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DEVELOPMENT OF PARAMETERIZED MODEL OF LOGIC ELEMENTS AT
CLOCK TREE SYNTHESIS

Clock synthesis, routing optimization, placement and logic optimization are the
three primary phases of physical design implementation. Since clock network synthesis
uses at least 30% of the entire power budget, it is one of the crucial steps. Power
consumption for high-performance blocks can reach 50% of the entire power. Not only
would a high-quality clock tree will fix timing violations, but it will also minimize power
usage and routing resource use. A new neural network based parameterized model is
proposed in this paper, which can be used to obtain not only the list of logic elements, but it
also can predict the circuits timing behaviour. Different ICs using SAED 14 and 32 nm
technologies are designed using the proposed method.

Keywords: clock tree synthesis, automation, physical design, timing critical, neural
network.

Introduction. There are three primary branches of clock distribution: the
conventional clock network, the multisource clock network, and the mesh network
(Fig.1). The mesh network is deeper in the global clock trunk than the multisource
clock network, while the multisource clock network is shallower. This is the
difference between the two types of clock networks.

¥ \V ¥ * vvyv“fvvvvvvv“rvv vvvv‘vvvvvvwvvvvv
AR
YIlVll\' H“ 1T A e

Hv‘i‘HHHHHH N
| |

vy vh 'i_-v]v*_f' YV YR YRYYYYYY YV YR YEYYYYY

‘I""."'.'J""'m“ Y illlllu““ “Hinl nnnu““ “th
Conventional Clock Network Multisource Clock Network Mesh Clock Network

Fig. 1. Three main branches of clock distribution
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The clock structure will include a global driver and a local sink (Fig.2)[1].
Mesh routing distinguishes between conventional clock networks and mesh
networks, often known as multi source clock networks. Higher local sink depth is a
benefit of multisource clock dispersion. In comparison to a full mesh network, it
trades off routing resources, and consequently power as well. The reduced on-chip
variance is a benefit of the mesh network. The drawback of the mesh or
multisource clock distribution is that proper clock network delay propagation
requires the use of spice simulation to extract the cell, net delay, and output
transition time at the mesh routing. This is due to the inaccuracy with which static
timing analysis (STA) can determine the mesh driver's cell output delay, mesh net
latency, and mesh net output transition.
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Fig. 2. Global and Local sinks

The distinction between the mesh clock distribution and the multisource
method is that the latter may skip step 7 since step 1 contains additional tap drivers.
Traditionally, a custom method has been used to complete the global driver stages
1 through 5 (Fig.3), because the EDA tool is not yet ready to handle the
implementation [2-6]. The drawback of a tailored solution may be the requirement
for numerous iterations to reach the desired time convergence and latency.

This is because of the nature of the estimated versus expected implementation
error gap. For global clock drivers, some designs may have used a bespoke super-
clock cell [7,8] in order to obtain a greater driving range and reduced power
consumption.

In different physical implementation tools, basically two CTS flows are
supported, Classic CTS and Concurrent Clock & Data (CCD). During the first flow,
first runs CTS then data path optimization. The clock tree is built while ignoring
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the data paths, the goal is to minimize skew. In the second CCD flow, CTS and
data path optimization perform concurrently and it is recommended for timing-critical
designs. The clock tree is built with full knowledge of data path timing the goal is
to meet setup/hold timing.
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Fig. 3. Clock tree optimization steps

Various approaches have been used to optimize power, delay and skew to
make clock distribution networks suitable for low-power and high-performance
designs. An extensive study of different clock distribution networks, their timing
performance is carried out. Different architectures for clock distribution networks
are employed to meet various design requirements [9-14].

Thus, having a parameterized model to choose the right cell known as super
clock cell from Logic Libraries will shrink selecting time for Physical Implementation
EDA tools the clock tree will be balanced and time convergence, latency, power
dissipation will be in the desired range. Having a parameterized model also shrinks
time-to-time, as iterations in already mentioned clock tree optimization steps will
reduce. Choosing super clock cells from Logic Libraries is a difficult task, neural
network principles are used during this work. The proposed model can be used for
all clock tree strategies during optimization.

