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Aghalovyan L.A., Gevorgyan R.S.
Asymptotic solutions of stationary problems of thermal conductivity and thermoelasticity with
nonclassical boundary conditions for the two-layer plates with full and incomplete contact layers
The practical importance of the neoclassical solutions is well known. The solutions of the nonclassical boundary
value problems of stationary heat conduction and no connected thermoelasticity theory are constructed for the
orthotropic two-layer plates. Examples are given together with their analysis.

B mocnennue rofsl MposBISAETCS MOBBIICHHBIH HHTEPEC K HEKIACCHYECKUM KPaeBbIM 3aJadaM MaTeMaTH-
4ecKoi (HM3MKH, KOTAa IO KaKoH-THOo HMpHYHMHE Ha OJHOH 4acTH MOBEPXHOCTH OOJACTH, 3aHMMAaeMOil Mare-
pHATBHBIM TEJIOM, TPAHMYHBIX YCJIOBHH 33/1aHO OOJIbILE, YeM HEOOXOAMMO I KpaeBOil 3aJauM JaHHOTO KJiacca,
a Ha JIpyrod 4acTH — MEHbIIIe, YeM He0OXO0AMMO Wiu BooOIe He 3a1anbl [1-3]. Bo3HMKHOBEHHE TakHX 3a/1a4, B
YAaCTHOCTH, CBS3aHO C H3y4YeHHEM HaIpsHKEHHO-Ie(OpPMHPOBAHHBIX cocTosHM JIuTocdepHsix mmt 3emmn [6].
OnuuM u3 3G(HEKTUBHBIX METOJOB PELICHHs IOJAOOHBIX 3aJa4 SBJIACTCS ACHMMITOTUYECKHUH METOX pEILICHHs
CHHTYJISIPHO-BO3MYIIEHHBIX I depeHIanbHbIX ypaBHeHuit [4-7]. B Hacrosmeidl paboTe acHMITOTHYECKHM
METOZIOM CTPOSITCS OOIIe WHTErpalbl B BHAE PEKypPEHTHBIX (OpMyI s CTAlHIOHAPHOU 3ajadu Ternnorpo-
BOAHOCTU U HECBSI3aHHOM TEOPUH TEPMOYNPYTOCTH. Y IOBIETBOPUB HEKIACCUUECKUM CMEIIAHHBIM MPAHHYHBIM
YCIIOBHUSIM, OJJTHO3HAYHO OIpPEIENIeHb! Bce (DYHKIUH HHTETPUPOBAHYS, IO3BOJIIONINE BBHIUUCIUTH TEMIIEPATyPHYIO
(yHKIMIO, a Takke KOMIIOHSHTHI TEH30pa HANPSDKCHUH M BEKTOpa IEPEeMEILIeHHs IBYXCIOHHOH OpPTOTPOIHOI
IUIACTHHBI IIEPEMEHHOH TOIMIMHEL 3afada, B YaCTHOCTHU, MOXET MOJEINPOBaTh HANPSLKEHHO-Ae)OpPMUPOBaHHOE
COCTOSIHHE 36MHOU KOPHI B 30HE KOJUTH3UH TeKTOHMYECKHX IHT 3emiu [1-3,6,7].

1. IlocTaHoBKA KpaeBbIX 3224 M OOIIUI HHTErpaJl pa3pemialomux ypaBHEHHUIl.
PaccMoTpuM ABYXCIIOMHBIN NAKET IUIACTUH U3 OPTOTPOIHBIX MAaTEPHUAJIOB, CJIOU KOTOPOrO
OTpaHUYEHBI INIAJKIMH HEMIEPECEKAIOIIUMUCS TIOBEPXHOCTSIMUA X OTHOCUTENIBHO BBIOpaHHOI
HOPSIMOYTOJIBHOM  CHCTEMBI KOOpAUHAT Oxyz YAOBJIETBOPSIIOT ~ YCIOBUSIM
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0 (%Y)>0,(%Y)>0,(XY), h=sup|p, —¢,|<<l, —o<(X y)<oo, rre
| —nexoTopsIit XapakTepHbIii POIONBHBII pa3Mep TOHKOTO MAKeTa.
ITycte Ha JsMuEBOW MOBEPXHOCTH Z= (P, (X,Y) mByxcioiiHOro — makeTa  3aJ[aHbl

HEKJTACCUYECKHE TPAHWYHBIC YCIOBHS 3aadd  CTAallMOHAPHOW  TEIUIONMPOBOTHOCTH
(M3MeHeHue TeMnepaTypsl U INIOTHOCTH IOTOKA TEIIOTHI),

z=0,(%,y): 6=0", 6=T-T,

q 0, G dp, ¢ 00 (1.1)
T T =\ = XY, Z 17273
A ox A ox A, B =g (0 )

a TaKKe HEKIIACCHUYECKIE MEXaHNIeCKHEe TPAHUYHEIEC YCIIOBHUS OMHOBPEMEHHO W TIEPBOMU, U
BTOpOi1 KpaeBbIX 3a7a4 HECBSI3aHHOU TEOpUU TEPMOYIIPYTOCTH

6(p+01y6(p Ojz
A oXx A oy A

2
A, = 1+(5<ij 2] ko012
oX oy

Z=¢,(%,Y)
£

z=¢,(XY): =0y, U (o) =U;, j=XY,Z

(1.2)

| Do (X, Y)=0, U (xy), J=X,y,2i
|
BN _

»
I »

Z= (P2(Xa y)

Z= (pO (Xa y)
durypa

a Ha TPOTHBOIOJIOKHOU JIMIEBOU MOBEPXHOCTH Z = (P, (X, ¥) nakera HUKaKue yclIoBHs HE

3a7aHbl. (3aauu ¢ TaKMMM WM C aHAJOTMYHBIMU TPAHMYHBIMU YCJIOBUAMM CHMTAKOTCH

HEKJIACCUYECKUMHU KPAaeBbIMU  3aJa4aMu TeopuM ynpyroctu). TpeOyerca ompenenanTs

TeMIepaTypHOE T0JIe U HAPsHKEHHO-Ae(POPMHUPOBAHHOE COCTOSHUE MAKETa, KOTAa MEXIY
CJIOSIMU BBITIONTHSIIOTCSL YCIIOBHSI TIOJTHOTO TETIOBOTO

z=¢,(xy): 07(z=0,)=0"(z=0,)

0 0 (1.3)
(6 - T+ =) 5 -a%) =0
1 IOJIHOT'O MEXAaHUYECKOT0
Z=0Q,:

0 0 (1.4)
(% =03 ) e +(oh =o3) 5y ek —oi) =0 f=xy.2

Ui = ugl) a u§2) = 0’ J =XY, u;l) = u;2)
4



KOHTAKTOB, a TAKXKE HETIOJIHOTO MEXaHUYECKOTO KOHTAKa KPAeBhIX 3a]1a4 TCOPUU YIIPYTOCTH
(8]
2=0,:U, =U;"(0,)~U;”(0,) =0, U, =u?(9,) ~ U (9,) # 0, (X, Y)
_ (D g 9P () 9P -
AOTX ze ((Po) cyxx ((Po) 8X ny((PO) ay (Xa y)a I 132 (1'5)
i 19 1P _ (19, 0P
AT =027 (90) =070 T =0l (o) St =12
a) TI0 aHAJIOTUU C TUIoTe30i Bunkiepa — @ycca
ol (z=9,) =00 (z=9,), U (z=9¢,)=ul(z=¢,)
U (z=9) U (z=0,)=U, (xY) (1.6)

GQ(Z: ®y) = GE?(Z =0,) =T, =pU, (Xy)

(7Ta Mozenb IpeAnojaraeT B 30HE KOHTAaKTa ILIEPOXOBATBIX IOBEPXHOCTEll oOpa3oBaHue
mioTHoro cnos tomuuesl h'™, KOTOpBIi IOXBEpraeTcs CABHTY BIONb NOBEPXHOCTH
zZ=0, (X, y) KoHTakTa Ha Benmunny U = (+Ux)— (—UX), e (iux) (X y)-
TIepEeMEIEeHIs TOUeK BEPXHETO M HIDKHETOo (KpaéB) OeperoB BOOOpakaeMoro yIIoTHEHHOTO
CJIOSI KOHTAKTa IIEpPOX0BaTOCTe 1 T = G"™U / h'™ — cooTseTcTBerHO ero KacaTebHOE Ha-

MPsDKEHUE ¥ MOMYITb CIIBUTA).

0) 10 aHAJIOTUH 3aKOHA CyXOoro TpeHUs Kynona
1 2 1 2

0 (2=0))=02(2=0,), U (z=9,)=U(z=0,)
1 2

u(z=g,)-u?(z=¢,)=U (1.7)

C5§<lz)(z =Q,) = GS?(Z: o) =t=" G(le)(zz @)= f G(Zi)(z =Qy)-

JlokazaHbl, 4TO BCEr/ia CyNISCTBYIOT KJIAaCCHYECKUE KPACBbIC 3a7aui TCOPUU YIIPYTOCTH
Y TEOPUH TEIUIONPOBOJHOCTH, PELICHHS KOTOPBIX COBIAJAIOT C PEIIeHUIMH CHOpMYITHpPO-
BaHHBIX HEKJaccuyeckux 3amad [3,7].

IIJ'IH peuicHusA MOCTABJICHHBIX KpPAaCeBbIX 3aja4 le/IBeZ[éM YpaBHCHHSA U COOTHOILICHUA

TEOPUH TEPMOYIPYTOCTH OPTOTPOIHOTO Tejia ¢ y4&ToM 00bEMHBIX cuil P = {PX, Py , PZ} u

m3menennst Temneparypuoro monst O =T —T, no momenn [oramens — Heiimana
oG 0o fole) ou ou, du
g2 24P =0,—2=¢+p,0,—+ £=a,0,
oX oy 0z OX 0z oy (1.8)

em :almcxx+a2mcyy+a3m6229 m:192:3 (ya ZaX;4:536):
rae Gj;— KOMIIOHEHThbI TEeH30pa Hanpspkenui, U, Uy, U,— KOMIIOHEHTBI BEKTOPA IEPEME-

meHnst, &; — KOdQQUIMEHTBI ypyroii 0IaTIHBOCTH, B jj — Koo dHUIMEHTBI TEIIOBOTO

JIMHEWHOTO pacuIupeHusl.
Jlonyckaercsi BO3MOXXHOE MeUIEHHOE W3MEHEHHE BO BPEMEHH 3a/IaHHBIX (yHKLUH, pu
9TOM, HE BBI3bIBAs OIIyTUMBIX TUHaMUYecKux 3(dekToB B makere cnoéB. Mcxoas u3 3Toro,
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3/IeCh U B JajibHeimeM B (JopMyJiaXx U COOTHOILICHHUSX BpeMsi { ne Oyner GpurypupoBaHo.
[TpuBeném TakxKe ypaBHEHHE CTAllMOHAPHOH 3a/1a4H TEIUIONPOBOIHOCTH OPTOTPOITHOTO Tejla
[9,10]

oq, 9d, oq 00
X+ =+ 4 :W, :—}\, _—_ X’ ’X; 1,2,3 ) 19
oXx oy oz % " ox (xy ) 4

rie O, 0,0, ~ KOMIIOHEHTBI BEKTOpa ILIOTHOCTH TEIMIOBOrO MOTOKA, Ay,A,, Az ;-

kod(durmenTsl TeruonposoxroctH, W — 3aaHHas IIOTHOCTD HCTOYHIKA TEIUTA.
B ypaBuenusx u coorHomenusx (1.8),(1.9) mepeiiném k Ge3pasmMepHBIM KOOpPAWHATAM U
0e3pa3MepHBIM MEPEMELICHHUSIM 10 (hopMyIaM

== =Y. ¢=Z=s"2, u:%,v:%,w:%,(«;:lﬂ, (1.10)
e |- HEKOTOPBIN IIPOJOJIbHBIN XapaKTEPHBIN pa3Mep CIOEB.

IMoncrasus (1.10) B (1.8), (1.9), mosryyaeM CHHTYJISIPHO-BO3MYIIEHHYIO T€OMETPHUECKUM
MaJlbIM TIapaMeTPOM € CHCTEMY YPABHEHMH M COOTHOILICHHH, AaCHMITOTHYECKOE PEIICHHE
KOTOPBIX, corflacHo [4,5], ckianeiBaeTcs u3 ABYX peuieHuil. [lepBoe U3 HHUX, Ha3pIBaeMOe
BHYTPEHHUM (BHEIIHNM) PELICHHEM, YJOBIETBOPSET I'PAHUYHBIM YCIOBHSM, 331aHHbIM Ha
JMLEBBIX TOBEPXHOCTSAX IMakeTra. Bropoe pelleHue, Ha3bIBaeMOE pPELICHUEM 3aJaqu
MOTPAaHWYHOI'O CJIOS, Ha JIMIEBBIX IOBEPXHOCTSX IUIACTHUHBI YAOBIIETBOPSET COOTBET-
CTBYIOIIMM OJHOPOJHBIM (HYJIEBBIM) YCIIOBHSIM, @ B CyMME€ C BHYTPEHHUM pEUIEHHEM
JIOJDKHO yJIOBJIETBOPUTH I'PAHUYHBIM YCIJIOBHUSM, 3aJJaHHBIM Ha TOpHax makeTa. [10cKoibKy
paccMaTpHMBalOTCS OPTOTPOIHBIE CJIOM (IUIACTUHBI OECKOHEYHBIX pa3MepoB), CIeo-
BaTEJIbHO, PEIIACTCsl TOJBKO BHYTPEHHsS 3aj1ada. PemieHue WIIeTcst B BUAE aCHMIITOTH-
YECKOT'O Pa3I0KEHHS.

S H .
Q(i) (X, Y, Z) _ zgs+on(|,S) (i’ n,c)’ Q(l,m) =0, m<0,i=12, (1.11)
$=0

rne OW— mobas W3 Hem3BecTHBIX KOMIOHEHT Bektopa mepemernenus U ., Temsopa
j

HANPKEHUH Oy, Yo XapaKTepU3yeT acHMITOTHYECKHH MOPSIOK COOTBETCTBYHOLICH

BEJIMYHUHBL, ), = 0— mns Becex mepeMereHui, Ao = —1 — nna Bcex HampsKeHUH, a a7
TEeMIepaTypHOH (YHKIHMH W KOMIIOHEHT BEKTOPA INIOTHOCTH TEIIOBOTO MOTOKA JOJIKHBI

OBITH COOTBETCTBEHHO Yy = —1, Xq =Xgq, =L Xg = 2.
X ly iz

O,HHOBpCMCHHO MpeACTaBUM 3aJaHHBIC 00BEMHBIE CHIIBI M IUIOTHOCTH MCTOYHHMKOB TEIlia

W B BUIC aCUMIITOTHYCCKUX paSHOX(CHHﬁI

S S
Px _ 28—2+SI—IR((S) (i,n,g) (X, Y, Z), W = 28—3+sl —lw(s) (i,n,g)
s=0 s=0

QY =0Q, Q¥ =0,s%0, Q:{P]’W}

D710 03HAYAET, YTO 0OBEMHBIC CHUIIBI U UCTOYHUK TEIJIa MOTYT BIHSITH Ha HANPSLKEHHO-
nedopMUpoBaHHOE COCTOSTHHME TaKeTa CJI0EB, HAYMHAS C MEPBOTO IIara UTEPAHOHHOTO

(1.12)

-2 -3
nmpouecca, €CJIu MUX ACUMIITOTUYCCKHUE TOPAAKU 6y}1yT COOTBETCTBEHHO &€ M & .
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Ioncrasus (1.11), (1.12) B cucreMy CHHTYJISIPHBIX YpaBHEHHUH U IPUPaBHAB KO3 HUIIMEHTHI

S o
npu € (S =0,1,2,..., S) B JIEBBIX U MPABBIX YaCTAX YPABHEHHH, [I0JYYUM HEIPOTUBOPE-

YUBYIO CHCTEMY IU(QepeHIHaNbHbIX YPaBHEHHH OTHOCHUTEIBHO HEU3BECTHBIX KO3((hu-
ueHToB pasiokeHus (1.11), 4TO CBUIETENBCTBYET O NPaBHIBHOCTH BBHIOPaHHOH acuM-
nToTukU. [locie nHTErpupoBaHMs MONTYYCHHOW CHCTEMBI pa3pellaroliuX YPaBHEHUH Ui
TeMIepaTypHOH (YHKIMH, KOMIIOHEHT TEH30pa HaNpsDKCHWH M BEKTOpa IMEepeMEIICHHS
MOJTY4YaloTCsl PeKYpPpPEHTHBIE (OPMYJIBI, KOTOPHIM INPHCBOUM HOMEDP COOTBETCTBYIOILIETO

cios (I =1, 2) [IaKeTa U MPEJCTaBUM B Pa3MEPHBIX KOOPAUHATAX U IepeMeleHusx. s

TeMIepaTypHON (YHKINU HMEEM:

e(i,S) ZA(I ,S) + B(I ,S) +— 1 \Ij(i ,S)
7\‘(')
33
z| B 2n(i,s-2) 2n(i,5-2)
po = f j(}d”—a O 20w S’jda dp,i=1,2,
11 2
ol % OX oy’
a 1A KOMHOHCHT TeH30pa HaHpH)KeHI/lﬁ 1 BEKTOpaA NNEPEMEIICHUA

cT(JIZS _GJZO (X y)+GJZ* (X Y, Z) J =XY,Z

A(I) zzO (X y)+6xx* (X y> Z) (XX yy’ 1 2)
ui’)zui'(;s)(x,y)+ Ot Ul (xy,2) (X,Y,25,4,3),i=1,2

G(X;s)zi' 5UX("S_1)+5Uy"s) AD — giigl) g2
O oy OX
z |s—) (i,s-1)
,z* _—_[ 0o, 60(%/ +Pj(i,s) dz, j=xY,z
0
) (| s-1) au (i,s-1)
ol (x y.2)= AVGL By M g0 T 5T (xyiL.2)

) z (i,s-1)
0 = [| oty - —lz (xy:5.4)
0 OX
u, (i,s-1) ' (i,s-1) .
?—gy #1207 iz

:j Af) A(') a

A\;;) — (I)A(l) + (i3) (i3) + (i) A(k) _ k 4 5 6
a®) ‘ ()
A(l) al(l)B(l) (I)BJ(IZ)’ J _1 2 Bl(l) A(|) , (2) :_A_(Zi) (1’2)
, a(') (') (i) (') : i , | |
Y = A(.f"z 1,2), % = ADBY + AVBY + Y

(1.13)

(1.14)



