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We investigate vacuum expectation value of the energy-momentum tensor for a massive Dirac
field in flat spacetime with a toroidal subspace of a general dimension. Quasiperiodicity conditions
with arbitrary phases are imposed on the field operator along compact dimensions. These phases are
interpreted in terms of magnetic fluxes enclosed by compact dimensions. The equation of state in
the uncompact subspace is of the cosmological constant type. It is shown that, in addition to the
diagonal components, the vacuum energy-momentum tensor has nonzero off-diagonal components.
In special cases of twisted (antiperiodic) and untwisted (periodic) fields the off diagonal components
vanish. For untwisted fields the vacuum energy density is positive and the energy-momentum tensor
obeys the strong energy condition. For general values of the phases in the periodicity conditions
the energy density and stresses can be either positive or negative. The numerical results are given
for a Kaluza-Klein type model with two extra dimensions.
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1. Introduction. The field theoretical models in background spacetimes with

compact dimensions appear in a number of theories in fundamental physics like string

theories, supergravities and Kaluza-Klein theories. The quantum creation of universe

with a compact space has been considered in [1-3]. In this type of models the

probability of inflation in the early stages of the universe expansion is not exponen-

tially small. The effects caused by the non-trivial topology of the universe on

cosmological scales are discussed, for example, in [4,5]. They include the ghost images

of galaxies and quasars, cosmological magnetic fields and observable effects on cosmic

microwave background. Physical models formulated on background geometries with

nontrivial topology also appear in a number of condensed matter physics systems.

Examples are topological structures of graphene, like carbon nanotubes and nanoloops.

The long wavelength excitations of the electronic subsystem in those structures are

described by an effective field theory (Dirac model, see [6,7]) with 2-dimensional

spatial topologies 11 SR   and 112 SST  , respectively.

In quantum field theory the nontrivial spatial topology is a source of a number

of interesting effects. In particular, the periodicity conditions along compact

dimensions modify the spectrum of quantum fluctuations of fields and, as a

ÒÎÌ 67 ÌÀÉ, 2024 ÂÛÏÓÑÊ 2

À Ñ Ò Ð Î Ô È Ç È Ê À

DOI: 10.54503/0571-7132-2024.67.2-245

http://doi.org/10.54503/0571-7132-2024.67.2-249
http://doi.org/10.54503/0571-7132-2024.67.2-245


246 A.A.SAHARIAN  ET  AL.

consequence, the expectation values of the physical characteristics are shifted by an

amount that depends on the geometry and topology of the compact subspace. This

general phenomenon is known as the topological Casimir effect (see [8-12]). The

vacuum energy in the topological Casimir effect depends on the size of compact

dimensions and this provides a stabilization mechanism for the corresponding

moduli fields. The topological Casimir energy may also appear as the source of the

accelerated expansion of uncompact subspace playing the role of the dark energy

at recent epoch of the Universe expansion (see, for example, [13-18]).

An important physical characteristic for charged fields is the expectation value

of the current density. For a relatively simple model of toroidal compactification

in flat spacetime (for quantum field theory in models with toroidal spatial

dimensions see, for example, [19]), in references [20-23] it has been shown that

the nontrivial phases in the periodicity conditions along compact dimensions give

rise to nonzero currents along those dimensions. The phases can be interpreted

in terms of magnetic fluxes enclosed by those dimensions. The currents in the

compact subspace are sources of magnetic fields having components along

uncompactified dimensions. The dependence of the vacuum energy density and

diagonal stresses for a massive fermionic field in the same model of flat spacetime

with a part of spatial dimensions compactified on a torus has been studied in [24].

In the present paper we show that, in addition to the diagonal components, the

vacuum expectation value (VEV) of the energy-momentum tensor may have

nonzero off-diagonal components (vacuum stresses) in the compact subspace.

The paper is organized as follows. In the next section we present the problem

setup and the eigenmodes for a Dirac field obeying the quasiperiodicity conditions

along compact dimensions. The general formulas for the vacuum energy density

and stresses are obtained in section 3. The asymptotic and numerical analysis of

the VEVs in a model with two compact dimensions is presented in section 4.

