Известия НАН Армении, Физика, т.59, №2, с.211–222 (2024)

УДК 535; 539; 544 DOI:10.54503/0002-3035-2024-59.2-211

ФОТОКАТАЛИТИЧЕСКИЕ И РАДИАЦИОННО-ОПТИЧЕСКИЕ СВОЙСТВА МЕТАСИЛИКАТА СВИНЦА, ПОЛУЧЕННОГО МИКРОВОЛНОВЫМ МЕТОДОМ

Н. Р. АГАМАЛЯН^{1*}, А. А. САРГСЯН^{2*}, Т. С. АЗАТЯН², Т. В. ГРИГОРЯН², А. А. КАЗАРЯН², А. А. ПЕТРОСЯН², А. Т. ГЮЛАСАРЯН¹, Е.А. КАФАДАРЯН¹, М.Н. НЕРСИСЯН¹, Н.Р., Н.Б.КНЯЗЯН², В.В. БАГРАМЯН²

¹Институт физических исследований НАН Армении, Аштарак, Армения ²Институт общей и неорганической химии НАН Армении, Ереван, Армения

> *e-mail: natagham@gmail.com (Поступила в редакцию 26 июня 2024 г.)

Проведен анализ свойств порошков метасиликата свинца, синтезированного микроволновым методом, и легкоплавкого (900°С) стекла, полученного на его основе. Физико-химические исследования показали, что синтезированный метасиликат свинца и стекло, полученное на его основе, являются перспективными материалами для применения в различных областях, а именно: в качестве широкозонного полупроводника, фотокатализатора, а также стекла, используемого для защиты от ионизирующего излучения.

1. Введение

Использование микроволнового (MB) метода нагрева в процессе гидротермальной обработки кремнеземсодержащих горных пород отразилось на всем процессе их комплексной обработки и сделало его ещё более эффективным для использования. В проведенных нами исследованиях [1] показано, что MB излучение интенсифицирует весь процесс обработки, обеспечивая качество конечных и промежуточных продуктов не хуже, а иногда и лучше тех же продуктов, полученных традиционными методами нагрева. Таким образом уменьшается температура щелочной обработки исходного сырья на 20–30%, сокращается время его обработки в 3–5 раз, что приводит к уменьшению энергетических затрат при получении жидкого стекла и различных стекольных шихт на его основе до 60–80% в сравнении с традиционным нагревом. Уменьшаются также потери компонентов (в 7–9 раз) при изготовлении стекла на основе такой шихты.

В работах [2–5] показано, что МВ-обработка является эффективным способом получения наноматериалов благодаря равномерному и быстрому нагреву всего объёма реагирующей смеси. В гетерогенном процессе фотокатализа размеры и структура частиц определяют каталитическую активность материала. Так в работе [6] гидротермально-микроволновым методом (ГТМВ) нами был разработан материал со структурой ядро (SiO₂)–оболочка (ZnO) с высокой фотокаталитической активностью в УФ области спектра. Однако не только силикаты цинка, но и наноструктуры силиката свинца также используются в качестве фотокатализатора [7–9]. В настоящее время силикаты свинца и свинцовое стекло получили широкое применение в качестве стабилизатора пластмасс, используемых для изготовления оболочек электрических кабелей, красок по фарфору и другой керамике, для получения оптического стекла, ИК-прозрачных стекол, а также защитного материала от ионизирующего излучения. Свинцовые стекла незаменимы в области медицинского оборудования, обладают максимальной светопроницаемостью и при этом остаются непроницаемыми для ионизирующего излучения. Свинцовые стекла устанавливаются в окнах, ширмах, дверях медицинских и диагностических центров для наблюдения за проведением диагностических процедур с использованием аппаратов ионизирующего излучения, например, в рентген-кабинетах, кабинетах компьютерной томографии, в радиологии, рентгеноскопии и маммографии, лабораториях, научных и исследовательских институтах, в оборудовании для досмотра службы безопасности аэропортов, в линзах рентгенозащитных очков.

Цель настоящей работы – детальное изучение свойств метасиликата свинца, полученного методом ГТМВ, и выявление оптимальных условий получения материала, который отвечал бы требованиям применения его в качестве широкозонного полупроводника, фотокатализатора, а также стекла, используемого для защиты от ионизирующего излучения.

