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BENCHMARKING AND IMPLEMENTING DEEP LEARNING
ALGORITHMS ON FIELD PROGRAMMABLE GATE ARRAYS AND
APLLICATION SPECIFIC INTEGRAL CIRCUIT PLATFORMS

Issues on the enhancement of Artificial Intelligence (Al) performance using Field-
Programmable Gate Arrays (FPGA) and Application-Specific Integrated Circuits (ASIC)
are studied. It focuses on benchmarking and implementing deep learning algorithms, crucial
components of modern Al, on these advanced hardware platforms. The study begins with
an explanation of the significance of deep learning in Al and the growing need for efficient
computing platforms like FPGA and ASIC. These platforms are known for their high-speed
processing capabilities and low power consumption, making them ideal for Al applications.

The research then delves into a detailed analysis of how deep learning algorithms
can be optimized and executed on FPGA and ASIC platforms. It highlights the methods
used to benchmark the performance of these algorithms on the mentioned hardware,
providing a clear comparison with traditional computing systems. The paper also discusses
the challenges and solutions in integrating deep learning algorithms into these specialized
hardware environments.

Further, the advantages of using FPGA and ASIC for Al tasks, including improved
processing speed, reduced energy consumption, and enhanced ability to handle complex Al
computations are studied.

Keywords: FPGA, ASIC, artificial intelligence, neural networks.

Introduction. The field of artificial intelligence (Al) has seen an unprecedented
acceleration in performance and efficiency, primarily driven by significant
advancements in deep learning algorithms and their implementation on specialized
hardware platforms. This paper delves into the comparative analysis and practical
implications of deploying deep learning models on Field-Programmable Gate
Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs), two of the
leading hardware platforms that offer distinct advantages for Al applications. It is
predicted that the Al on chip market revenue will be rising exponentially in the
coming decade [1] and will increase more than 13 times until 2032 (Fig. 1).

FPGAs, known for their flexibility and reconfigurability, present a compelling
option for Al research and development, allowing for rapid prototyping and adaptation
to evolving algorithmic needs. The adaptability of FPGAS to changing requirements

87



and algorithms is discussed in-depth in the [2] works of Hauck and DeHon (2010),
who highlight the architectural benefits and design considerations of FPGAs for
computing tasks.

Artificial Intelligence chip market size, 2022 to 2032 (USD billiion)
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Fig. 1. Al on chip market revenue predictions

On the other hand, ASICs, with their specialized design tailored for specific
applications, offer unmatched efficiency and performance for well-defined tasks.
[3] explores the design space and optimization strategies for ASICs in Al, emphasizing
the potential for achieving high throughput and energy efficiency in deep learning
applications.

The core of this paper focuses on benchmarking the performance of deep
learning algorithms when implemented on these platforms, considering metrics such as
computational throughput, power consumption, and latency. Benchmarking efforts
draw on the methodology outlined in [4] comprehensive analysis of deep learning
benchmarks across various hardware platforms, providing a framework for evaluating
FPGA and ASIC implementations. The data from [4] is summed up in Fig. 2.

By integrating insights from these reference papers, the current study offers
a nuanced understanding of the trade-offs involved in choosing between FPGAs
and ASICs for Al tasks. It examines how the inherent flexibility of FPGAs might
be leveraged for experimental and evolving Al models, while the efficiency of
ASICs could be harnessed for large-scale, high-performance applications with
stable requirements.
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Furthermore, this paper contributes to the ongoing discourse on optimizing
hardware architectures for Al by presenting case studies and empirical data on the
implementation of cutting-edge deep learning algorithms on both FPGA and ASIC
platforms. Through this analysis, it seeks to provide actionable insights for
researchers and practitioners in the field of Al, guiding the selection and
optimization of hardware platforms for diverse Al applications.

FPGA g ASIC
Fast - Time to market ] Slow

Low l Time to market - High
Simple ' Time to market - Complex
High - Time to market ] Low
High - Time to market ] Low

Fig. 2. Pros and cons of FPGA against ASIC

Incorporating an examination of benchmarking methods into the discourse
on the implementation of deep learning algorithms on FPGA and ASIC platforms
is essential, especially given the inherent challenge of establishing equivalency
between disparate FPGA models and ASIC designs. This paper extends its analysis
to address these benchmarking intricacies, adopting a multi-faceted approach to
navigate the heterogeneity of hardware specifications and performance metrics.