The main results are summarized in section 5.

2. Problem setup. The background geometry we are going to consider is

a flat spacetime with topology qp TM 1 , where 1pM  is (p+1)-dimensional

Minkowski spacetime covered by the Cartesian coordinates   ptz z ,0

 pzzz  ..., ,  , 10 , and  qq ST 1  is a q-dimensional torus with the coordinates

 Dp
q zz  ..., ,1z . The length of the l th compact dimension will be denoted by

L
l 
 and, hence, l

l Lz 0 , l = p + 1, ..., D. The volume of the compact subspace

is expressed as Dpq LLV ...1 . For the uncompact dimensions, as usual, we have

   ,lz . The line element has the standard Minkowskian form

 ,  ,, 2222
qpddtdxdxds zzzz  

 (1)

and 
 
is the Minkowski metric tensor in Cartesian coordinates.
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We are interested in the vacuum stresses for a massive Dirac field  x ,

 z ,tx  , induced by compactification of a part of spatial dimensions. The field

equation reads

    , 0 
 xmi (2)

where  , D ..., 1, 0, , are NN  Dirac matrices with N given by   212  DN

and [a] stands for the integer part of a. The background geoemtry has non-trivial

topology and in order to fix the dynamics uniquely the periodicity conditions along

the compact dimensions have to be specified for the field operator. We impose

quasiperiodicity conditions

   ,   ..., , ..., , ,  ..., , ..., , , Dl
p

iD
l

l
p zztezLzt l zz  

(3)

with phases const l  and l = p + 1, ..., D. The special cases of periodic and

antiperiodic fields correspond to 0 l  and l  (untwisted and twisted fields,

respectively).

The VEV of the energy-momentum tensor T
 
for the fermionic field is

expressed in terms of the mode sum over a complete set of normal modes 
  x
 ,

where   is the set of quantum numbers specifying the solutions to the field

equation and upper/lower signs correspond to the positive/negative energy modes.

Denoting the VEV by è 00   TT , with 0  being the vacuum state, the

mode sum is expressed as

    
   

    
    

 
 

,

, 
4 j

jjjj xxxxj
i

T (4)

where 


  ,     0 xx †
 is the Dirac adjoint and the parentheses

including the indices mean symmetrization over those indices. The symbolic

notation  stands for the summation over discrete components of the collective

index   and the integration over the continuous ones. The problem under

consideration has planar symmetry and it is natural to take the normal modes

corresponding to plane waves.

Taking the chiral representation of the Dirac matrices,

, 
0

0
, 

10

010
























 †

l

ll
(5)

the positive and negative energy wave functions with momentum k = (k
1
, ..., k

D
)

and energy 22 mk k
 have the form [22]

  
 

 
 

 
 

, 
22

1
211

211

21














































































w
m

w
m

e
V

m
x tii

q
p

k

kkzk

k

k

k

†






(6)
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where  D  ..., ,1 . Here, the quantum number 2 ..., 2, ,1 N  enumerates the

polarization degrees of freedom,  
w  are one-column matrices with N/2 rows and

l th element 
 

llw 


  . We will decompose the momentum into two parts,

k = (k
p
, k

q
), where k

p
 = (k

1
, ..., k

p
) and k

q
 = (k

p+1
, ..., k

D
) are the parts in uncompact

and compact subspaces. For the components k
l 
, l = 1, 2, ..., p, one has  lk .

The eigenvalues of the components k
l
 along compact dimensions are quantized by

the periodicity conditions (3):

, ... 2, 1, ,0, 
2




 l
l

ll
l n

L

n
k (7)

for l = p + 1, ..., D.

The phases in the conditions (3) can be interpreted in terms of the magnetic

flux for a vector gauge field enclosed by compact dimensions. The representation

described above corresponds to the gauge with zero vector potential,    0 , ,  A .