2. Экспериментальная часть

2.1. Синтез метасиликата PbSiO₃

Синтез метасиликата свинца проводился гидротермально-микроволновым (ГТМВ) методом, описанным в работе [10], когда получение конечного продукта осуществлялось взаимодействием растворов нитрата свинца и силиката натрия, с учетом того, что количество исходных реагентов рассчитано согласно реакции для получения метасиликата:

Pb $(NO_3)_2 + Na_2O \cdot SiO_2 \rightarrow PbO \cdot SiO_2 + 2NaNO_3$.

Следует отметить, что в технологию синтеза силикатов гидротермальным методом [1,10] входит и процесс сушки при температуре 100°С в течение 5–6 часов до определенной влажности конечного продукта. Образцы гидросиликата свинца после сушки представляют собой белый, тонкодисперсный порошок, химический анализ которого показал соответствие формуле PbSiO₃, с влажностью 4–5%.

Изготовление стекла осуществлялась при 900°С. Осветленное стекло на основе метасиликата было получено в течение часа, стекло проваривалось в 2– 2.5 раза быстрее в сравнении с традиционным (твёрдофазным) методом получения свинцового стекла того же состава [11].

Полученный продукт был идентифицирован как химическими, так и физическими методами анализа.

2.2. Исследование порошков и стекол метасиликата PbSiO₃

Рентгенофазовый анализ термообработанных образцов $PbSiO_3$ проводили порошковым методом на приборе URD-63 в $CuK\alpha$ -излучении, коэффициенты диффузного отражения определены на спектрофотометре ФМШ-56М и SPECORD-M-40-UV VIS.

Оптическая плотность растворов измерялась в УФ-видимой области с

использованием спектрофотометра UV68/TOUCH.

Регистрация спектров диффузного отражения в УФ-видимой области проводилась с использованием спектрофотометра Specord M-40 с приставкой фотометрического шара в спектральной области 225–800 нм; в качестве эталона применялся порошкообразный MgO.

Светопропускание исследуемого стекла в области UV–VIS определено на спектрофотометре SHIMADZU UV-1800.

Образцы стекла были облучены при комнатной температуре источником излучения ⁶⁰Со с γ-фотонами со средней энергией 1.25 МэВ и различной дозой от 5 до 900 кГр.

Влияние дозы облучения на формирование парамагнетических центров было исследовано путем электронного парамагнитного резонанса (ЭПР-спектроскопии) с использованием спектрометра ЭПР10-МИНИ в *X*-диапазоне (~9.5 ГГц).

Возбуждение спектров комбинационного рассеяния (КР) осуществляли твердотельным лазером MLL-N с LD-накачкой с длиной волны 473 нм в 90°-геометрии и регистрировали с помощью модифицированного спектрометра ДФС-24. Сбор данных и управление экспериментом осуществляли с помощью DAQ системы фирмы «National Instruments». Для амплитудного анализа сигнала использовался виртуальный анализатор фирмы «National Instruments», специально разработанный на основе пакета прикладных программ «LabVIEW».

3. Результаты и обсуждение

3.1. Порошки метасиликата PbSiO₃

В работе [10] результаты термического анализа показали, что в режиме непрерывного повышения температуры кривая потерь массы образца PbSiO₃ отражает два этапа удаления воды: первый до 200°С, когда исследуемый образец теряет адсорбционную воду, и второй при более высокой температуре (600°С) удаляется структурно связанная вода.

Для оценки влияния термообработки на структуру конечного продукта после 5-часовой сушки (при 100°С) исходный высушенный материал подвергался 2-часовой термообработке при температурах 200, 500 и 700°С. На рис.1 представлены рентгенограммы при указанных значениях термообработки.

Как видно, после 5 часов выдержки при температуре 100°С метасиликат

Рис.1. Рентгенограммы PbSiO₃ после сушки при 100°С (1) и термообработки при 200 (2), 500 (3) и 700°С (4).

свинца остается аморфным (рис.1, кривая *1*). При температурах 200°С и выше наблюдается образование кристаллических фаз силикатов свинца. Рентгенограммы показывают образование кристаллической фазы Pb₂SiO₄, Pb₅SiO₇, Pb₁₁Si₃O₁₇ при 200°С (кривая *2*), а при температурах 500–700°С образуется PbSiO₃ (JCPDS № 28–0540) (рис.1, кривые *3*, *4*).

