ACTPODODMUMI3NUKA

TOM 67 ABI'YCT, 2024 BbITTYCK 3

DOI: 10.54503/0571-7132-2024.67.3-359

LORENTZIAN CORRECTION FOR THE EVOLUTION
OF THE CMB TEMPERATURE

A.NOVAIS, A.L.B.RIBEIRO
Received 26 May 2024
Accepted 26 August 2024

Observational evidence consistently shows that the universe is spatially flat and undergoes
Lorentzian time dilation as a function of redshift. In combination, such discoveries suggest that a
Minkowskian description of cosmology might be technically viable. The thermal evolution that
transpires in a conformal spacetime is herein derived. The description is constrained by the energy
conservation of a unified cosmic fluid. The resulting model puts forth a Lorentzian correction for
the temperature of the CMB as a function of redshift, which improves current data fitting without
adding any free parameter. Furthermore, it sheds light upon the early galaxy formation problem:
our model predicts up to 0.86 Gyr older objects within the first two billion years of the structure
evolution in the universe.
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1. Introduction. The Cosmic Microwave Background (CMB) indicates that
space possesses but a vanishing curvature on cosmological scales [1,2]. Supernovae
surveys [3] and recent studies on primordial quasars [4] also bring forth evidence
that Lorentzian time dilation is an observable effect at high recession speeds. Such
data suggest the possibility of a Minkowskian description of cosmology.

Over the course of the 20th century, cosmological models utilizing the
Minkowskian background were developed as attempts at preserving the conformal
quality of spacetime. Milne [5] proposed a thought experiment where a distribution
of particles endowed with arbitrary velocities 0<v<c¢ around any observer
inevitably produces a radial expansion scenario governed by the Hubble law. Infeld
and Schild [6] generalized Milne's results, deriving multiple cases of conformal
universes embedded in the Minkowskian metric and their respective equations of
motion. The authors demonstrated that such cases were geometrically equivalent
to Friedmann-Lemaitre-Robertson-Walker (FLRW) universes.

Later, Tauber [7] explicitly solved Einstein's equations for the FLRW conformally
flat-form metrics and for various types of equation of state. Endean [8] considered
transformations of the FLRW metrics in the case of open three-dimensional space
curvature, and also for closed three-dimensional space curvature [9]. Subsequently,
Endean [10] found a possible solution to cosmological age and redshift-distance
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difficulties by applying the appropriate conformally flat spacetime coordinates to the
standard solution of the field equations in a standard dust model closed universe. Ibison
[11] showed that the metrics of all RW models (k=0, *1) are conformally flat;
and Romero et al. [12] showed that any RW cosmological model is totally determined
by the Weyl scalar field ¢ while spacetime remains fixed - ¢ may be considered
as a gauging function determining the behaviour of clocks and measuring rods in a
Minkowski spacetime. Finally, Lombriser [13] presents a formulation of cosmology
in Minkowski spacetime, where the cosmological constant problem is absent.

All these results reiterate the relevance of studying cosmology in Minkowski
spacetime. The aim of the present work is to develop a Lorentz-invariant
description of cosmology, which can be understood as a conformal transformation
of the FLRW metric into the Minkowski space with a cosmic fluid undergoing
Hubble flow from the perspective of any given inertial observer. This path leads
us to a Lorentzian correction for the evolution of the CMB temperature.

2. Hubble flow in Minkowski space. The Hubble law defines the
proportionality between distance and velocity:
v=H,r §))
Considering that the resulting Hubble flow is subject to Lorentz transforma-
tions, one can determine the contracted length dx:

2
dx =dr 1_[2) . )

C

Next, defining the Hubble radius R, as the distance r where the recession
velocity equals the speed of light, one obtains:

c=HyRy , (©)

N
d————— -4;‘77/«7

Fig.1. Length contraction of successive sections of the cosmic radius yielding a conformally
transformed distance.
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2 2
dx:dr,/l—( H"r] : dx=dr"1—(LJ . )
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Thus, the transformed segment dx is expressed as a function of r. For
simplicity purposes, it is beneficial to define the angle o , such that:

. Ay
sino=—, (5)
o

and Eq. (4) becomes:

dx=drN1-sin’a., dx=drcoso. (6)

Finally, the sum of all consecutive segments dx yields the integrated distance
x (Fig.1), observed in the expanding Minkowskian substratum:

