ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК APMEHИИ PROCEEDINGS OF NATIONAL ACADEMY OF SCIENCES OF ARMENIA รับเลนบรณรัฐการภาษณระบรษณระบรณรายการทรัฐการที่สุดการทร

UЪԽUЪРЧЦ E X A H И K A MECHANICS

ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԳԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ

ИЗВЕСТИЯ АКАДЕМИН НАУК АРМЕНИИ

Մեխանիկա

AM 412

44, Nº 4, 1991

Механика

К УПРУГОЙ И ВЯЗКОУПРУГОЙ УСТОЙЧИВОСТИ СОСТАВНОГО СТЕРЖНЯ

мовсисян л.а.

Մովսիսյան Լ.Ա.,Առաձգական և առաձգամածուցիկ թաղադթյալ ձողի կայունության մասին

Դիտարկվում է երկու տարբեր երկարություններով տարբեր նյութերից կազմված Հողի կայունությունը, երբ ճյութերը առաձգական են կամ առաձգամածուցիկ,իսկ ազդող ուժը կիրառված է ճյութերի թաժանման գծի վրա,

Изучается упругая и вазкоупругая устойчивость стержия, изготовленного из двул изтериалов различных длин. Сила приложена на границе их раздела. Показаны илияния граничных условий, свойств интерналов и длин отдельных частей на значения критических сил и возможность выбора наибольшей критической силы в зависимости от направления приложенной силы. Для одного случая влакоупругой задачи напряжения оказываются зависящими от времени, что приводит к необходимости понятия критического момента времени. В зависимости от направления приложенной силы показана возможность существования минимальной длительной критической силы больше игновенной.

Movalaian L.A. An Elastic and Viscoelastic Bucking of the Compound Beam

В работах [1,2] рассматривалась задача устойчивости составных стержней из двух равных по длине частей из различных материалов и нагруженных "мертвой" или "следящей" силой из границе раздела.

Вязкоупругая постановка этих задач представляет отдельный интерес. В случае, когда концы стержия защемлены, в сечениях напряжение зависит от времени (хотя задача нерелаксационная).

Это приводит к необходимости введения понятия критического момента времени потери устойчивости. В зависимости от свойств материалов и длин отдельных частей, критические силы будут различными для двух направлений их действия (от "сильного" материала к "слабому" или наоборот).

В то же время оказалось, что обобщение рассмотренных задач с математической точки зрения является тривиальным, но, однако, полученные результаты представляют определенный интерес.

1.Пусть вместся стержень из двух частей : из различных материалов и различных длин. Действующая сила Р неизменного направления вриложена на границе раздела этих частей (фиг.1). Изучим два случая невозмущенного состояния:

Фиг.1

а) консц x = 0 свободен, а консц x = l закреплен;

б) оба конца закреплены.

Относительно возмущенного состояния будем предполагать наличие шарнирного закрепления на концах балки.

В первом случае уравнения устойчивости запишутся следующим образом:

$$E_1 J \frac{d^2 w_1}{d x^4} = 0, \quad 0 \le x \le x_1$$

$$E_2 J \frac{d}{dx^4} + P \frac{d^2w^2}{dx^2} = 0, \quad x_1 \le x \le l$$
 (1.1)

Для второго случая уравненнями устойчивости будут

$$E_1 J \frac{d^4 w_1}{dx^4} - P_1 \frac{d^2 w_1}{dx^2} = 0 , \qquad 0 \le x \le x_1$$

$$E_2 J \frac{d^4 w_2}{dx^4} + P_1 \frac{d^2 w_2}{dx^2} = 0 , \qquad x_1 \le x \le l \qquad (1.2)$$

где растягивающая свла Ра и сжимающая Ра определяются формулами:

$$P_{1} = \frac{E_{1}(1-\beta)}{E_{1}(1-\beta) + E_{2}\beta}P$$

$$P_{2} = -\frac{E_{2}\beta}{E_{1}(1-\beta) + E_{2}\beta}P$$
(1.3)

Решення (1.1) н (1.2) запясываются просто. После удовлетворення условням на концах ($w_i = w_i'' = 0$ при x = 0 и x = l) и условням сопряжения на $x = x_1$:

$$w_1 = w_2, w_1' = w_2', E_1 w_1'' = E_2 w_2''$$

 $E_1 w_1''' = E_2 (w_2''' + k^2 w_2')$

для первого случая и

$$E_1 (w_1''' - k_1^2 w_1') = E_2 (w_2''' + k_2^2 w_2')$$

вместо последнего для второго случая получим следующие трансцендентные уравнения.

Для первого случая граничных условий

$$(1 + \frac{1}{\beta} - \frac{k^2 \beta^2}{3\alpha}) \sin(1 - \beta) + k\beta \cos k (1 - \beta) = 0$$

$$\beta = \frac{x_1}{l} , \ \alpha = \frac{E_1}{E_2} , \ k^2 = \lambda x^2 ,$$

$$\lambda = \frac{P}{P_2} , \ P_2 = \frac{E_2 J x^2}{l^2}$$
(1.4)

На фиг.1 приведены кривые безразмерной критической нагрузки λ в зависимости от β для различных α . Интересно то, что при $\alpha < 1$ λ сначала имеет возрастающий участок, а затем, начиная с векоторого значения β , – убывающий.

Для второго случая гравичных условии имеем:

$$\left(1+\frac{A}{B}\right)^{2} + \left[\beta - \frac{A}{B}(1-\beta)\right] \left[k_{2}\frac{A}{B}\cos k_{2}(1-\beta)\right]$$

- $k_{1} \operatorname{cth} k_{1} \beta = 0$ (1.5)
$$A = \frac{\alpha (1-\beta)}{\alpha (1-\beta) + \beta}, \quad b = \frac{\beta}{\alpha (1-\beta) + \beta}$$

$$k_{1}^{2} = \lambda - \frac{\pi^{2}A}{\alpha}, \quad k_{2}^{2} = \lambda B \pi^{2}$$

На фиг.2 приведены значения *к* в зависимости от β при различных α для второй задачи. Под отридательными к понимается случай, когда сила направлена от участка с *E*₂ к *E*₁

~

(трансцендентное уравнение для этого случая получится из (1.5) взаимно замения тригономстрические в гиперболические функции).

Для того, чтобы кривые были соразмерными, для некоторых *с* использован масштаб, который указан на соответствующих кривых.

На фиг.3 приведены кривые λ от α для различных β . Как видно, в этом интервале для α , λ есть почти линейные функции для различных β .

Из приведенных фигур видно, что для β в интервале 0 $\leq \beta \leq 0.7$ критическая сила почти незначительно зависит от модуля упругости сжимаемой части балки и для показанной на фиг. 1 глучая изправления силы приближенно определется формулой $F_{kp} = 16(1 - \beta)E_1 J \pi^{2} l^{-2}$, а для обратного направления (направление силы от $E_2 \approx E_1$) - $P_{ip} = 168E_1 \pi^2 l^{-2}$. Для частного случая $E_1 = E_2 \quad \beta = 0.5$ получится $P_{kp} = \pm 8EJ \pi^2 l^{-2}$ [3].

Интерссно, что при заданных α и β можно выбирать то направление действия силы, при котором ее критическое значение по абсолютной величине было бы наибольшим. В частности, при $\beta = 0.5$ для $\alpha > 1$ лучше силу направить, как показано на фиг.1, а для $\alpha < 1$ — наоборот.

2. Теперь рассмотрим те же задачи в вязкоупругой постановке. Соответствующие операторы, характеризующие свойства материалов, обозначим через $E_i = E_i(1 - \Gamma_i)$ [4]. Что касстся первой задачи, то сжимающая сила будет такой же, как в упругой.

Для второй задачи действующие в сечениях силы определяются по (1.3), ссли E_1 заменить на E_i^c . В частности, для краткости записи, принимая, что материалы ина стандартного тела и что время релаксации для обенх частей одинаковые (1/у), получим:

$$P_{1}(t) = \frac{E_{1}^{\infty}(1-\beta)}{E_{1}^{\infty}(1-\beta) + E_{2}^{\infty}\beta)} \left[1 - \frac{\beta}{E_{1}^{\infty}}Q \exp(-\gamma_{1}t) \right]$$

$$P_{2}(t) = \frac{E_{1}^{\infty}(1-\beta)}{E_{1}^{\infty}(1-\beta) + E_{2}^{\infty}\beta)} \left[1 + \frac{1-\beta}{E_{2}}Q \exp(-\gamma_{1}t) \right]$$

$$Q = \frac{E_{1}^{\infty}E_{2} - E_{2}^{\infty}E_{1}}{E_{1}(1-\beta) + E_{2}\beta} \gamma_{1} = \frac{E_{1}^{\infty}(1-\beta) + E_{2}^{\infty}\beta}{E_{1}(1-\beta) + E_{2}\beta}\gamma \quad (2.1)$$

Здесь интересно не только то, что н P_2 зависят от времени (Q = 0 при $E = \tilde{E}_2$), но в то, что в зависимости от величии коэффициентов длительные значения этих величии по абсолютному значению могут быть как меньше, так и больше их игновенного значения. А это, в свою очередь, влияет на значение длительных критических сил.

Устойчивость вязкоупругого стержня будем изучать, не представляя уравнения возмущенного состояния для отдельных частей, как в предыдущем пункте, а поступим так, как в [5,6]. Такой способ упругих задач удобен тем, что вместо трансцендентного уравнения получаются алгебрарческие, а для вязкоупругих задач, возможно, этот способ является сдинственно пригодным.

Фиг.3

Итак, уравнение устойчивости запишем в виде

$$\frac{\partial^2}{\partial x^2} \left[E(x,t) J \frac{\partial^2 w}{\partial x^2} \right] - \frac{\partial}{\partial x} \left[P(x,t) \frac{\partial w}{\partial x} \right] = 0$$
(2.2)

гдс

$$E, P = \begin{bmatrix} E_1 & \frac{E_1 & (1-\beta)}{E_1 & (1-\beta) + E_2 \beta} P, & 0 \le x \le x_1 \\ E_2 & -\frac{E_2^2 & \beta}{E_1^2 & (1-\beta) + E_2 \beta} P, & x_1 \le x \le l \end{bmatrix}$$
(2.3)

Представим (2.3) в виде рядов, а (2.2) в виде ряда, удовлетворяющего граничным условиям

$$E^{-} = \sum_{k=0}^{\infty} a_{k} \cos \lambda_{k} x, \quad P = \sum_{k=0}^{\infty} c_{k} \cos \lambda_{k} x$$

$$= \sum_{k=1}^{\infty} f_{k}(t) \sin \lambda_{k} x, \quad \lambda_{k} = \frac{k\pi}{l} \qquad (2.4)$$

$$a_{0} = \vec{E}_{1} + \vec{E}_{2}(1-\beta) \quad c_{0} = \frac{\vec{E}_{1} - \vec{E}_{1} - \beta(1-\beta)}{\vec{E}_{2}\beta + \vec{E}_{1}(1-\beta)}P$$

$$a_{k} = \frac{2(\vec{E}_{1} - \vec{E}_{2})}{\pi k} \sin(\lambda_{k}x), \quad c_{k} = \frac{2P}{\pi k}\sin(\lambda_{k}x) \quad (2.5)$$

Подставляя (2.4) в (2.2), после некоторых преобразований получим:

$$\sum_{k=1}^{k-1} \left[J \left(a_{k-n} - a_{k+n} \right) \lambda_{k} \right] + \left(c_{k-n} + c_{k+n} \right) \right] \lambda_{n} f_{n}$$

$$+ \left[J \left(2a_{0} - a_{2k} \right) \lambda_{k}^{2} + \left(2c_{0} + c_{2k} \right) \right] \lambda_{k} f_{k}$$
(2.6)
$$+ \sum_{n=k+1} \left[J \left(a_{n-k} - a_{n+k} \right) \lambda_{k} \lambda_{n} + \left(c_{n-k} + c_{n+k} \right) \lambda_{n} f_{n} \right] = 0$$

Что касается определения мгновенной к длительной критических сил, то это оченидно. Но силы в сечениях заянсят от времени и здесь помимо постепных критических сил (t = 0 и $t - \infty$) есть необходимость введения пончтия критического момента времени для заданной силы Р $P_{sp} \leq P \leq P$) При определении критического момента времени допускается некоторый произвол. исходя из выбора критерия. Можно, например предполатать, то балка имеет некоторую начальную равильность и изучать се дальнейшее развитие и об устойчивости можно судить по допускаемым перемещениям.

Здесь выберем другой путь, используемый, например, в [5,6] для упругого или упруго-пластического удара.

Критическое время определим как нлименьшее собственное значение читрицы системы (2.6), где будем заменять $\rightarrow E_I$ (1 – Γ_I^* 1). Тогда гозффициенты будут функциями от 1 и минимальный корень будет отождествлен с критическим временем потери устойчивости. При таком определении получаются как мгновенная, так и длительная критические силы. Кроме того, это есть фактически обобщение принципа соответствия на случай устойчивости, имеющий ясный физический смысл: критическое время есто то время, при котором, чтобы вывести систему из начального состояния, необходимо наименьшее внешнее воздействие, чем в другой момент времени [6].

Для определения критических моментов потери устойчивости были приведены расчеты для = 0.4, при α = 0.4 и α = 2.5 для двух вариантов:

ł	случай	$\frac{E_1}{E_1} = 3 ,$	$\frac{E_2}{E_2^{\infty}} = 1.5$	
П	случай	$\frac{E_1}{E_1^{\infty}} = 1.5 ,$	$\frac{E_1}{E_2} = 3$	(2.7)

Расчеты производились в первом прибляжении, так как нас, в основном, интересуст качественная картина. Однако следует отметить, что они

Фиг.4

достаточно точные, например, для $\beta = 0.5$ (это худший случай) н $\alpha = 0.4$ получаем $P_{Kp} = 3.26 E_2 J \pi^2 l^{-2}$, а для $\alpha = 2.5$ - $P_{Kp} = -8.16 E_2 J \pi^2 l^{-2}$ (для сравиения см. фиг.2).

На фиг.4 приведены относительные напряжения $\sigma_i = \sigma_i(t)/\sigma$ (пунктирвые линии) и необходимые для потери устойчивости относительные силы $\lambda_1 = P/P_{xp}^{M2}$ в зависимости от времени (сплошные линии). Эти крявые можно интерпретировать так: какова доолжна быть приложения сила, чтобы потеря устойчивости происходила в данный момент времени? Несмотря на то, что эти отношения всегда положительны, кривые для $\alpha = 2.5$ нанесены для отрицательных ординат, тем самым подчеркивая, что минимальная миновенная критическая сила получается при действии силы, обратно направленной по отношению к фиг. 1 (от $E_2 \le E_1$).

Как видно из фиг. 4, при $\alpha = 2.5$ случая 1 для $\gamma t > 3$ необходимая для потери устойчивости сила больше, чем и некотором интервале предыдущих моментов времени. Более интересен случай 1 при $\alpha = 0.4$. Здесь необходимая мгновенная критическая сила меньше длительной (меняется направление).

Факт, что вязкоупругий стержень может быть устойчивым, в то время как упругий - неустойчив, обнаружен также в [7].

ЛИТЕРАТУРА

Liec G.E. and Reissner E. Note on a Problem of Beam Buckling - Journal of Applied Mathematics and Fhysics (ZAMP), 1975, vol. 26, pp.839-843.

2.Исабекан Н.Г. Об одной задаче устойчивости стержия, изготовленного из разномодульного материала. Межвуз.сб.научн. тр., Механика, 1986, вып.4, с.97-

- З.Алфутов Н.А. Основы расчета на устойчивость упругих систем -М.: Машиностроение, 1978. 312 с. 4.Работнов Ю.Н. Элементы насисдственной механики твераых тел.- М.:Наука, 1977.
- 383 c.
- Можнеян Л.А. Устойчивость упругой балки при быстрых нагружениях. -Изв. АН АрмССР, Механика, 1971, т.24, 1,с.38-50.
- 6. Мояснсян Л.А. К устойчивости упругопластических стержнен при ударных нагрузках. -Изв.АН АрмССР, Механика, 1986, т.39, 2,с.15-23.
- 7. Дроздов А.Д., Колмановский В Б. Устойчивость вязкоупругих неоднородно стареющих стержией при заданном продольном перемещении концов. -Изв. АН СССР МТТ, 1987. 1, с.107-113.

