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In this paper, we have revisited the Berman's idea of the variation of Hubble parameter. While
previously explored in the context of  -varying cosmologies, where scale factor variations yield
linear universe expansion, this parametrization has undergone extensive scrutiny. Our investigation,
however, explores into its implications in the context of late-time cosmic acceleration, within the
framework  of  classical  general  relativity,  adopting  the  Friedmann-Lemaître-Robertson-Walker
(FLRW) spacetime as our background metric. Our analysis offers a precise solution to Einstein's
field equations (EFEs) in a model-independent way, affording a thorough assessment of both ge-
ometrical and physical model parameters. Additionally, this study supplements its findings with
graphical representations of the evolving cosmological parameters across flat, closed, and open uni-
verse scenarios, all subject to constraints derived from the model parameters. In synthesizing these
results, we shed light on the intricate interplay between cosmic acceleration, dark energy, and the
parametrization of the Hubble parameter, thereby providing valuable insights into the fundamental
mechanics of our universe.
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1. Introduction. Before 1916, the prevailing belief was that gravity consti-

tuted an intrinsic quality of objects, exerting a consistent, immediate force over

extensive distances. Nonetheless, Einstein's theory of general relativity (GR)

marked a significant shift in scientific understanding. GR addressed the enigma

of Mercury's precise behavior by revealing that gravity was not a mysterious force

acting remotely in the backdrop of space and time. Instead, it emerged as a

consequence of the curvature of the underlying space-time framework. The

fundamental tenet of GR asserts that the shortest distance between any two remote

objects in space is invariably curved, forming the basis for GR's framework built

upon this curved geometry.

Over the past 100 years, the perspective of scientists about the universe has

completely changed as a result of Einstein's theory of gravity. Many phenomena

may be described analytically using Einstein's field equations (EFEs), and this

theory, that had been a mystery for decades, suddenly fitted the evidence. After
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100 years, there are still several problems with Einstein's general relativity,

including its failure to explain the Big Bang, the age of the universe, the singularity

within black holes, and many others [1]. Understanding the curvature singularity,

geodesic incompleteness, and b-incompleteness is one of GR's toughest hurdles.

Several individual develops of the universe have generated a great deal of impli-

cations and hypothesis in the area of GR. Therefore, developing a better theory

is one of the main goals of physics. Throughout the last century, there have been

numerous theoretical and observational problems with Einstein's theory. However,

new gravitational wave observations and a black hole picture improve GR foun-

dation. So, we are motivated here just to discover late expansion of the universe

in the context of GR.

During the previous many years, one of the important problems in theoretical

physics and, more broadly, cosmology has been determining the mysterious nature

of the universe's two dominant components, dark energy and dark matter. The

physical cause of the late-time cosmic acceleration is the greatest open challenge

in cosmology today. Explaning the various statistical observational data sets revealed

the physical mechanism [2-11]. Many models of dark energy consider the

presence of an additional, undetected field that is perhaps responsible for the

universe's rapid expansion. However, some reasonable hypotheses also include an

infrared modification to the theory of general relativity [12-14]. The evolution of

the current cosmos is consequently governed by dark energy, which makes up

about two third of the total energy density of the universe.

According to the literature, Einstein's cosmological constant  , which was first

proposed in 1917, serves as the best and most straightforward candidate among

these various research options for dark energy. This implies that the repulsive

nature of   is responsible for the universe's acceleration with the equation of state

1 . This genuine candidate, however, suffers from a long-standing cosmologi-

cal constant problem as well as the constant equation of state. In Einstein field

equations, the term cosmological constant   describes the intrinsic energy density

of the vacuum, which is the most interesting candidate of dark energy (DE). The

mathematical expression  , on the other hand, indicates a significant difference

between theoretical and observational predictions [15]. As a result of the variety

caused by the fine-tuning issue and the cosmic coincidence problem associated

with CDM, many DE models [16-18] have been developed.

