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INVESTGATING POWER METRICS OF NEURAL NETWORKS AFTER
PRUNING, QUANTIZATION, DPU IMPLEMENTATION: A
COMPARATIVE ANALYSIS

The rapid proliferation of deep learning applications in various fields has highlighted
the need for efficient neural network implementations, especially on resource-constrained
edge devices. In response to this demand, pruning and quantization have emerged as essential
techniques to reduce the computational and memory requirements of neural networks.
Additionally, the deployment of dedicated hardware, such as Digital Processing Units
(DPUs), has gained momentum for accelerating neural network inference.

This paper presents a comprehensive comparative analysis of the power metrics of
neural networks after pruning and quantization, with a particular focus on their implementation
on DPUs. The objective of this research is to investigate the energy efficiency and power
consumption of pruned and quantized neural networks when executed on DPU platforms.
The trade-offs between model size reduction and inference accuracy, as well as the power
efficiency of different DPU architectures are researched.

The results reveal insights into the power efficiency of pruned and quantized neural
networks on DPU platforms, offering a clear understanding of the benefits and trade-offs
associated with these optimization techniques.

This research provides a valuable resource for researchers, developers, and
practitioners interested in optimizing neural network implementations for power efficiency.
The findings contribute to the ongoing effort to make deep learning more accessible and
sustainable on edge devices and other power-constrained environments, ultimately enabling
a wider range of applications with reduced energy consumption.

Keywords: FPGA, DPU, pruning, quantization.

Introduction. The widespread adoption of deep learning has revolutionized
the fields of artificial intelligence and machine learning, propelling remarkable
advancements in various applications such as image recognition, natural language
processing, autonomous systems, etc. However, this transformation has not come
without its challenges, particularly when deploying deep neural networks on
resource-constrained edge devices. As the demand for efficient, low-power
artificial intelligence (Al) solutions continues to grow, researchers and engineers
have turned their attention to techniques that reduce the computational and memory
footprint of neural networks. Among these techniques, pruning [1] and quantization
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[2] have emerged as pivotal strategies, allowing neural networks to maintain high
performance while consuming fewer resources.

In parallel with the quest for resource-efficient neural networks, the development
and utilization of dedicated hardware accelerators have gained momentum. Digital
Processing Units (DPUs) [3] represent a class of specialized hardware designed to
optimize neural network inference, offering both computational power and energy
efficiency. This paper delves into the intersection of these two key domains: neural
network optimization through pruning and quantization, and the deployment of
these networks on DPU platforms.

The primary objective of this paper is to conduct a thorough and comparative
analysis of the power metrics associated with neural networks after pruning and
quantization, with a specific focus on their execution on DPUs. Pruning involves
removing unimportant network connections, effectively reducing model size and,
in some cases, enhancing inference speed. Quantization, on the other hand, reduces
the precision of network weights and activations, thus leading to further
compression of the model and resource-efficient execution. These techniques have
the potential to unlock Al capabilities on edge devices, where computational and
power constraints are paramount.

The findings presented in this paper hold relevance for researchers, developers,
and practitioners engaged in the pursuit of efficient neural network implementations.
This paper contributes to the ongoing effort to make deep learning more accessible
and sustainable in power-constrained environments, fostering the proliferation of
Al at the edge.

From autonomous vehicles and medical diagnostics to virtual assistants and
industrial automation, DNNs have demonstrated their prowess in solving complex
problems and enabling intelligent decision-making. Yet, as these networks have
grown in size and complexity, so too have the challenges associated with deploying
them efficiently on resource-constrained edge devices.

To address these challenges, researchers and engineers are trying to optimize
the execution of DNNs. As a result, two main techniques were developed: pruning
and quantization. Pruning focuses on reducing model size and computational demands
by identifying and eliminating redundant network connections. Quantization, on
the other hand, aims to reduce memory requirements and accelerate computation
by decreasing the precision of network parameters. Together, these techniques have
the potential to make deep learning feasible on devices with limited computational
resources.

