термической деформации — "эффекта гнутия", которая возникает при установившейся разности температуры между передней и задней стороной зеркала. "Эффект гнутия" обратно пропорционален толщине зеркала. о чем подробнее будет сказано ниже.

2. Применение тонких зеркал с повышенной жесткостью. Жесткость тонких зеркал можно повысить применением ребер жесткости. Ребра могут быть отлиты вместе с зеркалом или приварены к нему.

3. Термостатирование зеркала в телескопе в дневное нерабочее время, для поддерживания средней температуры

приближающейся ночи, что позволит свести до минимума разность температур между зеркалом и окружающим пространством во время ночного наблюдения.

4. Выбор места для установки телескопа с минимальным суточным перепадом температуры.

5. Рациональный выбор материала для зеркала. Этот способ является наиболее эффективным. Для характеристики "эффекта края" разных материалов Д. Д. Максутов ввел коэффициент 2, равный

$$\psi = \frac{Eq}{2}, \qquad (2)$$

где *E* — модуль упругости, *q* — температуропроводность, *a* — коэффициент линейного расширения материала зеркала.

Подставляя значение q из формулы (1) в выражение (2), получаем

$$\psi = \frac{E}{d} \frac{\lambda}{2 \cdot C}$$
(3)

Чем больше величина $\frac{1}{2}$, тем выгоднее материал для зеркала, в смысле уменьшения "эффекта края". Из выражения (3) следует, что с целью уменьшения термической деформации, для зеркала следует выбирать материал наиболее упругий и наиболее легкий (отношение $\frac{E}{d}$). По температурным характеристикам данный материал должен иметь малый коэффициент линейного расширения α , малую удельную теплоемкость C и большую теплопроводность λ .

Значения E, d, h, C, a, q и ψ для разных материалов даны в табл. 1. Величины этих коэффициентов выбраны из справочников для интервала температуры от -20° до $+20^{\circ}C$.

Из таблицы заметно многократное преимущество металических материалов перед стеклянными. Благодаря высомой температуропроводности q и упругости E коэффициент у металлов имеет большие значения, чем у стекла. Так, например, применяемые в начале эры рефлекторов брон-

Таблица 1

Материал	л, <u>кил</u> см. сек. С	$C, \frac{\kappa \alpha \lambda}{\iota \cdot C^{\circ}}$. uosanga /
			$a, \frac{1}{C^{\circ}} \cdot 10^{-6}$	$d, \frac{i}{cm^3}$	$E \cdot 10^6, \frac{\Gamma}{cm^2}$	$\frac{E}{d} \cdot 10^6$	$q, \frac{cM^3}{ce\kappa}$	ψ·10 ¹⁰	ω·10 ⁻⁴
Зеркальная бронза	0.2	0.08	18.6	8.6	800	93	0.201	1950	0.00
Сталь	0.11	0.12	11	77	2100	279	0.491	1250	8.92
Алюминий	0.538	0.215	24.3	27	700	213	0.119	2270	4.66
Никель	0.22	0.1065	13.4	80	2095	203	0.927	2700	1.67
Медь	0.94	0.0915	16.5	8.04	1017 6	234	0.232	3610	5.82
Серебро	1	0.0500	10.5	0.94	1217.5	136	1.148	8470	7.66
Инвар	0.011	0.0399	19.7	10.5	760	72.4	1.589	6130	12.34
Sanutana	0.011	-	0.9	7.9	1400	177	0.022	3420	5.93
Т	0.385	0.392	11.1	1.85	3000	1620	0.531	14350	0.46
Титан	0.036	0.1248	8.2	4.5	988.5	220	0.064	770	3.04
Молибден	0.32	0.061	5.1	10.2	3360	329	0.514	33900	5 62
Хром	0.16	0.106	6	7.19	2590	360	0.21	0070	9.70
Магний	0.376	0.243	26	1.74	457	263	0.21	1560	3.19
Пирекс	0.0024	0.17	3.2	2 25	700	203	0.009	1500	1.07
Ситалл	0.0046	0 224	0:07	2.25	1000	311	0.00627	137	1.28
Кроп К8	0 0023	0.19	7.6	2.5	1000	400	0.0082	$\propto \div 1170$	1.25
Фаннт Ф1	0.0016	0.10	7.0	2.52	820	325	0.0051	55	1.40
	0.0010	0.11	7.1	3.57	570	160	0.0041	33	2.83
илавленый кварц	0.0024	0.18	0.4	.2.21	700	317	0.006	1050	1.24

зовые зеркала имеют "эффект края в 9 раз меньший, чем зеркала из пирекса.

