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Abstract. We present a new resolution of the Klein paradox by considering the problem of 

electron incidence on a step potential barrier using modified Dirac equations (MDE). Contrary to 

the generally accepted interpretation, which is based on the Dirac equation (DE) and predicts 

electron tunneling through an infinitely high barrier, our calculations show that tunneling is 

impossible if the electron kinetic energy is less than the barrier height. We propose to investigate 

MDE as an alternative DE relativistic quantum mechanical equation for spin ½ particles 
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1. Introduction  

 

In recent years, a new relativistic theory of particle-electromagnetic field interaction has been 

developing [1-6]. This theory successfully addresses some of the difficulties of the traditional 

theory of electromagnetism in describing the behavior of charged particles in an electric field at 

high potentials. One notable problem, mentioned in [5] and studied in [6], is the inability of 

traditional theory to correctly describe the passage of a relativistic particle through a high potential 

barrier. The problem is that relativistic quantum mechanical equations give a sinusoidal wave 

function for a particle in the barrier region, which contradicts the established exponentially 

decreasing probability of tunneling through the barrier; moreover, this wave function do not 

transform into exponentially decreasing functions of the Schrödinger equation even in the non-

relativistic limit. The source of this problem is the generally accepted relation between energy and 

momentum, which gives the real momentum of a particle inside a high-barrier region, whereas 

according to the law of conservation of energy, the momentum of a particle there must be 

imaginary. This problem was resolved in [6] using a new energy-momentum relation and, based on 

it, a modified Klein-Fock-Gordon equation for a spinless particle. The approach yielded the 

expected imaginary momentum for the particle and exponentially decreasing, rather than sinusoidal 

traveling wave functions inside the barrier. Consequently, plausible results were obtained, that the 

probability of tunneling exponentially decreases with the increase of the height and length of the 

barrier, and therefore a relativistic spinless particle cannot pass through an infinitely high barrier. In 

this paper, a similar problem is examined for the electron, whose behavior in the high-barrier region 

is the subject of the Klein paradox. 

The Klein paradoxes, known for more than 90 years [7], arise when using Dirac equation 

(DE) to study scattering of electron on a step potential barrier (Fig.1) of the form 
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When considering this problem in the non-relativistic limit, the Schrödinger equation provides 

a well-known and plausible result: an electron is reflected from the barrier when its energy is less 

than the barrier height, and at an energy greater than the barrier height, there are non-zero 

probabilities of both reflection and passage. However, when solving this problem using the DE, 

some paradoxical results emerge. For example, it turns out that an electron can pass through an 

infinitely high barrier (Klein tunneling). Thus, Klein tunneling is a relativistic quantum mechanical 

theoretical result that arises from the DE for the electron. 

 

 

2. Solutions of Dirac equation 

 

The stationary DE, which determines the 4-component wave function  of an electron, in the 

electrostatic potential U, can be written as 

 

2 0E eU ic mc  
 

     


r
 ,    (2) 

 

where E is the energy of the electron, m and e < 0 are the mass and charge of the electron, c is the 

speed of light, ℏ is Planck’s constant,  are the Dirac matrices. The DE, as is known, is 

constructed on the bases of the relativistic Hamiltonian 

 

   
22 2H eU cP mc        (3) 

 

by replacing the quantities of energy E and momentum P with the corresponding operators iℏ∂/∂t 

and –iℏ∂/∂r and linearizing the radical using 4x4 matrices  and  as coefficients with partial 

derivatives [8]. The result is a system of 4 linear first-order partial differential equations, which in 

the stationary case leads to equation (2) for the 4-component wave function. Two of these functions 

correspond to two opposite directions of spin for a particle with positive energy, and the other two 

correspond to two opposite directions of spin for an antiparticle, having the opposite sign of the 

charge and negative energy. 

