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This paper presents the reconstruction of the quintessence dark energy potential in a model-
independent way. Reconstruction relies on a Gaussian process and on available expansion rate data.
Specifically, 40-point values of )(zH  are used, consisting of a 30-point sample deduced from a
differential age method and an additional 10-point sample obtained from the radial BAO method.
Results are obtained for two kernel functions and for three different values of H

0
. This sheds light

on the H
0
 tension problem indicating that it is not just a numerical problem. The model-independent

reconstruction of the potential can serve as a reference to constraint available models and construct
new ones. Various possibilities, including 


 eV ~)( , are compared with the reconstructions here

obtained, which is notably the first truly model-independent reconstruction of the quintessence dark
energy potential. This allows the selection of new models that can be interesting for cosmology. The
method can be extended to reconstruct the potential of related dark energy models, to be considered
in future work.
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1. Introduction. Modern cosmology often clearly reflects how our previous

knowledge of the Universe needs to be modified to accommodate new observations.

The H
0
 tension problem is one of those pointing out a huge difference between

the early time and late time measurements of the Hubble constant H
0
 [1,2].

Various interesting proposals on how the problem could be solved have appeared

in the literature, such as [3-16] (and references therein). In the last several years,

we have witnessed significant technological developments helping us to improve

the data collection and analysis process by orders of magnitude. But without the

possibility of doing direct experiments with the Universe, it is still difficult to deal

with some problems. Why could we not make significant progress in solving some

long-standing problems? Is it because of an issue with our understanding of what

data mean? Eventually, is there a problem with the model-construction strategies

to reflect our understanding of what the observational data say? Could this reflect

that we cannot avoid a bias when we link a model with the data? There is a

solid belief, that Machine Learning (ML) eventually will answer a huge part of

the above-mentioned questions. But, what exactly it does and why is it nowadays

one of the top research fields? ML tries to do the following: it does not start
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from questions but, on the contrary, having the answers finds the questions (the

models) explaining what we have in terms of experimental data. It sounds unusual

and requires significant effort to understand how and why it works. Recent attempts

to use such tools in physics (and not only in physics) have proven to be very

promising.

Our paper is aimed to study a specific dark energy model in a model-

independent way by using the advantages of a specific ML approach [17-39] (see

references therein for additional discussion on different developments concerning

dark energy models and related problems). In particular, we will study a quin-

tessence dark energy when a Gaussian Process (GP) is involved (see for instance

[40,41] covering some discussion about quintessence dark energy models). GPs

provide interesting departures from standard reasoning in various fields. Their

recent applications to cosmology showed very interesting departures not reported

previously (see [42-52] and references therein). The reconstruction of  Tf  gravity

from the expansion rate data, allowing us to obtain very tight constraints on the

model parameters of some popular  Tf  models is among them [42]. Moreover,

a recent paper by two of the authors has shown how GPs can be used to tackle

the Swampland criteria for dark energy dominated Universe in a model-indepen-

dent way [43]. In particular, it has been demonstrated there that the expansion

rate data can be used, instead of assuming a specific form for the potential

describing the quintessence dark energy, to tackle the Swampland criteria. In other

words, the whole analysis is based on the expansion rate data allowing the

exploration of the features, which in some sense could be biased due to the use

of a specific dark energy model. In this way, a hint indicating that  the Swampland

criteria in its recent form is not suitable for a dark energy-dominated Universe

has been found. Among other interesting results, it was found that an effective

theory being in the Swampland could (or not) end up there. Moreover, starting

out of the Swampland it is possible to end up either inside or outside of it. Having

such interesting results in our hands, probably it would be possible in the near

future to have unsuspected departures from the standard reasoning about effective

field theories (EFT) which is a promising task to be tackled yet. The fact that

ML is designed to find the questions from the answers gives hope that, in the

near future, some interesting developments in this direction may arise. We would

like to mention that there is another interesting approach, known as Bayesian

Machine Learning, which we hope can eventually be very efficient in overcoming

such limitations too [4,10,11] (see there how it can be used to tackle the H
0

tension problem).

Now, let us come back to [43] where no specific form for the potential has

been used. However, it is easy to see that the reconstruction of the quintessence

dark energy potential itself is possible too, allowing also to obtain the constraints
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on the existing models. Moreover, it can be used to craft new models and gain

some hints about how, for instance, the H
0
 tension problem can be solved in

a quintessence dark-energy dominated Universe. In this way, we can indicate that

the results of that paper provide a unique possibility to treat quintessence dark

energy models, too, since the most model-independent reconstruction of the

general picture has been obtained. Motivated by this possibility, given by the use

of GPs, the potential was reconstructed, in a model-independent way from

available expansion rate data, and, in addition, a new viable quintessence dark

energy model was obtained. In particular, based on the mean of the obtained

reconstructions, the potential       n~V sin1  has been proposed as a new

form of quintessence dark energy-up to our best knowledge this potential has not

been discussed anywhere previously. Other models were also considered, as

   ~V ,     n~V   cos1  and    eV ~  (see for instance [53] and

references therein) and values of the model's parameters were estimated, indicating

when they could be 1) viable and interesting for cosmology, and 2) used to solve

the H
0
 tension problem.