As is well known, the EoS parameter is the relationship between energy density

and pressure i.e.  p . The decelerated and accelerated expansion of the

universe are described by the EoS parameter. It classifies the various cosmological

phases as follows: If 31  the model denotes the radiation-dominated phase,

while 0  denotes the matter-dominated phase. The present study makes an

effort to address late-time cosmic acceleration on a Friedmann-Lemaitre-Robertson-
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Walker (FLRW) background. The Einstein field equations in the FLRW back-

ground contain two independent equations with three unknowns (energy density

 , pressure p, and scale factor a) that can be resolved by assuming the equation

of state. The system becomes insecure when DE, an additional degree of freedom,

is added. This inconsistency in the literature can be resolved in a variety of ways.

Here, we use a model-independent method, also referred to as cosmological

parametrization, to find the exact solution of the field equations.

To fit data to the cosmic evolution of the universe, the model-independent

technique (or cosmological parametrization) of reconstructing a cosmological model

with or without dark energy has been used in the literature. Nowadays, there is

a lot of interest in the model-independent approach used in the framework of

some DE candidates, which was first discussed by Starobinsky. In the literature,

a wide range of parametrization schemes [19] have been suggested to describe the

evolution of universe, including the transition from early deceleration to late

acceleration. There are also other parametrization schemes, such as density,

pressure, deceleration, Hubble and scale factor parametrization and others. As a

result, the goal of this paper is to represent a specific parametrization of the Hubble

parameter that better explains cosmic dynamics and provides simpler constraints

than any other cosmological parameter.

The structure of the work is as follows: In Section 1, a brief introduction is

presented, addressing issues related to GTR and dark energy. Section 2 covers the

derivation of field equations, solution techniques, and offers a geometric interpre-

tation of the model obtained in the same section. In Section 3, we discuss into

the dynamics of the model, analyzing physical parameters and describing the

evolution during the RD and MD eras of the universe. Additionally, graphical

representations of the evolution of cosmological parameters are provided. In Section

4.1, we also discussed some kinematic properties of model. The work concludes

with our findings in Section 5.

2. Field equations and solution. Let us first assume that the universe

is homogeneous and isotropic. So, as a background metric, we will use the FLRW

spacetime in the following form:

  , 
1

22

2

2
2222












 dr

kr

dr
tadtcds (1)

where a(t) denotes the universe's scale factor, k is the curvature parameter assumes

the values 0, 1, or -1, which corresponds to flat, closed and open universe

respectively, r,   and   are spherical polar coordinates, t is the cosmic time.

Here, we choose units in such a way that 18  cG .

The matter source in the universe is provided by the total energy-momentum

tensor (EMT) given by the equation,
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  .   gpuupT TotalTotalTotal
Total

(2)

The energy momentum tensor TotalT  represents the combined energy momen-

tum of the two energy components in the universe. These components consist

of the total energy density Total , which is the sum of the energy densities 

and de  corresponding to ordinary matter and dark energy, respectively. Addi-

tionally, the total pressure Totalp  is the sum of the pressures p and p
de
, where

p represents the combined pressure of radiation and matter. Again, mr 

and mr ppp  , where the suffixes r and m denote radiation and matter

components, respectively. The suffix de signifies dark energy in these expressions.

The equation that incorporates the total energy-momentum tensor within the

framework of Einstein's field theory is,

TotalTRgR  
2

1
(3)

yield two independent equations as follows,

, 33
22

2

a

k

a

a
Total 


(4)

,2
22

2

a

k

a

a

a

a
pTotal 


(5)

where an overhead dot (.) represents ordinary derivative with respect to cosmic

time t only. We believe that the interaction between two matter components are

natural. From equations (4) and (5), one can easily derive the equation of

continuity as

  . 03  TotalTotalTotal p
a

a
 (6)

The matter content in the univere is not properly known but it can be

categorized with the equation of state. Here, we consider the usual barotropic

equation of state for normal (/ordinary) matter

,  wp (7)

where, 31w  for radiation component and w = 0 for pressure-less dust component

in the universe.

