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We consider plane symmetric gravitational fields within the framework of General Relativity
in (D+1)-dimensional spacetime. Two classes of vacuum solutions correspond to higher-dimensional
generalizations of the Rindler and Taub spacetimes. The general solutions are presented for a positive
and negative cosmological constant as the only source of the gravity. Matching conditions on a planar
boundary between two regions with distinct plane symmetric metric tensors are discussed. An
example is considered with Rindler and Taub geometries in neighboring half-spaces. As another
example, we discuss a finite thickness cosmological constant slab embedded into the Minkowski,
Rindler and Taub spacetimes. The corresponding surface energy-momentum tensor is found required
for matching the exterior and interior geometries.
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1. Introduction. Exact solutions of Einstein's equations for the gravitational

field are available only in geometries with relatively high symmetry (for reviews

see [1,2]). In particular, they include spherical, axial and planar symmetric

configurations. Another classes of solutions with maximally symmetric subspaces

are used in cosmology. Despite their apparent simplicity, plane symmetric solu-

tions remain an active subject of research. The investigations are motivated by

interesting geometrical properties of those solutions and by their applications in

different areas of gravitational physics. The latter include the domain wall type

topological defects in field theories [3] and branes in string theory and in

braneworld models with extra dimensions [4-6].

The static plane-symmetric vacuum solutions of Einstein's equations were

already known in the early days of the development of the General Relativity

[7] and were rediscovered later in [8]. Two classes of solutions are present. The

first one corresponds to the Rindler spacetime and describes a flat geometry. It

approximates the gravitational field near the black hole horizon and is among the

most popular geometries in quantum field theory on backgrounds with horizons

(see, for example, [9]). The second class of single parameter solutions corresponds

to the Taub geometry. The characteristic feature of the latter is the presence of

ÒÎÌ 67 ÀÂÃÓÑÒ, 2024 ÂÛÏÓÑÊ 3

À Ñ Ò Ð Î Ô È Ç È Ê À

DOI: 10.54503/0571-7132-2024.67.3-409

https://doi.org/10.54503/0571-7132-2024.67.3-409


410 R.M.AVAGYAN  ET  AL.

a curvature singularity on a plane with a fixed value of the coordinate along which

the geometry is inhomogeneous. The test particle is repelled by the singularity.

The nature of the singularity, the other properties of the Taub solution and its

generalizations in the presence of the matter sources have been widely discussed

in the literature (see, e.g., [10-34] and references therein). In the present paper

we discuss several aspects of plane-symmetric static solutions in (D+1)-dimen-

sional General Relativity. Higher dimensional gravitational configurations with

planar symmetry appear in a number of models including braneworld scenarios,

Ànti-de Sitter/Conformal field theory (AdS/CFT) correspondence and fundamental

branes in string theories and supergravity.

The organization of the paper is as follows. In the next section, the background

geometry, gravitational field equations and the matching conditions in problems

with different metric tensors in separate regions are presented. In Section 3 two

classes of vacuum solutions corresponding to the Rindler and Taub spacetimes are

considered. The solutions with a cosmological constant (CC) as the only source

in the gravitational field equations are discussed in Section 4. In Section 5 we

consider a slab with CC interior and with different exterior geometries. The

corresponding surface energy-momentum tensors required by the matching con-

ditions on the slab boundaries are given.

2. Background geometry, the field equations and matching con-

ditions. We consider a plane symmetric (D+1)-dimensional spacetime with the

line element
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and (no summation over i) 
2
2RRi

i   for i = 3, ... , D. Here, the prime stands

for the derivative with respect to the coordinate x. The Ricci scalar is expressed

as
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For discussion of geodesic motion one needs also to have the Christoffel symbols.

The expressions for the corresponding nonzero components read (no summation

over i = 2, 3, ..., D)
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The i th component of the acceleration for a test particle is given by 
lki

kl
i wwa 

with dsdxw ii   being the (D+1)-velocity. For a test particle at rest one has
0

0
uii ew   and the acceleration is directed along the x-axis with  22 dsxda ii

0
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1
1ue ui   .