Исследована каталитическая активность синтезированного метасиликата свинца, высушенного при 100°С в течение 5 часов с последующей 2-часовой термообработкой при 200 и 700°С. Фотокаталитическую активность материала определяли реакцией деградации метиленового синего (МС) под УФ облучением при различных условиях. Данный способ применялся нами в работе [6] при исследовании фотокаталитической активности силиката цинка. Исходная концентрация МС составляла 10 мг/л, количество раствора МС – 100 мл, количество катализатора 50, 70, 100 мг, время УФ облучения 5–120 мин, процесс разложения МС проводили под свободным доступом воздуха. Для получения гомогенной массы раствор с катализатором перемешивали магнитной мешалкой в течение 30 мин в темноте и полученную суспензию облучали УФ-лампой (Navigator). Каждые 5–10 минут брали пробы (около 5 мл), центрифугировали и анализировали. На рис.2 показана оптическая плотность раствора МС в области 400–900 нм

Рис.2. Зависимости оптической плотности раствора MC от длины волны при различных временах фотокаталитической деградации: (a, b) содержание катализатора $PbSiO_3$ 100 мг при температуре его обработки (a) 200 и (b) 700°C; содержание катализатора $PbSiO_3$ соответственно (c) 50 и (d) 70 мг при термообработке 200°C.

при различном времени фотокаталитической деградации при одном значении содержания катализатора (100 мг), но при различных температурных условиях его обработки: (a) 200 и (b) 700°C, а также при одном значении температуры обработки 200°C, но двух значениях содержания катализатора: (c) 50 и (d) 70 мг.

Для выявления оптимальных условий использования метасиликата свинца в качестве фотокатализатора на рис.3 представлен обобщенный график зависимости оптической плотности раствора МС (при $\lambda = 664$ нм, когда поглощение максимально) от времени при одном содержании катализатора в растворе 100 мг и при различных температурных условиях его обработки: 200 и 700°С (кривые *1* и *2*, соответственно), а также при одном значении температуры обработки катализатора 200°С и разных значениях его содержания в растворе 50 и 70 мг (кривые *3* и *4*, соответственно).

Рис.3. Зависимости оптической плотности раствора МС от времени УФ облучения в присутствии фотокатализатора: содержание катализатора в растворе100 мг, термообработка 200 (1) и 700°С (2); термообработка при 200°С, содержание катализатора в растворе 50 (3) и 70 мг (4).

Из представленных данных видно, что термообработанный при 200° C PbSiO₃ имеет более высокую каталитическую активность при содержании катализатора 100 мг. При этих оптимальных условиях обеспечивается снижение концентрации МС в ~8 раз в интервале времени УФ излучения от 70 до 120 минут. Таким образом, синтезированный метасиликат свинца может быть использован в качестве фотокатализатора.

На рис.4а показаны спектры диффузного отражения PbSiO₃ в интервале длин волн 225–900 нм для исходного высушенного при 100°С (кривая *1*), термообработанного при 200 (кривая *2*), 500 (кривая *3*) и 700°С (кривая *4*). Наблюдается высокое значение коэффициента диффузного отражения (до 96%) образцов: исходный высушенный при 100°С, и термообработанный при низкой температуре

Рис.4. (а) Спектры диффузного отражения порошкообразных PbSiO₃ высушенных при 100°С (I), термообработанных при 200 (2), 500 (3) и 700°С (4); и (b) пересчитанные по ним спектры поглощения (функция Кубелки–Мунка F(R)).

(200°С), и пониженное его (85%) для термообработанного при 700°С. Это явление связано с более выраженной аморфностью и высокой дисперсностью образцов, термообработанных при низкой температуре, в то время как при высокотемпературной обработке частицы спекаются и укрупняются, кристаллизация приводит к увеличению частиц [6].

Из спектров диффузного отражения были получены спектры поглощения путем пересчета функции Кубелки–Мунка F(R) (рис.4b) по формуле

$$F(R) = (1 - R)^2 / 2R,$$
(1)

где функция *F*(*R*) – пропорциональна коэффициенту поглощения α.