 

Fig. 1. Sketch of a step potential barrier. The arrows indicate the direction of propagation of the incident, 

reflected, and transmitted wave functions. The solid red curve shows the exponentially decreasing amplitude 

of the wave function calculated using the Schrödinger equation, the dotted black curve shows 

the sinusoidal real (or imaginary) part of the wave function calculated using the Dirac equations. 
 

For the problem under consideration, solutions to Eq.2 in the region x < 0 represent two 

counter propagating waves, incident and reflected, with momentums ±p = ± (E
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region x > 0, there is one transmitted wave Texp(iPx), the momentum P of which is determined 

from the well-known energy-momentum relation 

 

         
2 22 2 22 2 2 2cP E eU mc E mc EeU eU       .  (4) 

 

From the requirement of continuity of the wave function at x = 0, the following reflection R 

and transmission T coefficients are obtained: 
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At a small barrier height, when eU0 < E – mc
2
, the momentum P and the parameter are real 

and from (5), (6) it follows that the electron can either be reflected from the barrier with probability 

|R|
2
, or pass through the barrier with probability |T|

2
. For a larger eU0, when E + mc

2
 >eU0> E – mc

2
, 

the momentum P and the parameter are imaginary, which gives for the probability of reflection 

|R|
2
 =1, and for the probability that the electron will be detected inside the barrier at a distance x – 

an exponentially decreasing expression |T|
2
exp(–2|P|x/ℏ). Thus, at E + mc

2
 > eU0 > E – mc

2
, the 

electron is reflected from the barrier. 

However, at higher values of eU0, the momentum P again becomes real and the wave 

function at x > 0 becomes a sinusoidal traveling wave, indicating the passage of the electron 

through the barrier. Moreover, as eU0 tends to infinity, the parameter and the transmission 

coefficient T do not tend to zero, which means that there is a non-zero probability of an electron 

passing through an infinitely high barrier (it is believed that, since the group velocity of the electron 

vg = dE/dP = с
2
P/(E – eU0) is negative, then for P in (6) one should take a negative sign, which 

gives and T tending to a positive number). 

The traditional resolution of such anomalous tunneling uses the concept of particle-

antiparticle pair production in the context of quantum field theory. However, anomalous tunneling 

can also occur at a barrier profile with a non-zero wall thickness [9], therefore, Klein tunneling is a 

property of relativistic wave equations and may not associated with the birth of new particles [10]. 

Other models investigating the Klein paradox propose a single-particle approach: replacing the 

physical process of pair production by virtual negative energy scattering under the barrier [11], and 

using equations that include the second derivative with respect to time [12]. Thus, the current 

consensus regarding Klein tunneling posits that an electron can pass through an infinitely high 

potential barrier. 

However, this theoretical result lacks experimental confirmation and is, in fact, scientific 

speculation. The result is doubtful since the electron momentum P, according to equation (4), is a 

real quantity that results in a sinusoidal traveling (rather than an exponentially decaying) wave 

function in the barrier region x > 0. This wave function, in the nonrelativistic limit, does not 

converge to the exponentially decaying wave function of the Schrödinger equation. Also, this 

tunneling phenomenon contradicts the result for a spinless particle, which, as discussed above, 

cannot pass through an infinitely high barrier. Such radically different behavior between an electron 

and a spinless particle has no reasonable explanation. 
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3. Solutions of modified Dirac equation 

 

In this paper we propose a new solution to the Klein paradox, where such tunneling turns out 

to be impossible. The problem is solved by using, instead of the DE, another, modified Dirac 

equation (MDE), which is written as: 

 

 2 0E ic mc eU  
 

     


r
 .   (7) 

 

This equation is constructed from the expression of a new Hamiltonian 

 

   
22 2H cP mc eU        (8) 

 

in similar way as (2) is constructed from (3). The Hamiltonian (8) appeared first in scalar theories 

of gravity [13, 14], giving a new energy-momentum relation (10), which was used in the New 

theory of electromagnetic interactions [1-6]. The solutions of MDE (7) are 4-component wave 

functions  of a particle with spin ½. 