,
xX= jdr coso, Xx= R—H(sinoccosoc +a). (7)
0 2
In this description, the length contraction does not affect the recession velocity,
since time dilation is also present in Minkowski spacetime, i.e., as a signal crosses
a contracted length, its local time passage dr, is slowed down by the same factor
and the original speed is maintained.

dx drcosa dr
vV=——= = —, (8)

dt; dtcosa dt
Therefore, the signal transmission is always conformal and instant velocities
are preserved by the Lorentz transformations. This generates an important con-

C

Fig.2. Expanding cosmic fluid in Minkowski space.
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sequence for the Hubble flow equation, given that the speeds must be conserved
when x replaces r as the observed distance. The result is a Lorentz-corrected
Hubble parameter H,.

The conformal condition equation is:

Hy=H,x. )
Introducing the transformed radius x obtained in (7) and isolating H,:
H, = H, 2r

Ry, (sinacosa + o)
Finally, using the definition of sina given by (5):

H, = H, 2sino (10)

(sinoicoso + (x) '

Such relation determines that, at any given time, the Lorentz-corrected Hubble
parameter H, is not constant for the entire cosmological radius, but gently ascends
with the distance, i.e., with a and the proximity to the horizon. H, in turn,
is a temporal function that continuously declines with the expansion of the
universe, as R, increases, as we can see by rearranging (3):

C

Ho(t):m. (11)

Moreover, since the Hubble radius always expands at the speed of light:
Ry =ct. (12)
It is clear from this equation that the Minkowskian description of a unified
cosmic fluid (Fig.2) shall carry fundamental similarities to the R, = cf model put

forth by Melia and Shevchuk [14], albeit utilizing different metrics.
Substituting (12) in (11), one gets:

Hy=-. (13)

Therefore, in this work's description, hereon named ZEUS (Zero-Energy
Unified Substratum), the age of the universe measured by the clock of the observer
is always equal to the inverse of the Hubble constant H at that epoch. In
consonance with the cosmological principle, this fundamental property is equally
valid for all inertial observers at any given era, dismissing the need for a cosmic
reference frame and resolving the present-time age coincidence problem [135].
Next, we present a new perspective on the early structure formation problem
according to ZEUS.

3. Time dilation and a new perspective on the early galaxy
problem. From the definition of sino. and H,, it is straightforward to show that
the Hubble flow does not alter the angle o of a receding object over time, which
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means that the Lorentz contraction creates a fixed radial gradient in o -space,
which persists throughout cosmic expansion history.
d sina, _0
dt
In Minkowski coordinates, the total time dilation perceived by an observer receiving
signals from a receding source is the combination of the Lorentzian y - here treated
as 1/cosa - due to the velocity itself, and an extra factor (1+f) - here expressed
as (1+sina) - due to the continuous increase in separation.
dt, (1+ sinat)
E_ cosal

(14)

' (15)

One can also express the term (1+z) as a function of o, arriving at the
conclusion that the relativistic Doppler redshift is the exact manifestation of the

time dilation.
Z_w/1+v ¢ 1+sina
\/l—v/c cosa
Observational evidence supports (1+z) as the time dilation term. Davis and
Lineweaver [16] also concluded that a Lorentz-Minkowski type of expansion leads
to this term, which is the same as the one given by the FLRW metrics. They
proceeded, however, to calculate an incorrect luminosity distance, which was then
rectified by Chodorowski [17], who showed that the magnitude-redshift diagram

1+ (16)

ZEUS

- = = . ACDM
s
e
(3]
(o)}
<

b T T

Fig.3. Time available for the evolution of a given source versus its redshift considering the time
dilation effect. Solid curve is the ZEUS prediction and dashed curve is the ACDM correlation.
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of a Minkowskian description is, in fact, remarkably close to the best ACDM
fit.

A conundrum of crescent notoriety facing current cosmology is the observation
of complex structure - quasars and mature galaxies - at precocious epochs of the
cosmic evolution. This rapid emergence challenges the known structure formation
mechanisms given by hierarchical models and appears to contradict theoretical
constraints, such as the Eddington limit for black hole accretion [18-20].

The root of the conflict is the correlation between the redshift and the cosmic
age given by the ACDM framework, i.e., if another valid cosmological description
adjusts the age of the structures at the instant of emission, providing more time
for them to have formed at the observed redshifts, the problem may be solved.