Let us pass to a new gauge with the fields (  A , ), where A  
has nonzero

constant components along compact dimensions: 0A , p ..., 1, ,0  and

constlA  for l = p + 1, ..., D. The gauge transformation has the form

, , , 


  xbAAe ie

with constant b  
and e being the charge of the Dirac field. Choosing 0b ,

p ..., 1, ,0  and ll Ab 
 
for l = p + 1, ..., D, for 0A  in the new gauge we

get   




  





 AeA
xAie

 , , . Taking  lll eLA  , we see that the new field

obeys the periodicity condition with 0l . Hence, the initial problem with a

zero gauge field and quasiperiodicity condition (3) is transformed to a gauge with

periodic boundary conditions for the field and with a gauge field having constant

components along compact dimensions. In this interpretation the phases can be

expressed as 02  ll , where e 20  is the flux quantum and

lll LA  is the formal magnetic flux enclosed by the compact dimension lx .

That flux takes on real meaning in models where the space under consideration

is embedded in a space of higher dimension. Examples are the braneworld models

and carbon nanotubes. In the latter case the Dirac field describing the electronic

subsystem of graphene lives in a 2-dimensional space with topology 11 SR   and

that space is embedded in a 3-dimensional Euclidean space. The magnetic flux

is located inside the tube.

3. Vacuum energy density and stresses. With the mode functions (6),

the VEV of the energy-momentum tensor is evaluated by using the formula (4).

The mode sums for the energy density and vacuum stresses are transformed to

   
, 

22
, 

22
00   






 





q
qqq

kkd

V

N
T

d

V

N
T

p

p

q
p

p

q Zn kZn
k

kk

(8)
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for D ..., 2, ,1 ,  , and è 00 T . The component 00T  corresponds to the

energy density and it is presented as the sum of the zero-point energies for

elementary oscillators. The expressions (8) for the diagonal components have been

considered in [24]. The expressions in (8) are divergent and in [24] two different

methods have been used in order to find the expressions for the renormalized

VEVs. The first one is based on the Abel-Plana summation formula and the

second one uses the zeta function technique [9,25]. We will follow the second

approach.

For the regularization of the mode sums we introduce the zeta function of

a complex variable s as

 
 

, 
2

1 2
 







q

q

s

p

p

q

d

V
s

Zn
k

k

(9)

where the term n
q 
=

 
0 has to be excluded from the sum in the special case 0 l ,

l = p + 1, ..., D. After integration over k
p 
and by using the generalized Chowla-

Selberg formula [26,27] for the resulting series, the zeta function is decomposed

as [24]      sss tM  , where  sM  is the corresponding function for the

Minkowski spacetime with trivial topology and the contribution  st  is induced

by nontrivial topology. Introducing the vectors  Dpq    ..., ,1  and

 Dpq LL  ..., ,1L  in the compact subspace, the topological part is expressed as

 
   

    ,  ,cos
2

2
22

21

qqsDqqD

sDs

t mgf
s

m
s

q
q

' nLn
Zn









 
 (10)

where the prime on the summation sign means that the term n
q 
=

 
0 should be

excluded and we have introduced the functions

      ,  ,, 

21

1

22














 







D

pi
iiqq nLg

x

xK
xf nL (11)

with  xK  being the modified Bessel function of the second kind.

An alternative representation for the zeta function, convenient in the asymp-

totic analysis of the off-diagonal stress, is obtained from (10) by using the formula

(2.40) from [22]. It is given by the formula

   
   

 

  , cos

cos
2

2

2

2222
12

22
2

2
12

21

2,2






 


















 

q

q
q

LnLnfn

n
Vs

m
ss

sp
sp

q

q
p

sDs

qpt
'

n

Zn

(12)

where  sqp 2,2   is the zeta function in the model of topology 23   qp TM   with

decompactified dimensions x  and x . Here, 3pM  stands for (p + 3)-dimen-

sional Minkowski spacetime with trivial topology. The prime on the summation
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sign in (12) means that the term 0  nn  is excluded from the summation

and we have defined

. 

21

,,1

22

2 












 




D

pl
l mk

qn (13)

The function  sqp 2,2   is given by a formula similar to (10) with the summation

over 
2

2


  q
q Zn .

