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Observational evidence consistently shows that the universe is spatially flat and undergoes
Lorentzian time dilation as a function of redshift. In combination, such discoveries suggest that a
Minkowskian description of cosmology might be technically viable. The thermal evolution that
transpires in a conformal spacetime is herein derived. The description is constrained by the energy
conservation of a unified cosmic fluid. The resulting model puts forth a Lorentzian correction for
the temperature of the CMB as a function of redshift, which improves current data fitting without
adding any free parameter. Furthermore, it sheds light upon the early galaxy formation problem:
our model predicts up to 0.86 Gyr older objects within the first two billion years of the structure
evolution in the universe.
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1. Introduction. The Cosmic Microwave Background (CMB) indicates that

space possesses but a vanishing curvature on cosmological scales [1,2]. Supernovae

surveys [3] and recent studies on primordial quasars [4] also bring forth evidence

that Lorentzian time dilation is an observable effect at high recession speeds. Such

data suggest the possibility of a Minkowskian description of cosmology.

Over the course of the 20th century, cosmological models utilizing the

Minkowskian background were developed as attempts at preserving the conformal

quality of spacetime. Milne [5] proposed a thought experiment where a distribution

of particles endowed with arbitrary velocities c v0  around any observer

inevitably produces a radial expansion scenario governed by the Hubble law. Infeld

and Schild [6] generalized Milne's results, deriving multiple cases of conformal

universes embedded in the Minkowskian metric and their respective equations of

motion. The authors demonstrated that such cases were geometrically equivalent

to Friedmann-Lemaître-Robertson-Walker (FLRW) universes.

Later, Tauber [7] explicitly solved Einstein's equations for the FLRW conformally

flat-form metrics and for various types of equation of state. Endean [8] considered

transformations of the FLRW metrics in the case of open three-dimensional space

curvature, and also for closed three-dimensional space curvature [9]. Subsequently,

Endean [10] found a possible solution to cosmological age and redshift-distance
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difficulties by applying the appropriate conformally flat spacetime coordinates to the

standard solution of the field equations in a standard dust model closed universe. Ibison

[11] showed that the metrics of all RW models (k = 0, ±1) are conformally flat;

and Romero et al. [12] showed that any RW cosmological model is totally determined

by the Weyl scalar field   while spacetime remains fixed -   may be considered

as a gauging function determining the behaviour of clocks and measuring rods in a

Minkowski spacetime. Finally, Lombriser [13] presents a formulation of cosmology

in Minkowski spacetime, where the cosmological constant problem is absent.

All these results reiterate the relevance of studying cosmology in Minkowski

spacetime. The aim of the present work is to develop a Lorentz-invariant

description of cosmology, which can be understood as a conformal transformation

of the FLRW metric into the Minkowski space with a cosmic fluid undergoing

Hubble flow from the perspective of any given inertial observer. This path leads

us to a Lorentzian correction for the evolution of the CMB temperature.

2. Hubble flow in Minkowski space. The Hubble law defines the

proportionality between distance and velocity:

rH0v (1)

Considering that the resulting Hubble flow is subject to Lorentz transforma-

tions, one can determine the contracted length dx:

. 1
2











c
drdx

v
(2)

Next, defining the Hubble radius R
H
 as the distance r where the recession

velocity equals the speed of light, one obtains:

, 0 HRHc  (3)

Fig.1. Length contraction of successive sections of the cosmic radius yielding a conformally
transformed distance.
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Thus, the transformed segment dx is expressed as a function of r. For

simplicity purposes, it is beneficial to define the angle  , such that:

, sin
HR

r

 (5)

and Eq. (4) becomes:

. cos, sin1 2  drdxdrdx (6)

Finally, the sum of all consecutive segments dx yields the integrated distance

x (Fig.1), observed in the expanding Minkowskian substratum:

 . cossin
2

, cos
0

 
H

r R
xdrx (7)

In this description, the length contraction does not affect the recession velocity,

since time dilation is also present in Minkowski spacetime, i.e., as a signal crosses

a contracted length, its local time passage dt
L
 is slowed down by the same factor

and the original speed is maintained.

. 
cos

cos

dt

dr

dt

dr

dt

dx

L





v (8)

Therefore, the signal transmission is always conformal and instant velocities

are preserved by the Lorentz transformations. This generates an important con-

Fig.2. Expanding cosmic fluid in Minkowski space.

c

c

c c

c

c

cc



362 A.NOVAIS,  A.L.B.RIBEIRO

sequence for the Hubble flow equation, given that the speeds must be conserved

when x replaces r as the observed distance. The result is a Lorentz-corrected

Hubble parameter H
L
.