We address the cosmic history for different phases of evolution by solving these

equations, specifically examining the early RD era subsequent to the late MD era.

The system of equations presented in equations (4)-(7) yields only three inde-

pendent equations, while we have four variables in play: a,  , de , and p
de
. To

attain a deterministic solution, we require an additional equation. In the scientific

literature, numerous methods have been proposed to resolve the field equations

and introduce the necessary supplementary equation. One such approach is the
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model-independent approach, which entails considering a functional form for any

cosmological parameter as a supplementary condition. Within this framework, a

wide array of parameterization schemes [19] have been explored in the past few

decades.

In the subsequent section, we delve into this approach, highlighting the idea

of cosmological parametrization that has been under consideration. We then focus

on one well-established parameterization to tackle the field equations and conduct

a more in-depth analysis.

2.1. Berman's law of variation of H. The issue of the Hubble parameter

dependence and its implications for cosmological models is of paramount im-

portance in contemporary cosmology. For example, the problem of Hubble tension

underscores the need for novel approaches and theoretical frameworks to reconcile

observational data with theoretical predictions. According to Alan Sandage, "cos-

mology is the search of two parameters H
0
 and q

0
". Also, in a particular model,

the Hubble function regulates the dynamics of the universe. Moreover, the

complicacy of getting exact solution to the complicated field equations can be made

simple without violating the background physics is the model-independent way,

where any cosmological parameter (e.g. H, q, a, p,  ) are allowed to consider

as functions of time or redshift with some free parameters (model parameters).

Detailed idea is discussed in some literature [19-22]. Our research aims to

contribute to this ongoing dialogue by providing a simplified yet insightful model

that can shed light on potential solutions to this discrepancy. Moreover, the

reference to the work of Bisnovatyi-Kogan and Nikishin [23] highlights the

diversity of approaches within the field and the richness of possible avenues for

exploration. By incorporating their insights and building upon existing research,

we aspire to develop a more comprehensive understanding of cosmological phe-

nomena. In literature, numerous physical justifications and incentives exist for

exploring the dynamics of dark energy models in a manner independent of specific

models [24-30]. Additionally, it aids in investigating dark energy without relying

on any specific cosmological model, apart from adhering to the cosmological

principle. The scientific literature contains numerous instances and pieces of

evidence for examining the behavior of dark energy models in a model-indepen-

dent way. In this section, we follow the identical concept of cosmological

parametrization and explicitly address the field equations while discussing the

universe's behavior during different stages of its evolution. Many researchers have

explored various parametrizations of cosmological parameters to describe specific

phenomena in the universe, such as the transition from early inflation to

deceleration and from deceleration to late-time acceleration. These parametrizations

allow model parameters to be constrained by observational data. The Hubble
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parameter, denoted as H, stands out as one of the most vital cosmic parameters

for understanding the rate of cosmic expansion, offering comprehensive insights

into cosmic history. In this context, we examine a straightforward parametrization

of the Hubble parameter, as referenced in source [31].

  ,nDaaH  (8)

where D > 0, 0n  are constants (call them model parameter).

Using the defitition of Hubble parameter aaH  , equation (8) yield the scale

factor as an explicit time variation as;

    , 1 nCDntta  (9)

where C is constant of integration. We observe that the scale factor behaves as

a linear function and is influenced by two model parameters, namely, n and D,

which govern its evolution. As time approaches zero ( 0t ), we can establish

that a(0) equals  nC 1 . Let us denote this as ia  (where i represents the initial

value at 0t ). This signifies a nonzero initial value for the scale factor.

