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We consider plane symmetric gravitational fields within the framework of General Relativity
in (D+1)-dimensional spacetime. Two classes of vacuum solutions correspond to higher-dimensional
generalizations of the Rindler and Taub spacetimes. The general solutions are presented for a positive
and negative cosmological constant as the only source of the gravity. Matching conditions on a planar
boundary between two regions with distinct plane symmetric metric tensors are discussed. An
example is considered with Rindler and Taub geometries in neighboring half-spaces. As another
example, we discuss a finite thickness cosmological constant slab embedded into the Minkowski,
Rindler and Taub spacetimes. The corresponding surface energy-momentum tensor is found required
for matching the exterior and interior geometries.
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1. Introduction. Exact solutions of Einstein's equations for the gravitational
field are available only in geometries with relatively high symmetry (for reviews
see [1,2]). In particular, they include spherical, axial and planar symmetric
configurations. Another classes of solutions with maximally symmetric subspaces
are used in cosmology. Despite their apparent simplicity, plane symmetric solu-
tions remain an active subject of research. The investigations are motivated by
interesting geometrical properties of those solutions and by their applications in
different areas of gravitational physics. The latter include the domain wall type
topological defects in field theories [3] and branes in string theory and in
braneworld models with extra dimensions [4-6].

The static plane-symmetric vacuum solutions of Einstein's equations were
already known in the early days of the development of the General Relativity
[7] and were rediscovered later in [8]. Two classes of solutions are present. The
first one corresponds to the Rindler spacetime and describes a flat geometry. It
approximates the gravitational field near the black hole horizon and is among the
most popular geometries in quantum field theory on backgrounds with horizons
(see, for example, [9]). The second class of single parameter solutions corresponds
to the Taub geometry. The characteristic feature of the latter is the presence of
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a curvature singularity on a plane with a fixed value of the coordinate along which
the geometry is inhomogeneous. The test particle is repelled by the singularity.
The nature of the singularity, the other properties of the Taub solution and its
generalizations in the presence of the matter sources have been widely discussed
in the literature (see, e.g., [10-34] and references therein). In the present paper
we discuss several aspects of plane-symmetric static solutions in (D+1)-dimen-
sional General Relativity. Higher dimensional gravitational configurations with
planar symmetry appear in a number of models including braneworld scenarios,
Anti-de Sitter/Conformal field theory (AdS/CFT) correspondence and fundamental
branes in string theories and supergravity.

The organization of the paper is as follows. In the next section, the background
geometry, gravitational field equations and the matching conditions in problems
with different metric tensors in separate regions are presented. In Section 3 two
classes of vacuum solutions corresponding to the Rindler and Taub spacetimes are
considered. The solutions with a cosmological constant (CC) as the only source
in the gravitational field equations are discussed in Section 4. In Section 5 we
consider a slab with CC interior and with different exterior geometries. The
corresponding surface energy-momentum tensors required by the matching con-
ditions on the slab boundaries are given.

2. Background geometry, the field equations and matching con-
ditions. We consider a plane symmetric (D+1)-dimensional spacetime with the
line element

D
ds? = e dr* — e™" dx* - ™ Z(dx’)z , (1)
i=2
where x' =x, u=u(x), [=0, 1, 2. The nonzero components of the Ricci tensor
are given by the expressions

R) =" [u(')'+ ult — ulu]+ (D—1)uful ],

R12 =e 2t [u(’)'+ u(’)z— uuy— (D— 1)(u§+ ugz— uGuy )], 2)

R} = [u§+ ubuy—uju’y+ (D— 1)u§2 ],
and (no summation over i) Rf =R22 for i=3, ..., D. Here, the prime stands
for the derivative with respect to the coordinate x. The Ricci scalar is expressed
as

- D
R=2e" [u(')'+ ul’ —upu]+(D— 1)(u§'+ Uy — Uiy + ?uf H . (3)

For discussion of geodesic motion one needs also to have the Christoffel symbols.
The expressions for the corresponding nonzero components read (no summation
over i=2, 3, ..., D)
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r(())l = Fl% =g, r&o = ez(uoiul)u(') > rlll =uy,
Fili = _ez(urul)ué > rlii = riil =uj.
The i th component of the acceleration for a test particle is given by a’ = —I“,ﬁ, whw
with w' = dx’ /ds being the (D+1)-velocity. For a test particle at rest one has
w' =8} e™ and the acceleration is directed along the x-axis with o' =d*x'/ds* =
=38! e u.
For the gravitational field equations R[" —81’? R/2=8n GY}]‘ , with Tl.k being the
metric energy-momentum tensor, we get

4)

!