For the gravitational field equations 
k
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k
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k
i GTRR  82 , with k

iT  being the

metric energy-momentum tensor, we get
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In accordance with the problem symmetry one has (no summation over i) 
2

2TT i
i 

for i = 3, ..., D. Note that the quantity i
iT , i = 1, 2, ..., D, presents the effective

pressure along the i th spatial dimension. From the covariant conservation equation

0 k
ik T  one finds
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This equation does not contain the function u
1
(x). For a source with barotropic

equation of state, 
0

0TwT i
i
i   with constants w

i
, we get
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In this case the components of the energy-momentum tensor, as functions of the

coordinate x, do not change the sign.

The function u
1
(x) in (1) can be fixed by the choice of the coordinate x. The

field equations are essentially simplified taking

  . 01 xu (8)

This gives
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From these equations the following relations can be obtained:
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Note that 
  ge uDu  20 1  with g being the determinant of the metric tensor g

ik
.

Additionally, by combining the equations (10) we get

        . 1
1

8
2020 12

2
1

1
0

0
1 uDuuDu eTDDTT

D

G
e  






(11)

The integration of relations (10) and (11) give conditions for the energy-

momentum tensor to be compatible with given solutions for u
0
(x) and u

2
(x).

By using the set of equations (9) we can derive the matching conditions for

the components of the metric tensor in problems where the geometry is described

by two distinct metric tensors in regions separated by a planar boundary. As a

separating boundary we take a hyperplane x = L. The energy-momentum tensor

is decomposed into two contributions:
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Here,  
k
ivT  is the volume part and  

k
isT  corresponds to the surface energy-

momentum tensor localized on the interface x = L. Generally, the volume part

is different in the regions x < L and x > L. Assuming that the metric tensor is

continuous at x = L, the discontinuities in its first order derivatives are found by

integrating the equations (9) in the region   LL  , , 0 , and then taking

the limit 0 . The continuity conditions for the metric tensor read
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The discontinuities in the derivatives of the metric tensor are completely deter-

mined by the surface energy-momentum tensor. The corresponding conditions can

also be obtained from the Israel matching conditions in terms of the extrinsic

curvature tensor of the separating boundary.

3. Vacuum solutions. We start with the vacuum solutions of the set of

equations (9). For them one has 0k
iT . By having the coordinate x fixed by

the condition (8), we have two possibilities. For the first one 02 u  and the first

and second equations in (9) are satisfied identically. From the last equation we
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get 02
00  uu . The solution 00 u  corresponds to a flat spacetime in the

Minkowskian coordinates. The solution for 00 u  is obtained after a simple

integration:  22 0 Cxe u  . Taking C = 0 we get the line element

  , 
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which corresponds to the Rindler spacetime. Note that in the representation (15)

the Rindler time coordinate t
R
 is dimensionless. Introducing new coordinates

(T, X) in accordance with RtxT sinh ,   RtxXX coshsgn , the line element (15)

takes the Minkowskian form. The coordinates ( D
R xxxt ..., , , , 2 ) cover the Rindler

wedges TX   of the Minkowski spacetime. The worldline with fixed ( Dxxx ..., , , 2 )

describes a uniformly accelerated observer having the proper acceleration 1/x. The

hypersurface x = 0 corresponds to the Rindler horizon.

For the second class of the vacuum solutions we have 02 u  and from the

first equation in (9) we find 
Du Cxe

42 const2  . With this function u
2
(x), the

second equation gives 
  DDu Cxe
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

 . For these expressions of u
0
(x)

and u
2
(x) the last equation in (9) is obeyed identically. Specifying the constants,

the solution is presented in the Taub form:
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where   is another constant. This solution has a singularity at 1x . For

D = 3 it is reduced to the Taub solution in General Relativity. The higher

dimensional generalization of the Taub solution has also been considered in [27].