2.2. Geometrical interpretation of model. In cosmology, the scale

factor represents the relative size of the universe at different times. It is a crucial

parameter in describing the expansion of the universe in models like the FLRW

metric, which is a fundamental solution to Einstein's equations in general

relativity. The first derivative of the scale factor, a  represents the rate at which

the universe is expanding at a given time.  A positive value for a  indicates an

expanding universe, while a negative value suggests a contracting universe. The

second derivative of the scale factor, describes how the rate of expansion (or

contraction) is changing with time. This parameter is crucial in understanding the

dynamics of the universe. In the context of the  standard cosmological model

( CDM  model), the behavior of a  determines the acceleration or deceleration

of the cosmic expansion.

The first and second derivatives of scale factor with respect to time are given by

  11  nCDntDa (10)

and

    . 1 212  nCDntDna (11)

At the initial time, denoted as t = 0, the universe possesses velocities and

accelerations represented by     11  ni cDa  and       2121  ni cDna . These values

indicate that the model under consideration begins with a finite volume, a finite

velocity, and a finite acceleration. Expressions for the Hubble parameter and

deceleration parameter in cosmic time t can be derived from equation (9).

    1 CDntD
a

a
tH


(12)
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  . 1
2

 n
a

aa
tq




(13)

Equation (13) demonstrates that the deceleration parameter, as cited in [32],

remains constant over time, signifying time-independence throughout the evolu-

tionary process. A negative deceleration parameter (q < 0) suggests a rapid expansion

of the universe, while a positive value (q > 0) indicates a slowdown. The accel-

eration observed in the later stages of the universe aligns with the explanation of

SNeIa data, whereas the deceleration phase plays a crucial role in the cosmic

evolution responsible for structure formation. In our considered model q = 0

implies a coasting universe (an expanding universe without any acceleration and

deceleration). This type of model also capable of explaining some observational

data to a certain redshift.

From equation (12), we can see that as 0t ,   CDH i  , which is constant.

Also, H(t) is a decreasing function of time as t , H(t) becomes zero.

3. Physical interpretation of model. Equations (4) and (5) with the help

of (7) can be written as

, 33
2

2

a

k
Hde  (14)

  . 12
2

2

a

k
Hqpw de  (15)

We can note that the known functions of cosmic time t in the system of

equations mentioned above are on the right-hand side, involving time-dependent

functions of a, q, H as specified in (9), (12), (13). On the left-hand side, there

are three unknown functions, namely  , de , p
de
. The general equation of state

for dark energy can be expressed as,

. 
de

de
de

p


 (16)

The parameter de  can either remain constant or, more commonly, vary with

time as the universe expands. The time-dependent nature of de  has led to the

development of numerous dark energy (DE) cosmological models. The character-

istics of dark energy, where the equation of state parameter de  is unknown, still

lack a comprehensive understanding. Astrophysical observations indicate that the

effective equation of state parameter eff  for scalar field models falls within the

range of 720481 .. eff   [33-35]. Analyzing observational data, we find a

slight preference for dark energy (DE) models in which eff  has recently crossed

the value of -1 [36,37]. For detailed investigations into dark energy and its

candidates, please refer to references [38-40]. When considering dark energy within

the framework of the CDM  model, which aligns with observational data, the
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parameter de  remains a constant value of -1. This is why Einstein's cosmological

constant serves as a suitable candidate for dark energy. Consequently, we persist

in examining the cosmological constant as a potential dark energy candidate. In

this scenario, solving equations (14) and (15) yields the expressions for the energy

density of matter (including radiation) and the density of dark energy.

  , 1
1

2
2

2













a

k
Hq

w
(17)

    . 31231
1

1
2

2













a

k
wHqw

w
de (18)

We can now explore the behavior of the acquired model at various stages of

the evolution of the universe in two different scenarios within the FLRW

geometry: flat (k = 0), closed (k = 1), and open (k = -1).