Институт механики АН Армении Поступила в редакцию 25.10.1990

ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԴԵՄԻԱՑԻ ՏԵՂԵԿԱԳԻՐ

ИЗВЕСТИЯ АКАДЕМИН НАУК АРМЕНИИ

Մնխանիկա

44, No 4, 1991

Механика

ЭКСПОНЕНЦИАЛЬНОЕ ДЕФОРМИРОВАНИЕ ПРИЗМАТИЧЕСКИХ ТЕЛ

А.М НКОДАЕ

Չաղոյան Մ.Ա., Պրիզմատիկ մարմինների էջսպոնենցիալ դեֆորմացումը Առաջարկվում է պլաստիկության ճոսունության անսության ընդճանուր ճավասարումների լուծման մի դաս, որտեղ դեֆորմացիաների արադությունների տենզորը փոփոխվում է մի ուզղությամբ էջսպոնենցիայ օրենցով։Մասնավորապես ուսումնասիրվում է պրիզմատիկ ծողի համատեղ ձգումը, ծռումը և ոլորումը, որաեղ ընդճանրացվում են Հիլլի ճայտնի լուծումը, և Զրեդտի թեորեմը՝ բազմակապ տիրուլթների **նամար։Դիտարկվում** է նաև թարակապատ խողովակի խնդիրը։

Предлагается класс решений общих урявнений теории пластического течения, когда тензор скоростей деформации меняется по одному направлению по экспоненцикальному закону. В частности, рассматривается совисстный изгиб кручения и растажения призчатического стержия, где обобщается известное решение Хилла и теорома Бредта для многосвязных обявстей. Обсуждается также случай тонкостенных труб

Zadoyan M.A. Exponential Deformation of Prismatic Solid

Рассматривается класс пространственных задач насально жестко пластических тел, деформируемых в одном из направлений по экспоненциальному закону. Исследования по пространственным задачам теории пластичности немногочисленны [1-3]. Обзоры этих работ можно найти в [4,5].

 Исходные уравнения и представление решения. Принимаем материал несжимаемым и удовлетворящим соотношениям теории идеально жестко - пластического течения с условнем пластичности Губера-Мизсса.
 В прямоугольной системе координат в обычных обозначениях имеем:

лифференциальные уравнения равновссия

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_x y}{\partial y} + \frac{\partial \tau_x z}{\partial z} = 0$$

$$\frac{\partial \tau_x y}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_y z}{\partial z} = 0$$

$$\frac{\partial \tau_x z}{\partial x} + \frac{\partial \tau_y z}{\partial y} + \frac{\partial \sigma_z}{\partial z} = 0$$
(1.1)

соотношения между компонентами скоростей деформаций, скоростей перемещений и напряжений

$$\varepsilon_x = \frac{\partial x}{\partial x} = \lambda \left(\sigma_x - \sigma \right) , \dots , 2\gamma_{xy} = \frac{\partial x}{\partial y} + \frac{\partial y}{\partial x} = \lambda x_{xy} , \dots$$
 (1.2)

условие властичности Губера - Мизеса

$$(\sigma_{x} - \sigma_{y})^{2} + (\sigma_{y} - \sigma_{z})^{2} + (\sigma_{z} - \sigma_{x})^{2} + 6(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{z}^{2}) = 6$$
(1.3)

Здесь и в дальнейшем компоненты напряжений отвессны к пластической постоянной & .

1. Будем исследовать пластические течения среды, когда компоненты скоростей деформации представляются в форме

$$\varepsilon_{ij} = \exp\left(\mu\right) \tag{1.4}$$

где ω_φ = ω_β (х.у) – произвольные функции х и у , а μ - постоянный параметр. Из условия иссжимаемости материала имеем

$$\omega_x + \omega_y + \omega_z = 0 \tag{1.5}$$

Компоненты напряжений, удовлетворяющие условиям пластичности и несжимаемости можно представить следующим образом:

Подставляя эти выражения компонентов напряжений в уравнения равновесия (11), приходим в дифференциальному уравнению

$$\frac{\partial}{\partial x} \left(\frac{\omega_{xx}}{\Omega} \right) + \frac{\partial}{\partial y} \left(\frac{\omega_{yx}}{\Omega} \right) + 2E = 0$$
 (1.7)

и вызжению

$$\sigma_1 = F + 2Ez$$

где E - произвольная постоянизя, а F = F (x, y) - неизвестная функция х и у, удовлеторяющая системе дифференциальных уравнений

$$\frac{\partial F}{\partial x} + \frac{\partial}{\partial x} \frac{2\omega_x + \omega_y}{\Omega} + \frac{\partial}{\partial y} \frac{\omega_x y}{\Omega} = 0$$

$$\frac{\partial}{\partial x} \frac{\omega_x y}{\Omega} + \frac{\partial F}{\partial y} + \frac{\partial}{\partial y} \frac{\omega_x + 2\omega_y}{\Omega} = 0$$
(1.8)

Скорости перемещений из (1.2) можно представить в следующем виде:

$$u = u_0(x, y) - \frac{\partial w_0}{\partial x} z + \frac{2}{\mu} (e^{\mu z} - 1) \omega_{xz} - \frac{1}{\mu} (e^{\mu z} - u = -1) \frac{\partial \omega}{\partial x}$$

$$w = w_0(x, y) - \frac{\partial w_0}{\partial y} z + \frac{2}{\mu} (e^{\mu z} - 1) \omega_{yz} - \frac{1}{\mu^2} (e^{\mu z} - \mu z - 1) \frac{\partial \omega_z}{\partial y}$$

$$w = w_0(x, y) + \frac{1}{\mu} (e^{\mu z} - 1) \omega_z$$
(1.9)

Злесь и о . и о . и о — произвольные функции х и у. Подставляя выряжения и . и , и из (1.9) в (1.4), сопоставляя правые и левые части полученных уравнений и вкозя обезначения

$$R = \mu *_0 - \omega_z \qquad Q_z = u_0 - \frac{2}{\mu} \omega_{zz} + \frac{1}{\mu} \frac{\partial \omega}{\partial z}$$
$$Q_z = v_0 - \frac{2}{\mu} \omega_z + \frac{1}{\mu} \frac{\partial \omega}{\partial z}$$

приходим к двум системам лифференциальных уравнений

$$\frac{\partial^2 R}{\partial x^2} = 0, \quad \frac{\partial^2 R}{\partial y^2} = 0, \quad \frac{\partial^2 R}{\partial x \partial y} = 0$$
$$\frac{\partial Q x}{\partial x} = 0, \quad \frac{\partial Q y}{\partial y} = 0, \quad \frac{\partial Q x}{\partial y} + \frac{\partial Q y}{\partial x} = 0$$

Интегрируя эти уравнения, получаем

$$\omega_{x} = \frac{\partial u_{0}}{\partial y}, \quad \omega_{y} = \frac{\partial v_{0}}{\partial x}, \quad \omega_{z} = \lambda w_{0} + Ax + By + C$$

$$2\omega_{xy} = \frac{\partial u_{0}}{\partial y} + \frac{\partial v_{0}}{\partial x}, \quad 2\omega_{xz} = \frac{\partial w_{0}}{\partial x} + \lambda u_{0} + Dy \quad (1.10)$$

$$2\omega_{yz} = \frac{\partial w_{0}}{\partial x} + \lambda v_{0} - Dx, \quad A.B, C, D = const$$

Далес,исключая F(x, y) вз (1.8) . приходям к выражению

$$F = H + \left[\frac{1}{\Omega}\left(\frac{\partial v_0}{\partial x} - \frac{\partial v_0}{\partial y}\right)\right]_{x=0} - \int_{0}^{y} \left[\frac{\partial}{\partial x}\left[\frac{1}{\Omega}\left(\frac{\partial u_0}{\partial y} + \frac{\partial v_0}{\partial x}\right)\right]\right]_{x=0} dy$$

$$-\frac{1}{\Omega}\left(2\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) - \frac{1}{2}\int_{0}^{x} \frac{\partial}{\partial y}\left[\frac{1}{\Omega}\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)\right]dx, \ H = const \quad (1.11)$$

$$\Omega = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} + \mu u_0 + Dy\right)^2 + \frac{1}{4} \left(\frac{1}{2} + \mu v_0 - Dx\right)^2\right)$$
(1.12)

$$\omega = \sqrt{\left(\frac{\partial u}{\partial x}\right)^2 + \frac{\partial u}{\partial x}\frac{\partial v}{\partial y} + \left(\frac{\partial v}{\partial y}\right)^2 + \frac{1}{4}\left(\frac{\partial u}{\partial y} + \frac{v}{\partial x}\right)^2}$$

и к яифференциальному уравнению

$$\left(\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2}\right) \frac{1}{\Omega} \left(\frac{\partial u \, 0}{\partial y} + \frac{\partial v \, 0}{\partial x}\right) - 2 \frac{\partial^2}{\partial x \, \partial y} \frac{1}{\Omega} \left(\frac{\partial u \, 0}{\partial x} - \frac{\partial v \, 0}{\partial y}\right) = 0 \quad (1.13)$$

С учетом (1.10) уравнение (1.7) перспишется в виде

$$\frac{\partial}{\partial x} \left[\frac{1}{\Omega} \left(\frac{\partial w_0}{\partial x} + \mu w_0 + D y \right) \right] + \frac{\partial}{\partial y} \left[\frac{1}{\Omega} \left(\frac{\partial w_0}{\partial y} + \mu v_0 - D x \right) \right] + 4 E = 0$$
(1.14)

Далее из (1.5) и (1.10) будем иметь

$$\frac{\partial u_0}{\partial x} + \frac{\partial v_0}{\partial y} + \lambda w_0 + A x + B y + C = 0 \qquad (1.15)$$

Система дифферсициальных уравнений (1.13)-(1.15) при заданных граничных условиях, в принципс, определяет функции и о, и о, и о Компоненты выражения определяются через эты функции следующым образом:

$$\sigma_{x} = \sigma_{x} + \frac{1}{\Omega} \left(2 \frac{\partial u_{0}}{\partial x} + \frac{\partial v_{0}}{\partial y} \right)$$

$$\sigma_{y} = \sigma_{x} + \frac{1}{\Omega} \left(\frac{\partial u_{0}}{\partial x} + 2 \frac{\partial v_{0}}{\partial y} \right)$$

$$\sigma_{x} = H + 2Ez + \left[\frac{1}{\Omega} \left(\frac{\partial u_{0}}{\partial x} - \frac{\partial v_{0}}{\partial y} \right) \right]_{x=0}$$

$$- \frac{1}{2} \int_{0}^{y} \left[\frac{\partial}{\partial x} \left[\frac{1}{\Omega} \left(\frac{\partial u_{0}}{\partial y} - \frac{\partial v_{0}}{\partial x} \right) \right] \right]_{x=0} dy - \frac{1}{\Omega} \left(2 \frac{\partial u_{0}}{\partial x} + \frac{\partial v_{0}}{\partial y} \right)$$

$$- \frac{1}{2} \int_{0}^{x} \frac{\partial}{\partial y} \left[\frac{1}{\Omega} \left(\frac{\partial u_{0}}{\partial y} + \frac{\partial v_{0}}{\partial x} \right) \right] dx \qquad (1.5)$$

$$\tau_{xy} = \frac{1}{2\Omega} \left(\frac{\partial u_{0}}{\partial y} + \frac{\partial v_{0}}{\partial x} \right)$$

$$\tau_{yz} = \frac{1}{2\Omega} \left(\frac{\partial w_{0}}{\partial y} + \mu u_{0} + Dy \right)$$

Скорости перемещения (1.9) при учете (1.10) можно представить в следующей форме:

$$u = u_0 \exp(\mu z) + \frac{D}{\mu} y (\exp(\mu z) - 1) - \frac{A}{\mu^2} (\exp(\mu z) - \mu z - 1)$$

$$v = v_0 \exp(\mu z) - \frac{D}{\mu} x (\exp(\mu z) - 1) - \frac{B}{\mu^2} (\exp(\mu z) - \mu z - 1) \quad (1.17)$$

$$w = w_0 \exp(\mu z) + -(\exp(\mu z) - 1)(A x + B y + C)$$

Таким образом, компоненты напряжений и скоростей перемещений выражаются через функции ио, ио, которые определяются из системы дифференциальных уравнений (1.13)-(1.15) при соответствующих граничных условиях.

Используя (1.15), можно из уравнений (1.13)-(1.14) и из отношений (1.16)-(1.17) при условни $\mu \neq 0$ исключить функцию мо.

2. Второе представление решений. Есля ввести функцию напряжений

$$\frac{1}{2\Omega} \left(\frac{\partial w_0}{\partial x} + \mu u_0 + D y \right) = \frac{\partial f}{\partial y} - E x$$

$$\frac{1}{2\Omega} \left(\frac{\partial w_0}{\partial y} + \mu v_0 - D x \right) = -\frac{\partial f}{\partial x} - E y$$
(2.1)

из (1.12) будем иметь

$$\Omega = \frac{\omega}{\chi} \quad , \quad \chi = \sqrt{1 - \left(\frac{\partial f}{\partial x} + Ey\right)^2 - \left(\frac{\partial f}{\partial y} - Ex\right)^2}$$

Далее, исключая из (2.1) функцию w₀, приходим к дифференциальному уравнению

$$\frac{\partial}{\partial x} \left[\frac{\omega}{\chi} \left(\frac{\partial f}{\partial x} + E_Y \right) \right] + \frac{\partial}{\partial y} \left[\frac{\omega}{\chi} \left(\frac{\partial f}{\partial y} - E_X \right) \right] \\
= D + \frac{\mu}{2} \left(\frac{\partial w_0}{\partial y} + \frac{\partial v_0}{\partial x} \right) \quad (2.2)$$

Уравнение (1.15) и компоненты скоростей (1.17) остаются без изменения, а (1.13) перепишется в виде

$$\left(\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2}\right) \frac{\chi}{\omega} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) - 2 \frac{\partial^2}{\partial x \partial y} \frac{\chi}{\omega} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial x}\right) = 0$$
(2.3)

Компоненты напряжения запяшутся в форме

$$\sigma_{x} = \sigma_{z} + \frac{\chi}{\omega} \left(2 \frac{\partial u_{0}}{\partial x} + \frac{\partial v_{0}}{\partial y} \right)$$

$$\sigma_{y} = \sigma_{z} + \frac{\chi}{\omega} \left(\frac{\partial u_{0}}{\partial x} + 2 \frac{\partial v_{0}}{\partial y} \right)$$

$$\sigma_{z} = H + 2Ez + \left[\frac{\chi}{\omega} \left(\frac{\partial u_{0}}{\partial x} - \frac{\partial v_{0}}{\partial y} \right) \right]_{x=0}$$

$$-\frac{1}{2}\int_{0}^{x} \left[\frac{x}{\omega}\left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}\right)\right]_{x=0} dx - \frac{x}{\omega}\left(2\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$$
$$-\frac{1}{2}\int_{0}^{x}\frac{\partial}{\partial y}\left[\frac{x}{\omega}\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)\right] dx \qquad (2.4)$$
$$\tau_{xy} = \frac{1}{2\omega}, \quad \tau_{xz} = \frac{\partial f}{\partial y} - Ex, \quad \tau_{yz} = -\frac{\partial f}{\partial x} - Ey$$

Для определення функций /, ио, ио, мо, входящих в (1.17) и (2.4), следует проинтегрировать систему дифференциальных уравнений (1.15),(2.1)-(2.3) при соответствующих граничных условиях.