Neural networks (Fig.4) are computational models inspired by the human
brain, designed to recognize patterns, and make decisions.
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Fig. 4. Graphical abstraction of a neural network

Keras, a high-level neural network API [15], simplifies the implementation
process by providing an easy interface for building and training models. Algorithms
within neural networks, like backpropagation, optimize weights to minimize errors
during training, enhancing the model’s ability to generalize patterns in data.

Keras API incorporates diverse algorithms for training neural networks. One
fundamental algorithm is backpropagation, wherein the model (Fig.5) refines
weights based on the gradient of the loss function concerning those weights. This
optimization process aims to minimize the disparity between the predicted and
actual outputs during the training phase.
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Fig. 5. Two models of Keras

Moreover, Keras supports various optimization algorithms, such as Adam
and Stochastic Gradient Descent (SGD), influencing the weight updating. These
algorithms contribute to the improvement of convergence speed and efficiency during
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the training process. Additionally, Keras provides activation functions like ReLU,
Sigmoid, and Tanh, introduction of non-linearity to the model. This characteristic
enables the model to grasp intricate patterns and relationships within the data.

Having an automated flow to generate a cell list for the clock tree synthesis
provides several benefits:

¢ Automation: A flow allows for automation of the process, reducing the
change of human error and saving time.

o Scalability: As the design complexity increases, manually maintaining a
cell list becomes impractical.

And also, using neural networks for predicting the clock tree synthesis
results in the early stages of design with cells offers several benefits:

¢ Speed and efficiency: Neural network can quickly process large amounts
of data and make predictions faster than traditional methods.

e Complex pattern recognition: Neural networks excel at recognizing
complex patterns within datasets. In the context of CTS, where the interactions
between different cells and components are intricate, neural networks can capture
these relationships and provide more accurate predictions.

o Adaptability: Neural networks can adapt to different design scenarios and
change in requirements.

e Early design insights: Neural networks can provide early insights into
potential CTS challenges and optimizations.

The proposed approach. A new methodology is described aimed to fasten
the process and help the tool to fix the selected problem during the CTS stage.

The CTS creating and analyzer program which is implemented using the
proposed algorithm is described below.

The CTS creating and analyzer work can be separated into three main parts:

1. Library analyzer — which will select the most optimal cells from std cells
library for CTS.

2. Clock tree analyzer —Al - based system, which will predict the results
after CTS, which used the selected cells.

3. CTS — The CTS process in physical implementation tool, where we use
cells required in the library analyzer stage.

Graphical implementation for the above mentioned (Fig. 6).
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Fig. 6. Graphical approach to the proposed algorithm

As mentioned, the first stage is the library analyzer. The Library Analyzer,
implemented as a Perl script, examines the .lib file, identifying and systematically
reporting on the presence of all symmetric cells. As a result, Library analyzer
yields a comprehensive list of symmetric cells as a consequence of its analysis.
Notably, the defined threshold for inclusion is set at 30%, signifying those cells
surpassing this symmetry criterion for utilization in our Clock Tree Synthesis
(CTS) processes. Also, library analyzer filters the cells from one VT because, it is
essential to achieve synchronous and reliable operation in integrated circuits. This
uniform VT is instrumental in mitigating skew, which refers to timing
discrepancies among different segments of the clock tree. By ensuring a consistent
VT, clock signals, propagate at comparable speeds throughout the circuit reducing
timing variations and enhancing the overall performance and stability of the
system. The main steps for library analyzer are: (Fig. 7).

lib file(s)

Cells extraction with timing
tables

Comparison

Cell list

Fig. 7. The library analyzer’s workflow
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In the second stage, we analyze our design for the CTS side by using the
analyzer. The program is python-based where the user should do the steps
mentioned below (Fig.8):

Neural network model
definition

Cell list

Compile model and train Predicted results

Dataset

Result prediction

Fig. 8. Part of the used database

1. Load and split dataset which has been initially created. The part of the
initially created database shown in Table. 1.

2. Normalize the input features.

3. Define the neural network model: The script uses the “Sequential” model
from the “keras.models” module. The model consists of three Dense layers with
different activation functions. The first layer has 64 units and uses the “relu”
activation function. The second layer also has 64 units with “relu” activation. The
third and final layer has a single unit with a linear activation function.