Solving equations (7) in a similar to (3) way, we arrive at the same expressions (5) for the 

reflection and transmission coefficients, but with a new formula for the parameter , written as 
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Here P is determined from equation 

 

       
2 22 22 2 2 2 22cP E mc eU E mc mc eU eU        ,   (10) 

 

which is obtained from (8). The expression (9) shows that (as well as in Eq.6) the parameter  

becomes imaginary, and the probability of reflection |R|
2
 =1 when eU0 > E – mc

2
. However, in 

contrast to Eq.6, the momentum P and the parameter  remain imaginary also at any higher values 

of eU0, i.e. the wave function in the region x > 0 for large values of eU0 is an exponentially 

decreasing, rather than a sinusoidal traveling wave, as in the previous case. Therefore, tunneling 

through the barrier is not possible here. Thus, consideration of the problem of electron scattering on 

a step potential barrier within the framework of MDE (7) provides a fundamentally new solution to 

the Klein paradox, which rejects the possibility of tunneling through high barriers. 

From equations (4) and (10), it is seen that a significant difference between them is the 

presence of a linear with respect to E term on the right-hand side of (4), which is absent in (10). 

Due to this term, positive and negative energy values ±E give different momentums. Therefore, for 

completeness, it is necessary to account for both signs of energy, which necessitates the 

introduction of negative energies in the DE. 

However, in the new relation (10), there is no linear term, so the magnitude of the momentum 

does not depend on the sign of the energy. Both positive and negative energies ±E correspond to the 

same value of momentum, and therefore there is no need to introduce negative energies. Hence, the 

4-line wave function in the MDE can be interpreted such that two components correspond to two 

opposite spin directions and positive momentum for a particle, and the other two components 
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correspond to two opposite spin directions and negative momentum for the same particle (having 

positive energy). 

Thus, the MDE implies that the particle's energy is always positive. This is consistent with the 

results of the new classical theory [5], which shows that the potential energy of a charged particle in 

an electrostatic potential has a minimum value of –mc
2
, i.e. the total energy of the particle 

(including the rest energy mc
2
) is always positive. 

As it known, from the DE follows the possibility of the existence of antiparticles with 

opposite charge sign and negative energy [8]. To circumvent the difficulty of negative energy and 

predict the existence of real antiparticles with positive energy, Dirac proposed the concept of 

"holes" in the infinite number of electrons with negative energy, which occupy almost all negative 

states and associated the vacant states - "holes" with protons [15] (later holes were considered as 

positrons). However, this concept has faced many problems and criticism. MDE describes both 

particles and antiparticles with positive energy similarly, by rejecting the possibility of negative 

energies, so Dirac's concept of holes, becomes unnecessary. 

 

 

4. Conclusions 

 

We presented a modified Dirac equation (MDE) based on the new Hamiltonian (8) as a 

relativistic quantum mechanical equation for spin ½ particles. MDE has the advantages over the 

DE, it describes both particles and antiparticles with positive energies, whereas the DE describes 

antiparticles with negative energies, which do not exist in nature. In the nonrelativistic limit, 

solutions of the MDE transform into the corresponding solutions of the Schrödinger equation, while 

solutions of the DE can remain significantly differing from those of the Schrödinger equation. 

Applying the MDE to the problem of electron scattering on a step potential barrier reveals that 

the electron's momentum inside the barrier is imaginary, leading to a plausible exponentially 

decreasing wave function inside the barrier, rather than the sinusoidal traveling wave function, 

resulting from the DE. As a result, it follows that an electron cannot pass through the barrier and is 

reflected if its kinetic energy is less than the height of the barrier. Especially, an electron cannot 

pass through an infinitely high barrier. MDE is based on a new Hamiltonian (8), which yields a new 

energy-momentum relation (10). The theoretical arguments discussed above support this new 

relation rather than the traditional relation (4), and therefore favor MDE over DE. Further research 

is needed on various issues within the MDE framework. 
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