 Случай μ = 0. В полученных формулах напряжений (1.16), переходя к пределу при μ → 0, будем иметь

$$\sigma_{x} = \sigma_{z} + \frac{1}{\Omega_{*}} \left(2 \frac{\partial u_{0}}{\partial x} + \frac{\partial v_{0}}{\partial y} \right), \sigma_{y} = \sigma_{z} + \frac{1}{\Omega_{*}} \left(\frac{\partial u_{0}}{\partial x} + 2 \frac{\partial v_{0}}{\partial y} \right)$$

$$\sigma_{z} = H + 2Ez + \left[\frac{1}{\Omega_{*}} \left(\frac{\partial u_{0}}{\partial x} - \frac{\partial v_{0}}{\partial y} \right) \right]_{x=0}$$

$$- \frac{1}{2} \int_{a}^{y} \left[\frac{\partial}{\partial x} \left[\frac{1}{\Omega_{*}} \left(\frac{\partial u_{0}}{\partial y} - \frac{\partial v_{0}}{\partial x} \right) \right] \right]_{x=0} dy - \frac{1}{\Omega_{*}} \left(2 \frac{\partial u_{0}}{\partial x} + \frac{\partial v_{0}}{\partial y} \right)$$

$$- \frac{1}{2} \int_{a}^{x} \frac{\partial}{\partial y} \left[\frac{1}{\Omega_{*}} \left(\frac{\partial u_{0}}{\partial y} + \frac{\partial v_{0}}{\partial x} \right) \right] dx$$

$$t_{xy} = \frac{1}{2\Omega_{*}} \left(\frac{\partial u_{0}}{\partial y} + \frac{\partial v_{0}}{\partial x} \right), \quad t_{zz} = \frac{1}{2\Omega_{*}} \left(\frac{\partial u_{0}}{\partial x} + Dy \right)$$

$$\Omega_{*} = \sqrt{-\omega^{2} + \frac{1}{4}} \left(\frac{\partial w_{0}}{\partial x} + Dy \right)^{2} + \frac{1}{4} \left(\frac{\partial w_{0}}{\partial y} - Dx \right)^{2}$$
(3.1)
$$\Omega_{*} = \sqrt{-\omega^{2} + \frac{1}{4}} \left(\frac{\partial w_{0}}{\partial x} + Dy \right)^{2} + \frac{1}{4} \left(\frac{\partial w_{0}}{\partial y} - Dx \right)^{2}$$

$$k = u_{0} (x, y) + Dyz - \frac{A}{2}z^{2}$$

$$w = w_0(x, y) + (Ax + By + C)z$$
(3.2)

Система дифферсициальных уравнений (1,13)-(1,15) при µ → 0 примет следующую форму:

17

C

$$\left(\frac{\partial^{2}}{\partial x^{2}} - \frac{\partial^{2}}{\partial y^{2}}\right) \frac{1}{\Omega_{*}} \left(\frac{\partial u_{0}}{\partial y} + \frac{\partial v_{0}}{\partial x}\right) - 2\frac{\partial^{2}}{\partial x \partial y} \frac{1}{\Omega_{*}} \left(\frac{\partial u_{0}}{\partial x} - \frac{\partial v_{0}}{\partial y}\right) = 0$$

$$\frac{\partial}{\partial x} \left[\frac{1}{\Omega_{*}} \left(\frac{\partial w_{0}}{\partial x} + Dy\right)\right] + \frac{\partial}{\partial y} \left[\frac{1}{\Omega_{*}} \left(\frac{\partial w_{0}}{\partial y} - Dx\right)\right] + 4E = 0$$

$$\frac{\partial u_{0}}{\partial x} + \frac{\partial v_{0}}{\partial y} + Ax + By + C = 0$$
(3.3)

Если ввести функцию перемещения у (х, у) в виде

$$v_{0} = -\frac{\partial \varphi}{\partial x} - \frac{1}{2} B y^{2} - \frac{1}{2} C y$$
(3.4)
$$v_{0} = -\frac{\partial \varphi}{\partial x} - \frac{1}{2} B y^{2} - \frac{1}{2} C y$$

третьс уравнение (3.3) преяратится в тождество, а первое и второс перепишутся следующим образом:

$$\left(\frac{\partial^{2}}{\partial x^{2}} - \frac{\partial^{2}}{\partial y^{2}}\right) \frac{1}{\Omega_{0}} \left(\frac{\partial^{2} \varphi}{\partial x^{2}} - \frac{\partial^{2} \varphi}{\partial y^{2}}\right) + 2 \frac{\partial^{2}}{\partial x \partial y} \left(2 \frac{\partial^{2} \varphi}{\partial x \partial y} - A x + B y\right) = 0$$
$$\frac{\partial}{\partial x} \left[\frac{1}{\Omega_{0}} \left(\frac{\partial w 0}{\partial x} + D y\right)\right] + \frac{\partial}{\partial y} \left[\frac{1}{\Omega_{0}} \left(\frac{\partial w 0}{\partial y} - D x\right)\right] + 4E = 0 \quad (3.5)$$

причем

$$\Omega_{0} = \sqrt{\frac{1}{4} \left(\frac{\partial w_{0}}{\partial x} + D_{y}\right)^{2} + \frac{1}{4} \left(\frac{\partial w_{0}}{\partial y} - D_{x}\right)^{2}}$$

$$\omega_{0} = \left[\left(\frac{\partial^{2} \varphi}{\partial x \partial y} - A_{x} - \frac{1}{2}C\right)^{2} - \left(\frac{\partial^{2} \varphi}{\partial x \partial y} - A_{x} - \frac{1}{2}C\right)^{2} + \left(\frac{\partial^{2} \varphi}{\partial x \partial y} + B_{y} - \frac{1}{2}C\right) + \left(\frac{\partial^{2} \varphi}{\partial x \partial y} + B_{y} + \frac{1}{2}C\right)^{2} + \frac{1}{4} \left(\frac{\partial^{2} \varphi}{\partial x - 2} - \frac{\partial^{2} \varphi}{\partial y}\right)^{2}\right]^{2}$$

Для компонентов напряжений будем иметь

$$\sigma_{x} = \sigma_{x} + \frac{1}{\Omega_{0}} \left(\frac{\partial^{2} \varphi}{\partial x \partial y} - 2Ax - By - \frac{3}{2}C \right)$$

$$\sigma_{y} = \sigma_{z} - \frac{1}{\Omega_{0}} \left(\frac{\partial^{2} \varphi}{\partial x \partial y} + Ax + 2By + \frac{3}{2}C \right)$$

$$\sigma_{z} = H + 2Ez + \left[\frac{1}{\Omega_{0}} \left(2\frac{\partial^{2} \varphi}{\partial x \partial y} + By \right) \right]_{x=0}$$

$$+\frac{1}{2}\int_{0}^{y}\left[\frac{\partial}{\partial x}\left[\frac{1}{\Omega_{0}}\left(\frac{\partial^{2}\varphi}{\partial x^{2}}-\frac{\partial^{2}\varphi}{\partial y^{2}}\right)\right]\right]_{x=0}dy$$

$$-\frac{1}{\Omega_{0}}\left(\frac{\partial^{2}\varphi}{\partial x\partial y}+2Ax+By-\frac{3}{2}C\right)$$

$$+\frac{1}{2}\int_{0}^{x}\frac{\partial}{\partial y}\left[\frac{1}{\Omega_{0}}\left(\frac{\partial^{2}\varphi}{\partial x^{2}}-\frac{\partial^{2}\varphi}{\partial y^{2}}\right)\right]dx$$

$$\tau_{xx}=-\frac{1}{2\Omega_{0}}\left(\frac{\partial^{2}\varphi}{\partial x}+Dy\right)$$

$$x_{yz}=-\frac{1}{2\Omega_{0}}\left(\frac{\partial w_{0}}{\partial y}-Dx\right)$$
(3.6)

Подставляя (3.4) в (3.2) эля компонентов скоростей персмещений будем иметь

$$u = \frac{\partial \varphi}{\partial y} - \frac{1}{2}A(x^{2} + z^{2}) + Dyz - \frac{1}{2}Cx$$

$$y = -\frac{\partial \varphi}{\partial x} - \frac{1}{2}B(y^{2} + z^{2}) - Dxz - \frac{1}{2}Cy$$
(3.7)
$$w = w_{0}(x, y) + Axz + Byz + Cz$$

Для определения функции wo и φ , входящих в выражения компонентов напряжений (3.6) и скоростей перемещений (3.7) необходимо интегрировать систему уравнений (3.5) при заданных граничных условиях.

3. В случае введения функции напряжения f(x, y) по (2.1) при $\mu = 0$

$$\frac{1}{2\Omega} \left(\frac{\partial w_0}{\partial x} + Dy \right) = \frac{\partial f}{\partial y} - Ex$$
$$\frac{1}{2\Omega} \left(\frac{\partial w_0}{\partial y} - Dx \right) = -\frac{\partial f}{\partial x} - Ey$$

компоненты напряжений из (3.6) будут

$$\sigma_{x} = \sigma_{z} + \frac{z}{\omega_{0}} \left(\frac{2}{\partial x \partial y} - 2Ax - By - \frac{z}{2}C \right)$$

$$\sigma_{z} = \sigma_{z} + \frac{\chi}{\omega_{0}} \left(\frac{\partial^{2} \varphi}{\partial x \partial y} + Ax + 2By + \frac{z}{2}C \right)$$

$$\sigma_{z} = H + 2E z + \left[\frac{\chi}{\omega_{0}} \left(2 \frac{\partial^{2} \varphi}{\partial x \partial y} + By \right) \right]_{x=0}$$

$$+\frac{1}{2}\int_{0}^{y} \left[\frac{\partial}{\partial x}\left[\frac{\chi}{\omega_{0}}\left(\frac{\partial^{2} \varphi}{\partial x^{2}}-\frac{\partial^{2} \varphi}{\partial y^{2}}\right)\right]\right]_{x=0}dx$$

$$-\frac{\chi}{\omega_{0}}\left(\frac{\partial^{2} \varphi}{\partial x \partial y}-2Ax-By-\frac{3}{2}C\right)$$

$$+\frac{1}{2}\int_{0}^{x}\frac{\partial}{\partial y}\left[\frac{\chi}{\omega_{0}}\left(\frac{\partial^{2} \varphi}{\partial x^{2}}-\frac{\partial^{2} \varphi}{\partial y^{2}}\right)\right]dx$$

$$T_{x}=\frac{\chi}{2\omega_{0}}\left(\frac{\partial^{2} \varphi}{\partial y^{2}}-\frac{\partial^{2} \varphi}{\partial x^{2}}\right)$$

$$T_{x}=\frac{\partial}{\partial y}f-Ex$$

$$T_{y,t}=-\frac{\partial}{\partial x}-Ey$$

$$(3.8)$$

Скорости персмещений (3.7) остаются без изменения а система уравнений, определяющая функции р запишется в виде

$$\left(\frac{\partial^{2}}{\partial x^{2}} - \frac{\partial^{2}}{\partial y^{2}}\right) = \left(\frac{2}{\partial x} - \frac{2}{\partial y^{2}}\right) + 2\frac{\partial^{2}}{\partial x \partial y} = 0 \qquad (3.9)$$

$$\frac{\partial}{\partial x} \left[\frac{\omega}{2}\left(\frac{\partial f}{\partial x} + E_{y}\right)\right] + \frac{\partial}{\partial y} \left[\frac{\omega}{2}\left(\frac{\partial f}{\partial x} - E_{x}\right)\right] - 2D = 0$$

4. Пусть призматический стержень под действием внешних сил на торцевых сечениях находится в равновесни в предельном напряженном состоянии (задача Р.Хилла).

Полагая

$$\frac{\partial^2 \varphi}{\partial x^2} = \frac{\partial^2 \varphi}{\partial y^2} \qquad 2 \frac{\partial^2 \varphi}{\partial x \partial y} = A x - B y$$

интегрированием находим

$$r = \frac{1}{12} A y^{3} - \frac{1}{12} B x^{3} + \frac{1}{4} A x^{2} y - \frac{1}{4} B c y^{2} - \frac{h}{2} (x^{2} + y^{2})$$
(3.10)

Далее, принимая H = E = C из (3.8) для компонентов напражении получаем

$$\sigma_{1} = \kappa \sqrt{1 - \left(\frac{\partial f}{\partial x}\right)^{2} - \left(\frac{\partial f}{\partial y}\right)^{2}}$$

$$\kappa = \sin\left(Ax + By + C\right)$$

$$\tau_{xx} = \frac{df}{dy}, \quad \tau_{yx} = -\frac{df}{dx}, \quad \sigma_x = \sigma_y = \tau_{xy} = 0$$
 (3.11)

Первое уравнение (3.9) удовлетворяется тождествению, а второе перепишется в следующем виде:

$$\frac{\partial}{\partial x} \left[\frac{(Ax + By + C)f_x}{\sqrt{1 - f_x^2 - f_y^2}} \right] + \frac{\partial}{\partial y} \left[\frac{(Ax + By + C)f_y}{\sqrt{1 - f_x^2 - f_y^2}} \right] - \frac{2 \kappa D}{\sqrt{3}} = 0$$
(3.12)

где / x и / y означают частные производные / (x, y).

Подставляя (3.10) в (3.7) для скоростей перемещений получаем

$$u = \frac{A}{4} (y^{2} - x^{2} - 2z^{2}) - \frac{B}{2} xy + Dyz - \frac{1}{2}Cx - hy$$

$$v = -\frac{A}{2}xy + \frac{B}{2} (x^{2} - y^{2} - 2z^{2}) - Dxz - \frac{1}{2}Cy + hx$$
(3.13)
$$w = w_{0} (x, y) + Axz + Byz + Cz$$

Внешние нагрузки приложенные на торцевых сечениях, статически эквивалентны продольной силе

$$N = \kappa \sqrt{3} \iint \sqrt{1 - f_x^2 - f_y^2} \, dx \, dy$$

крутящему номенту

$$M_{2} = \iint (x\tau_{y2} - y\tau_{x2}) \, dx \, dy = -2 \iint f(x, y) \, dx \, dy$$

и изгибающему моменту с компонентами

$$M_{x} = \kappa \sqrt{3} \int \int y \sqrt{1 - f_{x}^{2} - f_{y}^{2}} dx dy$$
$$M_{y} = -\kappa \sqrt{3} \int \int x \sqrt{1 - f_{x}^{2} - f_{y}^{2}} dx dy$$

Уравнение (3.12) и формулы (3.11),(3.13) получены Р.Хиллом [1] в 1948г.

4. Боковое сжатие квадратного бруса. Рассмотрим брус из идеально жесткого материала с квадратным поперечным сечением, сжимаюшийся между четырьмя плитами с одинаковой шероховатостью и скоростью сближения. Такую гипотетическую задачу практически можно реализовать, пропуская, для сближения плит, необходимые для зазора в узлах $\pm h$, $\pm h$, z. Учитывая симметрию задачи, рассматриваем область

$$\frac{1}{x_{x-h}} = \frac{1}{y_{x-h}} = \frac{1}{y_{x-h}$$

. где V и m. соответственно, скорость сбляжения и степень шерохокатости плит, причем V > 0 , 0 ≤ m ≤ √2 / 2 .

Полуобратным способом принимаем

$$x_{xx} = ax$$
, $x_{yx} = ay$ (4.2)
 $u = u_0 = -bx$, $v = v_0 = -by$, $b = \frac{v}{h}$

Полагая также A = B = D = 0, первому уравнению (3.3) удовлетворяем тождественно, а из второго и третьего уравнений, соответственно, находим E = -a, C = 2b.

