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Shocks are ubiquitous in astrophysical environments, and particle acceleration at such astro-
physical shocks is related to high-energy phenomena. In particular, the acceleration mechanism and
the time evolution of the particle distribution function have been extensively examined. This paper
describes a simple analytic method using the one-dimensional Fokker-Planck equation in the test-
particle regime. We aim to investigate the evolution of the particle distribution function in the shock
upstream, which could be streaming toward Earth along the open magnetic field geometry. The
behavior of the analytical solution is examined over a wide range of parameters representing shock
structure, such as the shock Mach number, plasma beta, injection fraction into diffusive shock
acceleration, and the scale of the upstream magnetic field. The behavior is associated with upstream
turbulence for diffusive shock acceleration, as expected. Additionally, pre-accelerated particles could
affect the time evolution of the particle distribution only when the radiative or advection losses are
small enough for the pre-accelerated distribution to have a flatter power-law slope than the power-
law slope based on shock acceleration theory. We also provide a formula for a spherically expanding
shock and its relevant application to calculate high-energy emission due to hadronic interactions. We
suggest that the simple analytic method could be applied to examine astrophysical shocks with a
wide range of plasma parameters.
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1. Introduction. Shocks are induced in various astrophysical environments

due to supersonic flow motions such as coronal mass ejections in the interplanetary

medium [1-3], supernova remnants in the interstellar medium [4-6], and gravi-

tational collapse in the large-scale structure of the universe [7-10]. While the

properties of shocks can be affected by the characteristics of the medium, it has

been demonstrated that such shocks efficiently accelerate particles. Particle accel-

eration at shocks has been explained by first-order Fermi acceleration, which states

that particles can gain energy through multiple interactions with the converging

waves near the shocks (i.e., diffusive shock acceleration (DSA, hereafter)) [11,12].

Modeling particle acceleration at astrophysical shocks has been examined by

previous studies using numerical approaches, including plasma kinetic simulations

[13-18], hydrodynamic simulations [19,20], and models for the advection-diffusion
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of particle distribution functions in spatial and momentum space based on the

Fokker-Planck equation [1,20-23].

Using plasma kinetic simulations, the physical mechanisms for magnetic field

amplification and wave generation for scattering off particles in both the upstream

and downstream regions have been extensively studied [13-18]. Although the

properties of plasma waves for particle acceleration can depend on the character-

istics of the medium, such as supersonic flow properties (i.e., nonrelativistic,

relativistic) and magnetic field strength (i.e., unmagnetized, weakly magnetized,

and strongly magnetized plasmas), it has been shown that plasma waves can be

induced by various instabilities due to the plasma beam distribution causing velocity

space anisotropy [16,17]. According to simulation results, such waves can be self-

excited due to particle reflection at the shock surface during the evolution of

collisionless shocks, and evidence of particle acceleration through multiple wave-

particle interactions has been observed [13-15,18]. While plasma kinetic simula-

tions are a powerful tool for investigating the microphysics of particle acceleration

through first-principle calculations, they are limited in their ability to observe the

full DSA process, which occurs over longer timescales than the growth timescale

of plasma instabilities.

Considering the effects of particle acceleration at shocks and their observational

implications beyond the kinetic scales, theoretical modeling has been conducted,

including DSA-produced cosmic-ray populations (i.e., cosmic-ray populations

following a power-law distribution) and the physics of advection and diffusion in

spatial and momentum spaces. To obtain the particle spectral evolution as a

stationary shock structure, a test-particle approach has been employed, assuming

that the evolution of the shock structure is independent of the dynamical feedback

of cosmic-ray particles [1,23]. Moreover, hydrodynamic simulations, including

magnetohydrodynamics, have been used to model the dynamical evolution of

shocks in astrophysical media more sophisticatedly [9,10,24,25]. Based on such

modeling, multi-wavelength emissions due to particle acceleration at shocks have

also been examined [24-29].

As a follow-up to the previous studies summarized above, this study aims to

describe simplified analytic method using the one-dimensional Fokker-Planck

equation. The effects of shock upstream conditions on particle spectral evolution

were also examined to demonstrate the robustness of the analytical solution in

various astrophysical environments. Additionally, we provide a potential application

for calculating high-energy radiation due to particle acceleration at shocks, showing

that our simple model can be used as a tool for rapidly estimating observable

radiation flux. Moreover, the simple analytical approach described in this work

has the advantage of being flexibly expandable. In particular, it would be possible
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to extend our simple model to incorporate detailed physics, including diffusion

models and the microphysics of particle injection into DSA.