3.1. Radiation dominated universe. In this case, we have 31  and

r . Therefore from equation (17) and (18) the expression for radation energy

density and dark energy density can be written as

  









2

21
2

3

a

k
Hqr (19)

and

  . 1
2

3
2

2









a

k
Hqde (20)

In view of equation (9), (12) and (13), the above equations can be written as,

    

















nr
CDnt

k

CDnt

nD
22

2

2

3
(21)

 
   

. 
2

2

3
22

2





















nde
CDnt

k

CDnt

Dn
(22)

Equations (21) and (22) describe the progression of energy densities during

the radiation-dominated era, but their validity does not extend to the Planck

epoch. As the cosmic time approaches zero ( 0t ), the approximations for i
r

and i
de  are given by 










n

i
r

C

k

C

nD
22

2

2

3
 and 

 













n

i
de

C

k

C

Dn
22

22

2

3
. These

expressions imply that   0 i
r  at the outset, provided 0C , and   0 i

de  under

the conditions n < 2 and 0C  for a flat or closed universe.

Examining equations (21) and (22), it becomes evident that the positivity

condition for   and de  holds true for the specified values of n, C, and D in

the cases of flat (k = 0) and closed (k = 1) geometries. However, for an open

geometry (k = -1), the positivity condition for   and de  does not hold with the
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given values of n, C, and D. Fig.1, 2 illustrate the dynamic evolution of physical

parameters, specifically the radiation energy density r  and dark energy density

de , for particular model parameter choices: n = 0.86, n = 1.23, D = 0.1, and an

integration constant C = 1.2. We have chosen some particular values of these model

parameters as an exemplification. Although they can be constrained through some

data analysis (e.g. [41]), we here try to figure out the early and late evolution

of the cosmological parameters graphically.

The correlation between radiation energy density r  and temperature T is

given by

  , 
30

4
2

TTNr


 (23)

in the units with k
B

 = c = 1. At a temperature T, the effective quantity of spin

degrees of freedom  TN  can be expressed as      TNTNTN bf  87 , where

 TN f  and  TNb  denote the degrees of freedom for fermions and bosons,

respectively. It is assumed that the value of  TN  remains constant during this

Fig.1. The graph illustrates the time progres-
sion of radiation energy density 

r
  for scenarios (k

= 0, 1, -1) across panels (a), (b), and (c) corre-

spondingly, each using appropriate units of cosmic
time t .


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period. By utilizing equations (21) and (23), we derive the following expression;

   
. 

45
41

22

241

2




























n
CDnt

k

CDnt

nD

N
T (24)

From EqeS (24) we can notice that as 0t , we have
41

22

241

2

45





















n

i

C

k

C

nD

N
T showing that radation temperature also attains a

finite value initially. The graphs presented in Fig.3 depict the changes in radiation

temperature during the early stages of the universe using the identical set of model

parameters. However, it should be noted that these specific numerical model

parameters are not appropriate for the open k = -1 scenario in this context as well.

3.2. Matter dominated universe. In this case, we have 0  and m .

Therefore from equation (17) and (18) the expression for matter and dark energy

density can be written as

Fig.2. The graph illustrates the time progres-
sion of dark energy density 

de
  for scenarios

(k = 0, 1, -1) across panels (a), (b), and (c)

correspondingly, each using appropriate units of
cosmic time t .
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  









2

212
a

k
Hqm (25)

  . 21
2

2









a

k
Hqde (26)

Now, using the equations (9), (12) and (13) in equations (25) and (26), we get

the expression for matter and dark energy density

    















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CDnt

k

CDnt

nD
22

2

2 (27)

 
   
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2
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2



















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nde
CDnt

k

CDnt

Dn
(28)

In order to understand late-time cosmic acceleration, we can estebilish the

( zt ) relationship for which, we consider the relation between redshift and the

scale factor of the universe, with the standardized unit (a
0

 = 1) and is given by;

    . 1 1 zza (29)

Now, the zt  relationshipis in this case is obtained as;

   
. 

1

Dn

Cz
zt

n 




(30)

Now eliminating the inegration C  with the help  of zt  relationship and

we write all the parameters in terme of redshift z  and model parameter only.