Сопоставляя выражения T_{xx} и T_{yx} из (3.1) при D = 0 и (4.2), получаем

$$\Omega_{+} = \frac{\sqrt{3-b}}{\sqrt{1-a^{2}(x^{2}+y^{2})}}$$
(4.3)

Остальные компоненты напряжения согласно (3.1) и (4.2)-(4.3) будут

$$\sigma_{x} = \sigma_{y} = H + 2Ez , \quad r_{xy} = 0$$

$$\sigma_{z} = H + 2Ez + \sqrt{3} \sqrt{1 - a^{2} (x^{2} + y^{2})}$$
(4.4)

Из условий равновесия части бруса $0 \le \xi \le z$

$$\int \int \sigma_z \, dx \, dy + 2mhz = 0$$

определяя Н и подставляя в (4.4), получаем

$$\sigma_{x} = \sigma_{y} = -\frac{\sqrt{3}}{4m}K - 2az, \quad \tau_{xy} = 0$$

$$\sigma_{z} = -\frac{\sqrt{3}}{4m}K - 2az + \sqrt{3}\sqrt{1 - a^{2}(x^{2} + y^{2})}$$

гдс

$$K = 4 \int_{0}^{m} \frac{1 - x^{2} - y^{2}}{1 - x^{2} - y^{2}} dx dy = 2 \int_{0}^{m} (1 - x^{2}) \arcsin \frac{m}{\sqrt{1 - x^{2}}} dx$$

+ $m (1 - m^{2}) \arcsin \frac{m}{\sqrt{1 - m^{2}}} + m^{2} \sqrt{1 - 2m^{2}}$

Сила давления на каждую плиту будет

. .

$$P = -4 \left[\int_{0}^{n} \sigma_x dx dy = hl \left(\frac{1}{m} K + 4m \frac{1}{m} \right) \right]$$

Для определения функций wo приходим к системе дифференциальных урависний

$$\frac{\partial w_0}{\partial x} = \frac{\sqrt{3} a b x}{\sqrt{1 - a^2 (x^2 + y^2)}} , \quad \frac{\partial w_0}{\partial v} = \frac{\sqrt{3} a b y}{\sqrt{1 - a^2 (x^2 + y^2)}}$$

После интегрирования из (3.2) при А = В = О получаем

$$w = 1. + 2bz - 2\sqrt{3} - \sqrt{1 - a^2(x^2 + y^2)}$$
(4.5)

где L - произвольная постояниая. Из условий сохранения количества масс

$$\int_{0}^{hh} w \, dx \, dy + 2V h \left(l - z \right) = 0$$

определяя L и подставляя в (4.5), окончательно находим

$$\frac{\sqrt{3}}{V} = \frac{\sqrt{3}}{2} \frac{1}{m^3} - 2\left(\frac{l}{h} - \frac{z}{h}\right) - 2\frac{\sqrt{3}}{m}\sqrt{1 - a^2(x^2 + y^2)}$$
(4.6)

Полученное решение имеет традиционный недостаток, характерный для решений типа решения Прандтля. Оно неточно в середние и на концах.

2. Перехоля к инлиндрическим координатам, из приведенного решения можно получить решение задачи о вдаиливании идеально жестко пластического материала из шероховатой цилиндрической втулки [1]. Обозначая внутренний радах тпубы h. а скорость уменьшения этого раднуса V и переходя с цила идрическим координатам из (4.2), (4.4), (4.5) будем иметь

$$\sigma_{r} = \sigma_{0} = H - 2at, \quad r_{rz} = ar$$

$$\sigma_{z} = H - 2az + \sqrt{3}\sqrt{1 - a^{2}r^{2}} \qquad (4.7)$$

$$u = -V_{h}^{2}, \quad w = L + 2bz - 2\sqrt{3}\frac{V}{m}\sqrt{1 - a^{2}r^{2}}$$

Из условий равновесия части цилиндрической массы

$$\int_{0}^{h} \sigma_{z} r dr + m h z = 0$$

определяя И . для напряжений окончательно будем иметь

$$\sigma_{r} = \sigma_{0} - \frac{2}{\sqrt{3}m^{2}} \left[1 - (1 - m^{2})^{2} \right] - 2az$$
(4.8)
$$\sigma_{z} = -\frac{2}{\sqrt{3}m^{2}} \left[1 - (1 - m^{2})^{\frac{1}{2}} \right] - 2az + \sqrt{3}\sqrt{1 - a^{2}r^{2}}$$

Определяя L из условия сохранения количества масс

$$\int_{0}^{h} wrdr + Vh(l-z) = 0$$

окончательно получаем

$$\frac{w}{V} = \frac{4}{\sqrt{3} m^3} \left[1 - \left(1 - m^2 \right)^{\frac{3}{2}} \right] - 2 \left(\frac{l}{h} - \frac{z}{h} \right) - \frac{2\sqrt{3}}{m} \sqrt{1 - a^2 r^2}$$

Формулы напряжений и скоростей перемещений (4.7)-(4.9) получены Р.Хиллом [1]

ЛИТЕРАТУРА

- Хилл Р. Математическая теория пластичности.-М.: ГИТТЛ, 1956. 407 с.
 Соколовский В.В. Теория пластичности.-М.: Высшая школа, 1969. 608 с.

- 3 Иклев Д.Д. Теория идсальной пластичности.-М.:Наука, 1966. 231 с
 4 Аннин Б.Д.:Черепанов Г.П. Упруго-пластическая задача.-Новосибирск: Наука, 1983. 238 c.
- 5 Анини Б.Д., Бытов В.О., Сснашов С.И. Групновые свойства уравнений упругости и пластичности.-Новосибирск: Наука, 1985 144 с

Институт механики АН Армения Поступила в редакцию 3.12.1990

(4.9)

ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԳԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ

ИЗВЕСТИЯ АКАДЕМИН НАУК АРМЕНИИ

Մեխանիկա

44, Nº 4, 1991

Механнка

ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ ДЛЯ ПОЛУПЛОСКОСТИ, ОСЛАБЛЕННОЙ СИСТЕМОЙ ТРЕЩИН

СТЕПАНЯН С.П., АФЯН Б.А.

Ստեփանյան Ս.Պ., Ափյաս Բ.Ա., Շարերի համակարգով թուլացած կիսահարթության համար առաձձականության տեսության հարթ խնդիրը Գիտարկվում է վերջավոր և երեր կիսաանվերջ ճարերով թուլացած կիսահարթության համար լարվածա-դեֆորժացիոն վիճակի խնդիրը։Վերջավոր և երկու կիսաանվերջ ճարերը, որոնը սիմեարիկ են երրորդի նկատմամթ, գտնվուս են կիսահայթության եզրին զուգահեռ մեկ ուղղի վրա, Ուղղահայած կիսաանվերջ ճարի գագաթը գտնվում է ճորի գոնական ճարերի ա վորության գծեց որոշ հեռավորության վրա, Рассмотреня հորութ հայության գծեց որոշ հեռավորության վրա, Салабленной консиной м

горизонтальный нолубесковечий рашины которые расположены симметрично относилельно третьев, находчет вылист наваляельной гранина полувлоскости. Вершина дергикальной полуб с альой грет ным находится на искотором расстояния от диним расположения горизольных госщие

Stepanian S.P., Apian B.A. The plane problem of elasticity for a weakened by crack system half-plane

Рассматривается задача напряженно-деформированом состоянии полуплоскости, ослабленной к-нечной и тремя полубесконечными трещвнами. Отметим, что конечная и дае горизонтальные полубесконечвые трещины, которые расположены симметрично относительно третьей находятся на одной линии пераллельной границе полуплоскости, Вершина вертикальной полубесконечной трешины находится на расстоянии *H* от границы полуплоскости, а остальные трешины удалены на расстоянии *h* (*h* < *H*).

Полуплоскость находит я пол действием самоуравновещенных нагрузок, приложенных на берегах трешин, те есть

$$\sigma_{yy}(x,0) = p_{\sigma}(x) , \quad r_{xy}(x,0) = q_{0}(x)$$

$$(ix \ i < a , \quad |x| > b , \quad a < b)$$

$$\sigma_{1}(0,y) = \sigma_{0}(y) , \quad \tau_{xy}(0,y) = 0 \quad (1)$$

$$(y > c)$$

$$u(x, -h) = v(x, -h) = 0 , \quad (-\infty < x < \infty)$$

Задача решается методом разделения основной области на подобласти

прямыми, содержащими трещины. Используя симметрию, решение строится для одной полуполосы в одной четверть-плоскости.

Полагая, что на промежутках *a* < *x* < *b* и 0 < *y* < *c* нзвестны напряжения

$$\sigma_{xx}(0, y) = \sigma(y), \quad \tau_{xy}(x, 0) = q(x), \quad (a < x < b)$$

$$\sigma_{xx}(0, y) = \sigma(y), \quad (0 < y < b)$$
(2)

с использованием изясстных соотношений, полученных в работе [1], производные перемещений можно представить в виде

$$E \frac{\partial u(x, 0^{+})}{\partial x} = (1 - v) p(x) + \frac{2}{\pi} \int_{a}^{b} \frac{q(t) dt}{x - t} - \frac{2}{\pi} \int_{a}^{b} \frac{q(t) dt}{x + t}$$

$$+ \int_{a}^{b} R_{1}(t, x) p(t) dt + \int_{a}^{b} R_{2}(t, x) q(t) dt$$

$$- \int_{0}^{c} R_{7}(t, x) \sigma(t) dt + f_{1}^{+}(x)$$

$$E \frac{\partial u(x, 0^{-})}{\partial x} = (1 - v) p(x) + \frac{2}{\pi} \int_{a}^{b} \frac{q(t) dt}{x + t} - \frac{2}{\pi} \int_{a}^{b} \frac{q(t) dt}{x - t}$$

$$+ \int_{a}^{b} K_{1}(t, x) p(t) dt + \int_{a}^{b} K_{2}(t, x) p(t) dt + f_{1}^{-}(x)$$

$$E \frac{\partial u(x, 0^{-})}{\partial x} = (v - 1) q(x) + \frac{2}{\pi} \int_{a}^{b} \frac{p(t) dt}{x - t} - \frac{2}{\pi} \int_{a}^{b} \frac{p(t) dt}{x + t}$$

$$+ \int_{a}^{c} R_{3}(t, x) p(t) dt - \int_{a}^{b} R_{4}(t, x) q(t) dt$$

$$- \int_{0}^{c} R_{6}(t, x) \sigma(t) dt + f_{2}^{+}(x)$$

$$E \frac{\partial u(x, 0^{-})}{\partial x} = (v - 1) q(x) - \frac{2}{\pi} \int_{a}^{b} \frac{p(t) dt}{x + t} - \frac{2}{\pi} \int_{a}^{b} \frac{p(t) dt}{x - t}$$

$$E \frac{\partial u(0^{+}, y)}{\partial y} = \frac{2}{x} \int_{0}^{a} \frac{\sigma(t) dt}{y-t} - \frac{2}{x} \int_{0}^{a} \frac{\sigma(t) dt}{y+t} - \frac{b}{x} \int_{0}^{b} \frac{\sigma(t) dt}{y+t} + \int_{a}^{b} R_{6}(t, y) p(t) dt + \int_{a}^{b} R_{5}(t, y) q(t) dt + \int_{a}^{b} R_{3}(t, y) \sigma(t) dt + f_{3}^{*}(y)$$
(3)

где \mathcal{E} - модуль упругости, ν - коэффициент Пуассона, а функции $f_1^+(x)$, $f_1^-(x)$, (i=1,2) и $f_3^+(y)$ имскот вид

$$f_1^*(x) = (1 - v) p_0(x) + \frac{2}{\pi} \int_0^{a} \frac{g_n(t) dt}{x - t} + \frac{2}{\pi} \int_0^{a} \frac{g_n(t) dt}{x - t}$$
$$= \frac{2}{\pi} \int_0^{a} \frac{g_n(t) dt}{x + t} - \frac{2}{\pi} \int_0^{a} \frac{g_n(t) dt}{x + t} + \int_0^{a} R_1(t, x) p_0(t) dt$$
$$+ \int_0^{a} R_1(t, x) p_0(t) dt + \int_0^{a} R_2(t, x) g_0(t) dt$$
$$+ \int_b^{a} R_2(t, x) g_0(t) dt - \int_x^{a} R_7(t, x) \sigma_0(t) dt$$
$$I_1^-(x) = (1 - v) p_0(x) + \frac{2}{\pi} \int_0^{a} \frac{g_n(t) dt}{x - t} + \frac{2}{\pi} \int_b^{a} \frac{g_n(t) dt}{x + t}$$
$$+ \int_0^{a} R_1(t, x) p_0(t) dt$$
$$+ \int_b^{a} R_1(t, x) p_0(t) dt + \int_a^{a} R_2(t, x) g_0(t) dt$$
$$+ \int_b^{a} R_2(t, x) g_0(t) dt + \int_a^{a} R_2(t, x) g_0(t) dt$$
$$+ \int_b^{a} R_1(t, x) g_0(t) dt + \int_0^{a} R_2(t, x) g_0(t) dt$$
$$+ \int_b^{a} R_1(t, x) g_0(t) dt$$
$$+ \int_b^{a} R_2(t, x) g_0(t) dt$$

$$-\frac{2}{\pi}\int_{0}^{\infty} \frac{p_{0}(t)dt}{x+t} - \frac{2}{\pi}\int_{0}^{\infty} \frac{p_{0}(t)dt}{x+t} + \int_{0}^{\infty} R_{3}(t,x) p_{0}(t) dt + \int_{0}^{\alpha} R_{3}(t,x) p_{0}(t)dt - \int_{0}^{\alpha} R_{4}(t,x) q_{0}(t) dt - \int_{0}^{\infty} R_{4}(t,x) q_{0}(t) dt - \int_{c}^{\infty} R_{6}(t,x) \sigma_{0}(t) dt I_{5}^{*}(y) = \frac{2}{\pi}\int_{c}^{\infty} \frac{\sigma_{0}(t)dt}{y-t} - \frac{2}{\pi}\int_{c}^{\infty} \frac{\sigma_{0}(t)dt}{y+t} - \int_{0}^{\alpha} R_{6}(t,y) p_{0}(t) dt - \int_{0}^{\infty} R_{6}(t,y) p_{0}(t) dt + \int_{0}^{\alpha} R_{5}(t,y) q_{0}(t) dt + \int_{b}^{\infty} R_{5}(t,y) q_{0}(t) dt + \int_{c}^{\infty} R_{3}(t,y) \sigma_{0}(t) dt$$
(4)

Отметим, что знаки (+) или (-) в функциях f_i относятся соответственно к квадраяту и полуполосе, которые получены в результате разбиения данной области Виды функций $K_1(I, x)$ и $R_1(I, x)$ (I=1,4) (j=1,7), входящих в (3), приведены в работе [1].

Удовлетворив условням контакта

$$u(x,0^{\circ}) = u(x,0^{\circ})$$

$$v(x,0^{\circ}) = v(x,0^{\circ}) \qquad (a \le x \le b) \qquad (5)$$

и условию симметрия.

$$u(0,y) \approx 0 \qquad (0 < y < c) \tag{6}$$

из (3) получим систему сингулярных интегральных уравнений относительно исизвестных функции $\rho(x)$, q(x) и $\sigma(y)$

$$\frac{4}{x}\int_{a}^{b}\frac{p(t) dt}{x-t} + \int_{a}^{b}M_{11}(t,x) p(t) dt + \int_{a}^{b}M_{12}(t,x) q(t) dt$$

$$-\int_{0}^{c} R_{6}(t,x) \sigma(t) dt = F_{1}(x) , \quad x \in (a,b)$$

$$\frac{4}{x} \int_{a}^{b} \frac{q(t) dt}{x-t} - \frac{4}{x} \int_{a}^{b} \frac{q(t) dt}{x+t} + \int_{a}^{b} M_{21}(t,x) F(t) dt$$

$$+\int_{a}^{b} M_{22}(t,x) q(t) dt - \int_{0}^{c} R_{7}(t,x) \sigma(t) dt = F_{2}(x)$$

$$x \in (a,b)$$

$$\frac{2}{x} \int_{0}^{c} \frac{\sigma(t) dt}{x-t} - \frac{2}{x} \int_{0}^{c} \frac{\sigma(t) dt}{x+t} - \int_{a}^{b} R_{6}(t,x) F(t) dt$$

$$+ \int_{a}^{b} R_{5}(t,x) q(t) dt + \int_{0}^{c} R_{3}(t,x) \sigma(t) dt = F_{3}(x)$$

$$x \in (0,c) \quad (7)$$

где функции $M_{ij}(l,x)$ (i,j=1,2) и $F_l(x)$ (l=1,2,3) приведены в работе {1}.