The background geometry is flat and the renormalization is reduced to the

subtraction of the Minkowskian VEV. The renormalized energy density is ex-

pressed as   2210
0  t

t
NT . For the diagonal components of the vacuum

stresses along uncompact dimensions one gets (no summation over  ) 
tt

TT 0
0

 ,

p ..., 2, ,1 . The diagonal vacuum stresses in the compact subspace are found

by using the relation (no summation over  )    
t

qLq
t

TVVLT 0
0

 

 ,

Dp  ..., ,1 . In this way, from (10) for the diagonal component we find [24]

(no summation over  )

         ,  ,cos
2 21

1

qqqqD

D

t
mgF

Nm
T

q
q

' nLn
Zn








 


 

(14)

with the functions

  
   

       















.  ..., ,1, 

 ..., 2, ,1 ,0, 

23
222

21

21

DpxfnLmxf

pxf
xF

DD

D

(15)

The corresponding expressions in the case of periodic conditions, 0 l ,

l = p + 1, ..., D, are obtained from (14) with   1cos qqn . In this case the vacuum

energy density is positive and for the diagonal stresses one has (no summation

over l) 
tt

l
l TT 0

0 , l = p + 1, ..., D. As it will be shown below, for periodic

conditions the off-diagonal components vanish. By using the relation

      , 211
2 xfxfxfx   (16)

it can be seen that 
t

D

l t

l
l TT 0

01
 

. Hence, the vacuum energy-momentum

tensor for a fermionic field with periodic conditions obey the strong energy

condition. For twisted fields with l , l = p + 1, ..., D, one has  qqncos

  Dp n...n  11 .

The result (14) shows that the vacuum stresses in the uncompact subspace are

equal to the energy density, 
tt

TT 0
0

 , p ..., ,1  (no summation over  ).

Of course, this is a consequence of the Lorentz invariance in that subspace. By

taking into account that for the vacuum effective pressure along the direction x

one has 
t

TP 
  , we see that the equation of state for the vacuum in the

uncompact subspace is of the cosmological constant type. The models with the
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topological Casimir energy as the source of the accelerated expansion are based

on this property.

For a massless fermionic field the general result (14) is reduced to (no

summation over  )

  

 
   

  ,  ,
 ,

cos

2

1

2

0

121 qq

qq
D

qq

Dt
F

g

DN
T

q
q

' nL
nL

n

Zn






 









(17)

where  
    1 ,0  qqF nL  for p ..., 2, ,1 ,0 , and

 
    

 
, 

 ,

1
1 ,

2

22
0

qq

qq
g

LnD
F

nL
nL






 (18)

for Dp  ..., ,1 . In this special case the vacuum energy-momentum tensor is

traceless 0


t
T .

Here we are interested in the off-diagonal components. For p ..., 2, ,1 ,0

and   one gets 0 t
T . The possible nonzero components 

t
T  corre-

spond to Dp  ..., ,1 ,  . In order to use the zeta function, we note that the

following relation takes place

 
. 

23

3

2 k
k





  

 LLkk
(19)

This allows to write the off-diagonal components in the form

     
. 

2

3

262

1

26 2

3

2



















 






 

LNLd

V

LNL
T

q
q

p

p

q Zn
k

k

(20)

By using the formula (10), for the topological part we get

         .  ,cos
2

2321

3

qqDqqD

D

t
mgfnn

LNLm
T

q
q

' nLn
Zn









 


  (21)

Note that in this representation we can make the replacement

       , cossinsincos 22   qqqq nn  nn (22)

where   
,22 l llqq nn . This replacement explicitly shows that the off-

diagonal component 
t

T , is an even periodic function of the phases  , , ll ,

with the period equal to 2 , and an odd periodic function of 
 
and 

 
with

the same period. Hence, without the loss of generality, we can assume that

 . For a massless field, by taking into account that     
  212 xxf

for x << 1, one obtains

 

 
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. 
 ,
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321

qq
D
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Dt g
nn
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n

Zn






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







(23)
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An equivalent expression for the off-diagonal stresses is obtained by using the

representation (12) for the zeta function in (20). The first term in the right-hand

side of (12) does not depend on 
 
and 

 
and, hence, it does not contribute

to the stress. The following expression is obtained:

    

    . sin

sin
2

22

2222
25

5

23

22
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


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


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 

qq

q
q

LnLnfn

nnn
V

LNL
T

p
p

q
pt

'

nn

Zn

(24)

For q = 2 (p = D - 2) one has m
q


2n  and the formula is reduced to

         . sinsin
2

2222
23

,
21

3






 


 


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


 


LnLnmfnnnn
LLNm

T D
nn

D

D

t

'
(25)

In the special case under consideration this coincides with (21).