Таким образом, коэффициент диффузного отражения R преобразуется в эквивалентный коэффициент поглощения с использованием модифицированной функции Кубелки–Мунка F(R). Одновременно ширина запрещенной зоны материала может быть получена путем экстраполяции линейной части зависимости $(\alpha hv)^{1/n}$ от hv с осью энергии hv падающего света:

$$F(R) hv = A (hv - E_g)^n,$$
⁽²⁾

где A – коэффициент пропорциональности, связанный с природой материала, h – постоянная Планка и n = 1/2 для прямых разрешенных переходов. На рис.5 представлены полученные с помощью спектров диффузного отражения и расчетов по формулам (1) и (2) кривые зависимости $(F(R)hv)^2$ от энергии света hv, из которых экстраполяцией линейного участка кривых до их пересечения с осью hv определены значения ширины запрещенной зоны E_g для исследуемых образцов.

Из приведенных данных следует, что наибольшее значение ширины запрещенной зоны E_g = 4.74 эВ имеет исходный, высушенный при 100°С аморфный метасиликат свинца, который может быть использован в качестве широкозонного полупроводника, полученного оптимальным способом.

Общепризнано [12–14], что в большинстве аморфных сред спектры оптического поглощения, измеренные в области границы пропускания, характеризуются наличием экспоненциального хвоста, спектрально-температурное поведение которого подчиняется так называемому модифицированному правилу

Рис.5. Кривые зависимости $(F(R)hv)^2$ от энергии света hv для порошков PbSiO₃, высушенных при 100°С (1), термообработанных при 200 (2), 500 (3) и 700°С (4).

Урбаха.

В работах [12, 13] на примере свинцовосиликатных стекол PbO-SiO₂ были детально изучены спектры оптического поглощения с переменным содержанием PbO (20, 50 и 80 мол%) вблизи УФ края поглощения в широком интервале температур 80–470 К. Показано, что полученные зависимости коэффициента поглощения от энергии фотонов hv в указанном интервале температур, а также концентраций свинца подчиняются правилу Урбаха, свойственному для полупроводников, а именно: наблюдается экспоненциальная частотная зависимость коэффициента поглощения света вблизи края оптического поглощения, т.е. вблизи частот $v < E_g/h$, где E_g – ширина запрещенной зоны, h – постоянная Планка. Модифицированное правило Урбаха в указанном диапазоне температур и содержания PbO, может быть записано в общем виде:

$\alpha \sim \exp(h\nu/E_0),$

где $1/E_0 = \partial \ln \alpha / \partial h v$ – логарифмический наклон спектральной характеристики.

Показано [12, 13], что с увеличением содержания оксида свинца происходит смещение края поглощения в длинноволновую область, что свидетельствует о доминирующей роли статического беспорядка, свойственного некристаллическим материалам, а спектральный параметр E_0 в пределах 2% разброса не зависит от температуры (для исследуемого диапазона температур) при конкретном содержании PbO, отражает переход от низкосвинцовых к высокосвинцовым стеклам и характеризует вклад фононов в процессе поглощения.

На рис.6 показана зависимость коэффициента поглощения α от энергии света на участке предполагаемых урбаховских хвостов, где рассчитана энергия E_0 для изучаемых составов: высушенного при 100°С (кривая 1), термообработанных при 200 (кривая 2), 500 (кривая 3) и 700°С(кривая 4). Значение E_0 в интервале 195–200 мэВ для метасиликата свинца свидетельствует о близкой степени атомного беспорядка в данном составе PbSiO₃ при разных условиях температурной обработки.

Рис.6. Зависимости коэффициента поглощения от энергии фотонов с Урбаховским краем для определения параметра E_0 для порошков PbSiO₃, высушенных при 100°C (1), термообработанных при 200 (2), 500 (3) и 700°C (4).

В работах [12, 13] показано, что при комнатной температуре значение параметра E_0 для образцов системы PbO–SiO₂ с различным содержанием свинца (20– 80 мол% PbO) находится в диапазоне 95–137 мэВ. Расхождение полученных результатов с данными этих работ, где исследовались свинцовосиликатные стекла толщиной 0.4–0.6 мм, полученных из материалов особой чистоты, можно объяснить наличием примесей (до 0.2%), в виде остатков натрия, внедренных в структуру синтезированного метасиликата свинца. В работе [14], показано, что параметр наклона урбаховского края для самых разных стеклообразующих систем имеет одинаковый порядок величины 50–250 мэВ, что согласуется с полученными результатами. Отмеченная близость значений E_0 в различных типах аморфных материалов получила подтверждение в работе [14], где проведена численная оценка данного параметра, характеризующего напряженность внутреннего случайного электрического поля, созданного хаотически распределенными заряженными центрами.