The conformal condition equation is:

. 0 xHrH L (9)

Introducing the transformed radius x obtained in (7) and isolating H
L
:

 
. 

cossin

2
0




H
L

R

r
HH

Finally, using the definition of sin  given by (5):

 
. 

cossin

sin2
0




 HHL (10)

Such relation determines that, at any given time, the Lorentz-corrected Hubble

parameter H
L
 is not constant for the entire cosmological radius, but gently ascends

with the distance, i.e., with   and the proximity to the horizon. H
0
, in turn,

is a temporal function that continuously declines with the expansion of the

universe, as R
H
 increases, as we can see by rearranging (3):

 
 

. 0
tR

c
tH

H

 (11)

Moreover, since the Hubble radius always expands at the speed of light:

. ctRH  (12)

It is clear from this equation that the Minkowskian description of a unified

cosmic fluid (Fig.2) shall carry fundamental similarities to the R
h
 = ct model put

forth by Melia and Shevchuk [14], albeit utilizing different metrics.

Substituting (12) in (11), one gets:

. 
1

0
t

H  (13)

Therefore, in this work's description, hereon named ZEUS (Zero-Energy

Unified Substratum), the age of the universe measured by the clock of the observer

is always equal to the inverse of the Hubble constant H
0
 at that epoch. In

consonance with the cosmological principle, this fundamental property is equally

valid for all inertial observers at any given era, dismissing the need for a cosmic

reference frame and resolving the present-time age coincidence problem [15].

Next, we present a new perspective on the early structure formation problem

according to ZEUS.

3. Time dilation and a new perspective on the early galaxy

problem. From the definition of sin  and H
0
, it is straightforward to show that

the Hubble flow does not alter the angle   of a receding object over time, which
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means that the Lorentz contraction creates a fixed radial gradient in  -space,

which persists throughout cosmic expansion history.

. 0
sin




dt

d
(14)

In Minkowski coordinates, the total time dilation perceived by an observer receiving

signals from a receding source is the combination of the Lorentzian   - here treated

as cos1  - due to the velocity itself, and an extra factor ( 1 ) - here expressed

as (  sin1 ) - due to the continuous increase in separation.

 
. 

cos

sin10






Ldt

dt
(15)

One can also express the term ( z1 ) as a function of  , arriving at the

conclusion that the relativistic Doppler redshift is the exact manifestation of the

time dilation.

. 
cos

sin1

1

1
1











c

c
z

v

v
(16)

Observational evidence supports ( z1 ) as the time dilation term. Davis and

Lineweaver [16] also concluded that a Lorentz-Minkowski type of expansion leads

to this term, which is the same as the one given by the FLRW metrics. They

proceeded, however, to calculate an incorrect luminosity distance, which was then

rectified by Chodorowski [17], who showed that the magnitude-redshift diagram

Fig.3. Time available for the evolution of a given source versus its redshift considering the time
dilation effect. Solid curve is the ZEUS prediction and dashed curve is the CDM  correlation.
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of a Minkowskian description is, in fact, remarkably close to the best CDM

fit.

A conundrum of crescent notoriety facing current cosmology is the observation

of complex structure - quasars and mature galaxies - at precocious epochs of the

cosmic evolution. This rapid emergence challenges the known structure formation

mechanisms given by hierarchical models and appears to contradict theoretical

constraints, such as the Eddington limit for black hole accretion [18-20].

The root of the conflict is the correlation between the redshift and the cosmic

age given by the CDM  framework, i.e., if another valid cosmological description

adjusts the age of the structures at the instant of emission, providing more time

for them to have formed at the observed redshifts, the problem may be solved.

In the ZEUS description, since the redshift of a given source is fixed, it

constitutes a constant in any time integration, hence this very factor is applicable

to vast cosmic eras as well as infinitesimal intervals. Therefore, the age of the

object in the ZEUS model is calculated by dividing the current age of the universe,

here considered 14 Gyr, by the factor ( z1 ).

   
. 