_8xGTye™ L, Do, _8RGRE™ [, D=2,
D1 2t i D1 2 Mot s
D-1 (&)
—8nGT e™ =uf+ul’ —uju]+(D- 2)(u§+ u[)u'z—u{u'2+Tu§2j.

In accordance with the problem symmetry one has (no summation over i) Tl-[ =T 22
for i=3, ..., D. Note that the quantity —Tl.i ,i=1, 2, ..., D, presents the effective
pressure along the i th spatial dimension. From the covariant conservation equation
V,.T =0 one finds

7'+ (Tll -1y )u(')+ (D- 1)(Tll -T7 )u; =0. (6)

This equation does not contain the function « (x). For a source with barotropic
equation of state, T :—w,-TOO with constants w, we get

1

T, = const - exp{— £L+ lJu0+ (D— 1)(&—1] uz:l. (7)

Wi W

In this case the components of the energy-momentum tensor, as functions of the
coordinate x, do not change the sign.

The function u,(x) in (1) can be fixed by the choice of the coordinate x. The
field equations are essentially simplified taking

u,(x)=0. (8)
This gives
8TEGT2)0 " D 12 STEGTII ’ ' D-2 '
- =uy+—uy, — =uy| ug+———us |,
D—-1 2 D—-1 2
_ 9
~8nGT} =uf+uf’+(D- 2)£u§+u{)u§+ D lufj. ©)

From these equations the following relations can be obtained:
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[u(r)euo (D—l)uz]' STEG[D )10- 11— (D-1)T ] w (D1
[u(r)euo+(D—1)u2]': j)TEGl(TO +T1) oDV (10)

Note that e“*P)e = lg| with g being the determinant of the metric tensor g,.
Additionally, by combining the equations (10) we get

[e"°+(D‘l)“2 ]"= j)”(i [0+ DT+ (D-1)T2 Jero 2D (11)

The integration of relations (10) and (11) give conditions for the energy-
momentum tensor to be compatible with given solutions for u(x) and u,(x).

By using the set of equations (9) we can derive the matching conditions for
the components of the metric tensor in problems where the geometry is described
by two distinct metric tensors in regions separated by a planar boundary. As a
separating boundary we take a hyperplane x= L. The energy-momentum tensor
is decomposed into two contributions:

' =T+ Ty Toy =8(x—L). 12

Here, T(’v‘)i is the volume part and T(’j)i corresponds to the surface energy-
momentum tensor localized on the interface x= L. Generally, the volume part
is different in the regions x< L and x> L. Assuming that the metric tensor is
continuous at x= L, the discontinuities in its first order derivatives are found by
integrating the equations (9) in the region [L— g, L+ s], ¢>0, and then taking
the limit € —» 0. The continuity conditions for the metric tensor read

L+

L =0 (13)

“Oﬁi :li_f)%[uo(LJf g)-uy(L-¢€)]=0, u,

o, . . . : L !/
Under these conditions, by taking into account that 11m£_>0J.L +8abcu,2 =0 and
—&

limHOI dxu0u2 =0, for the first order derivatives we get

L D-2 ,
uo|, =8nG[mrg —r%), u

The discontinuities in the derivatives of the metric tensor are completely deter-
mined by the surface energy-momentum tensor. The corresponding conditions can
also be obtained from the Israecl matching conditions in terms of the extrinsic
curvature tensor of the separating boundary.

L+

=m0, 1 =0. (14)

3. Vacuum solutions. We start with the vacuum solutions of the set of
equations (9). For them one has T,-k =0. By having the coordinate x fixed by

the condition (8), we have two possibilities. For the first one u; =0 and the first
and second equations in (9) are satisfied identically. From the last equation we
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get ug+ u(’)2 =0. The solution u; =0 corresponds to a flat spacetime in the
Minkowskian coordinates. The solution for u; =0 is obtained after a simple
integration: et :(x+ C)z. Taking C=0 we get the line element

D
dsh =x2dt123—dx2—2(dxi)2, (15)
=2
which corresponds to the Rindler spacetime. Note that in the representation (15)
the Rindler time coordinate 7, is dimensionless. Introducing new coordinates
(T, X) in accordance with 7 =xsinh¢,, X = sgn(X )xcosh tp , the line element (15)
takes the Minkowskian form. The coordinates (¢, x, x2, ., xP ) cover the Rindler
wedges |.X|>|T| of the Minkowski spacetime. The worldline with fixed (x,x?,...,x”)
describes a uniformly accelerated observer having the proper acceleration 1/x. The
hypersurface x=0 corresponds to the Rindler horizon.

