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INTRODUCTION

V. A. Ambartsumian has often pointed out ((1), Epilogue) that versions
of the "Invariance principle” he has used In the study of scattering of
light may be effective Iin other mathematical problems as well.

R. Bellman and his followers (2) have developed and systematically
applied similar ideas. Completely recognizing the priority of V. A.
Ambartsumian, they coined the term of ”"Invariant Imbedding” to
designate the corresponding mathematical approach, presumably to
become useful In mathematical physics at large. Outside mathematical
physics, an analytical procedure which can be attributed to Invariant
Imbedding, has been applied in integral geometry In (3), where it helped
to discover basic combinatorics governing the relation between measures

In the space of lines and metrics.

The present article applies Invariant imbedding In the related
field of stochastic geometry. We derive differential equations for the
probability distribution of the number of hits of a test segment by
the lines of a random line process, valid under certain factorization
assumptions. The imbedding parameters are the direction and the
length of the test segment. The results are valid for random line
processes that are translation Invariant In distribution and possess
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first and second moment measures. There are also some smoothness
assumptions.

Section 1 contains necessary prerequisites from the theory of trans-
lation Invariant random line processes. The proofs of the properties
listed In this section can be easily worked out within the standard
framework of the "method of fixed realizations™ as presented In (4).

In 8, Invariant imbedding iIs applied towards derivation of differen-
tial relations involving Palm type probability distributions of the line
process. In 83 we consider the marked point processes of hits induced
on test lines by the lines of the line process. The marks are the angles at
which the hits occur. We show that certain degree of independence be-

tween the point process of hits and the sequence of hit angles transforms
these relations to differential equations of rather conventional nature.
As stated by the concluding Theorem, under another additional as-

sumption of “sufficient mixing” and absence of correlation between the
cotangents of the angles, these equations can be resolved yielding Pois-
son distribution for random numbers of hits on test segments. Among
earlier attempts to consider similar questions we mention (5) (this paper
was the first to study the general random line processes), Chapter 10
In (4) and (6)4. They all used, approaches different from the present one.

81. TRANSLATION INVARIANT LINE PROCESSES
We consider random line processes In the Euclidean plane K2. A line
process Is defined to be (4 a random point process In the space of

lines. Our notation will be g for a line In 1R2 and {g,} for a random
line process. The latter notation stresses the fact that a line process Is
R "
M
the probability distribution of {<,} (a probability measure on M). We
say that a line g "hits” a segment 7 If yMa reduces to a point In the
relative interior of 7.

Given a "test segment” 7, we will consider the event
7 ) ={71s hit by exactly k lines from {5,}}.

Given two test segments 71 and 72 and two nonnegative integers ki,kt,

we write ( for the intersection of N and N This notation

extends to any number of test segments. For the probabilities of the

events we use notation like P\ ). In the definition that follows and
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elsewhere we write rig fur Ihr unique (up to constant factor) measure In

the space of lines which In invariant with respect to Euclidean motions
of m2.

Definition 1. A line process {(g,} belongs to the class TICD?Z if its probability

distribution P Is Iinvariant with respect to the group of translations of the
(Translation Invariant)

(outside )
Continuous Densities [1 and f2.

contains
the class TICD?2 that we will need for Invariant Imbedding in 82. Their
proofs can be easily obtained by the method of ”fixed realizations”
presented in (4), and therefore are omitted.

next
remain fixed. We

1. by attaching the lateral sides «1 and to 7, otherwise called vertical

windows. Two segments hi and h2 attached to 7 to make continuations

of 7 we call horizontal windows. The length of the windows, vertical or
assume

<

Fig. 1
Property PI : for any window w, vertical or horizontal,

o VX 0(0, bp "2" 0(12) and P ( =  o(I2) for k > 2

We will use special short notation

hi M
& 1 and V 1

The intensities of the process of intersection points induced by {</,} on
a horizontal (A/r) or vertical (Av) test lines are well defined :

Ad = |limlr 1P(H) and \v —lim/ M(Y).
I—O |
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Property P2 :the following ]jmijig)exist

liinl 2r(MM) =¢{/1, NTIr'2P(A) =cA and Jim/ 2P (B)-cB,

o
whereM =(° A whileJic (™ IS the subevent that occurs
whenever ,, and », are Intersected by the same fee from {*}, while s
IS the relative complement of A within ( "1 J 1e- B stands for the

case where the Intersections are caused by two different lines from

néﬁp{h - x ’r)

We wiU need the concepts of Palm type distributions Hv, [6
and lNhn of a process {"t} (for*, a «rigorous geometrical theory of Palm
distributions see (4)).

Roughly, each of.these Palm type distributions Jiz i1s the limiting,
as | tends to O, conditional distributions of conditions! upon the
event Z. For each Z e {H, V,B,HH} we can speak about the line process

Property P3 :

that correspond to lz-
Both Nes and MHH are concentrated on the set of realizations that

possess two lines through the endpoints 1 and 2 of 7. We parameterize
the latter two lines by angles i and 2 measured as shown on Fig. 2,

making both and lHu probability measures on the space (0,71) X
(0,71 XM. In particular, we can speak about their values on the events
of the type {1} {0 } where ©1, 0 are two subintervals of

(0,%), {©-} stands for the event fa e ©- that occurs at the endpoint i
Both probability distributions g and I'lv are ‘concentrated on the set
of realizations that possess a line through the endpoint 1 of 7, 1.e. both
live on the (0,11) X M. Iﬁ particular, the values of Ila and Viv on the

events of the type {0 } are well defined.

Fig. 2
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We write Ez for the expectation with respect to the probability measure
n-<zZ.

Property P4. Let K( . ) a bounded function defined on (0,x) X M. If
{fff} £ TICD2, then for every choice of 7

\ HEH [Hi1>1, m) |cot @] = Xv Ev E{®x,m).

Property P5. Let M PI1,P2,T) be a bounded function defined on (0,Tr)X
O,71) X M. If{<} €TICD2, then for every choice of 7

chhEhh [F{ipi, ¥,m)| coti/>i cot h2\| = cBEB E{pi,p2,TN).
Palm type probability of arbitrary event in M can not In general be
limit
same /
For a side un of the rectangle R, u «1} we define the event

(?)

C) {there Is exactly one line In {g-} that hits vi

and this line leaves R via u}

and extend this notation to intersections of such events. From now on
by SiI we denote the interval (0,a-/2), and by S2 the interval (a-/2,7T).
Along with the sides 7 and <, we consider the two diagonals di and d2

of the rectangle R on Fig;. 1J

Property P0O. If {gi} GTICD 2, then four limit relations of the form

lig/ 2B (V) =cyiv Crw 3]
hold. The map
(u,ut) 1 *(r, i
on which they depend Is given by
(7,7) -*(1,1) (iii,7) *> (0,1) (7» A1) * « (0) 2) (NiiNT) e-» (1,2)

Property P /. If {gi} GTICD 2, then sixteen limit relations of the form

-0 nw,nwi
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hold. The map
(U, ut,uld) >*(r, i,j)

on which they depend is given by the table

7, 7,7) -~ (2,1,2) (,7,9te(,,1) ¢, (,H)m (1,2,2) ({7, <«)=>(0,21)

(<,7,7) »(0,1,2) (<N1I7.<) *=*(1,1.1) K", 7) >»(1,2,2) O.</(<)un (2,2,1)
(1,7,7) (1,1,2) (<*1,7.°) =m(0,1,1) (di)<i7) & (2, 2,2) (rfb <7,(7) K*(1,2,1)
Ne .7.7) "m(1,1,2) (<"2.7,9)H»(2,1,1) (d2,</,7) >»(0,2,2) (d2,ercr) ¥+(1,2,1)

Limit conditioning by the event A has a special status. In fact, the
method of fixed realizations yields (4) the existence of Palm distribution

[1n only for line processes that are invariant with respect to the group
of Euclidean motions (translations and rotations). For {g,} e TICDZ2Z a
condition of existence of the limit

=1 20 ) )y )= A hmlE 2R () ). (D)

IS contained In Proposition 2 of the next section. In (1), the segment X
IS defined as follows : whenever the event A occurs, {g,} contains a line
which hits both vi and v2, and we take x to be the segment cut from

that unique line by the vertical windows.

82. INVARIANT IMBEDDING
We formulate the two propositions of the present section for the line

from

Imbedding
We

Axk = xit —xjt— for the first and
A2yk = 1 - 2rie-1 + Y- for the second difference with respect to «.

Proposition 1. If {gi} e TICD?Z2, then the following limit exists

im(AW) 1K 10 ~ *)] =N4 U 1) {2} + 2
+Uv Il J)n{5}) -Nk(M)n{32})-Nk ((k11) { } 3}

where Si is the interval (0, ir/2), is the interval (71/2,7T).

The proof of this proposition, based on Pl and P4, we leave to the

reader because i1t 1s a simplified (”first order”) version of the proof of
Proposition 2, which we give In complete detall.
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Proposition 2. If {gi) £ 'T1C 1)2 and the limit

¢

(2)

Lk(l) = -2C/1 Oi* + cu &?yk, (3)

where

YW=WUs ((7 {18i} Siy1+n1sB ((1) { } {52}
TR 7

(4)
e 1 1) {Si} { BH-aBGY))» 11+ 15U

with Si and S2 same as in Proposition 1.
Proof : For convenience In writing, we occasionally use the notation

(see Fig. 1) 7 = <1t and a = . For each choice of r from the collection
{ , ,di,d2} we represent as a union of mutually exclusive events
T\- 1l (T vl V2
K -V ji. h

By P3, when 1 =0

£ p(l
and therefore
— 8<<£4<Q/ U 2) + (5)

A line which enters a triangle crossing one of its sides leaves the triangle
crossing one of the remaining sides. Therefore we have the set identities

<A vi v2\ f dl vi Vv2\ (< vi Vv2\  [d2 vi V2

K 0j2 - \k O ) | k ji 0/ | k ji O
(6)

as well as similar 1dentities for 2.
In the expression

(((((

we replace the individual probabilities by their decompositions (5).

Further, the probability of each event ( 1 w7, where either ji or
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or both equal zero we replace according to (6) (or the analog of (g) fOr
). In the resulting sum the probabilities of each event ~ 2~ JI

where g 1Ak PRE Uk tag, Lndices |y or j21equl§ls_zjze5\9, will enter twiC

with opposite signs. So these terms cancel Qut an 0
d W V2
a U < P + °(/2
D W1 DF+E P 1 1 A q
=12
We have
rvi V2 r V: V2 9
k1 1 (Mnnsa)eu ©

where U = {«2,7,0-} x {vitj,a}, and the events under the union are

mutually exclusive.
Therefore the probabilities In (7) can be replaced by sums of proba-
bilities of the events according to (8). By P3, for pairs (iti,u2)=( 2

( 2, ), (7, ™) and (o, vX) we have

J Vi V2

P KU\

and (/) takes the form

D E_* (7 \sz v2 +£§z*c| i'z Xz *

E E » t)l V2 ¥ p Vi V 2 (9)
-4

*-1.2 L(ui,udecfl = «l «

where In the last sum U\ —{7, a} x (7,0”}. Note that ( U ) coincides

with A as defined In P2,
We divide (9) by 12 and let / —0. Using P7, one can check that

g/ E Pl g o +p OV CBA2\K
: «:1,2 —(“1 )6(/ K UI UZ K U|
By the definition of the segment x
<l X di X
< < and ) PR
The existence of the limits, i = 1,2
: _ Vi V2 : Vi 2
L’B/ 2P VX ca&x  and Ill_ﬁ(1)/ 2P vlz \\//i CnXk- 1
frOm the eXiStence Of the UmltS EEVITEE B\ w_ for XQ because
X~ Q and then In succession, for all r*). Proposition 7 Is cornplt*tcly

proved.
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8. KACTOUI/.ATtON AND SUJ I I(1BN'l MIXING CON-
DITIONS

length <and direction a of the segment 7. So we can use "function™!
notation

p (1'}=

and the left-hand side of (2) reduces to

IimP*(nA2+ 17,a + 0) - Pk{i,a)  1ldpk(t,a)

while for (3) applying Taylor expansion we find

| bl = limP*("2+ 12,a + P) ~ Z2pk(tla)+pk(Vt24-P ,a- 0)
fc7'  J-0 /2

1 dpk(t,a 2 d2pk{t,a
Iy 2
Validity of (10) Is essentially the smoothness assumption to which we
refer in the Theorem below. Turning to the right-hand sides of (2) and
(3), we first transform them using P4 and P5. By a remarkable interplay
of signs

Xviv ((1)T{ M ) A~ ((1)n{SA)=XEHI(j~ cotifrx, (11)

where | stands for the indicator function of the corresponding event
(dependence on m e M suppressed). Similarly, for the guantities y* In

(8) we have

YKX= EHHI (\ ) cot &I cot

We are ready to consider the consequences of certain factorization
assumptions F1,F2 and F3, expressed In terms of the probability
distribution of random marked point process {Pi,~i}g of Intersections
Induced by {™} on a test line g. In this notation, Pi = g m while
the mark t Is the angle at which the Intersection at Pi occurs. We
note In advance, that jointly, the three assumptions F1,F2 and F3
are essentially less restrictive than the Cox independence well known
In stochastic geometry (5). We say, that {Pi,~i}g has Cox Independence
property, If for test line g of any direction a, the sequence of angles
{*} 1s Independent of the point process {P,}, and {I/;*} Is a sequence
of Independent angles. Doubly stochastic Poisson line process {"}
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governed by random meaeure of the form factor
IS random while /A\(®) In nonrandom (Cox line processes), all have this

property.
Assumption FI ; for any direction a, any t and k the random variables

cot and 1 (I)

We have
A(a) = J SIN Tp/r

where 1 1s the density of the first moment measure of {<» (because
of translation invariance, [1 depends solely on the direction ¢ of the

line q), IS the angle between the directions ¢ and a. Therefore the
probability density of random angle i IS (A(a)) ‘1 SINU>N(<E)dI/>. Hence
EHcot = (A(a))-1J cos0/i ) = (A(a))"1A(a),

with A'(a) denoting the first derivative in cc By so called Palm formulae
for point processes in one dimention, see (4)

A@) [, C oy 7Ty — ) dt A

We come to the conclusion that under the assumption F I, the relation
(2) transforms to the differential equation

" =i (A(tt))~1A () flpfogt™~ (13)
The equation (13) can be easily solved by standard method of charac-
teristics. Its general solution has the form

Pk(t,a) = () ). (14)

where g*(-) Is some function of one argument.

Assumption F2 : for any direction a, any t and ft the random variables

cotV'l coti/>2 and | ( \ are uncorrelated, I.e.

Ehhl cO co* = "4a4a () Ennh cottpi cott/i2.

One can easily derive the second order analog of (12) :

2
caa 2Man T\ dptta)

We conclude that under assumption

dpk(t,a dZph(t,a nr ,2nTt . f2I1(f sdZpk{t,a
g " é{———2+ de@égz ) 2cAt Axk+ t a((t,a)————P—{ ———2, (15)

where a(f, a) = Ehh cot ipi cot
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Wc observe () that cA(y) = t-1/1(a) and 2/,(a) = A(«) + A''(a). By a
direct substitution of (14) into (16) wc gel the following corollary of FI
and K2 acting jointly :

A+ A) &+ JA)- Azen{ta)]t/l = = A+ A’) g™ (16)

Assumption F3 : for any direction a and any |

Euir cot Vi cot V2= EH cot di Eun cot 2= [A'(a)]2[A(a))~2
Under F3 the equation (16) transforms to

dk=-A x k. (17)

This Infinite system of equations Is easily solved If we make one more
additional assumption that

** =p (1 )=Pk(t,a) (18)

meaning limiting Independence of the events A and (~J. We call

(18) the assumption of sufficient mixing. Roughly, (18) means that the
circumstance that v is chpsen to lie on one ot the lines from the random

collection {} can be iIgnored, as far as the distribution of the number

of hits on that segment Is considered.,lg-the limit, as / —0, x receives
length t and direction a.

Under (18), the solution of (17) satisfying natural initial conditions
(0) = 1 and gt© = 0 for k > 0 yields Poisson probabilities with unit

parameter ok(t) = gfe * This result we formulate as a theorem.

THEOREM. Let {<} e TICDZ possesses smooth hitting probabilities

pk(t,a). If for any direction a and length , {Ol} possesses the three
factorization properties FI, F2 and F3, as well as the property of sufficient

mixing, then 7*(*,<*) 3re Poisson probabilities with parameter X(a)t, where
A(a) is the sin-transform of the density of the first moment measure.

We note In conclusion, that if the condition of sufficient mixing Is
removed, then the Theorem becomes invalid, as demonstrated by any
Cox line processes {pt} E TICDZ2 for which the factor Is essentially
random. For them the probabilities p*(£, <) become mixtures of Poisson
probabilities. The latter reduce to Poisson probabilities whenever Is
nonrandom. But In that case the line process {} becomes Poisson.
Clearly, for Poisson {p*} the sufficient mixing condition Is satisfied.

Ay 1 Institute of Mathematics,

& Armenian Academy of Sciences
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)| |1 « .|» «-Ne bPMpuwlwa,,lpaO

W - W _ % r « *W C 4 =" tr T 7 ‘rtp*-
r 11 - frnnns |....,/, 11 N oA )
Y S [RTT >] J
AMBAPUYMAH

MHBapuaHTHOe B/1I0OXKEeHWEe B CTOXaCTUYECKOW reoMeTpumn
OHOW
NnpeanosiIodXKeHNAX PaKTopusaLnmn Bbh

| BEPOATHOCTEN, ONUCbIBaKLWKNUX pac-
nudhepeHLnanbHble P WX p

npejeneHne YmmLL U
TPaAHCNAUNOHHO- I/IHBapl/IaHTHOMy C]'Iy‘—laI/IHOMy MNpPpouUueccCy MnpAMblIX Ha MJIOCKOCTN.

[TOKa3aHO, YTO Npuy AOMNO/THUTE/IbBHOM YC/IOBUWM T.H. AOCTATOYHOro nepemMeLlun-

ArMeHTa NPSAMbIMU, NMPUHAANEXALLUMA

BaHNA NMOJIy4YeHHble YypaBHEHUA AONYCKAOT NULLIb NyacCOHOBCKME peLleHnd.
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