1
, 

1 z

Age
Age

z

t
t rselocalUnive

source
observer

source






 (17)

Fig.4. Same as Fig.3 but focusing upon the first two billion years of structure evolution.
Observed galaxies from HST ([21,22]) and JWST ([23]), are projected onto CDM  and ZEUS
timelines.
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In contrast, the CDM  evolution presents transition phases that render the age-

redshift correlation more complex and time-compressed, as shown in Fig.3. Fig.4

then zooms into the first two billion years of the structure evolution in order to

highlight the significant difference in the age-versus-redshift curves. We show objects

observed by HST and JWST that are 0.56 to 0.86 Gyr older in ZEUS than in

the CDM  model. The early galaxy formation problem is alleviated within the

ZEUS description for it grants more time for the galaxies and quasars to develop.

4. Energy conservation. In this section, the dynamics of the ZEUS model

is explored. It is based upon the hypothesis that the total energy of the unified

cosmic substratum is always zero. It is important to emphasize that the universe

is not filled with a single fluid, but the mixture of radiation, baryons, and some

manifestation of dark matter and dark energy, evolving under the zero energy

condition:

. 03   ii p (18)

This premise is similar to the unified medium with zero active mass and

cosmic equation of state 31p  proposed by [14] in the FLRW metric. Here,

however, the Lorentzian correction applied to the Hubble flow in Minkowski

spacetime leads to an energy density gradient along cosmic distances which is more

descriptive of some CMB features, e.g., the high entropy density and the

temperature evolution with redshift (see Section V).

First, from a mechanical perspective, the relativistic kinetic energy, written in

terms of  , is given by:

   
. 

cos1cos
, 1

cos

1

sin
1

1

1 2
0

2

2
0

2

2
0

































vv

v

m
K

m

c
cmK (19)

Next, introducing the relativistic potential energy produced by the gravitational

field of a sphere centered at the inertial observer with transformed radius x and

average energy density  :

 
. 

cos1cos3

8
2

0
2






c

mxG
P (20)

In agreement with the observed spatial flatness, the total mechanical energy

of free particles that move exclusively due to the Hubble flow is considered to

be zero:

   
. 

3

8
, 0

cos1cos3

8
 

cos1cos 2

2
2

2
0

22
0

c

xG

c

mxGm 








v

v
(21)

Next, expressing the Hubble law:

. 
3

8
, 

3

8
2

2

2

2
22

c

G
H

c

xG
xH LL





 (22)
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This result is analogous to the first Friedmann equation for a flat space with

total energy density equal to the critical value and vanishing cosmological constant.

The key distinction is that the Minkowskian coordinates produce a Lorentz-

corrected Hubble parameter H
L
, which slightly grows with distance. This means

that the average energy density   of the cosmic sphere also presents a radial

gradient at any given point in time. This can be demonstrated by taking (22)

and substituting the H
L
 obtained in (10):

   
. 

cossin

sin4

8

3
, 

3

8

cossin

sin4
2

2
2
0

2

22

2
2
0














H

G

c

c

G
H (23)

At the limit 0 , where the small-angle approximation ( sin  and

1cos  ) is applicable, one can calculate the energy density in the spatial vicinity

of the observer:

2
0

2

0
8

3
H

G

c


 (24)

 
. 

cossin

sin4
2

2

0



 (25)

Note that this expression determines the average density of the entire cosmic

sphere from 0  up to an   of interest. The differential energy density   at

  itself is the increment of the total energy of the sphere dU with an increment

of the volume dV.

. 
3

4 3xV  (26)

Applying the expression of x obtained in (7):

  , cossin
6

33 


 HRV (27)

and differentiating with respect to  :

  . cossincos 223 


HR
d

dV
(28)

Next, defining the internal energy U:

. VU  (29)

Which can be calculated by employing Eqs. (23) and (27) for   and V:

  , cossinsin
3

2 2
0

3  HRU (30)

and differentiating with respect to  :

 . cos2sincossin
3

4
0

3 


HR
d

dU
(31)
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One may finally determine the differential energy density   at an   of

interest:






ddV

ddU

dV

dU
(32)

 
 

. 
cossincos

cos2sinsin

3

4
20















 (33)

For notation simplicity, the term in square brackets is hereon denoted by  :

 
 2cossincos

cos2sinsin

3

4




 (34)

 0 (35)

Such gradient may have measurable implications for the temperature of the

CMB, as studied in the next section.

5. Temperature of the CMB. The linear  zTCMB  is a property of standard

adiabatic models that presuppose homogeneity and isotropy, such as CDM .