In the ZEUS description, since the redshift of a given source is fixed, it
constitutes a constant in any time integration, hence this very factor is applicable
to vast cosmic eras as well as infinitesimal intervals. Therefore, the age of the
object in the ZEUS model is calculated by dividing the current age of the universe,
here considered 14 Gyr, by the factor (1+z).

Algps AgelpcatUnivers
Lsource = ﬁ > 8C€source = W . (17)
2.0 ‘
| ZEUS
l‘ — —— - ACDM
1.6 \
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-~ \ L)
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o \ : P
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0.0
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z

Fig.4. Same as Fig.3 but focusing upon the first two billion years of structure evolution.
Observed galaxies from HST ([21,22]) and JWST ([23]), are projected onto ACDM and ZEUS
timelines.
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In contrast, the ACDM evolution presents transition phases that render the age-
redshift correlation more complex and time-compressed, as shown in Fig.3. Fig.4
then zooms into the first two billion years of the structure evolution in order to
highlight the significant difference in the age-versus-redshift curves. We show objects
observed by HST and JWST that are 0.56 to 0.86 Gyr older in ZEUS than in
the ACDM model. The early galaxy formation problem is alleviated within the
ZEUS description for it grants more time for the galaxies and quasars to develop.

4. Energy conservation. In this section, the dynamics of the ZEUS model
is explored. It is based upon the hypothesis that the total energy of the unified
cosmic substratum is always zero. It is important to emphasize that the universe
is not filled with a single fluid, but the mixture of radiation, baryons, and some
manifestation of dark matter and dark energy, evolving under the zero energy
condition:

> p:+3>.p; =0. (18)
This premise is similar to the unified medium with zero active mass and
cosmic equation of state p/p=-1/3 proposed by [14] in the FLRW metric. Here,
however, the Lorentzian correction applied to the Hubble flow in Minkowski
spacetime leads to an energy density gradient along cosmic distances which is more
descriptive of some CMB features, e.g., the high entropy density and the
temperature evolution with redshift (see Section V).
First, from a mechanical perspective, the relativistic kinetic energy, written in
terms of a, is given by:

2 2
K = moc?| ey | [;_lj, PO )
1_(0/0)2 sin”a \ cosa cosoc(1+cosoc)

Next, introducing the relativistic potential energy produced by the gravitational
field of a sphere centered at the inertial observer with transformed radius x and
average energy density p:

P 8nGpx’m,

32 cosoc(l + cosoc) ' (20)

In agreement with the observed spatial flatness, the total mechanical energy
of free particles that move exclusively due to the Hubble flow is considered to
be zero:

my v’ 8Tpox2m0 , 8nGpx?
~ 2 =0, vi=—r—. (1)
cosa(l +cosa) 3c cosa(l + cosat) 3c
Next, expressing the Hubble law:
8nGpx? , 8nGp
Hix*="""t—_ H!= . 22
L 32 L 3c2 (22)
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This result is analogous to the first Friedmann equation for a flat space with
total energy density equal to the critical value and vanishing cosmological constant.
The key distinction is that the Minkowskian coordinates produce a Lorentz-
corrected Hubble parameter H,, which slightly grows with distance. This means
that the average energy density p of the cosmic sphere also presents a radial
gradient at any given point in time. This can be demonstrated by taking (22)
and substituting the H, obtained in (10):
4sin’o. _8&Gp 3¢r 4sin’o

, p= H .
gnG "’ (sinacosa + o) (23)

Hz
’ (sinacoso+ o) 3¢
At the limit o — 0, where the small-angle approximation (sino. — o and
cosa — 1) is applicable, one can calculate the energy density in the spatial vicinity
of the observer:
3C 2 2
= H 24
=Rl (24)

Po

4sin*a

p= (25)

’ (sinacoso + oc)2 .

Note that this expression determines the average density of the entire cosmic
sphere from o =0 up to an a of interest. The differential energy density ¢ at
o itself is the increment of the total energy of the sphere dU with an increment
of the volume dV.

