ՅՍՍՅ ԳԱ Տեղեկագիր

ԽՄԲԱԳՐԱԿԱՆ ԿՈԼԵԳԻԱ

Ա. Ց. Ամատունի, Վ. Մ. Հաrությունյան (պատասխանատու խըմբագրի տեղակալ), Գ. Մ. Ղարիբյան (պատասխանատու խմբագիր), Ռ. Մ. Մարտիրոսյան, Ա. Ռ. Մկրաչյան, Մ. Ե. Մովսիսյան, Ցու. Գ. Շահնազարյան (պատասխանատու բարտուղար), է. Գ. Շաոսյան (պատասխանատու խմբագրի տեղակալ), Գ. Ս. Սանակյան, 2. Հ. Վարդապետյան

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

А. Ц. Аматуни, В. М. Арутюнян (заместитель ответственного редактора), Г. А. Вартапетян, Г. М. Гарибян (ответственный редактор), Р. М. Мартиросян, А. Р. Мкртчян, М. Е. Мовсесян, Г. С. Саакян, Э. Г. Шароян (заместитель ответственного редактора), Ю. Г. Шахназарян (ответственный секретарь)

РЕШЕТОЧНОЕ ПОГЛОЩЕНИЕ СЛАБОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ В ПРИСУТСТВИИ РЕЗОНАНСНОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

А. С. АМИРЯН, В. Г. ГРИГОРЯН, Э. М. КАЗАРЯН

Исследуется поглощение дополнительной электромагнитной волны фононной подсистемой, находящейся в поле резонансного разностного лазерного излучения. Взаимодействие фононов с сильной электромагнитной волкой учитывается в резонансном приближении и с помощью канонического преобразования задача решается точно. Особенностью новых квазичастиц является наличие щели в их спектре. На основе феноменологического учета действия термостата (через затухание и ланжевеновские случайные силы) найдены числа заполнения квазичастиц в стационарном случае. Взаимодействие новых фононов с зондирующей волной учитывается по теории возмущений. Показано, что коэффициент поглощения $\alpha(\omega_0)$ претерпевает существенные изменения в области частот $|\omega-\omega_0|$ порядка оптического матричного элемента.

Введение

Создание мощных источников когерентного излучения в видимом и инфракрасном диапазонах поставило проблему всестороннего исследования взаимодействия такого излучения с веществом, причем особый интерес представляют условия, при которых лазерное излучение, не вызывая разрушения вещества и изменения его агрегатного состояния, существенно влияет на его свойства.

Теория взаимодействия резонансного лазерного света с электронной подсистемой развивалась в работах [1, 2]. В настоящей работе на основе методики, развитой в [1], исследуется поглощение слабого света с частотой ω, коротковолновыми фононами, находящимися в поле сильного резонансного разностного излучения с частотой $\omega \simeq \omega_0, \quad \omega \simeq \omega_{k, 2} - \omega_{k, 1},$ где wk,1 и wk,2 — частоты фононов из ветвей 1 и 2 и с импульсом k (в случае суммарной резонансной частоты $\omega \simeq \omega_{k,1} + \omega_{k,2}$, $2\omega \simeq \omega_{k,1} + \omega_{k,2}$, 2 wk, 1 (2), как было показано в работах [3], возможна параметрическая генерация коротковолновых фононов). Для конкретности мы будем рассматривать полупроводники с симметрией типа алмаза, т. е. будем считать, что связь излучения с фононами осуществляется через электрический момент второго порядка [4], который является универсальным. В общем случае при наличии ионной связи существует еще другой механизм для взаимодействия света с фононами, связанный с моментом первого порядка и ангармонизмом (указанный механизм является доминирующим, например, в полупроводниках A¹¹¹ B^V [5], в то время как для кристаллов типа каменной соли доминирующей является связь через электрический момент второго

порядка [4]), однако учет последнего привел бы в конечном итоге только к перенормировке оптического матричного элемента.

В первой части настоящей работы исследуется влияние лазерного излучения на фононный спектр. С помощью канонического преобразования точно находятся собственные состояния гамильтониана фононов, находящихся в поле сильной монохроматической волны. Особенностью новых квазичастиц, представляющих собой смесь фононов из разных ветвей,

Во второй части находятся числа заполнения для новых квазичастиц в стационарном случае. При этом действие термостата учитывается феноменологически — путем введения в уравнения движения для гейзенберговских операторов затухания и ланжевеновских дельта-коррелированных

является наличие щели в их спектре.

И, наконец, в последней части показывается, что наличие щели су-

щественным образом изменяет коэффициент поглощения дополнительной электромагнитной волны, в частности, появляется область прозрачности, а также анизотропия в $\alpha(\omega_o)$ (кривая поглощения начинает существенно зависеть от угла между векторами поляризации сильного и слабого света) даже для сферически-симметричной фононной модели.

случайных сил.

Очевидно, полученные результаты будут справедливы при выполнении условия сильного поля, когда частота переходов фононов под действием лазерного света больше затухания:

$$\lambda_{12} \gg \tilde{\gamma}_1, \tilde{\gamma}_2,$$
 (1)

где λ_{12} — матричный элемент перехода между ветвями 1 и 2, γ_{1} (2) — коэффициент затухания фононов.

1. Диагонализация гамильтониана. Спектр новых квазичастиц

Рассмотрим фононную подсистему, находящуюся в поле сильной монохроматической электромагнитной волны с напряженностью

$$\mathbf{E} = \mathbf{E}_0 \cos\left(\omega t - \mathbf{gr}\right), \ \mathbf{gE}_0 = 0. \tag{2}$$

Будем исходить из следующего гамильтониана нулевого приближения в соответствии со сделанным предположением о сильном взаимодействии фононов с лазерным светом ($\hbar = 1$):

$$H = \sum_{k} \left[\sum_{s=1, 2} \omega_{k, s} a_{k, s}^{+} a_{k, s} + \lambda_{12}^{k} \left(a_{k, 2}^{+} a_{k, 1} e^{-i\omega t} + a_{k, 2} a_{k, 1}^{+} e^{i\omega t} \right) \right] \cdot (3)$$

В (3) оставлены только резонансные члены,

$$\lambda_{12}^{k} = \frac{|\mathbf{H}_{12}^{k} \mathbf{E}_{0}|}{2 M (\omega_{k, 1} \omega_{k, 2})^{1/2}}, \qquad (4)$$

M — масса ядра, H_{12}^k — матричный элемент, связывающий ветви 1 и 2 при данном значении k [4], $a_{k,s}$ и $a_{k,s}^+$ — соответственно операторы уничтожения и рождения фононов в резонирующих ветвях. Без ограничения общности примем $\lambda_{12}^k > 0$.

С целью исключения временной зависимости в гамильтониане (3) перейдем с помощью унитарного преобразования к новому представлению:

$$\dot{H} = \dot{T}^{+} \dot{H} \dot{T} - i \, \dot{T}^{+} \, \frac{\sigma}{\partial t} \, \dot{T},$$
(5)

$$\hat{T} = \exp\left\{\sum_{k} \left[-i\left(\omega_{k,1} + \frac{\Delta_{k}}{2}\right) t a_{k,1}^{+} a_{k,1} - i\left(\omega_{k,2} - \frac{\Delta_{k}}{2}\right) t a_{k,2}^{+} a_{k,2} \right] \right\}.$$

В новом представлении будем иметь

$$\hat{H} = \sum_{\mathbf{k}} \left[-\frac{\Delta_{\mathbf{k}}}{2} (a_{\mathbf{k},1}^{+} a_{\mathbf{k},1} - a_{\mathbf{k},2}^{+} a_{\mathbf{k},2}) + \lambda_{12}^{\mathbf{k}} (a_{\mathbf{k},2}^{+} a_{\mathbf{k},1} + a_{\mathbf{k},1}^{+} a_{\mathbf{k},2}) \right], \quad (6)$$

где $\Delta_k = \omega_{k,2} - \omega_{k,1} - \omega_{k}$

С помощью канонического преобразования

$$a_{k,1} = a_{1k}\beta_{k,1} + a_{2k}\beta_{k,2}, \ a_{k,2} = a_{3k}\beta_{k,1} + a_{4k}\beta_{k,2}$$
(7)

днагонализируем гамильтониан (6). Без ограничения общности можно положить $a_{3k} = -a_{2k}$, $a_{1k} = a_{4k}$. Кроме того, коэффициенты a_{1k} и a_{2k} должны удовлетворять дополнительным соотношениям

$$\lambda_{12}^{k} (\alpha_{1k}^{2} - \alpha_{2k}^{2}) - \Delta_{k} \alpha_{1k} \alpha_{2k} = 0, \ \alpha_{1k}^{2} + \alpha_{2k}^{2} = 1.$$
(8)

Второе условие в (8) необходимо для сохранения коммутационных соотношений для операторов β . Оно автоматически удовлетворяется, если $\alpha_{1k} = \cos \varphi_k, \ \alpha_{2k} = \sin \varphi_k$. Используя первое из соотношений (8), получаем

24.0

В β-представлении гамильтониан (6) диагонален:

$$\tilde{\hat{H}}^{\beta} = \sqrt{(\lambda_{12}^{k})^{2} + \left(\frac{\Delta_{k}}{2}\right)^{2}} (\beta_{k, 2}^{+} \beta_{k, 2} - \beta_{k, 1}^{+} \beta_{k, 1}).$$
(10)

Из вида (10) следует, что в спектре новых квазичастиц появляется щель величиной $2\lambda_{12}^{kp}(\Delta_{k_p}=0)$, зависящая от угла между направлением H_{12}^k и направлением электрического поля в волне. Что касается условия сильного толя (1), то для $M \simeq 10^{-22}$ г, $\omega_{k,1} \simeq \omega_{k,2} \simeq 10^{13}$ с⁻¹, 179 $|\mathbf{H}_{12}^{k}| = 2,5 \cdot 10^{-2}$ ед СГСЭ* [6] и среднего времени жизни фононов в полупроводниках типа германия порядка $10^{-9} \div 10^{-10}$ с [7] для граничной амплитуды напряженности электрического поля получается значение $\simeq 10^{4} \div 10^{5}$ В/см, величина, которая достигается в современных квантовых генераторах.

2. Вычисление чисел заполнения

Вычислим числа заполнения для рассмотренных выше новых квазнчастиц, учитывая тот факт, что энергии фононов, эффективно взаимодействующих со светом, лежат в узком энергетическом слое $\simeq \lambda_{12}^{k_p}$ вблизи резонансной поверхности. В соответствии с этим можно считать, что все остальные фононы образуют термостат для вышеуказанной подсистемы. Следуя работе Ю. Швингера [8], взаимодействие интересующих нас фононов с термостатом будем описывать феноменологически — путем введения в уравнения движения для гейзенберговских операторов рождения и уничтожения фононов затухания и дельта-коррелированных случайных ланжевеновских сил (аналогичный подход использовался в [9], где была вычислена зависимость декремента затухания классической монохроматической волны от ее амплитуды в трехволновых процессах слияния и распада).

Соответствующие уравнения движения для операторов a_{1k} и a_{2k} в представлении (5) будут иметь следующий вид:

$$\frac{da_{1k}}{dt} = i \frac{\Delta_{k}}{2} a_{1k} - \gamma_{1k} a_{ik} - i \lambda_{12}^{k} a_{k,2} + f_{k,1} e^{i \left(\frac{\omega_{k,1} + \frac{\omega_{k}}{2} \right) t}{t}},$$
(11)

$$\frac{da_{k,2}}{dt} = -i\frac{\Delta_{k}}{2} a_{k,2} - \gamma_{k,2}a_{k,2} - i\lambda_{12}^{k}a_{k,1} + f_{k,2}e^{i\left(\omega_{k,2} - \frac{-\kappa}{2}\right)t}.$$

Эту систему будем решать методом спектрального разложения:

$$a_{(12)} (t) = \int_{-\pi}^{\pi} a_{1(2)\omega} e^{-i\omega t} d\omega, \ f_{1(2)}(t) = \int_{-\pi}^{\pi} f_{1(2)\omega} e^{-i\omega t} d\omega.$$
(12)

Для удобства в дальнейшем (где это не будет приводить к недоразумениям) будем опускать фиксированный индекс k и введем обозначения: $\lambda_{12} \equiv \lambda$,

$$f_1 e = f_1, f_2 e = f_2.$$

Из уравнений (11) с учетом разложений (12) легко получить

$$a_{1(2)\omega} = \frac{-i\lambda f'_{2(1)\omega} + f'_{1(2)\omega} \left[\gamma_{2(1)} - i\left(\omega \mp \frac{\Delta}{2}\right) \right]}{\lambda^2 + \left[\gamma_1 - i\left(\omega + \frac{\Delta}{2}\right) \right] \left[\gamma_2 - i\left(\omega - \frac{\Delta}{2}\right) \right]}, \quad (13)$$

где нижний знак в числителе соответствует индексу в скобках.

* По мнению авторов [6] эта величина занижена. 180 Используя тот факт, что средние фурье-компонент случайных сил имеют вид

$$\langle f_{l\omega}f'_{l'\omega'}\rangle = \frac{\gamma_l n_l^0}{\pi} \Delta(l-l') \delta(\omega-\omega')$$
(14)

(здесь индекс l нумерует одновременно номер ветви и волновой вектор, n_l^0 — равновесная функция распределения фононов), обратным интегрированием по ω , используя (13), можно определить следующие средние (интегрирование проводится с использованием теории вычетов):

$$\langle a_{1}^{+} a_{1} \rangle = \frac{n_{1}^{0} \gamma_{1} [\gamma^{2} (\gamma_{1} + \gamma_{2})^{2} + \Delta^{2} \gamma_{2} + \lambda^{2} (\gamma_{1} + \gamma_{2})] + n_{2}^{0} \lambda^{2} \gamma_{2} (\gamma_{1} + \gamma_{2})}{\gamma_{1} \gamma_{2} \left[\Delta^{2} + (\gamma_{1} + \gamma_{2})^{2} \left(1 + \frac{\lambda^{2}}{\gamma_{1} \gamma_{2}} \right) \right]}$$
(15)

(выражение для $\langle a_2^+ a_2 \rangle$ получается заменой индексов 1 \neq 2);

$$\langle a_1^+ a_2 \rangle = \frac{\lambda \left[\Delta + i \left(\gamma_1 + \gamma_2 \right) \left(n_2^0 - n_1^0 \right) \right]}{\left[\Delta^2 + (\gamma_1 + \gamma_2)^2 \left(1 + \frac{\lambda^2}{\gamma_1 \gamma_2} \right) \right]}$$
(16)

Используя связь сператоров *a* с операторами β (формулы (7), (9)), легко получить средние значения чисел заполнения $N_1 = <\beta_1^+ \beta_1 > u$ $N_2 = <\beta_2^+ \beta_2 > для$ новых квазичастиц. Так как нас в дальнейшем будет интересовать разность $N_1 - N_2$, выпишем окончательное выражение для этой разности:

$$N_{1} - N_{2} = \frac{\Delta (n_{1}^{0} - n_{2}^{0})[(\gamma_{1} + \gamma_{2})^{2} + 4 \Omega^{2}]}{2\Omega \left[\Delta^{2} + (\gamma_{1} + \gamma_{2})^{2} \left(1 + \frac{\lambda^{2}}{\gamma_{1}\gamma_{2}}\right)\right]}, \quad \Omega = \sqrt{\lambda^{2} + \left(\frac{\Delta}{2}\right)^{2}}.$$
(17)

3. Поглощение слабой волны

Одним из мощных методов изучения фононного спектра наряду с рамановским рассеянием и нейтронной спектроскопией является исследование решеточного поглощения света [10]. В связи с наличием щели в спектре квазичастиц (10) представляет определенный интерес рассмотрение задачи о поглощении дополнительной электромагцитной волны с частотой $\omega_0 \simeq \omega$.

Коэффициент поглощения α(ω₀) будем вычислять по формуле

$$\alpha (\omega_0) = \frac{n W}{c N}, \qquad (18)$$

где n — показатель преломления среды, с — скорость света, N — число фотонов слабого света в кристалле, W — вероятность переходов в единицу времени под действием возмущения

$$\hat{H}_{lnt} = \sum_{\mathbf{k}} (\lambda_{12}^{\mathbf{k}})_0 \left[e^{i (\omega_0 - \omega) t} \left(\alpha_{1\mathbf{k}}^2 \beta_{\mathbf{k}, 1}^+ \beta_{\mathbf{k}, 2} - \alpha_{2\mathbf{k}}^2 \beta_{\mathbf{k}, 2}^+ \beta_{\mathbf{k}, 1} \right) + e^{i (\omega - \omega_0) t} \left(\alpha_{1\mathbf{k}}^2 \beta_{-\mathbf{k}, 2}^+ \beta_{-\mathbf{k}, 1} - \alpha_{2\mathbf{k}}^2 \beta_{-\mathbf{k}, 1}^+ \beta_{-\mathbf{k}, 2} \right) \right].$$
(19)

181

С учетом (19) для вероятности переходов W получаем следующее выражение:

$$V = 2\pi \sum_{k} |(\lambda_{12}^{k})_{0}|^{2} [\alpha_{1k}^{4} (N_{1k} - N_{2k}) \delta (\omega_{0} - \omega - 2 \Theta_{k}) +$$

$$+ \alpha_{2k}^4 \left(N_{2k} - N_{1k} \right) \delta \left(\omega_0 - \omega + 2 \Theta_k \right)]. \tag{20}$$

Как и следовало ожидать, при $\lambda_{12}^k \rightarrow 0$ (20) переходит в известное выражение для вероятности переходов в отсутствие сильного поля.