While neural network optimization, power efficiency, and hardware acceleration
are widely studied topics, there are several key papers worth mentioning. Each of
them gives a thorough description and together they make it possible to perform a
comparative analysis.
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In [4] the concept of efficient model scaling is introduced, demonstrating
that model size and computational requirements can be balanced to achieve
resource-efficient DNNs. EfficientNet serves as a foundational reference in the
pursuit of optimizing DNNs for edge deployments. [5] presents a comprehensive
study of quantization techniques, highlighting the advantages of reducing bit
precision in network parameters. This work has inspired numerous studies on
efficient DNN execution.

Pruning, with its potential to create compact neural networks, has attracted
significant attention, as evidenced by paper [6]. This pioneering work laid the
groundwork for understanding how network pruning can lead to a reduction in
model size without sacrificing performance. Furthermore, the development of
hardware accelerators tailored for neural network inference is described in [7]. It
contains insights into specialized hardware designed to enhance the DNN
execution efficiency.

In the following sections quantization, pruning and DPU implementation are
researched, to understand the overall tradeoffs during neural network optimizations.

Method. The model is trained on the “Kaggle Dogs vs. Cats” dataset. After
the training is finished, the model accuracy reaches 97.7%. The evaluation is
performed on 1000 image dataset, and the power consumption is monitored via
sensors on the GPU.

Then the trained model is pruned. Pruning is an iterative process in which
the network is reduced by a certain amount (10% per iteration is used in this work)
and then fine-tuned (retrained) to bring its performance back to the original. In this
work, we are repeating the pruning-retraining sequence six times. The final model’s
accuracy reaches 92.94%. After the pruning is done, the model is evaluated similarly
as it was done for the original float model and the power is measured again.

To further reduce the model’s power consumption, quantization is applied to
the pruned model. Quantization is a technique used to reduce the memory footprint
and computational requirements of CNNs by representing and performing
computations with lower precision data types. In a standard CNN, weights and
activations are typically represented as 32-bit floating-point numbers (FP32),
which consume significant memory and require higher computational resources.
Quantization aims to replace these higher precision representations with lower
precision data types, such as fixed-point or integer values, which have fewer bits.

Finally, the quantized CNN is taken and compiled for the proper DPU
architecture.

The DPU is a soft-core IP whose only function is to accelerate the execution
of CNNs. It acts as a co-processor to the host processor and has its own instruction
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set: the Vitis Al compiler will convert and optimize, where possible, the quantized
model to a set of micro-instructions and then output them to an xmodel file for the
DPU.

The action sequence described in the previous paragraphs forms a standard
flow which is shown in Fig. 1.
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Fig. 1. DPU deployment flow
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Experimental results. The experiments show that pruning and quantization
are reducing overall power consumption. At the same time, network performance
and accuracy do not suffer much. The simulation accuracy results and power
measurements are presented in Table.

Table

Object recognition neural network performance after pruning and quantization

Power (Watts) Accuracy (%)

Float 26.810 97.7
Prunel 23.403 96.4
Prune2 23.648 96.3
Prune3 20.446 94.1
Prune4 19.101 93.8
Prune5 17.252 93.4
Prune6 15.383 92.9
Quantize 11.165 92.8
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The DPU implementation is further reducing power consumption to 9.864
Watts. So, the tradeoff is 4.9% in accuracy vs 63.21% power reduction.

Although the implemented DPU (Fig. 2) has high utilization percent, the
tested neural network is relatively small, meaning that the power efficiency can
increase further for bigger neural networks.
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Fig. 2. Synthesized DPU design

After the pruning process is finished the network’s size is reduced by 57.9%.
Fig. 3 shows the visualization of the float and the pruned model. Some of the
convolutions and SoftMax activation functions are pruned.
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Fig. 3. Visualization of the float original neural network and the pruned version of the
same network
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The DPU implementation is further reducing power consumption to an extent of
9.864 Watts. So, the tradeoff is 4.9% in accuracy vs 63.21% power reduction.

Although the implemented DPU has high utilization percent, the tested
neural network is relatively small, meaning that the power efficiency can increase
further for bigger neural networks.