Benchmarking deep learning implementations on FPGAs and ASICs involves
a nuanced methodology that accounts for not only raw performance metrics such as
computational throughput (in operations per second) and power efficiency (in
operations per watt), but also factors like programmability, scalability, and the
adaptability of the hardware to evolving deep learning models. The complexity of
this task is amplified by the diversity in FPGA architectures and the specificity of
ASIC designs, which necessitates a standardized yet flexible benchmarking
framework.
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In essence, the benchmarking methodology outlined in this paper is designed
to provide a fair comparison of FPGA and ASIC platforms for deep learning
applications. By addressing the challenge of establishing equivalency between
heterogeneous hardware platforms, this approach enables a more informed
decision-making process for researchers and practitioners in the field of Al,
guiding the selection of the most suitable hardware for specific deep learning tasks
and objectives.

Method. To perform proper benchmarking between FPGA device and ASIC
design two aspects are compared:

o Power efficiency

e Maximum clock period

Of course, to ensure equivalent conditions for comparison several
considerations must be made.

1. The same RTL code is used during synthesis for FPGA and ASIC design.

2. During synthesis and implementation stages, the same constraints are
used for FPGA and ASIC design.

3. ASIC design uses a transistor library for the same technology and
operating voltage as the FPGA device’s internal logic. During the analysis stage
both environments are simulated in a typical corner.

4. For both devices, the same generated RTL code is used. The RTL is
generated by using several caffe models and executing IBM’s AccDNN tool [5].

5. For FPGA, the RTL models are synthesized, implemented, and analyzed
using Xilinx Vivado tool [6]. The board used in the research is Vitrix-7.

The flow used to achieve proper benchmarking between ASIC and FPGA is
illustrated in Figure 3 which includes all mentioned steps. ASIC design is created
and simulated by Synopsys Design Compiler tool [7] (Fig. 4). The technology used
for the implementation is Synopsys Advanced Education Design 32/28 nanometer
(nm) library, since it is the same one used for Virtix-7 FPGA boards. The transistor
library is selected based on the operating voltage (1.05V), process (typical) and the
transistor type (rvt). The constraint file between Vivado and Design Compiler tools
is shared since both support the *.xdc format.
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Fig. 3. FPGA vs ASIC benchmarking flow

Fig. 4. ASIC design synthesized by Design Compiler (on the left). Design placed on FPGA
(on the right)

Experimental results. Several neural networks were passed through the

mentioned flow (particularly cifar10 [8], vggl6 [9], yolo [10], Alexnet [11]). Both
static and dynamic powers were measured and compared. Total power is equal to

the sum of static and dynamic powers as shown in Figure 5.
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Fig. 5. Power dissipation in ICs

t
S = fo Vbplieak dt, 1)

where S is the static power dissipation, V, — the source voltage, I}, — the total
leakage current of the system.

t
D = [, CVppfedt, )

where D is the dynamic power dissipation, C — the total switching capacitance of
the circuit, Vpp — the source voltage, f. — switching activity or frequency.
Finally, the total power dissipation, which is the sum of D and S will be:

t
E=D+S5= fo (VDDIleak + CVL%ch)dt- (3)

The tools are measuring the system power based on equations (1), (2), (3),
and the results are shown in Table I.

As can be seen from the results, all ASIC designs show significantly lower
power consumption due especially in the dynamic domain. The main contributors
to this reduction are optimized design, lower parasitic due to shorter and more
efficient routing and clock paths.

The second aspect of benchmarking is the maximum clock frequency which
directly impacts the computation capability of the design. Apart from the device
limitations, the only entity which keeps the working frequency down is the slack
represented in formula (4):

Slack = Arrival_time — Required_time, 4

where Arrival_time is the time elapsed for a signal to arrive at a certain point.
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Power measurement for several ANN implementations (in Watts)

Table 1

Platform Power cifarl0 vggl6 yolo Alexnet
- Dynamic 2,328 7,128 7,338 7,212
Virtix-7 -
Static 0,244 0,736 0,797 0752
ASIC Dynamic 0,189 0,4859 0,5132 0,4808
Static 0,0235 0,0849 0,0927 0,08997

The Required_time is the latest time at which a signal can arrive without
making the clock cycle longer than desired.
The slack should always be positive, otherwise the design will not function
properly.
Table 2

The maximum working frequency with the acceptable slack for several ANN
implementations (in MHz)

Platform cifarl0 vggl6 yolo Alexnet
Virtix-7 186,7 219,3 128,0 185.4
ASIC 568,4 472.3 232,9 281.9