   . 10 zTzTCMB  (36)

Such proportionality is not bound to a particular metric theory when assuming

that the cosmos expands isotropically, photon has no mass, the CMB radiation

is thermal and the first law of thermodynamics is true [24]. However, a departure

from linearity would require important and hard to detect distortions in the Planck

spectrum of the CMB [25], which could be used to constrain alternative scenarios,

e.g., cases where photons are either created or destroyed, as explored by Lima

et al. [26], or modifications of gravity via the presence of a scalar field with a

multiplicative coupling to the electromagnetic Lagrangian [27]. At present, there

appears to be no inconsistency of the  zTCMB  data with the CDM  model [e.g.

28]. An extensive program of experiments based on new technologies will be able

to detect minimal distortions in the energy spectrum of the CMB in the near

future [29].

A different approach to study the evolution of the CMB temperature is to

introduce a Lorentzian correction in the  zTCMB  function. In this case, the

universe would be strictly flat, with a unified fluid describing its contents at all

times. The aim of this work is to show that a Minkowskian description of

cosmology, where the thermal evolution takes place in a conformal spacetime, can

improve the data fitting of  zTCMB  for current datasets. This has important

consequences for flatness tests and the foundations of cosmology.

While each component of the CDM  model behaves in a particular manner

in terms of  ti , in the ZEUS description, the energy density of the unified

cosmic fluid possesses a universal behavior: it decreases with the square of the
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proper time ( 2
0 1 t ). The second difference is the spatial gradient, which we

characterized in the previous section with the term  .

     . 1

8

3
, 

2

2

0 



tG

c
t (37)

Equipped with this cosmic energy profile across time and space, one can now

tell the story of the CMB from the ZEUS model's perspective, including its

interaction with structures at their respective redshifts and the resulting perception

of the observer, once time dilation is taken into account.

In the beginning (t ~ 0), the temperature of the unified cosmic fluid is far too

great around the observer (and even greater at higher values of  ) for any nucleon

to form. One can directly express the temperature as a function of time by

invoking the Stefan-Boltzmann law.

    . , , 41
0

4141
0

41  TTTT (38)

where   is a spatial function and T
0
 is a temporal function:

    . 
1

8

3
21

41
2

41
00

tG

c
tT 












 (39)

Therefore, the local temperature decreases monotonically. With time, the local

temperature of the cosmic fluid eventually drops sufficiently to enable the primor-

dial nucleosynthesis. Given yet more time, the plasma decoupling also takes place.

However, since the universe was far smaller and the photons always travel

conformally in Minkowskian coordinates, those first local photons are not the ones

received at the present time.

Referring to equation (38), for every value of T
0
 there can be found a value

of 41  that produces the temperature at which recombination takes place (any

arbitrary value is possible, given that   tends to infinity at the horizon). As T
0

decreases monotonically over time, this Surface of Last Scattering (SLS) must

occupy greater and greater values of  , i.e., it advances ever closer to the horizon

in  -space.

Next, to understand how the CMB radiation interacts with the intervening

galaxies between the SLS and the observer, as well as how the interaction signal

is measured, two factors must be considered. First, as discussed in the previous

section, the observed energy density of a given region of the cosmic fluid is affected

by the total Lorentzian time dilation, which inserts a  z11  factor to each time

contribution. Second, in the CMB analysis, the primary emission surface (the

SLS) is far out close to the horizon, meaning that any galaxy travels towards the

CMB photons as it recedes from the observer, i.e., a blueshift is expected in this

interaction when compared to the CMB energy density perceived by the static
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observer. This blueshift can be readily determined, since it is the inverse of the

observed galaxy's redshift. Such mechanism adds yet another  z11  factor to

the proper time. Hence, the total 0  time correction now becomes:

   22

0

11

8

3







 




t

zz

G

c
CMB (40)

     4
0

4
00 1, 1 zz CMBCMB

(41)

        . 1, 1, 41
0

4141
0

41  zTTzTT CMBCMBCMBCMB
(42)

It is remarkable that alternative perspectives of cosmology, based on different

coordinates, timelines, redshift interpretations and photonic histories, provide such

similar predictions for the  zTCMB . This reinforces the idea that, in a flat universe,

which is clearly endowed with time dilation, the Minkowskian description of

cosmological phenomena should be technically viable.