Влияние сильной электромагнитной волны на решеточное поглощение слабого света можно выявить, ограничиваясь в дальнейших вычислениях сферически-симметричной фононной моделью. Качественная картина спектральной кривой поглощения, полученная для такой модели, в основном будет соответствовать действительности, так как реальная анизотропия в полупроводниках 4/4 все же мала, а при вычислении фононных спектров на основе оболочечной модели эффекты анизотропии полностью отсутствуют для поперечных фононов [10]. Таким образом, предположим, что $\omega_k = \omega_{1k1} = \omega_k$. Очевидно также, что матричный элемент H_{12}^k в такой модели направлен вдоль вектора k, т. е. $\lambda_{12}^k = \lambda_{12}^k \cos \theta$, где θ —угол между направлением вектора k и вектором поляризации сильного поля. В интересующей нас узкой энергетической области справедливы следующие разложения:

$$\Delta_{\mathbf{k}} = \beta (k - k_p), \ (\lambda_{12}^k)_0 \simeq (\lambda_{12}^{k_p})_0 \equiv \lambda_0, \ \gamma_{1(2) k} \simeq \gamma_{1(2)k_p} \equiv \gamma_{1(2)}.$$
(21)

После несложных вычислений для коэффициента поглощения в области $|\omega - \omega_0| \leq 2\lambda$ получаем следующее выражение:

$$a (\omega_{0}) = \frac{\pi \hbar (n_{1}^{0} - n_{2}^{0}) \omega_{0} k_{p}^{2} (\lambda^{0})^{2} a^{2}}{|\beta| cn} (A \cos^{2} \Phi + B \sin^{2} \Phi),$$

$$A = \frac{|l|^{3}}{\lambda^{3} b^{4}} (\sqrt{a^{2} + b^{2}} - a)^{2},$$

$$B = \frac{|l|}{2 \lambda b^{2}} (\sqrt{a^{2} + b^{2}} - a) \left[\frac{2}{a} - \frac{l^{2}}{\lambda^{2} b^{2}} (\sqrt{a^{2} + b^{2}} - a) \right],$$

$$a^{2} = 4 l^{2} + (\gamma_{1} + \gamma_{2})^{2}, \ b^{2} = l^{2} \frac{(\gamma_{1} - \gamma_{2})^{2}}{\gamma_{1} \gamma_{2}}, \ l = \frac{\omega_{0} - \omega}{2}.$$
(22)

Здесь Φ — угол между векторами поляризации сильной и слабой волн, $\lambda_0 = \lambda^0 |\mathbf{E}^0| (|\mathbf{E}_0| -$ амплитуда напряженности слабой волны).

Переходя к анализу полученной формулы для коэффициента поглощения, с самого начала заметим, что усиления волн не происходит, однако так же, как и в электронной подсистеме [11], появляются анизотропия в поглощении и область прозрачности вблизи $|l| \simeq 0$. В частном случае $\Phi = 0$ и при $|l| \to 0$ или $\lambda > |l| \gg \gamma_1 \gamma_2 \alpha (\omega_0) \approx |l|^3$.

Легко видеть, что при $\beta \rightarrow 0$, то есть в случае, когда при $|\mathbf{k}| = k_p$ резонансные поверхности одновременно экстремальны или имеют одннаковый наклон, в разложении (21) для расстройки надо удерживать квадратичный член, т. е. $\Delta_k := d (k - k_p)^2$. В этом случае наряду с поглощением возможно и усиление слабой волны. Действительно, пусть, для определенности, d > 0. Тогда вследствие того, что расстройка всегда положительна, первый член в (20) ответственен за поглощение ($\omega_0 > \omega$), а второй—за испускание ($\omega_0 < \omega$).

Для коэффициента поглощения (усиления) в интервале |∞—∞₀| ≤ 2λ получаем следующее выражение:

$$\begin{aligned} \alpha \left(\omega_{0} \right) &= \frac{4 \sqrt{2} \hbar \omega_{0} \left(i \cdot 0 \right)^{2} \left(n_{1}^{0} - n_{2}^{0} \right) k_{\rho}^{2} a^{2} \left| l \right|^{1/2}}{c n \sqrt{d} \lambda \left(a^{2} + b^{2} \right)} \times \\ &\times \left[\pm \frac{l^{2}}{\lambda^{2}} \int_{0}^{\pm} \cos^{2} \Phi \pm \left(\int_{1}^{\pm} - \frac{l^{2}}{\lambda^{2}} \int_{0}^{\pm} \right) \frac{\sin^{2} \Phi}{2} \right], \end{aligned}$$

$$\begin{aligned} &= \int_{0}^{1} \frac{\left(1 - i^{4} \right)^{1/2} \left(1 \pm i^{2} \right)^{2} t^{2} dt}{\left(1 - mt^{4} \right)}, \quad \int_{1}^{\pm} = \int_{0}^{1} \frac{\left(1 \pm i^{2} \right)^{2} i^{2} dt}{\left(1 - mt^{4} \right) \left(1 - t^{4} \right)^{1/2}}, \end{aligned}$$

$$\end{aligned}$$

где

$$m=\frac{b^2}{a^2+b^2},$$

 $\sum_{0,1}^{\pm}$ сложным образом выражаются через линейные комбинации полных эллиптических интегралов I, II и III родов, значения которых протабулированы (см., например, [12]). Здесь знак «+» относится к случаю $\omega_0 \ge \omega$, а знак «—» — к случаю $\omega_0 \le \omega$; в случае d < 0 области усиления и поглощения меняются местами.

Для качественной иллюстрации полученных результатов на рисунке приводятся графики зависимости коәффициента поглощения $\alpha'(x)$ в безразмерных единицах от отношения $x = l/\lambda$. Графики приведены для случая $\Phi = 0, \lambda = 5\gamma_2$ и характерного соотношения $\gamma_2 = 10 \gamma_1$. Кривые 1 и 2 относятся соответственно к случаям $\beta \neq 0$ и $\beta = 0$ (d > 0); масштаб между графиками не выдержан, кроме того, из соображений наглядности он увеличен в 10 раз для отрицательных значений $\alpha'(x)$. Как видно из рисунка, коэффициент поглощения (усиления) практически равен нулю в области [ω_0 — ω] $\simeq \lambda$. Указанную особенность в поглощении слабого света можно будет, по-видимому, использовать для создания и совершенствования оптических узкополосных фононных фильтров и селективных детекторов. По виду спектральной кривой поглощения можно также определитьлокальное (в данной точке зоны Бриллювна) значение важного параметра λ , в то время как в [6], например, говорится об усредненной по всей зоне Бриллювна величине λ .

В заключение отметим, что метод квазичастиц, примененный в настоящей работе для исследования решеточного поглощения дополнительной волны, может оказаться полезным и при решении других задач, связанных с прохождением резонансного импульса через среду, таких как, например, генерация гармоник, определение нелинейного показателя среды и т. д. Авторы считают своим приятным долгом выразить благодарнос В. С. Львову за ценные советы, а также Р. А. Сурису и А. О. Меликя за полезные обсуждения различных аспектов настоящей работы.

Ереванский политехнический институт им. К. Маркса

Поступила 19. ХІ. 19

ЛИТЕРАТУРА

- 1. В. М. Галицкий, С. П. Гореславский, В. Ф. Елесин. ЖЭТФ, 57, 207 (1969).
- Ю. Н. Балкарей, Э. М. Эпштейн. ФТТ, 17, 2321 (1975).
 В. Д. Блажин. ФТТ, 17, 3225 (1975).

Э. М. Казарян, А. О. Меликян, Г. Р. Минасян. ФТП, 13, 423 (1979).

3. С. А. Булгадаев, Б. Н. Каплан, И. Б. Левинсон. ЖЭТФ, 70, 1550 (1976). В. Г. Григорян, Э. М. Казарян, А. О. Меликян. ФТТ, 21, 629 (1979). В. Г. Григорян. ФТТ, 21, 1907 (1979).

4. M. Lax, E. Burstein. Phys. Rev., 97, 39 (1955).

- 5. D. A. Kleinman. Phys. Rev., 118, 118 (1960).
- D. A. Kleinman, W. G. Spitzer. Phys. Rev., 118, 110 (1960).
- 6. B. N. Brockhouse, P. K. Jyengar. Phys. Rev., 111, 747 (1958).
- 7. Л. Э. Гуревич, И. П. Ипатова. ФТТ, 4, 2065 (1962).
- 8. J. Schwinger. J. Math. Phys., 2. 407 (1961) (перевод: Ю. Швингер. Броуновск. движение квантового осциллятора, ИЛ, М., 1962).
- 9. В. С. Львов. ЖЭТФ, 68, 308 (1975).

10. F. A. Johnson. Progr. Semicond., 9, 179 (1965).

- 11. С. П. Гореславский, В. Ф. Елесин. Письма ЖЭТФ, 10, 491 (1969).
- 12. Справочник по специальным функциям, Изд. Наука, М., 1979.
 - В. М. Беляков и др. Таблицы эллиптических интегралов, Изд. АН СССР, М., 196. т. 1, 2.

ԹՈՒՅԼ ԷԼԵԿՏՐԱՄԱԳՆԻՍԱԿԱՆ ԱԼԻՔԻ ՑԱՆՑԱՑԻՆ ԿԼԱՆՈՒՄԸ ՌԵԶՈՆԱՆՍԱՅԻՆ ԼԱԶԵՐԱՑԻՆ ՃԱՌԱԳԱՑԹՄԱՆ ԴԱՇՏՈՒՄ

Ա. Ս. ԱՄԻՐՅԱՆ, Վ. Գ. ԳՐԻԳՈՐՅԱՆ, Է. Մ. ՂԱԶԱՐՅԱՆ

26mաղոտվում է լրացուցիչ էլնկտրամազնիսական ալիջի կլանումը ֆոնոնային ննկա տիստեմի կողմից, որը գտնվում է ռեղոնանսային լաղերային ճառագայիժան դաշտում։ Ֆո նոնների փոխազդեցունյունը ուժեղ դաշտի հետ հաշվի է առնվում ռեղոնանսային մոտավո թունյամբ և կանոնիկ ձևափոխունյամբ խնդրրը լուծվում է ճչգրիտ։ Արդյունջում ստացվոււ նն նոր թվադիմասնիկներ, որոնց էներդետիկ սպեկտրում կա ճեղջ։ Գտնված են նոր թվա ղիմասնիկների լրացման նվերը ստացիոնար դեպջում։ Յույց է տրված, որ նույլ դաշտ կլանման գործակիցը a (00) էապես փոփոխվում է այն հաճախունյունների տիրույնում որոնց համար (0-00) օպտիկական մատրիցական էլեմենտի կարգի է։

LATTICE ABSORPTION OF WEAK ELECTROMAGNETIC WAVE IN THE PRESENCE OF RESONANCE LASER RADIATION

A. S. AMIRYAN, V. G. GRIGORYAN, E. M. KAZARYAN

The absorption of a weak electromagnetic wave by phonon subsystems in the presence of resonance laser radiation $\omega \simeq \omega_{k,2} - \omega_{k,1}$ (where $\omega_{k,1}$ and $\omega_{k,2}$ are the frequencies of phonons with momentum k from branches "1" and "2") is investigated. The allowance for the interaction between phonons and a strong electromagnetic field is made in the resonance approximation. As a result there arise new quasiparticles which are mixtures of phonons from different branches and are characterized by the presence of gap in their spectrum. The occupation numbers of these particles for stationary case are obtained. It is shown that due to the presence of the gap the constant of weak wave absorption $\alpha(\omega_0)$ essentially varies in the frequency range-for which $|\omega - \omega_0|$ is of the order of optical matrix element.

УШИРЕНИЕ ЭНЕРГЕТИЧЕСКОГО СПЕКТРА ЭЛЕКТРОННОГО ПУЧКА В ПОЛЕ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ В СРЕДЕ

Э. А. БАБАХАНЯН, В. В. МУСАХАНЯН .

Рассматривается движение электрона в среде в поле электромагнитной волны линейной поляризации. Исследуется изменение энергии электрона при его влете в поле электромагнитной волны под черенковским углом к направлению ее распространения. Проводится усреднение энергии электронного пучка по начальным фазам влета частиц в волну. Получен эффект насыщения энергетического уширения пучка с ростом мощности поля. В работе, в частности, получеко уширение энергетического спектра электронного пучка, наблюдавшееся в эксперименте группы Пантелла.

Решение уравнения движения релятивистской заряженной частицы в поле электромагнитной волны в среде может быть выражено через время нахождения частицы в волне в самом общем случае произвольных начальных параметров (угла влета в волну, интенсивности волны, показателя преломления среды и т. д.). Для этого достаточно проинтегрировать уравнение (3) работы [1] для фазы электромагнитной волны.

В настоящей работе рассматривается частный случай влета частицы под черенковским углом к направлению распространения электромагнитной волны в среде, т. е. предполагается, что

$$1 - nv_0 \cos \vartheta_0 = 0, \tag{1}$$

где n — показатель преломления среды, v_0 — начальная скорость частицы, ϑ_0 — угол влета частицы в волну^{*} (см. рис. 1).

Рис. 1. Геометрия задачи: лазерный пучок с днаметром d и напряженностями электрического поля Е и магнитного поля H, распространяющийся в направлении k, пересекает частица с импульсом р под начальным углом ϑ_0 .

Волна характеризуется четырехмерным вектором потенциалом $A_{\mu} = a_{\mu} \cos \varphi$, где $a_{\mu} -$ амплитуда волны, $\varphi - \varphi$ аза, $\varphi = \omega t - \mathbf{kr}$, $k_{\mu} -$ импульс, $k_{\mu}^2 = \omega^2 - \mathbf{k}^2 = \omega^2 (1 - n^2) < 0$.

Энергия частицы в волне может быть записана в виде

$$=\varepsilon_0 - \omega \frac{V e k^2 (pa)}{k^2} \sin \varphi_0 \cdot \operatorname{sd} (\tau V e k^2 (pa), \varkappa).$$
(2)

* Для простоты принята система единиц m = c = 1. 186 Здесь ε_0 — начальная энергия электрона, φ_0 — фаза электромагнитной волны в момент влета частицы в волну, $p\alpha = -\mathbf{pa} = |\mathbf{p}| \cdot |\mathbf{a}| \cdot \sin \vartheta_0$, e—заряд электрона (e = -|e|), sd = sn/dn, sn и dn — эллиптические функции Якоби с модулем $x = \sin (\varphi_0/2)$ [2].

При получении соотношения (2) из общего решения электронный пучок считался моноэнергетическим или, другими словами, условие (1) выполнено для скоростей всех электронов начального пучка, влетающих в волну под углом ϑ_0 . Надо, однако, заметить, что для реальных электронных пучков, используемых в экспериментальных установках, необходимость учета разброса по начальным энергиям электронов привела бы к добавкам в соотношении (2), на несколько порядков меньшим, чем вклад от взаимодействия с полем. Кроме того, мы пренебрегли членом $\sim e^c k^2 a^a$ с еще на несколько порядков меньшим вкладом.

Целью настоящей работы является усреднение соотношения (2) по начальным фазам влета частиц. Очевидно, что средняя энергия пучка частиц не меняется,

$$\overline{\varepsilon} = \varepsilon_0.$$
 (3)

Однако среднеквадратичное отклонение энергии

$$\operatorname{rms} \mathfrak{s} = \omega \, \frac{\sqrt{ek^2 \, (pa)}}{2 \, \pi k^3} \left[\int_0^{2\pi} \, \sin^2 \, \varphi_0 \cdot \operatorname{sd} \left(\tau \, \sqrt{ek^2 \, (pa)}, \, \sin \frac{\varphi_0}{2} \right) d\varphi_0 \right]^{1/2} \quad (4)$$

не равно нулю и может быть вычислено в различных случаях.