To end this section, we would like to mention also that, in our analysis here,

we will use two kernels and consider three different cases for the value of the

parameter H
0
. In this way, hints are given about the forms and constraints on

the quintessence dark energy models that could be very useful in understanding

how the H
0
 tension problem could be alleviated. We do hope that these new results

combined with the results discussed in [43] will lead to new developments in future

studies of quintessence dark energy models. It should be mentioned that [43]

already contains a discussion about different aspects of the quintessence Universe,

therefore, here we will not reproduce them again.

This paper is organized as follows. The description of the GP is discussed

in Sect. 2. In the same section, we present the details of the potential recon-

struction process. The main results are discussed in Sect. 3, which is followed

by an analysis of their implications. The final conclusions of the analysis are given

in Sect. 4.

2. The method and the model. The goal of this work is to provide a

model-independent reconstruction of the quintessence dark energy potential by

using a GP. We will present some details of how this can be achieved. We shall

start from the background dynamics demonstrating what are the steps to follow

to make the GP work, while some discussion on the GP itself will be presented

at the end of this section.

We consider General Relativity (GR) with the standard matter field in the

presence of a quintessence field  , given by the following action ( 18  cG )
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where   is the field,  V  is the field's potential, S
m
 corresponds to standard

matter, while R is the Ricci scalar. Moreover, it is well known that when we

consider an FRWL Universe with

    , 
3

1

2222 



i

idxtadtds (2)

the dynamics of the scalar field's dark energy and dark matter are described by

the equations

  , 03   PH (3)

, 03  dmdm H (4)

with

 . 
3

12
dmH   (5)

In other words, Eqs. (3)-(5) describe the background dynamics. Furthermore, it

is well known that  , dm  and  PP  are related to each other through the

equation

 . 3
6

1
  PHH dm

 (6)

On the other hand, assuming that the scalar field is spatially homogeneous, for

the energy density and pressure we will have

  , 
2

1
 V (7)

and

  , 
2

1
 VP  (8)

where the dot means derivative w.r.t. the cosmic time, while  V  is the potential

of the scalar field (see for instance [43] and references therein for more

discussion). In all equations above aaH   is the Hubble parameter. This is well

known, and also the important fact that the analysis of the background dynamics

requires assuming the form of the potential  V ; various forms for it have been

considered in the literature.

Anyway, after some simple algebra, one can see that, starting from Eqs. (7)

and (8), it turns out that

, 2
  P (9)

while
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  . 
2

 


P
V (10)

On the other hand, it is easy to see that from Eq. (4) we have  30
2
0 13 zHdm  ,

while from Eq. (5) we can determine the energy density of the scalar field

  , 133 3
0

2
0

2 zHH  (11)

where H
0
 is the value of the Hubble parameter at 0z  (e.g., at present; z  is

the redshift). On the other hand, 0  is the cold dark matter density fraction

at 0z . Now, we can use Eq. (6) and, after some algebra,

  , 312 2HHHzP  (12)

where the prime denotes derivative w.r.t. the redshift. Coming back to Eqs. (9)

and (10), we see that Eqs. (11) and (12) allow us to write down the form of

the scalar field potential in terms of H  and H  , as follows

      . 1
2

3
13 3

0
2
0

2  zHzHHHzV (13)

Moreover, it is possible to see that, for the field itself, we have

    
 

, 
1

132
2

2
0

2
02

Hz

zHHH
'z




 (14)

what allows to perform an end-to-end reconstruction of  V , provided  zH  and

 zH   are known. It should be noted that in [43] several other further steps have

been taken too, in order to study the Swampland criteria; however, the discussion

carried out here and the ensuing results, had never been discussed before.

Now, it is time to make more transparent to the reader how can one obtain

a model-independent reconstruction of  V , from Eqs. (13) and (14). It is easy

to see, to start, that Eqs. (13) and (14) allow doing this, if model-independent

reconstructions of  zH  and  zH   are provided. Namely, following [43], we

choose the GP to reconstruct  zH  and  zH   from available expansion rate data

(see Table 1). Therefore the rest of this section is devoted to the presentation of

some crucial aspects of GPs. To start, we recall that GPs are Bayesian state-of-

the-art tools and that the key ingredient is the covariance function. In a nutshell,

it is assumed that a GP prior governs the set of possible latent functions, and

the likelihood of the latent function and observations shape this prior and produce

posterior probabilistic estimates. The advantage of a GP is providing a full

conditional statistical description of the predictions used to establish confidence

intervals and to set hyper-parameters. Moreover, GPs should be understood as

distributions over functions, characterized by a mean function and a covariance

matrix. Unfortunately, one disadvantage of the method is that the choice of the
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kernel is not a fixed process. Only well-designed data and the type of task to

be tackled can indicate which kernel works better. A number of possible choices

for the covariance function exist - as squared exponential, polynomial, spline, etc.,

to mention a few. In other words, it is always highly recommended to consider

several kernels and compare the results obtained, in order to be sure that the

reconstruction has not been got by chance. This is very important and not treating

this aspect very seriously can lead to misleading results, with bad consequences.