2. Basic physics. This section describes the basic physics, including the

particle distribution function and relevant plasma physics, for particle acceleration

at collisionless shocks. The importance of the characteristics of the particle

distribution function for estimating the efficiency of particle acceleration at shocks

is also discussed.

2.1. Particle distribution function. The particle distribution of thermal

plasma is commonly modeled as Maxwellian, given by
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where Tmkp Bth 2  is the thermal momentum and n
0i
 is the plasma density,

defined as

  . 4 2
0   dppfpn MWi (2)

While the Maxwellian distribution is reasonable for describing the medium in

the absence of nonlinear processes such as plasma and magnetohydrodynamic

(MHD) waves, shocks, and turbulence, it has been demonstrated that plasma

processes associated with such phenomena can accelerate particles. This particle

energization results in a particle distribution that deviates from the Maxwellian,

known as the kappa distribution [30-32]. The kappa distribution is defined as:

Fig.1. Examples of Maxwellian and kappa distribution functions.
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where  x  is the Gamma function and the parameter,  , determines the slope

of the supra-thermal distribution. For p >> p
th
, the kappa distribution follows a

power-law form,    12 
  ppf . Fig.1 shows examples of particle distribution

functions. A smaller value of   results in a flatter particle distribution, whereas

a larger value of   makes the kappa distribution closer to the Maxwellian. It has

been shown that the kappa distribution modulates the nature of plasma waves [33],

and thus the presence of such suprathermal populations could affect the efficiency

of shock acceleration.

 2.2. Plasma physics for particle acceleration at collisionless

shocks. To understand particle acceleration at shocks mediated by waves in the

shock upstream and downstream, the evolution of shock structure and the plasma

instabilities responsible for generating plasma waves that scatter off particles should

be considered. When examining plasma processes associated with electrostatic

waves, plasma frequencies ( epe mne24 , ipi mne24 ) and skin depths

( pec   and pic  ) are employed. Electromagnetic interactions, on the other

hand, are characterized using gyrofrequencies ( cmeB ee  , cmeB ii  ) and

gyroradii of thermal electrons and ions ( eetheth vr  ,, , iithith vr  ,, ). Particu-

larly, the characteristic scales of ions (i.e., 1i , ithr , ) are employed to describe

the dynamics of shock evolution, where the shock thickness is a few times the

gyroradius of downstream thermal ions, 2,ithr . This indicates that particle energization

through multiple crossings of the shock structure (i.e., diffusive shock acceleration,

DSA) is feasible only for particles with momenta greater than the so-called

injection momentum, 22, 233 Tkmp~p Biithinj   [16,19,34-35]. It has been dem-

onstrated that particles with momenta beyond p
inj
 drive plasma instabilities in the

shock upstream and downstream, and these self-excited plasma waves can further

accelerate particles [13-18]. Plasma kinetic simulations have provided evidence that

such plasma processes can extend to DSA [13-15,18].

When modeling the distribution of shock-accelerated particles, the number of

particles with injpp   is parameterized as the so-called injection fraction, inj .

It is important to note that this injection fraction can strongly depend on the

distribution of the background medium. If shock acceleration and particle transport

associated with MHD waves are active in the medium, the thermal particle

distribution may deviate from the Maxwellian distribution and instead follow the

kappa distribution. Specifically, the presence of a kappa distribution could enhance

the injection fraction, as illustrated in Fig.2.
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In the modeling described in the following section, two main factors of the

kappa distribution were considered: (1) the injection fraction into DSA, which

changes the efficiency of shock acceleration; and (2) the effects of the momentum

distribution of pre-accelerated particles following a power-law form.