4. Compile the model: The model is compiled using the “mean_squared_error
loss function and the “adam” optimizer. This prepares the model for training.

5. Train the model: The model is trained using the “fit()” function, which
takes the training sets (“X_train” and “y_train™), the number of training epochs, the
batch size, and the “verbose” parameter to control the progress output.

6. Evaluate the model: After training, the model is evaluated on the testing
set using the “evaluate()” function. The mean squared error (MSE) between the
predicted values and the true values is calculated and printed.

7. Make predictions on new data: Finally, the model is used to make
predictions on new input data. A new data point is created (in this example, with
arbitrary values), normalized using the same scaler used for training and passed to
the model to obtain the predicted slack value. The predicted slack is then printed.

8. In the final stage, the real CTS in physical implementation tool is
implemented, with the use of predicted cells.

L3
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Table 1

Dataset of different technologies

Tech |Metal| Gate |Macro|STD cells| Utili Cells Slack |Setup | Hold
nology | stack | count | count | utilization | zation ®s) | (ps) | (ps)
12 10 152903 |5 56.07 091 |LVT_INV_S 3; |[-038 |-35 |-1
LVT_INV_S;
LVT_INV_10
14 11 152424 |5 55.35 091 |LVT_INV_S 4; |-0.12 |-10 (-2
LVT_INV_6
12 9 140880 |5 75.77 0.84 |LVT_INV_S; -04 |-26 |-1
LVT_INV_10
16 11 168452 |3 68.23 0.75 |LVT_INV_3; -0.1 |0 0
LVT_INV_4;
LVT_INV_6;
LVT_INV_8
MUX2_MM_2

Results. The library analyzer provides an automated solution for cells
selecting process. The solution is technology independent and fully automated
which means that it gives an opportunity to do the selection automatically instead
of doing it manually. For the design parameter prediction, a CTS analyzer has been
developed which is a neural network-based workflow. The CTS analyzer gives an
opportunity to check the design slack, setup, hold, and dynamic power consumption
results in early stages. The CTS analyzer’s operational (predicted results raw) and
results from design (real results row) outcomes are comprehensively presented in a
tabular format (Table 2).

Table 2

The predicted versus real results

Design Predicted results Real results
Slack | Setup | Hold | Dynamic | Slack | Setup | Hold Dynamic Power
(ps) | (ps) | (ps) |Power(mWt) | (ps) | (ps) | (ps) (mwt)
Designl |-15 |-7 -2 0.967 -12 |-8 0 0.923
Design2 |-13 -9 -25 1.125 -11 -11 -26 1.101
Design3 |-8 0 -6 0.865 -9 -2 -7 0.894

Conclusion. In this paper, a digital standard cell library parameterized neural
network model was developed, from which the most optimal cells mostly fast and
symmetrical, are selected for the construction of the clock tree. The proposed
model is able to achieve timing and power improvement compared to the default
clock tree synthesis. It is suitable for full chip clock planning, as reducing iterations
for spice simulation tool to backannotate the driver cell delay. Next, parameters are
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pre-determined, the maximum deviation of which is 20% compared to the real one.
The application of the model makes it possible to reduce the design time, as it gives
a chance to get an idea about the parameters of the circuit in the initial stages of
design. Since customization is allowed, it can be part of the non-default permuton
exploration in design space optimization (DSO.AI) [16] tool, for future studies.
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4.C. UGLPL3UL, U.U. QULUSSUL, U.U. 1.N1hTUUSUL, U.U. 1ULU.L8UL,
E.B. WULUNES3UL