3.2. Стекло на основе метасиликата PbSiO₃

Из синтезированного метасиликата свинца PbSiO₃ изготовлено стекло при температуре 900°С в течение часа. Химический состав стекла: PbO(79)-SiO₂(21) в масс% [10].

Полученное стекло по химической стойкости относится к IV гидролитическому классу и имеет характеристики, представленные в табл.1.

Область опти- ческой про- зрачности, мкм	Температ. стеклования, °С	Температ. начала деформации, °С	ТКЛР в интер- вале 20–300°С, град ⁻¹	Показатель преломления	Плотность, г/см ³
~0.35–4	420	440	91.6×10 ⁻⁷	2.02	6.12

Табл.1. Параметры полученного стекла PbSiO₃[10]

В данной работе исследована стабильность структуры полученного стекла под воздействием ионизирующего γ-излучения. На рис.7 представлены спектры пропускания стекла до и после γ-облучения с различными дозами (от 5 до 900 кГр).

Рис.7. Спектры пропускания свинцовосиликатного стекла состава PbSiO₃ до и после различных доз γ-облучения. На вставке показаны разностные спектры пропускания до и после γ-облучения при дозах 80 и 900 кГр.

Показано, что с увеличением дозы облучения значение максимума пропускания не изменяется и остается в пределах 80%. Изменения касаются лишь УФ и частично видимой области спектра, где образовались некоторые дефекты, возможно, центры окраски. В работе [15], где исследовалось свинцовосиликатное стекло состава PbO(75%)-SiO₂(25%) толщиной 0.1 мм с примесями и без них под воздействием γ -облучения, в беспримесном стекле основные изменения касались фундаментального края поглощения вблизи УФ области, где изначально присутствовали полосы, связанные со стеклянной матрицей, и наведенной широкой полосы в видимой области с центром около 540 нм, которая прогрессировала с увеличением дозы облучения.

Известно [15–19], что ионизирующее излучение влияет на оптические свойства стеклянных материалов в зависимости от состава, а также из-за наличия дефектов в матрице стекла. ЭПР спектры стекла при комнатной температуре представлены на рис.8, где не наблюдается наличие сигналов в широком интервале значений доз γ -облучения (от 5 до 900 кГр). Отметим, что в ЭПР спектрах стекол, в которых имеются примеси железа, появляются свойственные ему сигналы с *g*-факторами: 6.0; 4.2 и 2.0 [20, 21]. Отсутствие подобных сигналов (рис.8), еще раз свидетельствует о глубокой очистке раствора силиката натрия, используемого при синтезе предлагаемого в данной работе метасиликата свинца, от примесей железа и прочих красящих примесей [22], путем пропускания раствора силиката натрия через электромагнитное поле с дальнейшим осаждением соединений железа. Кроме того, исследуемое стекло является устойчивым к образованию немостиковых кислородных дырочных центров парамагнитных дефектов в области указанных доз гамма-излучения и может быть применено в целях защиты от ионизирующего излучения.

Рис.8 ЭПР-спектры свинцовосиликатного стекла состава PbSiO₃ при различных дозах γ-облучения.

Анализ спектров КР свинцовосиликатных стекол до облучения и после γ облучения дозой 900 кГр (рис.9) не показал существенных изменений в частотном спектре. Спектр КР стекла PbO-SiO₂ состоит из трех областей: ниже 200, от 200 до 600 и от 800 до 1100 см⁻¹. В работах [23, 24] при исследовании стекол PbO-SiO₂ в зависимости от состава, похожую картину наблюдали при содержании PbO от 30 до 50 мол%. В низкочастотной области ниже 200 см⁻¹, идентифицируемый в работах [12, 24] как ~140 см⁻¹, связывают с движениями атомов свинца. Две другие области от 200 до 600 см⁻¹ и от 800 до 1100 см⁻¹ связывают с деформационными и оптическими колебаниями силикатной подрешетки стекла. Указанные стрелками значения частот (140, 340, 520 и 950 см⁻¹) являются характерными для стекол данного состава.