V= %mf . (26)
Applying the expression of x obtained in (7):
V= %Rz (sinacosa + (1)3 s (27)
and differentiating with respect to o :
Z—Z =nR} coszoc(sinoccosoc + oc)2 . (28)
Next, defining the internal energy U:
U=pV. (29)

Which can be calculated by employing Eqgs. (23) and (27) for p and V:
U =§RR13, posinza(sinoccosoc + OL), (30)
and differentiating with respect to o :

;Z—U = gan_I posinacosa (2sinacosa + at). (31)
o
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One may finally determine the differential energy density ¢ at an o of
interest:

. _dU _dU/do
v dvido (32)
4 sina (2sinacosa + a)
&= (33)

°1 3 cosa (sinacoso + at)’

For notation simplicity, the term in square brackets is hereon denoted by &:

&

_ 4 sina (2sinacosa + )

" 3 cosal (sinacoso + )’ (34)

£=pot (35)
Such gradient may have measurable implications for the temperature of the
CMB, as studied in the next section.

5. Temperature of the CMB. The linear T,,,;(z) is a property of standard

adiabatic models that presuppose homogeneity and isotropy, such as ACDM .
Ters(2)=Ty (14 2). (36)

Such proportionality is not bound to a particular metric theory when assuming
that the cosmos expands isotropically, photon has no mass, the CMB radiation
is thermal and the first law of thermodynamics is true [24]. However, a departure
from linearity would require important and hard to detect distortions in the Planck
spectrum of the CMB [25], which could be used to constrain alternative scenarios,
e.g., cases where photons are either created or destroyed, as explored by Lima
et al. [26], or modifications of gravity via the presence of a scalar field with a
multiplicative coupling to the electromagnetic Lagrangian [27]. At present, there
appears to be no inconsistency of the T, (z) data with the ACDM model [e.g.
28]. An extensive program of experiments based on new technologies will be able
to detect minimal distortions in the energy spectrum of the CMB in the near
future [29].

A different approach to study the evolution of the CMB temperature is to
introduce a Lorentzian correction in the 7,,(z) function. In this case, the
universe would be strictly flat, with a unified fluid describing its contents at all
times. The aim of this work is to show that a Minkowskian description of
cosmology, where the thermal evolution takes place in a conformal spacetime, can
improve the data fitting of 7,,,(z) for current datasets. This has important
consequences for flatness tests and the foundations of cosmology.

While each component of the ACDM model behaves in a particular manner
in terms of pl.(t), in the ZEUS description, the energy density of the unified
cosmic fluid possesses a universal behavior: it decreases with the square of the
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proper time (p, oc 1/ £ ). The second difference is the spatial gradient, which we
characterized in the previous section with the term §.
3¢ 1
E ).

e=po(t)E(a), &= 812G 12

Equipped with this cosmic energy profile across time and space, one can now
tell the story of the CMB from the ZEUS model's perspective, including its
interaction with structures at their respective redshifts and the resulting perception
of the observer, once time dilation is taken into account.

In the beginning (7 ~0), the temperature of the unified cosmic fluid is far too
great around the observer (and even greater at higher values of o ) for any nucleon
to form. One can directly express the temperature as a function of time by
invoking the Stefan-Boltzmann law.

(37

T=(ce)*, T=(op,)*e", T=T,¢". (38)
where & is a spatial function and 7} is a temporal function:
1/4
3¢? 1
T.t)=(o /4 =|C —_ .
o(t)=(op,) ( SRGJ e (39)

Therefore, the local temperature decreases monotonically. With time, the local
temperature of the cosmic fluid eventually drops sufficiently to enable the primor-
dial nucleosynthesis. Given yet more time, the plasma decoupling also takes place.
However, since the universe was far smaller and the photons always travel
conformally in Minkowskian coordinates, those first local photons are not the ones
received at the present time.

Referring to equation (38), for every value of T, there can be found a value
of él/ * that produces the temperature at which recombination takes place (any
arbitrary value is possible, given that & tends to infinity at the horizon). As T|
decreases monotonically over time, this Surface of Last Scattering (SLS) must
occupy greater and greater values of &, i.e., it advances ever closer to the horizon
in o -space.

Next, to understand how the CMB radiation interacts with the intervening
galaxies between the SLS and the observer, as well as how the interaction signal
is measured, two factors must be considered. First, as discussed in the previous
section, the observed energy density of a given region of the cosmic fluid is affected
by the total Lorentzian time dilation, which inserts a 1/(1+z) factor to each time
contribution. Second, in the CMB analysis, the primary emission surface (the
SLS) is far out close to the horizon, meaning that any galaxy travels towards the
CMB photons as it recedes from the observer, i.e., a blueshift is expected in this
interaction when compared to the CMB energy density perceived by the static
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observer. This blueshift can be readily determined, since it is the inverse of the
observed galaxy's redshift. Such mechanism adds yet another 1/ (l+z) factor to
the proper time. Hence, the total p, time correction now becomes:

3¢? [(1 +z)(1 +z)}2

Pocms * P p (40)
Pocus OCPO(1+Z)4 > €cup Ocpo(l+z)4§ (41)
Tovs = (GSCMB )1/4 s Teus = (GPO )1/4 (l + Z)F:l/“ s Tos =T (1 + Z)é“ . (42)

It is remarkable that alternative perspectives of cosmology, based on different
coordinates, timelines, redshift interpretations and photonic histories, provide such
similar predictions for the 7, (z). This reinforces the idea that, in a flat universe,
which is clearly endowed with time dilation, the Minkowskian description of
cosmological phenomena should be technically viable.

From the observational standpoint, at low redshifts (0 <z <1), the thermal
Sunyaev-Zeldovich (tSZ) effect can be employed as a cosmic thermometer (see
[30-32]). Fig.5 shows that the FLRW linear prediction and the ZEUS curve are
extremely similar along this range and both are good fits to the presently available
datapoints.

As more profound redshifts are probed, different estimation techniques are
required. Multiple studies rely upon atomic and molecular fine-structure levels

8

TCMB’ K

2
— ZEUS
- T=T(142)
0
0 0.2 0.4 0.6 0.8 1

z

Fig.5. Circles are the results from [33,34] based on Planck map data and SZ effect at z<1.
Dashed line shows the FLRW linear prediction with XZFLRW =0.121. Solid curve is the ZEUS
prediction with XZZEUS =0.118.
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observed in the absorption spectra of quasars. This method depends upon free
parameters associated with local physical conditions, such as kinetic temperature,
UV background intensity, gas number density, collisional corrections, etc [e.g. 44].

In order to assess the predictive potential of the ZEUS description, we first
gathered in Fig.6 the data sources in the redshift range 2 <z <3.5 that utilize
atomic carbon fine-structure levels. Despite the large error bars, early signs of a
tendency may be observed: at higher redshifts, the datapoints tend to land above
the T, (1+z) line. As a result, the ZEUS fit (y* =0.431) is even better than the
FLRW linear relation (x> =1.636).

Although the case of CO rotational levels excitation poses a greater statistical
challenge, due to the low probability of detection and the ongoing debate on the
required corrections, we incorporated the six results originally obtained by [40-
42] in Fig.7. The cumulative result shows that the ZEUS fit (3% =1.500) has
good potential when compared with the FLRW fit (y? =1.676).

It is worth noting that other studies further correct the inferred 7,,,;(z) for
the six CO datapoints, reasserting the sensitivity with respect to the assumptions
about local physical conditions. For instance, Klimenko et al. [44] present adjusted
temperatures, deriving a fit that is closer to the FLRW linear prediction. Maeder
[45] further reduces the T, estimates by assuming additional galactic corrections,
rendering both FLRW and ZEUS utterly unfit. Clearly, a better grasp on the CO
rotational levels methodology must be achieved. This includes a more profound

20

16

12

TCMB’ K

—— ZEUS
——— - T=T(142)

0 1 2 3
z
Fig.6. Same as Fig.5 plus literature data based on carbon fine-structure absorption lines

represented as diamonds at 2 <z <3.5 ([35-39]). Triangles are upper bounds, not taken into
account for szimw =1.636 and XZZEUS =0431.
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understanding of local physical conditions as well as the detection of statistically
robust samples.

Finally, Riechers et al. [43] reported a 16 range measurement of the CMB
temperature at z = 6.34 . Using observations of submillimetre line absorption from
the H,O molecule, they arrived at a temperature estimation of 16.4 -30.2 K. Most
of the range lies above the T,(1+z) line and, as seen in Fig.8, both ZEUS and
FLRW curves are able to accommodate the implied temperatures.

Larger datasets and greater refinement are required to expand the study. This
work aims to showcase the fitting potential of a valid cosmological description in
a developing observational field. The objective is to enrich future discussions,
especially when it comes to the model-dependent aspects of the data treatment.

6. Conclusion. For over a century, the Minkowskian coordinates have been
associated with specific motions of particles on restricted local scales. And correctly
so: in a universe filled with energy and a spectrum of density fluctuations, one
has no right to postulate a priori that a special case of flat space is applicable
to cosmological scales. However, the scenario shifts in light of observational
evidence, which reveals a vanishing global curvature.