For a test particle at rest with the coordinate x, the acceleration in the geometry

(16) is expressed as     1211 xDa ii . This corresponds to the repulsion

from the wall at 1x  in both regions  1x  and 1x . Introducing the
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the line element is written in the form
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As a simple example with two different metric tensors in the regions x > 0

and x < 0, we take 22
Tdsds   in the region x < 0 (given by (16) with 0 ) and
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in the region x > 0. The latter corresponds to the Rindler spacetime and is obtained

from (15) redefining bxx   and passing to a new time coordinate Rbtt  . For

both regions   0k
ivT  and the metric tensor is regular. From (14) one gets the

surface energy-momentum tensor required by the matching conditions:
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Note that the corresponding energy density is negative. In the special case b1

we obtain 0
0

2
2   and k

i  describes a CC-type source localized on the plane

x = 0.

4. Solutions with cosmological constant. In this section we consider

the solutions of the gravitational field equations (9) with the CC   as the only

source. For the corresponding energy-momentum tensor one has
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4.1. AdS spacetime. For a negative CC from the first equation we have

a special solution
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With this solution, the second equation in (9) gives au 10  . The third equation

is automatically satisfied. Fixing the integration constants, the line element

corresponding to this solution takes the form
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This line element describes AdS spacetime in Poincaré coordinates. Introducing

a new coordinate axaez  , 0 z , the line element is written in a

conformally flat form
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Here, the hypersurfaces  z  and 0z  correspond to the AdS horizon and

boundary, respectively. The acceleration of a test particle in the geometry (24)

is given by aa ii
1   and it does not depend on the location of the particle.

The latter property is a consequence of the maximal symmetry of the AdS

spacetime. The acceleration is directed towards of the AdS horizon.

In the D-dimensional generalization of the Randall-Sundrum 1-brane model
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[35] the background line element reads
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and the brane is located at x = 0. By taking into account that the volume energy-

momentum tensor is given by (22) in both regions x < 0 and x > 0, from the

matching conditions (14) we get
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This correspond to a positive CC localized on the brane.

4.2. General solution for negative CC. For a negative cosmological

constant the first integral of the first equation in (9) is given by
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 being an integration constant. Substituting this in the second equation we
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Now it can be checked that with these solutions for 0u  and 2u  the third equation

in (9) is obeyed identically. The simple integration of (28) and (29) gives the

functions u
0
(x) and u
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(x). The corresponding line element reads
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Let us consider the asymptotic of the line element (30) for small and large

values of w . For 1w , keeping the leading terms we get
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where 0xxx   and aDtt 2 . The right-hand side of (31) is the line element

for the Rindler spacetime (compare with (15)). For large values of w , 1w ,

keeping the leading terms we get
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with tet axD 022   and iaxDi xex 022  . Here, the upper and lower signs

correspond to the cases w > 0 and w < 0, respectively. Hence, in this limit the

asymptotic geometry corresponds to the AdS spacetime.

For the acceleration of a test particle at rest one has 01 ua ii   with 0u  given

by (29). It is positive in the region w < 0 and negative in the region w > 0 and,
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hence, the acceleration is directed towards the hyperplane w = 0 which corresponds

to the Rindler horizon. At large distances from the horizon, corresponding to

1w , we get   awa ii sgn1 . Near the horizon the leading term in the

asymptotic expansion is given by  xxa ii  01 . This term does not depend on

the value of CC.

4.3. General solution for positive CC. We turn to the case of 0 .

By steps similar to those described in the previous subsection we can show that
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The further integrations of these relations lead to the line element
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In this case the metric is a periodic function of w with the period equal to  .

This corresponds to the periodicity with respect to the coordinate x with the period

equal to Da2 . The asymptotic of the line element near the point w = 0 is

described by the Rindler line element (31). Near the point 2w  the line

element is approximated by the Taub solution:

    . 2
2 2

242

22

2
2 








i

iD

DD
dxwdx

w

dt
ds

(35)

Note that in this point we have a singularity.