In cosmology we deal with relatively small datasets, therefore it is always possible

to follow the reconstruction process which significantly reduces the kernel numbers

to be considered. This is one of the reasons that in cosmology we usually meet

studies involving only two or three kernels. In particular, in cosmology one of

the most actively used kernels is the squared exponential function

   
, 

2
exp ,

2

2
2













 


l

xx
xxk f (15)

where f  and l are known as hyperparameters. The l parameter represents the

correlation length along which the successive  xf  values are correlated, while to

control the variation in  xf  relative to the mean of the process we need the

f  parameter. Recently, other kernels including the so-called Matern ( 29 )

covariance function
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l

xx
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l

xx

l

xx
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(16)

have been used for different purposes, too. Following this benchmark, we have

also considered the squared exponential, Eq. (15), and the Matern ( 29 ), Eq.

(16), which allow eventually to understand 1) how they can affect the reconstruc-

tion of  V , and 2) how it can affect the constraints on  V  potentials existing

in the literature. It should be mentioned that we have considered a number of

particular cases, but the reconstructions here presented are well enough to revisit

all existing models. We will come back to this in the next section when we discuss

the results obtained.

Now, having closed the question of the kernel functions, let us discuss 1) the

data and 2) the tools we use. In particular, the data used is the expansion rate

values presented in Table 1, consisting of 30-point samples of  zH  deduced from

the differential age method in addition to 10-point samples obtained from the

radial BAO method. In total, we use 40 data points covering the  2.4 ,0z

redshift range. One interesting aspect of our analysis concerning the value of H
0
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at 0z  to be mentioned here is the adopted strategy. To wit, during the

reconstruction, we consider three different cases: 1) H
0
 is estimated from the

expansion rate data during the reconstruction of  zH  and  zH  , 2) H
0
 is taken

from the Planck mission and the forms of  zH  and  zH   are reconstructed,

and finally, 3) H
0
 is the one from the Hubble mission and then the forms of

 zH  and  zH   are reconstructed. The reason for this, as it can be realized, is

to see whether or not it is possible to find ways to solve or at least alleviate the

H
0
 tension problem.

To end this section we need to mention that we use the publicly available

package GaPP (Gaussian Processes in Python) developed by Seikel et al. [54].

It is a very easy one to use and a very friendly package allowing to choose different

covariance functions (new ones can be added easily, too). Moreover, the squared

exponential function, Eq. (15), is used in the code as a default option, while the

Matern covariance function given by Eq. (16), is already implemented. On the

other hand, the code is very useful to combine different observational datasets,

Table1

 zH  AND ITS UNCERTAINTY H  IN UNITS OF km s-1
 Mpc-1

z )(zH H z )(zH H

0.070 69 19.6 0.4783 80.9 9
0.090 69 12 0.480 97 62
0.120 68.6 26.2 0.593 104 13
0.170 83 8 0.680 92 8
0.179 75 4 0.781 105 12
0.199 75 5 0.875 125 17
0.200 72.9 29.6 0.880 90 40
0.270 77 14 0.900 117 23
0.280 88.8 36.6 1.037 154 20
0.352 83 14 1.300 168 17
0.3802 83 13.5 1.363 160 33.6
0.400 95 17 1.4307 177 18
0.4004 77 10.2 1.530 140 14
0.4247 87.1 11.1 1.750 202 40
0.44497 92.8 12.9 1.965 186.5 50.4

0.24 79.69 2.65 0.60 87.9 6.1
0.35 84.4 7 0.73 97.3 7.0
0.43 86.45 3.68 2.30 224 8
0.44 82.6 7.8 2.34 222 7
0.57 92.4 4.5 2.36 226 8

The upper panel of the Table 1 consists of thirty samples deduced from the differential age
method. The lower panel corresponds to ten samples obtained from the radial BAO method. The
table is according to [42] (see the references therein to find out how each of the data points has
been obtained).
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provided the proper relation between them is known. The package has been often

used, and more details about it, including a detailed description of the GP, can

be found in the references of our paper. In the next section, we will describe

our results thoroughly, which together with the discussion in the above section,

will surely allow the readers to understand how the scheme of the reconstruction

of the potential of the quintessence dark energy can be extended and applied to

the other dark energy models, as phantom or tachyonic models.