[omyuennbie o6mme wnTerpansl (1.13),(1.14) cucremsr ypaBhenwii (1.8),(1.9)
CoJiepiKaT MO BOCEMb (YHKIHUHA HWHTErPUPOBAHUS JUISl KaXIOrO CIIOSL: A("s), B("s),

GSZ’(S)),G(;Z’Z), (les), U)((IOS) U;'OS),U(I ® i=1,2, KOTOpble ONHO3HAYHO ONPEEIAIOTCA U3

HEKJIaCCUYECKUX TEMJIOBBIX M MEXaHW4eCKHUX rpaHuuHbix ycnosui (1.1),(1.2) u coorer-
CTBYIOUHX ycnoBHiA koHTakTa cioéB (1.3) — (1.7) mox Homepamu | =1 n 1 =2

2. PemeHusi cgopMy/JHpPOBAHHBIX KpaeBbIX 3a/Ja4. YIOBJICTBOPHB HAa JIMIIEBOU
nosepxHoctn  Z= @, (X, Y) HeknaccuueckuMm rpaHuuHbM yeaoBusM (1.1) 3amaun

TEIUIONPOBOAHOCTH M YCJIOBHSM IOJHOTO TEIUIOBOTO KOHTaKTa (1.3), momydaem 3Ha4eHUS
TEMIIEPaTypHBIX QYHKIMH MEPBOTO U BTOPOro CIOEB MaKera:

2
Z 2
00 =9t + o qu _((p (1)) WO, 9@ = zA® + B? = £ wWe
7‘33 27‘33 27‘*33
(2) _ (2> O =Py \ a0
A7 = (2) (%z oW )+ 2}L(2) - W 2.1
2 1 1 A 2 1 1 1
B() B()+(P A() 1— 33 +0 @

@) 0 @ 10
}\‘33 2}\’33 7\’33

M

k(“ ~ Oz~ k(” ’
33 33

a W3 HEKIACCHYECKUX MEXaHWYECKUX TPaHWYHBIX ycioBui (1.2) ¢ yuérom Beca cioéB

OTIpeZieTsieM BCE KOMIIOHEHTHI TEH30pa HANpsDKEHHH W BEKTOpa MEpeMEIIEHHs IEPBOTO
cno;r

2(@=0(2)+55""

AL — _L(qu _ (P1Wm )’ BD —

, 20 900, s
ci?(z) = Aol () Ly 00 Tl
0l (2)= AV (2)+ 10007 45T (x 513,23 11,22)

(i,s-1) (i,s-1)
509 (z) 1 [ou, " ou,”®
O Ol ox oy 2.2)




(1,5 2
L) () _ A Z-¢, o 6 m([ 0P m|[ 0P
u, (Z)_%s (@1_2) Tlgp HENON A® [711 ( axlj TV (Wl +
(2700 +u A [
0
' (2) =@ + A (¢, - 2)y o9 S8 (Pl +A5(1).[_(1 sz +

2
z-¢, o 0" (o0 y( 0@ ¢
+A5(1)A(1)((P —Z) 1 gp()+ y() ol +Y() 1 1
5T AN 2 AP [T o 2| oy ox

xy;54) uP=u,u®=0s£0 (XVY,2),

X X2

rae 0003HauYEHbI

. 09 (2 29, )
P @)= (z-0) 00"+ [ﬂ?( (2] ]

2 2 2
A 1+(6(ij o 2 AS)=1—A(?(%j - A 2
OX ay OX ay (2.3)

k=0,1, 1=12
i,s— (1s-1) 2
aizl,s—l):c—yg;sfl)%_l_ BY aux( l)+a<;> ou, (a@lj (X, y; 11,22)
oy OX oy OX
6u (1,5-1) 8U (Ls-1) o
Glsh = ADGEsD 1| B ) 1 X,y;13,23;11,22
- A5 [Ez B ( 8X) (xy )
1) (1s-1) 2
6(1,571):i6(1,8— o0, a(Pl 1 BY au1 Bl(l)auy— 90, +
z AD Y ox oy A“) Ox ooy X
s 1,s-1 2
L P (@j
) 2 22
Al ox oy oy

Jnst onpenenenus GpyHKIM MHTETPUPOBAHUS KOMIIOHEHT TEH30pa HANpPsDKCHUH M BEKTOpa

HepeMEIIEHHs] BTOPOTO CJIOS HA IIOBEPXHOCTU KOHTAKTa CI0EB Z = () (X, Y) uenecoobpasno
S S S
BBECTH (DYHKIIUH Tx( ),Ty( ),TZ( )| KOTOpbIE NPEACTABIAIOT U3 CeGsS COCTABIAIOLAE IO

KOOPJAHMHATHBIM OCSIM Oxyz KOMIIOHCHTBI TEH30pa MOJHOTO HANpPsSLKCHHSA B TOYKaX

IMOBEPXHOCTU KOHTAKTa CIIOEB:



— 0 - —u?_ O i=
z=0¢,: U;=u"-u;"=0, |=xY,Z

s i,s i,s a
AT =657 (0,) =079 20— 099 22 (x,y)
ax 8y
| | o0 o 2.4)
AT :G(zlz’S)((Po)_Ggés)((Po) 8)(0 ol; ( 0) ayo =12

3ameTum, 4To ypaBHEeHUs (2.4) CripaBeITUBBI U JIS TIEPBOTO (i = 1) U TSI BTOPOTr'o (i = 2)
= T(S) T(S) T(S)
CJI0€B, YTO TIO3BOJAET KOMIIOHECHTBI TEH30pa IMOJIHOro Hampskenus 1=, 1,7, 1,

BBIPA3UTh U€Pe3 yiKe U3BECTHBIE KOMIIOHEHTHI TEH30pa HAMpPsDKEHUH (2.2) IepBoro ciios

op, Op 1 —as1 OO
ATE = 1 Yo 1) (s) +vhgle) +G(ls b4 glsh Z¥o
0°x (6)( X j(A ((PO) y ) xx aX

(%, y:13,23;11,22)
A(l) o, a(Po m 09, 09, _

ox ox 2 oy oy
_gt9 (l—y“) 00, 09, ) 0@, a%j 4 50sh _gls 99, _gsh 90,

AT =6 (0,) ( 2.5)

1 Y2 z X2 vz ,
OX OX oy oy OX OX
mocye 4ero (hopMyisl KOMIOHEHT TEH30pa HAPSHKEHUH U BEKTOpa MepeMEIICHUS BTOPOTO
CJIOA IIPUHUMAIOT BU:

(25— A a(p acp
2 S) () (2,5-1) (s) _ T(S) 0 T(S) 0 T(S)
y4 G [() +G Z)+o , I1 +
( ) ( 0) ( ) z 0 5(2) ( ax a‘ , j

(¢ o o
(S) (s) (2) (2) 0 (2) 0
(2)=11; ( )gp T A? (Yl] ( GX] 1 ( ay} ] 2.6)

629 (2) =o' (g, ) + AVc (S)(z) (Po +A,TO +y2029 aa(Po G
X

o’ (2)= A(”G“)(Z)+v”)9(“)+0<““ (% y;13,23;11,22)

479 (2) U0 0,)+ U+ A (9, -2) 070+ 11, - 2o 4

R op op ’ t s
o 8 [yi?(a; (2] || ap foie e
P9

U (2) =g () + U + AL (o, )( 09 () + AT +720% ag)’( j+
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~z 029 (89 CARIES
LAY AD Al ) @ 4 <2)( o @ | 9Py 0
ASA; ((Po ) 0 5 ap A i ox TV oy ox

X 2

+As(52)ja(xi’s_”dz (X, ¥;13,23;55,44), u!@=u’, ¥ =0, s£0 (xY,2).

Po
3nech 0003HAYEHBI:
_ (2,1 2
o2sh :—(2»5-1)%+ BY = au - (2 9y - 99,
ze ny 11 BI
oy oX oy oX
(2.5 (2.5-1) 2 2.7
S@sh = A<2)6(2,s—1) n Bl(2> 8u > Bl(z) 8uy 09, @D
. oz ox 2oy ox
(X,y;13,23;11,22)
_ (2,5-1) 2
G2 = 2 oz ) 99, 8(p0 B au e +BY ou, ) 20, n
“ Af)z) ad oxX oy A‘Z) OX 2 oy OX

(2.51) (2.51) 2
L1 B® ou,’ g2 0P,
(2) 22
A, oX oy oy
Takxum 06pazoM, aACHMOTOTHYECKIM METOIOM BBIBEACHBI pEKyppEeHTHBIE hopMysl (2.1)-
(2-3), (2.5)-(2.7), mo3BossArOmME C 1000 3apaHee 3aJaHHONW ACUMITTOTHYECKON TOUHOCTHIO
S . .
O(€”) Bblunciuth TemrepaTypHylo (YHKIMIO U KOMIOHEHTBI TOJIEH HANpSKEeHUH |
MepeMEIeHIH IBYXCIOMHOTO MMaKeTa U3 OPTOTPOITHBIX IIACTHH NEPEMEHHON TONIIHHBI IPH
IIOJIHOM TCEIIJIOBOM H MEXaHHWYECCKOM KOHTAKTax CJ'IOéB, €CJI1 Ha J'll/IL[CBOﬁ IMOBEPXHOCTHU
nmakKeTa 3aJjaHbl HeKIaccudyeckue kpaesbie yenous (1.1),(1.2).
3aMeTuM, YTO YCJIOBHE IMOJHOrO KOHTakTa ciioéB (1.4) mpeimosiaraeT OTCYTCTBHE
. i s 1,s 2,
caeurosoii  aedopmammn  cnoée UY =ul"¥(z=0,)—UP(z=¢,)=0 (x,y).
Ecnm e MexaHHuecKuil KOHTAaKT MEXJY CJIOSIMU HEMOJHBIN, TO IPOUCXOJUT CMEUIEHUE
.. S 1,s 2,8
(cmBur) cmoés Uf( ) = U)(( )(Z= (po)—u)(( )(Z=(p0) #0(X,y). Hpu ostoM, Ha
. S S
nosepxuoctn  Z=Q,(X,y) pasiena cioéB KacaTelbHbie —COCTABIIONIHE T ),Ty( 4

MOJIHOTO HAIPSKEHUS OMPEACISIOTCS OHOW M3 U3BECTHBIX MOJIEIICH HEMOJHOTO KOHTAKTa
(1.6) wmm (1.7). B TakoMm cirydae mo sIBISIIOIIeHcs aHajIoroM mozenu Buakiepa — @ycca
(1.6) 1 KaXa0ro 1mara uTepalud S uMeeM:

-I-X(s) :HXU)((S), U)((S) :u)((l,s)(Z:(po)_uiz,s)(ZZ(po) 20 (X, y)’ 2.8)
a 1o 3aKoHy cyxoro Tpenus Kysona (1.7)
TX(S) = fxTz(S) (Xa y) . (2.9)
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Crie0BaTeIbHO, BHIBEACHHBIC ACHMITOTHIECKMM METOIOM PeKyppeHTHbIE (popmysl (2.1)-
(2.3), (2.5)-( 2.7), ¢ yuéToM 3HaUECHMI TX(S),Ty(S) (2.8) mmu (2.9)n, NO3BONAIOT ¢ JTHOOOM

o S
ACUMIITOTHYCCKOUM TOYHOCTBIO O(S ) BBIYUCIIUTL TCMIICPATYPHYIO (byHKHI/IIO n

KOMITOHEHTHI TE€H30pa HalpsDKEeHWH M BEKTOpa MEpEeMEIICHUI JIBYXCIOHHOTO IakeTa U3
OPTOTPONHBIX IUIACTUH IE€PEMEHHON TOJIIMHBI TAaKXKE COIVIACHO BBIOPAaHHOW MOAENn
HETIOJTHOTO MEXaHMYECKOTO KOHTAKTA CIIOEB.

Takum oOpa3oM, pekyppeHTHBIe pacu€tHbie ¢Gopmynsr (1.10),(1.11), (2.1)-(2-3),
(2.5)-( 2.7) MO3BOIAIOT BBEIYUCIUTH TEMIEPATYPHYIO (YHKIHIO, a TaK)Xe KOMIIOHEHTHI
TEH30pa HaNpsHKEHHH M BEKTOpa IepeMelieHHs B CIOSX IUIACTHHBI ¢ JH000MH

y s
acumnrotuyeckoii Tounocthio O(£7) B pasMepHBIX KOOPAMHATAX U TEPEMENIEHUSX

QV(x,Y,2) ZQ'S X,Y,2). (2.10)

OHH OJHOBPEMEHHO CIIy’>KaT TOTOBBIM AJITOPHUTMOM KOMIIBIOTEPHOW MPOTPaMMBbI JUIs
AQHAJMTHYECKOTO (MpY HEOOXOIMMOCTH) M YMCICHHOTO PEIICHHH IOCTABIEHHBIX KPaeBBIX
3a/a4 ¢ 3aJlaHHOM TOYHOCTBIO. B KauecTBe mpumepa pacCMOTPUM YACTHBIN cIydaid, Koraa
JIByXCIIOIHas IIJJaCTHHA COCTOUT u3 CII0EB MOCTOSIHHOM TOJILLUHBI

¢ (X, y) =h, =const, K=0,1,2, nocrosxuoii morHocTH p(')ZCOHSt, C UCTOYHH-

o i
KaMHy TeIja MOCTOSSHHOW WHTCHCHUBHOCTH W() = const, ¢ MOCTOSHHBIMUA T'PAaHUYHBIMH

YCJIOBUSIMU
N .
0" = const, (6+,qj+,uj+,c5}2), i=%xYy,z. (2.11)

OrpaHHYMBIINCH WCXOAHBIM TPHOMIDKeHHeM, ¢ y4éroMm (2.1)—~(2.4) 1o pexyppeHTHBIM
pacuétapiM popmynmam  (1.10)—(1.11), BEUHCIMB 3HAYCHHUS TEMIIEPATYpPHBIX (DYHKITHMA,
KOMIIOHEHT BEKTOPOB IUIOTHOCTEH NOTOKOB TEIUIOTHI, @ TAaKKe KOMIIOHEHT TEH30pOB
HAIIPSDKCHUI U BEKTOPOB NEpeMEeNIeHHH, JIsl IEPBOTO CJIOS MOITYYHM:

2
+ —Z + ¢ —Z M
9(1) —0" + D q; _( 1 ) W(l), q,=0q, -|-((p1 — Z)W

Tl
w =g, Ul =), ol =0l =0l =0
(2.12)
(l) P(l)g(z (P1) ng) :P(l)gA(;)(z_%)WLYil)e(]) (X y;L,2)
2
z-¢,) Y5 (z-9)
u§”=u;+( U [ p0ga® T35 g L4y (z-g,)| 67— DRV
2 ol ! 6L%)
a JJI BTOpOFO CJ1o4a HMEEM:
2
00 — gt 4| Lo 2, P~ P q + (‘Po_z)((Pl_(Po)_((Pl_(PO) WO —
Ay Ay A 205
(%0 _2)2 @) @ _ o+ 0 o)
-2 W, q? =q; +(@, —9, )W +(¢, —2W (2.13)

@)
2h5;
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o =0 =cl)) =0, 0¥ =p"g(p, —¢,)+pV9(z—¢,)
ol =p gAY ("9 (9, — ) +p?9(z—9,))+770P, (% ¥:1,2)

+

2) _F
y?° ux _ux

u’ =u
@ _ (Z_(Po)2 @a® Vo =@ o (Z_(Po)2 @)
u, ZUZ+T P OA; _Wq +753(Z2-9,) O—WW
33 33
Uz =U§1)(Z=(Po)» 629(1)(22@0)a q:q(l)(zz(Po)

3amerum, uto pemreHue (2.5),(2.6) mpumepa ¢ HEKIACCHUIESCKUMH TPAHUIHBIMH YCIOBUSIMHI
(2.5) — maTeMaTHYECKHN TOYHOE (3aMKHYTOE) JIJIs CIIOEB TIOCTOSTHHOM TOJIIUHBI, IOCKOJIBKY

CIEIyIOIIHe MIaTH WTepaluH Jal0T HyIH. Y4UWTbIBas 3TO, Ha MOBEPXHOCTH
zZ=0,(X,y) = h2 = const, no dopmynam (2.7) BeIYUCTIUM

—cal _ — 2 2) (2 (2 (@ @ @ 1P
Q® =Q(z=h), Q={0?,97c,c}) .02, uP,u? .U, } : (2.14)

HenocpenctBenHo# moAcTaHOBKOH MOKHO yOemmthes [2,3,5,6], uro pemenue (2.6),(2.7)

KpaeBOM 3a1aud C HEKIACCHYECKUMH TPaHUYHBIMU YCIOBHSIMH (2.5) OXHOBpEMEHHO

SBIISICTCS PEUICHNEM 33/1a4H C KIIACCHUYECKUMH I'PAaHNYHBIMHU YCIIOBHSIMH:

z=¢,=h: 0" =const, U/(X,y)=const, j=XY,Z 015)
15

— —_h--q @ ~ @ _ ca _ -(2) _ —cd
Z—(Pz _hz . qz _qz 50y, " =0y =0 (Xay)’ O, =0
Takum 00pa3oM, aCUMITOTHYECKOE PEIICHHE KaXKI0H 3aJadd CTAllMOHAPHOMN TEILIONpO-

o o S
BOJIHOCTH 1 HECBSI3AHHOM TEOPUH TEPMOYNPYTOCTH ¢ acummToTHueckoit Tounocthio O(g7)

COBIMAJaeT C pelIeHHeM OMNpeeNEéHHON KpaeBoil 3a1aull ¢ KIACCHYECKUMHU I'PaHUYHBIMU
ycnoBusiMH [3].
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ZUBUUSULF @SNk E3NPLLENP U22U3PL UUUNEURUSh StNtulah,
W3BECTUSI HALIMOHAJIBHOM AKAJIEMUM HAYK APMEHUM

Uthuwmthju 70, Ne2, 2017 MexaHnuka

PROPAGATION OF ELASTIC WAVES IN A PLANE WAVEGUIDE
LAYER ON THE BASIS OF A SIMPLIFIED MODEL OF THE COSSERAT
CONTINUUM
Ambartsumyan S.A., Avetisyan A.S., Belubekyan M.V.

Keywords: micropolar material, Cosserat continuum, acoustic waves, elastic waveguide layer, wave energy
localization, localized waves.

Puttunh punkp. Uhlypnwnpup Wnip, Ynubpugh dhowduyp, wlniuwnhly wihpubp, wrwdqulijul
whputnwin okpwn, wjhpuyghtt Eubpghwgh nknuyiugnid, inknujiugws whptibn:

KitioueBble ¢/10Ba: MUKPOIOJSIpHast cpefa, KoHTHHYYM Koccepa, akycTHUecKHe BOJIHBI, YIPYTHii CII0/-BOJIHOBO/,
JIOKaJIM3a1Msl BOJIHOBOH SHEPTHH, JTOKAITH30BAHHBIE BOJIHBI.