Conclusion. Based on the analysis of power metrics for neural networks
after pruning and quantization and their implementation on DPUs, the research
demonstrates that these optimization techniques reduce power consumption by
63% while maintaining high accuracy levels of 92.8%. This balance showcases the
efficiency of DPUs in executing complex models with reduced energy requirements.
The findings highlight the potential for wider application and sustainability of Al in
power-constrained environments, pointing towards a future where deep learning is
more accessible on edge devices.
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U.U. U4ESPrUSUL

1E3rNLUShL S8ULSGLP QUSNRURS, L4 ULSUSNRUDRS, DPU-P 4 U
PLrUYULNRSHUPS 268N 2200MNREBUL ULLRUSUUL NRhUNRULUURMNRU:
2UUBUUSUUUL 46 LNPONR R3NP

Swippbkp nnpunbbkpniud fjunp niunigdwt Yhpwenipinibiiph wpwg nwpwsnidp gnyg
wnybkg uljpniughtt gmugkph wppynibwdbn tkpppdwt withpudbynnpniup, hwnjwybu nk-
untpuitbpm] vwhdwbwhwy kqpught vwppbpoud: b yunuuwb wyju wwhwbeh' qunnidp
b pyutttnwugnidp wnwgwgl) Lt nputiu uljpnughtt gwugtph hwpynquju b hhonnnipju
wuwhwbgltinp bujuinpkt Wjwgkgubnt tnubwljutp: Fugh wyn, twutughnwgdus uvwupptph
wnbnuljuynudp, npnughg tu pyuyhtt Ypwljdwt dhwynpubpp (DPU), nupdl] b ulpnbwght
guigtph wpwqugnpénipniup Ukbwgubint Yhpwunynn tnutul:

Uphunwupnid ubpljuywgyty | ubjpntughtt gmiigkph hqnpnipjut swthnudubiph hw-
dwwywpthwl hudbdwnulwi Eppnisnipntt quunnidhg b pfuiitnugnidhg htnn' hwnndy
nipwnpnipintl qupditiny npuig’ DPU uwppbph Jpu hpujubugdwip: Zknwgnnm pjub
tyuwwnulu E niunidtwuhpl] qundus b pJutinnugywé tjpntwght gmugkph tukpquung-
b Ennipgniip b hgnpmpyut vyyuenidp DPU hwppuljubpmd gnpstynt dwdwitiuly: Nund-
twuhpqws Eu dnplijh swthtiph jpdundwt b wpyniiph £ogpuinipjut thnjuqhenudubpp, hus-
wku twl mwpptp DPU Smupunupuybnnipiniiubph Eukpquupynibwybnnipniup:

Upyniuputpp DPU hwppwljutpnid quunus b pJutinnugyusé aljpntiughtt gmugkph
Fubpquupmym ] binmpput dwuht nkginpemiibp b npudugpod’ b nwghu hunwl
wuwnlkpugnud juupliut wju dkpanh wnwybnipniutph b thnjughenidubph dwuhi:

Zhkwnwugnunmpeiniip Eubpquniuynnnipyut hwdwp igpnughtt guugkiph tbpgpdwi qu-
Junpluwdp htinwpppynn hknwgnunnnubph, dpwlnnutph b ppugnpénnutnh hwdwp wpdt-
pwynp phunipu b npudwnpnud: Gunwsnubpp tyquunnud Bu kqpuyhtt vwppbpmd b ubp-
ghwyh vwhdwbwwlnudng wy] dhpwuypbpnid junp nrunignidt wybjh dwwnskih b juynia
nupdtym pwpnibwlwlui gwipkpht' h Jbpen wuyuhn]tym] gusp Hubpgquuwuntundp uwp-
ptiph wth juytt yhpwenipnibibph htwpugnpoipyni:

Unwigpuyhl punkp. FPGA, DPU, quuunnid, pjuwtitnwugnu:
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A.A. ABETHUCSH