The special case of the results corresponding to D = 2 describes the properties

of the ground state for the electronic subsystem in graphene nanotubes and

nanoloops (toroidal nanotubes) described by the effective Dirac model. For nanotubes

one has (p, q) = (1, 1) and for nanoloops (p, q) = (0,2). For metallic nanotubes

and in the absence of the threading magnetic flux the phase along the periodic

condition is zero, 0 l . Depending on the chiral vector in semiconductor

nanotubes two values of the phases are realized with 3l  and 32 l . The

corresponding analysis for the diagonal components of the ground state energy-

momentum tensor can be found in [24]. The off-diagonal component for nanoloops

is obtained from (25) with D = 2 and N = 2. In this special case one has

 25
25 332 xxexf x   .

4. Asymptotic analysis and numerical results. Let us consider some

asymptotics of general formulae. For large values of the length of the compact

dimension lz ,  ,l ,  LLLl  , , the dominant contribution in (21) comes

from the term with n
l 
=

 
0 and the leading order term coincides with the off-

diagonal stress in the model where the coordinate lz  is decompactified. In the

opposite limit  LLLl  , , it is more convenient to use the the representation

(24). The behavior of the stress is essentially different depending on whether the

phase l
 
is zero or not. For 0 l  the main contribution to the VEV 

t
T

comes from the modes with n
l 
=

 
0. To the leading order we get

 

, 
1

11

lD

TM

t

t LN

TN
T

qp











 (26)

where  2
1 2 D

DN   and 
 11  



qp TM

t
T  is the corresponding VEV in D-dimen-

sional spacetime with topology 11   qp TM  which is obtained from the geometry
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described by (1) excluding the compact dimension lx . For 0 l  and assuming

that l , again, the dominant contribution give the modes n
l 
=

 
0. The argument

of the function    xf p 25  is large and we can use the corresponding asymptotic

of the modified Bessel function. This shows that in the limit under consideration

the off-diagonal stress 
t

T  is suppressed by the factor 




   ll LLL 22exp .

For large values of the lengths L  
and L  

compared to the other length scales

1/m and L
l 
,  ,l , by using (24) we can see that the topological contribution

t
T  is exponentially suppressed by the factor   





  

22
0exp LL , where

  00 


2q2q
ε nn  and  l0 . For small values of L  and L  

the dominant

contribution in (24) comes from large values of ln  
and we can replace the

corresponding summations by the integration in accordance with

   
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(27)

where 2222
  LnLnb  and  21  ..., ,  qyyy  with  ly . After integration

over the angular part, the integral over |y| is evaluated by using the formula from

[28]. In this way it can be seen that the leading term in the expansion of 
t

T

coincides with (25). Additionally assuming that 122   LLm , in the leading

approximation we get

 
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232222
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(28)

Note that the right-hand side presents the off-diagonal component of the vacuum

energy-momentum tensor for a massless fermionic field in the model (p, q) =

(D - 2, 2) with compact dimensions 
x

 
and 

x .

Fig.1. The expectation values of the vacuum energy density and off-diagonal stress on the

phases of the periodicity conditions in the model (p, q) = (3, 2) with mL
4
 = 0.5, mL

5
 = 0.6.
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We will present the numerical analysis for the D = 5 model with two compact

dimensions 
4x  and 

5x . This corresponds to the set (p, q) = (3, 2). By taking

into account that in [24] the numerical results for the energy density and diagonal

stresses are given for the model D = 4 with a single compact dimension, the

analysis will be given for those quantities as well. We start from the dependence

of the expectation values on the phases 4  
and 5 . Fig.1 presents that dependence

of the energy density (left panel) and off-diagonal stress 
t

T45  (right panel) for

mL
4

 = 0.5 and mL
6

 = 0.6.