Ввиду того, что собственное время частицы может быть записано через время нахождения частицы в поле:

$$\tau = t \sqrt{1 - v_0^2},$$
 (5)

где $t = d/v_0 \sin \theta_0$, d - диаметр лазерного пучка, то при $\sqrt[\tau]{ek^2(pa)} \ll 1$ интегрирование по τ_0 тривиально, и мы имеем

$$\operatorname{rms} \mathfrak{s} = \mathfrak{w} \, \frac{e(\mathbf{pa})}{1 \, \overline{2}} \, \frac{d}{v_0 \sin \vartheta_0} = \frac{\xi \omega d}{\sqrt{2} \, v_0} \, . \tag{6}$$

Здесь $\xi = eE/\omega$ (или, восстанавливая *m* и *c*, $\xi = eE/mc\omega$) — релятивистский параметр интенсивности, *E* — напряженность электрического поля лазерной волны.

В общем случае вычисление (4) не может быть выполнено аналитически, так как для эллиптических функций Якоби не определены дифференцирование и интегрирование по модулю. Результаты численных расчетов выражения (4), проведенных на БЭСМ-6, представлены на рис. 2.

С целью выхода на единственную в настоящее время экспериментальную точку усреднение проводилось для следующих значений параметров: энергия пучка электронов $\varepsilon_0 = 100$ МэВ, $\vartheta_0 = 0,00655$ радиан, частота лазерного поля $\omega = 3 \cdot 10^{14}$ с⁻¹, показатель преломления среды $n = 1 + 43,3 \cdot 10^{-5}$. Напряженность поля варьировалась в пределах от $5 \cdot 10^3$ В/см. Результаты усреднения для среды представлены сплошными линиями для различных диаметров лазерного пучка. Точка на кривой с d = 0,065 см и $\xi = 9,8 \cdot 10^{-5}$ соответствует эксперименту группы Пантелла [3], для которого мы получаем следующую величину: 2 гms $\varepsilon + \Delta \varepsilon_o = 46$ кэB + + 63 кэB = 109 кзB.

Ввиду важности этого экспериментального результата было проведено усреднение начального гауссовского энергетического спектра электронного пучка с шириной на полувысоте (FWHM) 63 кэВ. Полученное значение FWHM, равное 94 къВ, достаточно хорошо согласуется с экспериментальным результатом группы Пантелла (102±8) къВ (при усреднения мы пренебрегали поправками от ионизационных потерь, многократных столкновений и из-за угловых уширений электронного и лазерных пучков и т. д.; вклад этих эффектов для эксперимента группы Пантелла не превышает нескольких къВ).

Кривые на рис. 2 демонстрируют существование эффекта насыщения в среде при больших мощностях P лазерного поля: зависимость $P^{1/2}$ переходит в зависимость $P^{1/4}$. Насыщение наступает при значениях параметра $\tau \sqrt{ek^2(pa)} \sim 1$. С увеличением частоты электромагнитной волны насыщение наступает при меньших мощностях.

На том же рисунке пунктиром изображены уширения энергетического спектра электронов в вакууме. При всех различных значениях диаметров

пучка гms в^в растет с увеличением мощности как P^{1/2}. Величины rms е при фиксированном § меньше rms є для среды.

Заметим, что утверждение работы [4] о невозможности объяснения в рамках классической теории энергетического уширения при условиях эксперимента группы Пантелла находится в противоречии с результатами самой работы [4], а именно: подстановка выражения (6) в соотношение (5) работы [4] приводит к формуле, не содержащей постоянной Планка h:

$$\Gamma' = \Gamma + 2 mc^2 \tilde{\xi} \frac{v_0}{c} t \otimes \sin \vartheta_0, \tag{7}$$

здесь t — время нахождения частицы в волне ($t = d/v_0 \sin \vartheta_0$), $\overline{\xi} = e\overline{E}/mc\omega$, Γ и Γ' — начальное и конечное энергетическое уширение электронного пучка.

Поэтому нет смысла говорить о чисто квантовом эффекте, связанном с дифракцией электронов на решетке, созданной волной. Кроме того, очевидно, что классическое выражение (7) может и должно быть получено на основе обычной классической электродинамики, что и сделано в настоящей работе.

Надо отметить, что целью нашей работы является учет изменения фазы электромагнитной волны из-за изменения скорости частицы в волне, т. е. цель работы шире, чем простое объяснение экспериментального результата Пантелла, который, ксгати, им самим был уже объяснен на основе классической электродинамики [3].

Существование классического энергообмена между пучком электронов и электромагнитной волной вытекает из отличия фазы вылета частицы из волны от ее начальной фазы влета. Возьмем, к примеру, соотношение (8) работы [6], которое определяет область изменения фазы Φ в зависимости от параметров задачи:

$$(\sin \Phi - \sin \Phi_0) \left(\sin \Phi - \sin \Phi_0 - \frac{2 \omega}{eE} p_{y_0} \right) \leq 0, \tag{8}$$

где p_{ио} — начальный поперечный импульс частицы при $\Phi = \Phi_0$.

Соотношение (8) ясно показывает, что фаза Φ вылета частицы из волны не обязательно равна фазе Φ_0 влета (при условии, что $p_{y0} \neq 0$), но тогда подстановка этого конечного значения фазы Φ в соотношение (7) той же работы [6] даст изменение энергии частицы, определяемое конечной фазой электромагнитной волны (т. е. временем нахождения частицы в волне), начальной фазой и остальными параметрами задачи.

Ереванский физический институт Институт физических исследований АН Арм.ССР

Поступила 25. III. 1980

ЛИТЕРАТУРА

1. V. V. Mussakhanyan. Phys. Lett., 70A, 313 (1979).

Г. Бейтмен, А. Эрдейи. Высшие трансцендентные функции, Изд. Наука, М., 1967, т. 3.
 М. А. Piestrup, G. B. Rothbart, R. N. Fleming, R. H. Pantell. J. Appl. Phys., 46, 132 (1975).

4. H. K. Avetissian. Phys. Lett., 63A, 7 (1977).

5. H. K. Avetissian. Phys. Lett., 58A, 144 (1976); 63A, 9 (1977).

6. В. М. Арутюнян, Г. К. Аветисян. Квантовая электроника, No 7, 54 (1972).

ԷԼԵԿՏՐՈՆԱՅԻՆ ՓՆՋԻ ԷՆԵՐԳԵՏԻԿ ՍՊԵԿՏՐԻ ԼԱՅՆԱՑՈՒՄԸ ՄԻՋԱՎԱՅՐՈՒՄ՝ ԷԼԵԿՏՐԱՄԱԳՆԻՍԱԿԱՆ ԱԼԻՔԻ ԴԱՇՏԻ ԱՉԴԵՑՈՒԹՅԱՆ ՏԱԿ

է. Ա. ԲԱԲԱԽԱՆՑԱՆ, Վ. Վ. ՄՈՒՍԱԽԱՆՑԱՆ

Դիտարկված է էլնկտրոնի շարժումը միջավայրում՝ դծայնորնն բևնռացված էլնկտրամադնիսական դաշտի առկայության դեպքում։ Քննարկվում է էլնկտրոնի էննրդիայի փոփոխությունը, Հրբ նրա սկղբնական արագությունը ալիջի տարածման ուղղության նկատմամբ կազմում է չնրենկովյան անկյուն։ Անց է կացվում փնջի էննրդիայի միջինացում ըստ մուտջի նախնական փուլնրի։ Ստացված է փնջի էննրդնտիկ լայնացման հաղեցման էֆնկտ, կախված դաշտի հղորության անկց։ Աշխատանթում, մասնավորապես, ստացված է էննրդնտիկ սպնկտրի լայնացումբ, որը դիավել է Պանտելլի խմբի փորձում։

ENERGY SPREAD OF ELECTRON BEAM IN ELECTROMAGNETIC WAVE FIELD IN A MEDIUM

E. A. BABAKHANYAN, V. V. MUSSAKHANYAN

The electron motion in a medium in the field of linearly polarized electromagnetic wave is considered. The energy change of electron incident at Čerenkov angle to the direction of electromagnetic wave propagation is investigated. The averaging of the beam energy over the initial phases of particle incidence is performed and the saturation effect in a medium is obtained. In particular, the value of beam energy spread observed experimentally by Pantell group is obtained. Изв. АН Арминской ССР, Физика, 16, 191-195 (1981)

ЭФФЕКТИВНЫЕ ВОЛНОВОДНЫЕ ПОКАЗАТЕЛИ ПРЕЛОМЛЕНИЯ В ДИЭЛЕКТРИЧЕСКИХ ВОЛНОВОДАХ С ПЕРЕХОДНЫМ СЛОЕМ

С. Г. ГРИГОРЯН, А. Г. САРКИСЯН

Предложены безразмерные параметры для характеристики диэлектрических волноводов с переходным слоем. Выполнен расчет эффективных волноводных показателей преломления (ЭВПП) в зависимости от этих параметров. Предложен простой метод расчета ЭВПП волноводов с узким (по сравнению с толщиной волновода) переходным слоем.

Определение эффективных волноводных показателей преломления (ЭВПП) и количества мод плоского диэлектрического волновода с заданным распределением показателя преломления эквивалентно решению задачи об определении энергетических уровней частицы в потенциальной яме [1, 2]. Решения задач подобного типа используются как для нахождения области применения волноводов в интегральной оптике, так и для восстановления профиля распределения показателя преломления (метод неразрушающего контроля выращиваемых структур) по измеренным значениям ЭВПП [2].

В настоящей работе рассматривается задача об определении ЭВПП волноводов, характеризующихся наличием переходного слоя между подложкой и пленкой (служащей, собственно, волноводом). Подобное распределение имеет место в волноводах (рис. 1), изготовляемых методами эпи-

Рис. 1. Распределение показателя преломления в волноводе с переходным слоем. Ось X нормальна к поверхности волновода. Начало отсчета совпадает с границей волновод-покрытие. Z и L — соответственно безразмерные толщины участка с постоянным распределением показателя преломления и переходного слоя (в единицах длины волны каналируемого света), n_c , n_f , n_s — показатели преломления покрытия, пленки (служащей волноводом) и подложки.

таксии, а также некоторыми другими методами [3]. Волноводы, имеющие распределение показателя преломления, подобное приведенному на рис. 1, удобно характеризовать двумя условиями: $L \gg 1$ и $L/Z \ll 1$, где L — безразмерная толщина переходного слоя, Z — безразмерная толщина участка с постоянным показателем преломления (L и Z измеряются в единицах

длины волны каналируемого света). Отметим, что оба типа волноводов не являются взаимно исключающими, поскольку первое условие $(L \gg 1)$ требует, чтобы толщина переходного слоя была гораздо больше длины волны, а второе условие не зависит от длины волны и означает лишь малость толщины переходного слоя по сравнению с толщиной участка с постоянным показателем преломления. Рассмотрим отдельно эти случаи.

1. $L \gg 1$. Известно, что асимметричные волноводы без переходного слоя (например, диффузионные, для которых $Z \equiv 0$) характеризуются двумя типами нормализованных параметров: нормализованной толщиной и нормализованными ЭВПП [4]. В рассматриваемом нами случае естественно ввести еще и третий параметр — нормализованную толщину переходного слоя. Действительно, уравнение ВКБ (возможность применения которого обусловлена малостью длины волны по сравнению с толщиной переходного слоя) для волновода типа изображенного на рис. 1 принимает вид

$$2 V_0 \sqrt{1-b} + 2 V_1 \int_0^{x_1} \sqrt{f(x) - b} \, dx = 2 m\pi + \frac{3}{2} \pi.$$
 (1)

Величины V₀ + V₁ и V₁ назовем, соответственно, нормализованной толщиной волновода и нормализованной толщиной переходного слоя, поскольку

$$V_0 + V_1 = 2 \pi (Z + L) \sqrt{n_f^2 - n_s^2}, V_1 = 2 \pi L \sqrt{n_f^2 - n_s^2}.$$

Остальные обозначения в (1) являются общепринятыми: $f(X) - \phi$ ункция, описывающая распределение показателя преломления переходного слоя, m — номер моды, $b_m = \frac{N_m^2 - n_s^2}{n_f - n_s^2}$ — нормализованные ЭВПП *m*-ой моды, X_t определяется из соотношения $f(X_t) = b_m$, X — безразмерная координата, измеряемая в единицах длины волны каналируемого излучения. При выводе (1) использовалось обычное приближение для асимметричных волеоводов: $n_f - n_s \ll n_s$. Ураенение (1) справедливо как для TE, так и для TM-мод, с той только разницей, что при подстановке величин $n_f \bowtie n_s$ (для анизотропных материалов) следует учитывать направление вектора поляризации.

Для определения нормализованных ЭВПП (b_m) из уравнения (1) н ЭВПП (N_m) для прямоугольного волновода (см. раздел 2) были составлены алгоритм и программа для ЭЦВМ ЕС-10-20 на алгоритмическом языке «Фортран». Результаты численного решения уравнения (1) относительно нормализованных ЭВПП для различных комбинаций V_0 , V_1 и f(X)приведены на рис. 2—4 и могут быть использованы для определения профиля распределения показателя преломления по экспериментально измеренным значениям ЭВПП.

2. L/Z ≪ 1. Мы уже отметили выше, что приведенное неравенство означает лишь узость переходного слоя по сравнению с толщиной участка с постоянным распределением коэффициента преломления (или по срав-

нению с общей толщиной волновода, поскольку из условия $L/Z \ll 1$ следует $L/(L+Z) \ll 1$). Следовательно, оно справедливо как для волноводов с $L \gg 1$ (толщина переходного слоя гораздо больше длины волны, но мень-

Рис. 2. Нормализованные ЭВПП для волноводов с $f(X) = \exp(-X^2)$. $V_0 + V_1$ — нормализованная толщина волновода, V_0 — нормализованная толщина участка с постоянным распределением показателя преломления, X — безразмерная текущая координата (в единицах длины волны каналируемого света). Указаны номер моды (слева) и нормализованная толщина переходного слоя V_1 для 4-ой моды (у остальных мод набор V_1 тот же). Вверху справа указаны номера мод.

Рис. 3. Нормализованные ЭВПП для волноводов с $f(X) = \exp(-X)$.

ше толщины волновода), так и для волноводов с $L \lesssim 1$ (толщина переходного слоя сравнима с длиной волны или меньше ее и в то же время мала по сравнению с толщиной яолновода). Поэтому предлагаемый ниже метод расчета ЭВПП для волноводов с $L/Z \ll 1$ справедлив также и в том случае, когда метод ВКБ не применим (а именно, $L/Z \ll 1$ и $L \lesssim 1$). Вместе с тем для волноводов с $L \gg 1$ и $L/Z \ll 1$ (толщина переходного слоя велика по сравнению с длиной волны, но мала по сравнению с толщиной волны, расчета по сравнению с длиной волны, но мала по сравнению с толщиной волновода) можно применять оба метода. В таблице приведены результаты расчета ЭВПП такого волновода обоими методами.

Предлагаемый нами метод расчета ЭВПП для волноводов с $L/Z \ll 1$ использует отмеченную в самом начале аналогию в решениях задачи на собственные значения для частицы в потенциальной яме и задачи определения ЭВПП волновода. Продолжая эту аналогию, можно легко показать, что приближенные значения ЭВПП для волновода, изображенного на рис. 1, можно найти из точных значений ЭВПП для прямоугольного волновода (пунктир на рис. 1). Для этого достаточно рассмотреть разность собственных значений задач о волноводах с переходным слоем и без него

Рис. 4. Нормализованные ЭВПП для волноводов с $f(X) = \frac{1}{2} [1 + \cos(\pi X)].$

как поправку к точному решению задачи о прямоугольном волноводе. Тогда поправки первого порядка ΔN_m к точным решениям можно определить по формулам квантовомеханической теории возмущений, не зависящим от времени [1], в соответствии с которой и выбран параметр малости L/Z:

$$\Delta N_m = -\frac{2n_f \int_0^L \Delta n(X) \cos^2(x_f X - \varphi_s) \, dx}{N_m \, h_{abbb}}$$

где Δn (X) — разность показателей преломления «невозмущенного» и «возмущенного» волноводов, N_m — невозмущенный ЭВПП m-ой моды, $k = 2\pi/\lambda$ (λ — длина волны каналируемого излучения), $h_{s\phi\phi}$ — эффективная толщина волновода [4], X — безразмерная координата (в единицах длины волны), нормальная к поверхности волновода,

$$\varphi_s = \operatorname{arctg} \frac{\sqrt{N_m^2 - n_s^2}}{\sqrt{n_f^2 - N_m^2}}, \ x_f^2 = n_f^2 k^2 - N_m^2 k^2.$$

В таблице приведены результаты расчета ЭВПП методами ВКБ и теории возмущений для волновода с косинусоидальным распределением показателя преломления в переходной области.