3. Results and discussion. In this section, we present and discuss our

results. They can be split into three different cases, corresponding to the recon-

struction when: 1) H
0
 is estimated from a GP, 2) H

0
 is fixed to the value estimated

from the Planck mission results and the reconstruction of  zH  and  zH   is

performed, and 3) H
0
 is fixed to the value estimated from the Hubble mission

and then the reconstruction of  zH  and  zH   is performed. In this way, we

can get a hint on when the H
0
 tension problem could be solved and what are

the constraints on some explicitly given model parameters in that case. We are

interested in a model-independent reconstruction of the quintessence dark energy

potential and we use the expansion rate data and the GP to reconstruct  zH

and  zH   in Eqs. (13) and (14). The reconstruction of the functions  zH  and

 zH   for the squared exponential function, Eq. (15), assuming that H
0

 = 73.52

± 1.62 km s-1
 Mpc-1 can be found in Fig.1. The functions  zH  and  zH 

corresponding to other cases can be reconstructed similarly. A crucial point, not

discussed in the previous section, is how to deal with Eq. (14) since eventually,

we will reconstruct  V . This problem is the simplest one since

     
, 

z

zzz
'z ii

i



 (17)

where ii zzz  1  with iz  correspond to the redshifts where  zH  and  zH 

have been reconstructed. It is clear, that Eqs. (13), (14) and (17) allow to perform

the model-independent reconstruction of the potential  V  describing quintessence

dark energy in our Universe.

3.1.  V  reconstruction when H
0
 is not fixed. The first case corre-

sponds to the reconstruction when H
0
 is not fixed. In this case, using GP and

given data, Table 1, we first estimate H
0
 during the reconstruction process. It is

H
0

 = 71.286 ± 3.743 km s-1
 Mpc-1 when the kernel is given by Eq. (15), while when

the kernel is given by Eq. (16), we found that H
0

 = 71.196 ± 3.867 km s-1
 Mpc-1.

Then using the reconstructed  zH  and  zH   in Eqs. (13) and (14) (combined

with Eq. (17)) we can finish the model-independent reconstruction of  V .

Omitting other non-relevant technical details, we refer the reader to Fig.5, which

depicts the model-independent reconstructed forms of the potential  zV  and field

 z . The reader may have already noted that the estimated errors for H
0
 are
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significantly larger than those from the Planck data and those from the Hubble

mission. It should be mentioned that, as a consequence of these upper and lower

bounds on  V , this case will significantly differ from the other two cases. In

general, this can have a strong impact on the model parameter constraints and

affect the viable model selection. Obviously, in general, this can affect the early-

time behavior of a given quintessence dark energy model.

We now elaborate on our reconstruction results. At first glance, the reconstruc-

tion has been successful. However, to understand and validate the corresponding

results, we need to have a look at another physical quantity that has been

reconstructed, too. It is important to understand up to what extent we can believe

in the model validity in our case. In general, non-validation of the reconstruction

results can lead to wrong interpretations and cause misunderstanding of the under-

lying physics. The physical quantity we choose for this purposes is 23Hde  ,

which at 0z  has actually been used to estimate   ( 0z ), too.

The results of the reconstruction of the   can be found in Fig.6 for both

kernels given by Eqs. (15) and (16), respectively. Indeed, we see that the

reconstruction was successful up to a certain redshift, indicating that for higher

values the model should be rejected since the lower 2  bound of de  is negative.

It is important to mention that the GP gives the statistical explanation of the

results, and considering only the means to decide whether or not something is

working is not a correct procedure. To have a proper understanding, we need to

consider the whole picture, which in our case indicates that the reconstruction

of  zV  and  z  is acceptable up to some redshift. Having this in mind, we

continued the study and, using the means of the reconstructed  zV  and  z ,

Fig.1. GP reconstruction of )(zH  and )(zH   for the 40-point sample deduced from the
differential age method, with the additional 10-point sample obtained from the radial BAO method,
when H

0
 = 73.52 ± 1.62 km s

-1
 Mpc

-1
 reported by the Hubble mission. The ' means derivative with

respect to the redshift z .

H
(z
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H
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we have directly reconstructed the mean of  V .

On the other hand, using the lower and upper 2  error bounds of both the

 zV  and  z  reconstructed functions, we have determined possible maximum

errors for  V  allowing to complete our task, which was to obtain a model-

independent reconstruction of  V  describing quintessence dark energy as the

driving force of our expanding Universe. The result can be found in Fig.2, where

the left-hand side plot represents the reconstruction result when the kernel is given

by Eq. (15), while the right-hand side one stands for the case with kernel given

by Eq. (16), respectively.

Fig.2 shows how different models can be compared and constrained using the

reconstruction. In particular, we see why the quintessence dark energy model with

   eV ~  (dashed curve, for instance, with 8540.  in the left-hand side plot

of Fig.2, is among the most successful ones. Our analysis explains why this

particular model has captured such a lot of attention in the literature. On the

other hand, we also see that the quintessence dark energy model with

    n~V   cos1  (solid curve with 651. , n = 0.05 and 20. , for

instance) will not work  very well and there is a hint that it should be rejected.

Additionally, the model with potential    ~V  (dotted curve with 1250. )

should be kept, and it will work better than the model with     n~V   cos1 .

This is inferred from the curves on both plots of Fig.2.