By taking into account that the metric tensor is periodic, let us consider the

acceleration of the test particle, given as 01 ua ii  , in the region 22  w .

It is positive for 02  w  and negative for 20  w . This means that,

similar to the case of negative CC, the acceleration is directed towards the Rindler

horizon w = 0 with the near horizon asymptotic  xxa ii  01 . The singular walls

2w  are repulsive and near of them the asymptoic of the acceleration is given

by       wawDa ii 2sgn21  .

5. CC slab with finite thickness. As an application of the matching

procedure and of the solutions described above, here we consider a finite thickness

slab with the CC energy-momentum tensor (22) in the region LxL  .

Different geometries in the exterior regions Lx   and Lx   will be discussed.

Assuming a symmetric configuration with respect to the plane x = 0, firstly we

consider the interior line element (30) with x
0

 = 0, corresponding to a negative

cosmological constant  . We have   ki
ik dxdxgds 2  with the metric tensor

   
    , cosh ..., ,cosh ,1 ,
cosh

sinh
diag 44

22

2


















 ww
w

w
xg DD

DDik (36)
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in the region Lx   and aDxw 2 . Rescaling the time and spatial coordinates
ix , i = 2, ..., D, the interior line element can be written in the form

   
  
  

. , , 2 Lx
Lg

xg
xgdxdxxgds

ik

ik
ik

ki
ik 





(37)

With this normalization    1 ..., ,1 1,diag Lgik . This normalization is conve-

nient in the consideration of the matching conditions discussed below.

5.1. Minkowski exterior. We start the discussion by the Minkowskian

geometry in the exterior regions:

  . , 
2

2222 Lxdxdxdtds
D

i

i
M  


(38)

With the choice (37) for the interior line element, the metric tensor is continuous

on the boundaries x = ±L. The surface energy-momentum tensor is determined

by the matching conditions (14). By taking into account that

   , tanh
1

, tanh2coth
2

1
20 w

a
uwDwD

a
u  (39)

in the region Lx   and 020  uu  for Lx  , from (14) we get

, 
16

coth

21

2
, 0, tanh

8

1 0
02

2
1
1

0
0

Ga

wD

D

D
w

Ga

D L
L














 (40)

where  aDLwL 2 . The surface energy density and the stresses (no summation

over i) 2
2ii , i = 2, ..., D, are positive. Note that the effective pressure along

the i th spatial direction is given by i
i  and in the example under consideration

it is negative.

5.2. Rindler exterior. For the exterior Rindler geometry the line element

is given by (15) in the regions Lx   and for the interior geometry we have (37).

Introducing a new Rindler time coordinate t in accordance with t = Lt
R
, we see

that the metric tensor is continuous on the boundaries Lx  . The derivatives

in the matching conditions are given by (39) in the region Lx   and by

xu 10  , 02 u  in the region Lx  . From (14) one finds

. 
16

1coth

21

2
, 0, tanh

8

1 0
02

2
1
1

0
0

Ga

ww
D

D

D
w

Ga

D LL
L
















 (41)

The surface energy density is the same as that for the Minkowski exterior,

whereas the stresses are different. Note that, depending on the value of the

parameter w
L
, the effective pressure 2

2  can be either negative or positive.

5.3. Taub exterior. The exterior geometry is described by the line element

(16). Redefining the coordinates and the constant  , we rewrite it in the form
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 

  . 
1

1

1

1

2

2
4

22

22

2 









































D

i

i

DDD

T dx
L

x
dxdt

L

x
ds (42)

For 0  the metric tensor is regular. With this line element in the region Lx 

and with the line element (37) for Lx  , the metric tensor is continuous at

Lx  . By taking into account that

   
, 

1

sgn2
, 

1

sgn2
20

x

x

D
u

x

x

D

D
u









 (43)

for Lx  , the matching conditions at x = L give

, 
16

coth

21

2
, 

1

2
tanh

8

1 0
02

2
0
0

Ga

w
D

D

D

L

a

D
w

Ga

D L
L



























 (44)

and 01
1  . Note that for the Taub exterior, depending on the relative values of

a and L, the surface energy density can be either positive or negative.

