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Abstract. Contradictory descriptions of the passage of a relativistic particle through a high 

potential barrier are investigated. The conventional energy-momentum relation yields a real 

momentum for the particle within the barrier, suggesting classical particle motion. However, this 

contradicts the law of conservation of energy, which necessitates that the particle's momentum be 

imaginary, thereby rendering classical motion impossible. This paradox is resolved through the 

adoption of a novel energy-momentum relation. 
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1. Introduction 

 

The passage of a particle through a potential barrier, where the barrier height exceeds the 

particle energy, presents a quantum phenomenon absent in classical mechanics. Within the barrier, 

the particle's potential energy surpasses its total energy, resulting in negative kinetic energy and 

imaginary speed and momentum. This precludes classical motion within the barrier. Quantum 

mechanically, this state is described by an exponentially decaying wave function, leading to a 

probability of barrier penetration that decreases exponentially with barrier height and length, as per 

the nonrelativistic Schrödinger equation [1]. One would naturally anticipate similar outcomes in 

relativistic scenarios: the absence of classical motion and a decaying wave function within high 

barriers. However, solving this relativistic problem with equations such as the Hamilton-Jacobi, 

Klein-Fock-Gordon, or Dirac equations reveals that the particle can have real momentum within the 

barrier. This manifests as a sinusoidal traveling wave function within the barrier, contradicting the 

law of conservation of energy. Let us study this problem in more detail. 

 

2. Solution of Klein-Fock-Gordon equation 

 

Consider the fall of a relativistic particle with energy E onto a barrier of finite length L (see 

Fig.1), given by the formula 
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Let's solve the problem using the Klein-Fock-Gordon equation, which, as is known, is based 

on the relativistic relation between energy and momentum [2] 
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and has the form 
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Fig. 1. Potential barrier with height U0 and length L. Arrows indicate the direction of propagation of 

incident, reflected and transmitted wave functions. The red solid curve shows the exponentially decreasing 

amplitude of the wave function calculated by the Schrödinger equation, the dotted black curve shows the 

sinusoidal real (or imaginary) part of the wave function calculated by the  Klein-Fock-Gordon equation. 

 

The momentum of the particle is equal to р = (Е
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/c within the barrier. The wave function at x < 0 is represented by two 

counterpropagating waves, incident and reflected with momentums ±p, and at x > L by one 

transmitted wave with momentum p. Inside the barrier 0 < x < L there are two counterpropagating 

waves with momentums ±P. The amplitudes of the waves are found from the boundary conditions 

of continuity of the wave function and its derivative with respect to x at x = 0 and x = L. As a result, 

the amplitude of the transmitted wave T turns out to be equal to 
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and the probability of a particle passing through the barrier is equal to 
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At high barrier heights, the probability of the passing (tunneling) decreases in inverse 

proportion to 

i.e., the square of the barrier height (since  P/p ~ U0/mc

2
 >>1). However, there 

is no exponential decrease in the probability of tunneling depending on the length and the height of 

the barrier, which is an inalienable characteristic of tunneling. In addition, the real momentum of 

the particle inside the barrier gives the traveling wave function; this implies classical particle 

motion inside the barrier. In this case, the law of conservation of energy is violated, since the 

energy of the particle turns out to be less than its potential energy. Thus, the solution (4) is 

erroneous, and therefore the behavior of a relativistic particle inside a barrier is paradoxical and has 

no plausible description either quantum mechanically, according to the Klein-Fock-Gordon 

equation, or classically. 

For a classical solution to this problem, the Wheeler-Feynman concept of “moving back in 

time” was proposed [3] 
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Fig. 2. The passage of a particle through a potential barrier from point 1 to point 2. The solid line shows the 

usual passage of a fast particle with an energy greater than the height of the barrier. The dashed line has a 

time-inverted portion and is interpreted as the efficient penetration of a slow particle through the barrier 

using pair production at point Q and annihilation at point P, with portion PQ representing the motion  

of the antiparticle. Image taken from [3]. 

 

The hypothesis proposes that the movement of a particle within a barrier involves a backward 

motion in time, which is equivalent to the forward motion in time of an antiparticle born behind the 

barrier. As the falling particle approaches the barrier, a particle-antiparticle pair is postulated to 

emerge behind the barrier (point Q in Fig.2). The antiparticle, traversing the barrier from right to 

left, encounters and annihilates the falling particle at x = 0, whereas the particle of the pair moves 

rightward at the falling particle's velocity. This motion of the antiparticle within the barrier, from 

right to left, is interpreted as the falling particle moving backward in time, from left to right. Upon 

reaching the right boundary of the barrier (point Q in Fig.1), the particle emerges from beneath the 

barrier, continuing its trajectory even before the falling particle reaches the barrier. Since the 

antiparticle has an opposite charge, its potential energy inside the barrier is negative, so the law of 

conservation of energy is not violated. 

This exotic theoretical construction, which preserves the law of conservation of energy but 

violates the principle of causality, was not considered plausible and did not find application in other 

problems. No alternative explanations have been proposed for the behavior of the particle inside the 

high potential barrier. Thus, the problem of the passage of a relativistic particle through a high 

potential barrier is interpreted by the mathematically correct, but physically implausible Wheeler-

Feynman hypothesis of motion “back in time.” 

 

3. Solving the paradox in the New theory 

 

These and similar paradoxes were discussed in [4] as examples highlighting the inability of 

the traditional theory of electrical interactions to explain correctly the motion of particles at high 

potentials. The New theory of electrical interactions (NTE), introduced in that work, effectively 

resolves the contradictions. It relies on the following energy-momentum relation: 

 

   
22 2 2cP E mc U         (6) 

 

This relation initially emerged in the scalar theory of gravity [5,6]. Later, it was adopted in the 

new classical theory of electromagnetic interactions [4,7]. Based on this equation, a new modified 
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Klein-Fock-Gordon equation can be obtained, similar to constructing equation (3) from equation 

(2). This new equation, derived by V. Mekhitarian is written as [7]: 
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Applying equation (7) to the problem of a particle passing through a potential barrier instead 

of (3), we find that inside the high barrier the momentum P is imaginary. Consequently, the formula 

for the probability of tunneling takes the form: 
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At large barrier heights, it turns to 
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Here, as expected, the tunneling probability decreases exponentially with the barrier length 

and height, as in the case of the Schrödinger equation for a nonrelativistic particle, depicted by the 

red solid curve in Fig.1. There is no traveling wave present, due to imaginary momentum P, which 

indicates that the passage through a high barrier is a quantum process with no classical analog. The 

commonly accepted interpretation of such a passage is that the particle's energy momentarily 

exceeds the barrier's height due to vacuum fluctuations, before returning to its original state after 

passing through the barrier. 

 

4. Conclusions 

 

Solutions of the modified Klein-Fock-Gordon equation (7), based on the new energy-

momentum relation (6), reject the notion of the classical motion of a relativistic particle inside a 

high barrier and provide a plausible formula for the probability of passage, which decreases 

exponentially with increasing barrier length and height. Consequently, the Wheeler-Feynman 

hypothesis of "moving back in time," which attempts to explain such classical motion, is rendered 

flawed. Solution (4) of this problem using the Klein-Fock-Gordon equation is also erroneous. 
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