Уменьшению "эффекта края" способствует, согласно выражению (3), малое значение коэффициента 2. Так, например, 8-кратное преимущество плавленого кнарца перед пирексом есть результат малого значения его коэффициента 2. Пирекс, благодаря меньшему значению коэффициента 2, имеет преимущество перед другими стеклянными материалами (крон, флинт).

Практического и теоретического исключения тепловой деформации можно добиться, применяя в качестве материала для зеркала кристаллизированное стекло с нулевым коэффициентом линейного расширения — ситалл. Отечественное стекловарение в настоящее время может изготонить ситалловые заготовки достаточно больших размеров, которые в определенных диапазонах температуры имеют коэффициент 2, равный 0. Согласно выражению (3), при 2 = 0 коэффициент $\psi = \infty$, т. е. теоретически исключается "эффект края".

Как указывалось выше, существует еще один вид температурной деформации, так называемый "эффект гнутия". Он проявляется в том, что при наличии постоянной разности температуры Δt между передней и задней поверхностями зеркала, в толще его, возникает и устанавливается градиент температуры, который, деформируя зеркало, ведет в первом приближении к изменению фокусного расстояния. Вследствие "эффекта гнутия" зеркало изменяет стрелку кривизны на величину

$$\Delta x = \frac{D^2 \cdot x \cdot \Delta t}{8l}, \tag{4}$$

где D — диаметр зеркала, l — толщина его, a — коэффициент линейного расширения материала зеркала, Δl — установившаяся разность температуры между поверхностями зеркала.

Для уменьшения "эффекта гнутия", согласно выражению (4), следует выполнять следующие условия: во-первых, изготовлять зеркала с большой толщиной; во-вторых, изготовлять зеркала из материалов с малым коэффициентом 2;

в третьих, иметь малое значение Δt. Если соблюдение II и III условий благоприятствуют исключению обоих видов телловой деформации ("эффекта края" и "эффекта гнутия"), то соблюдение I условия приводит к определенному противоречию. Для уменьшения "эффекта края", как известно, выгодно иметь тонкие зеркала, но в то же время уменьшение толщины зеркала благоприятствует появлению "эффекта гнутия". Поэтому борьбу с "эффектом гнутия" выгоднее зести соблюдением II и III условий, т. е. рациональным подбором материала зеркала. Для уменьшения установившегося градиента температуры в толще зеркала из-за наличия постоянной разницы температурной деформации соответственно необходим материал с большой теплопроводностью λ и малым коэффициентом линейного расширения σ.

В отношении уменьшения "эффекта гнутия", согласно данным табл. 1, также выявляется большое преимущество металлических зеркал перед стеклянными. Металл в первом приближении имеет на два порядка большую теплопроводность, чем стекло, а коэффициент 2 стекла лишь в лучшем случае на один порядок меньше коэффициента а металла.

§ 2. МЕХАНИЧЕСКИЕ ДЕФОРМАЦИИ АСТРОНОМИЧЕСКИХ ЗЕРКАЛ

Механические деформации астрономических зеркал мсгут возникнуть по следующим двум причинам:

Во-первых, из-за воздействия внешних сил при обработке и эксплуатации зеркала. Этот вид механической деформации выявляется при сильных зажимах зеркала в оправе или на станке, а также при воздействии больших усилий на зеркало при его обработке (сверлении, круглении, шлифовке и т. д.).

Во-вторых, из-за упругого прогиба зеркала под действием собственного веса при недостаточной или неправильной разгрузке зеркала в трубе телескопа. Этот вид механической деформации из-за своей важности подробно изучался

О МАТЕРИАЛАХ ДЛЯ АСТРОНОМИЧЕСКИХ ЗЕРКАЛ 79

Д. Д. Максутовым [1], а для подтверждения теоретических расчетов в отделе приборостроения Пулковской обсерватории проводились экспериментальные исследования деформации зеркала под действием собственного веса [3]. Кафедрой динамики и прочности машин ЛПИ им. М. И. Калинина проводился цикл теоретических исследований по определению прогиба зеркала телескопа при различных положениях трубы, деформации оправы и расположении опор зеркала [4].