For the second class of the vacuum solutions we have u) #0 and from the
first equation in (9) we find e =c0nst-|x+ C|4/ ” With this function u,(x), the
second equation gives e>“ :const-|x+ C|_2(D_2)/ . For these expressions of u(x)
and u,(x) the last equation in (9) is obeyed identically. Specifying the constants,
the solution is presented in the Taub form:

D
ds; =|1- Gx|_2(2_D)/D dt* —dx*—[1 - Gx|4/DZ(dxi)z , (16)
i=2
where o is another constant. This solution has a singularity at x=1/c. For
D=3 it is reduced to the Taub solution in General Relativity. The higher
dimensional generalization of the Taub solution has also been considered in [27].
For a test particle at rest with the coordinate x, the acceleration in the geometry
(16) is expressed as a' :Si(l—2/D)/(x— 1/5). This corresponds to the repulsion
from the wall at x=1/c in both regions x<1/c and x>1/c. Introducing the
notations

ny =2 D-1 o= n(DD—z)/z(D—l) o, (17)
D
and new coordinates x'' in accordance with
S R N k- G N T N B ST
np
the line element is written in the form
dS72~ — |1 _ G/x/|(2*D)/(D’1)(dt!2_ dx!Z)_ |l _ G/x!|2/(D’1)Z(dx!i)z . (19)

i=2
As a simple example with two different metric tensors in the regions x>0
and x<0, we take ds®> =ds; in the region x<0 (given by (16) with ¢>0) and
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dsi =(1+x/b) di*— dx*- i(dxi)z ) (20)

i=2
in the region x> 0. The latter corresponds to the Rindler spacetime and is obtained
from (15) redefining x — x+b and passing to a new time coordinate ¢ =b¢,. For
both regions T(’V‘)i =0 and the metric tensor is regular. From (14) one gets the
surface energy-momentum tensor required by the matching conditions:

- 1 D-2
8nG1y=-26—, 1,=0, 81G1;=——-0C
D b D
Note that the corresponding energy density is negative. In the special case ¢ =1/b
we obtain 1 =1 and t' describes a CC-type source localized on the plane
x=0.

1)

4. Solutions with cosmological constant. In this section we consider
the solutions of the gravitational field equations (9) with the CC A as the only
source. For the corresponding energy-momentum tensor one has
A st

,=% i (22)

4.1. AdS spacetime. For a negative CC from the first equation we have

a special solution
yoel D D-1)
S A (23)

With this solution, the second equation in (9) gives u, =+1/a . The third equation
is automatically satisfied. Fixing the integration constants, the line element
corresponding to this solution takes the form

ds? = e*2¥a [dtz— i (dx")z} —dx?
: (24)

i=2
This line element describes AdS spacetime in Poincaré coordinates. Introducing
a new coordinate z=$ae¢"/“, —o<+*z<0, the line element is written in a
conformally flat form

ds’ =Z—z{dt2—§:(dx")z —dzz] (25)

i=2
Here, the hypersurfaces z=%Fc and z=0 correspond to the AdS horizon and
boundary, respectively. The acceleration of a test particle in the geometry (24)
is given by ' :Tréii /a and it does not depend on the location of the particle.
The latter property is a consequence of the maximal symmetry of the AdS
spacetime. The acceleration is directed towards of the AdS horizon.
In the D-dimensional generalization of the Randall-Sundrum 1-brane model
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[35] the background line element reads

D
ds® = 2l {a’t2 -> (dxi )2} —dx?, (26)

=2
and the brane is located at x=0. By taking into account that the volume energy-
momentum tensor is given by (22) in both regions x<0 and x>0, from the
matching conditions (14) we get
_ D-1
 4nGa’
This correspond to a positive CC localized on the brane.