Интегральные условия равновесия, которым должны удовлетворять решения системы (7), имеют вид

$$\int_{a}^{b} p(t) dt = - \int_{0}^{a} p_{0}(x) dx - \int_{b}^{\infty} p_{0}(x) dx$$

$$\int_{a}^{b} q(t) dt + \int_{0}^{c} \sigma(y) dy = - \int_{0}^{a} q_{0}(x) dx - \int_{b}^{c} q_{0}(x) dx$$

$$- \int_{c}^{c} \sigma_{0}(y) dy \qquad (8)$$

Путем замены переменных

$$x = \frac{b-a}{2}z + \frac{a+b}{2}, \quad t = \frac{b-a}{2}y + \frac{a+b}{2}$$
 при $(a < x, t < b)$

X.

$$y = \frac{c}{2}(z+i), t = \frac{1}{2}(y+i)$$
 при (0 < t, y < c)

систему (7) сведем к виду

$$\frac{1}{2} \int_{-1}^{1} \frac{\Phi_{1}(y) \, dy}{z - y} + \int_{-1}^{1} N_{1}(y, z) \Phi_{1}(y) \, dy$$

$$+ \int_{-1}^{1} N_{12}(y, z) \Phi_{2}(y) \, dy + \int_{-1}^{1} N_{11}(y, z) \Phi_{3}(y) \, dy = \varphi_{1}(z)$$

$$\frac{1}{\pi} \int_{-1}^{1} \frac{\Phi_{2}(y) \, dy}{z - y} = \frac{1}{\pi} \int_{-1}^{1} \frac{\Phi_{2}(y) \, dy}{z + y + 2} \frac{a + b}{b - a}$$

$$+ \int_{-1}^{1} N_{21}(y, z) \Phi_{1}(y) \, dy + \int_{-1}^{1} N_{22}(y, z) \Phi_{2}(y) \, dy$$

$$+ \int_{-1}^{1} N_{23}(y, z) \Phi_{3}(y) \, dy = \varphi_{2}(z)$$

$$\frac{1}{\pi} \int_{-1}^{1} \frac{\Phi_{3}(y) \, dy}{z - y} = \frac{1}{\pi} \int_{-1}^{1} \frac{\Phi_{3}(y) \, dy}{z + y + 2}$$

$$+ \int_{-1}^{1} N_{31}(y, z) \Phi_{1}(y) \, dy + \int_{-1}^{1} N_{32}(y, z) \Phi_{2}(y) \, dy$$

$$+ \int_{-1}^{1} N_{33}(y, z) \Phi_{3}(y) \, dy = \varphi_{3}(z) \qquad (9)$$

В (9) яведены следующие обозначения:

$$\Phi_1(y) = p\left(\frac{b-a}{2}y + \frac{a+b}{2}\right), \quad \Phi_2(y) = q\left(\frac{b-a}{2}y + \frac{a+b}{2}\right)$$
$$\Phi_3(y) = o\left[\frac{c}{2}(y+1)\right]$$

а остальные функции определяются аналогичным образом. Решение системы (9) в классе

$$\Phi_{i}(y) , \Phi_{i}(y) = \frac{\Phi_{i}(y)}{\sqrt{1 - y^{2}}} , i = 12$$

$$\Phi_{3}(y) , \Phi_{3}(y) = \left(\frac{1 + y}{1 - y}\right)^{\frac{1}{2}} \Phi_{3}(y)$$
(10)

 $d_{0} = \{0, 0\}$ (1 = 1, 2, 3) регулярные функции, существует и сдинстление [7,3].

Использу известные квадратурные формулы [4] с учетом (8) и (10),

система сингулярных интегральных уравнений (9) приводится к системе линейных алгебранческих уравнений

$$\sum_{i=1}^{n} \frac{1}{n} \left[\left[\frac{1}{z_{k} - y_{i}} + \pi N_{11}(y_{i}, z_{k}) \right] \Phi_{1}(y_{i}) \right] \\ + \pi N_{12}(y_{i}, z_{k}) \Phi_{2}(y_{i}) \right] + \sum_{i=1}^{n} \frac{2(1 + y_{i})}{2\pi + 1} N_{13}(y_{i}, z_{k}) \Phi_{3}(y_{i}) \\ = \varphi_{1}(z_{k}) \qquad k = 1, 2, \dots, n - 1 \\ \sum_{i=1}^{n} \frac{1}{n} \left[\left[\frac{1}{z_{k} - y_{i}} - \frac{1}{z_{k} + y_{i} + 2\left(\frac{a + b}{b - a}\right)} + \pi N_{22}(y_{i}, z_{k}) \right] \Phi_{2}(y_{i}) \\ + \pi N_{2i}(y_{i}, z_{k}) \Phi_{1}(y_{i}) \right] + \sum_{i=1}^{n} \frac{2(1 + y_{i})}{2\pi + 1} N_{23}(y_{i}, z_{k}) \Phi_{3}(y_{i}) \\ = \varphi_{2}(z_{k}) \qquad k = 1, 2, \dots, n - 1 \\ \sum_{i=1}^{n} \frac{2(1 + y_{i})}{2\pi + 1} \left[\frac{1}{z_{k} - y_{i}} - \frac{1}{z_{k} + y_{i} + 2} + N_{33}(y_{i}, z_{k}) \right] \Phi_{3}(y_{i}) \\ + \sum_{i=1}^{n} \frac{1}{\pi} \left[\pi N_{31}(y_{i}, z_{k}) \Phi_{1} + \pi N_{32}(y_{i}, z_{k}) \Phi_{2} \right]$$

 $\sum_{i=1}^{n} \frac{\pi}{n} \overline{\Phi}_{2}(y_{i}) + \frac{2(1+\overline{y_{i}})}{2n+1} \overline{\Phi}_{3}(\overline{y_{i}}) = c_{2}$

где с и с 2 определяются по формулам

/=1

 $\sum_{i=1}^{n} \frac{\pi}{n} \overline{\Phi}_{1}(y_{i}) = c_{i}$

$$c_{1} = -\int_{0}^{a} p_{0}(x) dx - \int_{b} p_{0}(x) dx$$

$$c_{2} = -\int_{0}^{a} q_{0}(x) dx - \int_{b} q_{0}(x) dx - \int_{c} q_{0}(x) dx$$
(12)

 $= \varphi_{3}(\bar{z_{k}})$ k = 1, 2, ..., n - 1

. 31

(11)

Воспользоваящись решеннями системы (10), коэффициенты интенсивлости напряжений определим по следующим формулам:

$$K_{1}(a) = \frac{\overline{\Phi}_{1}(-1)}{\sqrt{2}}, \qquad K_{2}(a) = \frac{\overline{\Phi}_{2}(-1)}{\sqrt{2}}$$
$$K_{1}(b) = \frac{\overline{\Phi}_{1}(1)}{\sqrt{2}}, \qquad K_{2}(b) = \frac{\overline{\Phi}_{2}(1)}{\sqrt{2}}$$
$$K_{1}(c) = \sqrt{2} \ \overline{\Phi}_{3}(1) \qquad (13)$$

Таблица 1 h/a = 1, c/a = 1.5

·b/a K/po	1. 1	1. 5	n	3
K1(4)/po	3. 752	0. 538	0.201	0. 054
K2(a)/po	- 0. 015	- 0. 026	- 0. 019	- 0. 032
$K_1(b)/p_0$	4. 998	1. 341	0.808	0. 451
K2(b)/po	0. 013	0.011	0.006	0.012
K1(c)/po	- 0. 038	- 0. 036	- 0. 031	- 0. 023

В табл. І приведены численные значения коэффициентов интенсивности напряжений при различных значениях геомстрических параметров, когда нормальная нагрузка действует на единицу длины полубесконечных горизонтальных трещин.

Таблица 2 c/a = 1

K / p o	h/a b/a	1.1	1.5	2	5
K1(a)/po		6. 180	I. 56	0, 861	0. 349
K2(a)/po	0.5	- 0. 152	- 0. 139	- 0. 122	- 0. 075
K1(b)/p0		15.02	1. 031	0. 194	0. 046
K2(01/p0		0. 729	0. 269	0. 133	0. 009
K1(a)/pa		6. 232	1. 616	0. 865	0.361
$K_2(a)/p_0$	I	- 0. 094	- 0. 091	- 0. 086	- 0. 055
K1(b)/p0		13. 93	0. 967	0. 197	0. 027
K2(b)/po		0. 364	0.176	0.106	0. 021
K1(a)/po		6. 384	1. 67	0.881	0. 369
k 2 (a) / p 0	5	- 0. 079	- 0. 057	- 0. 042	- 0. 048
K11b)/po		13.75	0. 904	0. 188	0. 012
K2(b)/p0		0. 271	0.111	0. 058	0.010

В случае, когда кормальная нагрузка залана на берегах трешины конечной дляны, значения коэффициентов интенсивности напряжений приведены в табл.2.

Как вилно из таблиц 1.2, при фиксированном значения (Н - h) увсличение расстояния между горизонтальными трещинами принодыт к уменьшению значений коэффициентов интенсивности нормальных напряжений, а по мере удаления границы полуплоскости от трешки их значения возрастают.

ЛИТЕРАТУРА

- 3. Мусхелншвили Н.И. Снигулярные интегральные уравнения -М.: Физматгиз, 1962. 511 c.
- 4. Erdogan F.E., Gupta G.D., Cook T.S. The numerical solutions of singular integral equations .- In: Methods of Analysis and Solutions of Crack Problems. Noordhoff Intern. Publ., Leyden, 1973, pp.368-425.

Институт механики АН Армении Поступила в редакцию 1.11.1990

І Афян Б.А., Степания С.П. Об одной задаче упругой полуплоскости, ослабленной трещинами. -Иав.АН Арм ССР. Механика, 1989. т.42, N 2, с.50-57. 2. Гахов Ф.Д. Красвые задачи. -М.: Физматгиз, 1963 640с.

ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԳԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ

ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЕНИИ

Մեխանիկա

44, Nº 4, 1991

Механика

ЛИНАМИЧЕСКИЕ ЗАДАЧИ МАГНИТОУПРУГОСТИ ДЛЯ СЛОЯ И ПОЛУСЛОЯ С ТУННЕЛЬНЫМИ ПОЛОСТЯМИ И ТРЕЩИНАМИ ПРОДОЛЬНОГО СДВИГА

ОСТРИК В.И., ФИЛЬШТИНСКИЙ Л.А.

Օստրիկ Վ.Ի., Ֆիլշտինսկի Լ.Ա. Մագնիս<mark>տառաձգականության դինամի-</mark> կայ խնդիրներ երկայնական սաճթի ճաջերով և թունելային խոռոչներով -Երտի և կիսաշերտի ճամար

Հետազոտվում է ուժեղ մագնիսական դաչտի ազդեցությունը սաճըչի ալիբնելի և առաձգական իղեալական ճաղորդիչ շերտում կամ կիլա երտում թունելային խոռոչների ու ճարրերի փոխազդեցության վրա։ Դիտարկվող եզրային խնդրում ստացված սինգուլյար ինտեգրո-դիֆերենցիալ ճավասարումը ճետազոտվում է թվալին։

Изучается вличные сильного магнитного поля на азаимодействие воли сданта с тупнеченымь полостями и трещинями в упругом идепльно-прокодчием слое и полуслос. Полученные сингулярное интегро-дифференцияльное уравнение рассматриваемом краевой задачи реализовано численно.

Ostric V.I., Filshtinsky L.A. Dynamic Problems of Magnetic Elasticity for a Laver and a Semilayer With a Tunnel Cavities and a Cracka

На характер волновых полей в электропроводных телах значительное влияние оказывают внешние магнитные поля. Возникающие при этом силы Лоренца необходимо учитывать в уравнениях движения упругой спеды. Что приводит к появлению дополнительного тензора максвелловских напряжений [1,2].

В рамках этого подхода ниже изучается влияние сильного магнитного поля на ваанмодействие воли сдвига с туннельными концентраторами напряжений в упругом идсально проводящем (диа пара) магнитном слос и полуслое (подобная задача лля прямолинейной трещины в неограничениой среде рассмотрена в [3]).Используется метод решения динамических задач теорим упругости для тел с криволинейными разрезами, предложенный в работах [4,5].

1. Будем рассматривать идеально проводящий упругий слой $(0 \le x \le a, -\infty \le y \le \infty, -\infty < z' < \infty)$ или полуслой $(0 \le x \le a, 0 \le y < \infty, -\infty < z' < \infty)$ или полуслой $(0 \le x \le a, 0 \le y < \infty, -\infty < z < \infty)$, находящиеся в статическом магнитном поле с напряжен ностью $H^{0} = (0, H_{0}, 0)$ и ослабленные цилиндрическими вдоль оси з трещинами и полостями.

В результате механического возбуждения, нызывающего движение частым упругон среды в теле возникает электромагнитное поле H = H " + h E = e ,гдс h , с -малыс флуктуации магнитного и электрического полей соответственно. Спитая электромагнитное поле

квазистатическим (D = 0 . — = 0 . D -электрическое смещение .Iвремя), получаем из уравнений Максвелла и линсаризованных уравнений движения {1}:

$$\vec{\mathbf{n}} = \operatorname{rot}\left(\vec{\mathbf{U}} \times \vec{\mathbf{H}}^{\,0}\right) , \quad \vec{\mathbf{e}} = -\mu_{e}\left(\frac{\partial\vec{\mathbf{U}}}{\partial t} + \vec{\mathbf{H}}^{\,0}\right) \tag{1.1}$$

$$\mu \nabla^2 \overline{U} + (\lambda + \mu) \text{ grad div } \overline{U} + \mu \text{ rot } \overline{h} \times \overline{H}^{0} = \rho \frac{\partial \overline{U}}{\partial t^2}$$

гас \mathbf{U} - вектор упругого смещения, λ , μ - параметры Ламе, μ - магнитная проницаемость ρ - плотность среды, ∇ ² -дифференциальный оператор Лапласа.

Пусть из бесконечности илучается магнитоупругая сдвиговая волна смещения w_0 [3], а поверхности концентраторов либо свободны от сил, либо подвержены воздействии гармонической но времени и не зависящей от координаты : сдвиговой нагрузки. В этом случае в теле возвикает стационарный волноной процесс. соответствующий состоянию антиплоской деформации: U = (0,0 w).w = Rc(W(x,y) x cxp(- iwi)) (w круговая частота). Исключая из (1.1) время, приходим к дифференциальному уравнению относительно амплитуды смещения W(x,y)

$$\nabla^2 W + \chi^2 \frac{\partial^2 W}{\partial y^2} + \gamma_2^2 W = 0$$
 ($\chi^2 = \frac{W + V^2}{W}$, $\chi_2^2 = \frac{W + V^2}{W}$) (1.2.)

Суммарные напряжения в σ_y , складываются из механических I_{xz} , I_{yz} и максвелловских I_{xz} , I_{yz} и выражаются через смещение w(x,y) по формулам

$$\sigma_{xx} = \mathbf{r}_{xx} + t_{xx} , \quad \sigma_{y_{x}} = t_{y_{x}} + t_{y_{x}}$$
(1.3)
$$\mathbf{r}_{xx} = \frac{\mu \, \partial w}{\partial x} , \quad \mathbf{r}_{yx} = \frac{\mu \, \partial w}{\partial w} , \quad t_{xx} = 0 , \quad t_{yx} = \frac{\mu \, x^{2} \, \partial w}{\partial w}$$

Предположим, что основания слоя (полуслоя) свободны от сил

$$\frac{aW}{ax} = 0$$
 (x = 0, x = a) (1.4)

в торцевая граница полуслоя закреплена

 $W = 0 \qquad (y = 0) \tag{1.5}$

или свободна

$$\frac{\partial W}{\partial y} = 0 \qquad (y=0) \tag{1.6}$$

Считаем что вдоль отрицательного направления оси су распростраимется магнитоупругая волна сдвига

$$w_0 = \text{Re}\left(W_0(y)\exp(-i\omega t)\right), \quad W_0 = \tau \exp\left(-\frac{1}{y(1+\chi^2)}\right) \quad (1.7)$$

а на поверхности трещин S_j ($j = 1, m_1$ или полостей S_j ($j = \overline{m_1 + 1}, m_1$ m = $m_1 + m_2$) возможно действие гармонитеской во времени механической нагрузки.