From the observational standpoint, at low redshifts ( 10  z ), the thermal

Sunyaev-Zeldovich (tSZ) effect can be employed as a cosmic thermometer (see

[30-32]). Fig.5 shows that the FLRW linear prediction and the ZEUS curve are

extremely similar along this range and both are good fits to the presently available

datapoints.

As more profound redshifts are probed, different estimation techniques are

required. Multiple studies rely upon atomic and molecular fine-structure levels

Fig.5. Circles are the results from [33,34] based on Planck map data and SZ effect at 1z .
Dashed line shows the FLRW linear prediction with 1210

2
.

FLRW
 . Solid curve is the ZEUS

prediction with 1180
2
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observed in the absorption spectra of quasars. This method depends upon free

parameters associated with local physical conditions, such as kinetic temperature,

UV background intensity, gas number density, collisional corrections, etc [e.g. 44].

In order to assess the predictive potential of the ZEUS description, we first

gathered in Fig.6 the data sources in the redshift range 532 .z   that utilize

atomic carbon fine-structure levels. Despite the large error bars, early signs of a

tendency may be observed: at higher redshifts, the datapoints tend to land above

the  zT 10  line. As a result, the ZEUS fit ( 43102 . ) is even better than the

FLRW linear relation ( 63612 . ).

Although the case of CO rotational levels excitation poses a greater statistical

challenge, due to the low probability of detection and the ongoing debate on the

required corrections, we incorporated the six results originally obtained by [40-

42] in Fig.7. The cumulative result shows that the ZEUS fit ( 50012 . ) has

good potential when compared with the FLRW fit ( 67612 . ).

It is worth noting that other studies further correct the inferred  zTCMB  for

the six CO datapoints, reasserting the sensitivity with respect to the assumptions

about local physical conditions. For instance, Klimenko et al. [44] present adjusted

temperatures, deriving a fit that is closer to the FLRW linear prediction. Maeder

[45] further reduces the T
CMB

 estimates by assuming additional galactic corrections,

rendering both FLRW and ZEUS utterly unfit. Clearly, a better grasp on the CO

rotational levels methodology must be achieved. This includes a more profound

Fig.6. Same as Fig.5 plus literature data based on carbon fine-structure absorption lines

represented as diamonds at 532 .z   ([35-39]). Triangles are upper bounds, not taken into
account for 6361
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understanding of local physical conditions as well as the detection of statistically

robust samples.

Finally, Riechers et al. [43] reported a 1  range measurement of the CMB

temperature at 346.z  . Using observations of submillimetre line absorption from

the H
2
O molecule, they arrived at a temperature estimation of 16.4 - 30.2 K. Most

of the range lies above the  zT 10  line and, as seen in Fig.8, both ZEUS and

FLRW curves are able to accommodate the implied temperatures.

Larger datasets and greater refinement are required to expand the study. This

work aims to showcase the fitting potential of a valid cosmological description in

a developing observational field. The objective is to enrich future discussions,

especially when it comes to the model-dependent aspects of the data treatment.

6. Conclusion. For over a century, the Minkowskian coordinates have been

associated with specific motions of particles on restricted local scales. And correctly

so: in a universe filled with energy and a spectrum of density fluctuations, one

has no right to postulate a priori that a special case of flat space is applicable

to cosmological scales. However, the scenario shifts in light of observational

evidence, which reveals a vanishing global curvature.

In a coherent development, time dilation at high recession speeds (high z )

has been empirically verified. If correctly studied, this temporal transformation is

shown to exactly match the Lorentzian type for moving sources.

Put together, such discoveries indicate that a Minkowskian description of

Fig.7. Same as Fig.6 plus literature data based on CO rotation excitation represented as squares
[40-42]. 6761
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cosmological phenomena should be technically viable. The question that remains

is: can this description account for the evolution of the universe or is it limited

to a kinematic snapshot of instant motions?

In the ZEUS description, the unified dynamics is granted by the postulate

of total energy conservation. From this assumption (fully integrated with flatness),

the thermal evolution of the universe is derived, and every instant of proper time

can be described in a Lorentz-invariant framework.

In this introduction to a novel cosmological description, for pedagogical and

conciseness purposes, the focus was set upon two macro-observables: firstly, the

widely discussed problem of the early galaxies in CDM  emerging from JWST

and HST data, which is mitigated by ZEUS. And secondly, the developing

observational field of  zTCMB , still less discussed in the literature, and for which

this work presents a unique, falsifiable and unprecedented approach with satisfac-

tory fit to the current data, thus enriching the field's dialogue as it grows.