Расчет проводился для эпитаксиальной структуры, граничащей с воздухом ($n_c = 1$), с подложкой из $LiTaO_1$ ($n_s = 2,1823$) и пленкой из

	Эффективные волноводные пока- затели преломления						
	ВКБ	Теория возмущений					
0	2,204	2,204					
1	2,204	2,203					
2	2,202	2,202					
3	2,200	2,199					
4	2,198	2,198					
	and the second s						

Tahama

LiNBO₃ ($n_f = 2,2047, Z = 26, L = 3$). Такие структуры описаны в работе [5]. ЭВПП для «невозмущенного» волновода определялись путем численного решения соответствующего точного дисперсионного уравнения для собственных значений, приведенного в [4]. Из таблицы видно хорошее согласие результатов расчета разными методами (рассматриваемый волновод допускает применение обоих методов по причинам, рассмотренным в начале этого раздела).

НИИ физики конденсированных сред ЕГУ

Поступила 7. VIII. 1980

ЛИТЕРАТУРА

1. Л. Д. Ландау, Е. М. Лифшиц. Квантовая механика, М., 1948.

2. B. Hocker, W. K. Burns. IEEE, QE-11, 270 (1975).

3. J. E. Goell, R. D. Standley. Appl. Opt., 11, 2502 (1972).

4. H. Kogelnik, V. Ramaswamy. Appl. Opt., 13, 1857 (1974).

5. О. А. Хачатурян, Р. С. Мадоян. Электронная техника, сер. 6, вып. 4, 41 (1978).

էՖԵԿՏԻՎ ԱԼԻՔԱՏԱՐԱՅԻՆ ԲԵԿՄԱՆ ՑՈՒՑԻՉՆԵՐԸ ԱՆՑՈՂԱԿԱՆ ՇԵՐՏ ՈՒՆԵՑՈՂ ԴԻԷԼԵԿՏՐԻԿ ԱԼԻՔԱՏԱՐՆԵՐՈՒՄ

Ս. Գ. ԳՐԻԳՈՐՅԱՆ, Ա. Գ. ՍԱՐԳՍՅԱՆ

Առաջարկված են նորմալացրած պարամետրեր անցողական շերտ ունեցող դիէլեկտրիկ ալիջատարները ընութադրելու համար։ Կատարված է էֆեկտիվ ալիջատարային բեկման ցուցիչների հաշվարկ։ Ալիջատարի ընդհանուր հաստության հետ համեմատած նեղ անցողական շերտ ունեցող ալիջատարների համար առաջարկված է էֆեկտիվ ալիջատարային բեկման ցուցիչների հաշվարկի հեշտ մեթոդ։

EFFECTIVE MODE INDICES IN DIELECTRIC WAVEGUIDES WITH TRANSMISSION REGION

S. G. GRIGORYAN, A. G. SARKISYAN

Normalized parmeters describing waveguides with a transmission region are proposed. The effective mode indeces in waveguides are calculated depending on these parameters. A simple calculational method for obtaining the effective mode indices of waveguides with narrow transmission regions (in comparison with the waveguide thickness) is proposed.

ОКОЛОЗЕМНОЕ КОСМИЧЕСКОЕ ПРОСТРАНСТВО И ИОНОСФЕРНЫЕ НЕОДНОРОДНОСТИ

Ю. С. ВАРДАНЯН

С учетом амбиполярной диффузии в верхних слоях ионосферы и электропроводности Земли изучаются ионосферные неоднородности, обусловленные движением нейтрального газа в динамо-области.

Все процессы, протекающие в ионосфере, могут быть подразделены на две группы: фотохимические процессы и процессы переноса. В области F обе группы процессов сравнимы по важности в противоположность областям D и E, где распределение электронов определяется в основном фотохимическими процессами.

Область F исторически подразделяется на слои F₁. и F₂. Выступ F₁ в распределении электронов представляет собой максимум ионообразования, в то время как максимум F₂ представляет собой максимум электронной концентрации, возникающий в результате совместного влияния химических процессов и диффузии плазмы.

В работе [1] рассматривалось влияние продольных токов, порождаемых движением нейтрального газа на высоте слоя *E*, на структуру *F*-слоя ионосферы. Однако в принятой модели не учитывалось наличие слоя *F*₂ с присущими ему особенностями и не принималось во внимание электромагнитное взаимодействие ионосферы с Землей.

Известно, что верхние слои Земли обладают хорошей проводимостью и ее радиус R_3 намного больше толщины нейтральной атмосферы. Отсюда ясно, что на любое изменение в верхних слоях атмосферы Земля должна реагировать как электропроводящий шар. Таким образом, необходимо решить самосогласованную задачу для всей длины силовой линии магнитного поля Земли, пронизывающей проводящую Землю и окружающее ее пространство.

Поскольку характерные размеры изучаемого явления малы по сравнению с радиусом Земли, в настоящей работе предложена плоская многослойная модель проводящей Земли и околоземного космического пространства, симметричная относительно оси z=0 (на рисунке представлено только южное полушарие).

Слой бесконечно проводящей плазмы (магнитосфера) расположен между поверхностями $z = \pm (d - a - l - p)$ и соприкасается со слабоионизированным газом $(d - a - l - p \leq |z| \leq d)$, плоскости $z = \pm d$ представляют собой границу между слабоионизированным и нейтральным газом (атмосферой). Е и F_i , F_i и F_2 ионосферные слои отделяются соответственно плоскостями $z = \pm (d - a)$ и $z = \pm (d - a - l)$, граница между атмосферой и Землей определяется плоскостями $z = \pm (d + f)$. Магнитное поле Н перпендикулярно к границам раздела. При этом учитываются сила тяжести заряженных компонент и изменение концентраций нейтральных и заряженных частиц с высотой во всем ионосферном слое.

В рамках этой модели рассматривается мелкомасштабное горизонтальное движение нейтрального газа в слое E ионосферы со скоростью **W**. Такое движение благодаря явлению динамо приведет к появлению электрических полей и токов, текущих по электропроводным слоям системы.

Поскольку ниже использована та же схема задачи и те же граничные условия, что и в [2], нет необходимости останавливаться на получении основных уравнений, связывающих потенциал электрического поля ψ в ионосфере со скоростью нейтралов **W**. Исключение составляет F_2 -слой, где учитываются члены $\nabla p_i/N_i$, $\nabla p_e/N_e$, ответственные за амбиполярную диффузию.

Решение для ψ в разных слоях при $\mathbf{W} = \left\{ \frac{W_0}{k_1} \sin k_1 x \cdot \sin k_2 y, \frac{W_0}{k_2} \cos k_1 x \cdot \cos k_2 y \right\}$ с компонентами в виде фурье-разложений W_x , W_y по координатам x, y, удовлетворяющих div $\mathbf{W} = 0$, ищем в виде

$$\psi = \sum f_{l}(z) \cdot F_{l}(x, y)$$

где

$$F_1(x, y) = \sin k_1 x \cdot \cos k_2 y, \ F_2(x, y) = \cos k_1 x \cdot \sin k_2 y,$$

$$F_3(x, y) = \sin k_1 x \cdot \sin k_2 y, \ F_4(x, y) = \cos k_1 x \cdot \cos k_2 y.$$

На границе атмосферы и Земли $\psi = 0$ (поверхность Земли считаем идеально проводящей).

Из уравнения Эйлера для плазмы $-\nabla p + \frac{1}{c}$ [jH] = 0 и div j = 0

видно, что при антивращении (когда движение нейтралов в *E*-слое северного и южного полушарий противоположно) через магнитосферу по силовым линиям магнитного поля будет протекать ток. Ковращение (когда движение нейтралов в *E*-слое северного и южного полушарий одинажово) не приводит к току через магнитосферу [2]. Когда в ионосфере имеются неоднородности электронной концентрации, радиоволны могут рассеиваться на этих неоднородностях внутрь мертвой зоны [3].

Представленная модель позволяет непосредственно из уравнений

div
$$N\mathbf{v}_i = -\alpha (n_i + n_e), -\Delta \psi_1 = 4\pi e (n_i - n_e)$$
 B E-case,
div $N\mathbf{v}_i = q - r, -\Delta \psi_2 = 4\pi e (n_i - n_e)$ B F_1 -case,
div $N\mathbf{v}_i = q - r + P, -\Delta \psi_3 = 4\pi e (n_i - n_e)$ B F_2 -case

вычислить неоднородности заряженных частиц n_t н n_e в E, F_1 н F_2 -слоях, выраженные через потенциал ψ и обусловленные движением нейтралов в *E*-слое. Здесь $N = N_0 \exp [1/H_n^0 (d - |z|)]$ – равновесная концентрация заряженных частиц, a -коэффициент рекомбинации положительных ионов с электронами в *E*-слое, $r = a_r (N+n_e) N_n$, $a_r -$ коэффициент прилипания электронов к нейтралам, $N_n = N_0 \exp [-1/H_n (d - |z|)]$ есть концентрация нейтральных частиц, $q = q_0 \exp [-1/H_n (d - |z|)]$ есть чепменовское распределение скорости ионизации в *E*-слое, $H_n = kT_n/m_ng$. *P* соответствует амбиполярной диффузии в слое F_2 и определяется выражением [4]

$$P = D_a 1/H_l^2 \left[\frac{d^2 (N + n_e)}{dz^2} + \frac{3}{2} \frac{d (N + n_e)}{dz} + \frac{1}{2} (N + n_e) \right]$$

где $D_o = \frac{2 k T_p}{m_i v_{in}} -$ ковффициент амбиполярной диффузии, $H_i = \frac{k T_i}{m_i g}$, $T_p = \frac{1}{2} (T_i + T_e)$, T_i и T_e - температура ионов и электронов, k - по-

стоянная Больцмана.

Оказалось. что при постоянной скорости нейтралов W имеет место обратная, в определенных пределах почти экспоненциальная, зависимость n_t и n_e от толщины атмосферы f.

Численные расчеты при реальных значениях параметров ионосферы, размере ячейки $2\pi/k_{1(2)} = 200$ км, амплитуде скорости ветра $W_0/k_{1(2)} = 200$ м/с и высоте резкой границы между F_1 - и F_2 -слоями Z = 200 км показали, что наличие проводящей Земли и процессов переноса в F_2 -слое могут существенно повлиять на величину ионосферных неоднородностей, что весьма важно с точки зрения радиосвязи.

Автор благодарен Б. А. Тверскому за обсуждение результатов.

Институт радиофизики и электроники АН АрмССР

Поступила 14. VI. 1980

ЛИТЕРАТУРА

- 1. Ю. С. Варданян. Геомагнетнэм и аврономия, 13, 518 (1973).
- Л. М. Алексеева, Ю. С. Варданян, Б. А. Тверской. Геомагнетним и аэрономия, 9, 437 (1969).
- 3. К. Дэвис. Радноволны в ноносфере, Изд. Мир, 1973.
- 4. V. C. A. Ferraro. Terr. Magn. Atmos. Elect., 50, 215 (1945).
- 198

ՄԵՐՁԵՐԿՐՅԱ ՏԻԵԶԵՐԱԿԱՆ ՏԱՐԱԾՈՒԹՅՈՒՆԸ ԵՎ ԻՈՆՈՍՖԵՐԱՅԻՆ ԱՆՀԱՄԱՍԵՌՈՒԹՅՈՒՆՆԵՐԸ

Յու Ս. ՎԱՐԴԱՆՅԱՆ

Հաշվի առնելով իոնոսֆերայի վերին շերտերում տեղի ունեցող ամբիպոլյար դիֆուզիան և Երկրի էլեկտրահաղորդականունքյունը, ուսումնասիրվում են իռնոսֆերային անհամասեռու-Բյունները՝ պայմանավորված դինամո-տիրույնի չեղոր դազի շարժումով։

CIRCUMTERRANEOUS SPACE AND IONOSPHERIC INHOMOGENEITIES

Yu. S. VARDANYAN

Taking into account the ambipolar diffusion in the upper layers of the ionosphere as well as the terrestrial conductivity, ionospheric inhomogeneities caused by the motion of neutral gas in the dynamo-domain are studied.

-

r

РЕНТГЕНИНТЕРФЕРОМЕТР С ПАРАЛЛЕЛЬНЫМИ ПУЧКАМИ

М. А. НАВАСАРДЯН

Предложен и реализован рентгенинтерферометр с параллельными рентгеновскими пучками, состоящий из двух диблоков, расстояние между которыми не фиксировано (фиксировано только расстояние внутри их). Это обеспечивает заменяемость одного диблока интерферометра другим аналогичным диблоком из этого же или из другого материала и дает возможность также делать заменяемую часть из одноблочной пластинки.

После описания Бонзом и Хартом первого рентгеновского интерферометра [1] ими и другими авторами были предложены и реализованы различные новые схемы рентгенинтерферометров [2-8]. Во всех этих схемах, кроме схем, описанных в работах [5, 7], геометрия, а также расстояние между блоками интерферометров были жестко фиксированы. Это обстоятельство создает определенные трудности при изготовлении, а также при работе с этими приборами. Жестко фиксированное расстояние между блоками создает определенные принципиальные трудности, особенно при изучении поведения интерферирующих пучков, если бывает необходимо менять длины оптических путей этих пучков. Определенные трудности возникают также тогда, когда на пути лучей необходимо бывает поместить исследуемый образец, размеры которого превышают размеры основания самого интерферометра. Трудности становятся более значительными, когда часть интерферометра или один из его блоков необходимо бывает подвергать определенному физическому или химическому воздействию, оставляя другую его часть при этом неподвижной (неизменной).

Имея в виду вышеизложенные обстоятельства, целесообразно разработать и реализовать такие схемы рентгенинтерферометров, в которых в качестве исследуемого образца (в качестве кристалла анализатора) можно было бы применять отдельные кристаллические блоки или же упростить схему интерферометра таким образом, чтобы иметь возможность без особых трудностей заменять или перемещать только часть интерферометра, оставляя остальную его часть неизменной и неподвижной. Основные экспериментальные процедуры при таком варианте, понятно, нужно проводить с изменяемой (подвижной) частью интерферометра.

Используя некоторые особенности уже существующих схем интерферометров, в настоящей работе нами предложены и изготовлены новые варианты интерферометров, удовлетворяющие вышеизложенным требованиям, а именно, изготовлен интерферометр, работающий с помощью рентгеновских параллельных пучков. Предложенные схемы интерферометров состоят либо из двух пар параллельных блоков, диблоков (с фиксированным или нефиксированным расстоянием между ними), либо из одного двойного блока (диблока) в комбинации с толстым и единичным блоком.

200

Такие схемы дадут возможность, во-первых, сделать произвольным расстояние между двумя диблоками (как при жестком, так и при свободном варианте), т. е. длину работающей части пучков выбирать, исходя из требований данной задачи, и, во-вторых, второй диблок (или одиночный блок) сделать заменяемым. Предложен также упрощенный способ установления отдельных блоков в отражающее положение.

1. Интерферометр с параллельными рентгеновскими пучками с двумя диблоками

На рис. 1а представлена схема интерферометра с параллельными рентгеновскими пучками с двумя парными блоками (диблоками), на рис. 16 представлен его внешний вид. Как видно из схемы, диблоки можно поступательно перемещать, не нарушая условия Брэгга; второй диблок можно также перемещать вдоль первичного пучка (либо вдоль отраженного пучка). Направления перемещений указаны двойными стрелками.

a

Рис. 1. а) Схема рентгенинтерферометра с параллельными пучками. Двойными стрелками указаны возможные направления поступательных перемещений диблоков во время юстировки. 6) Общий вид интерферометра с двумя диблоками.

Кроме вышеуказанных перемещений для установления диблоков в отражающее положение необходимо иметь также возможность поворачивать их вокруг горизонтальных и вертикальных осей. Последние осуществляются с помощью гониометрических устройств.

Из рисунка видно, что в этой схеме при одинаковой ориентации диблоков фиксировано только внутриблочное расстояние $(D_1=D_2)$. Расстояние l между диблоками может изменяться начиная с нуля, а максимальное их расстояние практически не ограничено. Таким образом, расстояние l может быть меньше, равно и много больше внутриблочного расстояния D_1 или D_2 . Такой интерферометр будет хорошо работать и выдавать интерферирующие рефлексы (1, 2, 3, 4) в случае аномального прохождения ($\mu t \ge 10$). Если это условие не будет выполнено и, следовательно, отраженные и проходящие пучки будут сильно отличаться друг от друга по интенсивности, то одинаковой интенсивностью будут обладать только лучи, составляющие компоненты пучка H (см. рис. 1a). Это означает, что при неаномальном прохождении хорошая картина получается только при наложении этих пучков в последнем блоке.

2. Интерферометр, состоящий из различных матерналов

Как видно из схемы (рис. 1а), первый диблок выдает две пары параллельных пучков, которые в аномальном случае строго эквивалентны. Вторую пару блоков можно поместить на пути пучков, распространяющихся либо по направлению первичного пучка, либо по направлению отраженного пучка. Оказывается, что при наличии параллельных пучков, выдаваемых первым диблоком, возможно изготовление второго диблока из другого монокристаллического материала с отличающимся от D_1 внутриблочным расстоянием D_2 .