Zudpwpdnifjut U.UL., Udtwnhywh U.U., Bhmpklymi U4,
Unwdqulju whpikph tnupwénilp hwppe stpin-wjhpwnwpmy, YUnubpugh dhpwjwyph wunpgbgdus
unntjh hwpgunning

Thunwpyynud E pwpdp-hwdwpuuiuwght b gusp-hwdwjpmljuiughtt wyniunhl] wihpubkph
nwpwdnidp wpwdquljut hwpp skpn-whpuwnwpnid, Ynubkpugh vhowduyph wuwpgbgdus dnnkih
hwyjundwdp: Zupp b hwjwhwppe gidnpdughwttph pughpiubpnwd, wuppbp kqpuyghtt wuydwatbph
nhypnud, dlwlbkpydws L Eqpuyhtt wpdbph puunhpubtpp hwoyh weubing wymiph Jdhhpnynygup
hwnlnipniup: Bpjup wihpuyht b Yupd wijhpughtt  dnwnwpynudubph ghypmd  unwugdus
wprynibpbpp hwdwnpuws i wowdquljuminipyui puuuljub nbumpjut wpyniipibph hbtwn:
Puguwhwpnjws & wihpwwnwph  dwhbphnygpubph  dnn wijhpughtt  Eukpghuyh  hwpunjnp
nbnujiugdwut wuydwbbpp: 8nyg b wpdws, np hwwhwppe nhdnpdughuyh junpnud wniph
dhypnynjjup hwnlnipniip uwhph wihpubph dwbpbnipughtt wknujtugdwt sh phpnud: Gk B
dhypnynpupnipjuis hwpqundwt  phypnud  hwpdnuhy  wphpubph wwpwdsdwt  ubnujws
hwdwhuljutwgh gninhubpp: 8nyg Ewnipdws, np hwppe phdnpdughugh whpughtt wqputpwh nhypnid
dhypnynjjup hwwnlnipiniup jupnn k phpk) tnp nknuytiugdwsd wihph nupusdwi:

Am0Oapuymsin C.A., ApetucsaH A.C, Beayoexsin M.B.
PacnpocTpaHeHHne ynpyrux BOJIH B INIOCKOM CJI0€e-BOJTHOBOJIE C Y4éTOM
ynpouméHHoii moaean konTunyyma Koccepa

PaccmaTpuBaeTcst pacnpocTpaHeHHEe BBICOKOYACTOTHBIX U HU3KOYACTOTHBIX aKyCTHYECKHX BOJH B IZIOCKOM
YIPYTOM CJIO€-BOJIHOBOJIE HA OCHOBE YMPOIIEHHOH Mozennm cpenbl Koccepa. YuuTeiBas Hamuuue MHKpO-
HOJISIPHOCTU  CPelibl, A Pa3IMYHbIX KOMOMHAIMH TpaHHYHBIX YCJIOBHH Ha TOBEPXHOCTU BOJHOBOJA
chOopMyNIHMpOBaHbl TPAaHWYHbIE 33a7a4d IUIOCKOM W AHTUILIOCKOH nedopmauuii. B JUIMHHOBOJIHOBOM M
KOPOTKOBOJIHOBOM HPHOMIDKCHUSX MONyYCHHBIE Pe3ylbTaThl CPABHHBAIOTCA C Pe3ylIbTaTaMH KIACCHYECKOU
Teopuu ynpyroctd. HalaeHsl ycioBus i BO3SMOXKHOH JIOKQJIM3aLlMK BOJIHOBOM 3HEPruM BOJIM3HM MOBEPXHOCTH
BOJTHOBOZA. [Toka3aHo, 4TO yuéT MUKPOIOISIPHOCTH MaTepuaia B 3aaue aHTHILIOCKOH JedopMaliy He IPHBOIUT
K CYIIECTBOBAHUIO BBICOKOUACTOTHBIX JOKAIM30BaHHEIX (opM. B 3amaue miockoil medopmanuu yd4€T MHKpPO-
HOJIIPHOCTU MaTepuaia, Py pa3InyHbIX TPAHMYHBIX YCIOBHAX HAa IOBEPXHOCTH BOJHOBOJA MOXKET BBI3BATh KaK
HCKa)KeHHE JaCTOTHOTO JHAalla30Ha CyIECTBOBAHUS JOKAIU30BAaHHBIX BOIH Pajes, Tak U IPHBECTH K MOSBICHUIO
HOBOTO YaCTOTHOTO JMana30Ha BO3MOXKHBIX JIOKaJIH30BaHHBIX BOIH ILIOCKOI nedopmamnuu. HalineHbr yacToTHEIE
HOJIOCHI JIOKAJTH30BaHHBIX M FAPMOHHYECKUX HOpM KolebaHuit.

The problem of propagation of high-frequency and low-frequency acoustic waves in a plane elastic waveguide layer

on the basis of a simplified model of the Cosserat continuum is considered. In view, the presence of micro polarity
of the medium, boundary value problems for plane and antiplane deformations for different combinations of
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boundary conditions on the waveguide surface are formulated. In a long-wave and a short-wave approximations the
obtained results are compared with the results of the classical theory of elasticity. The conditions for a possible
localization of the wave energy near the surface of the waveguide are found. It is shown that in the antiplane
deformation problem, the considering of micropolarity of the material is not leads to the possibility of existence of
high localized forms. The frequency bands of localized and harmonic waveforms are found. In the plane deformation
problem, considering of micropolarity of the material under different surface conditions may cause as a distortion
of the frequency band of the localized Rayleigh wave existence so as the emergence of a new frequency band of
possible localized waves.

Introduction. In the classical theory of elasticity it is known that the reason of localization
of high-frequency waves near the medium interface boundary is the disturbance of
homogeneity of effective physical and mechanical characteristics of these fields. We first
encounter the problem of wave energy localization in the primary sources [1+4]. Within the
framework of the classical theory of elasticity, more about localization of wave energy near
the medium interface boundary can be found in [5+7], and others. However, when changes
in the microstructure of the body are essential (that is near the cracks and chipping, where
the stress gradients are essential) there appears a discrepancy between the results of the
classical theory of elasticity and the experiments’ results. Such discrepancies also appear in
the case of granular medium and multi molecular structures, such as polymers.

The influence of microstructure is particularly evident in the case of elastic oscillations of
high frequency and short wavelength. W. Voigt [8] attempted to overcome the disadvantages
of the classical theory of elasticity under the assumption that the interaction of two parts of
the body through the area element is transmitted not only by the force vector, but also by the
vector momentum. However, the complete theory of asymmetric elasticity was developed
only in 1909 by Francois and Eugene Cosserat brothers [9]. Currently Cosserat theory is in
rapid development.

There is an extensive literature on the study of mechanics problems based on the micropolar
theory of elasticity (or based on the Cosserat continuum). General works of A. C. Eringen
and others [10,11] and Vladimir Yerofeyev’s work [12] should be noted.

In this article the problems of waves propagation in a flat elastic waveguide with due regard
to the internal rotation of the medium particles are considered. The limiting cases of short
and long waves (high and low frequency acoustic waves) on the basis of a simplified model
of the Cosserat continuum are investigated.

1. Basic relations of a simplified model of the Cosserat continuum.
In general, the motion equations in the asymmetric elasticity theory are written as:
ot X, =pu;
.. (1.1)
Wi i T Sijk Ok +Y, =J¢,

where G and L, are force and moment stresses, respectively, Xi and YI are mass forces,
€jjc 1s the Levi-Civita tensor, P is the material density, U; are the displacement vector

components, (; are the rotation vector components at medium unit point, J is the rotary
inertia.

The material relations of isotropic material for Gj; force and [1;; moment stresses are:
G = (H+G)in "'(H—(X)in +}“6tikk
B =(y+e)o; +(y—&)o; +Bd 0,
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These relations (1.2) involve material constants A; ; O; [, which are independent, and

Kronecker delta Sik. And besides, these material constants and their combinations are

positive definite ones

u>0; y>0; a>0; €¢>0; 3A+2u>0; 3B+2y>0.

Now, if we exclude Gjand L, stresses from the motion equations (1.1), using the
constitutive equations and defining relations for tensors

Vi =U~ € Px > W = ;

we will obtain a system in vector form of six equations in terms of displacements U = {Ui }
and rotations () = {(pi } :

Dzl]+(7u+p—(x)graddivﬁ+2(xrot([)+)z:O 13
0,6+ (B+y—¢) graddiv § + 2arotii+ Y = 0 '

Where vector and operators 00, and O, are given as

o=(u+a)A-pd; , §=(y+e)A-40J0;.

Many authors have investigated the problem of distribution and localization of elastic waves
by means of a system of general equations of the asymmetric elasticity theory.
Ambartsumyan S.A. and Belubekyan M.V. [13] have also investigated the generalized
Rayleigh waves in a micropolar continuous medium. V.R. Parfitt and A.C. Eringen [14], as
well as J. Stefaniak [15] have investigated the reflection of a plane wave from a free boundary
of the half space.

The same problem was discussed in the expanded paper of S. Kaliski, J. Kupelewski and C.
Rymarz [16]. Propagation of waves in a plate and generalized Lamb waves have been
considered in W.Nowacki and W.K. Nowacki articles [17-18].

In general, the equations and relations in the micropolar theory are quite complex, so far
simple models [19 + 21] are used often for solving some specific problems. On the other
hand, the most significant effects, associated with moment stresses under consideration,
occur in dynamic problems. For such problems, in particularly, where elastic wave
propagation is studied, a simple model considering only the dynamics of the internal rotation
of the particles, was proposed on the basis of the Cosserat model. Simplified Cosserat model

for dynamic problems, apparently independently of one another, has been proposed in works
[22 = 24].

In the Cartesian coordinate system {)ﬂ } for a simplified Cosserat model the known linear
motion equations of the classical theory of elasticity are applied

2
% ol i5] 6{1;2;3} (1.4)

i _
OX, P ot?’

However, in (1.4) the shear stresses are not symmetrical, and are defined as a generalization
of the classical Hooke's law for isotropic material

G =21y; +0; VY +J (620)” /8’[2) (1.5)
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where strain tensor j; is defined by the usual way

_1 ou; L ou 16
7 o Tax |

and the transposed tensor of additional rotations i defines the asymmetry of shear stresses

(“’u = _‘”ii)

1( oy ou
o == —- . (1.7)
2( ox ax

Consideration of two-dimensional dynamic problems, when all the physico-mechanical
characteristics of the elastic field don’t depend on the coordinate X, , i.e. (6/ 8)(3 = 0) , 18

much easier. As in the general micropolar elasticity theory, in the simplified theory of the
Cosserat continuum the constitutive equations (1.5) and the equations of motion (1.4) allow
the separation of the problems to plane and antiplane deformations.

This model was used to solve a number of problems on propagation of acoustic waves, the
reviews are given in [20, 25].

In the next, for convenience instead of {)ﬁ } coordinates we will use {X, Y, Z} coordinates,

and instead of the displacement vector components {Ui } we will use {U; v, W} notation.

Then, for plane strain problems from (1.4) in view of (1.5) = (1.7) the following equations of
motion are obtained:

oo, 0o,  ou doc,, 0o, o0’v
x4 =p—; + =p—. (1.8)
oX oy ot oX oy ot
The corresponding constitutive equations are
O =(A+2W7, +AYy; Oy =(A+2W)7,, +A7,;
2 2
Oy =21y, +J s = Gy =21y, +J 6t2yx (1.9)
The defining relations are
ML {8u avj -7
o OX Yooy’
2% o (1.10)
o =| B-Z |
v oy Ox e
For antiplane strain problems we obtain the equations of motion:
dc, 0o, o'w
+ =p (1.11)

ox oy ot

the constitutive equations:
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0’ 0’
G =27, + 3225 G, =2y, + I
ot 112
5 5 (112)
o, =2uy,+J 6t2yz; G,y =2uy, +J atzzy
the defining relations:
1 ow 1 ow ow ow
,YXZ . — . =— =M. W . =—=—W (113)

=— > — T (l)xz 2
2ox” Ty ox Ty 0

2. The antiplane deformation problem. Let us consider an elastic, homogeneous isotropic
waveguide, which occupies the region €2 = {—OO <X<oo, 0<y<h, —w<z< oo}

Equations of purely shear waves (1.11), with accounting the material equations (1.12) and
defining relations (1.13) are reduced to the form:

0° o*w

Presenting the solution of equation (2.1) in the form of normal harmonic waves
WX, Y, 1) = W, (Y) expli(ot —kx)] (2.2)

where @ is the oscillation frequency, K 2 2TE/ A is the wave number, A is the length of
the wave, Wo(y) is amplitude function, which determines the distribution across the
waveguide’s thickness, we obtain the following ordinary differential equation:

242
W (Y)+Kkgw,(y) =0, 2.3)

where

q° énz/(l—ﬁmz)—l 0 207/(KS) 1 G 2u/p ;B 2 (I p 24)
From these notations one can see that for all wave numbers K values >0 and 3, >0
are positive.

The condition of the existence of harmonic oscillations q2 > 0 is easily obtained from the
first notation (2.4) in the form of

2
1/A+B,)<n’<1/B, or /Jlilz—k+p<w< n/J (2.5)

If the condition (2.5) is valid, the general solution of equation (2.3) can be represented by
trigonometric functions as

w, (y) = Asin(kqy) + Bcos(kqy) (2.6)
It should be noted, that when the micro rotation does not take into account (if J =0 then
B, — 0), the condition (2.5) takes the known formm) > 1. From (2.5) it is also obvious that
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for normal short waves, when A < 27[,/\]/ P, the frequency range is very narrow

Ju/J —o(Wp/antd) <o <\fu/J.

Consequently, the condition for the existence of harmonic waves is transformed into
mne(wm/\] —o(\*p/4n*d); ,/p/J) (2.7)

Here ®,, is the oscillation frequency of corresponding harmonic. The resulting waveforms

and the corresponding frequencies are determined by the boundary conditions on the
waveguide walls.

In particularly, the problems for a waveguide with boundary conditions of clamped or traction
free wall, according to (2.6) lead to the definition of the phase velocity satisfying (2.5).

Herewith consideration of the internal rotation reduces the given phase velocity \/ﬁ If
waveguide walls Y =0 and Y =h are clamped: W,(0) =0 and W,(h) =0, then from

the dispersion equation the values of natural frequencies are obtained:

q é% where N=0; 1; 2; ... 2.8)

n

n*=(1-a2)/[1+B. (1-0)] :
The condition of existence (2.5) of the n™ oscillations harmonic is transformed into
uk’ 1+n’n?/k*h?
——<kc - <\un/Jd (2.9)
K> +p . 1+(Jk2/p)-(1+n2n2/k2h2) b/

and the value N = 0 corresponds to the limiting wave, for which the frequency is defined as

®,, = kzu p+ JK*) . For higher harmonics when N —>00, the limiting frequency is
01

®, =1/ J (Fig.1a).
From (2.9) it also follows that in this frequency range there always exist harmonics with

numbers N> [2h/7\.] .

From (2.9), taking into account (2.4), it follows that the phase velocity of the N"™ harmonic
is represented as

Vi (k)é%:\/p(1+(nn/kh)2)/[p+ Jk2(1+(nn/kh)2)}

The behavior of harmonics phase velocity is shown on Fig. 1b.
In frequency intervals

0<n<l/(1+B,) or mn>1/B, (2.10)

according to (2.4) we get q2 < 0. Then, non-harmonic solutions of the wave formation

equation (2.3), with the notation P = iq = \/1 - p((ﬂz/k2 )/(u —Jo’ ) , are represented
by hyperbolic functions
20



W, () = A-sh(kpy) + B-ch(kpy) .11

For the frequency and phase velocity of the normal wave, we obtain the ranges

|_uk’

0 > Ju/J 2.12
<m< Kip or ®>/u/ (2.12)
0<v,(k)< ’szu+p or Vf(k)>k_1-,“,t/\]

Here ukz JK* +p) and J are the limiting frequencies for harmonic formations
p [

of normal waves across the waveguide thickness.

For a waveguide with camped walls or traction free walls according to (2.12) the problem
under consideration leads to determination of an oscillation frequency (or phase velocity)
which does not satisfy condition (2.11).

3. The plane deformation problem. In the elastic, isotropic homogeneous waveguide

Q= {—OO <X<w; 0<y<h; ow<z< OO} the plane strain equations (1.8) in view of

the material equations (1.9) and the defining relations (1.10) are reduced to the system of
equations for the components U(X, Y,1) and v(X, Y,1) of the displacement vector

3 2
uAu+(k+p)§(a—u+a—Vj—J 0 (@—@jzpa“

x| ox oy) “oyottlox ey) ot o
o(ou ov o (ov ou) v '
PAV+(A+p)—| —+— |- J S| == |=Pp=
oy\ ox oy oxot~\ ox oy ot
By means of Lame's transformation for plane strain problems
uéa_‘PJra_‘l’ : Véa_(P_a_‘V (3.2)

ox oy oy ox
the system of equations (3.1) gives a separate equations of longitudinal and transverse waves

[28], for Lame’s functions @(X, Y,t) and y(X,Y,t)

R0
A +p)Ae= P (3.3)
0’ o’y
HAY +J —(Ay) =p—-
ot? ot?
Equation (3.4) coincides with equation (2.1) of the antiplane problem. Representing the
solutions of equations (3.3) and (3.4) in a form of normal wave

o(% Y,1) = oy (V) exp[i(ot —k9]; w(x V,t) =y, (Y)expli(ot—k9]  3.5)
we obtain ordinary differential equations for amplitude functions @,(Y)and y,(Y),

34)

which general solutions are

@, (y) = Asin(kpy) + Ccos(kpy) ; y,(y) = Dsin(kqy)+ Bcos(kqy) (3.6)
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Where (] has the same notation as in (2.4) and

p2Jm-1; 02p/(L+2p) (3.7)

Let us consider a wave process in a waveguide with different boundary conditions.