В астрономических телескопах для исключения упругого прогиба зеркало опирается на некоторое число опор. Каждая опора при различных положениях трубы воспринимает на себя часть нагрузки. Число опор, их расположение выбирается из условия, чтобы деформация зеркала с не превышала допустимую величину

$$\delta_a \leqslant \frac{\lambda}{8}$$
, (5)

где і. – длина световой волны.

Согласно Д. Д. Максутову, деформация разгруженного зеркала выражается следующей величиной:

$$\delta = k \frac{d}{E} \left(\frac{D^4}{l^2} \right) \cos z, \tag{6}$$

где k — ковффициент, зависящий от единиц измерения, количества опорных точек и их расположения; D — диаметр; l — толщина зеркала; z — угол наклона зеркала к горизонту; E — модуль упругости; d — удельный вес материала зеркала.

Следовательно, при заданных размерах, заданной системе разгрузки и заданной ориентировке в пространстве, для уменьшения деформации гнутия от собственного веса необходимо для зеркала выбирать материал наиболее легкий и упругий, т. е. обладающий наибольшим отношением $\frac{E}{\sigma}$.

Из табл. 1, сопоставляя значения отношения $\frac{E}{d}$ для разных материалов, заметно большое преимущество бериллия перед всеми остальными материалами. Зеркала, изготовленные из пирекса, крона, кварца, стали, алюминия, имеют примерно одинаковую прогибаемость под действием собственного веса. Маложестки зеркала из серебра, зеркальной бронзы и меди. Для уменьшения механических деформаций зеркала, его оправы и трубы телескопа большое значение имеет малый вес зеркала. Относительный вес зеркала при заданных размерах, заданной минимальной величине деформации и заданной системе разгрузки можно характеризовать коэффициентом Максутова ω , равным

$$\omega = \sqrt{\frac{d^3}{E}}.$$
 (7)

Чем меньше w, тем выгоднее материал. Эначения w для различных материалов даны в табл. 1. Самым малым относительным весом обладает зеркало из бериллия (в 6 раз легче, чем зеркало из пирекса). Тяжелыми являются зеркала из флинта, зеркальной бронзы, меди, молибдена, инвара, серебра, стали. Приблизительно одинаковый относительный вес имеют зеркала из пирекса, крона, плавленого кварца, алюминия и магния. Эначительного уменьшения собственного веса зеркала можно достигнуть за счет применения сотовой или механически облегченной конструкции.

§ 3. ВЫБОР МАТЕРИАЛА ДЛЯ АСТРОНОМИЧЕСКОГО ЗЕРКАЛА

После подробного рассмотрения устойчивости ряда материалов к тепловым и механическим деформациям, выясним другие требования, предъявляемые к материалам астрономических зеркал. Табл. 1 показывает, что по лучшим значениям коэффициентов Максутова ψ , ω и отношения $\frac{E}{d}$ на первом месте стоит бериллий. Целесообразность его применения в качестве материала для астрономических зеркал подробно изучена Н. Н. Михельсоном [5]. Механическая обработка бериллия затруднительна из-за его хрупкости. Оптическая обработка его возможна, но требует специальных абразив-

О МАТЕРИАЛАХ ДЛЯ АСТРОНОМИЧЕСКИХ ЗЕРКАЛ 81

ных порошков. Качество полированной поверхности бериллия удовлетворительно — грануляция и рассеяние света у бериллия не хуже, чем у стали [6]. Свежеотполированная поверхность его быстро тускнеет, но хорошо покрывается слоем алюминия. Бериллий очень ядовитый материал и требуются чрезвычайные предосторожности при работе с ним. Технологически очень трудно изготовлять большие заготовки из бериллия. Вышеуказанные недостатки, а также дефицитность и высокая стоимость не поэволяют в настоящее время применять бериллий в качестве материала для астрономических зеркал, за исключением случая малых зеркал специального назначения.

Доступным и достаточно хорошим материалом для зеркал по температурным характеристикам является нержавеющая сталь. Податливость механической и оптической обработке, хорошая коррозийная устойчивость позволяют изготовлять из стали качественные астрономические зеркала, но, правда, небольших размеров. Большой удельный вес стали, а отсюда и большой относительный вес, при изготовлении и эксплуатации крупных зеркал приводит к значительным механическим деформациям и усложняет систему разгрузки и балансировку телескопа.