The scale factor and Hubble parameter in terms of redshift can be written as

   nzDzH  1 (31)

Fig.3. The figure illustrates the variation of radiation temperature T as a function of t for the

scenarios corresponding to (k = 0, 1) in panels (a) and (b) respectively.
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or

    ,10
nzHzH  (32)

where H
0

 = D be the present value of Hubble parameter.

Further, in view of Eq. (29), Eqs. (27) and (28) can be written as
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From Eqs. (33) and (34), we observe that as 0z ,    knDzm  22  and

    kDnzde  22 , which is constant. The Fig.4 and 5 show the dynamical

behaviour of evolution of matter energy density  zm  and dark energy density

 zde  with respect to redshift z  with some particular choice of model parameter

n = 0.86, n = 1.23, D = 0.1.

Fig.4. The graph illustrates the variation

of the matter energy density m
  with the

redshift z  for scenarios represented in panels
(a), (b), and (c), corresponding to (k = 0, 1,

-1), respectively.
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4. Distance measures in this model.

4.1. Lookback time and proper time. There are various approaches to

express the separation between two points in cosmology, specifically in cosmog-

raphy, the study of the universe. This is because, during the expansion of the

universe, the distances among comoving objects are in constant flux, and observers

on Earth perceive a backward progression in time as they observe distant objects.

The common thread among all distance measurements lies in their estimation of

the distances between events along radial null trajectories, which are essentially

the paths of photons that reach the observer. The lookback time, denoted as t
L
,

for an object is the duration between the detection of light today (at redshift 0z )

and the emission of photons at a specific redshift z .

 
 

. 
0

0 
a

a

L
a

dt
zttt

 (35)

The proper distance between two occurrences is determined by measuring it at

Fig.5. The graph illustrates the varia-

tion of the dark energy density 
de

  with
the redshift z  for scenarios represented in
panels (a), (b), and (c), corresponding to

(k = 0, 1, -1), respectively.
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the instant of observation, representing the distance within the frame of reference

where they occur simultaneously. The proper distance is expressed as      zrazd 0 ,

where  zr  denotes the radial distance of the object, which is given by

 
 

. 
0


t

t
ta

dt
zr (36)

Therefore, the proper distance  zd  can be written as
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The luminosity distance, denoted as d
l
, for a source exhibiting a redshift of

z  is formally described as follows:

, 
4

2

L

l
dl


 (37)

where L is the observed flux and l is the intrinsic luminosity of the object. The

luminosity distance is given by
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l (38)

The angular diameter distance is defined by

, 1



l

d A (39)

where l
1
 is intrinsic physical size and   is the observed angular size of an object,

the angular diameter distance d
A
 of an object in terms of redshift z  is

Fig.6. The plots of look back time t
l
 and proper distance )(zd  vs redshift z  for the model

in the panel (a) and (b) respectively.
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4.2. Age of the universe. The present age of the universe refers to the

current elapsed time since the cosmic event known as the Big Bang, which is

considered the starting point of our universe. According to the prevailing scientific

understanding, the universe is approximately 13.8 billion years old. This estimation

is derived from observations of cosmic phenomena, such as the cosmic microwave

background radiation and the redshift of distant galaxies. Over the course of these

billions of years, the universe has undergone significant transformations, including

the formation of galaxies, stars, and planets. The study of the present age of the

universe plays a crucial role in our comprehension of its evolution and helps

scientists unravel the mysteries of cosmic processes and phenomena. Age estima-

tions derived from alternate sources such as galaxies and the Hubble constant often

exhibit discrepancies, posing a persistent challenge in the field of cosmology. The

dynamical age of the universe is indicated by this constant.
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If n is not equal to zero, the value deviates from the current estimate, denoted

as 1
00
 Ht , which is approximately 14 billion years. However, when n is set to

1, the model aligns well with the present age of the universe.