It is made clear from the provided discussion that any given model can be

analyzed, and that proper constraints on the parameters can be found. Going one

step further, it should be now possible to see why some dark energy models with

specific potentials will not work for solving the H
0
 tension problem. Moreover,

Fig.2. Reconstructed )(V  for the case when H
0
 = 71.286 ± 3.743 km s

-1
 Mpc

-1
 has been

estimated by a GP using the expansion rate data presented in Table 1. The curve with black squares
corresponds to the mean of the reconstructed )(V  model obtained from the reconstructed means

of the functions )(zV  and )(z . The lower and upper 2  error bounds of both reconstructed
functions )(zV  and )(z  have been used to determine possible maximum error bounds for )(V
(curves with black circles).
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in the next subsection, we will discuss how drastically the constraints on the model

parameters should be changed to be suitable to solve the H
0
 tension problem.

Before ending this one, and based on the reconstructed results, we suggest a

new form for the potential to describe a viable quintessence dark energy model.

From what we know, this specific model has not been considered before. The

potential has the form

    , sin1   n~V (18)

where  , n, and   are free parameters to be fitted. The dot-dashed black curve

of Fig.2 corresponds to this model; it is one-to-one in mimicking the recon-

structed mean behavior with 0010. , 50.  and n = 0.5, when the kernel is

given by Eq. (15). To finish, we should mention that the consideration of the

kernel, Eq. (16), will introduce changes only slightly affecting the above-discussed

numerical values of the parameters. However, the general picture and the con-

clusions drawn remain unchanged.

3.2.  V  reconstruction when H
0

 = 67.40 ± 0.5 km s-1
 Mpc-1

. In this

subsection, we discuss the case when a specific value for H
0
 has been fixed in

advance and used in the reconstruction. Different from the previous case, now the

reconstruction is based on 41 data points. We will later see that this can affect

our perception of the situation and can be moreover useful to understand why

the constraints on quintessence dark energy models discussed in the recent

literature may be so different. To be more precise let us indicate that we use the

H
0
 reported by the Planck mission. Similar to the previous case, 23Hde 

has been considered again allowing us to determine the redshift range where the

reconstruction is valid. In particular, we found that when the squared exponent

kernel given by Eq. (15) is considered then the  2 ,0z  redshift range provides

a physically acceptable reconstruction of the functions  zV  and  z . Moreover,

when we consider the Matern ( 29 ) kernel, Eq. (16), then  1.91 ,0z  is the

redshift range providing physically acceptable reconstructions of  zV  and  z  (see

Fig.8). On the other hand, from the top panel of Fig.7 we realize the reconstructed

forms of the potential  zV  and the field  z , when the kernel is given by Eq.

(15). Complementary, the reconstruction results when the kernel is given by Eq.

(16) can be found on the bottom panel of Fig.7.

To reconstruct the mean of  V  potential we have used the means of the

reconstructed  zV  and  z . Moreover, using the lower and upper 2  error

bounds of both reconstructed functions,  zV  and  z , we have determined

possible maximal errors for  V  (Fig.3), what allowed us to complete the model-

independent reconstruction of the  V  describing the quintessence dark energy

in our expanding Universe. The reconstruction results can be found in Fig.3,

where the left-hand side plot represents the reconstruction result when the kernel
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is given by Eq.(15), while the right-hand side one corresponds to the case with

kernel given by Eq.(16).

Visual comparison of the results presented in Fig.2 and Fig.3 already points out

huge differences. In particular, just comparing the mean of the reconstruction with

   eV ~ , we conclude that the model with 050.  should  be preferred for

cosmological applications. On the other hand, with 010.  the model with the

potential    ~V  may be highly recommended for doing cosmology. Moreover, we

also conclude that, with 050. , n = 0.75 and 0010. , the model with potential

      n~V sin1  is favored for doing cosmology. Finally, the model with

    n~V   cos1  can be recommended too, if 020. , 651.  and n = 0.05.

In all these examples, the kernel was given by Eq. (15). Our analysis using

the kernel of Eq. (16) shows that similar recommendations can be made. However,

we should note that the reconstruction indicates that here we will have tighter

constraints on the model parameters than in the previous case. However, the most

relevant aspect revealed from the reconstruction is that the early time behavior

of the models can change significantly. This is a hint indicating that the H
0

tension is not just a result of playing with numbers. It is more profound than

this, namely a problem related to physics and corresponding considerations. This

should be made more clear in the next subsection, where we will present the

results corresponding to the reconstruction based on the value of H
0
 reported by

the Hubble mission.

Fig.3. Reconstructed )(V  for the expansion rate data in Table 1 with H
0
= 67.40±0.5 km s

-1
Mpc

-1
.