3. Simple analytic model based on Fokker-Planck equation.

3.1. Shock structure and one-dimensional Fokker-Planck equation.

In this work, we solve the Fokker-Planck equation to study the time evolution

of shock-accelerated particles due to diffusive shock acceleration (DSA). Through-

out the paper, we use formulas in the shock rest frame. Considering the scale

length of the magnetized medium,   1 rBBLB  with an open field geometry

in the shock upstream    BLrBrB  exp01 , we assume the shock structure as

follows:
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where U(r), n(r), B(r) and T(r) represent the velocity, density, magnetic field, and

temperature profiles, respectively, and c  denotes the shock compression ratio. The

Fig.2. The normalization of the particle distribution function at p = p
inj
 with different kappa

values ranging from 2  to 
2
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subscripts 1 and 2 denote upstream and downstream quantities, respectively. The

sonic and Alfvenic Mach numbers are then calculated as follows:

, 
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where iBis mTknc 12  and iiA mnBV  40  are the sound and Alfven speeds,

respectively, with the adiabatic index, 35 . According to the shock jump

condition, the temperature jump can be computed using the sonic Mach number:
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In the finite shock upstream and downstream, the spatial diffusion coefficients

associated with the plasma waves are defined as:
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where L
1
, and L

2
 represent the finite sizes of the shock upstream and downstream,

respectively.

Since the DSA process can be explained in a one-dimensional system, we

solved the one-dimensional Fokker-Planck equation. To account for the advection

and diffusion of particle distribution into the interplanetary and interstellar

medium, characterized by an open field geometry, we solved the one-dimensional

Fokker-Planck equation in the shock upstream, as follows:
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where  tprf  , ,  and  tprs  , ,  denote the particle distribution function and the

source function, respectively. Based on the DSA theory and assuming steady

injection, the initial particle distribution  0 , ,0 tprf , and the source term

 tprs  , ,  are assumed as follows:
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where p
inj
 and p

max
 are the injection and maximum momentum, respectively. As

described in the section 2.2, the injection momentum is approximately a few times

of the downstream thermal momentum, 22, 233 Tkmp~p Biithinj  . Considering

the gyroradius of particles, the maximum momentum can be constrained by the

size of the magnetic field of the system, Bmax LeBcp 0 . In addition, inj  denotes

the injection fraction into DSA.

We here derive a simplified analytic form of tf   at the shock front based

on the shock structure described above in the test-particle limit. Adopting the

exponential shock precursor defined in Eqs. (4) and (7), we obtained the following

derivatives of  Bi Lrnf 2exp0   in the spatial domain:
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We also obtain the following derivative of qpf  ,
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Using Eqs. (10)-(11), the partial derivative terms of Eq. (8) can be simplified at

the shock front as follows:
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Based on Eqs. (12), tf   can be simplified as
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Here, the first and second terms denote the contributions of advection and

diffusion, respectively. The time evolution of  tprf  , ,  is then computed numeri-

cally as follows,
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Here, time interval t  satisfies acct   and is normalized in units of 1i ,

since the acceleration timescale depends on 1i .
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3.2. Characteristic scales. To calculate the accumulated particle distribu-

tion function, the following characteristic timescales are employed:
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Here, AD  is the adiabatic deceleration timescale of a supersonic ejecta, acc  is

the shock acceleration timescale, and diff  is the turbulent diffusion timescale

associated with waves generated by shock-accelerated particles [3]. In 2-nd Eq. of

(15), the acceleration timescale satisfies diffacc   since the shock compression

ratio c  is always larger than 1. This is consistent with the physical requirement

that the timescale for particle acceleration should be shorter than the diffusion

timescale; otherwise, particles would diffuse away from the shock surface before

undergoing significant acceleration. Additionally, adiabatic losses typically occur

more slowly than diffusion and acceleration processes. The relationship between

characteristic timescales and length scales (i.e., diffdiff UL  1 , accacc UL  1  and

ADUL  11 ) can be summarized as follows, particularly for particles with maxpp  :

        . , 1LpLpLpp diffaccADdiffacc  (16)

In panel (a) of Fig.3., we plot the characteristic length scales with the following

parameters: 1 , M
s
 = 5, M

A
 = 4.56, 410ccs , 410091  .cVA , 210inj .