5. Results and conclusion. This work explores a cosmological model

grounded in the general theory of relativity within the framework of FLRW space-

Fig.7. The plots of luminosity distance d
l
 and angular diameter distance d

A
 vs redshift z  for

the model in the panel (a) and (b) respectively.
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time. To derive an exact solution for the cosmological field equations and

accommodate the currently observed cosmic acceleration, we introduce a straight-

forward parametrization for the Hubble parameter, H which results in a time-

independent deceleration parameter, q(t), equal to n - 1 (as in [32]). This

parametrization also leads to a linear-type evolution of the scale factor. The study

thoroughly investigates the behavior of various geometrical parameters a(t), H(t),

and q(t) and physical parameters, such as energy densities of radiation, matter,

and dark energy (including the cosmological constant). In FLRW space-time,

Berman's special law for Hubble's parameter variation (as mentioned in reference

[31]) yields a constant value of the deceleration parameter, q(t) = n - 1, which

results in accelerating universe models when 10  n  and decelerating ones when

n > 1, offering an explanation   for the current universe's acceleration. This model

suggests that the universe originated with finite volume, velocity, and acceleration,

in contrast to the standard big bang scenario.

In Section 3, we extensively examine the dynamics of the model we have

derived. We discuss how the physical parameters have evolved throughout the

history of the universe, accounting for the cosmological constant as a dark energy

candidate with an equation of state represented by 1de . The requirement for

positive energy densities  is satisfied only when considering flat and closed universe

geometries, as indicated by the expressions for radiation energy density r  and

dark energy density de . However, when it comes to an open universe, the selected

nu- merical values for the model parameters n, D, and C do not meet the

condition for positive energy densities in  both r  and de . In Fig.1 and 2, we

depict the profiles of radiation and dark energy energy densities for a range of

model parameter values, while keeping the model parameter D constant and

varying n. This analysis is conducted for flat, closed, and open universe geometries.

For the cases k  =  0 and k  =  1, we can clearly see that in Fig.1 and 2 the evolution

of radiation and dark energy densities showing similar nature and is decreasing

over time, where as for the case (k  =  -1) is incompatible in this scenario. The

Fig.3 illustrates how radiation temperature changes over cosmic time t in the early

universe for different universe geometries (flat and closed) with specific model

parameter values. Radiation temperature follows a pattern similar to radiation

energy density, starting with high temperatures and gradually decreasing over time,

eventually reaching a constant value in the late stages.

To gain a deeper understanding of how structures form in the universe and

the behavior of cosmological parameters in the late universe, we established a

relationship between time and redshift ( zt ) and expressed the physical param-

eters like matter and dark energy density in terms of redshift. Upon converting

these parameters to redshift z , it became apparent that they are all related to
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the variable n. We specifically examined the MD era, where dust pressure

approaches to minimal value. Fig.4 and 5 depict the red-shift evolution of matter

and DE energy densities in various geometries, with n being a variable and D

being a constant. In the existing models, both the matter energy density and dark

energy density maintain positive values. As a result, the weak and null energy

conditions are met, indicating that the resulting models are indeed physically

plausible. We have examined the lookback time, proper distance, luminosity

distance, and angular diameter distance for our derived model by analyzing the

plots presented in Fig.6 and 7.

In this analysis, we present a model designed to address the cosmic acceleration

observed in the late-time universe, situated within the framework of an FLRW

background. The approach involves adopting a parametrization of H suggested by

Berman in 1983. Notably, this model has the flexibility to extend its scope to

include anisotropic and inhomogeneous backgrounds. Moreover, it proves versatile

in tackling diverse challenges such as big bang nucleosynthesis, structure formation,

and inflation within the specified framework. A recent investigation [42] has devised

a robust methodology that capitalizes on the redshift dependence of the Alcock-

Paczynski test to gauge the expansion history of the universe. This technique

harnesses the isotropy of the galaxy density gradient field, leading to more stringent

constraints on cosmological parameters with heightened precision. This innovative

approach has been extensively explored in a series of papers by Li et al. [43-45].