Nonetheless, before declaring the model as viable, a series of tests must be

conducted where the current standard cosmology is already successful, e.g.,

Supernovae and Gamma-ray Bursts studies, Baryonic Acoustic Oscillations tests,

structure formation modelling and Big Bang Nucleosynthesis, as well as presenting

solutions to current conflicts, such as the Hubble tension, the initial entropy

problem and dark sector candidates.

Acknowledgements. The authors are grateful to the referee Olga Sergeevna

Sazhina for a detailed and constructive review, which has led to significant

Fig.8. )(zT
CMB

 ( 560 .z  ), including the result obtained by [43] via H
2
O absorption line.

z

T
C
M

B
, 
K

0

ZEUS
T=T

0
(1+z)

62 4
0

32

4

12

20

28

8

16

24



373LORENTZIAN  CORRECTION  FOR  CMB  TEMPERATURE

improvements in the manuscript. The authors also thank A.Kandus and G.Monerat

for the useful suggestions. ALBR thanks CNPq, grant 316317/2021-7 and FAPESB

INFRA PIE 0013/2016 for the support.

Laboratório de Astrofísica Teórica e Observacional, Universidade

Estadual de Santa Cruz, Rodovia Jorge Amado, Ilheus, 45662-900,

Bahia, Brazil, e-mail: arturnovais@gmail.com   albr@uesc.com.br

ËÎÐÅÍÖ-ÏÎÏÐÀÂÊÀ Ê ÝÂÎËÞÖÈÈ ÒÅÌÏÅÐÀÒÓÐÛ
ÐÅËÈÊÒÎÂÎÃÎ ÈÇËÓ×ÅÍÈß

À.ÍÎÂÀÈÑ, À.Ë.Á.ÐÈÁÅÉÐÓ

Äàííûå íàáëþäåíèé ïîñëåäîâàòåëüíî ïîêàçûâàþò, ÷òî Âñåëåííàÿ ïðîñò-

ðàíñòâåííî ïëîñêàÿ è èñïûòûâàåò ëîðåíöåâî çàìåäëåíèå âðåìåíè ñ êðàñíûì

ñìåùåíèåì. Ýòè ðåçóëüòàòû ïîçâîëÿþò ïðåäïîëîæèòü, ÷òî îïèñàíèå êîñìî-

ëîãèè, äàííîå Ìèíêîâñêèì, ìîæåò áûòü òåõíè÷åñêè æèçíåñïîñîáíûì. Â

äàííîì èññëåäîâàíèè ìû âûâîäèì òåïëîâóþ ýâîëþöèþ â êîíôîðìíîì

ïðîñòðàíñòâå-âðåìåíè, îãðàíè÷åííóþ çàêîíîì ñîõðàíåíèÿ ýíåðãèè åäèíîé

êîñìè÷åñêîé æèäêîñòè. Ïîëó÷åííàÿ ìîäåëü äàåò ïîïðàâêó Ëîðåíöà äëÿ

òåìïåðàòóðû êîñìè÷åñêîãî ìèêðîâîëíîâîãî ôîíîâîãî èçëó÷åíèÿ êàê ôóíêöèþ

îò êðàñíîãî ñìåùåíèÿ. Ýòà êîððåêöèÿ óëó÷øàåò ñîîòâåòñòâèå òåêóùèì äàííûì

áåç äîáàâëåíèÿ ñâîáîäíûõ ïàðàìåòðîâ. Êðîìå òîãî, ìîäåëü ïðîëèâàåò ñâåò

íà ïðîáëåìó ðàííåãî ôîðìèðîâàíèÿ ãàëàêòèê, ïðåäñêàçûâàÿ ñóùåñòâîâàíèå

áîëåå ñòàðûõ îáúåêòîâ âîçðàñòîì äî 0.86 ìèëëèàðäà ëåò â òå÷åíèå ïåðâûõ

äâóõ ìèëëèàðäîâ ëåò ñòðóêòóðíîé ýâîëþöèè Âñåëåííîé.

Êëþ÷åâûå ñëîâà: êîñìîëîãèÿ: òåìïåðàòóðà êîñìè÷åñêîãî ìèêðîâîëíîâîãî

     ôîíîâîãî èçëó÷åíèÿ: ïðîñòðàíñòâî-âðåìÿ Ìèíêîâñêîãî:

      ðàííèå ãàëàêòèêè
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