Conclusion. This study has provided evaluation of deep learning algorithm
performance on FPGA and ASIC platforms, highlighting the trade-offs between
flexibility and efficiency. The findings demonstrate that while FPGAs offer
adaptability and are conducive to research and development, ASICs excel in high-
throughput, energy-efficient computations for established deep learning tasks. The
benchmarking methodology adopted ensures a fair and informative comparison,
considering factors such as power efficiency, clock frequency, and design area. The
data shows improved power efficiency of ASIC designs compared to FPGA by
average 90.2%. At the same time, ASIC designs have 67.5% higher clock frequency
capability. The future work will expand on the implications of these findings for
the design of more specialized hardware and the optimization of deep learning
algorithms for these platforms. Also, microbenchmarking can be added to the
methodology to increase the equivalency between the devices, and gain more
insight into the further design optimizations.
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PEAJIMZAIIUA U CPABHEHUE AJITOPUTMOB I''IYBOKOT'O
OBYUYEHMS HA IVIAT®OPMAX ITPOI'PAMMMPYEMBIX
BEHTUJIBHBIX MATPHULl 1 UHTEI'PAJIBHBIX CXEM
CIIEHUAJIBHOT'O HASHAYEHMUA

Hccnenyrorcst BOnpoch! MOBBILEHHS TPOU3BOAUTENBHOCTH UCKYCCTBEHHOTO MHTEILIEKTA
(M) c ucronp30BaHMEM MpPOrpaMMUPYEMbIX BeHTHIBHBIX Matpull (IIBM) n mHTerpansHbIX
cxeMm cnenunanbHoro HazHaueHus (ICCH). OcHOBHOe BHUMaHHE YEIACTCS TECTUPOBAHHIO
W BHEJPEHHIO aJITOPUTMOB TITyOOKOTO OOy4eHMsl, BAYKHEHIIINX KOMIOHEHTOB COBPEMEHHOIO

HCKYCCTBEHHOI'O MHTEJUIEKTA, HA OTUX IIEPEAOBBIX aIlllapaTHBIX rmaT(bopMax. UccnenoBanue
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Ha4yMHaeTcs ¢ 00BICHEHUS 3HaueHus riryookoro o0y4yenust B U u pacryueit morpedHOCTH B
3¢ PEeKTUBHBIX BBIYUCIUTENBHBIX IUIaTopmax, Takux kak [IBM u UCCH. Otn nnardopmst
W3BECTHBI CBOMMH BO3MOKHOCTSIMH BBICOKOCKOPOCTHOHM 00paOOTKM M HU3KUM SHEpronoTpede-
HHEM, YTO JeJlaeT UX HACATbHBIMU JUIS MPUI0KEHUH MCKYCCTBEHHOTO MHTEIUIEKTa. 3aTeM
UCCIe/IOBaHNE YrITyOJsieTcss B MOJAPOOHBIN aHaIN3 TOro, KaK ajrOpUTMBbI IIyOOKOro oOyue-
HHS MOTYT OBITh ONTHMH3HPOBAHbI M peann3oBanbl Ha iatgopmax [IBM u UCCH. B Hem
OCBEILAIOTCSI METOJbI, UCTIONIb3yEMBIE TS OLIEHKH MTPOM3BOAUTEIHLHOCTH 3THX aITOPUTMOB
Ha YIOMSHYTOM 00OpYZIOBaHWH, OOECTICUNBAsI YETKOE CPABHEHUE C TPAAMIHMOHHBIMH BBIUHCIIH-
TeTbHBIMU cucTeMaMi. OOCY)KHAroTcs MpoOJeMbl W PEIIeHUS 110 WHTErpaluyl alrOpHTMOB
ITyOOKOro 00y9eHHs! B 3TH CHENMAIN3UPOBAaHHBIE alllapaTHBIE Cpeibl. M3ydaroTes mpenMyInecTsa
ncrions3oBanmst [IBM u UICCH nnst 3amau MU, BKiFOYast TOBBIIICHHUE CKOPOCTH OOpaOOTKH,
CHIDKEHHE SHEPronoTpedIeHNs U paclIipeHre BO3MOKHOCTEH 00pabOTKY CIIO’KHBIX BBIYHUCIIE-
Huit U1

Kniouesvie cnoea. nporpaMMHupyeMble BEHTWIbHBIE MATpPHIBI, HHTETPAJIbHBIE CXEMBI
CIEeNHMANTbHOTO Ha3HAUYEHUs, NCKYyCCTBEHHBIN HHTEIUIEKT, HEHPOHHBIE CETH.
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