7 =0. Q7)

0 2
TO:TZ

4.2. General solution for negative CC. For a negative cosmological
constant the first integral of the first equation in (9) is given by

1 D(x—x )
u), =—tanhw, w=— "0/ 28
g 2a (28)
with x; being an integration constant. Substituting this in the second equation we

get
uy = 2L [D cothw— (D— 2)tanh w]. (29)
a

Now it can be checked that with these solutions for u; and ) the third equation
in (9) is obeyed identically. The simple integration of (28) and (29) gives the
functions u(x) and u,(x). The corresponding line element reads
ds’ :ﬁ#smhz L (cosh w)4/D§:(dxi)z . (30)
(cosh w)2 b-2)/b i=2
Let us consider the asymptotic of the line element (30) for small and large
values of |w|. For |[uw/<<1, keeping the leading terms we get

D N
ds* zx'zdt’z—dx’z—z<dx’) , (31)

i=2
where x'=x—x, and ¢ =Dt/2a . The right-hand side of (31) is the line element
for the Rindler spacetime (compare with (15)). For large values of |w|, M >>1,

keeping the leading terms we get

dsz ~e+2x/a|:dt,2_§:(dx,[)2:|_dx2
~ > (32)

=2
with ¢ =27%P ¢™/% and x'"=27%P¢™/x" Here, the upper and lower signs
correspond to the cases w>0 and w<0, respectively. Hence, in this limit the
asymptotic geometry corresponds to the AdS spacetime.
For the acceleration of a test particle at rest one has a’ =8} uj with u{ given
by (29). It is positive in the region w<0 and negative in the region w>0 and,
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hence, the acceleration is directed towards the hyperplane w=0 which corresponds
to the Rindler horizon. At large distances from the horizon, corresponding to
[W{>>1, we get a'~-8{sgn(w)/a. Near the horizon the leading term in the
asymptotic expansion is given by a' ~ Si / (xo—x). This term does not depend on
the value of CC.

4.3. General solution for positive CC. We turn to the case of A>0.
By steps similar to those described in the previous subsection we can show that

uy = i[D cot w+ (D— 2)tan w], uy = —%tan w. (33)

The further integrations of these relations lead to the line element

sin’ / i
dS2 ZW%Wdtz_dxz_kos"Vr‘D;(dx )2 : (34)

In this case the metric is a periodic function of w with the period equal to .
This corresponds to the periodicity with respect to the coordinate x with the period
equal to 2ma/D. The asymptotic of the line element near the point w=0 is
described by the Rindler line element (31). Near the point w=mn/2 the line
element is approximated by the Taub solution:

dr? 2 4D ;
|w— n/2|2 5y~ X —|w—n/2| ;(dx )2 (35
Note that in this point we have a singularity.

By taking into account that the metric tensor is periodic, let us consider the
acceleration of the test particle, given as a’ = —8{ ug , in the region —m/2 <w<m/2.
It is positive for —m/2<w<0 and negative for 0<w<m/2. This means that,
similar to the case of negative CC, the acceleration is directed towards the Rindler
horizon w=0 with the near horizon asymptotic a' = 8{ / (xo—x). The singular walls
w=1+mr/2 are repulsive and near of them the asymptoic of the acceleration is given
by a' =82 D)sgn(w)/[a(n - 2|w|)]

5. CC slab with finite thickness. As an application of the matching
procedure and of the solutions described above, here we consider a finite thickness
slab with the CC energy-momentum tensor (22) in the region —L<x<L.
Different geometries in the exterior regions x<—L and x> L will be discussed.
Assuming a symmetric configuration with respect to the plane x=20, firstly we
consider the interior line element (30) with x, =0, corresponding to a negative
cosmological constant A. We have ds* = gl.(,?gdx"dxk with the metric tensor

2
ds” ~

-
gi(,?)(x) = diag(#, -1,- cosh®? W,y ooy — cosh®? w] , (36)
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in the region |x| <L and w=Dx/2a. Rescaling the time and spatial coordinates
x', i=2, ..., D, the interior line element can be written in the form

ds? :gik(x)dxidxk , glk( g’k x | |_
‘glk X
With this normalization g, (L)=diag(l,~1,...,—1). This normalization is conve-
nient in the consideration of the matching conditions discussed below.

(37)

5.1. Minkowski exterior. We start the discussion by the Minkowskian
geometry in the exterior regions:
D
dsy, = dtz—dxz—Z(dxi)z , |x| >L. (38)
i=2
With the choice (37) for the interior line element, the metric tensor is continuous
on the boundaries x=* L. The surface energy-momentum tensor is determined
by the matching conditions (14). By taking into account that

uj =21—a[Dcoth w—(D—-2)tanhw], u} :étanhw, (39)

in the region |x|<L and uj=u5=0 for |x>L, from (14) we get

D-1 | » D-21) Dcothw,
tanhw, , 1,=0, 15= —+ , 40
Lo > D-12 16nGa (40)

where w, = DL/ (2 a). The surface energy density and the stresses (no summation

0
T():

8nGa

over i) rﬁ =r§, i=2, ..., D, are positive. Note that the effective pressure along
the 7 th spatial direction is given by — rﬁ and in the example under consideration
it is negative.