Рис. 2а дает возможность найти взаимосвязь между внутриблочными расстояниями D. и D₂. Эта связь зависит от углов Брэгга соответствующих

б

Рис. 2. Схема интерферометра: а) второй диблок сделан из другого материала; б) второй диблок является одиночной пластинкой.

отражений. Рассмотрим случай, когда отражающие атомные плоскости перпендикулярны к поверхности блоков. Преломление пучка при его прохождении сквозь кристалл не будем учитывать, так как оно не будет влиять на конечный результат.

Из треугольников ABE и CEF (рис. 2a) соответственно имеем $BE = D_i \lg \theta_i$, $X = CE \cos \theta_i$, следовательно, $X = 2D_i \sin \theta_i$.

Ясно, что пучки с расстоянием X между ними будут перекрываться во втором блоке второго диблока, если будет выполнено аналогичное условие, т. е. $X = 2 D_2 \sin \theta_2$, откуда следует, что $2 D_1 \sin \theta_1 = 2 D_2 \sin \theta_2$, или

здесь D_2 есть расстояние между блоками внутри второго диблока, а θ_2 —угол Брэгга для нужного семейства атомных плоскостей этого же диблока. Имея в виду условие Брэгга $2 d \sin \theta = n^2$, при n=1 вместо (1) получим $D_1/d_1 = D_2/d_2$, где d_1 и d_2 — межплоскостные расстояния отражающих атомных плоскостей соответственно первого и второго диблоков.

Таким образом, если известны внутриблочное расстояние неподвижного (первого) диблока, а также межплоскостные расстояния семейств плоскостей, от которых должно происходить отражение подвижного и неподвижного диблоков (т. е. известны углы Брэгга θ_1 и θ_2 или d_1 и d_2), то легко посчитать расстояние D_2 между блоками второго диблока.

3. Интерферометр, состоящий из одного диблока и одного единичного блока

Другим типом интерферометра с параллельными пучками является интерферометр, в котором вторая пара блоков заменена плоским одиночным блоком, толщина которого в случае одинакового материала должна быть больше, чем внутриблочное расстояние первого диблока. Схема этого варианта показана на рис. 26. Двухблочная часть его выдает два когерентных пучка нак в аномальном, так и в неаномальном режимах, так как необходимо, чтобы треугольники Бормана, образованные двумя отдельными пучками в объеме единичного блока, перекрывались. В случае экстинкционного контраста двойной блок даст два пучка с одинаковой интенсивностью в сторону отражения, поэтому единичный блок необходимо поместить на пути дифрагированного пучка. В этом случае одиночный блок также может быть изготовлен из любого кристаллического материала; толщина его при этом, как и раньше, определяется формулой (1), так что для этой толщины D₂ имеем

$$D_2 > D_1 \frac{\sin \theta_1}{\sin \theta_2}$$
 или $D_2 > D_1 \frac{d_2}{d_1}$.

4. Юстировка интерферометров

Так как интерферометры состоят из двух отдельных частей, то для установления их в отражающее положение, как уже говорилось выше, требуются две независимые друг от друга гониометрические головки (установление интерферометра в отражающее положение при жестко фиксированном варианте не связано с какими-либо трудностями, так как падающий пучок имеет большую угловую расходимость). Диблоки выводятся в отражающее положение с помощью дифрактометров. В данном случае это осуществляется с помощью установки УРС-50ИМ. Первый диблок устанавливается в специальную головку монохроматора, а вторая часть (второй диблок иля одиночный блок) — в самодельную головку гониометра. Кроме вращательных движений вокруг горизонтальных осей как головка монохроматора, так и головка гониометра обеспечивают также сканирование образца без нарушения условия Брэгга.

Юстировка делается в следующей последовательности. Прежде всего устанавливается в отражающее положение первый блок первого диблока (часть вторых блоков обеих диблоков с целью увеличения интенсивностей юстировочных пучков вырезана и удалена, см. рис. 1а и б). При использовании излучения $Cu K_{a_1}$ первый блок толщиной 0,5 мм ($\mu t \simeq 7$) пропускает аномально проходящие пучки достаточной интенсивности.

Затем, используя излучение, распространяющееся по направлению первичного пучка и имеющее угловую расходимость в 20" (либо излучение, распространяющееся по направлению дифрагированного пучка), устанавливается в отражающее положение одноблочная часть второго диблока, одним словом, процедура предварительной юстировки такая же, как в двухкристальном спектрометре. После этого первый и второй диблоки без вращения поступательно перемещаются до тех пор, пока первичный пучок не начнет проходить через первый диблок, а второй диблок не перекроет два параллельных пучка, идущих от первого диблока.

Понятно, что при этом от первого диблока получатся две пары параллельных пучков, распространяющихся по направлению *H* и *O*, а от второго диблока будут выходить два тройных пучка, рис. 1а (если на второй диблок падает только одна пара пучков). Два из этих шести пучков — 1 и 2 или 3 и 4 — являются интерферирующими, т. е. на них будут видны полосы интерференции.

Интерференционная картина, полученная от интерферометра с параллельными пучками, показана на рис. 3. Рентгенпленка пересекает пучки

Рис. 3. Интерференционная картина, полученная от предложенного интерферометра, изготовленного из Si.

в том месте, где интерферирующие и расходящиеся пучки 2 и 3 все еще не пересеклись, поэтому пучки с одинаковой интерференционной картинои находятся по разные стороны рисунка (правая и левая). Детальное рассмотрение картин интерференции показывает, что в данном случае на картину влияег второй диблок, так как обе пары пучков, распространяющиеся по направлению *H* и *O*, выходили из одних и тех же точек, и если интерференционные картины имеют различные формы, то это обусловлено вторым диблоком.

Такие интерферометры будут хорошо работать при использовании в качестве источника излучения синхротронного излучения, так как это излучение имеет малую угловую расходимость и после прохождения первого диблока параллельные пучки будут мало ослабляться.

Интерферометр с такими изолированными частями имеет еще и то преимущество, что его отдельные части можно термически изолировать как друг от друга, так и от исследуемого образца, когда образец помещен не внутри диблоков, а между диблоками. Поскольку оптическую длину пучков можно сделать сколь угодно большой, то с помощью такого интерферометра можно исследовать и газообразные среды.

В заключение приношу свою искреннюю благодарность проф. П. А. Безирганяну за обсуждение полученных результатов и ценные советы.

Ереванский физический институт

Поступила 5. VI. 1980

ЛИТЕРАТУРА

1. U. Bonse, M. Hart. Appl. Phys. Lett., 6. 155 (1965).

2. U. Bonse, M. Hart. Appl. Phys. Lett., 7, 99 (1965).

3. U. Bonse, M. Hart. Z. Phys., 194, 1 (1966).

4. U. Bonse, M. Hart. Z. Phys., 190, 455 (1966).

5. U. Bonse, E. te Kaut. Z. Phys., 214, 16 (1968).

6. U. Bonse, M. Hart. Acta Cryst., A24, 240 (1968).

7. R. D. Deslattes. Appl. Phys. Lett., 15, 386 (1969).

8. Ф. О. Эйрамджян, К. Г. Труни, П. А. Белирганян. ДАН АрмССР, 56, 15 (1973).

ԶՈՒԳԱՀԵՌ ՓՆԶԵՐՈՎ ՌԵՆՏԳԵՆՅԱՆ ԻՆՏԵՐՖԵՐՈՄԵՏՐ

Մ. Ա. ՆԱՎԱՍԱՐԴՅԱՆ

Առաջարկված և իրականացված է ղուղահեռ փնջնրով ռենադենյան ինտերֆերոմետր, որը կաղմված է երկու իրարից անկախ շարժվող միաբյուրեղային ղուդահեռ երկթիթեղների համակարդից։ Ներկայացված ինտերֆերոմետրում մի երկթիթեղը կարելի է փոխարինել նույնանմանով կամ, որոշակի պայմանների դեպքում, այլ բյուրեղական նյութից պատրաստված երկթիթեղով, կամ մեկ եղակի թիթեղով։ Ինտերֆերոմետրը կարելի է օգտագործել բացի պինդ և հեղուկ մարմինների ուսումեասիրությունից նաև գաղային և պլազմային վիճակների ուսումնասիրման համար, ինտերֆերոմետրի մասերի լրիվ ջերմային մեկուսացման պայմաններում։

AN X-RAY INTERFEROMETER WITH PARALLEL BEAMS

M. A. NAVASARDYAN

An X-ray interferometer consisting of two similar diblockes with changeable separation is proposed and constructed. Such a design allows one to prepare diblocks from different crystalline materials and even to use a single crystalline plate instead of the second diblock.

ВЛИЯНИЕ СОДЕРЖАНИЯ НЕКОНТРОЛИРУЕМЫХ ПРИМЕСЕЙ НА ЭЛЕКТРОФИЗИЧЕСКИЕ И ФОТОЭЛЕКТРОХИМИЧЕСКИЕ СВОЙСТВА *TiO*2

А. Г. САРКИСЯН, В. М. АРАКЕЛЯН, Ж. Р. ПАНОСЯН, В. А. МЕЛИКСЕТЯН, Р. С. ВАРТАНЯН, А. А. ПОГОСЯН

Рассматривается влияние режимов термообработки (восстановления) фотоэлектродов, изготовленных из разных марок TiO_2 , на эффективность преобразования солнечной энергии методом фотолиза воды, а также содержания неконтролирусмых примесей на электрофизические и фотоэлектрохимические свойства поликристаллического TiO_2 .

Широкое применение, которое получила двуокись титана в установках фотолиза воды в качестве фотоанода, делает необходимым детальное изучение ее электрофизических, фотоэлектрических, оптических и фотоэлектрохимических свойств. Если в ранних работах [1—3] в основном изучались электрофизические свойства TiO_2 , то в последнее время интенсивно исследуются ее фотоэлектрохимические свойства [4—8].

Ряд работ [9—11] посвящен исследованию влияния легирующих добавок в TiO_2 на ее свойства. Настоящая работа имеет целью исследовать влияние неконтролируемых примесей на электрофизические и фотоэлектрохимические свойства TiO_2 . Рассматривается также влияние режимов термообработки (восстановления) фотоэлектродов, изготовленных из разных марок TiO_2 , на эффективность преобразования солнечной энергии методом фотолиза воды. С этой целью были изготовлены образцы из четырех разных марок.

Образцы для исследований изготовлялись методом спекания. Спрессованные брикеты из порошка TiO_2 помещались в камеру высокотемпературной печи, обеспечивающей вакуум до $8 \cdot 10^{-3}$ Па. После откачки камера наполнялась чистым гелием. Синтез проводился при постоянном давлении в камере 1,16 · 10⁵ Па. В указанных условиях спекание образцов проводилось при разных температурах (от 1100 до 1550°С) в течение 5 часов. При более низких температурах синтеза получить компактные образцы не удалось. Во избежание трещин и механических напряжений повышение и понижение температуры осуществлялось равномерно в течение 3 часов.

Полученные образцы имели равномерную окраску как на поверхности, так и в объеме, причем с повышением температуры восстановления цвет образцов изменялся от светло-серого до темно-черного. Все образцы имели электронную проводимость. С изменением температуры синтеза изменялась степень восстановления TiO_2 . Полученные таким образом образцы содержали не только разные количества неконтролируемых примесей, но и разные концентрации кислородных вакансий в анионной подрешетке. Исследовалась электропроводность полученных образцов в зависимости от температуры восстановления и от марки TiO₂. Результаты исследования приведены в табл. 1.

Электропроводность исследуемых образцов (всех марок) в зависимости от температуры синтеза изменяется более чем на порядок, причем с увеличением температуры удельная электропроводность растет, что связано с увеличением концентрации кислородных вакансий в анионной подрешетке рутила, являющихся источником зонных электронов. В зависимости от содержания неконтролируемых примесей в TiO_2 (от марки) электропроводность изменяется всего лишь в два раза.

. В табл. 1 приводятся также результаты измерений эффекта Холла и диэлектрической проницаемости. Диэлектрическая проницаемость исходной TiO₂ уменьшается с увеличением содержания в ней количества неконтролируемых примесей. Так как аномально высокое значение диэлектрической проницаемости рутила обусловлено особым расположением атомов Ti и кислорода, то любые нарушения в структуре рутила, естественно, приводят к уменьшению диэлектрической проницаемости.

Наблюдается зависимость подвижности носителей от температуры восстановления и от марки исходной TiO_2 . Увеличение температуры восстановления, сопровождающееся увеличением числа кислородных вакансий, приводит к уменьшению подвижности носителей за счет увеличения рассеяния. По той же причине (за счет увеличения рассеяния на примесных атомах) подвижность носителей уменьшается также с ростом неконтролируемых примесей в TiO_3 .

Исследование температурной зависимости удельной электропроводности проводилось в температурном интервале 125—500°К (рис. 1). Все ис-

Рис. 1. Температурная зависимость удельной электропроводности: 1) ЧДА; 2) ОСЧ; 3) Ч.

следованные нами образцы обладали положительным температурным коэффициентом удельной электропроводности, описываемым формулой

$$\sigma = A \exp\left(-\frac{\Delta E}{2\,k\,T}\right)$$

Наблюдаемая на опыте прямолинейная зависимость lgo от 1/T свидетельствует о том, что предэкспоненциальная постоянная в рассматриваемом интервале температур практически не зависит от температуры. Это

and the second second	100		
- T -	e		2.5
10	0.4	 10	

	8	Температура синтеза														
		1100°C			1200°C			1300°C			1400°C			1550°C		
Марка		g om ⁻¹ cm ⁻¹	µ см²/В. с	и см ^{-з}	σ om ^{−1} cm ^{−1}	µ cm ² /B. c	п см ⁻³	g om -1 cm-1	µ см ³ /В. с	п см ⁻³	5 0M ⁻¹ cM ⁻¹	µ см²/В. с	п см ⁻³	5 0M ⁻¹ cM ⁻¹	µ см ² /В. с	п см ⁻³
ОСЧ	100	0,2	2,5	5.1017	0,71	2,2	2.1018	1,52	2,1	4.1018	2,1	1,8	7,2.1018	3,68	0,9	2,6.1019
ЧДА	108	0,1	3,2	1,9.1017	0,16	3,0	3.1017	0,26	2,9	5.1017	1,2	2,3	3,2.1018	3,34	1,7	1,25.101
ч	80	0,3	0,6	3.1018	1,3	0,5	1,6.1019	-	0,4	-	2,3	0,2	7,1.1019	2,99	0,1	1,8.1030
Спец.	70	0,4	0,4	6,2.1018	1,5	0,3	3.1019	2,3	0,3	4,7.1019	3,6	0,2	1,1.1020	5,89	0,1	3,3.1030

Таблица 2

Марка	Температура синтева														
	1100°C			1200°C			1300°C			1400°C			1550°C		
	<i>Ι</i> φ mA	IT mA	η%	<i>I</i> φ mA	IT mA	η%	I _ф mA	I _T mA	η%	<i>I</i> φ mA	I ₇ mA	7%	I _ф mA	Ir mA	η%
осч	40	0,9	0,85	35	0,4	0,8	36	0,15	0,46	22	3,2	0,4	22	0,18	0,29
44A	46	0,3	1,2	44	0,9	1,07	37	0,6	0,82	40	0,3	0,43	30	0,2	0,24
Ч	26	0,01	0,62	20	0,05	0,04	-	-	-	20	0,12	0,13	20	0,03	0,24
Глец.	24	0,54	0,5	22	0,34	0,4	22	0,14	0,5	20	0,04	0,3	20	0,03	0,2

означает, что электронный газ не вырожден, хотя концентрация носителей составляет примерно 10²⁰ см⁻³. Это обстоятельство связано с тем, что эффективная масса носителей в частично восстановленной двуокиси титана значительно превышает массу свободного электрона. Действительно, используя критерий, определяющий условие вырождения электронного газа,

$$T_0 = \frac{h^2}{2 \, m^* \, K} \left(\frac{3 \, n}{8 \, \pi}\right) = 4, 2 \cdot 10^{-11} \, n^{2/3} \left(\frac{m_0}{m^*}\right) \, {}^{0} \mathrm{K}$$

и подставляя $n = 10^{20}$ см⁻³, можно убедиться, что электронный газ в рассматриваемом интервале температур все еще не вырожден, если эффективная масса носигелей много больше массы свободного электрона.

Наблюдаемые наклоны кривых, выражающих зависимость $lg\sigma$ от 1/T, соответствуют двум различным источникам зонных электронов, так как кислородные вакансии в запрещенной зоне образуют донорные центры с разными энергиями активации. Энергии активации, рассчитанные из температурной зависимости электропроводности, изменяются от 0,07 до 0,1 вВ, и нам не удалось установить какой-либо закономерности от степени восстановления и от марки TiO_3 .