Путть L₁-линия пересечения поверхности S₁- с плоскостью х0у, п = 1 cosy , siny)-единичная (внутренияя для полости) нормаль к L₁ Будем предполагать, что кривизна дуги L₁- функция хласса Н [6]. Красвое условие на контуре трещины (полост 1) запишется в виде:

$$\left(\begin{array}{c} 0 \\ m \end{array}\right)_{1 L_{j}} = \frac{1}{\mu} z \quad (j = \overline{1, m})$$
 (1.8)

Разрешающее уравнение (1.2) при переходе к новым хоординатам

$$x_1 = x$$
, $y_1 = \frac{y}{\sqrt{1 + \chi^2}}$

преобразуется в уравнение Гельмгольца

$$\frac{\partial^2 W}{\partial x_1^2} + \frac{\partial^2 W}{\partial y_1^2} + y_2^2 W = 0$$
(1.9)

Лифференциалы $ds_1 ds_1$ пуги L_2 в системах координат $x_1 0 y_1$ и $x 0 y_2$ саязаны соотношением $(1 + \chi^2 \sin^2 \psi) = (1 + \chi^2) dx_3$

Решение краевой задачи (1.2) (1.4)-(1.8) представим в виде суперпознани падающей отраженной и рассеянной воли:

$$H = W_0 + A W_1 + W_2$$
, $W_1 = i \exp(i \gamma_2 y_1)$ (2.1)

$$W_{-1}(x,y) = -i \left[p(s) \left(\frac{\partial G}{\delta_{1}} + \frac{\partial G}{\delta_{1}} d\xi_{1} \right) - \frac{\partial G}{\delta_{1}} d\xi_{1} \right) - \frac{\partial G}{\delta_{1}} d\xi_{1} \right] - \frac{\partial G}{\delta_{1}} d\xi_{1} - \frac{\partial G}{\delta_{1}} - \frac{\partial G}{\delta_{1}} d\xi_{1}$$

$$\zeta_1 = \delta + i \eta_1$$
, $\eta_1 = \frac{\eta}{\sqrt{1 + \chi^2}}$, $\zeta = \zeta + i \eta \in \Gamma$, $z = x + i y$

Здесь (1 х у) -амплитуда отраженной от торцевой границы полуслоя нолчы, (х , у) -амплитуда рассеянной концентраторами волны: Г- суммарный контур трещин и полостей з -его дуговая координата; p(s) неизвестная плотность; G - функция Грина краевой задачи (1.9),(1.4), 1.5 или (6) для полуполосы $0 \le x_1 \le a$, $0 \le y_1 < \infty$; g = фунраня Грина краевой задачи (1.9),(1.4) для полосы $<math>0 \le x_1 \le a$, $-\infty \le y_1 < \infty$; A = 1 в случае свободного. A = -1накой терцевого края полуслов A = 0 в случае слоя.

Интегральное представление (2.1) удовлетворяет лифференциальному уравнению (1.2), граничным условиям (1.4), (1.5) или (1.6), условиям излучения [7], а также обеспечивает непрерывность механических напряжений и существование скачка перемещения на контуре L.

Функция Грина для полосы разыскивалась в форме ряда Фурье по координате х с последующим преобразованием Фурье по координате у, и вмеет вид:

$$g(\xi, x, y_{1} - y_{1}) = \frac{1}{1+y_{2}} \exp(i\gamma_{2} + 1 - y_{1} +)$$

$$- \frac{1}{a} \sum_{k=1}^{\infty} \frac{1}{\lambda_{k}} \exp(-\lambda_{1} + y_{1} - y_{1} +) \cos(a_{k}\xi) \cos(a_{k}x) \qquad (2.2)$$

$$(\gamma_{2} < \alpha_{k}) \quad \lambda_{k} = -i\sqrt{\gamma_{1} - \alpha_{k}^{2}} \quad (\gamma_{2} > \alpha_{k})$$

$$a_{k} = -\frac{1}{a}$$

В случае, если $\eta_1 = y_1$ ряд в формуле (2.2) сходится условно, а при $\xi = -\eta_1$, становится расходящимся Для устранения этого явления выделим его главную часть Получим

 $s(\xi, x, \eta_1 - \eta_1) = g_0 + g_1$

$$g_{0} = \left(g - \frac{1}{2iy_{2}a} \exp\left(iy_{2}(\eta_{1} - y_{1})\right)\right) \Big|_{y_{2}=0}$$
$$= \frac{1}{2\pi} \ln \left[4\sin\frac{\pi}{2}\left(\zeta_{1} - z_{1}\right)\sin\frac{\pi}{2a}\left(\zeta_{1} + \overline{z}_{1}\right)\right] - \frac{1}{2a}(\eta_{1} - y_{1})$$

$$= \frac{1}{2iy_{2}a} \exp(iy_{2} + \eta_{1} - y_{1} +)$$

$$= \frac{1}{a} \sum_{k=1}^{a} \left(\frac{1}{\lambda k} \exp(-k + \eta_{1} - y_{1} +) - \frac{1}{a} \exp(-a_{k} + \eta_{1} - y_{1} +) \right) \cos(a_{k}\xi) \cos(a_{k}x)$$

$$= \frac{1}{a} \exp(-a_{k} + \eta_{1} - y_{1} +) \cos(a_{k}\xi) \cos(a_{k}x)$$

$$= \frac{1}{a} \exp(-a_{k} + \eta_{1} - y_{1} +)$$
(2.3)

Отсюда видно, что функция $g(\xi, x, \eta_1 - y_1)$, а значит и функция Грина G,удовлстворяет уравнению (1.2), когда ζ , а при $r_1 = |z - \zeta| \rightarrow 0$ имеет логарифмическую особенность Общий член ряда для g_1 затухает как k^{-1} при $r_1 = 0$ и экспоненциально при $\eta_1 \neq y_1$ Ряд (2.2) для второй составляющей $g(\xi, x_1 - \eta_1 - y_1)$ функции Грина G сходится экспоненциально. Выполненное преобразование функции Грина даст возможность применять к ней операцию дифференцирования и обеспечивает существование се вторых производных при $\zeta \neq z$

Вычисляя ноомальнуя производную от функции W (2.1), регуляризуя

расходящиеся интегралы интегрированием по частям и подставляя затем предельное значение нормальной произкодной при z -> ζ₀ = ξ₀ + -¬ G Г в праевые условие (1.8), приходим к сингулярному интегро-дифференциальному уравнению по контуру Г относительно функции p (s)

$$\int_{L} \left[p'(s) \left(\operatorname{Im} \frac{c(\psi_{0})}{\zeta_{0} - \zeta_{01}} - \frac{\chi^{2} \sin 2\psi}{2 \sqrt{1 + \chi^{2}}} \frac{\partial G}{\partial n_{0}} \right) ds \\ - \left[p(s) \left(\frac{2^{2} G_{1}}{\partial n_{0} \partial_{x_{1}}^{2}} d\zeta_{1} - \frac{\pi^{2} G_{1}}{\partial n_{0} \partial_{x_{1}}^{2}} d\zeta_{1} \right) \right] + b(\psi_{0}) p(s_{0}) \\ + \int_{l} p(s) \frac{\partial G}{\partial n_{0}} ds_{1} = \frac{1}{\mu} Z - \frac{\partial}{\partial n_{0}} \left(W_{0} + A W_{1} \right)$$
(2.4)

$$c(\psi_{ij}) = \cos \psi_{0} + \frac{1}{\sqrt{1 + \chi^{2}}} \sin \psi_{0} , \quad p = \int_{a_{j}}^{b} dp \quad , \quad \zeta \in L_{j}$$

$$G_{1} = G - \frac{1}{2\pi} \ln |\zeta_{1} - \zeta_{01}| , \quad \zeta_{01} = \xi_{0} + \frac{i \eta_{0}}{\sqrt{1 + \chi^{2}}}$$

$$b(\psi_{01}) = -\frac{1}{2} \left(1 + \chi^{2} \sin^{2} \psi_{0}\right)^{-\frac{1}{2}} \quad (\zeta_{0} \in I) , \quad b(\psi_{0}) = 0 \quad (\zeta_{0} \in L)$$

Здесь a_1 -начало трещины, $n_0 = (\cos \psi_0, \sin \psi_0)$ -слиничная нормаль к контуру Г в точке ζ_0 , ядра im $\left[\frac{c(\psi_0)}{(\zeta_1 - \zeta_{01})}\right]$, — сингулярные. Уравиение (2.4) необхдимо рассматривать совместно с дополнительными условиями

$$\int \rho(s) \, ds = 0 \qquad (j = \overline{1, m_1}) \tag{2.5}$$

отражающими отсутствие скачков перемещения в вершинах разрезов. Уравнения (2.4), (2.5) однозначно определяют решение с неограниченной производной на концах разрезов. На контурах полостей *p*(*s*) *C H* (6).

Ряды для вторых производных функции G₁ в уравнении (2.4) при 7 = г. сходится условно. После выделения главной части остаток ряда схолится не медленнее, чем k⁻³.

3 Далее удобно ввести параметризацию контура разреза: $\zeta = \zeta(\beta)$ (- 1 < 1).В соответствии с этим

$$p'(s) = \frac{\Omega(\beta)}{s'(\beta)\sqrt{1-\beta}} \qquad \Omega(\beta) \in H [-1,1]$$

Для определения суммарных напряжений σ_{xx} σ_y в окрестности вершины дефекта воспользуемся интегральным представлением (2.1). Асныптотический анализ входящих в формулы для напряжений интегралов дает

Фнг. | График зависимости величины а от угла ориентации у

прямолинсяной трешины.

$$\sigma_{xz} - i\sigma_{yz} = -\frac{1}{2}\sqrt{1+\chi^2} \exp((i-1)) \operatorname{Re}[\Omega(\pm 1)\exp(-i\omega t)]$$

$$\times (\mp 2is'(\pm 1)(z-c))^{-\frac{1}{2}} + O(1), \ z \neq c \qquad (3.1)$$

$$c = \zeta(\pm 1), \quad \psi_c = -1, \quad z = c$$

С учетом (3.1) определяем динамический коэффициент интенсивности напряжений

$$K_{11} = \lim_{r \to 0} \sqrt{2\pi r} \left(\sigma_{xz} \cos \psi_c + \sigma_{yz} \sin \psi_c \right)$$
(3.2)

Фиг 2 График зависимости величины *а* от вормализованного волнового числа *у*₂ *а* для прямолинейной поперечной и параболической трещины в полуслое со своболным торцом.

 $= \pm \frac{2}{2} \sqrt{\pi (1 + \chi^2) (s'(\pm 1))^{-1}} |\Omega(\pm 1)| \cos (\omega t - \arg \Omega(\pm 1))$

где с-расстояние от рассматриваемой точки на продолжении трещины до вершины с.

4 Численная реализация уравнений (2.4), (2.5) проводилась методом механичесьих квалратур [8] для случая одного контура Г (трешина или полость). У равнение (2.4) удовлетворялось в узлах $\beta_i = \cos \theta_i$, $\theta_i = \frac{1}{n}$, $i = \overline{1, n-1}$ (для трешины), $\theta_i = \frac{2\pi (i-1)}{n}$, $i = \overline{1, n}$ (для полости) и сводилось к системе линейных алгебраических уравнений относительно и ензвестимых значений $\Omega(\beta_i)$, $\beta_i = \cos \theta_i$

Фиг.3.Графих зависимости величины δ от нормализованного волнового числа γ2 α, для круговой и залиптической полости в слое

 $\theta_{i} = \frac{\pi (2j-1)}{2n}$, j = 1, n (для трещины), $p(\pi(\theta_{j}))$ $\theta_{i} = \frac{\pi (2j-1)}{n}$, j = 1, n (для полости). Для замыкания системы в случае трещины использовалось линейное алгебраическое уравнемие, вытекающее из условия (2.5). При этом параметрическое представление контура полости бралось в виде $\xi = \zeta(0)$, $0 \le \theta \le 2\pi$.

К витегралам в (2.4), (2.5) применялись квадратурные формулы Гаусса-Чебышева (для трещины) и прямоугольников (для полости), имеющие наивисшую алгебраическую степень точности как для регулярных, так и для сингулярных интегралов при указанном выборе узлов.

Квадратурная формула для интеграла по контуру трещины, солержашего функцию p(s), получена с использованием интерполяционного многочлена функции $\Omega(\beta)$ по узлам B_i и имеет вид:

$$\int_{\Gamma} P(z) M(s, z_0) dz = -\frac{2\pi}{\pi^2} \sum_{j=1}^{n} \Omega(\beta_j) \sum_{m=1}^{n} M(s(\beta_m), s_0) s'(\beta_m)$$

Фнг.4. График зависниости величины д от нормализованного волнового числа у₂ а , для круговой полости в полуслое со свободным горцом.

$$x \sin \theta_m \sum_{k=1}^{n-1} \frac{1}{k} \sin (k \theta_m) \cos (k \theta_j), \quad \beta_m = \cos \theta_m, \quad \theta_m = \frac{\pi (2m-1)}{2n}$$
(4.1)

Значения внеинтегральной плотности для контура полости в узлах θ_i определялись при помощи интерполяционного многочлева функций $p(s(\theta))$ по узлам θ_j (*n* – нечетное):

$$p(x(\theta_i)) = \frac{1}{n} \sum_{j=1}^{n} p(x(\theta_j))(-1)^{i+j} \operatorname{cosec} \frac{\pi}{2n} (2i-2j+1)$$
(4.2)

Расчеты безразмерных величия а", в проведены для случая

дяфракции падающей сдинговой волны (т≠0) на свободной от сил трешине или полости (Z = 0). Коэффициент интенсивность напряжений выражается через следующим образом:

$$K_{111} = \sqrt{\alpha} \alpha^{-1} T_{y} \cos(\omega t - \arg \Omega(\pm 1)),$$

где $|T_y| = \sqrt{1+\chi^2}$ - модуль эмплитуды мсканического напряжения

ту: в падающей волне, причем верхний знак отвечает вершине разреза ζ (1), нижним- ζ (-1). Величния δ разна отношению модуля амплитуды напряжения $\sigma_{++} = -\sigma_{++} \sin \psi + \sigma_{y+} \cos \psi$ на контуре волости к величине $|T_y|$.

На фиг.1 воказаво изменение пеличины 🛛 от угла ориентации 🤛 примолннейной трещины длины 0,2 а. Параметрическое представление контура Г следующее: $\frac{1}{2} = 0.5 + 0.1 \beta \cos \varphi$. $\frac{\eta}{a} = iAi + 0.1\beta \sin \varphi$. — 1 ≤ µ ≤ 1. Кривые 1 соответствуют распространению упругой волны в слос (A = 0) с нармалызованным волновым числом $y_2 a = 1.5$, кривые 2 и 3 построены для свободной (A=1) и закрепленной (A=-1) горцевой границы полуслоя при уда = 1.5 и 3 соответственно. Сплошные кривые отнечают тифракции в присутствии магитного поля $(\chi = 1)$, пунктирные - без него $(\chi = 0)$. Характер влияния магнитного поля на коэффициент интенсивности напряжений К ... зависит как от кгла ориентации трещины, так и от вида граничного условия на торце y = 0 Если для поперечной трещины ($\varphi = 0$) виссение внешнсто магнитного поля приводит к возрастанию величины а . то с увеличением угла φ магвитное поле создает обратями эффект. Так, при уменьшается, при $\varphi \rightarrow \frac{\pi}{2}$ в случае полуслоя с закрепленным торцом

уменьшение величнию а становится значительным.

Значевия параметра $\gamma_2 a$ для полуслов (фиг.1) были взяты в районе локальных максимумов зависимости a от $\gamma_2 a$ при $\varphi = 0$, $\chi = 0$. Эти максимумы наблюдаются вблизи значений $\gamma_2 a = \frac{\pi}{2}$, $\frac{3\pi}{2}$,... (A = 1), 0, π , ... (A = 1). При увеличении $\gamma_2 a$ для слов (A = 0) a увеличивается незначительно.