4. Заключение

Разработан микроволновый метод получения порошка метасиликата свинца из горной породы — перлита. Определена ширина запрещённой зоны полученного порошка метасиликата свинца – $E_g = 4.7$ и $E_g = 4.18$ эВ соответственно для

Рис.9. Спектры КР свинцовосиликатного стекла состава PbSiO₃ до и после уоблучения дозой 900 кГр.

исходного и термообработанного при 700°С, что позволяет отнести данный материал к широкозонным полупроводникам. Полученный метасиликат свинца имеет высокий коэффициент диффузного отражения – 96% и может быть использован при создании материалов, экранирующих кабельную продукцию. Синтезированный порошок метасиликата свинца под УФ излучением имеет высокую каталитическую активность.

Из синтезированного метасиликата свинца изготовлено стекло и изучены его оптические и ЭПР-спектры, а также спектры КР в зависимости от воздействия ионизирующего γ-облучения. Оно оказалось стойким к радиационному воздействию и может быть применено в целях защиты от ионизирующего излучения.

Исследование выполнено при финансовой поддержке Комитета по науке РА в рамках научных проектов №21Т-1D146 «Микроволновый синтез композиционных материалов с фотокаталитическими свойствами» и №21Т-2F024 «Исследование полупрозрачных темно-серых обсидианов из армянских месторождений под воздействием гамма-облучения».

ЛИТЕРАТУРА

- V.V. Bagramyan, A.A. Sargsyan, C. Ponzoni. Theoretical Foundations of Chemical Engineering, 49, 731 (2015).
- E.T. Thostenson, T.W. Chou. Microwave processing: Fundamentals and application Composites: Part A, 30, 1055 (1999).
- 3. H. Brittany. Microwave synthesis. CEM publishing, 296, 2002.
- 4. A.K. Mandal, R. Sen. Materials and manufacturing processes, 30, 1 (2017).
- A.A. Sargsyan, V.V. Baghramyan, N.B. Knyazyan, V.V. Harutyunyan, N.E. Grigoryan, A.M. Aleksanyan, A.O. Badalyan. J. Contemp. Phys., 55, 23 (2020).
- A.A. Sargsyan, R.A. Mnatsakanyan, T.V. Grigoryan, A.A. Kazaryan, A.A. Petrosyan, V.V. Harutyunyan, A.O. Badalyan, N.R. Aghamalyan, V.V. Baghramyan. J. Contemp. Phys., 58, 397 (2023).
- 7. H. Haghjoo, F.S. Sangsefid, M. Salavati-Niasari. J. Materials Science: Materials in Electronics, 29, 8002 (2018).
- 8. H. Haghjoo, F.S. Sangsefid, M. Salavati-Niasari. J. Molecular Liquids, 247, 345 (2017).
- D.C. Silva, D.V. Sampaio, J.H.L. Silva, A.M. Rodrigues, R.B. Pena, B.J.A. Moulton, P.S. Pizani, J.P. Rino, R.S. Silva. J. Non-Crystalline Solids, 522, 119572 (2019).
- 10. В.В. Баграмян, А.А. Саркисян, А.А. Казарян, Т.В. Григорян, Н.Б. Князян. Вестник НПУА. Химические и природоохранные технологии, №2, 9 (2021).
- А.А. Исматов, К.Ю. Исматов, Х.А. Адинаев. Узбекский химический журнал, №1, 8 (2000).
- 12. И.А. Вайнштейн, А.Ф. Зацепин, В.С. Кортов, Ю.В Щапова. ФТТ, 42, 224 (2000).
- 13. I.A. Weinstein, A.F. Zatsepin, V.S. Kortov. J. Non-Crystalline Solids, 279, 77 (2001).
- 14. **Я.Г. Клява.** ФТТ, **27**, 1350 (1985).
- 15. E.M.A. Khalil, F.H. El-Batal, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, A.M. Abdelghany. Silicon, 2, 49 (2010).
- 16. **Н.В. Ву, Е.Ф. Полисадова.** Высокие технологии в современной науке и технике (ВТСНТ), Секция 3. Оптические технологии, 183 (2015).