Малая жесткость и плохое качество отполированной поверхности титана и магния, дефицитность и большой относительный вес молибдена являются причинами отказа от применения их в качестве материала для зеркала.

Хорошим материалом для астрономических зеркал является плавленый кварц. Благодаря очень малому значению коэффициента теплового расширения а у зеркал из кварца практически отсутствуют термические деформации. Они достаточно жестки и легки. Оптическая обработка кварца из-за высокой твердости проходит несколько медленнее пирекса, но быстрее металлов. Качество поверхности кварца высокое, он устойчив к коррозийным воздействиям окружающей атмосферы. Но высокая стоимость и трудность отливки больших дисков из плавленого кварца ограничивают применение его в качестве материала для зеркал. Кроме того, все материалы, обладающие малым ковффициентом а, 6-47 в число которых входит и кварц, имеют два существенных недостатка, ухудшающие качество изображения и усложняющие конструкцию телескопа:

1. Малое значение коэффициента з способствует неизменности фокусного расстояния зеркала при перепадах температуры окружающего пространства. Но труба телескопа, изготавливаемая обычно из металла (сталь, алюминий), имея большой коэффициент 2, смещает кассетную часть от фокуса. Происходит дефокусировка системы, устранение которой требует частого вмешательства астронома при наблюдении или же заставляет вводить в конструкцию телескопа специальные устройства, автоматически компенсирующие дефокусировку системы.

2. При использовании материала с малым значением коэффициента а требуется между зеркалом и оправой, изготавливаемой обычно из материалов с большим коэффициентом а (сталь, алюминий), оставлять значительный температурный зазор. Это приводит к смещению зеркала в оправе и разъюстировке телескопа.

Как говорилось выше, полное исключение тепловых деформаций достигается применением ситалла, имеющего близкий к нулю коэффициент а. Жесткосные и весовые характеристики ситалла аналогичны пирексу, плавленому кварцу и алюминию. Быстрота изготовления и контроля из-за малого времени температурной отстойки зеркала, возможность оптического исследования внутренних напряжений, отсутстствие термических деформаций сыдвигают ситалл нз одно из первых мест в качестве материзлз для астрономического зеркала. Но недостатки материалов с малым значением коэффициента а, хрупкость, плохая механическая обрабатываемость и значительная стоимость не дают ситаллу решающего преимущества перед моталлом.

Среди металлических-материалов, указанных в табл. 1, особого внимания заслуживает алюминий и его сплавы. Доступность, дешевизна, достаточно высокая жесткость, устойчивость к тепловым деформациям, малый удельный вес, возможность отливки крупных заготовок благоприятствуют применению их в качестве материала. для астрономических зер-

О МАТЕРИАЛАХ ДЛЯ АСТРОНОМИЧЕСКИХ ЗЕРКАЛ

кал. Но качество поверхности зеркала, изготовленного из алюминия и его сплавов, не отвечает высоким требованиям. предъявляемым к отражательной оптике. Из-за мягкости материала поверхность зеркала при шлифовке и, особенно. при полировке покрывается царалинами. Повышение твердости, благодаря применению особотвердых алюминиевых сплавов или анодированию рабочей поверхности зеркала до Al O1, не исключает окончательно указанный недостаток из-за невысококачественной полировки и значительной пористости отражающей поверхности. Исключить эти недостатки возможно покрытием поверхности алюминия тонкой пленкой более твердого, беспористого металла. В качестве таких материалов целесообразнее употребить хром или никель, обладающие высокой коррозийной стойкостью. Полированная поверхность никеля или хрома имеет значительную отражательную способность, практически не меняющуюся при коррозийном воздействии атмосферы. Отражательная способность хромовых и никелевых пленок вполне достаточна для проведения оптического контроля при изготовлении зеркала. Нанесением в вакууме тончайшей алюминевой пленки можно довести отражение рабочей поверхности до 90% и повысить отражательную способность зеркала в ультрафиолетовой области.

Технологические этапы изготовления такого зеркала должны быть следующими:

 а) предварительное придание, формы поверхности основы зеркала точением и обработкой свободными абразивными порошками;

б) покрытие рабочей поверхности никелевыми или хромовыми пленками;

в) обработка под оптическую поверхность.

Наносимый слой металла должен иметь толщину, достаточную для шлифовки и полировки

Нами для исследования возможности изготовления астрономических зеркал из алюминиевого материала с хромовыми и никелевыми покрытиями был проведен цикл экспериментальных работ.