Процесс фотолиза с изготовленными фотоэлектродами исследовался в фотоэлектрохимической ячейке, описанной в работе [10]. Результаты приведены в табл. 2. Токи фотолиза, указанные в табл. 2, измерены при постоянном освещении, а КПД преобразования рассчитаны по результатам измерений непосредственно под солнцем. Ток фотолиза, а следовательно и КПД преобразования солнечной энергии, увеличивается с уменьшением температуры восстановления фотоэлектродов, что в первую очередь связано с увеличением подвижности носителей. Максимальный КПД преобразования имеют фотоэлектроды, восстановленные при 1100°С. КПД преобразования фотоэлектродов, изготовленных из *TiO*, марки «ЦДА», достигает 1,2%. Следует отметить, что подвижность носителей у этих фотовлектродов также максимальна.

Спектральные зависимости тока фотолиза для фотоэлектродов, изготовленных при разных температурах, приведены на рис. 2 Спектральная чувствительность существенным образом зависит от температуры восстановления фотоэлектродов, обуславливающей различные количества и типдефектов в решетке рутила.

Природа дефектов, возникающих в кристаллах рутила при их частичном восстановлении, до настоящего времени остается неясной. В принципе известно, что отклонение от стехиометрии приводит к появлению в решетке рутила кислородных вакансий или междоузельных атомов титана, а также комбинаций этих двух образований.

Спекание образцов при разных температурах приводит не только к разной степени восстановления, но и к перераспределению вышеуказанных дефектов, что, в свою очередь, может привести к изменению ширины запрещенной зоны, а следовательно, и к смещению максимума фоточувствительности влектродов (рис. 2).

sites 1

В стехнометрической TiO₂ металл-металл взаимодействие экранировано атомами кислорода. При ее восстановлении возникшие в анионной подрешетке кислородные вакансии значительно усиливают это взаимодействие, d-функции атомов титана хорошо перекрываются, что приводит «

новленных при температурах: 1) 1550°С; 2) 1400°С; 3) 1300°С; 4) 1200°С; 5) 1100°С. Рис. 3. Зависимость анодного фототока от потенциала: 1) ЧДА; 2) ОСЧ;

3) Cneu.

расширению зоны проводимости, а следовательно, и к уменьшению ширины запрещенной зоны. Однако смещение в длинноволновую сторону максимума фоточувствительности фотоэлектродов наблюдается при небольших отступлениях от стехиометрического состава. При дальнейшем увеличении степени восстановления наблюдается смещение максимума в обратную (коротковолновую) сторону (рис. 2). В этом случае, вероятно, количество вакантных анионных узлов уменьшается за счет увеличения числа междоузельных атомов титана и других образований, хотя общее количество дефектов увеличивается. Значительное отступление от стехиометрического состава может привести также к изменению симметрии решетки, что может служить главной причиной смещения максимума фоточувствительности фотоэлектродов. Максимум фоточувствительности фотоэлектродов, восстановленных при 1100°С, смещается до 380 нм, тогда как максимум фоточувствительности электродов, спеченных при температуре 1550°С, соответствует длине волны $\lambda = 340$ нм.

Исследована также зависимость фототока от потенциала (поляризационные кривые) фотоэлектродов, изготовленных из TiO_2 разных марок (рис. 3). Потенциалы плоских зон, определенные по поляризационным кривым как потенциалы начала анодного фототока, в зависимости от марки TiO_2 изменяются от — 0,86 до — 1В. Чем больше отрицательный потенциал плоских зон (относительно потенциала стандартного электрода), тем эффективнее разделяются неравновесные носители, что является одной из причин повышения КПД преобразования фотоэлектродов. Таким образом, эффективность преобразования фотоэлектродов существенным образом зависит от марки и от режима термообработки TiO_2 . При их правильном выборе можно значительно повысить КПД преобразования фотоэлектродов.

Ереванский государственный университет

Поступила 30. VII. 1980

ЛИТЕРАТУРА

1. R. G. Breckenridge, W. R. Hosler. Phys. Rev., 4, 793 (1953).

2. А. К. Ивукина, Я. И. Панова. ФТТ, 9, 2857 (1964).

3. В. И. Барбанель и др. ФТТ, 2, 62 (1969).

4. A. K. Ghosh, R. B. Lauer, R. R. Addiss. Phys. Rev., 8, 4842 (1973).

5. A. Fujshima, K. Kobagokowa, K. Honda. J. Electrochem. Soc., 122, 1487 (1975).

6. A. K. Ghosh, H. P. Maruska. J. Electrochem. Soc., 10, 1516 (1971).

7. H. P. Maruska, A. K. Ghosh. Solar Energy, 20, 443 (1977).

8. J. O'M Bockris, L. Handley. Energy Conversion, 18, 1 (1978).

9. K. Mizushima et al. J. Phys. Chem. Sol., 40, 1129 (1975).

10. А. Г. Саркисян и др. Ученые записки ЕГУ, Естественные науки, 1, 63 (1979).

11. J. F. Houlhan, J. R. Hamilton. Mater. Res. Bull., 7, 915 (1979).

ՉԿԱՐԳԱՎՈՐՎՈՂ ԽԱՌՆՈՒՐԳՆԵՐԻ ՊԱՐՈՒՆԱԿՈՒԹՅԱՆ ԱԶԴԵՑՈՒԹՅՈՒՆԸ *TiO*2-Ի ԷԼԵԿՏՐԱՖԻԶԻԿԱԿԱՆ ԵՎ ՖՈՏՈԷԼԵԿՏՐԱՔԻՄԻԱԿԱՆ ՀԱՏԿՈՒԹՅՈՒՆՆԵՐԻ ՎՐԱ

Ա. Գ. ՍԱՐԳՍՑԱՆ, Վ. Մ. ԱՌԱՔԵԼՑԱՆ, Ժ. Ռ. ՓԱՆՈՍՑԱՆ, Վ. Ա. ՄԵԼԻՔՍԵԹՑԱՆ, Ռ. Ս. ՎԱՐԳԱՆՑԱՆ, Ա. Ա. ՊՈՂՈՍՑԱՆ

Հետաղոտված է TiO2-ի էլեկտրաֆիզիկական և ֆոտոէլեկտրաբիմիական հատկություն» ները կախված մակնիշից և ջերմամշակման ռեժիմից։ Գտնված է ջերմամշակման օպտիմալ ռեժիմը, որը ապահովում է ռուտիլե ֆոտոէլեկտրողների միջոցով փոխակերպման մեծ (1,2%) 099։

THE INFLUENCE OF UNCONTROLLED IMPURITIES ON ELECTROPHYSICAL AND PHOTOELECTROCHEMICAL PROPERTIES OF *TiO*₂

A. G. SARKISYAN, V. M. ARAKELYAN, J. R. PANOSSYAN, V. A. MELIKSETYAN, R. S. VARTANYAN, A. A. POGOSYAN

Electrophysical and photoelectrochemical properties of TiO_2 are investigated depending on its sort and the regimes of heat treatment. The optimal regimes of heat treatment providing high efficiency (1.2%) of solar radiation conversion with rutile photoelectrodes are obtained.

ИЗМЕНЕНИЯ ХАРАКТЕРА РАСПРЕДЕЛЕНИЯ МИКРО-ДЕФЕКТОВ В БЕЗДИСЛОКАЦИОННОМ КРЕМНИИ ПОД ДЕЙСТВИЕМ ПОТОКА ТЕПЛОВЫХ НЕЙТРОНОВ

С. А. ШАБОЯН, С. Г. ДОЛМАЗЯН, Г. А. ПОГОСОВ

Исследовано влияние облучения тепловыми нейтронами и последующей термообработки на характер распределения и размеры микродефектов в бездислокационном кремнии, выращенном методом зонной плавки. Установлено, что изменения характера распределения микродефектов под действием облучения и последующего отжига определяются типом дефектов, содержащихся в исходном материале.

Изыскание методов получения Si с минимальным разбросом электрофизических параметров привело к созданию радиационного способа легирования кремния [1, 2]. Исследование электрофизических свойств такого материала показало высокую степень однородности в распределении электрофизических параметров [3—7] и его перспективность при изготовлении полупроводниковых приборов [8, 9].

В предлагаемой работе приводятся результаты исследований влияния облучения тепловыми нейтронами и последующей термообработки (последняя необходима для отжига радиационных дефектов) на характер распределения микродефектов в бездислокационном (БД) монокристаллическом кремнии.

В качестве исходного материала, предназначенного для раднационного легирования, использовался БД кремний высокой степени чистоты, выращенный методом зонной плавки в направлении <111>. Образец № 1 был выращен в атмосфере аргона, а образцы № 2 и № 3 — в среде аргона с ьодородом (7÷8%). Облучение проводилось тепловыми нейтронами с Ф= 18 н/см $_{2}$, продолжительность облучения не превышала 6 часов. После облучения образцы отжигались в течение 1 часа при температуре $t = 900^{\circ}$ С.

Рентгенотопографические исследования дефектной структуры образдов проводились методом Ланга с использованием излучения МоK_a. Образцы кремния предварительно декорировались медью (последнее было обусловлено необходимостью усиления полей напряжений микродефектов, что делало возможным их выявление рентгеновским топографированием) [10]. Декорирование осуществлялось при температуре 900°C в протоке аргона [11]. Продолжительность термообработки при декорировании не превышала 1 час. После декорирования образцы механически шлифовались и обрабатывались в стандартном полирующем растворе. Толщина исследуемых образцов составляла 300—400 мкм. Рентгеновские топограммы снимались от образцов кремния до и после легирования, а также после термообработки.

Рис. 1. Топограммы исходных образцов БД кремния (а — № 1, 6 — № 2, в — № 3). Декорирование Си, контраст негативный, отражение (220).

Рис. 2. Топограммы образцов после радиационного легирования (а — № 1, б — № 2, s — № 3). Декорирование Си, контраст негативный, отражение (220)

На топограммах исходных образцов (рис. 1) были выявлены контрасты, соответствующие выделениям меди на микродефектах. Причем на топограммах, полученных от образцов № 1 и № 2, в распределении микродефектов наблюдается «кольцо», свободное от выделений (рис. 1, а и б). Расположение этого «кольца» на шайбах различное. В случае образцов из первого слитка «кольцо» находится в центральной области, тогда как на шайбах из второго слитка оно расположено по периферии пластин. Следует отметить, что размеры выделений за «кольцом» больше, чем до него, а концентрация мелких дефектов больше крупных. В областях вне «колец» распределение дефектов однородное.

Топограмма шайбы из слитка № 3 выявила наличие дефектов одинакового размера с распределением, характеризующимся высокой степенью однородности. При втом размеры выделений приблизительно имеют такую же величину, как в областях за «кольцом» на шайбах, вырезанных из слитков № 1 и № 2.

Топограммы, полученные после облучения, показали, что в характере распределения микродефектов в образцах № 1 и № 2 произошли изменения. В частности, распределение дефектов до области «кольца» для образца № 1 стало слоистым. Здесь отчетливо видны области, свободные от выделений меди (рис. 2а), в центральной же области шайб распределение дефектов осталось без изменения.

Незначительное расслоение в распределении дефектов также в области до «кольца» произошло и в случае образца № 2 (рис. 26). Характер распределения дефектов для образца № 3 остался таким же, как на исходной шайбе (рис. 2e).

После отжига распределение дефектов в образце № 1 существенным образом изменилось (рис. За). Здесь до «кольца» резко уменьшилась концентрация дефектов и появились широкие зоны, свободные от мелких выделений меди. Помимо этого возникли протяженные включения в виде полос и звезд. В центральной же части кристалла в распределении дефектов произошло незначительное расслоение. Аналогичные изменения произошли и в случае образца № 2 (рис. 36). Распределение дефектов и их размеры для образца № 3 остались такими же, как на исходной шайбе (рис. 3в).

Анализируя полученные данные, можно предположить, что контрасты, выявленные на топограммах, обусловлены выделениями меди на микродефектах двух типов. Последние, как видно из топограмм, различаются не только размерами, но и концентрациями. Следует отметить, что диффузия *Cu* в исходные образцы осуществлялась одновременно.

Согласно принятой классификации, в БД монокристаллах имеются микродефекты А- и Б-типов. Эти дефекты отличаются друг от друга не только своими размерами, но и характером распределения в объеме материала. Крупным А-дефектам присуще слоистое распределение, которое в поперечном сечении проявляется в виде т. н. «свирлов». Для мелких — Б-дефектов распределение характеризуется высокой степенью однородности [10]. Сопоставляя описанное выше с полученными результатами, можно считать, что в исследуемых образцах А-дефекты отсутствуют. Наличие же мелких и относительно крупных микродефектов, характеризующихся однородным распределением, можно объяснить тем, что более крупные контрасты, по-видимому, соответствуют выделениям меди на Б-дефектах, а мелкие — или на зародышах Б-дефектов [12], или на микродефектах, не вошедших в известную классификацию [10]. В пользу сделанного предположения свидетельствует то обстоятельство, что после облучения и термообработки мелкие дефекты трансформируются, их концентрация изменяется, а распределение из однородного становится слоистым. В то же время более крупные, очевидно, Б-дефекты, расположенные в областях за «кольцом» на образцах из слитков № 1 и № 2, а также микродефекты образца № 3, отличаются стабильностью в характере распределения и размерах под воздействием раднации и термообработки. Различное поведение дефектов позволяет предположить и различие в природе самих дефектов.

В заключение авторы считают своим долгом выразить благодарность В. А. Харченко за предоставленные образцы.

Поступила 5. VI. 1980

ЛИТЕРАТУРА

- K. Lark-Horovitr. Semiconducting Materials, Proc. Conf. Univ. Reading, 47, London, Butterworths, 1951.
- 2. M. Tanenbaum, A. D. Mills. J. Electrochem. Soc., 108, 171 (1961).
- 3. В. А. Харченко, С. П. Соловьев. ФТП, 5, 1641 (1971).
- 4. В. А. Харченко, С. П. Соловьев. Изв. АН СССР, Неорг. матер., 7, 2137 (1971).
- 5. В. А. Харченко и др. Изв. АН СССР, Неорг. матер., 7, 2142 (1971).
- 6. В. Н. Морднович и др. ФТП, 8, 210 (1974).
- 7. Л. Ф. Копорова н др. ФТП, 10, 2036 (1977).
- 8. Л. Н. Афонин и др. Электронная прсмышленность, № 6, 121 (1976).
- Л. Н. Афонин, Е. З. Мазель. Сб. Микровлектроника и полупроводниковые приборы, Изд. Советское радио, М., 1978, № 3, стр. 133.
- 10. J. R. de Kock. Philips. Res. Rept. Suppl., № 1 (1973).
- 11. T. F. Cizek. Semiconductor Silicon, Eds. H. R. Hutt and R. R. Burgess (Electrochem. Soc., Chicago), 1973, p. 150.
 - 12. H. Full, U. Goselle, B. O. Kolbesen. J. Cryst. Crowth, 40, 90 (1977).

በዒ ԴԻՍԼՈԿԱՑԻՈՆ ՍԻԼԻՑԻՈՒՄԱՑԻՆ ԲՑՈՒՐԵՂՆԵՐՈՒՄ ՄԻԿՐՈԴԵՖԵԿՏՆԵՐԻ ԲԱՇԽՄԱՆ ԲՆՈՒՑԹԻ ՓՈՓՈԽՈՒԹՅՈՒՆՆԵՐԸ ՋԵՐՄԱՅԻՆ ՆԵՅՏՐՈՆՆԵՐԻ ՀՈՍՔԻ ՆԵՐԳՈՐԾՈՒԹՅԱՆ ՏԱԿ

Ս. Ա. ՇԱԲՈՅԱՆ, Մ. Գ. ԴՈԼՄԱԶՑԱՆ, Գ. Ա. ՊՈՂՈՍՈՎ

Հնտաղոտված է ղոնային հայման հղանակով անհցված ոչ դիսլոկացիոն սիլիցիումային թյութեղներում ջերմային նեյտրոններով ճառագացիման և հետագա ջերմամշակման ազդեցու-Բյունը միկրոդնֆեկտների չափսերի և նրանց բաշխման բնույթի վրա։ Հաստատված է, որ ճառագայթման և հետագա ջերմամշակման ազդեցության ներթո միկրողեֆեկտների բաշխման բնույթի փոփոխությունները որոշվում են ելակետային նյութում պարունակվող դեֆեկտների տարատեսակով։

T

THE CHANGE OF MICRODEFECTS DISTRIBUTION CHARACTER IN DISLOCATION-FREE SILICON UNDER THE INFLUENCE OF THERMAL NEUTRONS FLUX

S. A. SHABOYAN, S. G. DOLMAZYAN, G. A. POGOSOV

The influences of thermal neutron irradiation and following heat treatment on the distribution character and the size of the microdefects in float-zoned dislocationfree silicon have been investigated. It was established, that the change of microdefects distribution character under the influence of madiation and following annealing was determined by the type of defects in the initial material.