3.1. Navier Conditions on both walls of the waveguide. Suppose that Navier conditions
are defined on the wall Y =0 of the waveguide

0=0; Oy/oy=0 (3.8)
Satisfying solution (3.6) to conditions (3.8), we obtain C = D = (. Thus the solution forms
for the required functions @,(Y) and y,(Yy) are simplified, by what problems with

different conditions on the other surface of the waveguide can be investigated.
The simplest version of the boundary value problem is when Navier conditions (3.8) are also

given at the wall Y = h . In that case, as in the general classical theory of elasticity, the effect

of micropolarity is included in the components of the elastic displacement, while the wave
equations for Lame’s function (3.3) and (3.4) are completely separated from each other.

u(x, y,t) =—k[ Ash(kp, y) + kaBcos(kay) | exp[i(wt — kx)] (3.9)
v(x Y, t) = k[ pAsin(kpy) + Beh(kg, y)] exp|i (ot — k)] (3.10)
Here P, =ip=4/1-6n, and q =iQ= \/l—nz/(l—ﬁknz) are the coefficients of

formation in the plane strain problem.
Moreover, wave of (3.9) and (3.10) types will exist at the phase velocity

v, (D)< (7»/27‘5)\/;1/(\] + p(?x.z/47't2 )) for all permitted frequencies ® < /1t/J . For

higher frequencies @ > 4/ H/ J the waves will exist with the phase velocity
(K/ 271:) \/M/ J< Vs, )< G, which length is determined by the physical characteristics

of the micropolar material. Phase zones of such waves’ existence are shown in Fig. 2.
The second option of setting a boundary value problem assumes that with the boundary

conditions (3.8) on Y =0, the clamped boundary conditions on the other wall of the
waveguide must be satisfied

ux,ht)=0; v(xht)=0 (3.11)
Conditions (3.11) with the use of required functions @,(Y),W,(Y) and in the view of
(3.5), are represented as:

—ikp,(h)+y (h)=0; @ (h)+iky,(h)=0 (3.12)
Satisfying solution (3.6) when C = D =0 to satisfy conditions (3.12), we obtain a system

of algebraic equations for arbitrary constants A and B. Condition for the existence of
nontrivial solutions gives the dispersion equation

tg(kph) = —pq- tg(kgh) (3.13)
Equation (3.13) always has a solution satisfying to (2.5).
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The question arise does the equation has any solution satisfying the condition
0<n<1/(1+PB,) of (2.10) Such decision would mean the existence of localized waves
near the walls of the waveguide layer. To answer this question it’s sufficient to consider
equation (3.13) in a short-wave approximation (Kh>>1). By substituting P = ip1 and

g= iq1 , equation (3.13) reduces to the equation with hyperbolic functions, where in a short-

wave approximation we obtain

th(khp,) = khp, and th(khq,) = khq, (3.14)
The condition of the existence of waves is obtained as
1+6 1

n= > ; (3.15)
(1+B)6 1+,
From (3.15) it follows that (3.13) cannot have roots, which satisfy to the first condition of

(2.10).

On the other hand, when

B,>0: or k’>p0J” (3.16)
the characteristic equation (3.13) has roots, which satisfy the second condition of (2.10)

o' >n>B or  (A+2u)/p>o/k>p/(IK) (3.17)
The frequency of these waves will be limited for each length 7»0 in a way

27(h+2p)/ (Xop) > ©(A) > Ao /(27) (3.18)

3.2. Mixed boundary conditions on the surfaces of the waveguide. Suppose that in
addition to Navier conditions (3.8) on the wall Y =0, on the other wall Y=h of the
waveguide the conditions of mechanically free boundary are defined

c,(xht)=0 and o,(Xht)=0 (3.19)
Conditions (3.19) by means of functions @(X,Y,t)and y(X Y,t), in the view of (3.5)

reduce to

(4219 — K2, + 2ikuyg =0
=2ikeg + (1= By +k* 1+ an)y, =0

Assuming that, in addition to conditions (3.19) on the other wall of the waveguide Y =10
Navier conditions (3.8) are defined and using solutions (3.6) when C = D = 0, from (3.20)
we obtain the equations for the arbitrary constants A and B . The dispersion equation
2
2-n[1+pn—-A-Bma’]- tg(khp)+4 pg- tg(khg) =0 (3.21)

is obtained from the condition of existence of nontrivial solutions.
To investigate the waves, localized at the free surface, which satisfy (2.5), it is more
convenient to rewrite equation (3.21) as follows:

Q-m+Bn+1-Ba’]-th(khp) -4 pq, - th(khg,) =0 (3:22)
where p=ipl and = iql.

(3.20)
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From equation (3.22) in a short-wave approximation, when Kh >> 1, we obtain the equation
[26].

2
Q-n)I+Bn+A-BnG 1-4pg =0 (3.23)
If we ignore the internal rotation of the particles (Bk =0) from (3.23), we obtain the
dispersion relation of Rayleigh waves [17].

In a long-wave approximation, when k’h* «1 , assuming thz~ Z— z / 3, a well-known
dispersion equation of one-dimensional bending oscillations of a plate can be obtained [27]

4(1-0)k’n’
(1+4B)n = -k 3) (3.24)
From dispersion equation (3.24), the equation of oscillations of a plate can be restored as
o'w o'w o*w
D —-8hJ +2ph =0 3.25
x acer e (2

where D 2(2EN’)/3(1-v7).
The same analytical result was obtained in [27] on the basis of Kirchhoff's hypothesis.
4. Numerical analysis of the wave process behavior.

In the case of wave propagation for antiplane deformation in an elastic micropolar
waveguide, the band of permitted frequencies is constrained by micropolarity of the material.

2000 [/ \ Vil

2500 \ Vylk, 10)
1285 wik, €0)

wlk, 150)

/

=
=
=

=}
=]

Fig. 1a. The region of frequencies of harmonic  Fig. 1b. The zone and the behavior of the phase

forms of shear wave’s oscillations and the behavior  velocity of the shear wave’s harmonic forms in a
of the natural frequencies waveguide with mechanically free surfaces

In the case of ignoring microrotation (if J =0 then Bk — 0) the condition of existence

of harmonic waveforms takes the known form 1 > 1, while the microrotation account in the
material narrows the band of the permitted frequencies and takes the form (2.9).
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Figure la shows the frequency region of existence of waves with harmonic forms of
oscillations for a waveguide of N=50-10"" m thickness from a material with physical-

mechanical constants [l =5Xx 10°

I|I wyz Nm?, J=3x10° kg/m, ,

a000] |,//, p=2x10"kgm}, A=12x10
|' N N/ .

| Here we see that the natural

frequencies of oscillations forms for
all the harmonics are enclosed in the

fooor \ wss region ®,, < ®,(K) <®, .
For low harmonics the dispersion
' ' ' : form with a phase velocity

0 g 10 15 7
a 5 a 5 20

_ 2 )
Fig. 2. The region of frequencies of plain deformation wave’s Voi (k) - l"t/ ( ‘]k + P ) 18 the

localized form and the behavior of the frequency. limiting one, and for the higher

harmonics the limiting dispersion

form is the one with a phase velocity V, (K) = k_lwlu/ J (Fig. 1b).

00o
4000 ~

The calculations also show that the accounting of micropolarity of the material results in
appearance of forbidden frequency zones for a shear wave harmonics in a waveguide with

rigidly clamped or mechanically free surfaces 0 < (Dn(k) < Mkz / ( K> + p) or

o, (K) >\/M-

In the case of plane strain wave propagation in an elastic micropolar waveguide the
accounting of rotations leads to a possible localization of wave energy near the surface of the
waveguide.

In frequency determination zone (3.17) the wave signal of plane deformation is localized near
the surface of the waveguide and has a  propagation frequency

(k) = k\/(q2 +G )/(1+ I/p).

From Fig. 2 we can see that the localized wave signals of plain deformation have a

wavelength A, < TC(Q /Ct)qJ/p .

Conclusion. On the basis of a simplified model of the Cosserat continuum, the conditions
of possible localization of the wave energy with different boundary conditions on the surfaces
of the elastic micropolar waveguide are obtained. The conditions for a possible localization
of the wave energy near the surfaces of the waveguide are found. It is shown that in the
antiplane deformation problem for a waveguide with clamped or mechanically free walls, the
accoun of material micropolarity doesn’t lead to the possibility of localized forms existence
of high frequency. In the plain strain problem the micropolarity account of under different
boundary conditions may cause a distortion of a frequency band of the existence of localized
Rayleigh waves, and the emergence of a new frequency band of possible localized waves.
Frequency bands of localized and harmonic waveforms are found.
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In a long-wave and a short-wave approximation the obtained results are compared with the
results of the classical theory of elasticity. Characteristic distribution of elastic displacement
across the thickness of the waveguide with different combinations of boundary conditions is
given.
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W3BECTUS HALIMOHAJBHOM AKAJIEMHUU HAYK APMEHUMA

Uthuwmthju 70, Ne2, 2017 MexaHnka

AMPLITUDE-PHASE DISTORTION OF THE NORMAL HIGH-
FREQUENCY SHEAR WAVES IN HOMOGENEOUS ELASTIC
WAVEGUIDE WITH WEAKLY ROUGH SURFACES

Avetisyan A.S., Hunanyan A.A.

Keywords: instability of normal waves, weakly rough surfaces, delay frequency, internal resonance.

KiroueBble cJ10Ba: HEYCTOIYNBOCTh HOPMAJIEHOMN BOJIHBI, CIIA00-HEOHOPO/HBIEC TIOBEPXHOCTH, 110J10Ca 3aACPIKKH
4acTOT, BHYTPEHHHH pe30HaHC.

Puttunh  punbkp.  Unpdwy  wphpibph  wihljuyniimpenit;  pnyp wbhwpp  dwlbplnypubp;
hwdwpwljwintpjwb pnipjwb gnuinhukp; ukppht nignuwbu:

ABerucsH A.C., YHausiH A.A.
AMIUIHTYIHO-(pa30BbIe HCKAKEHHSI BHICOKOYACTOTHOI HOPMAJIbHOI CABUIOBOIl BOJIHBI B O/IHOPOXHOM
YIPYroM BOJIHOBO/IE € CJ1200-HEOAHOPOAHBIMU MOBEPXHOCTIMH

Hccnenyercst BausiHuE cnaboi HEOAHOPOAHOCTH TIOBEPXHOCTEH yIIPYroro cios-BOJIHOBOA HA paclpoCTpaHe-
HUE HOPMAJIbHOW CIBHUTOBOW BOJIHBI INIPH MEXaHHMYECKH CBOOOIHBIX CIIa00-HEOJHOPOIHBIX MOBEPXHOCTSAX
BOJIHOBOJIa. B IPUIIOBEPXHOCTHBIX 30HAX BOJIHOBOJA BUPTYaJIbHO BBLICISIFOTCS TOHKHE MPOCIONKH NEpEeMEHHOM
TOJIIMHBL. B BBIZEICHHBIX YIPYTUX MPOCIONHKAX BBOAATCS QYHKIMH PACIIPEACIICHHS YIIPYTHX CABUTOB (TUIIOTE3bI
MELS). Beox runore3 MELS no3Bossiet 6osee mogpoOHO UCCIeI0BaTh MPOIECC UCKAKEHHS HOPMaJIbHOW BOJIHBI.
OHo crenaer 6ojee yIO0OHBIM HCCIIEI0BaHHsI BOJHOBBIX IPOIIECCOB B BOJHOBOJAX C YCJIOKHEHHBIMH CBOWCTBAMH
U CJIOKHBIMHU XapaKTEPHBIMU HEOJAHOPOAHOCTAMH MaTepyasa BOJIHOBO/A U €ro noBepxHocTeil. [lokaspiBaercs, 4To
B OTJIMYHE OT UACANIBHO TJIJIKUX IIOBEPXHOCTEH, cllabasi HEOJHOPOIHOCTh MEXaHHMYECKH CBOOOHBIX TIOBEPXHOCTEHt
NPUBOAUT K HCKWKEHHUIO PACIPOCTPAHSIOMIEHCS HOPMalbHOW BOJHBL. [IpOMCXOAWT YacTHUYHAS JIOKAJIU3AIHs
BOJIHOBOH 3HEPIuM B IPUIIOBEPXHOCTHBIX MPOCIIOHKAaX BOJHOBOMA. [T1OSBISAIOTCS 4aCTOTHBIE 30HBI YMOJIYaHUA (2
TaK)Ke 30HbI YaCTOTHOT'O MPOITYCKaHHKs1) BHOBb (DOPMUPOBAHHOI BOJIHBI.

Uygbunhuyywt U.U., Znitmiyub U.U.

Pupdp hudwmpuluyhimpyui vwhph tinpuwy whph juyinypw-thnyuyghitt wnujunnudp,
dwlpimpuyhb pny] wmthwdwubpnipyjudp, hwdwube wnwdquiljub whpunwpnid

Thuwplynud o dEjuwbhynpit wquu dwlbkpinypubpny  wpwdquljui  wjhpwiwph
dwljipinypubph pny] whwhwppnipjut wqpkgnipniup uwhph unpdw) wihph nwpwsdwb Jpu:
Jhpuiny  punpynud Bu indinjuwuwt hwunnipjudp pupwly  ohpnbp  dkpd-dwlbplnypught
oipnbpnud: Unwdquljut uwhph puphidwit $niuljghwitkp ki tkpunisynud ptnpjusd wnwdquljui
otipnbpmud  (MELS  Juplwédtbkp): MELS Juplwsubph ubpdnsnudp wybih  Yhbpwnwguh  pupn
hwnlnpniuubpny yniptpg juquyus b whwhwppe dwulkpbngputpny whpwwnwnpubtpnid wihpuyght
wpngbutiph nuunidbwuhpnipniip: 8nyg L wpdws, np b hwunpmipmb  hppbwpuljui  hwppe
Uwhbpinypibph dkuwihynpkh wqun  dwhbplnyptbph poy] whwhwppnipmip wwbmd  k
wnwpwsynn unpdw] wihph wpuyundwi: Sknh b onbkinud  wihpughtt Eukpghugh  dwubiuyh
nbnujuugnid  wjhpwwwph dEpd-dwlibpngpuyhtt shpubpnud: Zuwynbynwd o unp  dbwynpyng
uhpubph  hwdwhwljwinput  (pmpjut gnunhubkp  (hbywbu  twb  hwdwhuluinipjub
ponnitwlnipjui gnnhubp):

The influence of weak roughness of mechanically free elastic waveguide surfaces on propagation of normal shear
wave is investigated. Thin layers of variable thickness are virtually separated in near-surface areas. Distribution
functions of elastic shears are introduced in separated elastic layers (hypotheses MELS). Introduction of hypotheses
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MELS will make the study of wave processes in waveguides with complicated properties and sophisticated
characteristic roughness of the material of the waveguide and its surfaces more convenient. It is shown that in
contrast to perfectly smooth surfaces, weak roughness of the mechanically free surfaces leads to distortion of
propagating normal waves. Partial localization of wave energy occurs in near-surface layers of the waveguide.
Frequency zones of silence of newly formed waves (as well as zones of frequency bandwidth) appear as well.

Introduction

The interaction of ultrasound wave with rough surface of waveguides currently is actively
investigated from both theoretical and experimental points of view (see e.g. [1-3]). It is
related to applications of elastic wave phenomena in modern technology:
telecommunications (signal processing), medicine (ultrasound measurement), metallurgy
(nondestructive control), etc.

In studies of propagation of high-frequency wave signals (high frequency, short waves) in
layered waveguides it is especially important to take into account the real roughness (non-
smoothness) of surfaces of the waveguide. It is especially important in cases where the length
of the wave signal is of the same order with the amplitude or average step of the surface
roughness. There is a huge body of references about wave propagation in layered waveguide
with perfectly smooth surfaces of attachment of the layers. However, smooth surface is an
idealized model for which it is not always possible to rigorously determine or estimate the
characteristics of the wave field more accurately, especially in near-surface zones of the
waveguide. The roughness of the waveguide layers definitely complicates the mathematical
model, but provides opportunity to identify near-surface wave effects and more accurately
calculate the quantitative characteristics of the formed wave field in the near-surface area.
There are different theoretical approaches and practical tools for investigating surface waves
propagation on rough surfaces (see, for instance, [4-7]). Many papers (see e.g. [8-11]) are
dedicated to different cases of normal high-frequency short monochromatic waves stability
loses, such as localization of wave energy, internal resonance, occurrence of forbidden zones
of frequency, etc.

Possible distortion of the amplitude and phase functions for normal distribution of the wave
signal in a weakly rough elastic waveguide are investigated in [12-14]. The occurrence of
internal resonance is studied, and conditions for existence of forbidden zones of frequency
are revealed using the hypotheses of magneto-electro-elastic layered systems (MELS
hypotheses).

In [15], wave propagation in inhomogeneous media with self-similar structure is studied
using fractional calculus, along with the space-time discontinuous Galerkin methods. One
and two dimensional problems are studied to demonstrate the capability of the proposed
model in modeling inhomogeneous media.

In this paper, we propose a new approach for studying the influence of roughness of the
surface of the layer-waveguide on the propagation of elastic, normal shear wave by so-called
MELS hypotheses.

1. Problem Statement

Let us assume that pure shear normal wave signal

WX, Y, t) =W, (y) xexpli(k,X- b)) (L.D)
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ux,y,t)=0, v(x,y,t)=0, (1.2)
is propagating in elastic, isotropic waveguide

Q:={|x <o; h.(x)<y<h, (x);

Z|<OO} with rough surfaces y=h (x) and

y = h, (X).Here o, is the frequency of the source of wave signal, ko é(21‘1?/ 7\,0) is the
wave number and A, is the length of wave signal. Then, the equation of motion of the
medium has the following form

O*W(X, y,t) . OW(X, Y5 t) _ = O*W(X, y,t)

X2 oy’ ’ ot

! (1.3)

2
where Cj =

G, / Py is the speed of the shear normal wave in the waveguide, G, is the shear
modulus and p is the density of the waveguide material.
It is assumed, that the roughness of the waveguide surfaces y = h, (X) are represented by
the following harmonic functions
h. (x)=h,[1+¢, -sin(k, - X)+8, - cos(k, - X)], s
h (x)=-h,[1+¢_-sin(k -Xx)+38_-cos(k -X)], Sl

where h is the half-thickness of basic layer of the waveguide, &, and §, are the relative

amplitude coefficients of the heights of roughness profiles with {8 g 0 i} <, because the

heights of the protrusions of roughness h, -&, and h; -5, are always much less than the

basic layer thickness: {h) "€y, ho c &_r} < ho k= 2m/), is the number of the waviness
of roughness profile and A, is the step (wavelength) of the roughness profiles.

The boundary conditions on mechanically free non-smooth surfaces of the waveguide
c; (% Y) n}L (X) =0 are written respectively in this form:

- 2 oMY (15)
. y=h, (x) Oy

OX
It is evident from (1.3)-(1.5), that its solution must explicitly depend on the roughness of the

surfaces. Since the roughness is weak {h) "€, ho -0 J_r} < ho , the interaction of roughness

will mainly be available in case of high-frequency (shortwave) wave signals, for which
Ay ~ A, <hy, or equivalently K h, ~k,h >1. Then, one might be interested in

investigation of the influence of surfaces roughness of the waveguide on the propagation of
normal high-frequency shear waves.
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2. Problem Solution

There are two methods to solve the problem: the method of successive approximations and
the method of introduced hypotheses. Later in this article we will compare wave
characteristics of the received wave fields.