Фиг.2 иллюстрирует зависимость коэффициента интенсивности иапряжений от волнового числа в случае свободного от сил торцевого края полуслоя с трещиной. Уравнения контура Г имеют вид: -=0.5+0.1, $-=1+p_1\beta^2$, $-1 \le \beta \le 1$. Кривые 1 соответствуют прямолинейной поперечной трешине ($p_1 = 0$), кривые 2 параболической трешине ($p_1 = 0.1$). Для сплошных кривых $\chi = 1$, для пунктирных - $\chi = 0$. Увеличивая значения α^- в широком диапазоне частот, приложенное матнитное поле сдвигает точки экстремумов в сторону больших значений $\gamma_2 a$. На фиг. 3, 4 показано изменсияе величины δ от нормализованного волнового числа $\gamma_2 a$ в случае полости в слое (фиг. 3) и волуслое со свободным торцом (фиг.4). Уравнения контура Г имсют вид: - = 0.5 + 0.2 соя θ , - = $A - p_2 \sin \theta$, 0 ≤ 2x; для круговой полости ($p_2 = 0.2$), для эллиптической - ($p_2 = 0.1$). Кривые 1 - ($\chi = 11$, 2 - ($\chi = 0$) соответствуют круговой полости, кривые 3-($\chi = 1$). 4 - ($\chi = 0$) - эллиптическої . Сплошные линии отвечают напряжению σ_x , в точке $\theta = 0$, пунктирные-максимальному напряжению на контуре полости . Напряжения σ_x , достигают максимума, как правило, внутри интервала - - < $\theta < -$. Так, например, в случае круговой полости в слое максимальные напряжения наблюдаются при θ . $\frac{\pi}{2}$, ссли = x и при $\theta = -\frac{\pi}{2}$, ссли $\gamma_2 a = \frac{11\pi}{2}$; в полуслос - при $\theta = \frac{\pi}{2}$, ссли $\gamma_2 a = \frac{\pi}{2}$ и при $\theta = -\frac{\pi}{2}$ ссли $\gamma_2 a = \frac{3\pi}{2}$.

Матнитное поле, воздействующее на проводящий слон с распространяющейся в нем сдвиговой волной, значительно увеличивает напряжения на контуре полости и несколько препятствует смещению максимума σ_1 , от значения $\theta = 0$. В случае полуслоя влияние магнитного поля на напряжение состояние носит более сложный характер: увеличивая напряжение σ_1 , на контуре полости при одних частотах нагружения уменьшает его при других частотах. Например, для значения A = 1, $p_2 = 0.2$, $\theta = 0$ (фиг.4, сплошные кривые) при $\gamma_2 a = 3.37$ приложенное магнитное поле ($\chi = 1$) увеличивает значение $\frac{\sigma}{17-1}$ в 7.3 раза, а при $\gamma_2 a = 4.7$ уменьшает его в 13 раз. Таким образом, за счет внешнего магнитного поля можно управлять (в некоторых пределах) напряженностью тела.

Следует отметить, что принятая модель ндеально проводящей среды приводит к погрешностим при значениях $\gamma_2 a$, близких к нулю. Для устранения возникающей в этой области некорректности решения необходимо рассматривать существенно более сложную модель, учитывающую конечную проводимость среды.

ЛИТЕРАТУРА

- Новацкий В Электромагнитные эффекты в твердых телах. М.:Мир, 1986. 160 с.
- Амбарцуман С.А., Багдасарян Г.Е., Белубекян М.В. Магнитоупругость тонких оболочек и пластин. – М.: Наука, 1977 272 с.
- 3 Shindo Y. Diffraction of antiplane shear waves by a finite crack in the presence of the magnetic field - Z. Angew. Math. und Mech. - 1976. - 56, N 1. - P. 33-41.
- 4.Фильштинский Л.А. Динамическая задача теории упругости для области с криволинейными разрезами (деформация продольного сдвига)-Докл. АН СССР. 1977., 236, N 6, C. 1327-1330.
- 5.Волкова Л.А., Фильштинский Л.А. Взаимодействие волн напряжений с периодической системой криволинейных трешин продольного савига -Журн. прикл. механики и техн. физики., 1981., N 2, C. 164 - 169.
- Мусхелицивили Н.И. Сингулярные интегральные уравнения. М.: Физматтиз, 1962. 599 с.
- 7. Свешников А.Г. Принцип предельного поглошен 19 для волновода Дехл. АН СССР.

1951, 80, N 3. C.345-347. 8.Erdogan F.E., Gupta G.D., Cook T.S. The numerical solutions of singular integral equations - Mechanics of Fract. Leyden: Int. Publ. 1973, V. 1 -P. 368-425.

> Сумский сельскохозяйственный институт Поступила в редакцию 18.03.1991

ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ

ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЕНИИ

Մեխանիկա

44, № 4, 1991

Механика

СТАЦИОНАРНЫЕ ВОЛНЫ СДВИГА-ВРАЩЕНИЯ В НЕЛИНЕЙНОМ КОНТИНУУМЕ КОССЕРА

ЕРОФЕЕВ В.И.

Երոֆնն վ.ի. Սանը-պտուլտի ստացիշնար ալիըները Կասսերալի ոչ գծային նոծ միջավայրում

Ուսումնասիրվում են սաճըի-պաուլտի ոչ գձալին ալիջները միկրոկառուցվաձըով միջավայրում։ Դիտարկված են ալիջների ճարթ և շրջանային բևեռացման ղեպընրը։ Կառուցված են ճաստատված ալիջների արագությունների կախումը դրանց լայնուլթներից։

Изучается новый тип стационарных воян - нелинейные вояны сданга-вращения в среде с инкроструктурой. Рассмотрены случан плоской и циркулярной полеризации воли. Постросны зависимости скорости стационарных воан от их амплитуд.

Erofeyev V.I. Stationary Shear-Rotatory Waves in a Conteral Nonlinear Continuum

Неклассическая модель сплошной среды, в которой структурные элементы обладают свойствами твердого тела, была предложена Е. и Ф.Коссера в 1909 г. [1].В настоящее время эта модель используется при описание высококачественных процессов в поликристаллических материалах и композитах [2,3]. Кроме "классических" типов упругих воли - продольных и сдвиговых, модель континуума Коссера позволяет описать новые типы воли - продольного вращения и поверечного вращения [2]. Продольные волны и волны продольного вращения связаны за счет квадратичной ислинейности. Особенности ислинейных взаимодействии этих типов воли изучались в работах [4-7].

Сдвиговые волны и волны поперечного вращения связаны в линейном приближении [2], образуя волны сдвига-вращения.В работе [8] изучалась самомодуляция квазигармонической волны сдвига-врашения.

В настоящей работе проанализированы стационарные волны сдвигавращения.

 Уравнения динамики. Распространение плоских воли сдвигавращения в нелиненом континууме Коссера описывается уравнениями

$$\frac{\partial \vec{U}}{\partial t} - \frac{c_{\vec{Z}}^2}{c_{\vec{T}}} \frac{\partial \vec{\Psi}}{\partial \xi} = -\frac{c_{\vec{T}}^2}{4c_{\vec{T}}} \frac{\partial}{\partial \xi} \left((U)^2 \vec{U} \right)$$
(1.1)

$$\frac{\partial^2 \Psi}{\partial \xi \partial r} - \frac{\left(c_1^2 - c_1^2\right)}{2c_1} \frac{\partial^2 \Psi}{\partial \xi^2} - \frac{2\alpha}{Jc_1} \left(\overline{\Psi} + \overline{U}\right) = 0 \tag{1.2}$$

Уравиения (1.1), (1.2) записаны в системе координат (τ , ξ), движу-

щейся со скоростью сдвиговых воли ($c_T = V$ Через U обозначен вектор сдвиговых деформаций $U = \begin{pmatrix} o \\ u_2 \\ u_3 \end{pmatrix}$ вектор

перемещений; $\Psi = \begin{pmatrix} 0 \\ \Psi_2 \\ \Psi_3 \end{pmatrix}$ -вектор поворота; $c_I = \sqrt{\frac{(\lambda+2\alpha)}{\rho}}$ -скорость про-

дольной волны; $c_1 = \sqrt{(\gamma + \epsilon)}$, $c_2 = \sqrt{\frac{\alpha}{2}}$ -характерные скорости волны вращения; λ, μ — константы Ламс; α, γ, ϵ -упругие константы микровращения; ρ —плотность; Ј-константа, характеризующая внерционные свойства макрообъема.

Замстим, что в (1.1), (1.2) учтена только геометрическая нелинейность. Учет физической нелинейности не привнесст, в данном случае, новых эффектов, а лишь существенно усложнит анализ. Это связано с тем, что появятся дополнительные упругие модули и дополнительные модули микрополярной среды, информация о численных значениях которых в литературе отсутствует [9].

Известно [10], что в различных средах в результате "конкуренции" эффектов нелинейности и дисперсии могут образовываться стационарные волны, то есть волны, распространяющиеся с постоянной скоростью без изменения формы.

Покажем, что в изучасной микрополярной среде могут распространяться нелинейные стационарные волны сдвига-врашения. Для атого будем искать решение (1.1), (1.2) в виде $U = U(\eta)$, $\Psi = \tilde{\Psi}(\eta)$, $\eta = \xi - V I$, V = const - скорость стационарной волны. Уравнение (1.1) дает связь между сдвиговой деформацией и вращением

$$\vec{\Psi} = \frac{c_1}{4c_2^2} |U|^2 \vec{U} - \frac{1}{c_2^2} \vec{U} + \Psi_0 \qquad (1.3)$$

где Ψ₀ -постоянная интегрирования, которая без нарушения общности может быть положена равной нулю (пренебрегаем вращением макрообъема как жесткого целого).

Скорость стационарной волны (V) является произвольным параметром задачи. Если она удовлетворяет условию

$$V >> \frac{c_f^2}{c_t} \tag{1.4}$$

то уравление (1.2) можно привести к виду:

$$\frac{d^2 \vec{\Psi}}{d\pi^2} + a \vec{\Psi} = 0 \tag{1.5}$$

где

$$a = \frac{4\alpha}{J(2c_T V + c_T^2 - c_T^2)}.$$

Соотношения (1.3), (1.5) получены для плоских воли произвольной

поляризации. Рассмотрим случан, когда волны сданга-вращения являются плоско-поляризованными и циркулярно-полязированными.

2. Плоско-поляризованные вояны. Для плоско-полязированных воли $\vec{U} = \begin{bmatrix} 0 \\ U_2 \\ 0 \end{bmatrix}$. $\vec{\pi} = \begin{bmatrix} 0 \\ 0 \\ \Psi_3 \end{bmatrix}$ и соотношения (1.3). (1.5) становятся скалярными.

Если — > 0 и скорость стационарной волны (V) удовлетворяет неравенству ("быстрая" волна):

$$V > \frac{c_1^2 - c_\tau^2}{2c_\tau}$$
(2.1)

то волва вращения является гармонической. Функция Ψ₃(η) находится в этом случае из уравнения осциллятора (α>0)

$$\frac{d\Psi_3}{d^2} + d\Psi_3 = 0 \tag{2.2}$$

Профиль нелинейной волны деформации расчитывается по алгебраяческому уравнению

$$U^{3} - \frac{1}{cf} U = \frac{4c}{cf} A \cos\left(\frac{2\pi}{\Lambda}\eta + \theta_{0}\right)$$
(2.3)

Фиг.2

Здесь 4 — амвлитуда, з A — харахтерная длина колны вращения, 0₀ -начальная фаза.

Спересть стационарном волны / Связана с элиной волны (А) соотношением

 $V = \frac{a\Lambda^2}{2c_{\tau}Jx^2} + \frac{c_1^2 - c_2^2}{2c_{\tau}}$ (2.4)

Легко видсть, что для любого материала, у которого $\frac{1}{7} > 0$, неравенство (2.1) выполняется при произвольной, отличной от нуля длине волны (Λ).

Рассмотрим зернистый композит – алюмивиская дробь в эпоксидной матрице. Для псого материала в работе [11] были измерены зиачения характериных скоростей: $c_1 = 2.28 \cdot 10^3$ м/сек, $c_2 = 9.29 \cdot 10^2$ м/сек, $c_1 = 2.48 \cdot 10^{-1}$ м/сек, $c_2 = 0.583 \cdot 10^2$ м/сек; плотность $\rho = 2.19 \cdot 10^3$ кг/м³; диамстр зерна $d = 1.4 \cdot 10^{-3}$ м и константа, характеризующая инсрционные сройства макрообъема $J = 0.429 \cdot 10^{-3}$ кг/м.

Профиль стационарной волны деформации, распространяющейся л зеринстом композите, можно расчитивать пе формуле (2.3), если V > 2.846 * 10³ м/сек (см.(1.4), (2.i)).

На фиг.1 показано распределение деформации $U(\eta)$ идоль координати η при $A = 10^{-2}$ (кривая 1), $A = 0.5 \cdot 10^{-1}$ (кривая 2); $A = 10^{-1}$ (кривая 3).Расчеты производились при длине холим A = 15d.

Нелинсине волны карактерязуются,как правило, тем, что их параметры – скорость, длина волны и другие зависат от их амилитуды [10].

На фиг.2 представлена зависимость скорости стационарной волны деформации (V) от ес амилитуды (U₀) при $A = 10^{-1}$; 0.5 × 10⁻¹; 10⁻¹; (кривые 1-3).

Из фиг.2 следует, что волны сдвига-вращения большей амплитуды распространяются с меньшими скоростями. Указанное свойство существенно отличает этот тип стационарных воли от изучаящихся рансе продольных воли в среде с микроструктурой [12].

Если стационарная волна является "медленной", то есть

$$\frac{c_2^2}{c_1} << Y < \frac{c_1^2 - c_1^2}{2c_1}$$
(2.5)

то функция Ψ3 (η) - апернодическая

$$\Psi_{3} = A_{1} \exp(\sqrt{-a \eta}) + A_{2} \exp(-\sqrt{-a \eta})$$
 (2.6)

Соотношение (2.6) - это решение уравнения осциллятора (2.2) при a < 0, причем, физический смысл имеет лишь свадающая функция. Профиль волны деформации расчитывается по уравнению

$$U^{3} - \frac{4 V c_{x}}{c_{1}^{2}} U = \frac{4 c_{2}^{2}}{c_{1}^{2}} A \begin{cases} \exp(-\sqrt{-a} \eta); \eta \ge 0\\ \exp(\sqrt{-a} \eta); \eta \le 0 \end{cases}$$
(2.7)

Для зерянстого композита скорость -медленяой- стационарной волны определяется неравенством

$$3.7 \ \text{m/cer} < < V < 2.85.10^{-4} \ \text{m/cer}$$
(2.8)

Распределение деформации $U(\eta)$ вдоль координаты η показано на фиг.3. Расчеты производились при $A = 10^{-2}$ (кривая 1); $A = 0.5 \times 10^{-1}$ (кривая 2); $A = 10^{-1}$ (кривая 3); $V = 10^{2}$ м /сск.

На фиг.4 приведена зависимость скорости стационарной волны (V) от се амплитуды U_0 при $A = 10^{-2}$; 0.5×10^{-2} ; 10^{-1} (кривые 1-3).

Из фиг.4 следует, что для "медленных" стационарных воля сдвигавращения выполняются то же закономерности, что и для "быстрых" - волны большей амплитуды распространяются с меньшими скоростями.

3. Циркулярно-поляризованные волны. Для волн, имеющих циркулярную поляризацию, решение уравнения (1.5) будем искать в виде

$$\Psi = A(\eta) e$$

где

 $cos = \begin{pmatrix} cos = (\eta) \\ -sin = (\eta) \end{pmatrix}$ - поляризационный всктор, φ - фаза вращения.

Фаза волны выражается в этом случае через амплитуду соотношением

$$\frac{d\varphi}{d\eta} = \frac{d}{A^2} \tag{3.2}$$

(3.1)

где d - постоянная интегрирования, а амплитуда определяется из уравнения осциллятора, содержащего нелинейность в отрицательной степени

$$\frac{d^2 A}{d \eta^2} + a A - d^2 A^{-3} = 0$$
 (3.3)

В работе [13] была исследована фазовая плоскость (А. 4 п) уравнения

(3.3). При а > 0 ("быстрыс" волны) из оси абсцисс имеются два состояния равновесия,оба они устойчивые - типа "центр".Следонательно, имеются замкнутые фазовые траектории. В системе могут наблюдаться периодические движения.При а < 0 ("медленные" волны) замкнутые фазоные траектории отсутствуют.

Ураянение (3.3) имеет и аналитические решения. Легко видеть, что (3.3) сволится к уравнению первого порядка (первый интеграл), которос интегрируется методом разделения переменных

$$\eta = \pm \frac{1}{2} \int \frac{dA^2}{\sqrt{-aA^4 + cA^2 - d^2}}$$
(3.4)

где с- еще одна постоянная интегрирования.

Для некоторых случаев удается записать решение в явном виде.

При а > 0 ("быстрыс" волны) у уравнения (3.3) имеется следующее периодическое решение:

$$A = \pm \sqrt{\frac{c}{2\alpha} + \frac{\sqrt{(c^2 - 4\alpha d^2)}}{2\alpha}} \sin 2\sqrt{\alpha} \eta$$
 (3.5)

которос справедливо при $c^{-} > 4 a d^{2} , |-2 a A^{-} + c| < \sqrt{c^{2} - 4 a d^{2}}$.

Если a < 0 ("медленные" волим), то решение уравнения (3.3) имеет вид

$$|2\sqrt{-a(aA^4+cA^2-d^2)}-2aA^2+c|=\exp(2\sqrt{-a\eta})$$
 (3.6)

Вводя те или иные условня на параметры, можно привести (3.6) к более простому вилу. Однако, как и для "медленных" воли с плоской поляризацией, физический смысл имеют лишь спадающие функции. Такое решение можно получить, если в (3.6) — $2 a A^2 + c < 0$.

Это решение запишется в виде

$$A = \pm \sqrt{\frac{c}{2a} - \frac{1}{2a}} \exp(-2\sqrt{-a}\eta)$$
(3.7)

Профиль циркулярно-поляризованной (свиральной) волим деформации расчитывается по уравиению

$$|U|^2 \vec{U} - \frac{4Vc_r}{c_i^2} \vec{U} = \frac{4c_r^2}{2} A \begin{pmatrix} \cos\varphi(\eta) \\ -\sin\varphi(\eta) \end{pmatrix}$$
(3.8)

в котором фаза вращения у определяется соотношением (3.2). Амплитуда Л для "быстрой" волны описывается выражением (3.5), для "медленноя" волны - выражением (3.8)

В заключение заметим, что описанные в публикуемой статье стационарные волны сдвига-врашения являются новым, не наблюдавшимся ранее,типом нелинейных стационарных воли. Эти волны ждут еще своего экспериментального обнаружения. Автор благодарит В.В. Кажасва за помощь в работе.

ЛИТЕРАТУРА

1. Cosserat E. et F. Theorie des corps deformables. -Herman. Paris. 1909. 126 p.

2.Эригсн А. Теория микрополярной упругости. Разрушение.-М.: Мир. 1975. Т.2.С.646-751.

3. Новашкия В. Теория упругости.-М.: Мир, 1975. 872 с.

- 4. Ерофесь В.И., Потапов А.И. Стру турно-феноменологические модели в задачах нелинейной динамики поликристаллических и композиционных материалов. Матем.молел.в технологии машиностр.- Свердловск: УРО АН СССР, 1989. С. 117-126.
- 5. Ерофсев В.И., Потапов А.И. О некоторых волновых эффектах в нелинейно-упругих микрополярных средах.- Изв.АН Арм.ССР. Механика. 1990, т.43, 3, с.55-60.

b. Ерофсев В.И., Потапов А.И. Нелинсйные резонансные взаимодействия упругих воли Пробл.динамики взаимодействия деформир. сред. - Ереван: Изд. АН Арм. ССР, 1990. С.124-128.

- 7. Erofeyev V.I., Potapov A.I. Nonlinear wave processes in elastic media with inner structure - Nonlinear world. - World Scientific, Singapore - New Jersey -Lohdon-Hong Kong. 1990.V.2, P.1197-1215.
- 8. Ерофесв Г. П. Модуляционны неустойчивость упругих волн сдвига-вращения. Волновые задачи механики.- Горький: Гф ИМАШ, АН СССР, 1990. С.95-98.

9. Erbay S., Sububi E.S. Nonlinear wave propagation in micropolar media. Part 1,2 -Int.J.Engng.Sci.1989, v.27, 8, p.895-914, P.915-919.

10. Карпман В.И. Нелинейные волна а диспертирующих средах.-М.: Наука, 1973. 176с. L.Gauthier R.D., Jashman W.E. of the micro alar elastic constants -Arch. mech. 1981.

V.33. V.S. P.717-737.

- Ерофесв В.И., Потапов
 ннейные продольное волны в упругих средах с иоментыми напряжениями.- Акуст. журн. 1991. Т.37.
 Ерофесв В.И., Кажаев В.В., Потапов А.И. Исследование динамической системы
- 13.Ерофеев В.И., Кажаев В.В., Потапов А.И. Исследование динамической системы второго порядка, содержашей нелинейность в отридательной степени.-Дифф. и интер. уравнения: - Межвуз.сб.- Горьк. ун-т, 1986, с.32-36.

Нижегородскии филиал Института машиноведения АН России Поступила в редакцию 18.01.1991

ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԳԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ

ИЗВЕСТИЯ АКАЛЕМИИ НАУК АРМЕНИИ

Մեխանիկա

44, Nº 4, 1991

Механика

НЕСТАЦИОНАРНОЕ ТУРБУЛЕНТНОЕ ПЛОСКОПАРАЛЛЕЛЬНОЕ НАПОРНОЕ ДВИЖЕНИЕ

САРУХАНЯН А.А.

Սարուխանյան Ա.Ա. Ոչ ստացիոնար առւրբուլե<mark>նտ ջարժումը ճարթ</mark> գլանական խողովակում

Ելնելով տուրբուլենտ լարումների վերաբերյալ Բուսինեսկիի ճիպոթեզից ստացված է ոչ ստացիոնար շարժման ճավասարումը ճարթ գլանական խողովակում։

Исходя из гипотезы Буссинсска о турбулентной наприженоности, получено уравнение нестационарного турбулентного данжения в плоской цилиндрической трубе.

Saruchanjan A.A. Nonstationary turbulent plane flow

В стационарном турбулентном потоке, по простейшей гипотезе Буссинсска, турбулентное напряжение т между двумя плоскими параллельными стенками определяется зависимостью

$$\tau = -\rho \varepsilon \frac{d \bar{u}}{d y}$$
(1)

где с-кинематический коэффициент турбулентной вязкости, зависящий от координат; и-усредненная по времени скорость; у — расстояние от неподвижной плоской стенки.

Зависимость є = лу даст достаточно точное соответствие теоретических и экспериментальных данных в плоскопараллельном потоке. Линейная зависимость кинематического коэффициента турбулентной вязкости от координаты у приводит к логарифмическому закону распределения усредненных скоростей по живому сечению потока.

Для нестационарного турбулентного потока отсутствуют сведения о нестационарном турбулентном напряжении. Поэтому для составления математической модели нестационарного турбулентного потока, в порядке первого приближения, воспользуемся эзвисимостями, полученными для стационарных турбулентных потоков. В частности, будем предполагать, что кинематический коэффициент турбулентной вязкости имеет линейную зависимость от координат, то есть

$$\epsilon = n \gamma$$
 (2)

Рассмотрим нестационарное турбулентное движение между двумя параллельными неподвижными плоскими стенками, расположенными на расстояние 2 h. Начало координат поместим в середние между стенками (фиг.1). Для несжимаемой жидкости, при пренебрежении массовых сил, система уравнений движения будет

$$\rho \frac{\partial u}{\partial t} = - \frac{\partial \rho}{\partial x} + \frac{\partial t}{\partial y}$$

Фиг.1

$$\frac{\partial p}{\partial y} = 0, \quad \frac{\partial p}{\partial z} = 0 \tag{3}$$

Из последних двух уравнений следует, что давление не зависит от переменных у'и г.Это возможно только в том случае, ссли перепад давления по течению будет функцией только от времени, то есть

$$-\frac{1}{\rho}\frac{\partial\rho}{\partial x} = f(t) \tag{4}$$

Таким образом, задача исследования плоскопараллельного напорного турбулентного движения несжимаемой жидкости сводятся к решению дифференциального уравнения в виде [1,4,5]:

$$\frac{\partial \overline{u}}{\partial t} = f(t) + n\left(\frac{\partial \overline{u}}{\partial y} + y\frac{\partial^2 \overline{u}}{\partial y^2}\right)$$
(5)

Для решения уравнений (5) задаются начальные и граничные условия:

 $\overline{u}(y,t) = 0$ при y = 0, t > 0, (6)

$$\overline{u}(y,t) = \Phi(y)$$
 при $t = 0$ (0 < y < 2 h) (7)

<mark>где Ф (у) — некоторая</mark> заданная функция, определяемая начальным распределением скоростей по живому сечению потока.

Решение уравнения (5) ищем в виде суммы [2,4]:

$$\overline{u}(y,t) = \sum_{k=1}^{\infty} C_k(t) J_0(\lambda_k \sqrt{\frac{y}{k}})$$
(8)

где Jo (kv) функция Бесссля первого рода нулевого порядка; λ_k-собственные числа задачи; C_k(t) некоторая функция,зависящая от времени

Собственные числа определяем из условия, что в центре ханала имеем

максимум, то ссть
$$\frac{\partial u(y,t)}{\partial y}$$
 = 0, тогда из (8) получим, что

 $J_1(\lambda_k) = 0$

Уравясние (5) с учетом (8) примет вид:

$$\sum_{k=1}^{\infty} \frac{dC_k(t)}{dt} J_0\left(\lambda_k \sqrt{\frac{y}{h}}\right)$$
$$= f(t) - \sum_{k=1}^{\infty} \pi C_k(t) \frac{\lambda_k^2}{4h} J_0\left(\lambda_k \sqrt{\frac{y}{h}}\right)$$
(10)

Сложность задачи заключается в том, что функция / (t) не разлагается в ряды Фурьс-Бесселя по собственным функциям задачи, т.к. собственные числа являются корнями уравнения (9) и коэффициенты разложения не определяются в окончательном виде.Поэтому функцию / (t) представляем в виде ряда

$$f(t) = \sum_{k=1}^{\infty} a_k J_2 \left(\lambda_k \sqrt{\frac{y}{k}} \right)$$
(11)

где J₂() -)-бесселева функция первого рода, второго порядка; а. – коэффициенты разложения.

Для определения неизвестных коэффициентов a_k обе части равенства (11) умножим на $J_2(\lambda_m \sqrt{\frac{2}{3}})$ и проинтегрируем от 0 до h, получим

$$\int_{0}^{h} f(t) J_{2}\left(\lambda_{m}\sqrt{\frac{x}{h}}\right) dy$$

$$= \sum_{k=1}^{m} a_{k} \int_{0}^{h} J_{2}\left(\lambda_{k}\sqrt{\frac{y}{h}}\right) J_{2}\left(\lambda_{m}\sqrt{\frac{x}{h}}\right) dy \qquad (12)$$

При произвольном λ_m и λ_k значения интеграла будут:

$$\int_{0}^{n} J_{2}(\lambda_{m}\sqrt{\frac{y}{h}}) J_{2}(\lambda_{k}\sqrt{\frac{y}{h}}) dy = 0 \quad \text{при } k \neq m, \quad (13)$$

$$\int_{0}^{k} J^{2}\left(\lambda_{k}\sqrt{\frac{y}{h}}\right) dy = h J_{0}^{2}\left(\lambda_{k}\right) \quad \text{при } k = m \quad (14)$$

Подставляя значение (13) и (14) в уравнение (12) для определения коэффициентов а получим формулу

(9)

$$f(t) \int J_0(\lambda_k \sqrt{I}) dy$$

$$a_k = \frac{0}{hJ^2(\lambda_k)}$$
(15)

Формулу (15) можно переписать в виде

$$a_{k} = \frac{f(t)}{J_{0}^{2}(\lambda_{k})} \int_{0}^{k} \sqrt{\frac{y}{k}} J_{2}\left(\lambda_{k}\sqrt{\frac{y}{k}}\right) d\sqrt{\frac{y}{k}}$$
(16)

Последний вытеграл легко витегрируется и представляется в виде суммм. Уравнение (10) с учетом (11) примет вид

$$\sum_{k=1}^{n} \frac{dC_{k}(t)}{dt} J_{0}\left(\lambda_{k}\sqrt{\frac{y}{h}}\right) = \sum_{k=1}^{n} a_{k}(t) J_{2}\left(\lambda_{k}\sqrt{\frac{y}{h}}\right)$$

$$-\sum_{k=1}^{n} C_{k}(t) \frac{\lambda_{k}^{2}}{4h} J_{0}\left(\lambda_{k}\sqrt{\frac{y}{h}}\right)$$
(17)

Для интегрирования уравнения (17) используем асимптотическое разложение функций Бесселя [4].

$$J_n(x) \approx \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{\pi n}{2} - \frac{\pi}{4}\right)$$
 (18)

Имся в виду (18), для определения коэффяцисатов C_k(t) получим неоднородное дифференциальное уравнение

$$\frac{dC_k(t)}{dt} = a_k - n \frac{\lambda_k^2}{4h} C_k(t)$$
(19)

Решение соответствующего однородного уравнения будет

$$C_k(t) = C_k \exp\left(-\frac{\lambda_k^2}{4}t\right)$$
(20)

Общее решение неоднородного уравнения (19) имеет вид (2)

$$C_{k}(t) = \left[C_{k} + \frac{2A_{0}}{J_{0}(A_{k})} \left\{F(t) - F(0)\right\}\right] \exp\left(-\frac{n\lambda_{k}^{2}}{4h}t\right)$$
(21)

гдс

$$F(t) = \int f(t) \exp\left(\frac{n\lambda_k^2}{4h}t\right) dt$$
$$A_0 = \int_0^h \sqrt{\frac{y}{h}} J_2\left(\lambda_k \sqrt{\frac{y}{h}}\right) d\sqrt{\frac{y}{h}}$$

Таким образом, общее решение задачи с учетом (21) и (8) будет

$$\overline{x}(y,t) = \sum_{k=1}^{\infty} \left[C_k + \frac{2A_0}{J_0^2(\lambda_k)} \left[F(t) - F(0) \right] \right]$$

$$\times \exp\left(-\frac{\pi\lambda_k^2}{4\hbar}t\right) J_0\left(\lambda_k\sqrt{\frac{y}{\hbar}}\right)$$
(22)

Для определения неизвестных коэффициентов с воспользуемся изчальным условнем (7)

$$\Phi(y) = \sum_{k=1}^{\infty} C_k J_0 \left(\lambda_k \sqrt{\frac{y}{h}} \right)$$

Из выражения (23) следует, что коэффициенты С являются коэффициентами разложения функции $\Phi(y)$ по собственным функциям. Обе части равенства (23) умножим на $J_0(1_m\sqrt{2})$ dy и проинтегрируем от 0 до h. Имея в виду, что

$$\int J_0\left(\lambda_m\sqrt{\frac{y}{h}}\right)J_0\left(\lambda_k\sqrt{\frac{y}{h}}\right)dy = \begin{bmatrix} 0, & npw \ k \neq m \\ hJ_0^2(\lambda_k), npw \ k = m \end{bmatrix}$$
(24)

получим

$$C_{k} = \frac{1}{h J_{0}^{2} (\lambda_{k})} \int_{0}^{h} \Phi(y) J_{0} \left(\lambda_{k} \sqrt{\frac{y}{h}}\right) dy$$

Исходя из общего решения задачи (22), легко можно получить решение любых практических задач. По красвым условиям азадчи определятся коэффициенты C_k a и закон распределения скоростей по живому сечению потока, что дает возможность вычислить коэффициент количества движения и потерь напора.

ЛИТЕРАТУРА

 Тарг С.М. Основные задачи теории даминарных течений.: - М.: Гостехиздат, 1951. 420 с.

 Камкс Э. Справочник по обыхновенным дифференциальным уравнениям. - М.: Наука, 1976. 576 с.

3.Слезкин Н.А. Динамика вязкой несжимаемой жидкости. - М.: Гостехиздат, 1955. 519 с.

4.Кузьмин Р.О. Бесселевы функции. - М.-Л.: ОНТИ, 1935. 244 с.

5. Шлихтинг Г. Теория пограничного слоя. - М.: Наука, 1974. 711 с.

Ереванский политехнический институт Поступила в релакцию 3.04.1990