In a coherent development, time dilation at high recession speeds (high z)
has been empirically verified. If correctly studied, this temporal transformation is
shown to exactly match the Lorentzian type for moving sources.

Put together, such discoveries indicate that a Minkowskian description of

20

16

12

TCMB’ K

—— ZEUS
——— - T=T(142)

0 1 2 3
z

Fig.7. Same as Fig.6 plus literature data based on CO rotation excitation represented as squares
[40-42]. %7, pw =1.676. X ypys =1.500.

X FLRW
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Fig.8. T,,(z) (0<z<6.5), including the result obtained by [43] via H,O absorption line.

cosmological phenomena should be technically viable. The question that remains
is: can this description account for the evolution of the universe or is it limited
to a kinematic snapshot of instant motions?

In the ZEUS description, the unified dynamics is granted by the postulate
of total energy conservation. From this assumption (fully integrated with flatness),
the thermal evolution of the universe is derived, and every instant of proper time
can be described in a Lorentz-invariant framework.

In this introduction to a novel cosmological description, for pedagogical and
conciseness purposes, the focus was set upon two macro-observables: firstly, the
widely discussed problem of the early galaxies in ACDM emerging from JWST
and HST data, which is mitigated by ZEUS. And secondly, the developing
observational field of Ty, (z), still less discussed in the literature, and for which
this work presents a unique, falsifiable and unprecedented approach with satisfac-
tory fit to the current data, thus enriching the field's dialogue as it grows.

Nonetheless, before declaring the model as viable, a series of tests must be
conducted where the current standard cosmology is already successful, e.g.,
Supernovae and Gamma-ray Bursts studies, Baryonic Acoustic Oscillations tests,
structure formation modelling and Big Bang Nucleosynthesis, as well as presenting
solutions to current conflicts, such as the Hubble tension, the initial entropy
problem and dark sector candidates.
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JIOPEHL-ITOITPABKA K BBOJIIOLIMA TEMIIEPATYPHI
PEJIMKTOBOTI'O M3JIYYEHUA

A.HOBAUC, AJI.B.PUBENPY

HaHHble HaOMIOAEHUI MOCenoBaTeIbHO MOKA3bIBAIOT, YTO BeesleHHas mpocT-
PAHCTBEHHO IUIOCKAsl U UCTIBITHIBAET JIOPEHLIEBO 3aMeUIEHUEe BPeMEHU C KPaCHBIM
CMellleHUueM. DTU pe3ybTaTbl MO3BOJISIOT MPEANONOXUTh, UTO OMMCaHWEe KOCMO-
JIOTMU, NaHHOe MUHKOBCKMM, MOXET ObITh TEXHMYECKM XKW3HECIOCOOHbIM. B
JAHHOM MCCJIeNOBaHUWMU Mbl BBIBOJAMM TEIUIOBYIO 3BOJIOLUIO B KOHMOPMHOM
MIPOCTPAHCTBE-BPEMEHH, OTPAaHUYEHHYIO 3aKOHOM COXPaHEHMST SHEPTUM eIUHOMN
KocMuyeckoit kuakoctu. IlomydyeHHast monenb maeT mompaBky JlopeHua st
TemrepaTypbl KOCMMUYECKOT0 MUKPOBOJIHOBOIO (DOHOBOIO U3MYyYeHUsT KaK (DyHKIIMIO
OT KPaCHOTO CMEIICHMS. DTa KOPPEKIMS YIydIlIaecT COOTBETCTBHAE TEKYIITUM JaHHBIM
0e3 nobapieHus1 CBOOOAHBIX MapaMeTpoB. KpoMe Toro, Moaenb MpoJMBaeT CBET
Ha MpobJjieMy paHHero (OpMUPOBAHUS TATAKTUK, MPeJCKa3biBasl CyIIECTBOBAHUE
GoJjiee cTapbiX 00bEKTOB Bo3pacToM a0 0.86 MusuiMapaa JIeT B T€UYCHHUE IEPBBIX
JIBYX MUJUIMAPIOB JIET CTPYKTYPHOU 3BOIOLMU BcesleHHOM.

KiroueBnie crnoBa: kocmonoeus: memnepamypa KOCMUHUECK020 MUKPOB0/H06020
¢0H06’020 U3NYUECHUA NPOCMPAHCMEB0-6PDEMA Munkoeckoeo:
PAaHHUEe eanraKkmuxKu
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