2.1. First Approach

When high-frequency, normal shear signal (1.1) is propagated in elastic waveguide,
interaction of the wave signal with the roughness of the surfaces in the near-surface areas
occurs, which consequently leads to amplitude and phase distortion of the primary signal.
New harmonics appear and a new amplitude-phase interaction is formed.

We use Fourier method of variables separation, and the solution of the boundary value
problem (1.3)-(1.5) is represented in the following form:

WOX Y.t = S WL () X, (%) expl—io ). @1

n=1
Then the conditions of mechanically free surfaces of the waveguide, on rough surfaces
y = h, (X) respectively, for each harmonic of propagating wave will have the following

form

W/(h, () = Fhk, -[e, -cos(k, - )8, -sin(k, - )] -f—ixiwnm(x». (22)
X

n

It is suggested, that the equations for determining the desired functions X (X) and W, (y)

are shown in the form
W(y)+ ki [ 3 =1 W, (y) =0,
X(X)+k; X, () =0,

2.3)

. . . . A 5o
where the following assignment for appropriate harmonics 1’]?1 =(,Oikn2002 has been taken
into account, K is the wave number (formation coefficient through the thickness of the

waveguide), corresponding to the generated N-th harmonic.
From surface conditions (2.2) it follows that the undamped solutions of (2.3) in the directions

of the propagation £OX (for Im[ kn] = () are shown in the following form

W, (y)=C,, exp(iknocny)+ C,, exp(—iknocny),

(2.4)
X, (x) = C, exp(*ik,x),

. . 24,2 .

which, for slow waves, i.e. when O, =M, —1 <0, corresponds to the damped harmonics

from the surface up to the depth of the waveguide, and for fast waves, i.e. when
24 2 . . .

o, =M, —120, corresponds to harmonic forms over the thickness of the waveguide.

From (2.3) it also follows that fast damped waves occur in the directions of wave propagation
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+OX in the case of Re[kn] =0:
W) -k [ma =1 W, (y) =0
X0~k X, (0 =0 |
For slow wave, i.e. when Oti éni —1< 0, the solution corresponds to harmonic forms over

. . . A .
the thickness of the waveguide, and for fast wave, i.e. when Otrz1 =T]r21 —12>0, it corresponds

to damped harmonics from the surface up to the depth of the waveguide.

Taking into account that the roughness of the surface of the waveguide is weak and its impact
on the propagating wave is described by boundary conditions (2.2), the solution of system
(2.3) is represented in this form

Xo ()= 9™ A exp(ikp,X). 2.5)
m=0

bﬁ—}/r

2hory.ty

—jJH—]f

Fig.2.1. The model of elastic waveguide as a multilayer waveguide

Moreover, the value M= 0 corresponds to the case of homogeneous waveguide. Here, the
introduced wave number k*m should be formed by the impact of normal wave signal and

roughness of the surfaces of the waveguide.
The roughness of the surfaces, in its turn, is characterized by the greatest common divisor of

wave numbers K, =min { k./p; k/ q} =27/, is the smallest common wave number

of roughness on the surfaces corresponding to the generated M_th harmonic waves, and
A . . .
Y = max {1/8%; + Si } < 1 is a small parameter characterizing the weak roughness of the

surfaces of the waveguide.
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knan[cnl exp(ikyotah. (9))-Cp exp(—ikqouah, (X))} i}Y " Amexp(iK.X)=
=Fhk, [ &, -cos(k, - X) =38, -sin(k, - X) | x 2.6)
<[ Coexp(ikta OO} Copex Tkt (00)] 3 Ko™ Amexp(ik )

Considering that the right hand sides of boundary conditions (2.6) are in small M+1 order

inthe N'= 0 approximation, for non-trivial solutions of (2.6) we obtain the dispersion equation
with the following solution

2nc, TNG
@ = KpnGy =——-=——. @7
Ao By
. . . h.(X) .
Consequently, interaction of the normal wave (1.1) with surface roughness =+ is not

occur in the N=0 approximation, and the propagating wave is still normal as in N=0
approximation of longitudinally weakly rough waveguide with mechanically free surfaces [13]

W, (X, y,t) = i A, -exp|:i(%r:x—(o0nt):| : (2.8)

From the conditions of synchronization of the surface distortions at the mid-plane of the

waveguide Y =0, we get
exp[i (ko —k.,) X} _k (e, -cos(k, - x) =8, -sin(k, - X)]

k_-[e_-cos(k_-x)—3&_-sin(k_-x)]

2.9)

Considering that the wave number is formed as K,(X)=K,,—K, and

k. = min{ pk+; qkf} =27/ ., it is easy to get the allowed wavelengths from (2.9) for
the first approximation:

k, -[e, -cos(k, - X) -8, -sin(k, - X)]

M(X) =2, -2marccos ' 4 — : . (2.10)
‘ k -[e_-cos(k -X)—8_-sin(k_-X)]
Then from the boundary equations (2.6) for the first approximation we will have
eXp(i k()na‘n (h+(x) - hf(X))) _eXp(_i k()na‘n (h+(X) - hf(x))) =0 >
therefore formation coefficient of generated distortions of waves is obtained as
mn

o, =— (2.11)

kOn 1n h+(X)—h7(X)

The wave number of the first generated harmonic depends on the surfaces of the non-smooth
waveguide
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km<x>{%‘J(n(x)—h_(x))[hé+(h+(x>—h_(x))T/2. )

In the first approximation, the interaction of the normal wave with surface non-smoothness
affects to the propagating wave:

W (X, Y,1) = D W (Y)- X, (X) - exp(—img,t), (2.13)
n=1
where
o h -k (XY - h -k (X)y
W, (y)=C, exp|i——""——|+C, exp| i ——"——
[ (h+(><)—h(><))j ( (h+(X)—h(X))ja

X, () =vA, exp (ik  (x)- X).
Note that if the rough surfaces are “symmetric” with respect to the mid-plane of the
waveguide, i.e.

—h (¥)=h.(x) =h(x) =h[1+&-sin(k-X) +8- cos(k- X)], (2.15)

then from relations (2.11) and (2.12) for the wave number over the thickness of the
waveguide and the coefficient of formation, respectively, are obtained as follows

(2.14)

) -1/2
s .
K (X) = h [4h2(x)+1} ; (2.16)
2 -1/2
S NS _ T h,
Kin(X) a“‘(x)__h(x) {hz(x)“‘} . 2.17)

The solution (2.14) will be correspondingly transformed into

s _ S ; h)'kfn(x) s i h)k;(X)
Vvln(y)_clnexp[l[ h(X) ]y]—l_CZneXp[ I( h(X) ija (2.]8)

Xin(X¥)=vA, exp(ikfn(x) : X)-
In the case of “synchronous” (parallel to each other) roughness on the surfaces of the
waveguide, will have the following representations:

h (X)= ho[1+8-sin(k~x)+8~cos(k-X)],
h (x) =—h,[1—¢-sin(k-X)—38-cos(k - X)].

Then from relations (2.11) and (2.12) for the wave number over the thickness of the
waveguide and the coefficient of formation, respectively, are obtained as follows:

\/g mn . \/g in

E'E’ kln(x)'aln(x) =~

20 ho (2.20)
The solution (2.14) changes accordingly
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(2.19)

ki (%) =



h

0 0

* . (A5 * 5 mn
V\lln(y)zclnexp Yy +CZn€Xp ==Y
20 h 20

(2.21)
min

Js
X = ji—-—-X|.
LX) =YA, exp(l P X

0

2.2. Second Approach
To analyze the propagation of the normal, pure shear wave signal (1.1) and (1.2), taking into

account that in the isotropic waveguide (2:= {|X| <oo; h (X)<y<h (x)

Z| < oo}
roughness of surfaces Y =h (X) and Y =h, (X) are described by the functions (1.4), the

near-surface thin layers with variable thickness (the waveguide is presented as three-layer,
see Fig.2) are virtually selected 2 =0 U Qo uQ . » where

Q. é{|x| <oo; h (X)<y<-h +v;
Q, 2{|X<ow; —h+y_ <y<h -y;
Q, 2{|x<o0; hy =y, <y<h (X); (2.22)

We intend to solve the equation of medium motion (1.3) for all three layers separately with

4<w%

4<w%

4<w}

boundary conditions (1.5) on mechanically free, non-smooth surfaces Y =h (X) and
y=h_(X) for elastic displacements W (%, ¥.1) (respectively for layers Q. ), and the

conditions of continuity on virtual cross-sections y ho V- and y m Ve

W (%, y’t)|>’=4b+v_ =W.(x, y’t)|)’=*fb+v_

UACS AN NN A S A .

(2.23)
oW, (X, Y, t) _ oW (X Y1)
oy y=—hy+7. oy y=hy+r
W, (X, ¥, 1) _ oW (X Y,b)
O  yne O - (2.24)

Considering the thinness of the surface layers Q) _, the solution in them are represented with
the hypotheses of MELS [11, 13] taking into account the nature of the changes arising from
surface roughness Y =h (X) and y=h, (X)
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sh(p,[y-h+7.])
sh(w, [h,0—h +7,]
W, (%1~ 7. ); (2.25)
sh(w [y+h -7 ])
sh(p [ (9+h 1.
W (%~ +7.), (2.26)

where the values W, (X, h+(X)) and W_ (X, h_(X)) are determined from the conditions

w.(%y) = j Lo e 0) - )]

W.(X,Y) = ])-[W(Kh(x))—wo(xa—ho”)}

on mechanically free surface (1.5) as follows:
. -eth (i, [0~y +7.])-[ 1= {0} |
. -oth (i, [n. 00—y +7,]) [ 1= {N.00}" [+h(0

w-cth(p [ 9+, —y])-{l—(h'(x))z}
. -cth(p_ [h_(x)+h)—y_])-[l—(h_'(x))z}h_'(x)

Substituting (2.27) and (2.28) into (2.25) and (2.26), we reach the solution in the near-surface
thin layers of the waveguide formed by the propagation of the normal wave

W, (X, Y, t) =W, (y)- eXp[i(kOX—Q)Ot)] in the basic layer Q) :
Sh(lh[y_h)"'%]) %
Sh(“+[h+(x)_rb+7+])

W, (x,h, (X)) = w, (x,h, -7, ); 227

W (xh (X)= w(x—h+y_). (228)

W, (X, Y)= h 00 w(xh-v,): (229
peth(y, [P O0-h,])-{ 1RG0} Joh (9
sh(wfy+h-r])
sh(p_[h_(X)H‘b—y_])

W (XY)= W(x-hy+y ). (230)

h'(x)
pcth( {00+, =) 1-(h' G0 [rh' (9
Let us represent the normal wave in the basic layer Q) in a common form

W, (X, Y, t) =[ Acos(p.y) + Bsin(u.y) |- exp[i(k.X—ot)], 2.31)

X
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here k. £ min{pk ; gk } =2mn/A, is the smallest common wave number of the roughness

on the surfaces corresponding to the generated harmonic of the wave.
From the conditions of continuity of mechanical stresses (2.24), we obtain a dispersion
equation to determine the formation coefficient ., :

ul —p-otg (a2 = (v, +72)) (£, (13 h (0) = f_(nsh(0)) =

(2.32)
=—f, (nsh.(0)-f (1 sh(x),
in which
1 " ]
| sh(w[h0-h+v.])
f.(nsh(x)= ! e
x = 1rh (X
| wecth(p, [ 00ty ])- IHOOF e 00 _
1
sh{p_[h (x) -7 *
f(ush (%)= (h-[n09+h-1.]) 1 L(2.34)

X 3 ; u_h’(x)
peth ([P (90 —7_])- | 1={ 00} [ (%)

They characterize the influence of the rough surfaces on the formation coefficient.
It is obvious, that the solution of the dispersion equation (2.32) significantly depends on the
surface roughness h, (X).

3. Numerical Analysis of Obtained Results
Considering the surface roughness, in the first approach, the solutions for formation

coefficient kOnOtln and wave number km(X) are obtained in the forms (2.11) and (2.12)
respectively. As expected, the variable thickness through the waveguide plays the main role
in these expressions &(X) = h,_(X)—h_(X) , by means of which the wave process can be

controlled.
B
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Fig. 3.1. The wave number for “synchronous” and “symmetric” surface roughness of the waveguide
(the first approach)

37



Graphics of the formation coefficient and the wave number for different particular
characteristic surfaces of roughness are given in Figs. 3.1 and 3.2 using the relations (2.15)-
(2.21), respectively. From the figures of the wave number and formation coefficient it follows
that for “symmetric” surface roughness of the waveguide (2.15) the changes of these values
are characteristically different from the case of “synchronous” surface roughness (2.19).

e hay

0014 o088k —
oon2f /
o024 / N\
oo0f / \

[ 187 b !
o008 f b /

0.006F 0.0280} / Y

0.004F / Y
0.0278 /
o002

1 1 1 1 Lox e

L L L Ly
0.2 04 0.6 0.8 10 0.2 04 0.6 0.g 10

Fig. 3.2. The formation coefficient for “synchronous” and “symmetric” surface roughness of the
waveguide (the first approach)

From Figs. 3.1 and 3.2 it is obvious that in the case of “symmetric” surface roughness of the
waveguide (2.15), the wave number and the formation coefficient are periodically changed

with respect to the half-thickness of the waveguide in the interval X [O; X*] :

In the case of “synchronous” surface roughness of the waveguide (2.19) the wave number
and the formation coefficient are only changed by a constant value for each N-th harmonic.

In the general case of arbitrary surface roughness Y = hﬁ(X) and Y= h+(X) from (2.9)-

(2.14) it follows that due to the difference of surface roughness in the near-surface areas there
occur qualitatively identical, but quantitatively different harmonics, a synchronization which

occurs at the mid-plane Y = 0. From (2.11) and (2.12) it is obvious that the wave number
kln (X) and the formation coefficient k;, o, (X) for the propagation of the waves is always
positive, since h, (X) —h_(X) > 0 . From relations (2.18) and (2.21) we can easily get the

nature of the changes of elastic shear through the thickness of the waveguide, according to
the variable thickness of the waveguide (see Figs. 3.3 and 3.4). The picture of elastic shear

V\/lf,(y) over the thickness of the waveguide for the “symmetric” surface roughness is

defined by relation (2.18) and is shown in Fig.3.3. Fig. 3.3 shows that over the thickness of
the waveguide for the “symmetric” surface roughness (2.15), the normal waveform is
periodically distorted depending on the law of variation of its thickness

E(X) = h, (X) — h_(X) . Accordingly, the phase velocity of the generated harmonic is also

changed. The elastic shear V\/1; (Y) over the thickness of the waveguide for “synchronous”
surface roughness is defined by relation (2.21) and is shown in Fig.3.4. From (2.20) it follows
38



that in this case only short waves with lengths A, = \/g : ho / N propagate for large numbers

of harmonics N, such that NA, <<\/§ : f'b .

Fig. 3.3. The elastic shear through the thickness of the waveguide for “symmetric” surface roughness

(the first approach)
Solving the problem with the method of hypotheses MELS, through the thickness of the
waveguide we obtain the expression of elastic shear in the basic layer Q  in the form of
(2.31), which is analytically continued in both near-surface zones Q and Q _, accordingly

(2.30) and (2.29). The image over the thickness of the waveguide is constructed after
determining the formation coefficient p1, from the dispersion equation (2.32). From relations

(2.29)-(2.34) it is obvious that the solutions, received in the near-surface zones 3 and Q) ,

are characteristically the same, but numerically different at different surface roughness

I’l+ (X) and h_ (X).
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Fig. 3.4. The elastic shear through the thickness of the waveguide for “synchronous” surface

roughness (the first approach)
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The dispersion equation (2.32) is much simplified in the cases of “symmetric” (2.15) and

“synchronous”
(2.19) surface roughness, considering the expressions of the coefficients of the dispersion

equation f . (LL g h+(X)) and T_ (Ltf; hﬁ(X)), in relations (2.33) and (2.34) respectively.

Fig. 3.5 shows the graphical dependence of the formation coefficient p, on X.

u

100

=)

-100 b -100t
Fig. 3.5. The formation coefficient for “synchronous” and “symmetric” surface roughness of the
waveguide (the second approach)

To each formation coefficient p,  naturally corresponds a wave number

k“‘n = 21{/7\’*n = wgncaz _Mzn i

L7
1.0 - 50

Fig. 3.6. The elastic shear through the thickness of the waveguide for “symmetric” surface roughness
(the second approach)

From the dispersion equation (2.32) and the relations (2.33) and (2.34) it is evident that in
the absence of roughness on the surfaces of the waveguide, i.e. when h!(x) =h'(x) =0,

both introduced multipliers (2.33) and (2.34) become zero and from the dispersion equation
we obtain the case of homogeneous waveguide M., = H,, = 7N/ h,.

From the obtained graphs it is also seen how the presence of “symmetric” (2.15) or
“synchronous” (2.19) surface roughness of relatively homogeneous waveguide leads to
distortion of forms (formation coefficient ., and wave number K, ).
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Fig. 3.7. The elastic shear through the thickness of the waveguide for “synchronous” surface

roughness (the second approach)
From relations (2.32)-(2.34) and the received graphs it is also clear that weak surface
roughness do not lead to appearance of damped propagating harmonics through the depth of
the waveguide. Partial localization of the wave energy occurs only in the thin surface rough
layers, which can be seen in the given figures of elastic shear over the thickness of the
waveguide. The images of elastic shear throughout the thickness of the waveguide in
particular “symmetric” (2.15) and “synchronous” (2.19) surface roughness cases are shown
in Figs. 3.6 and 3.7.

4. Conclusion

It is shown that weak surface roughness lead to instability of a normal propagating wave in
the waveguide. The presence of surface roughness can lead to prohibition of waves of certain
lengths depending on the characteristic values of the functions of the roughness. Only partial
localization of wave energy in thin near-surface areas of roughness occurs. The localized
surface waves do not occur. The introduced method of hypotheses MELS allows to analyze
the process of distortion of the normal waves, that will make it convenient for studies of wave
processes in waveguides with complicated properties and sophisticated characteristic
roughness of the material of the waveguide and its surfaces.
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2U3UUSULP @bSNh(e3NPLLENP UQFU3PL UUUEURUSE Sttulahl
W3BECTUSI HALIMOHAJIBHOM AKAJIEMUM HAYK APMEHUM

Uthuwmthju 70, No2, 2017 MexaHuka
YK 539.3

IEPBASI JMHAMUWYECKASI KPAEBASI 3AJIAYA TEOPUHA
YIPYI'OCTH JUIA TPEXCIOMHOM IVIACTUHKH

3akapsin T.B.!