5.4. Slab with positive CC. Now we turn to the slab with positive CC.

The interior line element is given by (34) with the metric tensor

     , cos ..., ,cos ,1 ,
cos

sin
diag

44

22

2


















 DD

DDik ww
w

w
xg (45)

where  aDxw 2 . Again, rescaling the coordinates the line element is presented

in the form (37) with     1 ..., ,1 ,1diag  Lgik
. We will assume that DaL  .

In this case the metric tensor is regular inside the slab. The derivatives of the

functions u
0
(x) and u

2
(x) in the region Lx   are given by (33). For the case

of 0 , the components of the surface energy-momentum tensor for the exterior

Minkowski, Rindler and Taub geometries are obtained from the formulas given

above for 0  by the replacements

. cotcoth, tantanh LLLL wwww  (46)

The surface energy density is negative for all those geometries.

6. Conclusion. We have considered plane symmetric solutions of General

Relativity for general number of spatial dimensions. For the metric tensor given

by (1), the field equations are presented in the form (5) and the covariant

continuity equation for the energy-momentum tensor is reduced to (6). The set

of gravitational equations is simplified by the choice of the coordinate x in

accordance with (8). By using those equations one can derive the matching

conditions for the metric tensor in the problems where the geometry is described

by two distinct line elements in neighboring half-spaces. The metric tensor is

continuous on the separating boundary and the discontinuity of its first order
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derivative is given by (14), where k
i  is the surface energy-momentum tensor.

Two classes of the vacuum solutions of the gravitational field equation are

presented. The first one corresponds to the Rindler spacetime and the second one

is a higher-dimensional generalization of the well known Taub solution. By an

appropriate choice of the integration constants the latter is given by (16) (see also

[27]). It has a singularity at  1x  that presents a repulsive wall for test particles.

As a simple example of geometry with two distinct metric tensors in two different

regions we have considered the combination of the Rindler and Taub geometries

separated by a planar boundary. The components of the corresponding surface

energy-momentum tensor are expressed by (21).

As an example of the source in gravitational field equations we have considered

the CC  . For negative CC there is a special solution that corresponds to

(D+1)-dimensional AdS spacetime. In Poincaré coordinates the line element has

the form (24). In the Randall-Sundrum 1-brane model two copies of the AdS

half-space are combined in the form of Eq. (26). The surface energy-momentum

tensor on the separating brane is given by (27). The general solutions of the field

equations for negative and positive CC are given by (30) and (34), respectively.

In the case of a negative CC the geometry is non-singular. For small and large

values of the variable w  it is approximated by the Rindler and AdS spacetimes,

respectively. For a positive CC the metric tensor is a periodic function of x with

the period Da2 . In this case one has singularities at the points corresponding

to   21nw . Near these points the geometry is approximated by the Taub

solution. For both solutions with negative and positive CC the hyperplane 0w

(x = x
0
) corresponds to a horizon that is the analog of the Rindler horizon. The

acceleration of a test particle at rest is directed towards the horizon.

By using the solutions with a CC we have constructed a simple model of a

finite thickness slab symmetric with respect to the central plane. The volume

energy-momentum tensor inside the slab is given by (22) and in the exterior

regions we have used the vacuum solutions of the field equations. Three different

cases have been considered with the Minkowski, Rindler and Taub geometries.

For the latter geometry the singularity-free Taub solution is employed. The

corresponding surface energy-momentum tensors are expressed by (40), (41) and

(44), respectively. For a slab with positive CC the interior geometry is non-

singular for the half-thickness obeying the condition DaL  .