The curve with black squares corresponds to the mean of the reconstructed )(V  model obtained from
the reconstructed means of the functions )(zV  and )(z . The lower and upper 2  error bounds of
both reconstructed functions )(zV  and )(z  have been used to determine possible maximum error

bounds for )(V  (curves with black circles). The dashed curve represents the quintessence dark energy
model with potential 


 eV ~)( . The dotted, dot-dashed, and solid curves correspond to the quin-

tessence dark energy model with 

 ~)(V , )](sin1[)( 

 n
~V  and )](cos1[)(

n
~V 


,

respectively. The left-hand side plot is the result of the reconstruction when the kernel is given by Eq.
(15), while the right-hand side one stands for the case with kernel given by Eq. (16).
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3.3.  V  reconstruction when H
0

 = 73.52 ± 1.62 km s-1
 Mpc-1

. The

last case to be discussed here is when H
0
 is fixed to the value H

0
 = 73.52 ± 1.62

km s-1
 Mpc-1 reported by the Hubble mission. This means that similarly to the

second case, the reconstruction of  zH  and  zH   will be also based on 41 data

points. The reconstructed  zV  and  z  for  2.4 ,0z  can be found in Fig.9.

The reconstruction there has been obtained for the squared exponent kernel given

by Eq. (15). The final results of the reconstruction are depicted in Fig.4.

Our analysis based on these reconstructions shows when the resulting potentials

can be recommended for cosmology. In particular, we found that according to the

mean of the  V  reconstruction, the model with    eV ~  and 41.  is

expected to be useful for cosmological applications. On the other hand, the model

with potential    ~V  can be highly recommended, provided 250. . More-

over, we found also that, with 50. , n = 0.576 and 0050. , the model with

potential       n~V sin1  is also favored for cosmological applications. Fi-

nally, the model with     n~V   cos1  is also useful, provided 250. ,

751.  and n = 0.05.  In all  these examples the kernel was given by Eq. (15).

An analysis using the kernel of Eq. (16) shows that similar recommendations can

be done, too. Moreover, the reconstruction results indicate that here the constraints

on the model parameters will not be tighter than in the case discussed in Sect.

3.2. On the other hand, the early time behavior of the models could change

significantly. The reconstruction of the 23Hde   has been considered again

allowing us to determine the redshift range where the reconstruction is valid

(Fig.10).

To end this subsection let us mention that the values of the parameters for

the models presented above give a hint on when the H
0
 tension problem can be

solved, in a quintessence dark energy-dominated Universe, when one of the forms

for the potential discussed above is used. Let us mention again that reconstructions

here obtained are model-independent and based on the expansion rate data, and

Fig.4. Same as Fig.3, but with H
0
 = 73.52 ± 1.62 km s

-1
 Mpc

-1
.
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that they can be used either to craft new models or to constrain already existing

ones.

4. Conclusions. In this paper, we have used GPs and available expansion

rate data to reconstruct the functional form of the potential better-representing

quintessence dark energy. There are various and important open questions about

dark energy physics and the challenge of answering them is usually undertaken

using model-dependent approaches. The quintessence dark energy paradigm is

among the most often discussed models. In there, the form of the potential field

is chosen manually, in a sort of phenomenological approach, mainly aimed at

reproducing the observational data. We notice that the same is true for other dark

energy models and that mainly phenomenology-based motivations have been put

forward to craft viable dark energy models.

As an alternative to all these previously carried out studies, we describe in detail

the whereabouts of a model-independent reconstruction of the potential. Moreover,

the results of the reconstruction can be used to build new potentials and to

constrain the free parameters. Starting from very basic assumptions about the

background dynamics, we have demonstrated that the potential and the field itself

can be expressed in terms of  zH  and  zH  , which can be reconstructed in

a model-independent way from the expansion rate data using a GP. GPs are

among several very useful Machine Learning tools intensively used in very different

areas, among them in cosmology.

The main issue with this approach is to specify the form of the kernel function

that needs to be chosen to be able to complete the reconstruction. The literature

contains various interesting discussions indicating that it is better to use several kernels

and compare the results. This is, in our opinion, an optimal solution that can be

time-consuming; however, it is judicious to follow this approach and make sure that

the hints and the results obtained have value and have not been obtained by chance.

In our work, the quintessence dark energy potential and the corresponding field

have been reconstructed for three different cases: 1) when H
0
 has been estimated

from the GP reconstruction of the functions  zH  and  zH  , based on  an existing

40-point expansion rate dataset; 2) when H
0
 is fixed to the value estimated from

the Planck mission and then the reconstruction of  zH  and  zH   is performed;

3) when H
0
 is fixed to the value estimated from the Hubble mission results and

then the reconstruction of  zH  and  zH   is performed. In this way, we get a

hint on when the H
0
 tension problem could be reasonably solved, for instance, when

the model with    eV ~  is considered. We have studied other models, too, and

also found a new potential,       n~V sin1 , which can be recommended to

be used in cosmology. This is a genuine discovery made in this paper. An in-depth

study of this new potential has been left for future publication.
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We need to mention that, in our analysis, we have used the two kernel

functions given by Eqs. (15) and (16), and found slight changes (detailed above),

as compared with the results discussed before, but those are not so important.