KirroueBble cJ10Ba: ClionCTasi IIACTHHKA, BEIHYXXIEHHBIE KOJICOaHUs, PE30HAHC, ACHMIITOTHYECKHIT METO.
Key words: laminated plate, forced oscillations, resonance, asymptotic method.
Puliunh punkp: skpinuynp uwy, unhynnuljut munwinidukp, nkqnuwby, wuhdynninhly tkpnn

Zakaryan T.V.
First dynamic boundary problem of the elasticity theory for three-layered plate
The three-dimensional dynamic problem for orthotropic three-layered plate of symmetric shape is solved. It is
assumed that the values of components of stress tensors, harmonically changing during the time, are given on front
surfaces. There is a full contact between layers. The general asymptotical solution is obtained. It is shown that if
external interactions are polynomials of tangential coordinates then the solution will be mathematically exact. The
illustrativ eexample is discussed.

Qupuwpyul S.9.
Unwdquljuiun pjui nkunipjub wpweht nhhwdhljulwt kqpuyht punhpp Epwotpn uwh
hwdwp

Lowsyws £ wnwdquljminipjutt mbunipjutt nwwpwswluwt phtwdhjulwt fuinhp uhdbnphly
otipnbtphg punjugus trwotpwn oppnwnipny uwh hwdwp: Gupkph nhdwht dwltplnyputph Jpu
npdus b jupdub phugnph hwdwywnwuppwt pununphsutpp, npnup pun dwdwtwlh thnthnjudnud
kt hwpunuhlnpki: Thpinkph vhol Yntnwlpinp |phy b Unugqws k pinhwimip wuhduinnnhljuljut
msnudp: 8nyg b wpyws, np kpp wpuwphtt wqpkgmpnibiipp hwimhuwinud & wnwbqkighuy
Ynnpphtwnubph tjundwdp puqduwinuditp, tkppht pugph pusnudp qununud E dwpbdwnhlnpbu
&oqphwn: Upnwuddws L nkqnuwbuh wpwgugdwl wuydwtbpp: fEpdus k pinipwuqphy ophiwly:

Pemena TpéxmepHas nuHaMu4eckas 3ajavya JAas OPTOTPOIHON TPEXCIOMHOM MIACTUHKH CHMMETPHYHON
cTpykTypbl. CUMTaeTCS, YTO HA JIMIIEBBIX TIOBEPXHOCTAX MAKETA 3a/[aHbl 3HAUECHHS COOTBETCTBYIONINX KOMIIOHEHT
TEH30pa HANPSKEHUH, KOTOpbIE H3MEHSAIOTCS BO BPEMEHH TapMOHMYECKM. KOHTAKT MEXy CIOAMM MOJIHBIH.
IMomyyeno obmiee acUMNTOTHYECKOEe pemreHue. Iloka3aHO, YTO €CIM BHEIUHHME BO3JCHCTBHS ABIAIOTCA

MHOTOWIEHAMH OT TAaHT€HLUAIbHBIX KOOPIUHAT, PELIEHHE CTAHOBUTCA MaTeMaTHYECKU TOYHBIM. IIpuBenén
WUTIOCTPALMOHHBIN IPHMeEp.

BBenenmne. J{n1s1 pemeHust IUIOCKUX W IPOCTPAHCTBEHHBIX CTATHUECKUX M JHHAMHUYECKUX
3amaq OaJOK-TI0JIOCH TIACTHH OKa3aics 3((EeKTUBHBIM aCUMIITOTUICCKUN METO]| PEIICHHUS
CHUHTYJISIPHO BO3MYMIEHHBIX Au(depeHIInanbHbIX ypaBHEHHNA. PemeHnto craTmdecKux
TUIOCKUX ¥ IPOCTPAHCTBEHHBIX 3a/1a4 OJHOCIOMHBIX M MHOTOCIOWHBIX 0ajloOK M IIACTHH
nocesiienbl Mmonorpaduu [1,2]. HekoTopsle Kiacchl 3aia4 O BBIHYXIIEHHBIX KOJEOaHUSIX
OJTHOCJIOMHBIX ¥ MHOTOCJIOMHBIX TUTAaCTUH pemieHsl B [3-5]. IlepBas quHamuueckas KpaeBast
3a/1a4a JIJ1sl M30TPOITHOM TOJIOCKHI perieHa B [6], a Ju1s opTOTponHo# nojockl — B [7]. [lepBas
JTUHAMHYecKas MPOCTPAaHCTBEHHAs KpaeBas 3a/1a4a, A1 IPSIMOYTOIbHOM IJIACTHHKY PelIeHa
B [8]. B manHO# paboTe pelieHa Ta xe 3aaada st TpEXCIOWHON TNTACTUHKYA CHMMETPUYHOM

CTPYKTYDBL.

! PaGora nonoxena na MesxayHapoIHOM LIKOJIe-KOH(EPEHIINH MOJIOIBIX YUEHbIX, 3-7 OKTsI0ps1, 2016,
Ilaxxan3op, ApmeHusl.
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1.0cHOBHBIC ypaBHEeHHMSI W NOCTAHOBKAa KpaeBoil 3amaun. Mmeem TpéxcioiiHyro

IUTACTHHKY, 3aHUMAIOIIyIo 001acts D = {(x,y,z) : 0<x<a, 0<y<)h,

—(h+h)<z<h+h, 2(h+h)=H <<I, | =min(a,b)} (¢ur.1).

zA

h+h

-(h+hy ez

®ur. 1

TpeOyeTcst HAlTH pellleHrne YPABHECHHUI JBHKCHHSI
k k k k
oc' Oo,, oct. o0 0oy, Oo, Oc. 0%
+ + = + +—=

x D e ez © e

k k k 2k
0o’ oc v 00 L O°W

+ + =p o k=1,1111I,
ox oy 0z ot
NPW COOTHOLIEHUAX YyHpyrocTu (00001EHHBIN 3aKkoH ['yKa)
k
ou" Kk __k Kk __k i ko OV k __k Kk __k K _k
=4a,,0,, +a,0,, +a,;50_, =4a,0,, ta,0,, +a,0_,
; k
ow' k __k k __k k _k ou' v kK __k
= alSGxx + a236yy + a33Gzz’ + = a660-xy’ (12)
0z oy Ox
owt out . oawt vt
+ =450, +——=a,0,,.
ox Oz oy Oz

U CICAYIOINX I'PAHNYHBIX YCIIOBUAX Ha JINLEBBIX ITOBEPXHOCTAX INIACTUHKNA!

oL (x,y,h+h,t)=c (&n)exp(iQ),
G;Z (x, v, h+ hl,t) =0, (E,,n)exp(iQt),
oL (x,y,h+h,t)=c. (&mn)exp (i),

é=7, n=y/, | = min(a,b),
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(1.3)
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o (x,y,—~(h+h),t)=—c_(&n)exp(i€x),
oy, (X, y,~(h+h),t)=—c,_ (&n)exp (i),
o (x,y,~(h+h),1)=~o (&n)exp(iCx),
rae €2 - uacTora BHeIIHeEro BO3IEHCTBHA, 1 YCIOBUSAX MOJTHONO KOHTAKTA MEKILY CIOAMH
o (%, 3, h,0) =6 (x, . h,0), O, (x,y,h,1) = (x, y,h,1),

o (x,y,ht)=c(x,y,h,t), u'(x,y,h,t)=u"(x,y,h,t), (1.5)
Vi, v, ht)=v(x, y,ht), W (x, v, ht)=w" (x,y,h,t).

Gilz(x’ya_hat) = G)Iclzl (xa ya_hat)a G;[z(xa YV, _hat) = G{VIZ[ (xa Y, _hat)a
Vi

GZ (x,y,=h,t)=c_ (x,y,—h,t), u® (x,y,—h,t)= u™ (x,y,—h,t), (1.6)
v (x,y,—h,t)= i (x,y,—h,t), wh (x,y,—h,t)= w (x,y,—h,t).

2. AcuMOTOTHYEeCKOe pelieHHe 3agaqu. PemeHue chopMynupoBaHHON 3amadd Oynem
WCKaTh B BUJIE

oy (%, ,2,0) =0} (x,,2)exp (iQ),
wB=x,y.2, i,j=123, k=I1I1II,

1.4)

2.1)

(uk(x,y,z,t),vk (x,v,z,t), wh (x,y,z,t)) =
= (1} (6, 3, 2), 1} (x, 3, 2), 1 (x, y,2) ) exp (i€

Ilepeiins B AMHAMMYECKMX YPaBHEHHSIX M COOTHOIIEHHSX YIPYTroCTH K Oe3pa3MepHbIM
KOOpJAUHATaM U IIEPEMEILIEHUSM:

E=x/l, n=y/l, {=z/H,U=u/l, V=u/ll, W=ull, (2.2)
U nojictaBuB (2.2) B 3TH NpeoOpa30BaHHbIE YPaBHEHUS, IIOyYHM CHHTYJISIPHO BO3MYILEH-
HYI MaJIbIM IapaMeTpoM €= h/ Z CUCTEMY, PCLICHUC KOTOpOﬁ CKJIaAbIBACTCA U3 peIHCHI/Iﬁ

o int o
BHYTPCHHEU 3adavun (1 ) N TIMOTPAHUYHOTO CJI0A (Ib) Pemenue BHYTPCHHEU 3adavn

OyzeM UCKaTh B BUIC

Gj;int — g*mGz’_(‘Y)(i’n’C) , i,j= 1,2,3, s=0,N
(Ukint, Vkint , Wkint) =g (Ukm ’ Vk(s), Wk(S)), k=111,

[MoacraBus (2.3) B 3Ty cucTeMy M NPUPABHIB KOA(MGHULIUESHTHI TP OJNHAKOBBIX CTEMEHSX
€, TONy4ydM  HENPOTHBOPEUUBYIO  CHCTEMY AN ONPEICIICHUs  BEIUYHH

k(s k(s k(s k(s
Gij( ),U ( ),V ( ),W ( ):
U3 370ii cCTEMBI BCE HANIPSKEHUSI MOYKHO BBIPA3UTh Yepe3 MepeMereHus mo GopMmyiam:

W) 1 aUk(s) . aWk(sfl) W) 1 aVk(s) . aWk(sfl)

2.3)

(e} = R o =
voag| & o Coau G o

2
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k(s—l) k(s—l)
o - (2 2
n

2%

k(s) k(s—l) k(s—l)

Gfl(S) = Alk _Afs al/gc +A§2 5Ua§ _AIkZ 5Va Ja
n

(2.4)

k| 3 G ) + 4;5 )
A o ok on

TAF T, »T 5 1375 >
G g m
rae
Al = a)\a3, _(aIkZ )2 . Ay = apay —ayays, A =ayay —ajay, k=111

2 2
Kok k k ko ok k _ _k k 4k _ _k_k k
Ay, = ayay; _(‘123) s Ay = a3, — Ay, Ay = gy _(a13) > (2.5)

k_ ok oqk kb k 4k W g0 Al _ AT
A" =ay Ay —ap A, —apdy, Ay =4;, AT =AY,
Qk(m)EO npu m<0,

k(s)
nust onpenenenns U™ monyunm ypaBHeHre

62Uk(s)

ac
RIY = —al doy " o) ewe
o8 on 0EQC

JUTSL OTIPE/ICIICHUSI | HOJIyYHM ypaBHEHHUE
62 k(s)

N
RKO = _gf, oo N ook aPwte
) g on nac

k(s)
s onpenenenus W' umeem ypaBHenune

217k (s)
, O

11 aCZ
k(s—1) k(s—1) 27 7k(s-1) 27/ k(s-1)
RV];(‘S) _ —Ak 8613 + 6023 +A§3 a U +A1k3 a V
o8 o 080G onag

Pemenunsmu ypaBaenui (2.6)-(2.8) saBustoTcs:

+ aéfskaiUk(S) — RS(S) , (26)

b

rab pt QIO = REO) @

3

+AkkaiWk(S) — RI/];/(’), (28)

b
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U = Emsiny G+ GV € meosy UL (Em.Q).
P = G Emsinyag + G @ mycos G + V(€ m, ),
W = O (g m)sinyiC+ G (€, m)cos v C+ W (€, 0),

vy = QP Vi =Qup'dl, v =Qp A 4, v =y!

k(s k(s k(s >
rae U‘r ) N V; ) N VVT ) — YaCTHBIC PCHICHUA 3TUX YPABHCHHUU.

2.9)

k k k .
[oncrasus 3nauenust U (S), V (S), Wh g (2.4), nns HAPSKEHUIH Gﬁ”,cgg”,clﬁ”

OyneM UMeTh:

o1 =Q,p" [aks (CF (& m) cos v CG—Ch (& m)sin v} € )+ £5° (€., €),

ok = Qfp* [al, (CH (&) cos i~ CI (€ m)sin A6 + 45 (&, €,

(2.10)
o) =Q,\Jp* 4} /A (CE(Em)cosyiG — CEO (€ m)sin Y0 ) + 5 (B, ©),
rac
. 1 (eUur® owreD o Lort® 1 owreh
fé”=—k[ x ta PR T a e e
55 44 55 (2.11)

k k(s) k(s-1) k(s-1)
o AWy 1 outeh Lo
33 k k 23 13 >
Ao A ot on
Ynosnersopus ycioBusiMm (1.3)-(1.6) u pemmB COOTBETCTBYIOUIYIO alreOpanvecKyro

k
cuctemy, onpenesum see dynxiuu C i ©

S 1 S S S 1 S S S S
Cl[( ' = F(d} '+ leczl( ))a CIH( )= g(ml (d1(6) +d1(3) ) +m, (bldfo) _d§ ) ))a
1 1
Clm(s) _ Ll(dis)_BéCZM(s))’ C21(s) _ L(dl(;) +Bz110C111(s) +B1UOC2U(S)),
Bl m,
S 1 S S S S
Czll( ) = 2_g2(m1 (dl(6) - d1(3) ) +m, (bldl(o) + d§ ) ))a (2.12)
cle ﬂ d® — Boce _ gliocie)
2 - " ( 10 1 1 2 2 )’
1
S 1 S S S 1 S S S S
CSI( ) = _1(d§) +BiC:( ))v CaH() = _(m3 (d1(7) + d1(4) ) +m, (bZdl(l) _dé )>):
B, 2g,
1 1
C3111(s) :p(dés) _Biciu(s))’ CA{(S) :_(dl(i) +B:IOC3H(S) +B3”0Cf(s)),
3 4
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C,Y = ZL(ms (dl(;) ~d\] ) +m, (bzdl(i) +dy” )),

&4
cHe _b_z 4d® — procte _ giocie)
4 = ( 11 3 3 4 4 )’
ms
S 1 S S S 1 S S S S
Csl() :_I(dg)+B6[C61( ))a CSH() :_(ms (dl(S) +d1(5))+m6 (b3d1(2) —dg())),
B; 2g;
1 1
CIO = (@ =BICI), €L = (d + B"C' + BI'CL),
5 6

CGH(S) = ngs<m5 (dl(;) - dl(g) ) +mg (bsdfi) + d9(5) )) )

b
s _ Y3 (46 110 ~II(s) 110 ~II(s)
Cs __(d12 — B Cs — B Cs )a

ms
rae
_sinn (G =Gy) - _cosn(§-6)
my, = i » My = 7 ,
cosy; G, cosy,C,
a515p11 . ai;p” - AllprAl
aslgpl > 72 aﬁpl > 73 AlzlplAn >
g1:2cosy’§ [(bl ~Deos(y;C,—(v1 + 11 )5o)+(b,+ D cos(v,C,+(vy' —yf)go)] ,
191
1 ) .
8275 cos V1 '[(bl_ Dsin(=y{ &, +(v] +y1)E,)+(b,+1)sin(y; &, +(y;" —yl’)go)] ,
1%1

(2185:71>Y2:00.0,), (85,8437 Y53000y), (my,mys vy, v3), (my,mysy,Ys),s
(glagS;Yi’Y;;blab3)9 (gz,g6;Yi,y;;b1,b3), (mlams;Yiay;)a (mzamﬁ;Yi:y;):
Bl =cosv/(,, By =siny,(,, B =cosv\C,, By =siny,(,,
B! =cosyll,, Bl =sinyiC,, B =cosyily, BY =sinyil,. i=LIL  (213)
B =cosyy(,, By =siny;l,, B:’ =cosyil,, By =sinyil,,

s 1 + S s 1 + S
df = ——ass o' (. = [V (En.6) 07 =Q—\/a:4/p’ (o). - V(&)

S 1 A[ + s s l - S
et e (0% = 7 En.86)). 4 == —ass /o' (o0 + 15" &0, -C),
* 11 *
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1 | A

4 == au [o' (0, + FEOEN,-6). 4 == - (oL + A EmG),

* * 11

4y’ = e o (R0 6m,60) - i 6 n.60) 2 d

*

dy’ = éx/aM/p( 5 EM G~ 7 EMGy)) - B3 dy,

* 3
() _ 1 1(s) 1(s) B ;| (S)
d' = Aﬂ (NG - AN L) B
dly) =—Jal [p" (A0 Em.~C,) - f1¥(Em.—C,))+ o5 "o,
BIO
d(s) a44/p11 ( II(S)(CED’T]’ z;o) fZI(S)((t3 n,— (;0))+ b 3B] dS(S)’
273
1
d(S) — 1 (s) , 1I(s) , d(S)
ey */A{f (O - O M)+ b3B;
10 10
dl(;) — UTH(S) _UTI(S) Bz d(s), dl(z) — VTII(S) _ VTI(S) _ B41 dZ(S)’
1 3
BIO BIO
dl(z) — VVTH(S) _ WTI(S) 6 d}(S)’ d1(2) UTHI(S) —UTH(S) __21df)’
5 1
B]O BIO
dl(;) — VTHI(S) _ VTII(S) ——41d5(s), d](;) — VVTIH(S) _ VVTH(S) B d(s)

3 5

Pertenue Oyner KOHEYHBIM, €CIIH Bl. * 0, m, # 0, g * 0, i=1, 2,3,...,6. Ecnm xe

Kakoe-Ti00 U3 3THX BEITMYMH 00pamaeTcs B HOJIb, TO Oy/AeT BOSHUKATh PE30HAHC.