5.2. Rindler exterior. For the exterior Rindler geometry the line element
is given by (15) in the regions |x| > L and for the interior geometry we have (37).
Introducing a new Rindler time coordinate f in accordance with 7= Lt,, we see
that the metric tensor is continuous on the boundaries x =+L. The derivatives
in the matching conditions are given by (39) in the region |x|<L and by
uy=1/x, uy =0 in the region |x>L. From (14) one finds
0
T = b-1 tanhw, , 1,=0, 15 :%%+D%. 41
The surface energy density is the same as that for the Minkowski exterior,
whereas the stresses are different. Note that, depending on the value of the
parameter w,, the effective pressure —r% can be either negative or positive.

8nGa

5.3. Taub exterior. The exterior geometry is described by the line element
(16). Redefining the coordinates and the constant o, we rewrite it in the form
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2(p-2)/D 4/D
 _(L+oly 2 e[l
ds; _[1+0L dt* — dx ol ;(dx )2 (42)

For o >0 the metric tensor is regular. With this line element in the region |x| > L
and with the line element (37) for |x|<L , the metric tensor is continuous at
x=+L. By taking into account that

2-D ngn(x) , 2 cssgn(x)

T1+G|x| ’ u2_51+c|x| ’ (43)

'_
Uy =

for |x| > L, the matching conditions at x= L give

0
D-1 tanth—z ca 2= D-2 1, +Dcotth ’
8nGa D-1 2 l6nGa

and r{ =0. Note that for the Taub exterior, depending on the relative values of
a and L, the surface energy density can be either positive or negative.

0
TOZ

(44)

5.4. Slab with positive CC. Now we turn to the slab with positive CC.
The interior line element is given by (34) with the metric tensor

-2
gi(l:\)(x):diag ﬁ%ﬁ,—l,—koswlﬂqm,—|cosw|4/D ’ 43)

where w = Dx/(2a). Again, rescaling the coordinates the line element is presented

in the form (37) with g{*)(L)= diag(l,~1,..,~1). We will assume that L <ra/D.
In this case the metric tensor is regular inside the slab. The derivatives of the
functions u (x) and u,(x) in the region |x|<L are given by (33). For the case
of A >0, the components of the surface energy-momentum tensor for the exterior
Minkowski, Rindler and Taub geometries are obtained from the formulas given

above for A <0 by the replacements
tanhw, — —tanw, , cothw;, —> cotw; . (46)

The surface energy density is negative for all those geometries.

6. Conclusion. We have considered plane symmetric solutions of General
Relativity for general number of spatial dimensions. For the metric tensor given
by (1), the field equations are presented in the form (5) and the covariant
continuity equation for the energy-momentum tensor is reduced to (6). The set
of gravitational equations is simplified by the choice of the coordinate x in
accordance with (8). By using those equations one can derive the matching
conditions for the metric tensor in the problems where the geometry is described
by two distinct line elements in neighboring half-spaces. The metric tensor is
continuous on the separating boundary and the discontinuity of its first order
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derivative is given by (14), where rf‘ is the surface energy-momentum tensor.

Two classes of the vacuum solutions of the gravitational field equation are
presented. The first one corresponds to the Rindler spacetime and the second one
is a higher-dimensional generalization of the well known Taub solution. By an
appropriate choice of the integration constants the latter is given by (16) (see also
[27]). It has a singularity at x =1/c that presents a repulsive wall for test particles.
As a simple example of geometry with two distinct metric tensors in two different
regions we have considered the combination of the Rindler and Taub geometries
separated by a planar boundary. The components of the corresponding surface
energy-momentum tensor are expressed by (21).

As an example of the source in gravitational field equations we have considered
the CC A. For negative CC there is a special solution that corresponds to
(D+1)-dimensional AdS spacetime. In Poincaré coordinates the line element has
the form (24). In the Randall-Sundrum 1-brane model two copies of the AdS
half-space are combined in the form of Eq. (26). The surface energy-momentum
tensor on the separating brane is given by (27). The general solutions of the field
equations for negative and positive CC are given by (30) and (34), respectively.
In the case of a negative CC the geometry is non-singular. For small and large
values of the variable |w| it is approximated by the Rindler and AdS spacetimes,
respectively. For a positive CC the metric tensor is a periodic function of x with
the period 2ma/D . In this case one has singularities at the points corresponding
to w:(n+l/2)n. Near these points the geometry is approximated by the Taub
solution. For both solutions with negative and positive CC the hyperplane w=0
(x=x,) corresponds to a horizon that is the analog of the Rindler horizon. The
acceleration of a test particle at rest is directed towards the horizon.