КРАТКИЕ СООБЩЕНИЯ

ИЗЛУЧЕНИЕ ЭЛЕКТРОНОВ ПРИ МАЛЫХ УГЛАХ ВЛЕТА В КРИСТАЛЛ АЛМАЗА

А. О. АГАНЬЯНЦ, Ю. А. ВАРТАНОВ, Г. А. ВАРТАПЕТЯН, В. Я. ЯРАЛОВ

Движение ультрарелятивистских электронов под малыми углами х атомным плоскостям или осям сопровождается интенсивным излучением фотонов низких энергий [1—6]. Исследование этого излучения представляет интерес для выявления механизма взаимодействия электронов высоких энергий с кристаллическими структурами.

Предварительные результаты спектральных и ориентационных зависимостей указанного излучения в кристалле алмаза были опубликованы в работе [2]. В настоящей работе представлены более полные и уточненные экспериментальные данные.

Эксперимент был выполнен на внутреннем пучке Ереванского синхротрона с энергией электронов 4,7 ГэВ с расходимостью пучка ~ 10^{-4} рад. В качестве мищени был использован монокристалл алмаза с толщиной 100 мкм вдоль направления падающего пучка. Ориентация кристалла производилась гониометрическим устройством с точностью 4,5 · 10 ⁻⁵ рад. Измерения проводились в условиях, когда пучок электронов влетал в кристалл вдоль направления оси <100> и параллельно плоскости (110). у-пучок формировался коллиматором 1,2×1,2 мм², расположенным на расстоянии 10 м от алмазной мишени.

Измерения энергии фотонов производились с помощью парного магнитного γ -спектрометра. В качестве детектирующей системы γ -спектрометра использовались два сцинтилляционных счетчика, включенных на совпадение. Разрешение спектрометра было порядка 20%. Уровень фона случайных совпадений не превышал $\sim 15\%$ при максимальном числе отсчетов спектрометра. Относительное мониторирование числа прохождений электронов через алмаз производилось на основе высокоэнергетической части тормозного спектра по вторичным γ -квантам с $E_{\gamma} \ge 1$ ГэВ черенковским счетчиком полного поглощения, показания которого затем корректировались при помощи датчика тока электронов, циркулирующих в ускорителе.

На рис. 1а и б изображены энергетические зависимости выхода у-квантов при осевой <100> и плоскостной (110) ориентациях кристалла, представленные в виде отношения к соответствующему выходу у-квантов от разориентированного кристалла.

Рис. 2 (a, b, b) демонстрирует зависимость выхода γ -квантов с фиксированной энергией от угла влета электронов относительно плоскости (110), рис. 2 (г, д) — относительно оси <100> и рис. 2 є — ориентационную зависимость по отношению к плоскости (110) полного выхода энергии у-квантов, измеренного при помощи квантометра Вильсона. Приведенные на ри-

Рис. 1.

Рис. 2.

Рис. 1. Отношение выхода N_o γ -квантов при угле влета $\psi = 0$ пучка электронов к выходу N_p от разориентированной мишени: $a - \operatorname{ocb} <100>$; $\delta - \operatorname{плоскость}(110)$.

Рис. 2. Зависимость отношения N_{ψ} выхода γ -квантов при изменении угла влета электронов ψ к выходу N_p от разориентированной мишени относительно плоскости (110) при фиксированных значениях энергии γ -квантов: $a \sim 56$ МэВ, $6 \sim 105$ МэВ, $s \sim 157$ МэВ; e — соответствующее отношение J_{ψ}/J_p для выходов полной энергии γ -квантов; относительно оси <100>: $z \sim 87$ МэВ, $a \sim 157$ МэВ.

сунках ошибки являются статистическими. Последнее обстоятельство связано с тем, что на представленных рисунках всюду приводятся только отношения величин.

Как видно из рис. 2 (a, 6, 8), при указанных энергиях кривые не расщепляются, как это имеет место при когерентном излучении фотонов в том же кристалле с энергией $E_{\tau} \sim 1 \div 2$ ГэВ. Однако расширение кривой угловой зависимости наблюдается явно. В случае осн, рис. 2 (z, a), это расширение отсутствует. На основе этих наблюдений можно сделать вывод, что в диапазоне энергий γ-квантов 20÷160 МэВ во всех случаях центральная угловая область 0÷0,1 мрад вносит заметный вклад в излучение, а в случае оси вклад этой области доминирует. Это утверждение подкрепляется данными спектральных зависимостей (рис. 1).

Авторы благодарят Р. О. Авакяна за предоставление гониометра и А. Ц. Аматуни за интерес к работе.

Ереванский физический институт

Поступила 4. II. 1981 217

ЛИТЕРАТУРА

- 1. А. О. Аганьяну и др. Препринт ЕФИ 312 (37)-78, 1978.
- А. О. Азаньяну. Препринт ЕФИ 313 (38)-78, 1978.
- 2. А. О. Азаньяну и др. Письма ЖЭТФ, 29, 554 (1979).
- С. А. Воробьев н др. Письма ЖЭТФ, 29, 414 (1979).
 Ю. А. Адищев и др. Письма ЖТФ, 5, 1300 (1979).
- 4. В. И. Витько и др. Письма ЖТФ, 5, 1291 (1979).
- 5. Г. Л. Бочек и др. Вопросы атомной науки и техники, сер. Техника физического эксперимента, вып. 2 (4), 44 (1979).
- 6. R. L. Swent et al. Phys. Rev. Lett., 43, 1723 (1979).

ԱԼՄԱՍՏԻ ԲՅՈՒՐԵՂԻ ՎՐԱ ՓՈՔՐ ԱՆԿՅԱՆ ՏԱԿ ԸՆԿՆՈՂ ԷԼԵԿՏՐՈՆՆԵՐԻ ՃԱՌԱԳԱՅԹՈՒՄԸ

U. 2. UAULSULS, Sni. U. JUPALLOA, 2. 2. JUPAUADSSUL, J. Sm. SUPULAY

Ρόριζωծ δύ փոջր ζύδρգիաների տիրույթում էլեկտրոնների Ճառագայթման բաշխումները. ինչպես նաև որոշակի Հներգիաների ֆոտոնների ելջի կախումը ալմաստի բյուրեղի առանցջի և Հարթո.թյան նկատմամբ 4,7 ԳէՎ Հներգիա ունեցող էլեկտրոնների անկման անկյունից։

RADIATION FROM ELECTRONS AT SMALL ANGLES OF INCIDENCE AT A DIAMOND CRYSTAL

A. O. AGANYANTS, Yu. A. VARTANOV, G. A. VARTAPETYAN, V. Ya. YARALOV

Radiation spectra of electrons in low energy range as well as the dependences of fixed energy γ -quanta yield on the angle of 4.7 GeV electrons incidence with respect to the axis and the plane of a diamond crystal are given.

РАССЕЯНИЕ ЦУГА ПИКОСЕКУНДНЫХ ИМПУЛЬСОВ НА ХАОТИЧЕСКИ ВКРАПЛЕННЫХ НЕОДНОРОДНОСТЯХ В РУБИНЕ

М. М. ГРИГОРЯН, А. С. НИКОГОСЯН, П. С. ПОГОСЯН

В последнее время в литературе появился целый ряд работ, посвященных рассеянию лазерного излучения на поглощающих включениях в прозрачных кристаллах (см., например, [1—6]). В этих работах особенно подробно исследовалось нелинейное рассеяние импульсов наносекундной длительности в кристаллах сапфира и рубина.

Интерес к этой проблеме в первую очередь связан с возможностью определения лучистой прочности и выяснения механизма разрушения твердотелых лазерных материалов. С этой точки зрения особый интерес представляет изучение рассеяния импульсов субнаносекундной и пикосекундной длительностей. В настоящем сообщении приводятся экспериментальные результаты рассеяния цуга пикосекундных импульсов в рубине.

Схема экспериментальной установки представлена на рис. 1. В генераторе использовался стержень из неодимового стекла с размерами 12×

Рис. 1. Схема экспериментальной установки: 1, 2 — зеркала на клиновидных подложках с пропускаемостью соответственно 99,5 и 55%; 3 — очковая линза + 0,5 диоптрий; 4 — стержень из неодимового стекла; 5 — диафрагма с отверстием 3 мм; 6 — кювета с НФ; 7 — светоделительная стеклянная пластинка; 8 — рубиновый кристалл; 9 — цилиндр из непрозрачного материала с отверстием на боковой поверхности; 10 — нейтральный фильтр; 11 — фильтр ИКС7; 12 — ФК-9; 13 — осциллограф И2-7; 14 — измеритель энергии ИКТ-1М; 15 — фотоаппарат.

×300 мм², торцы которого были срезаны под углом Брюстера. С целью стабилизации синхронизации мод в генераторе вблизи глухого зеркала помещалась обычная очковая линза с оптической силой + 0,5 диоптрий. Пассивная ячейка толщиной 1 мм с раствором красителя № 3955 в нитробензоле имела пропускание 55 (±2)%. Для селекции поперечных мод около выходного зеркала помещалась диафрагма днаметром 3 мм. Средняя выходная энергия генератора, измеренная с помощью ИКТ-1М, составляла 0,12 Дж при общей длительности цуга 200 нс. Интервал между импульсами, определяемый длиной резонатора, составлял ~ 7 нс, т. е. средняя энергия каждого импульса была ~ 4 мДж. Излучение лазера направлялось на рассеивающий образец с размерами 6×15 мм², который был вырезан из рубинового генераторного стержня. Поляризация падающего излу-

Ь

C

ď

Рис. 2. Осцилограммы: a, с — падающий цуг импульсов; b, d — рассеянный цуг импульсов.

чения была парадлельна оптической оси кристалла. С помощью ФК-9 и измерителей временных интервалов И2-7 проводилась одновременная регистрация падающего и рассеянного цугов импульсов.

На рис. 2 приведены характерные осциллограммы падающего и рассеянного излучений для двух различных форм огибающей. Как видно из осциллограмм, рассеянный цуг импульсов заметно отличается от падающего. На фотографиях также заметно, что у рассеянного цуга импульсов глубина модуляции больше, чем у падающего.

Наблюдаемое нами изменение формы огибающей рассеянного цуга импульсов и увеличение глубины модуляции можно объяснить, если считать, что интенсивность большинства импульсов в цуге достаточна для нелинейного рассеяния или же происходит накопление нелинейности от импульса к импульсу. Следует обратить внимание на то обстоятельство, что при многократных облучениях никаких следов объемного разрушения не наблюдалось, в то время как в наносекундном режиме нелинейное рассеяние происходит вблизи порога разрушения.

Заметим, что исследования, проведенные нами, носят качественный характер, и для удовлетворительной интерпретации полученных данных необходимы количественные исследования, а также соответствующий теоретический анализ.

Ереванский государственный университет

Поступила 23. V. 1980

ЛИТЕРАТУРА

А. А. Маненков. ДАН СССР, 190, 1315 (1970).
 Ю. К. Данилейко и др. ЖЭТФ, 59, 1083 (1970).
 Ю. К. Данилейко и др. ЖЭТФ, 60, 1245 (1971).
 Ю. К. Данилейко и др. ЖЭТФ, 63, 1030 (1972).
 Б. И. Макшанцев, А. А. Ковалев. Письма ЖТФ, 4, 1275 (1978).
 Н. Ф. Пилипецкий и др. ЖЭТФ, 76, 2026 (1979).

ՌՈՒԲԻՆՈՒՄ ՔԱՈՍԱՅԻՆ ԴԱՍԱՎՈՐՎԱԾ ԱՆՀԱՄԱՍԵՌՈՒԹՅՈՒՆՆԵՐԻ ՎՐԱ ՊԻԿՈՎԱՅՐԿՅԱՆԱՅԻՆ ԻՄՊՈՒԼՍՆԵՐԻ ՑՈՒԳԻ ՑՐՈՒՄԸ

Մ. Մ. ԳՐԻԳՈՐՑԱՆ, Ա. Ս. ՆԻԿՈՂՈՍՏԱՆ, Պ. Ս. ՊՈՂՈՍՑԱՆ

Քերված են ռուրինի թյուրեղում նեոդիմային լաղերի պիկովայրկյանային իմպուլսների ցուղի ցրման փորձարարական Տետազոտության արդյունըները։ Ստացված է, որ մոդերխ սինքրոնիզացիայի գեպքում ցրված իմպուլսների ցուղի պարուրիչը զգալիորեն տարբերվում է ընկնողից։ Տրված է այդպիսի փոփոխության որակական բացատրությունը։

SCATTERING OF PICOSECOND PULSE TRAIN ON RANDOMLY DISTRIBUTED INCLUSIONS IN RUBY

M. M. GRIGORYAN, A. S. NIKOGOSYAN, P. S. POGOSYAN

Measurement data on the scattering of a train of Nd-glass laser picosecond pulses in a ruby crystal are given. It was found that in case of complete synchronization of modes the envelope of the scattered train notably differs from the incident one. Qualitative explanation of this result is given.

НЕКОТОРЫЕ СВОЙСТВА КРЕМНИЕВЫХ МАГНИТОДИОДОВ

Г. А. ЕГИАЗАРЯН, Г. А. МНАЦАКАНЯН, А. С. САРКИСЯН

Быстродействие приборов является одним из основных параметров, определяющих их применение. Сведения о быстродействии приборов дают их частотная и переходная характеристики. Для магнитодиодов частотной характеристикой является зависимость переменной составляющей напряжения (тока) от частоты внешнего магнитного поля при постоянных значениях тока (напряжения) и амплитуды индукции переменного магнитного поля.

В настоящее время имеется несколько работ по исследованию частотных свойств магнитодиодов [1—4]. В этих работах приводятся либо данные частотных характеристик разработанных германиевых и кремниевых магнитодиодов [1, 3], либо зависимость импеданса и дифференциальной проводимости от частоты переменного электрического поля [2, 4].

В настоящей работе приведены результаты исследования частотных характеристик кремниевых магнитодиодов КД 304. Конструкция, методика изготовления и статические характеристики этих магнитодиодов описаны в работе [5]. Измерения проводились по методике, описанной в работе [6]. Амплитуда индукции переменного магнитного поля составляла $\Delta B_M = 10^{-3} T$.

Условно можно принять, что индукция поперечного магнитного поля положительна, B > 0, если инжектированные носители тока отклоняются под действием этого поля к поверхности с высокой скоростью поверхностной рекомбинации, т. е. к поверхности, где расположены контакты. И наоборот, B < 0, если носители тока отклоняются к противоположной поверхности с низкой скоростью поверхностной рекомбинации.

На рис. 1 изображена частотная зависимость эффективного значения переменной составляющей напряжения $\Delta U_{s \phi \phi}$ на магнитодиоде, измерен-

Рис. 1. Зависимость эффективного значения переменной составляющей напряжения на магнитодноде от частоты малого переменного магнитного поля: 1 — 0,5 мА, 2 — 1 мА, 3 — 2 мА, 4 — 3 мА; ∆Вм = 10 - 3 Т.

ного при различных значениях прямого тока. Поскольку прямая и обратная ветви вольт-амперных характеристик исследуемых магнитодиодов имеют симметричный вид [5], то аналогичный вид имеет и частотная зависи-

мость для обратной ветви вольт-амперной характеристики. Особенностью полученных вависимостей $\Delta L_{s\phi\phi} = U(f)$ является наличие плато в области частот от 20 Гц до нескольких кГц и минимума при частотах 20— 30 кГц, а также сдвинутого в область больших частот (150—200 кГц) максимума. Из проведенных исследований следует, что граничная частота для магнитодиодов может быть порядка десятка. кГц. На рис. 2a приведена частотная зависимость $\Delta U_{s\phi\phi}$ при различных значениях магнитной индукции для направления B > 0. Увеличение индукции магнитного поля, а также тока через магнитодиод приводит к росту $\Delta U_{s\phi\phi}$ на плато и, следо-

Рис. 2. Зависимость эффективного значения переменной составляющей напряжения на магнитодноде от частоты малого переменного магнитного поля при токе 1 мА и различных значениях индукции постоянного магнитного поля B, T: a) 1-0; 2-+0,025; 3-+0,05; 4-+0,075; 5-+0,1; 6) 1-0; 2--0,025; 3--0,05; 4--0,075; 5--0,1; $\Delta B_M = 10^{-3} T$.

вательно, к росту магниточувствительности. С ростом тока (рис. 1) и индукции (рис. 2) минимум на кривой $\Delta U_{s\phi\phi} = U(f)$ смещается в область больших частот.

При противоположном направлении магнитной индукции (B < 0) $\Delta U_{s\phi\phi}$ (следовательно, и магниточувствительность) в области плато уменьшается (рис. 26), при некотором значении B_{o} начинает расти, а при дальнейшем увеличении магнитной индукции (B < 0) частотная характеристика приобретает такую же зависимость, как и при поле противоположного направления (B > 0). При этом чем больше ток через магнитодиод, тем при меньших полях $(B < 0) \Delta U_{s\phi\phi}$ принимает то значение, которое оно имело без магнитного поля.

На рис. З приведены вольт-тесловые характеристики магнитодиода при различных значениях тока. Видно, что кривые в отличие от кривых соответствующих магнитодиодов КД 301 [6] асимметричны относительно оси напряжения. Вольт-тесловые характеристики исследуемых магнитодиодов имеют минимум при B < 0, т. е. они являются полярными. Крутизна вольт-тесловой характеристики зависит от величины и направления поперечного магнитного поля. Поскольку вольтовая дифференциальная магниточувствительность является производной функции $U = U(B)_{I-G}$. то на вольт-тесловой характеристике $(dU/dB)_{I=const}$ есть тангенс угла наклона касательной к кривой $U = U(B)_{I-const.}$ Следовательно, в минимуме вольт-тесловой характеристики dU/dB = 0, правее минимума dU/dB > 0 (магниточувствительность положительна), а левее минимума dU/dB < 0 (магниточувствительность отрицательна), т. е. наблюдается полярный магнитодиодный эффект при малых значениях индукции магнитного поля.

Рис. З. Вольт-тесловые характеристики

при токах 1 и 3 мА.

В соответствии с этими особенностями вольт-тесловых характеристик находятся низкочастотные участки (плато) частотных характеристик. Смещение минимума вольт-тесловой характеристики в сторону отрицательных значений магнитной индукции, максимумы частотных характеристик, а также влияние на них постоянного магнитного поля можно объяснить равличием скоростей поверхностной рекомбинации поверхностей магнитодиодов, к которым отклоняются носители тока в магнитном поле [6].

Поступила 9. VIII. 1980

1.8

ЛИТЕРАТУРА

- Т. Ямада. Труды Международной конференции по физике полупроводников, М., 1969, т. 2, стр. 711.
- 2. В. И. Стафеев, Э. И. Каракушан. Магнитодноды новые полупроводниковые приборы с высокой чувствительностью к магнитному полю, Изд. Наука, М., 1975.
- M. Arai, T. Yamada. Sil. Magnetodiode, J. Japan Soc. Appl. Phys. Suppl., 40, 93 (1971).
- 4. Г. А. Егиазарян, Г. А. Мнацаканян, А. Х. Авагян. Изв. АН АрмССР, Физика, 14, 206 (1979).
- Г. А. Егиазарян, Г. А. Мнацаканян, Ю. С. Манвелян. Электронная промышленность, № 1, 42 (1980).
- 6. Г. А. Егиазарян и др. ФТП, 12, 1273 (1978).

ԿԲԵՄՆԻՈՒՄԱՑԻՆ ՄԱԳՆԻՍԱԴԻՈԴՆԵՐԻ ՈՐՈՇ ՀԱՏԿՈՒԹՅՈՒՆՆԵՐԸ

2. 2. ԵՂԻԱԶԱՐՅԱՆ, Գ. Ա. ՄՆԱՑԱԿԱՆՑԱՆ, Ա. Ս. ՍԱՐԿԻՍՑԱՆ

Հետաղոտված է հաստատուն ամպլիտուդայով փորը փոփոխական մադնիսական դաշտի աղդեցունյունը KD 304 մադնիսադիոդների հատկունյունների վրա։ Ցույց է տրված, որ մադնիսադիոդների սահմանային հաճախունյունը տասնյակ կՀց կարգի է։

224

SOME PROPERTIES OF SILICON MAGNETODIODES

H. H. EGIAZARYAN, L. A. MNATSAKANYAN, A. S. SARKISYAN

The influence of a weak alternating magnetic field with constant amplitude on the properties of KD 304 magnetodiodes is investigated. It is shown that the boundary frequency for the magnetodiodes may be of the order of ten kilohertz.

225

all the entry and man property in the other

La deputie a sublem in clube such a real post such

E LAURAN MARKED WARTEN T

and the second and the second second second second

a independent of the state of the

РАСПРЕДЕЛЕНИЕ ПОТЕНЦИАЛА В ФОТОЧУВСТВИТЕЛЬНОЙ *p-n-p-*СТРУКТУРЕ ИЗ Si<Zn>

В. М. АРУТЮНЯН, Ж. Р. ПАНОСЯН, В. Ш. МАРУКЯН, З. Н. АДАМЯН, Т. А. НШАНЯН

В литературе известно много примеров успешного применения электронной оптики при изучении полупроводниковых объектов (см., например. [1—4]).

В настоящей работе приводятся результаты исследования микропотенциалов и микрополей в кремниевых симметричных p-n-p-диодных структурах с базой, компенсированной Zn [5]. Исследования проводились на установке, собранной на основе растрового электронного микроскопа (PЭМ) [6].

Схематическое изображение образца и начальный участок на статической вольт-амперной характеристике при наличии электронного возбуждения с энергией 25 кВ приведены на рис. 1. Как видно, ВАХ в двух на-

Рис. 1. Разрез конструкции планарного S-фотоприемника из Si < Zn > и его ВАХ: 1— золотые проволоки, сваренные на алюминиевых площадках 2, создающих *p-n*-переходы в компенсированном кремнии 3, 4— дивлектрическая подложка.

правлениях не совсем симметричны, что, по-видимому, связано с неидентичностью контактов.

На рис. 2 приведены электронно-оптические изображения структуры планарного симметричного S-фотоприемника, полученные при работе РЭМ в режиме потенциального контраста. На первом плане снимков видны выводы (золотые проволоки), сваренные с контактными площадками (второй план). Между контактными площадками находится активная область базы структуры. Светлый неоднородный фон в левой части снимков связан с ухудшением качества проводящего клея (~ 800 кОм), которым покрыты диэлектрические части структуры для снятия статического заряда. накопление которого возможно под воздействием первичного электронного пучка. С изменением полярности и величины напряжения смещения на фотоприемнике контраст в этих частях снимков не меняется, т. е. он не связан с электронными процессами, имеющими место в структуре фотоприемника. На электронно-оптических изображениях визуальное определение по-

Рис. 2. Электронно-оптические изображения структуры планарного симметричного S-фотоприемника при работе РЭМ в режиме потенциального контраста со 100 кратным увеличением при напряжениях смещения (В): I-6, II-4, III-4, IV-6; I, II-минус подан на верхний вывод, III, IV-минус подан на нижний вывод.

ложения и профиля переходов затруднено, так как они в основном находятся под контактными площадками. Но благодаря близкому расположению поверхности переходов влияние их электрических полей на распределение микропотенциалов в приповерхностном слое можно обнаружить. Коэффициент эмиссии вторичных электронов, содержащих в себе информацию о потенциале соответствующей точки, в основном может меняться по двум причинам:

1) из-за влияния геометрической неоднородности поверхности структуры S-фотоприемника;

2) из-за влияния электрических полей.

Из приведенных на рис. 2 снимков видно, что эти факторы действуют одновременно. При подключении смещения с величиной 6 В, когда отрицательный полюс источника подключен к верхнему контакту (I снимок), имеет место сильный выброс вторичных электронов только из области вблизи этого контакта. С уменьшением величины отрицательного смещения коэффициент эмиссии вторичных электронов увеличивается и в области второго контакта (снимок II). При смене полярности коэффициент эмиссии от нижнего контакта резко возрастает, и когда $V_p = 6$ В, эмиссия вторичных электронов от верхнего контакта практически прекращается (снимок III). Сравнение снимков I и IV показывает, что при одинаковых величинах смещения и различных полярностях коэффициенты эмиссии вторичных электронов отличаются, что, по-видимому, также связано с неидентичностью контактов.

На рис. 3 приведены нормированные диаграммы распределения микропотенциалов (а) и микрополей (б) на линии сканирования по поверхно-

Рис. 3. Диаграммы распределения микропотенциалов (а) и микрополей (б) при различных полярностях напряжения смещения ($V_p = 4$ B): 1,1' — минус подан на верхний вывод, 2,2' — минус подан на нижний вывод, вертикальной стрелкой показана метка, соответствующая 1 B.

сти симметричной диодной структуры. Линия, вдоль которой записаны диаграммы, показана на снимке II (рис. 2). На снимках рис. 2 потенциальные рельефы на поверхности структуры выделяются в виде темных и светлых областей, которые на диаграмме потенциалов изображаются в виде всплесков. Распределение потенциала по структуре определяется из диаграммы усреднением распределения микропотенциалов.

На основе приведенных диаграмм можно сделать следующие заключения.

а). Активная область базы и ширина обратно-смещенного и электронно-дырочного перехода, выходящих на поверхность, соответственно составляют ~ 130 и 30 мкм.

б). Максимумы напряженности электрического поля в базе расположены у обратно-смещенных переходов (рис. 36). Можно сделать количественные оценки величины напряженности электрического поля по базе и на обратно-смещенных переходах. Потенциальный барьер прямо-смещенного перехода крайне мал и поэтому не регистрируется.

в). У симметричных диодных структур из Si < Zn > c алюминиевыми контактами, изготовленных по планарной технологии, «встроенные» электрические поля в базе не регистрируются в отличие от аналогичных структур с контактами Au + 0,1% Sb [7]. Наблюдаемые искажения распределения микропотенциалов вблизи краев регистрируемой области связаны с резкими изменениями коэффициента эмиссии вторичных электронов в приконтактных неоднородных областях. Потенциал резко меняется также на электроактивных дефектах структуры. В заключение авторы выражают благодарность В. Дюкову за обсуждение полученных результатов.

Ереванский государственный университет

Поступила 24. ХІ. 1980

ЛИТЕРАТУРА

- 1. Г. В. Спивак, Г. В. Сапарин, М. Б. Быков. ФТП, 3, 1553 (1969).
- 2. Ж. И. Алферов н др. ФТП, 4, 1311 (1970).
- 3. Г. В. Спивак, Г. В. Сапарин, Н. А. Переверзев. Изв. АН СССР, сер. физ., 26, 136 (1962).
- 4. G. E. Possin, C. C. Kirkpatrick. Scann. Elektron Microsc., 1, 245 (1979).
- 5. В. М. Арутюнян, З. Н. Адамян, М. Г. Азарян. Сб. Фотоэлектрические явления в полупроводниках, Изд. Наукова думка, Кнев. 1979.
- 6. V. Dynkov, M. Kolomettsev, S. Neptiko. Microscopica Acta, 80, 367 (1978)

7. С. С. Джунаидов и др. ФТП, 8, 602 (1974).

ՊՈՏԵՆՑԻԱԼԻ ԲԱՇԽՈՒՄԸ ԼՈՒՍԱԶԳԱՅՈՒՆ Si<Zn> p-n-p-ԿԱՌՈՒՑՎԱԾՔՈՒՄ

վ. Մ. ՀԱՐՈՒԹՅՈՒՆՅԱՆ, Ժ. Ռ. ՓԱՆՈՍՅԱՆ, Վ. Շ. ՄԱՐՈՒՔՅԱՆ, Չ. Ն. ԱԴԱՄՅԱՆ, Տ. Ա. ՆՇԱՆՅԱՆ

Флад էլեկտրոնшյին միկրոսկոպի օգնությամբ ուսումնասիրվում են միկրոպոտենցիալների և միկրոդաշտերի բաշխումը ցինկով կոմպենսացված սիլիցիումային p-n-p-կառուցվածջների մերձմակերևուլթային շերտերում։ Նորմավորված դիագրամների օգնությամբ ջանակապես գնամատվել են բազայի ակտիվ մասի, p-n-անցումների շերտի լայնությունների։ ինչպես նաև էլեկտրական դաշտերի մեծությունները։

DISTRIBUTION OF POTENTIALS IN $Si < Z_n >$ PHOTOSENSITIVE *p-n-p* STRUCTURE

V. M. HARUTYUNYAN, J. R. PANOSSYAN, V. Sh. MARUKYAN, Z. N. ADAMYAN, T. A. NSHANYAN

A distribution of micropotentials and microfields near the surface of zinc compensated p-n-p silicium structure is investigated with the help of a scanning electron microscope. Using the normalized diagrams of micropotential distribution along the scanning line, the active region of base widths of p-n junction as well as the widths of electron-hole junctions are estimated.

₽ በ Վ Ա Ն Դ Ա Կ Ո Ւ Թ Յ Ո Ւ Ն

51

U. U. Uufryma, 4. 9. 9rhanryma, t. U. Amamryma. Press Elehannus aufen mitten	
ցանցային կլանումը ռեղոնանսային լաղերային ճառադայթնան դաշտում	177
է. Ա. Բարախանյան, Վ. Վ. Մուսախանյան. էլնկտրոնային փնջի էներգետիկ սպեկտրի	
լայնացումը միջավայրում, բնիասեամագնիսական ալիքի մաշտի անմրնության աակ	186
U. 9. 9rhanrywa, U. 9. Umranywa. Labamha wihawmwnujha phiadwa gnighiabny wa-	
ցողական շերա ունեցող դիէլեկտրիկ ալիքատարներում	191
Зп. U. Цитарий, Параврари працини пиривации и работ в работоврати	
Համասնոությունները	196
Մ. Ա. Նավասարդյան. Զուգաճեռ փնջերով ռենագենյան ինտերֆերոմեաթ	200
U. 9. Uurqujud, 4. U. Unufbijud, J. A. Oudnujud, 4. U. Ubihfubpjud, A. U. 4ur-	
դանյան, Ա. Ա. Պողոսյան. Չկարգավորվող խառնուրդների պարունակության աղ-	
դեցությունը TiOg-ի էլեկտրաֆիզիկական և ֆոտոէլեկտրաթիմիական հատկու-	
Binthuhph Inu	206
U. U. Tupnjud, U. 9. Pajduqjud, 9. U. Angaund. Iz ghujahughab uhihghadujhu	
բյուրեղներում միկրոդեֆեկաների բաշխման բնույնի փոփոխունյունները ջերմա-	
յին նեյտրոնների հոսքի ներդործության տակ	212

ՀԱՄԱՌՈՏ ՀԱՂՈՐԴՈՒՄՆԵՐ

U.	2.	Ազանյանց, Յու. Ա. Վարդանով, Հ. Հ. Վարդապհայան, Վ. Յա. Ցարալով. Ալմաստի բյուրեղի վրա փոբր անկյան տակ ընկնող էլեկտրոնների ճառագաթյունը .	216
υ.	υ.	Prhanryma, U. U. Uhunnuyma, A. U. Annnuyma. Aninhunut punumihle amum-	
		վորված անհամասնունյունների վրա պիկովայրկյանային իմպուլսների ցուդի	
	•	gnn.dg	219
ż.	2.	Եղիազաբյան, Գ. Ա. Մնացականյան, Ա. Ս. Սարկիսյան. <i>Կրեմնիումային մադնի-</i>	
		umahnahlaph nong Sumhalfinikany	222
4.	υ.	Zurnipjnikjus, d. fr. Oufinujus, 4. 7. Turnifjus, 9. b. Unudjus, S. U. Lyus-	
		յան. Պոահեցիալի բաշխումը լուսաղդայուն Si <zn> p-n-p կառուցված paid .</zn>	226

.

·

2.1

СОДЕРЖАНИЕ

А. С. Амирян, В. Г. Григорян, Э. М. Казарян. Решеточное поглощение слабой	
электромагнитной волны в присутствии резонансного лазорного излучения .	. 177
Э. А. Бабаханян, В. В. Мусаханян. Уширение энергетического спектра электрон-	
ного пучка в поле электромагнитной волны в среде	186
С. Г. Григорян, А. Г. Саркисян. Эффективные волноводные показатели преломле-	12
ния в диэлектрических волноводах с переходным слоем	191
Ю. С. Варданян. Околоземное космическое пространство и ионосферные неодно-	
родности	196
М. А. Навасардян. Рентгенинтерферометр с параллельными пучками	200
А. Г. Саркисян, В. М. Аракелян, Ж. Р. Паносян, В. А. Меликсетян, Р. С. Варта-	-
нян. А. А. Полосян. Влияние содержания неконтролночемых поимесей на	199
расктоофизические и фотовлектоохимические свойства TiO	206
С 4 Шабоди С Г Лодиазин Г. А. Позосов. Изменения узовитеоз озсполята	
ния михродефсктов в осздаловащионном кремний под деиствием потока	212
тепловых неитронов	212

краткие сообщения

А. О. Аганьянц, Ю. А. Вартанов, Г. А. Вартапетян, В. Я. Яралов. У	Ізлучение
электронов при малых углах влета в кристалл алмаза	216
М. М. Григорян, А. С. Никогосян, П. С. Погосян. Рассеяние цуга пикос	секундных
импульсов на хаотически вкрапленных неоднородностях в рубин	e 219
Г. А. Егиаварян, Г. А. Мнацаканян, А. С. Саркисян. Некоторые свойс	тва крем-
нисвых магнитоднодов	222
В. М. Арутюнян, Ж. Р. Паносян, В. Ш. Марукян, З. Н. Адамян, Т. А	. Ншанян.
Распределение потенциала в фоточувствительной <i>p-n-p-</i> стру	ктуре из
Si < Zn >	226