Peuienre BHyTpeHHEW 3aJaudl CTAHOBUTCS MAaTEeMaTHYECKH TOYHBIM, €CJIM BXOJSIINE B
rpannynbie  ycnoBust (1.3), (1.4) ¢yHkuum sIBISIIOTCS MHOTrOWwieHamu. B kadecTse
WLTIOCTPAIMK TPUBEAEM PEIIICHUE, COOTBETCTBYIOIEE YCIOBHSIM:

6. (C)=—Z =const, o_(§)=—Z; =const,

(2.14)
+ + - -
c.=0, 6.=0,0_.=0, o_=0,
0 =L@ B, - A7z
B 22:B,Q. \ 4ip'

1
coo =L (@0~ BlC),

5
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cro o L | A

[ (0, =Dsin(=y/, + (v +7/)G0)+

o\ Ap
s no1 R T
+ (b1+ 1) Sln(Yl C.!l + (Yl -1 )Co):| (Zl - Zz )a
1 (2.15)

100) _ (0) 110 ~11(0) 110 ~I1(0)
C! _m—(dls +B°CI + BI'CI ),

6

b
)y _ Y3 0) 110 ~I1(0) 110 ~I1(0) LI
Cs _m_(dIZ _Bs Cs _B6 C6 )a C1,2,3,4 - Oa

5

WO = CEO € m)sinyi¢+ CEO (&) cos 7L,
k(O) _ _A_; aWk(O) k(O) _ _A_ll; aWk(O) k(O) — A_lklaW—k(O)

11

2

Ao TR T g 0 R T AR o

ut =0,V =0, sz =0, Gﬁ =0, 012‘3 =0, W' =IW*? exp(iot),

—1__k(0) —1__k(0) —1__k(0)

ot =¢'c}” exp(iot), G’;y =& "'ol” exp(iot), o' =& 'c4” exp(imt),

3akJroueHue. Peniena mpocTpaHCTBEHHAs! IIepBast AMHAMHUUYECKas KpaeBas 3aJja4a TEOpUn
yOpYrocTd [uis TPEXCIONHONM OpPTOTPONHOM IIACTUHKU CUMMETPUYHON CTPYKTYpBHI.
ACHMITOTHYECKAM METOAOM MOCTPOEH WTEPAlMOHHBIA IIPOLECC Uil ONpPEACICHHS
KOMIIOHEHT TEH30pa HAINpPSKCHUH M BEKTOpa IEpeMEIleHHs BO BHYTPEHHEH 3ajaue.
HOKa3aHO, 4yTO C€CJIUM BHCHIHECC BOS[[CI‘/IICTBI/IG €CThb MHOT'OWICH II0 TaHICHIMAJIbHBIM
KOOpJWHATaM, TO WTEPAlMOHHBIA IPOIEcC OOpHIBACTCS M MONYydYaeTcsl MaTeMaTHYECKH
TOYHOE pelIeHre BHYTpeHHEN 3agaun. [IpuBen€H MLTIOCTpallMOHHBIN IPUMED.
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RESONANCE AND LOCALIZED SHEAR VIBRATION
OF BI-MATERIAL ELASTIC RESONATOR
Ghazaryan K.B., Papyan A.A.
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KitroueBble CJI0Ba: CIBUTOBBIC BOJHBI, JIOKAJM30BaHHbIC BOJIHBI, BHYTPCHHU PE30HAHC.
Putimh punkp. uvwhph wihplbp, nknuyiugdus wihpbkp, akppht nhgniwtiu

Nwqupub 4.2., Muyymi U.U.

NEgnuwbuught b nkyuyiugdus vwhph wuwnwinudubpp puqunpu) wowdqujuwi phqniunnpnid

Uojuwtnwipp udhpdws b pununpu) phgnuwwnnpmid uwhph mmwnwinwdubph puunpht, tpp
nhgnuwwnnpp punugws b pynt wwppkp wnwdqujut Wyniptphg b nith muynuulnit hwwnnype:
“hunwnplyt E uwgt nhypp, tpp nkqnuuwnnph dh jonudp wquun b jwpnudubtphg,  hul dbwgws tpkp
Unnukpp  Ynownn  wlpwlgdus Lz 8nyg L wpdus, np  gonipynit niukt Gpynt whwh
nwnubnidibp niquubtugjus b ukhwlui: 8nyg Eownpdus bpynt wwpplp nhpnygpibpnod
nbknujuigdus b ubthwjut nmuwnwinidutph hwdwpunipniuutph hwdpijudwt htwpwynpnipniip:

Kasapsau K.B., Ilansan A.A.
Pe3oHaHCHBIE M JIOKATH30BAaHHbIE CIBUIOBbIC KOJICOaHMS B YIIPYTOM COCTABHOM Pe30HATOpe

B pabote paccmoTpeHa 3ajaua CABHIOBBIX KOJICOAHHH COCTaBHOIO PE30HATOPA MPSIMOYTOJILHOTO CEUCHHS,
COCTOSIIIET0 M3 [BYX DAa3IMYHBIX YHOPYTMX MaTepuanoB, KOIJa OJHA M3 CTOPOH pPe30HaTopa CBOOOAHA OT
HaNpsDKCHUH, a OCTalbHBIE TPU JKECTKO 3aKPEIUICHBI. YCTAHOBJICHO CYINECTBOBAHHE [BYX Pa3JIHMUYHBIX THIIOB
KOJNEOAHNH: JIOKAIM30BAHHBIX M COOCTBCHHBIX. IlOKa3aHa BO3MOXKHOCTb COBINAJCHUS JIOKAIH30BaHHBIX M
COOCTBEHHBIX YaCTOT KoIeOaHUi pa3IuIHEIX (opM, mpuBosnIee K 3GPeKTy BHyTPEHHETO pe30HaHca.

The paper is dedicated to the problem of shear vibration of compound resonator, made from two different elastic
materials, with rectangular cross section, when one side of the resonator is traction free, three other sides are
clamped. The existence of two different types of vibration, namely localized and natural types are established.
Possibility of coinciding of localized and natural frequencies from two different spectrums are shown, resulting in
the internal resonance occurrence that does not exist in one phase material resonator, with ordinary boundary
conditions.

Introduction.
A number of studies and reviews devoted to specific cases of localized waves edge resonance

in elastic systems are presented in [1].The correlation between effects of resonance and
localisation of shear waves in elasic resonator were have been firstly reported in a modal
problem [2], where was shown that due to vibration localisation frequencies the internal
resonance can occur. In [3] classical compound systems are analyzed formed by the pairs
of coupled resonators, including a system of elastically coupled masses, a system of rigid
rods separated by a notch, and an optical system made by a pair of dielectric films separated
by a thin metallic layer. Non linear effects in elastic resonators are considered in [4].
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Statement of the problem.

In Cartesian system (X, Y, Z) a two phase bi-material elastic resonator is considered,

occupying a region —D<X<a; 0<y<d; —00< Z<00. The resonator consists of the

two different elastic materials: (1) of length b, bulk density p

(2) of length @, bulk density p(2), shear modules G(z) (Fig.1).

IS

)

(ID

v

SN

s

N

Fig.1. Resonator’s cross-section
S=1, S=2 stand for first and second materials, correspondingly.

We take the following boundary conditions at the resonators walls

ul=0, U?=0y=0, vy

)
U =0 x=-b, Y _o
OX

We also take the ideal contact conditions of continuity for the displacements and the

stresses of two different materials at the interface X =10

u =y® . g ou" -g®

=d,

X=a.

ouU (2)

OX

Solutions of the problem

OX

, shear modules G(l) and

Q)

@

3)

The solutions of Eq.(1) satisfying boundary conditions at ¥ =0,y = d we present in the

form
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(%, y,t) iU(S) )sin(A,y)exp(i ot)

n=1

A, =—;n=123... 4)

Functions Ué? (X) satisfy the equations

d’u’

. == 4] (7 =n* U =0, (5)
X
212
ddU2 +}L2( 2—n2)U52):0,
c , c®? c
Here N =—— Clz——; C, = ; o=—
G p" p"? c,

Solutions of Eq. (5) satisfying boundary condition X=—b and contact conditions at

X =0 can be written as

Uéln)(x):C(sinh(xk1 nz—nz)+tanh(bk1 nz—nz)cosh(xk1 nz—nz)),

Usy (X) = y“ smh(x?» Jn a2n2)+
Vi (6)

+tanh(bk )cosh(xk n’ —o’n’ ))

Here C is an arbitrary constant, ¥ = G(z) / G(l)
Satisfying solutions Uéi) (X) to the boundary condition at X=a we get the dispersion

equation defining dimensionless frequencies m

[ 2 2
yﬂ%#{&lﬂh(bk 1‘|2)tanh(a7»l nz—ocznz):O (7
am

Analysis of dispersion equation

1

In the frequency regions M<Nif a <1; n<no if o >1 the dispersion equation (7)

has not solutions. In other regions of 1 the dispersion equation defines spectral correlations
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for the resonator frequencies and may have two types of solution as it occurs in the problems
of shear waves propogation in layered waveguides [5,6], and in the modal problem,
considered in [2] .

The first type of solution gives a series of modes corresponding to natural vibration in the
frequency regions 1 >No (a<1) or >N >1),n=12.....
The second type gives a series of modes corresponding to localized vibration in the

frequency regions m<n< mo” if a<lor mo' < n<m if o >1

In the frequency regions, 1> n(xfl(OL <1) or N> N(ot >1) we have the dispersion
equation defining the spectrum of the resonator natural frequencies
2 2
Yvm —n 2 2 2.2 2
ﬁ—tan(bkﬂ/n -n )tan(akﬁla n -n )=O (3)
a'n’—-n
In the frequency region M<m<mo ', M=12.... when o <1 me have the following

dispersion equations defining the spectrum of the resonator localized frequencies

2 2

VN —

When o >linregion Mo < n<m m=1,2..... the dispersion equation defining the

than(bk1 112—m2)tanh(a?»1 mz—ocznz):O Q)

spectrum of the resonator localized frequencies can be written as

[(2 2
ym—n—tanh(bk1 mz—nz)tan(a?ul nz—oczmz)=0 (10)

When o =1 the dispersion equation of natural frequencies as the form
2 2 2 2
y—tan(bk1 n -n )tan(ak1 n -n ):0 (11)

while the dispersion equation of localized frequencies

y+‘[anh(b7u1 m2—nz)tanh(akl\/mz_nz)z()\/bz_étac (12)

has no solutions.
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Based on the numerical analysis of the
dispersion equations (8,11) defining the
natural frequencies ™M, , in the Table 1 the

data for the minimal natural frequencies

M. related to dependence from

geometrical parameter Ol are presented for

first mode N=1 of the resonator

oscillation. The numerical calculations

have been carried out for resonators with

parameters y=0.5 ai =1, bk =05.

Data of the Table 1 shows that the minimal

frequencies decreasing with increase of OL.

On the other hand, the localized vibration

frequencies increasing with increase of

n, n.
o ak, =1 ak =0.5
bx, =0.5 bx, =1
0.1 22.70 17.17
0.3 17.51 12.27
0.5 11.10 11.38
0.7 9.22 10.42
0.9 7.77 9.69
1.0 7.19 9.48
1.1 6.79 9.30
13 6.22 8.89
L5 5.77 8.25
1.7 5.31 7.55
1.9 4.85 6.94
2.0 4.63 6.79

Table 1. Minimal natural
frequencies of the resonator

first mode

mode number m and in some cases the

frequency of m mode of localized

vibration may coincide with minimal

frequency of natural vibration of N'=1mode. The coincidence of these frequencies results

in the effect of an internal resonance.

an, | bA, o | My =M. | m
0.1 0.1 0.5 | 31.46 24
0.6 0.2 0.7 | 17.24 14
0.09 | 0.03 | 0.3 | 68.52 33
0.5 0.1 0.5 | 3147 24
2.5 5.0 2.0 | 1.35 2
0.6 2.0 1.7 | 1.83 2
0.5 5.0 1.2 | 1.65 2
2.5 5.0 1.2 | 1.62 2

Table 2. Resonance frequencies data
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On the Table 3 the resonance frequencies of
localized and natural frequencies are presented
for different cases where the internal resonance
occur. The number Mcorresponds to localized
vibration frequencies modes, the  minimal
frequencies of natural vibration correspond to
N=1. The numerical calculations have been

carried out for resonators with Y =0.5, for

different cases of ai ,bA, .



Conclusion

Shear vibration of bi-material elastic resonator with rectangular cross section is considered,
when one side of the resonator is traction free, three other sides are clamped. The
corresponding dispersion equations are obtained defining spectral correlations for resonator
frequencies. It is shown that dispersion equation may have two different kinds of frequency
spectrums, namely natural frequency spectrum and localized frequency spectrum. The
equation of frequency spectrums are analyzed numerically in detail. Possibility of coinciding
(internal resonance) of frequencies from two spectrums are shown. Based on numerical
analysis the resonance frequencies of localized and natural frequencies are presented for
different cases where the internal resonance occur.
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ON THE SOLUTION TO INTEGRAL EQUATIONS OF ONE CLASS OF
MIXED AND CONTACT PROBLEMS BY THE DEGENERATE KERNEL
METHOD
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KnioueBble cJ0Ba: WHTETpaNbHbIE YPaBHEHHS, BHIPOXKICHHBIE spa, KOHTAKTHHIE 3aJaduH,
00600meEHHas 3aga4a [lITacpmana, peryspHble OSCKOHEUHbIC CUCTEMbI yPaBHEHUH.

Putuh punbkp htnbgpuy hwjuwuwpnudibp, Jkpuwdyng Ynphqubp, Ynbwnwluught ubghpibp,
Cuwbpdwih Ynunwlunuwght fuunhp

Uthpuput U.U.

Thpwdynn Ynphqutph Ukpnnm] prunp b intnwlunuyght iunhptikph th guuh htunkgpurg
hwjuuwpnmdubph pusdwb dwuhi

Yadpnpdwgynn whiy dwpduh dEpwthiuh pwep b Ynunwuught pughpubph paduljubuswh
it quu  tupugpymd - oupdbnphl Ynphqubpnd  Sptnhndh Epypnpn  ubeh  htunkgpug
hwjwuwpnidkpny: Znnjusnud qupqugynid k uyn hwjwuwpnidbph jmsdwt Epwsynn Ynphqubph
hwjnuh Jbkpnnp: Cwpuppyuws  dbpnphjut  nuuwpwidnd £ dwlbpinmpughtt jupnigdusdph
hwyqunnuing wnwdqulju Jhuwhwppnipjuup gpnodh ubinddwi b.8w. Suwbkpdwih §nunwlnwght
uunph htnkgpu hwjwuwpdwb ophtwyh Jpu:

Mxurapsin C.M.
O peleHNN HHTETPAJILHBIX YPABHEHHUIT 0/IHOTO KJIACCA CMEIIAHHBIX M KOHTAKTHBIX 32/124 METO0M
BBIPO:KIEHHBIX sifiep

JIOBOJIBHO IMIMPOKHH KJIACC CMELIAHHBIX M KOHTAKTHBIX 3a/[a4 MEXaHHKHU Je(hOPMHPYeMOro TBEPAOTO Tena
OIIHCHIBACTCSI MHTETPAbHBIMU ypaBHeHHsAMU (DpearoabMa BTOPOTO poja € CHMMETPUUECKHUMH simpamu. Jlms
PEIICHNUs TAKHX YPaBHEHUH B CTaThe Pa3BHBACTCS U3BECTHBIH METO]] BEIPOXKICHHBIX SACP.

H3noxxeHHast METOMKA MIUTIOCTPUPYETCS Ha NPUMEPe MHTErPalbHOIO ypaBHEHUs! 0600IEHHON KOHTaKTHOM
3anaun 1.5, [lltaepmana o BAABIMBAHUM IITaMIa B YNPYTYIO MOMYIUIOCKOCTh € Y4ETOM HMOBEPXHOCTHOM CTpyK-
TYpPbI OCHOBAHHS.

A fairly wide class of mixed and contact problems of mechanics of deformable solids is described by
Fredholm integral equations of the second kind with symmetric kernels. For solving such equations, a well-known
method of degenerate kernels is developed in the paper. The stated methodology is illustrated on the example of an
integral equation of the E.Ja. Shtaerman generalized contact problem on indentation of a punch into an elastic half-
plane taking into account the surface structure of the base.

Introduction. The method of integral equations being one of the effective methods of
solution of mixed and contact problems of mechanics of deformable solids was widely
applied in numerous investigations [1-9]. By the method of Green function, such problems
are directly reduced to Fredholm integral equations (IE) of the first kind as well, but most
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of them can be transformed into Fredholm equations of the second kind. The Ilatter
equations can also directly arise in contact problems. This is the case in the problem of
contact interaction between the elastic bodies taking into account the factor of the surface
structure of the bodies contacting between each other, usually the factor of roughness by
Shtaerman model of contact [1]. According to this model, because of the local
deformations, the arising local displacements in each point of the contact zone are
proportional to the contact stress at the very point. In such formulation in [10] an axially
symmetric contact problem on indentation of a punch, circular in the plan, into a rough
elastic half-space, also described by Fredholm IE of the second kind, is considered.

Numerous effective methods of solving the Fredholm IE of the second kind [11-13] are
developed and among them the Fredholm method of reducing the original IE to the system
of linear algebraic equations (SLAE) holds a special place. The procedure of reducing to
SLAE is greatly simplified in case of degenerate kernels of IE. That is why the method of
the degenerate kernels of IE solution, when the original kernel is approximated by the
degenerate kernel with great exactness, has got an intensive development [11-13].

In the present paper, the method of degenerate kernels is applied to solving the
Fredholm IE of the second kind with symmetrical kernels, by which integral operators with
discrete spectra are generated and for these operators corresponding spectral relationship
are well-known. The idea of the paper lies in the fact that based on the spectral relationship
bilinear expansions of the kernels in the form of infinite series are written, then these
infinite series are replaced by the finite series and, by that, the original kernels are
approximated by degenerate kernels.

There is a list of symmetric kernels, for which the spectral relationship [7, 8, 14, 15] of
Fredholm IE of the second kind are well known; with such kernels in the framework of the
above mentioned E.Ja. Shtaerman contact model a wide class of contact problems is
described. The method of degenerated kernels is concretely illustrated here on the example
of E.Ja. Shtaerman  generalized problem [1] on indentation of a punch of the general
configuration into an elastic half-plane. It is proved that the approximate solution by the
method of degenerate kernels, as the number of summands of the finite series increases
infinitely, tends to the exact solution of the problem. For this purpose the issue of regularity
of the corresponding infinite SLAE is investigated. In particular cases the numerical
analysis of the problem is conducted.