The corresponding results for the diagonal stresses along compact dimensions

are given in Fig.2. As already mentioned above, the energy density and the

diagonal stresses are even periodic functions of 4  
and 5 , whereas the off-

Fig.3. The expectation values of the vacuum energy density and off-diagonal stress on the length
of compact dimensions in the model (p, q) = (3, 2). For the left panel we have taken /2

4
 ,

05   and for the right panel /2
4

 ,  605 . .
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Fig.2. The same as in Fig.1 for the stresses along the compact dimensions x4 (left panel) and

x5 (right panel).
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diagonal component is an odd periodic function of those phases. Depending on

the specific values of the phases, all the components can be either positive or

negative. The energy density 
t

T00  and the vacuum pressures 
t

T44  and 
t

T55

are positive for the values of the phases near    0 ,0 , 54   (periodic conditions)

and negative near      , , 54  (antiperiodic conditions).

The dependence of the VEVs of the components for the energy-momentum

tensor on the lengths of compact dimensions is presented in Fig.3 (energy density

and off-diagonal component) and Fig.4 (stresses along compact dimensions). For

Fig.4. The vacuum stresses along the compact dimensions x4 (left panel) and x5 (right panel)

versus the lengths of those dimensions. The graphs are plotted for 250/2
4

. , 0/25  .

Fig.5. The energy density for a massless fermionic field in the model (p, q) = (3, 2) as a

function of the ratio L
5
/L

4 
for fixed value /2

4
 . The numbers near the graphs are the values

of  /25 .
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the diagonal components we have taken the phases 24   and 05   and the

off-diagonal component is plotted for 24  ,  605 . .

From the given graphs, one can get the impression that the energy density

is a monotonic function of the lengths of the compact dimensions. However, this

is not the case even for a massless field. In order to demonstrate that and by

taking into account that the VEVs for a massless field approximate the results for

massive fields in the limit of small values of the lengths of compact dimensions,

in Fig.5 we have plotted the dimensionless quantity 
t

TL 00
6
4  as a function of the

ratio L
5 
/L

4
. The corresponding expression is given by the right-hand side of (28).

The graphs are plotted for 24   and the numbers near the curves are the values

of the ratio  25 . For large values of L
5 
/L

4 
all the curves tend to the

corresponding result for the energy density in the model where the direction 
5x

is decompactified 5L .

5. Conclusions. Continuing the investigations started in [24] we have studied

the effects of nontrivial topology on the local characteristics of the fermionic vacuum.

A toroidal compactification of a part of spatial dimensions in (D+1)-dimensional

flat spacetime is considered. In addition to the diagonal components, studied in [24],

the vacuum energy-momentum tensor has an off-diagonal components having

indices along compact dimensions. Those components vanish for periodic ( 0 l )

and antiperiodic ( l ) conditions. In the first case the vacuum energy-momen-

tum tensor for a fermionic field obeys the strong energy condition. For general

values of the phases that is not the case. The phases in the periodicity conditions

can be interpreted in terms of magnetic fluxes enclosed by compact dimensions.

The VEVs are periodic functions of magnetic fluxes with the period of flux quantum.

The diagonal components are even functions of the phases l . The off-diagonal

component 
t

T ,  , Dp  ..., ,1 ,  , is an even function of l  with

 ,l , and odd function of the phases 
 
and  . The vacuum stresses in the

uncompact subspace are isotropic and the corresponding equation of state is of the

cosmological constant type. Depending on the values of the phases the components

of the vacuum energy-momentum tensor can be either positive or negative. For

small values of the lengths L  
and L , the off-diagonal component is approximated

by the corresponding result for a massless field in the model with q = 2 and compact

subspace (  xx  , ) (see (28)). The numerical analysis of the obtained results is

presented for the D = 5 with (p, q) = (3, 2).