6*

По рекомендации НИИ материалом для зеркала был выбран алюминиево-магниевый сплав АМг6Л.

Этот сплав предназначен для изготовления деталей, подвергающихся коррозийным воздействиям, несущих средние статические и малые ударные нагрузки, т. е. соответствует требованиям, предъявляемым к материалам астрономических зеркал.

Химический состав сплава АМгбЛ следующий:

1. Основные компоненты:

магний	_	$6 - 7^{\circ}/_{\circ}$			
бериллий	_	0.02 — 0.1º/ ₀			
титан	-	0.05 - 0.15%/0			
цирконий	-	0.05 — 0.2º/ ₀			
алюминий	_	остальное			

2. Примеси:

кремний		0.2 °/ ₀
железо	_	0.2º/o
марганец	_	0.2%

Сплав готовился в коксовом горне в графитовом тигле. Заготовки отливались методом литья в песчаную форму. С целью снятия напряжений, возникающих при литье и механической обработке, заготовки зеркал проходили цикл термической обработки. Вначале детали подвергались полутонкому 200-часовому отжигу для снятия литейных напряжений, затем после механической обработки — 500-часовому тонкому отжигу для снятия напряжений от "наклепа".

Механические свойства отлитых образцов даны в табл. 2.

Прочность и твердость алюминиево-магниевого сплава больше, чем у чистого алюминия. Значения их еще более повышаются после термообработки. Модуль упругости сплава почти такой же, как и у алюминия: $E = 7300 \kappa \imath / mm^{\circ}$. Удельный вес его: $d = 2.62 \imath / cm^{3}$. Ковффициент линейного

о материалах для астрономических зеркал

Таблица 2

Состояние материала	Механические свойства						
	б _л . к1/мм ²	³ b. Кі мм ²	а _к . Кг/см ²	Н _В , к1/мм ³	2º/0		
Литое	12.7	23.8	1.6	70	9.2		
Отожженное	13	21.6	0.4	76.3	4.3		

расширения при 0°С а =23.8 $\cdot 10^{-6} \frac{1}{C^{\circ}}$. Теплопроводность при 0°С $\lambda = 0.275 \ \kappa a \lambda / c \kappa c \epsilon \kappa C^{\circ}$. Теплоемкость при + 20°С С = 0.226 $\kappa a \lambda / i C^{\circ}$. Температуропроводность $q = 0.465 \ c \kappa^{\circ} / c \epsilon \kappa$. Коэффициент Максутова $\psi = 1420 \cdot 10^{10}$. Коэффициент Максутова $\psi = 1.57 \cdot 10^{-4}$. Значение отношения $\frac{E}{d} = 278$.

Сравнение алюминиевого сплава АМгбЛ с другими материалами для астрономических зеркал показывает следуюшее. По термическим характеристикам (коэффициенты q и он значительно превосходит наиболее ходовой материал для зеркал-пирекс. Термическая деформация сплава от "эффекта края" в 10 раз меньше, чем у пирекса. Деформация зеркала от "эффекта гнутия" из-за высокой теплопроводности сплава АМгбА по сравнению с пирексовыми зеркалами практически отсутствует. Теплопроводность сплава в 110 раз выше теплопроводности пирекса. Хотя сплав АМгбЛ по термическим характеристикам уступает чистому алюминию, но из-за более высоких механических и химических характеристик его следует предпочесть алюминию. По прочности сплав в 2-3 раза превосходит алюминий, по твердости в 3-4 раза. Относительное удлинение его почти в 5 раз меньше, чем у алюминия. Значительная твердость сплава позволяет производить предварительную обработку вплоть до полировки перед нанесением слоя хрома или никеля. По жесткости зеркала из сплава АМгбЛ также несколько превосходят алюминиевые зеркала, что позволяет отливать более тонкостенные ребристые заготовки.

Для изучения возможности изготовления астрономических зеркал из сплава АМгбЛ с хромовыми и никелевыми покрытиями был проведен обширный цикл экспериментальных работ. Разрабатывались технологии нанесения и точной обработки покрытий, изучалось температурное и химическое воздействие окружающей среды на составные зеркала. В результате экспериментов выявилась возможность применения металлических зеркал из сплава АМгбЛ с хромовым и никелевым покрытием в астрономической оптике.