- 17. A. Longo, S. Basile, M. Brai, M. Marrale, L. Tranchina. Nuclear Instruments and Methods in Physics Research B, 268, 2712 (2010).
- V. de Michele, M. Royon, E. Marin, A. Alessi, A. Morana, A. Boukenter, M. Cannas, S. Girard, Y. Ouerdane. Optical Materials Express, 9, 4624 (2019).
- 19. B.V. Padlyak. Current Topics in Biophysics, 33 (suppl A), 163 (2010).
- S.I. Hong, Y.N. Lee, S.Y. Cho, W.S. Whiteside, H.J. Park. Radiation Measurements, 43, 1365, (2008).
- V. Vercamer, G. Lelong, H. Hijiya, Y. Kondo, L. Galoisy, G. Calas. J. Non-Crystalline Solids, 428, 138 (2015).
- 22. В.В. Баграмян, А.А. Саркисян. Химическая технология, 8, 392 (2015).
- 23. I.B. Kacem, L. Gautron, D. Coillot, D.R. Neuville. Chemical Geology, 461, 104 (2017).
- 24. D.V. Sampaio, A. Picinin, B.J.A. Moulton, J.P. Rino, P.S. Pizani, E.D. Zanotto. J. Non-Crystalline Solids, **499**, 300 (2018).

ሆኮԿՐՈԱԼԻՔԱՅԻՆ ՄԵԹՈԴՈՎ ԱՐՏԱԴՐՎԱԾ ԿԱՊԱՐԻ ՄԵՏԱՍԻԼԻԿԱՏԻ ՖՈՏՈԿԱՏԱԼԻՏԻԿ ԵՎ ՌԱԴԻԱՑԻՕՆ-ՕՊՏԻԿԱԿԱՆ ՀԱՏԿՈՒԹՅՈՒՆՆԵՐԸ

Ն.Ռ. ԱՂԱՄԱԼՅԱՆ, Ա.Ա. ՍԱՐԳՍՅԱՆ, Տ.Ս. ԱԶԱՏՅԱՆ, Տ.Վ. ԳՐԻԳՈՐՅԱՆ, Ա.Ա. ԿԱԶԱՐՅԱՆ, Ա.Ա. ՊԵՏՐՈՍՅԱՆ, Հ.Թ. ԳՅՈՒԼԱՍԱՐՅԱՆ, Ե.Ա. ԿԱՖԱԴԱՐՅԱՆ, Մ.Ն. ՆԵՐՍԻՍՅԱՆ, Ն.Բ. ԿՆՅԱԶՅԱՆ, Վ.Վ. ԲԱՂՐԱՄՅԱՆ

Կատարվել է միկրոայիքային մեթոդով սինթեզված կապարի մետասիլիկատալին փոշիների և դրա հիման վրա ստացված հալման ցաձր ջերմաստիճան ունեցող ապակու (900°C) հատկությունների վերլուծություն։ Ֆիզիկաքիմիական ուսումնասիրությունները ցույց են տվել, որ սինթեզված կապարի մետասիլիկատը և դրա հիման վրա ստացված ապակին հանդիսանում են խոստումնայից նյութեր տարբեր ոյորտներում օգտագործելու hամար, մասնավորապես՝ որպես լայն արգելված գոտիով կիսահաղորդիչ, ֆոտոկատալիզատոր և ապակի, որն օգտագործվում է իոնացնող Ճառագալթումից պաշտպանվելու համար։

PHOTOCATALYTIC AND RADIATION-OPTICAL PROPERTIES OF LEAD METASILICATE OBTAINED BY THE MICROWAVE METHOD

N.R. AGHAMALYAN, A.A. SARGSYAN, T.S. AZATYAN, T.V. GRIGORYAN, A.A. KAZARYAN, A.A. PETROSYAN, H.T. GYULASARYAN, E.A. KAFADARYAN, M.N. NERSISYAN, N.B. KNYAZYAN, V.V. BAGHRAMYAN

An analysis of the properties of lead metasilicate powders synthesized by the microwave method and low-melting (900°C) glass obtained based on it has been conducted. Physico-chemical studies have shown that the synthesized lead metasilicate and the glass obtained from it are promising materials for use in various fields, namely as a wide-bandgap semiconductor, photocatalyst, and glass used for protection against ionizing radiation.