We have considered the effects of the nontrivial topology on the local

properties of the fermionic vacuum. In the presence of boundaries additional

contributions are induced in the VEVs of physical observables (the boundary-

induced Casimir effect). The effects of two planar boundaries with the bag

boundary conditions on the Dirac field in the geometry under consideration have
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been discussed in [29,30]. The results in the special case of 2-dimensional space

are applied to finite length carbon nanotubes. The fermionic condensate and the

VEV of the energy-momentum tensor in toroidally compactified de Sitter spacetime

are studied in [31].
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ÔÅÐÌÈÎÍÍÛÅ ÂÀÊÓÓÌÍÛÅ ÍÀÒßÆÅÍÈß Â
ÌÎÄÅËßÕ Ñ ÒÎÐÎÈÄÀËÜÍÎ ÊÎÌÏÀÊÒÍÛÌÈ

ÈÇÌÅÐÅÍÈßÌÈ

À.À.ÑÀÀÐßÍ1,2, Ð.Ì.ÀÂÀÊßÍ1.2, Ã.Ã.ÀÐÓÒÞÍßÍ1, Ã.Ã.ÍÈÊÎÃÎÑßÍ1

Èññëåäîâàíî âàêóóìíîå ñðåäíåå òåíçîðà ýíåðãèè-èìïóëüñà ìàññèâíîãî

ïîëÿ Äèðàêà â ïëîñêîì ïðîñòðàíñòâå-âðåìåíè ñ òîðîèäàëüíûì ïîäïðîñ-

òðàíñòâîì ïðîèçâîëüíîé ðàçìåðíîñòè. Íà îïåðàòîð ïîëÿ âäîëü êîìïàêòíûõ

èçìåðåíèé íàêëàäûâàþòñÿ óñëîâèÿ êâàçèïåðèîäè÷íîñòè ñ ïðîèçâîëüíûìè

ôàçàìè. Ýòè ôàçû èíòåðïðåòèðóþòñÿ â òåðìèíàõ ìàãíèòíûõ ïîòîêîâ, ïðîíèçû-

âàþùèõ êîìïàêòíûå èçìåðåíèÿ. Óðàâíåíèå ñîñòîÿíèÿ â íåêîìïàêòíîì

ïîäïðîñòðàíñòâå èìååò òèï êîñìîëîãè÷åñêîé ïîñòîÿííîé. Ïîêàçàíî, ÷òî

âàêóóìíûé òåíçîð ýíåðãèè-èìïóëüñà ïîìèìî äèàãîíàëüíûõ êîìïîíåíòîâ

ñîäåðæèò íåíóëåâûå íåäèàãîíàëüíûå êîìïîíåíòû. Â ÷àñòíûõ ñëó÷àÿõ

ñêðó÷åííûõ (àíòèïåðèîäè÷åñêèõ) è íåñêðó÷åííûõ (ïåðèîäè÷åñêèõ) ïîëåé

íåäèàãîíàëüíûå êîìïîíåíòû îáðàùàþòñÿ â íóëü. Äëÿ íåñêðó÷åííûõ ïîëåé

ïëîòíîñòü ýíåðãèè âàêóóìà ïîëîæèòåëüíà, à òåíçîð ýíåðãèè-èìïóëüñà óäîâëåò-

âîðÿåò ñèëüíîìó ýíåðãåòè÷åñêîìó óñëîâèþ. Ïðè îáùèõ çíà÷åíèÿõ ôàç â

óñëîâèÿõ ïåðèîäè÷íîñòè ïëîòíîñòü ýíåðãèè è íàòÿæåíèÿ ìîãóò áûòü êàê

ïîëîæèòåëüíûìè, òàê è îòðèöàòåëüíûìè. ×èñëåííûå ðåçóëüòàòû ïðèâåäåíû

äëÿ ìîäåëè òèïà Êàëóöû-Êëåéíà ñ äâóìÿ äîïîëíèòåëüíûìè èçìåðåíèÿìè.

Êëþ÷åâûå ñëîâà: òîïîëîãè÷åñêèé ýôôåêò Êàçèìèðà: ïîëå Äèðàêà: òîðîè-

      äàëüíàÿ êîìïàêòèôèêàöèÿ
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