Ժ. Մ. ԼՈՐԵ8ՅԱՆ

ԱՍՏՂԱԳԻՏԱԿԱՆ ՀԱՅԵԼԻՆԵՐԻ ՄԱՍԻՆ

Ամփոփում

Որպես աստղագիտական հայելու նյուծ առաջարկվում է օգտագործել AMr6A համաձուլված քը։ Մատչելիուն լունը, էժանտ նյանը, բավականին բարձր կոշտուն լունը, ջհրմային դև ֆորմացիաների դևմ դիմացկունուն յունը, փոքր տեսակարար կշիռը, այդ բոլորը նպաստում են համաձուլված քի օգտագործմանը, որպես նյուն աստղագիտական հայելու համար։ Բայց համաձուլված քի փափկուն լան և վատ քիմիական դիմացկունուն լան պատճառով հայնլու մակերեսի որակը ցածր է։

Ալդ խերութլունները վերացնելու համար առաջարկվում է համաձուլված քի մակերևսը պատել ավնլի կարծր և կորողիալի դևմ դիմացկուն մետաղի շերտով — էլեկտրոլուծուլթական խրոմով և քիմիական նիկելով։

Խրոմապատված և նիկելապատված AMr6A համաձուլված քից հայնլիներ պատրաստելու հնարավորուԹյունը հետազոտելու համար կատարվել են փորձառական աշխատանքներ։ Հետազոտումները հայտնաբերեցին այդպիսի հայելիների պատրաստման հնարավորուԹյունը։

ԱՍՏՂԱԳԻՏԱԿԱՆ ՀԱՑԵԼԻՆԵՐԻ ՄԱՍԻՆ

G. M. LORETSIAN

THE MATERIALS USED FOR ASTRONOMICAL MIRRORS

Summary

The alloy AMg6L is reccomended as a material for astronomical mirrors. This material is available, cheap, has a quite a high degree of a stiffness, it is durable to thermal deformations and has a small specific weight. All these are favorable factors for using it as a material for astronomical mirrors. But because of the fact that the alloy is soft and has a bad chemical durability the surface of the mirror is not of high quality. To exclude these shortcomings we propose to cover the alloy surface with a harder and anticorrosive metall. Electrolitic chrome or chemical nickel is suggested. The possibility of making a mirror from the alloy AMg6L with a chrome or nickel film is considered. The experiments have revealed the possibility of making such mirrors.

ЛИТЕРАТУРА

- 1. Д. Д. Миксутов, Изготовление и исследование астрономической оптикн. ГИТТЛ, Л.-М., 1948.
- 2. P. Wellman, Z.für Ap., 25, 104, 1954.
- 3. Е. Г. Гроссвальд, К. С. Тавастшерна, Известия ГАО, 177, 114, 1964.
- 4. Т. В. Будниксви, В. М. Фридмин, Известия ГАО, 177. 119, 1964
- 5. В. С. Чернина, Известия ГАО, 177, 125, 1964.
- 6. В. М. Фридман, Известия ГАО, 177, 138, 1964.
- 7. В. А. Пальмав, В. А. Пупырев. Известия ГАО, 177, 145, 1964.
- 5. Н. Н. Михельсон, Известия ГАО, 162, 153, 1958.
- 9. Д. Койпер. Б. Мидалхёрст. Телескопы, Изд. ИЛ., М., 1963.

<u> ዞ በ ሢ ዜ ኄ ጉ ዜ Կ በ Ւ Թ 8 በ Ի Ն</u>

1,2
. 3
b ph
. 25
uu-
. 38
76-
. 18
16-
. 58
18-
. 08
. 72

CONTENTS

Page

H. S. Badalian, L. K. Erastova — Three-Color observations of the non-stable stars in the region of NGC 2264 Monoceros	3.
M. A. Kazartan - The colorimetric investigation of the nuclei of	
planetary nebulae	25
R. A. Vardanian, R. A, Epremian, M. A. Kazarian, E. Y. Kha-	
chikian - Observations of Ikey-Seky comet in Byurakan	38-
V. E. Karachentseva, I. D. Karachentsev - The equation and the	
average characteristics of the arms of spiral galaxies	48-
G. M. Loretstan - On the corrosive durability of some metallic ma-	
terials for astronomical mirrors	58-
G. M. Loretstan — An investigation of thermostability of the micro- surfaces of astronomical mirrors made from the alloy AMg6L	
with a chrome and nickel film	66
G. M. Loretsian — The materials used for astronomical mirrors	72

1.2