However, we would like to discuss another result we have at this point. First,

concerning the possible constraints on the   parameter of the Swampland

   eV ~  potential, which was discussed in [55]. Without going deep into the

discussion of [55], we learned that, with future surveys, we should expect

fundamental observational limitations,   to 10. , supporting the standard

model. Now the question is: what we have learned with our method? To

understand this, let us summarize what we obtained, namely the preferred values

for the parameters: 1) 8540.  when H
0
 is not fixed, 2) 010.  when H

0
 =

67.40 ± 0.5 km s-1
 Mpc-1, and finally 3) when H

0
 = 73.52 ± 1.62 km s-1

 Mpc-1 we got

41. . In all cases, we have just used the reconstruction means, and the last

one means that, if we use lower error bounds of the reconstruction, we will reduce

the estimated values too.

Anyhow, the important message we wish to transmit to the reader is 1) that

the 40 data point expansion rate data already contains the information that can

come from future surveys; 2) the great importance of the tool we use to extract

information from data. Moreover, our constraints on the parameter   when

H
0

 = 67.40 ± 0.5 km s-1
 Mpc-1 indicate that any other estimation closer to the

estimation obtained here definitely supports the CDM  standard model. In all

other cases, we can claim that the CDM  theory might be challenged. This is

an indication that the H
0
 tension problem is not a game of statistics only.

Of course, there are other various questions to be studied yet, which have been

left for further consideration. In particular, to continue using GPs and other

Machine Learning algorithms involving other datasets for model-independent

reconstruction or pattern learning that can be used for similar estimations and

reconstructions. More specifically, it would be interesting to see if the recently

discovered constraints would be challenged in those cases, and what the conse-

quences of this could be.
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APPENDIX

We include here several additional figures, Fig.5-10, to allow the reader to

estimate the quality of the reconstructions presented in the paper.

Fig.5. Reconstruction of )(zV , Eq. (13), and )(z , Eq. (14), from the )(zH  data depicted

in Table 1. The plots of the top panel correspond to the GP reconstruction for the squared exponent
kernel given by Eq. (15). The plots of the bottom panel correspond to the GP reconstruction for
Matern ( 29 / ) kernel given by Eq. (16). The solid line is the mean of the reconstruction and

the shaded regions are the 68% and 95% C.L. of the reconstruction, respectively. H
0
 = 71.286 ±

3.743 km s
-1

 Mpc
-1
 and H

0
 = 71.196 ± 3.867 km s

-1
 Mpc

-1
 estimates for H

0
 have been obtained using

GP when the kernels are given by Eq. (15) and Eq. (16), respectively.
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Fig.6. The top panel represents the reconstruction of 
2

3/ H
de 

  from the )(zH  data

depicted in Table 1. The left-hand side plot corresponds to the GP reconstruction for the squared
exponent kernel given by Eq. (15). The right-hand side plot corresponds to the GP reconstruction
for the Matern ( 29 / ) kernel given by Eq. (16). The solid line is the mean of the reconstruction

and the shaded regions are the 68% and 95% C.L. of the reconstruction, respectively. H
0
 = 71.286

± 3.743 km s
-1

 Mpc
-1
 has been estimated by GP from the data presented in Table 1 when the

squared exponent kernel given by Eq. (15) has been used. On the other hand, H
0
 = 71.196 ± 3.867

km s
-1

 Mpc
-1
 has been estimated by GP from the data presented in Table 1 when the Matern ( 29 / )

kernel given by Eq. (16) has been used. The bottom panel represents the reconstruction of 


 /P
where 

P  and 
  are given by Eq. (12) and Eq. (11), respectively, while 0070153

0
..  .
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Fig.7. Reconstruction of )(zV , Eq. (13), and )(z , Eq. (14), from the )(zH  data depicted

in Table 1 when H
0
 = 67.40 ± 0.5 km s

-1
 Mpc

-1
. The plots of the top panel correspond to the GP

reconstruction for the squared exponent kernel, Eq. (15). The plots of the bottom panel correspond
to the GP reconstruction for the kernel given by Eq. (15). The solid line is the mean of the

reconstruction and the shaded regions are the 68% and 95% C.L. of the reconstruction, respectively.
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Fig.8. The top panel represents the reconstruction of 
2

3/ H
de 

  from the )(zH  data

depicted in Table 1 when H
0
 = 67.40 ± 0.5 km s-1

 Mpc-1. The left-hand side plot corresponds to the
GP reconstruction for the squared exponent kernel given by Eq. (15). The right-hand side plot
corresponds to the GP reconstruction for the Matern ( 29 / ) kernel given by Eq. (16). The solid

line is the mean of the reconstruction and the shaded regions are the 68% and 95% C.L. of the
reconstruction, respectively. The bottom panel represents the reconstruction of 