By using the solutions with a CC we have constructed a simple model of a
finite thickness slab symmetric with respect to the central plane. The volume
energy-momentum tensor inside the slab is given by (22) and in the exterior
regions we have used the vacuum solutions of the field equations. Three different
cases have been considered with the Minkowski, Rindler and Taub geometries.
For the latter geometry the singularity-free Taub solution is employed. The
corresponding surface energy-momentum tensors are expressed by (40), (41) and
(44), respectively. For a slab with positive CC the interior geometry is non-
singular for the half-thickness obeying the condition L<ma/D.

The setup considered in the present paper can be used for the investigation
of the backreaction effects of the vacuum polarization of quantum fields induced
by boundaries with x=const. The boundary conditions imposed on quantum fields
lead to the modification of the spectrum for vacuum fluctuations and, as a
consequence, the vacuum expectation values of physical observables are changed.
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In particular, the vacuum energy-momentum tensor for planar boundaries has been
widely considered in the literature. The simplest example is the Casimir effect
(see, for example, [36]) for perfectly conducting parallel plates in the Minkowski
spacetime. Already in that simple example the vacuum stresses are anisotropic. The
planar boundaries in the Rindler spacetime, corresponding to uniformly accelerated
plates in the Fulling-Rinlder vacuum, have been considered in [37-40]. The
references for the corresponding investigations in the AdS bulk can be found in
[41].
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IJIOCKO-CUMMETPUYHDBIE TPABUTALIMOHHBIE
moJjid B (D+1)-MEPHOM OBIIEW TEOPUU
OTHOCHUTEJIIbBHOCTH

P.M.ABAKAH, T.A.ITETPOCAH, A.A.CAAPAH, I'T'APYTIOHAH

PaccMoTpeHBI II0CKO-CUMMMETPUYHbBIC TPAaBUTALIMOHHEIE MOJISI B paMKax OOILLei
TEOpUM OTHOCcUTEeIbHOCTU B (D+1)-MepHOM IpocTpaHCTBe-BpeMeHU. [IBa Kiiacca
BaKyYMHBIX PEIICHUII COOTBETCTBYIOT MHOTOMEPHBIM OOOOIIEHUSIM ITPOCTPAHCTBA-
BpeMeHUu PuHmiepa u Tay6a. ITpeacrarineHbl o0liMe peieHus sl MOJ0XUTEIbHON
W OTPULIATEJIbHOM KOCMOJIOTMYECKOW IOCTOSIHHOM B KAa4eCTBE €IWHCTBEHHOTO
HWCTOYHMKA IpaBUTAlUU. OOCYKAAIOTCS YCIOBUSI CIIMBKM Ha TUIOCKON TpaHUIIE
JIByX 00JIacTe C pa3IMYHBIMU IIOCKO-CUMMETPUYHBIMIA METPUUECKMMU TEH30PaAMU.
Paccmotpen nmpumep ¢ reomerpusimu Punmiepa u Tayba B coCeTHMX ITOJTYyIIPOCT-
paHcTBax. B kauecTtBe Apyroro npumepa OOCYXHAeTcs TIOCKO-TIapajyieabHas
IUIACTHA KOHEYHOM TOJIUMHBI ¢ KOCMOJOIMYECKOM MOCTOSSHHOM, MOTPYyKEHHAs B
MpOCTpaHCTBO-BpeMs MUHKoBcKoro, Punmiepa n Tayba. HaiiieH COOTBETCTBYIOLLIMIA
MMOBEPXHOCTHBIN TEH30p 3HEPIUM-UMIIYJIbCAa, HEOOXOMMMBII I COIIaCOBAHUS
BHEIIHEHA W BHYTPEHHEH T'€OMETPHUMU.

KotoueBsle cioBa: NAOCKO-CUMMeEMpU4Hble ecpasuUmauUOHHble NOAA. peuleHue Tt ay6a.'
NpoOCMpaHCcmeo-6pPemsi Puﬂﬁﬂepa: KoCMon10cu4ecKas nOCMoOAHHAA
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