UCCJIEJOBAHHUE IMOKA3ATEJIEN IIOTPEBJISAEMOM MOIIIHOCTH
HEWPOHHBIX CETEHN IOCJIE COKPAIIIEHUSI, KBAHTOBAHUA U
PEAJIN3ALIAY HA DPU. CPABHUTEJIbHBIA AHAJIA3

BeicTpoe pacnpocTpaHeHye NpHIIokKEHHI TTyOOKOro 00y4eHHs B pa3inuHbIX 00IacTsx
BBI3BIBAET HEOOXOMUMOCTh 3P (EKTUBHBIX peanu3alluii HEHPOHHBIX ceTel, 0COOEHHO Ha
neprepHuitHBIX YCTPOMCTBAX C OrPaHUYEHHBIMU pecypcamu. B oTBeT Ha 3TOT cripoc oOpe3ka u
KBAaHTOBAHUE CTAIN BaXKHBIMH METOJAMH CHIDKEHUS! BEIUMCIUTENIBHBIX TpeOOBaHMI U Tpeb©o-
BaHUI K MaMATH HEHPOHHBIX ceTeil. Kpome Toro, pa3BepThIBaHME CIEMAIBHOTO 000PYI0-
BaHU, TaKOTO Kak nugpossie mporeccopsl (DPU), HabupaeT 000pOTHI sl YCKOPEHUS BBI-
BOJIa HEHPOHHBIX CETEH.

[IpencraBneH BCECTOPOHHHU CPAaBHUTEIBHBIM aHANU3 TOKa3aTeleld MOTpeOIsMon
MOIIHOCTH HEWPOHHBIX ceTel mocie 0Ope3KH M KBaHTOBAaHMS C OCOOBIM aKIIEHTOM Ha WX pea-
mu3anuio Ha DPU. Llenbio TaHHOTO MCCIIENOBaHuUs SIBIISIETCS U3y4YeHHE SHEeprodppeKkTus-
HOCTH M DHEPrornoTpedyieHns] COKPALIeHHBIX U KBAHTOBAaHHBIX HEHPOHHBIX CETEH MpPU UX
BbINoJHEeHNH Ha miardopmax DPU. HccnenyroTcs KOMIPOMHUCCH MEXKAY yYMEHbIICHHEM
pasMepa MOJIEIN U TOYHOCTBIO BBIBOZA, a TAKXKE SHEProd((EeKTUBHOCTHIO Pa3IMYHbBIX apXH-
tektyp DPU.

Pesynbrars! maroT npezcTaBieHne 00 3HeProdHEeKTHBHOCTH COKPAILEHHBIX W KBAHTO-
BaHHBIX HEHPOHHBIX ceTeil Ha miardopmax DPU, mpemiaras 4eTkoe MOHUMaHHE TPEUMY-
IIECTB U KOMIIPOMHCCOB, CBSA3aHHBIX C STUMH METOJIaMH ONTHMH3ALNH.

HccnenoBanue npepocTaBisieT LEHHBIH pecypc Ul HcclieoBaTesield, pa3padoTyu-
KOB U TIPAaKTHUKOB, 3aMHTEPECOBAHHBIX B ONTHUMH3ALMH PEAIM3alMM HEHPOHHBIX CeTeH s
TIOBBIIIEHHUS YHEProdpGekTHBHOCTHU. [loyueHHbIe pe3ybTaThl CIOCOOCTBYIOT MOCTOSHHBIM
YCHWJIMSIM, HallpaBJIEHHBIM Ha TO, YTOOBI cliesiaTh Tiy0oKoe o0y4yeHue 0ojiee TOCTYIHBIM U
YCTOMYMBBIM Ha NepuepuiiHbIX YCTPOHCTBAaX U B APYIHX Cpeax ¢ OrPaHHYCHHBIM SHEPro-
MOTPEOJICHUEM, YTO B KOHEYHOM HTOTE IO3BOJHT HCIIOJIB30BaTh 00JEe MIMPOKUII CIIEKTP
MPUWIOKEHNH ¢ MEHBIIUM NOTPEOIEHHEM SHEPTUHL.

Knroueewie cnosa: FPGA, DPU, oOpe3ka, KBAHTOBaHHE.
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