 /P  where 

P
and 

  are given by Eq. (12) and Eq. (11), respectively, while 0070153
0

..  .
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Fig.9. Reconstruction of )(zV , Eq. (13), and )(z , Eq. (14), from the )(zH  data depicted

in Table 1 when H
0
 = 73.52 ± 1.62 km s

-1
 Mpc

-1
. The plots of the top panel correspond to the GP

reconstruction for the squared exponent kernel, Eq. (15). The plots of the bottom panel correspond
to the GP reconstruction for the kernel given by Eq. (15). The solid line is the mean of the

reconstruction and the shaded regions are the 68% and 95% C.L. of the reconstruction, respectively.
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ÐÅÊÎÍÑÒÐÓÊÖÈß ÏÎÒÅÍÖÈÀËÀ ÊÂÈÍÒÝÑÑÅÍÖÈÈ
ÒÅÌÍÎÉ ÝÍÅÐÃÈÈ ÈÇ ÃÀÓÑÑÎÂÑÊÎÃÎ ÏÐÎÖÅÑÑÀ

Ý.ÝËÈÇÀËÄÅ1, Ì.ÕÓÐØÓÄßÍ1, Ê.ÌÛÐÇÀÊÓËÎÂ2,3, Ñ.ÁÅÊÎÂ2,3

Â ðàáîòå ïðåäñòàâëåíà ðåêîíñòðóêöèÿ ïîòåíöèàëà êâèíòýññåíöèè òåìíîé

ýíåðãèè ñïîñîáîì, íåçàâèñÿùèì îò ìîäåëè. Ðåêîíñòðóêöèÿ îñíîâàíà íà

ãàóññîâîì ïðîöåññå è èìåþùèõñÿ äàííûõ î ñêîðîñòè ðàñøèðåíèÿ. Êîíêðåòíî,

èñïîëüçóþòñÿ 40 òî÷åê çíà÷åíèé  zH , âêëþ÷àþùèõ â ñåáÿ 30-òî÷å÷íóþ

âûáîðêó, ïîëó÷åííóþ ñ èñïîëüçîâàíèåì ìåòîäà äèôôåðåíöèàëüíîãî âîçðàñòà,

è äîïîëíèòåëüíóþ 10-òî÷å÷íóþ âûáîðêó, ïîëó÷åííóþ ñ ïîìîùüþ ìåòîäà

ðàäèàëüíîãî BAO. Ðåçóëüòàòû ïîëó÷åíû äëÿ äâóõ ÿäåðíûõ ôóíêöèé è òðåõ

ðàçëè÷íûõ çíà÷åíèé H
0
. Ýòî ïðîëèâàåò ñâåò íà ïðîáëåìó íàïðÿæåíèÿ Õàááëà,

óêàçûâàÿ íà òî, ÷òî ýòî íå ïðîñòî ÷èñëîâàÿ ïðîáëåìà. Ìîäåëüíî-íåçàâèñèìàÿ
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Fig.10. The top panel represents the reconstruction of 
2

3/ H
de 

  from the )(zH  data
depicted in Table 1, when H

0
 = 73.52 ± 1.62 km s-1 Mpc-1. The left-hand side plot corresponds to

the GP reconstruction for the squared exponent kernel given by Eq. (15). The right-hand side plot
corresponds to the GP reconstruction for the Matern ( 29 / ) kernel given by Eq.(16). The solid
line is the mean of the reconstruction and the shaded regions are the 68% and 95% C.L. of the

reconstruction, respectively. The bottom panel represents the reconstruction of 


 /P  where


P  and 

  are given by Eq. (12) and Eq. (11), respectively, while 0070153
0

..  .
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ðåêîíñòðóêöèÿ ïîòåíöèàëà ìîæåò ñëóæèòü "êîíòðîëüíîé" äëÿ îãðàíè÷åíèÿ

èìåþùèõñÿ ìîäåëåé è ñîçäàíèÿ íîâûõ. Ðàçëè÷íûå âîçìîæíûå ïîòåíöèàëû,

âêëþ÷àÿ    eV ~ , ñðàâíèâàþòñÿ ñ ïåðâûìè ïî-íàñòîÿùåìó ìîäåëüíî-

íåçàâèñèìûìè ðåêîíñòðóêöèÿìè ïîòåíöèàëà òåìíîé ýíåðãèè êâèíòýññåíöèè,

ïîëó÷åííûìè â äàííîé ðàáîòå. Ýòî ïîçâîëÿåò âûáèðàòü íîâûå ìîäåëè,

êîòîðûå ìîãóò áûòü èíòåðåñíû äëÿ êîñìîëîãèè. Â ñëåäóþùåé ðàáîòå áóäåò

ïðåäñòàâëåí ðàñøèðåííûé ìåòîä äëÿ ðåêîíñòðóêöèè ïîòåíöèàëà ñâÿçàííûõ

ìîäåëåé òåìíîé ýíåðãèè.

Êëþ÷åâûå ñëîâà: êâèíòýññåíöèÿ òåìíîé ýíåðãèè: ïîòåöèàë: ãàóññîâñêèé ïðîöåññ
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