UbPLLrNULTULTEULUSEL OULE UbLEERh HY6NLNRU SCUUULULUYUL
SUCCGCk MU UUESM US4 U0 UNYGLE UTUUNkUL

Uhppnugnutipwiwghtt Swinh, dhouhwgmuubph b nknupwphidwt judupynudp $h-
qhjulut twhwgsdwt tptip hhdtwlwt thnykph B Luth np vhippnugnuiywtiughtt Swnt
oquuugnpému E wdpnng Hukpghwyh wntiuqh 30%-p, hnbwpwp' wyi $hqhljului juplinp
thnitphg Ukl b Pupdp wpgynitugbnnipyudp hunbgpuy upkdwbph hwdwp Butpghugp
uywnnulp Jupnn k hwubt) wdpnne tukpghuyh 50%-ht: Lwjwpydws uhtippnuqnuipwbiu-
jhtt dwnp ny Uphuyl Yninnh dudwbwlh pwpinnudubpp, wpb Juguqtguh W tubpghwgh, W
Uhouhwgnidubtph nkunipuh ogunugnpénidp: Unwowiplynid k tubjpnuughtt gmgh 4pu hhdu-
Jwsd unp yupudbnpugyws dnnby), npp jupnn E oguuiugnpdyty ny vhuyt mpudwpwbuljui
wnwppbph gwiyp vnwtwnt hwdwp, wyh jutjpuwnbund | ujubdwibph dwdwbtulught
wupwdbnpbpp uhippnugnuipwbiwght Swnh hwhwgsdwb pipwugpnid: NMupwdbinpbpp
qguwhwwnbint hwdwp wnwowplyuws dbpnnny twpwgsyl] Eu mwpunbuwl htnbkqpuy
ufubdwikp UUNRY 14 b 32 td wkutninghwibpm]:

Unwagpuypli punkp. uhuppnugqnuiipwiughtt Swnh uhliphq, wjnndwnwugnid, $hqh-
Julwt twpwgsnd, phnpljuljui dudwbwl, ubjpniughtt guug:
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B.III. MEJINKSH, A.A. TAJICTSH, C.A. TYKACSH, A.A. KA3APSIH,
9.E. KAPAIIETSIH

PA3PABOTKA MTAPAMETPU30BAHHOM MO/IEJIX JIOTUYECKUX
SJIEMEHTOB TP CUHTE3E JEPEBA CUHXPOCHUI'HAJIA

OHTI/IMI/ISaHI/ISI CHHXpOCI/IFHaHOB, Me)KCOC}II/IHeHI/Iﬁ nu pa3MeHleHI/I$[ e TpI/I OCHOBHBIX
sTana (GU3NIECKOro MPOCKTHUPOBaHUs. [T0CKONBKY IepeBO CHHXPOHHU3AIMU TOTPEOIIAET HE
meHee 30% oOmieit SHeprum, CIeI0BaTeNFHO, 3TO OJWH M3 BAKHBIX TANoB. J{1s1 BEICOK03 (-
(heKTHBHBIX OJOKOB NOTpEOICHHE SHEPTUN MOXKET gocTurath 50% ot obmiero odbema 3HEp-
rar. ONTUMHA3HPOBAHHOE JIEPEBO CHHXPOHU3AINH HE TOJIBKO MCIPABUT HAPYIICHUS CHHX-
POHM3AINY, HO TAKXKE CHU3UT SHEPronoTpedIeHIe M UCTIONB30BaHUE PECYPCOB MEKCETEBOTO
coenHEeHUs. B maHHON cTaThe TpemiaraeTcs HOBasl MapaMeTpPU30BaHHAS MOJETH Ha OCHOBE
HEHPOHHOH CEeTH, KOTOPYIO MOXHO HCIOJIB30BaTh HE TOJBKO IS MTOJMYYCHHS CITUCKA JIOTH-
YECKHX DJIEMEHTOB, HO W JUTS MPOTHO3MPOBAHKS BPEMEHHBIX TTAPAMETPOB CXEM IIPU MOCTPOE-
HUM JlepeBa CHHXPOCHTHaIOB. C HCIOIb30BaHUEM MPEIOKEHHOTO METO/Ia OLIEHKU Hapa-
METPOB OBUIM CIIPOCKTUPOBAHBI PAa3IMYHbIE HHTErPaJibHbIe cXeMbl ¢ TexHonorusmu CAY /]
14 1 32 um.

Kntoueevie cnosa: cuHTe3 AepeBa CHHXPOCHUTHATA, aBTOMATH3AIN, (PH3MUECKOE
MIPOEKTUPOBAHNE, KPUTHIECKOE BpeMsI, HEHPOHHAS CETh.
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