Throughout the entire momentum domain, L
acc

 exceeds L
diff 

. Given the finite

system size where BLL 1 , particle momentum can reach up to p
max

. Beyond p
max

,

particles cannot be further energized through DSA due to the absence of plasma

waves with wavelengths larger than Bw L . In the remaining panels of Fig.3,

we analyze the diffusion length scale by varying the sonic Mach number, M
s
 (panel

(b)), the injection fraction into DSA, inj  (panel (c)) and plasma beta,   (panel

(d)). As shown in panel (b), the diffusion length is longer for smaller M
s
, reflecting

a steeper slope of  tpxf  , ,  beyond p
inj
, which can reduce instabilities associated

with high-energy particle streaming [11,36,37]. Similarly, panel (c) shows that the

diffusion length depends on inj . In panel (d), we observe that the diffusion length

scale increases with   because higher   values indicate lower magnetic energy

in plasma waves. Notably, the diffusion length converges at sufficiently high 
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( 1 ). This convergence occurs because in very weakly magnetized plasma,

particle dynamics are largely influenced by self-excited magnetic fields due to high-

energy particle streaming. This behavior aligns with 3-rd Eq. of (15), where for

1 , the diffusion length  pLdiff  approximates:

   
. 

1

1

1

A

i
diff

MU

pD
~pL


 (17)

Given 1
i  and AM  as  ,  pLdiff  converges accordingly.

3.3. Effects of shock parameters on the particle distribution

function. In this section, we present the analytic solution of the one-dimensional

equation, including the time evolution of the particle distribution and its parameter

dependencies such as the sonic Mach number M
s
, the injection fraction inj ,

plasma beta  , and the scale length L
B
 (or p

max
). Such an investigation across

the parameter space provides reliability to the analytic solution in tracking the time

evolution of shock-accelerated particles. Table 1 summarizes the parameters used

in this paper. Velocities are expressed in units of the speed of light c, and the

scale length L
B
, is normalized by thir ,

210 , considering that plasma processes at

the shock structure could pre-accelerate particles up to thir~eBpc ,
2

0 10  [13-15].

Fig.3. (a) Acceleration length scale (solid line) and diffusion length scale (dashed line) using the
parameters with 1 , M

s
 = 5, M

A
 = 4.56, 
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inj ; (b) Diffusion

length scales with different sonic Mach numbers; (c) Diffusion length scales with different injection rates;
(d) Diffusion length scales with different plasma betas. In panels (b) - (d), the same parameters used

in panel (a) were employed except for the parameter being investigated for dependency.
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We first examine the time evolution of the particle distribution function at

the shock front shown in Fig.4. Each line in the plot represents a time interval

of 250 
1i , which is sufficient to capture the plasma processes of DSA [13,14].

While the slope of the distribution function remains constant, momentum diffusion

is observed as a consequence of continuous energy injection from the source term,

 tprs  , , . At t = t
3
, particles accumulate near 310~cmp i  due to the limited scale

of the magnetic field size L
B
 in the shock upstream. Such particles could escape

from the shock structure and be observed as galactic or extragalactic cosmic rays.

We next investigate how the particle distribution function at the shock front

depends on the parameters (i.e., M
s
, inj ,  , L

B
). Fig.5 displays the momentum

distribution functions at the shock front at 1
1 500  itt  with a wide range of

parameters. The panels illustrate that M
s
 and inj  affect the slope and normal-

ization of the particle distribution function, respectively, as shown in panels (a)

and (b), especially when the magnetic scale L
B
 is sufficiently large. The depen-

dence on L
B
 shown in panel (c) indicates that the spectra with larger L

B
 can extend

to higher momenta. We particularly focus on the dependence of   with the same

L
B
. With the same system size, the maximum momentum gained via DSA is

proportional to the magnetic field because the gyroradius of particles increases with

decreasing magnetic field strength. The time-evolved spectra with different values

of plasma beta shown in panel (d) are consistent with this interpretation. If the

system size and the wavelength of upstream waves were infinite, such beta

dependence would not be observed.

 M
s

M
A

c
s 
/c V

A 
/c inj L

B 
/(102r

i,th
)

Case1 1 5 4.56 10-4 1.09 
.
 10-4 10-2 103

Case2 1 5 4.56 10-4 1.09 
.
 10-4 10-2 105

Case3 1 5 4.56 10-4 1.09 
.
 10-4 10-2 1010

Case4 1 3 2.74 10-4 1.09 
.
 10-4 10-2 1010

Case5 1 10 9.13 10-4 1.09 
.
 10-4 10-2 1010

Case6 1 5 4.56 10-4 1.09 
.
 10-4 10-3 1010

Case7 1 5 4.56 10-4 1.09 
.
 10-4 10-4 1010

Case8 0.1 5 1.44 10-4 3.45 
.
 10-4 10-2 103

Case9 10 5 14.42 10-4 3.45 
.
 10-5 10-2 103

Case10 100 5 45.64 10-4 1.09 
.
 10-5 10-2 103

Table 1

PARAMETERS USED IN THIS WORK.