The setup considered in the present paper can be used for the investigation

of the backreaction effects of the vacuum polarization of quantum fields induced

by boundaries with x = const. The boundary conditions imposed on quantum fields

lead to the modification of the spectrum for vacuum fluctuations and, as a

consequence, the vacuum expectation values of physical observables are changed.
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In particular, the vacuum energy-momentum tensor for planar boundaries has been

widely considered in the literature. The simplest example is the Casimir effect

(see, for example, [36]) for perfectly conducting parallel plates in the Minkowski

spacetime. Already in that simple example the vacuum stresses are anisotropic. The

planar boundaries in the Rindler spacetime, corresponding to uniformly accelerated

plates in the Fulling-Rinlder vacuum, have been considered in [37-40]. The

references for the corresponding investigations in the AdS bulk can be found in

[41].
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ÏËÎÑÊÎ-ÑÈÌÌÅÒÐÈ×ÍÛÅ ÃÐÀÂÈÒÀÖÈÎÍÍÛÅ
ÏÎËß Â (D+1)-ÌÅÐÍÎÉ ÎÁÙÅÉ ÒÅÎÐÈÈ

ÎÒÍÎÑÈÒÅËÜÍÎÑÒÈ

Ð.Ì.ÀÂÀÊßÍ, Ò.À.ÏÅÒÐÎÑßÍ, À.À.ÑÀÀÐßÍ, Ã.Ã.ÀÐÓÒÞÍßÍ

Ðàññìîòðåíû ïëîñêî-ñèììåòðè÷íûå ãðàâèòàöèîííûå ïîëÿ â ðàìêàõ îáùåé

òåîðèè îòíîñèòåëüíîñòè â (D+1)-ìåðíîì ïðîñòðàíñòâå-âðåìåíè. Äâà êëàññà

âàêóóìíûõ ðåøåíèé ñîîòâåòñòâóþò ìíîãîìåðíûì îáîáùåíèÿì ïðîñòðàíñòâà-

âðåìåíè Ðèíäëåðà è Òàóáà. Ïðåäñòàâëåíû îáùèå ðåøåíèÿ äëÿ ïîëîæèòåëüíîé

è îòðèöàòåëüíîé êîñìîëîãè÷åñêîé ïîñòîÿííîé â êà÷åñòâå åäèíñòâåííîãî

èñòî÷íèêà ãðàâèòàöèè. Îáñóæäàþòñÿ óñëîâèÿ ñøèâêè íà ïëîñêîé ãðàíèöå

äâóõ îáëàñòåé ñ ðàçëè÷íûìè ïëîñêî-ñèììåòðè÷íûìè ìåòðè÷åñêèìè òåíçîðàìè.

Ðàññìîòðåí ïðèìåð ñ ãåîìåòðèÿìè Ðèíäëåðà è Òàóáà â ñîñåäíèõ ïîëóïðîñò-

ðàíñòâàõ. Â êà÷åñòâå äðóãîãî ïðèìåðà îáñóæäàåòñÿ ïëîñêî-ïàðàëëåëüíàÿ

ïëàñòèíà êîíå÷íîé òîëùèíû ñ êîñìîëîãè÷åñêîé ïîñòîÿííîé, ïîãðóæåííàÿ â

ïðîñòðàíñòâî-âðåìÿ Ìèíêîâñêîãî, Ðèíäëåðà è Òàóáà. Íàéäåí ñîîòâåòñòâóþùèé

ïîâåðõíîñòíûé òåíçîð ýíåðãèè-èìïóëüñà, íåîáõîäèìûé äëÿ ñîãëàñîâàíèÿ

âíåøíåé è âíóòðåííåé ãåîìåòðèè.

Êëþ÷åâûå ñëîâà: ïëîñêî-ñèììåòðè÷íûå ãðàâèòàöèîííûå ïîëÿ: ðåøåíèå Òàóáà:

      ïðîñòðàíñòâî-âðåìÿ Ðèíäëåðà: êîñìîëîãè÷åñêàÿ ïîñòîÿííàÿ
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