The proposed model, along with analogous parameterized models [46], holds

promise for further scrutiny to refine and augment constraints on model parameters

by incorporating additional datasets. However, the detailed examination of these

possibilities is reserved for our forthcoming research endeavors.
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ÏÅÐÅÑÌÎÒÐ ÏÀÐÀÌÅÒÐÈÇÀÖÈÈ ÁÅÐÌÀÍÀ
ÏÀÐÀÌÅÒÐÀ ÕÀÁÁËÀ Â ÊÎÍÒÅÊÑÒÅ ÏÎÇÄÍÅÃÎ

ÓÑÊÎÐÅÍÈß

Ê.Ð.ÌÈØÐÀ1, Ð.ÊÓÌÀÐ1, Ø.Ê.Ä.ÏÀÑÈÔ2

Â ýòîé ñòàòüå ìû âåðíóëèñü ê èäåå Áåðìàíà îá èçìåíåíèè ïàðàìåòðà

Õàááëà. Ðàíåå ýòà ïàðàìåòðèçàöèÿ ïîäâåðãëàñü òùàòåëüíîìó èçó÷åíèþ â

ðàìêàõ  -ïåðåìåííûõ êîñìîëîãèé, ãäå èçìåíåíèÿ ìàñøòàáíîãî ôàêòîðà

ïðèâîäÿò ê ëèíåéíîìó ðàñøèðåíèþ Âñåëåííîé. Â äàííîé ðàáîòå  èçó÷åíû

åãî ïîñëåäñòâèÿ â êîíòåêñòå êîñìè÷åñêîãî óñêîðåíèÿ ïîçäíåãî âðåìåíè â

ðàìêàõ êëàññè÷åñêîé îáùåé òåîðèè îòíîñèòåëüíîñòè, ïðèíèìàÿ â êà÷åñòâå

îñíîâû ïðîñòðàíñòâî-âðåìÿ Ôðèäìàíà-Ëåìåòðà-Ðîáåðòñîíà-Óîêåðà (FLRW).

Ïðåäñòàâëåíî òî÷íîå ðåøåíèå óðàâíåíèé ïîëÿ Ýéíøòåéíà (EFE) ñïîñîáîì,

íåçàâèñèìûì îò ìîäåëè, îáåñïå÷èâàÿ òùàòåëüíóþ îöåíêó êàê ãåîìåòðè÷åñêèõ,

òàê è ôèçè÷åñêèõ ïàðàìåòðîâ ìîäåëè. Êðîìå òîãî, ýòî èññëåäîâàíèå äîïîëíåíî

ãðàôè÷åñêèìè ïðåäñòàâëåíèÿìè ýâîëþöèîíèðóþùèõ êîñìîëîãè÷åñêèõ

ïàðàìåòðîâ â ñöåíàðèÿõ ïëîñêîé, çàêðûòîé è îòêðûòîé Âñåëåííîé, ïðè÷åì

âñå îíè ïîäëåæàò îãðàíè÷åíèÿì, âûòåêàþùèì èç ïàðàìåòðîâ ìîäåëè. Ñèíòåç

ýòèõ ðåçóëüòàòîâ ïðîëèâàåò ñâåò íà ñëîæíîå âçàèìîäåéñòâèå ìåæäó êîñìè÷åñêèì

óñêîðåíèåì, òåìíîé ýíåðãèåé è ïàðàìåòðèçàöèåé ïàðàìåòðà Õàááëà, òåì

ñàìûì ïðåäîñòàâëÿÿ öåííóþ èíôîðìàöèþ î ôóíäàìåíòàëüíîé ìåõàíèêå íàøåé

Âñåëåííîé.

Êëþ÷åâûå ñëîâà: êîñìè÷åñêîå óñêîðåíèå: òåìíàÿ ýíåðãèÿ: êîñìîëîãè÷åñêàÿ

      ïàðàìåòðèçàöèÿ: ïàðàìåòð Õàááëà
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