Case 1 is the fiducial case and the remaining cases are performed for com-

parison. Groups for particular parameter dependence are summarized as

follows: (L
B
: Case1, Case2, Case3); (M

s
: Case1, Case4, Case5); ( inj : Case1,

Case6, Case7); ( : Case1, Case8, Case9, Case10).
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3.4. Effects of pre-accelerated particles. We now expand the analytic

solution to include pre-accelerated particles influenced by shocks or turbulence.

These pre-accelerated particles, following power-law distribution, can undergo

 Fig.4. Time evolution of the particle distribution function at the shock front (Case 1 in Table
1). The plots are shown from 1

0
250 

i
t  to 110003


i

t  with a time interval of 1250 
i

.
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Fig.5. (a) Dependence on the sonic Mach number; (b) Dependence on the injection fraction;
(c) Dependence on the magnetic field size; (d) Dependence on the plasma beta. The model

information is provided in Table 1. Note that the particle distribution functions are measured at
the shock front.
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further acceleration through DSA [39,40]. The initial particle distribution, includ-

ing the shock-accelerated particle distribution,  0 , , tprf
~

, can be summarized

as follows:

 

 
 

 
 

 

 
 

 
 

, 
4

1
4

0 , ,
4

0 , ,

, 
2

exp
44

0 , ,
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2

exp

3
1

3
1

1

3
1

3
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where pre  is a parameter that determines the normalization of the pre-accelerated

distribution,  0 , , tprf pre . We particularly consider the cases where q~q  . For

q~q  , the pre-accelerated distribution is steeper than the DSA slope, indicating

that radiative or advection losses dominate over diffusion processes in confining

particles near the shock surface. For q~q  , on the other hand, strong turbulence

exists to confine the pre-accelerated particles.

Using the parameter set from Case 1 in Table 1, we examined the impact of

pre-accelerated particles on the time evolution of the particle distribution function at

the shock front by varying the parameters, q~ , and pre . For reference, the particle

distribution function generated by the shock with M
s
 = 5 exhibits the slope, q = 4.17.

The dependence on the slope of pre-accelerated particles, q~ , is shown in Fig.6 for

four different timesteps (t = [t
0
, t

3
]). Here, the normalization factor is assumed as

110 injpre . The results demonstrate that the effects of pre-accelerated particles

are significant when the pre-accelerated distribution has a flatter slope than the DSA

slope ( q~q  ). Conversely, when q~q  , the contribution of pre-accelerated particles

appears negligible. Consistently, the time-evolved particle distribution function

exhibits a power-law slope q, independent of q~ , as shown in previous studies [40].

Furthermore, the dependence on the number density of pre-accelerated particles,

injpre  , ranging from 10-3 to 10-1 with 4q~ , is shown in Fig.7. As expected,

injpre   influences the slope of the time-evolved distribution function.

The effects of pre-accelerated particles can be applied to analyze various

astrophysical environments. For instance, in galaxy clusters, multiple shocks with

different Mach numbers M
s
 are continuously induced due to gravitational collapse,

enabling particle acceleration through these shocks. Ha et al. [24], for example,
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calculated accumulated cosmic ray spectra without considering the detailed time

evolution of particle spectra. Furthermore, in star-forming galaxies, numerous

shocks are generated by stellar winds and supernova remnants. We interpret that

multiple acceleration processes could be active in such environments.

3.5. Applications. We interpret that the simple solution of the Fokker-

Planck equation could be applicable to typical astrophysical shocks propagating in

interplanetary, interstellar, and intracluster media. It is shown that this simple

solution demonstrates reliable parameter dependence regarding particle acceleration

via DSA. Once the shock parameters are obtained from observational data, the

averaged particle distribution function over time and spatial domains can be

computed. We provide an example assuming a spherically expanding shock with

the shock surface,     2trtA sss  , where s  is the solid angle and r
s
(t) is the

mean shock propagation length at time t. Using the volume that the shock passed

through, the volume-averaged distribution function,  pf , can be calculated as

follows:

 
    

  

. 
 , ,

,0 2

,0 2













acci

acci

t is

t iis

tUtA

ttprfUtA
pf (19)

For shocks in the interplanetary medium, for example, the shock parameters

Fig.6. Time evolution of the particle distribution function at the shock front for different values

of q~ , ranging from 4 to 7.
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associated with coronal mass ejections (CME) can be obtained using publicly

available IDL tools (such as the CME Analysis Tool; see [38]). By adopting the

solid angle and speed of CME along with solar wind parameters such as density

and magnetic fields, it is possible to estimate the averaged particle flux that could

impact space weather.