1. General preconditions of the method of degenerate kernels.

Let us have Fredholm IE of the second kind

(p(x)+ij(x,s)(p(s)ds:f(x) (xel) (1.1

with symmetrical quadratically summarized on LxL by kernel K(x,s), where L is a

finite or infinite interval of the numerical axis. The integral operator K , originated by
kernel K (x,s)(x,s€LxL), has discrete specter and for it let spectral relationships take

place
J.K(x,s)q),1 (s)w(s)ds=n,9,(x) (n=0,1,2,...). (1.2)

Here A, are eigen values, @, (x) are eigen functions, composing full orthogonal
systems in space L,(L), and w(x) is non-negative weight function by which functions

0, (x) are orthogonal:
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[o.(x)0, (x)w(x)dxz{}z EZiZ; (13)

L

As kernels K (x,s) with above properties the following kernels can be taken
X+s

l)ln; L:(—a,a); 2) In

P L=(ba) (b>0);

e
1

_ L:—oc,(x;4# O<u<l/2); L=(-a,a);
2sin(|x—s|/2) ( )i (0<n<12) (~a.a)

n
r=sf

3) Ku(|x_s|)/|x_s|H (W <12); L=(-a,a); L=(0,»);

3) In

6) TJH (kx)JH (Xs)kzﬂ’dk(xzo; |y|<1/2); L=(0,a);

cos(mn)du (x,>0, m=0,1,2,..); L=(0,a).

T ) Va2 +52 ~2xs cosu
e
7) ZJ. 2 2
0 VX +s” —2xscosu
Here K, (x)—Macdonald’s function of index w and J, (x)— Bessel’s function of first kind

of index .

Fredholm IEs of the first kind with these kernels describe numerous mixed and contact
problems of mechanics of deformable solids. In [7, 8, 14, 15], as well as in papers cited in
[14, 15] for such kernels spectral relationships of type (1.2) and related to them integral
relationships are established.

Now for the function f(x) from L,(L) we write the formulas of Fourier generalized

transformations in the system of functions @, (x):
f(x)=2a,0,(x) (xeL)
n=0

a, =%£f(x)(pn (x)w(x)dx (n=0,1,2,..).

Using formulas (1.4) for kernel K (x,s) at fixed x, the following bilinear expansion of

(1.4)

the kernel in the system of functions ¢, (x) will be obtained:

K(x,s):;%wnz(x)@m (s) ((xs)eLxL). (1.5)

If in expansion (1.5) we replace the infinite sum with the finite sum restricting the
number of terms by n, then thereby kernel K (x,s) will be approximated by the

degenerate kernel K, (x,s):

A
K(x,s)an (x’s):Zh_M(p”’ (x)(pm (s) (1.6)

Further, in IE (1.1) kernel K (x,s) is replaced by K, (x,s) from (1.6). After the simple

transformations we shall have
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(p(x)+X§%X”7(pm (x)=f(x) (xel)

" . (1.7)
X’" :J.(P(S)(Pm (S)ds (m:()’n)~
L
From here the approximate solution of the original IE (1.1) will be in the form of
n }\’
o(x)= f(x)-1), 7" X,0,(x) (xeL), (1.8)

m=0 hm

of course, if the coefficients X, are already determined. For the determination of these
coefficients we multiply both parts of (1.7) by o, (x) (k = O,_n) and integrate the obtained

equality over the interval L. As a result, we come to the following SLAE:

X, +an:2—mkaXm =/ (k=0.n) (1.9)

R, = {@m(x)@k(x)dx (kom=0.n); £, = .Lff(x)(pk(x)dx.

Thus, the method of degenerate kernels in the above described form reduces the solution of
the original IE to the solution of SLAE (1.9).

Note, that in paper [10] with the help of bilinear expansion (1.5) for a symmetric kernel
in the form of Veber-Sonin integral the solution of corresponding Fredholm IE of the
second kind is reduced to the solution of the regular infinite SLAE. In paper [16] the
method of reduction of the general class of integral equations with the symmetric
quadratically summable difference or summation or difference-summation kernels to
regular infinite SLAE is suggested. Moreover, by means of expanding the kernel function
in Fourier cosine-series or in the series of other complete orthogonal systems of functions
bilinear expansion of (1.5) type is applied. However, for the noted above class of kernels
the application of expansions (1.5) in eigenvalue functions of kernels is more convenient
and the use of degenerate kernels technique based on above expansions turns to be more
simple.

This method is applicable to the solution of IE of I.Ja. Shtaerman generalized contact
problem [1].

2. The formulation of the contact problem and derivation of basic equations.
Generalizing the 1.Ja. Shtaerman contact problem [1], we assume that the absolutely rigid
punch, the base of which in the cross-section cut by the plane Oxy is described by the

equation y=f (x), is indented under the influence of the central vertical force P and

overturning moment M into the elastic half-plane with Young module E and Poisson
coefficients v (Fig.1).
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Here, instead of the Hertz smooth contact model we take the I.Ja. Shtaerman contact model
[1] which takes into account the factor of the surface structure of deformable bodies
contacting between themselves. According to this model the vertical displacements of the
boundary points of the elastic half-plane are consisted of two summands. The first
summand [1]

2(1-v%)

V(x)z—SJlnL (s)ds+C —o<x<w, 9= —

p
o]

arises in consequence of global deformation of the elastic body caused by the applied in

the contact area —a < x < a pressure p(x) of the punch on the foundation in accordance

with the differential equations of linear elasticity theory. The second summand v, (x)
arises in consequence of local deformations, conditioned by roughness (non-smoothness) of
the contact surface, and it is considered, that at each point of the contact area it is
proportional to the pressure p(x) at the same point: v, (x)=—x p(x), where x is some

coefficient, depending on the surface structure of the elastic body. Eventually, for the
vertical displacements v, (x) of the boundary points of the elastic half-plane we shall have

v, (x)=v(x)+v,(x)= —xp(x)—\‘)j. 1nﬁp(s)ds+€ (~a<x<a). 2.1)

On the other hand, the vertical displacements v, (x) of the punch, as an absolutely rigid
body, have the form of
vi(x)=A+ox (-a<x<a), 2.2)
where a is the angle of the rigid rotation of the punch, and A is its settling.

Now, substituting (2.1) and (2.2) into the contact condition [1]
v (x)=v,(x)=8-f(x) (-a<x<a),
for the determination of the unknown contact pressure, we obtain the following Fredholm
IE of the second kind:
Xp(x)+Sjlnla—|p(s)ds=8—(xx—f(x) (—a<x<a). (2.3)

2o |x—s

Here, §—A+C is denoted by d .

The governing IE (GIE) (2.3) should be considered under the conditions of the punch
equilibrium
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jp(x)dx:P; j.xp(x)dx:M. 2.4

Equations (2.3)—(2.4) will be the basic equations of the considered contact problem. In
them we pass to dimensionless coordinates and values, assuming

E_,:x/a, n :s/a; 9, = aS/X; a, = aa/xE; 8, = B/XE;
p(&)=p(at)/E: f,(§)=r(at)/Ex (-1<&n<l).
As aresult, GIE (2.3) is transformed into the following GIE:
1
1
g)+9, [ lnmpo(n)dnﬁo—aoa—ﬁ(a) (-1<g<1), 2.5)
-1
and the conditions (2.4) — into the following conditions:

jpo (EME=F, (B, = P/aE):; japo eMe =M, (M, =M/a’E). (2.6)

3. The solution of GIE (2.5)- (2.6) by the method of degenerate kernels. The method
described in section 1 will be applied to the equations (2.5)-(2.6). In the given case

L= (—1, 1) and the spectral relationships (1.2) have the form of [7, 8, 14]

1
I L(mdn_ |1 7(6) (n=12..)
el “| \/1 "2 (n=0); (-l<E<l);
where T, (&) are Chebishev polynomials of the first kind, the conditions of orthogonality

(1.3) has the form
' 0 (m # n);
d
JTm (€)7,(¢) =l (m=n=0); (w(a) —1/\i-¢? )
B - /2 (m=n#0)
and the formulas of Fourier generalized transformation (1.4) have the form of

=§;fmfm(a) (-1<g<1)
7 =%j—f(§)Tm(§)d‘i (m=1,2,.).

el

As a result, the bilinear expansion of the kernel (1.5) in the given case for the
symmetrical logarithmic kernel is written in the form of

In2 (m=0);
-1 R 1 =
L A
m

Later in accordance with (1.6), (1.8) and (1.9) in the given case the degenerate kernel is
represented by the formula

1nﬁ= K,(&n)= iame (&), (n) (-l<&m<l),

m=0

the approximate solution of GIE (2.5) is represented by the formula
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po(8) =8~ &= £, (8) =8 2 a,X,T,(8) (-1<E<1), (3.
m=0
and the unknown coefficients X, are determined from SLAE

X, +9,Ya R, X, =g (k=0n)
=0

B =ka(é)Tm(é)d‘§ (kom =0.n): g, =jg(é)Tk(é)d§; (3.2)
g(&)=8,—a,t—£, (&)  (-1=g<1).

By the substitution & =cost integrals R,, and g, are transformed into the integrals

km

R =]£cosktcosmtsintdt (k,m:(),_n);
0

. (3.3)
g, =8,R,, — R, — [ (k :O,_n); fi :jﬁ)(cost)cosktsintdt
0
and are easily calculated. Upon that
1 _1 m+k
(=) 12 + 12 (m#k-1 m#k+1);
R, = 2 (m+k) -1 (m-k) -1 (3.4)
0 (m:k—l; m:k+1).
From here, particularly,
(1)’ (-1) -
——— (k#1); — k#2); —
Ry=2 R, = ooy KF) g e (k22 (k=0.n).
0 (k=1); 0 (k=2);

Now, taking into account the expression of the coefficients g, from (3.3), SLAE (3.2)
is represented in the form of
X, +802Lkam =8,R,y — 0 R, — f; (k:ﬂ)
=0 (3.5)
L, =a,R, (k,m = O,_n)
Let us the solution of SLAE (3.5) for the right - hand side equal to R,, denote by
XU, for the right - hand side R,, —by X\”, and for the right —hand part f, —by X" .
Then solution (3.5) is represented in the form of
X, =8,x" —a, X = XY (k=0,n). (3.6)

Then, referring to the conditions of punch equilibrium (2.6), with the help of (3.1) and
(3.6) for the determination of parameters 8, and o, we obtain the following SLAE:

{auSo +a,a, =b,

(3.7)
a8, + a0, =b,
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By equations (3.7) the dependence between the geometrlcal parameters of the problem
d, and 0, corresponding to the reduced settlement of the punch and its reduced angle of

rotation, respectively, with power parameters F, and M, is established.
Note, that taking into account (3.6) the solution (3.1) may be written in the form of

po(g):{l_soiamXS)Tm( i| {& OLOZa Xr(nz T, :|ao+

m=0

(3.8)
+9, > a, X1, (&) (-1<g<1).
m=0
In order to investigate the convergence of the approximate solution (3.8) to the exact
solution of GIE (2.5)—(2.6), it is necessary to pass from the final SLAE (3.5) to the infinite
SLAE:

X +9,0 L, X, =8 Ry —a,R, —f, (k=12..). (3.9)

m=0
Coming out from (3.4), it is easy to observe that at different parities of £ and m we
have R, =0. That is why in (3.4) and (3.9) k& and m should be considered
simultaneously even or odd numbers. Then the infinite system (3.9) splits up into the

following two separate infinite SLAE, corresponding to the symmetric and skew-symmetric
parts of the considered contact problem

X, +9,> Ly, 0, Xy, =8R, 0~ fo, (P=0,12,...)
q=0

1n2(q=0) (k=2p, m=2q); (3.10)
L2p,24 = a2qR2p~2q; an = l ((] =12 )
q 2 b 2
X2p—1 + SOZLprl,qulXqul = _GORZp—l,l _f2p4 (p = 1,2,...)
q=1
(k:2p—1,m=2q—1) 3.1
2
L2p—1,2q—1 = a2q71R2p71,2q71; Ay = ﬁ (p,q =1, 2’~~)~

Here, according to (3.4)

65



1 1
R =— + p,9=0,1,2,...);
2p.2q [4(p+q)2—1 4(p—q)2—1:| ( )

1 1
RZp—l,Zq—l :_|: 3 + 3 ] (p,q =1,2,...).

4(p+q—l) -1 4(p—q) -1
4. The investigation of the infinite systems (3.10)—(3.11). These infinite systems will

be investigated on regularity. With this aim referring to the infinite system (3.10) we
estimate the sums [12]

S,y =8 a0, Ry, | (P=0,1,2..).
q=0

Taking into account the expression R,

(3.12)

s from (3.12), it may be written

Lo 22
4(p+a) 1| [4(p=ay -1 | |42~

+9,[ 84 +58 ] (p=0,1,2..);

S,, <9, a,, 9, +
-

> ] 1 1 1 (4.1)
S(l) — — —’ (2) = —_——.
CE G [4(p=a) -1
It is evident, that
1 1
< =0,1,2,...).
Therefore
> 1 > > 1 1. 2
SSp) :z Z Z =—1In

q:1q|:4(p+q)2—l} =19 (‘I _1) qlq(Zq—l)(Zq-i-l) 2 ﬁ.

Here the well-known formula from [17] (p. 22, form. 0.238.1) was applied. Thus,

2p

1. 2
SW< n— =0,1,2,...). 42
2 e (r ) 4-2)

The sums S§1p) will also be estimated with the help of Cauchy - Buniakovsky inequality:

0 « mi m%gl N
Szp—\/;qz ;[4(p+q)2_1}2 %\;(4(] —1)

Calculate the sum

2
=1 1 1 1
;(4(12—1)2_4;[261—1 2q+1j B

8

1le 1 ! 1 v 8
:ZLZ—I:(Zq—I)Z_2q-1(zq—l)(2q+l)+2(2q+l)z}: o

Y
I



Here the expressions of these sums from [17] (p.53. form.1.444.6 and 1.444.7 for
x =0) were applied. As a result,

sO< ™ 28 (p=0,1,2,..). 43
Based on the estimations (4.2)—(4.3), we shall have
1 2
st < mln{ T 8} In—= =0.0965736(p =0,1,2,...). (4.4)
Je 46 Ve ( )

We pass to the estimation of the sums Sé? . At first note, that as above

oy 1 1.2 45
’ ;q(4q2—1) 2o 42

Then, again using Cauchy-Buniakovsky inequality, we can write (p =1,2,...):

< 1 N R R 1 = 1
D e R ) vt
q= q= —qg) - =

q=1 Q‘4(p—q) —1‘

Separately, estimate the sums,

(p-gq=r) (g-p=r)

L 1423
= + <142y ——-

= (4 -1) (a2 1) = (42 1)

Again using the obtained above value for the sum of the last series, we find

-8 n

s i+ P2 T (p=o12,). 4.6
i 8 J6 443 (v ) )

As

1 1, 2
— <1 (p=0,1,2,.), —ln——=<——,
[4p> -1 (v ) 2 Je 43

then from (4.1) with the help of the estimations (4. 4) (4.6) we shall have

S, (21n2+11n} T\‘}) (2ln2+ np+ \/,jo(pzo,lﬂ,...).

We require that the following condition will be fulfilled

[2ln2+ <q, <L

"% fj
Whence we obtain the following condition of complete regularity [12] of the infinite
system (3.10):

9, < %o (0<g, <1). (4.7)

21n2+%1n(2/\/;)+n2/4\/§
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Now we shall show that for those 3,, for which the condition of complete regularity

(4.7) is not fulfilled, the infinite system (3.10) is quasi-completely regular, i.e. a complete
regularity in (3.10) begins with some number. For this it is sufficient to show, that

lirn S2 , =0. Turning to the estimation of sums S§2 , consider the function

1/ [ x+p 1} (le, p:0,1,2,...).

It is evident, that the function f (x) at x >1 monotonously decreases and its value at
. . . . . . 1
the point x=¢ (¢=1,2,...) coincides with the corresponding member of the series ng

Herewith the sum of the series Sz, , beginning from the second member, is equal to the

area of the figure, consisted of the elementary rectangles with the bases of unique lengths.
Therefore,

1 1 r dx
g[z 2 +j 2
4(p+1) -1 1x[4(x+p) —1}

For the calculation of this integral we use the well-known expression of the
corresponding indefinite integral from [17] (p. 84, form. 2.18.4 at m =n=1). As a result,

sW < ! + ! X
T 4p* +8p+3 2(4p2 —1)

(p = 0,1,2,...).

(4.8)
2p+1 )
x| 2pln —2In2+1In(4p” +8p+3 =12,..).
{ p (2p+3j (4p° +8p )} (p )
From (4.8) it follows that
S§2 = O(I/pz) at p —>oo.
We pass to the estimation of the sum ngp) , representing them in the form of
)4
S =U,+V,; U, = Zl; ! +W
Hala(p-q)y -1 P
(4.9

w=SL vyl L o5

" 94(p-q ) -1 STa4(p-q) -1

For the estimation of the sum Wp we introduce to consideration the function

_1/[ - 1] (I<x<p-1; p=3.4.).

It is easy to show, that this function decreases on the line segment 1<x<p, and

increases on the line segment p, <x < p—1, wherein

». :%(4p—w/4p2+3) (1<p. <p-1; p=3).

Let the number p, be between two consecutive natural numbers p, and p,+1. Then
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1 1 Fl Y 1

< dx=—w———
P 4p 8pt3 3(p-1) 4 =t
o (4.10)
—L I dx ( ).
3(p=1) 1 x[4(p-x) 1]
Passing to the estimation of the sum V , represent them in the form of
=1 1
V =
P S prr4rt -1
and introduce to consideration the decreasing function
1
h = (x21).
2()6) (p+x)(4x2—l) (x )
It is evident that
1 o] o0
V <——+|h + . 4.11
" 3(p+1) -!‘ 2 () p+1 '!‘ p+x 4x —1) @1

Further, by the above-mentioned formula from [17] we calculate the integrals from
(4.10)-(4.11). After the simple transformations we find

1 1 1
U < n[(2p-3
AT —8p+3+3( 1)+2(4p2—1){n[(p )

2p-3
2p-1)(p-1) |-n3}-—Z—1n =2 > 4);
<(@p=D)(p-1) -3}t (2 )
1 1 [4p+1

V < In3-In2-In(1+p)|. 4.12
’ 3(p+1)+4p2_1[ y “(”’)} *12

Now from (4.1), (4.8), (4.9) and (4.12) it follows that
S,,=0(1/p) as p >0
and, therefore quasi-complete regularity of the infinite system (3.10) is proved. By the
pretty analogous way it is possible to conduct the investigation on regularity of the infinite
system (3.11).

On the base of the foregoing, the method of reduction [11] is applicable to the infinite
systems (3.10)—(3.11), i.e. the solutions of the corresponding (3.10)—(3.11) of the finite
SLAE as n — oo tends to the solutions of the infinite systems.

5. Numerical results. For Poisson numerical coefficients of an elastic half-plane
material we take v =0,25. Then the dimensionless parameter v = 0,25 may be represented
in the form of

9, :aS/le—S
8

Now for the particular configurations of the punch base, when fo(f‘,)=1 or

Xo; