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KEYWORD-BIASED SPEECH RECOGNITION: A COMPARATIVE
STUDY

The ability to recognize unknown or rare words, such as technical terms and names,
is crucial for speech recognition technology to accurately comprehend conversations in
context. Nonetheless, current end-to-end speech recognition models often have difficulty in
recognizing words that are rarely or never seen during training. This paper examines the
effectiveness of different keyword biasing methods, as well as their modifications outlined
in previous studies, which do not require any modifications to the ASR model.

Keywords: speech recognition, keywords, contextual biasing.

Introduction. Recent years have witnessed a remarkable advancement in the
performance of End-to-End (E2E) automatic speech recognition (ASR) systems
with the help of deep learning. Attention-based Encoder and Decoder (AED) [1, 2],
Connectionist Temporal Classification (CTC) [3] and Recurrent Neural Network
Transducers (RNN-T) [4] have played a significant role in this advancement.
However, these systems face difficulties in recognition unknown or uncommon
words such as person names, location names or technical terminologies that are
rarely or never seen during training. The recently introduced Whisper Large [2]
model is proficient at recognizing terms, names and other commonly used
keywords due to its training on vast amounts of data. Nevertheless, using this
model in embedded Al applications that require fast inference and have limited
memory resources may not be practical. Aside from the computational aspect, it
cannot recognize novel words that were not part of the training set. This problem is
not only limited to ASR technology, but also applies to humans as it is difficult to
understand a conversation full of unknown words. These words often play a
significant role in understanding the overall conversation despite their low
frequency of occurrence.

Keyword biasing (also known as contextual ASR or contextual biasing) is a
family of methods of guiding an ASR system towards a specified list of keywords
and phrases provided along with the audio to be transcribed. Previous research on
contextual ASR can be categorized into deep biasing [5-8] and shallow fusion [9-
11] approaches. While deep biasing methods modify ASR training to incorporate
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keyword lists as a secondary input to the ASR model, shallow fusion utilizes
keyword lists during decoding to bias the output. This paper will mainly focus on
shallow fusion techniques that can be effortlessly integrated into an existing ASR
model without the need for retraining, particularly in situations where target
domain data is scarce or retraining is not feasible.

On-the-fly (OTF) rescoring [9], is, probably, the most frequently used
contextual biasing approach in ASR. Initially, this method was used in hybrid ASR
models wherein a new weighted finite state transducer (WFST) is combined with
the ASR model's WFST representing bias terms. The weights assigned to the bias
terms are dynamically modified during inference, hence the name "on the fly".
Another contextual biasing implementation is CTC prefix beam search with OTF
rescoring [10, 11]. This involves generating several potential translations beams
while performing beam search and assigning higher scores to the translations that
include bias terms. Several papers [10, 12] explore modifications of this technique.
In particular, [10] demonstrates the importance of cost subtraction when a false
prefix occurs, while [12] suggests an adaptive boosting method that assigns a
smaller boosting score to tokens that have relatively lower acoustic confidence. A
line of research [11, 13-15] generates alternative spellings for each bias term and
then integrates them into the decoding process. In particular, work in [11],
proposed a novel method that can predict how ASR may inaccurately recognize the
term and subsequently replace it with the correct spelling.

In this paper, we conduct a comparative analysis of various decoding
strategies, including CTC prefix beam search with keyword biasing [10], and
modifications proposed in literature, including cost subtraction [10], adaptive
boosting [12], and alternate spelling prediction [11], in comparison to baseline
strategies such as greedy decoding, vanilla beam search, and beam search with
language model (LM) [16]. Furthermore, we evaluate the effectiveness of biasing
methods on three different datasets with varying biasing lists, demonstrating their
benefits and drawbacks. We also analyze the methods' effectiveness on rare and
out-of-vocabulary (OOV) keyword groups.

Beam Search Decoding. The main component of an end-to-end automatic
speech recognition system is the acoustic model, which is responsible for
converting acoustic signals into a sequence of characters or tokens. When trained
from a large amount of labelled speech data, the acoustic model can learn to
produce readable transcriptions. However, errors often arise on words that rarely or
never appear in the training dataset. In practice, this is hard to avoid: training from
enough speech data to /ear all of the words or language constructions we might
need to know is impractical [17]. Therefore, many ASR systems employ an
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external LM because these models can be easily trained on huge unlabeled text
corpora. The LM is used in fusion with beam search decoding to find the best
translation candidates. During the decoding phase multiple alternative token
sequences or beams are generated which are then scored using the acoustic and
language models to select the most likely translation sequence. More formally,
given the output of the acoustic model for a given audio signal X, we perform a
search to find the sequence of tokens cy, ¢, ... that is most probable according to
both the acoustic model output and the language model. Specifically, we aim to
find a sequence of tokens C that maximizes the combined objective:

Q(C) = log(P(CIX)) + alog(le(C)) + Blength(C),

where P(C|X) here is a likelihood of token sequence C estimated by the acoustic
model and P, (C) is the one estimated by the LM. length(C) is a function that
returns the length of the sequence C. Parameter « specifies the amount of importance
to place on the language model, and § is a penalty term to consider the sequence
length in the scores. Larger @ means more importance on the LM and less importance
on the acoustic model. Negative values for beta will give penalty to longer sequences
and make the decoder to prefer shorter predictions, while positive values would
result in longer candidates. The objective is maximized using a prefix beam search
algorithm proposed by [16].

Prefix Trie. To bias the decoding algorithm towards particular keywords,
we first create a prefix tree (trie) for a given list of keywords. A prefix trie is a data
structure that allows an efficient search for a specific prefix within a set of keywords.
Later, we will use constructed prefix trie in beam search decoding. Fig. shows an
example of a prefix trie for a keyword set palo,paulo,pete. Each node in the trie
has an associated token which can be either a character or a word piece. The first
node represents the root node, and the colored nodes are leaf nodes. The edges of
the tree are weighted and indicate the importance of the token as it extends the path
within the tree. It is important to note that the outgoing edge from the root node has
a weight of 0, indicating that the first token in the keyword will not be taken into
account during the decoding process. To simplify a problem, we limit our analysis
to single-word keywords, even though keywords can be made up of more than one
word.
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Fig.1. Prefix trie when a biasing list consists of {"palo”, "paulo”, "pete"}

" on

Keyword-Biased Beam Search. Once a prefix trie of keywords X is
constructed, we can decode the acoustic model output with keyword-biased beam
search algorithm. While performing a beam search, the decoding algorithm favours
the given keywords if the input speech is pronounced similarly to the given
keywords.

To give more importance to the tokens that lead to the next node in the
keyword trie, we modify the scoring function Q(C) by adding an extra term:

Qpigsea(C) = Q(C) +yT(C),

where y controls the strength of boosting algorithm and T(C) is a keyword
boosting score for beam candidate C:

T(C) = {1, if lastWord(C) € X,
~0,if lastWord(C) ¢ K.

Here, lastWord(C) is a function that returns the last word of candidate
beam C. A high value of y may lead to overboost (boosting a word as a keyword
even if it is not actually presented in speech) and a low value may result in nothing
but a vanilla beam search. Moreover, if the prefix consists of only one token, the
boosting score is not applied. This is because boosting keywords from the
beginning may also lead to overboosting, as one-token prefixes are quite common
in candidate beams, particularly when there are a large number of keywords.

Adaptive boosting. To reduce false positives and limit the overboosting
effect, an adaptive boosting method is proposed in [12]. More specifically, the
proposed method assigns a smaller boosting score to tokens that have relatively
lower acoustic confidence, thereby reducing the likelihood of false positives. Let
y(t, k) denote the log-probability distribution by the acoustic model at time t with
k representing the token index. The boosting score for each token at time step t is
determined dynamically by its difference in log-probability with the most probable
token:
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86,10 = [max(3(6, k) = 96k,

a(5(t, k)), iflastWord(C) € X,

T = { 0,if lastWord(C) ¢ X,

where a(x) = 2/(1 + e*) represents a scaled inverse sigmoid function.

Cost subtraction. Work [10] proposes a simple technique to address situations
where a false prefix occurs. When the prefix on K is about to break because the
next token does not continue the prefix, we have to subtract the accumulated value
up to the current node. For example, consider Fig. 1 and let the current prefix path
be pau and the upcoming token be e. In this case, the accumulated boosting score
assigned to the prefix pau needs to be subtracted from the overall score because the
word paue is no longer a prefix on K.

Alternate Spelling Prediction. Work [11] presents a novel alternate spelling
prediction (ASP) model which can enhance the effectiveness of a keyword-biased
beam search algorithm. The ASP model is a text-to-text, transformer-based,
encoder-decoder model. It aims to predict how the ASR system might inaccurately
recognize a given keyword or term. For example, if the input is the name “Krisp”,
the ASP model should predict “Crisp” because that is how the ASR system will
recognize the term. Using this ASP model, we can also add weight to token
sequences associated with the alternate terms the model suggests. These sequences
can then be replaced by the original keywords in the ASR output.

We followed the training and inference procedures as described in the
original paper. The ASP model's training data is derived from ASR audio-text
paired data. First, we run ASR on audio files to obtain the corresponding text
outputs. The outputs are then aligned with reference texts, and incorrectly
recognized word pairs are extracted and filtered to exclude insertion or deletion
errors and only include non-stopword errors. In contrast to the original paper, we
also remove error pairs where reference and predicted words are not phonetically
similar to maintain the quality of the data. To align predicted and reference texts,
we used an open-source tool called fstalign®.

Evaluation Datasets. Earnings21 benchmark. For evaluation we use a
publicly accessible Earnings21 dataset [18]. The Earnings21 dataset is a 39-hour
corpus of earnings calls containing entity-dense speech from the financial sector.
The discussions in these recordings contain industry-specific terminology including
the names of companies, products and executives. Moreover, the benchmark comes

! https:/github.com/revdotcom/fstalign
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with two predefined keyword lists - oracle and distractor. The oracle list includes
terms and phrases found in the Earnings21 reference transcripts, while the
distractor list includes all biasing terms from the oracle list along with other
company names and renowned CEOs that are not present in the Earnings21 dataset.
As we limit our analysis to single-word terms, we excluded phrases from both lists
reducing their sizes to 272 and 434, respectively.

Meetings dataset. We also evaluated on an in-house Meetings dataset,
consisting of 13 meeting recordings with each recording spanning an average of
2169 seconds (7.8 hours in total). The reference transcripts contain a diverse array
of terms and names, which are challenging for the ASR system to recognize, like
people's names (such as Caruana, Hovhannes), locations (such as Jamaica,
Artsakh), companies and software applications (such as Plantronics, Bloomberg,
Discord, Figma). We extracted a list of 178 terms from the reference transcripts.

Podcasts dataset. In order to tune the hyperparameters used in the decoding
phase, we gathered the second dataset comprising 22 audio recordings. The total
duration of the recordings is 10.5 hours and they encompass conversational
discourse involving multiple speakers. We collected a biasing list of 128 terms
from the reference texts. A hyperparameter search was conducted on this dataset to
find the optimal values of o, B and y parameters for keyword-biased beam search
decoding. The best result was achieved for a = 0.3, = 0.95,y = 2.4.

Evaluation Metrics. In line with previous works, we report the Word Error
Rate (WER) for all experiments which indicates the percentage of words that were
incorrectly predicted. Because the number of keywords is quite small when
compared to the size of the text corpus, it's possible that effective methods for
recognizing these keywords may not have a significant impact on the WER. For
that reason, in addition to WER, we report precision, recall and Fl-score on
keywords. These metrics are more useful in determining how well the ASR system
recognizes the terms from the user's perspective. We aim to improve recall without
sacrificing precision and WER.

In addition, we calculate these metrics for three different groups of biasing
keywords: All Words, which includes every non-stopword word that appears in the
biasing list; Rare words, defined as those that appear less than 150 times in the
ASR training data; and OOV words, which are words that do not occur in the ASR
training data.

Automatic Speech Recognition Model. Our ASR model is based on a non-
autoregressive variant of Conformer-CTC architecture [19] which effectively
combines convolutional and transformer blocks to model both local and global
dependencies of an audio sequence. We use a medium-size pre-trained Conformer
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checkpoint? that was made available by Nvidia. We further fine-tune the model on
an in-house dataset with around 75,000 hours of English speech. The model
generates a probability distribution across subword units with a vocabulary size of
128. We use a subword language model [20] for the LM fusion in beam search
decoding. We train the language model on the text part of the ASR training dataset.
To provide a comparative analysis, we also report the results of the open-source
OpenAl Whisper models [2], which were trained on a massive amount of
multilingual speech dataset (680,000 hours).

Alternate Spelling Prediction Model. To train the alternate spelling
prediction model, we used roughly 1.15 million word pairs that were mistakenly
recognized by an ASR system. Furthermore, we removed error pairs in which the
phonetic forms of the reference and predicted words had an edit distance greater
than 50%. We used the grapheme-to-phoneme (G2P) library® to convert words to
the corresponding phoneme sequence.

Similar to [11], our ASP model is also based on a transformer encoder-
decoder framework. It has two layers in both the encoder and decoder with two
attention heads per layer and 400 units per layer resulting in a total of 6.5 million
parameters. However, unlike the original paper, the input and the output subword
tokenization is the same as the tokenization used for the ASR model.

At inference time we use beam search to produce a 5-best list of alternate
spellings for each keyword. We then filter these alternates to remove bad alternates
that are likely to introduce false-positive errors. There are two types of alternates
that need to be filtered out - poor matches and common words. We remove the
poor matches if the log-likelihood of the hypothesized alternate is lower than the
best one by the threshold of 1.0. For common words we filter out any suggested
alternate that appeared more than a 1000 number of times in the ASR training data
or belongs to the list of top 10,000 frequently used English words®.

To test the accuracy of the ASP model, we measure the BLEU score [21]
between the word pieces of the reference and predicted alternates. Fig.2 shows the
results of the ASP model on the test set. For comparison, we present the baseline
score for an identity system that keeps the input word unchanged. In addition, we
report the score obtained by a refined ASP model using beam search. Fig. 3
illustrates examples of alternates that the ASP model produces.

2https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_en conformer ctc medium
3 https://github.com/Kyubyong/g2p
4 https://github.com/arstgit/high-frequency-vocabulary/blob/master/10k.txt
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Model BLEU Keyword Topl Top2 Top3

Identity 0.48 Keywords seen during training
Vanilla ASP 0.6 hashimoto | hashamoto hashimoto hashamato
ASP with beam search  0.605 jupyter | jupiter” jupitor” jupitter”
kotlin cotlin cotlan™ codlin®
pulumi pulumi polumi poulumi

Keywords unseen during training

farnoosh farnosh farnush farnash
doernenburg | dornenburg doernenberg  doernenburg
odersky oderski odersky odderski
Fig. 2. Performance of the ASP Fig. 3. Top three alternates generated by the
model with and without beam search ~ ASP model with * denoting alternates that were
in comparison to the identity filtered out due to low confidence or being a
baseline common word

Results

Baseline methods. Table displays the results obtained by applying keyword-
biasing methods along with a comparison to the baseline methods that do not
employ any biasing techniques. As shown in Table 1, both greedy decoding and
vanilla beam search perform poorly at identifying keywords. This is because the
acoustic model alone cannot recognize OOV and Rare words, which were either
absent or infrequent during training. In comparison to the vanilla beam search, LM
fusion yields significant improvements in both WER and F1 scores across all three
datasets. This is because the LM helps to rectify misspelled keywords as illustrated
in Table 2.

Table 1

Performance comparison of keyword-biasing methods with relation to baseline methods.
The first section showcases the scores of Whisper Large and Small models. The second
section displays the baseline scores generated using three decoding techniques: Greedy,
Beam Search, and Beam Search with LM fusion, without any keyword-biasing. Lastly, the
third section demonstrates the results obtained from implementing different biasing
algorithms

Podcast Meetings Earnings21 - oracle
RT Pt Fit WER| | Rt Pt F1T WER| | Rt Pt F1t  WER]

Whisper Large  79.36 97.53 87.51 7.81 6239 9746 76.08  9.28 85.61 9243 8889 9.72
Whisper Small  73.34 9672 8342  7.17 5564 97.02 7072 936 80.23 91.89 8566 983

Greedy decoding  47.03 9241 62.34 7.65 ‘39.74 96.27 56.26 12.19 ‘70.38 90.80 79.30 14.25

Beam search (width=16) 46.76 92.88  62.20 7.60 4026 96.52 56.82 12.10 | 70.54 91.15 79.53 14.12
Beam search with LM (width=16) 55.59 9572 70.33 6.93 4333 9694 5989 1081 | 73.01 9090 8098 13.03

Keyword-biased beam search: (1) 7445 9473 83.37 6.95 5239 90.15 66.27 11.14 | 81.08 80.50 80.79 13.35
(1) + Cost subtraction: (2) 77.17 9242 84.11 6.86 | 5470 8545 66.7 11.08 | 83.90 7391 7859 13.44

(2) + Adaptive: (3) 73.03 94.96 82.56 6.87 53.16 90.14 66.88 10.97 82.08 78.62 8032 13.30

(3)+ASP 7884 9484 86.10 6.83 | 66.67 91.55 77.15 10.86 | 84.00 76.07 79.84 13.35
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Table 2

Transcription samples generated by baseline methods

Reference text so ni wang is now the rebecca’s assistent
Whisper Large so ni wang is now rebecca’s assistent
Greedy decoding so kne waang is now the rebecca’s assistent
Beam search so kne waang is now the rebecca’s assistent

Beam search with LM fusion so knee wang is now the rebecca’s assistent

Additionally, Table includes the results of the Whisper Large and Small models.
These models are proficient at recognizing terms, names and other commonly used
keywords due to their training on vast amounts of data. However, they still struggle
to recognize novel words that were not present in the training set.

Keyword-biasing methods. The use of keyword-biased beam search resulted
in a significant boost in recall across all three datasets. Specifically, when
compared to the LM-fused beam search, there is an 18.86% absolute improvement
in recall in the Podcasts dataset, a 9.06% improvement in the Meetings dataset and
an 8.07% improvement in the Earnings21-oracle dataset. Additionally, by using
cost subtraction approach we can filter out beams that contain false prefixes, which
leads to an overall increase in recall of around 2-3% across all three datasets.

As can be seen from Table 1 by imposing the decoder to produce certain
keywords, we observed a reduction in precision where the predicted keywords
were not actually present in the reference text. By using adaptive boosting
approach, we were able to increase precision and limit the overboosting effect.

The last row of Table 1 demonstrates the effectiveness of alternate spelling
prediction approach. Compared to the LM-fused beam search baseline, the ASP
approach resulted in an absolute recall improvement of 23.25%, 23.34% and
10.99% across the Podcasts, Meetings and Earnings21-oracle datasets, respectively.
As outlined earlier, to prevent false positive errors, the keyword-biased beam
search is not applied right from the beginning of the keyword. This means that
keywords like “Krisp” may be recognized as "Crisp" without the possibility of
correction. By incorporating ASP alternatives into the decoding process, we can
anticipate how ASR may inaccurately recognize the term and subsequently replace
it with the correct spelling.

Table 3 illustrates both positive and negative examples of ASR transcription
with and without keyword biasing. Some errors occurred when the decoder failed
to complete a word by skipping the last characters (e.g., manue) which can
potentially be caused by adaptive boosting. Other errors arose from the beam
pruning logic, where candidates with the correct keyword prefix were pruned
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during the beam search due to their relatively lower scores. Another source of error
comes from the ASR's inability to safely capture the phonetic prefix of the
keyword and hence it will never be boosted (e.g., ubiguitous).

Table 3

Positive and negative examples of ASR transcription with and without keyword biasing

Positive examples

gold text | the airline’s ceo oscar munoz issued an apology
no biasing | the airlines ceo oscar munyos issued an apology
with biasing | the airlines ceo oscar munoz issued an apology
gold text | i wanted to interview cathy o’neil
no biasing | i wanted to interview kathy o’neill
with biasing | i wanted to interview cathy o’neil
gold text | the team topologies patterns
no biasing | the team apologies patterns
with biasing | the team topologies patterns
gold text | i’'m ashock one of your regular co hosts
no biasing | i’'m a shock one of your regular cohorts
with biasing | i’m ashock one of your regular cohorts
Negative examples
gold text | it’s evan bottcher here from melbourne
no biasing | it's evan botcher here from melbourne
with biasing | it’s even bottcher here from melbourne
gold text | manuel you are talking to that
no biasing | manua you are talking to that
with biasing | manue you are talking to that
gold text | that data is ubiquitous
no biasing | that data is ibiicuous
with biasing | that data is ibiguous
gold text | this architecture as data mesh
no biasing | this architecture as datamish
with biasing | this architecture as data mish

OOV and Rare words: According to Table 4, it is clear that both greedy
decoding and LM-fused beam search decoding are not successful at recognizing
OOV words. In fact, on the podcast and meetings datasets these methods failed to
detect any OOV words resulting in a 0% F1 score. LM fusion, on the other hand,
significantly improves the recall and F1-score of recognizing Rare words, as these
words are incorporated in the LM lexicon. By introducing keyword biasing
techniques in the decoding process, we were able to drastically increase the
recognition accuracy of OOV and Rare words (see the last row of Table 4).
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Table 4

Evaluation results of OOV and Rare words with the numbers x/y representing the Recall
and F1 scores, respectively. The third row shows the proportion of Rare and OOV words in
the biasing lists for each evaluation dataset

Podcast Meetings Earnings21 - oracle
ooV Rare All |  oov Rare All | ooV Rare All
Number of keywords 12(9.37%) 49 (38.28%) 128 (100%) | 17 (9.55%) 55 (30.9%) 178 (100%) | 20 (7.4%) 100(36.7%) 272 (100%)
Greedy decoding 741/13.79  24.37/38.67  47.03/62.34 0.0/0.0 451/853  39.74/56.26 | 5.65/10.69  22.42/34.59  70.38/79.30

Beam Searchwith LM 0.0/00  37.39/5361  55.50/70.33 | 130256 451855 43.33/50.80 | 161/3.17  31.03/45.66 73.01/80.98
Keyword-biasing |
: ﬁ‘[‘;:p’;]“‘;"”“““‘ 44.44/60.0  72.46/81.62 78.84/86.10 | 19.48/32.61 51.88/66.13 66.67/77.15 | S1.61/67.37 57.40/62.15  84.00/79.84

+ ASP |

Conclusions. In conclusion, we performed a comparative analysis of various
adaptations to the beam search algorithm, including keyword-biasing, LM fusion,
cost subtraction, adaptive boosting and alternate spelling prediction. Our evaluation
was carried out on three datasets, and the results demonstrate that LM fusion can
consistently boost the recall and precision of rare and common words, but does not
help in recognizing OOV words. We observed significant improvement in recall
when using keyword-biased beam search along with cost subtraction across all
three datasets, while the use of the adaptive boosting method mostly improved
precision. A further enhancement is achieved by employing an alternate spelling
prediction approach.
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1.U. LUNUUSBUYL, @.U. Ub'UuNUsUL

UNuUL3LUSHL AULELD 2hULNY, VNULP KULUNRU: ZUUTUUSUUUL
NrUNRrULOURCNRE3NRU

Uthuyun jud hwqunby gnpéwsynn punkpp, htywyhuhp G nkuuhjulwt wkpdh-
ubpl nt wintbibpp fwwgknt muwlynipniup Juplnp k junuph fwbwsdwt nkuininghuygh
nhypnid junuwlgnipymiulikpp &ogphin phljukne hwdwp: Uyaniwdbiwghy, pun unuph
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PACIIO3HABAHHME PEUU HA OCHOBE KJIFOYEBBIX CJIOB:
CPABHUTEJIBHOE NCCJIIEJOBAHUE

CrnocoOHOCT paclo3HaBaHKSI HEM3BECTHBIX MIIM PEAKUX CJIOB, TAKMX KAK TEXHHUYECKUE
TEPMHUHBI U IMEHA, SIBIISICTCS KIIFOYEBOW JUIsl TOTO, YTOOBI TEXHOJIOTHS PACIIO3HABAHUS PEUH
TOYHO NIOHMMAJIa Pa3roBOPHI B KOHTEKCTE. TeM He MeHee, TEKYIM MOJIENISIM paclio3HaBa-
HHS Peud 4acTo ObIBaeT CJIOKHO PACIIO3HABAaTh CJIOBA, KOTOPBIE PEIKO MM BOOOIIE He BCTpe-
4aloTcs BO BpeMsi o0yueHus. B nanHoit pabore u3ydaercs 3pQEeKTUBHOCTh Pa3IMYHbIX Me-
TOJZIOB CMEILCHHUS KIIOYEBBIX CIIOB, a TAKKe UX MOIAM(HKAMN, KOTOPbIe OBbUIM OIMCAHBI B
HpeIbIAYIINX UCCIeJOBaHUAX U He TpeOOBaIM BHECEHHUS M3MEHEHHI B MOJENb Paclo3Ha-
BaHUS PEYH.

Kntouesvle cnosa: pacrio3HaBaHHE PedH, KIIOUYEBBIC CIOBA, KOHTEKCTyallbHas IPe-
B3STOCTb.
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