The analytic solution can be also used to calculate high-energy radiation. For

instance, hadronic  -rays resulting from inelastic collisions between shock-accelerated

protons and background thermal protons have been observed from supernova remnants

[41,42] and star-forming galaxies [43-46]. Using the volume-averaged particle distri-

bution function,  pf , with the dynamical timescale of the shock, dyn , the number

density of shock-accelerated particles,  ENi , can be computed as follows:

        . 4, 2

dE

dp
pNpENpf~

pN
ii

dyn

i 
 (20)

The pion source function is computed using the following equation proposed by

Kelner et al. [47]:

 

    , 1250881334
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(21)

where 170.~K  is the fraction of kinetic energy transferred from a proton to

a pion, n
m
 is the number density of the background medium, and  Epp  is the

cross-section of proton-proton collisions with  TeVln E , and the threshold

Fig.7. Effect of the fraction of pre-accelerated particles at the shock front, injpre
 /  at t = t
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energy, E
th

 = 1.22 GeV. Using the pion source function, the  -ray production rate

is then calculated as:

   
, 2

422












minE

dE
cmE

EN
EN

(22)

where    EcmEEmin 442  is the minimum energy of the produced  -ray.

Previous studies for estimating hadronic  -ray from extragalactic sources typically

assume a steady-state particle distribution function produced at shock to calculate

the accumulated cosmic-ray flux during the system's dynamical timescales [26-29].

Since the simple model formulated in this paper includes the time evolution of the

particle distribution function, it would be possible to improve such models by

incorporating this time evolution. We will leave these investigations for future work.

4. Summary. In this study, we developed an analytic method using the one-

dimensional Fokker-Planck equation to examine the time evolution of particle

distribution functions at the shock front in the context of diffusive shock

acceleration (DSA). We explored the impact of various shock parameters, including

the sonic Mach number M
s
, injection fraction inj , plasma beta  , and scale

length L
B
. Our findings demonstrated the reliability of the analytic solution in

capturing the time-dependent behavior of shock-accelerated particles, highlighting

the interplay between advection, diffusion, and injection processes. The results

showed that the momentum diffusion and particle accumulation are significantly

influenced by these parameters, providing valuable insights into the particle

acceleration mechanisms in astrophysical environments.

Additionally, we extended our model to include the effects of pre-accelerated

particles, revealing that the initial distribution of these particles can alter the

subsequent DSA process. We applied our model to various astrophysical scenarios,

such as galaxy clusters and star-forming galaxies, where multiple shocks and

turbulence are prevalent. Furthermore, the analytic solution was utilized to

calculate high-energy radiation, specifically hadronic  -rays produced by inelastic

collisions between shock-accelerated protons and background thermal protons. By

incorporating the time evolution of the particle distribution function, our model

offers improvements over traditional steady-state approaches, laying the foundation

for more accurate predictions of cosmic-ray spectra and high-energy radiation in

diverse astrophysical contexts.
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ÏÐÎÑÒÎÉ ÀÍÀËÈÒÈ×ÅÑÊÈÉ ÌÅÒÎÄ
ÌÎÄÅËÈÐÎÂÀÍÈß ÓÑÊÎÐÅÍÈß ×ÀÑÒÈÖ Â
ÀÑÒÐÎÔÈÇÈ×ÅÑÊÈÕ ÓÄÀÐÍÛÕ ÂÎËÍÀÕ Ñ

ÈÑÏÎËÜÇÎÂÀÍÈÅÌ ÓÐÀÂÍÅÍÈß ÔÎÊÊÅÐÀ-ÏËÀÍÊÀ

Äæ.-Õ.ÕÀ

Óäàðíûå âîëíû ÷àñòî âñòðå÷àþòñÿ â àñòðîôèçè÷åñêèõ ñðåäàõ, è óñêîðåíèå

÷àñòèö â àñòðîôèçè÷åñêèõ óäàðíûõ âîëíàõ ñâÿçàíî ñ âûñîêîýíåðãåòè÷åñêèìè

ÿâëåíèÿìè. Ìåõàíèçì óñêîðåíèÿ è âðåìåííàÿ ýâîëþöèÿ ôóíêöèè ðàñïðå-

äåëåíèÿ ÷àñòèö òùàòåëüíî èçó÷åíû. Â ýòîé ñòàòüå îïèñûâàåòñÿ ïðîñòîé

àíàëèòè÷åñêèé ìåòîä ñ èñïîëüçîâàíèåì îäíîìåðíîãî óðàâíåíèÿ Ôîêêåðà-

Ïëàíêà â ðåæèìå ïðîáíûõ ÷àñòèö. Îñíîâíîå âíèìàíèå óäåëåíî èçó÷åíèþ

ýâîëþöèè ôóíêöèè ðàñïðåäåëåíèÿ ÷àñòèö â óäàðíîé âîëíå ââåðõ ïî ïîòîêó,

îñîáåííî â ñöåíàðèÿõ, êîãäà ÷àñòèöû ìîãóò äâèãàòüñÿ ê Çåìëå âäîëü îòêðûòûõ

ëèíèé ìàãíèòíîãî ïîëÿ. Â ðàáîòå èññëåäîâàíî ïîâåäåíèå àíàëèòè÷åñêîãî

ðåøåíèÿ â çàâèñèìîñòè îò ðàçëè÷íûõ ïàðàìåòðîâ, õàðàêòåðèçóþùèõ ñòðóêòóðó

óäàðíîé âîëíû, òàêèõ êàê ÷èñëî Ìàõà óäàðíîé âîëíû, áåòà-ïëàçìà, äîëÿ

èíæåêöèè â äèôôóçíîå óñêîðåíèå óäàðíîé âîëíû è ìàñøòàá ìàãíèòíîãî

ïîëÿ ââåðõ ïî ïîòîêó. Êàê è îæèäàëîñü, ïîâåäåíèå ñâÿçàíî ñ òóðáóëåíòíîñòüþ

ââåðõ ïî ïîòîêó äëÿ äèôôóçèîííîãî óñêîðåíèÿ óäàðíîé âîëíû. Êðîìå òîãî,

ïðåäâàðèòåëüíî óñêîðåííûå ÷àñòèöû ìîãóò âëèÿòü íà âðåìåííóþ ýâîëþöèþ

ðàñïðåäåëåíèÿ ÷àñòèö òîëüêî òîãäà, êîãäà ðàäèàöèîííûå èëè àäâåêòèâíûå

ïîòåðè äîñòàòî÷íî ìàëû äëÿ òîãî, ÷òîáû ïðåäâàðèòåëüíî óñêîðåííîå ðàñïðå-

äåëåíèå èìåëî áîëåå ïëîñêèé íàêëîí ñòåïåííîãî çàêîíà, ÷åì íàêëîí ñòåïåííîãî

çàêîíà, îñíîâàííûé íà òåîðèè óñêîðåíèÿ óäàðíîé âîëíû. Êðîìå òîãî, â

ñòàòüå ïðèâîäèòñÿ ôîðìóëà äëÿ ñôåðè÷åñêè ðàñøèðÿþùåéñÿ óäàðíîé âîëíû

è åå ïðèìåíåíèå äëÿ ðàñ÷åòà âûñîêîýíåðãåòè÷åñêîãî èçëó÷åíèÿ â ðåçóëüòàòå

àäðîííûõ âçàèìîäåéñòâèé. Ïðåäïîëîæåíî, ÷òî ïðîñòîé àíàëèòè÷åñêèé ìåòîä

ìîæåò áûòü ýôôåêòèâíî èñïîëüçîâàí äëÿ èññëåäîâàíèÿ ðàçëè÷íûõ òèïîâ

àñòðîôèçè÷åñêèõ óäàðíûõ âîëí, õàðàêòåðèçóþùèõñÿ øèðîêèì äèàïàçîíîì

ïàðàìåòðîâ ïëàçìû.

Êëþ÷åâûå ñëîâà: óñêîðåíèå ÷àñòèö: âûñîêîýíåðãåòè÷åñêîå èçëó÷åíèå: àñòðîôè-

     çè÷åñêèå óäàðíûå âîëíû: óðàâíåíèå Ôîêêåðà-Ïëàíêà
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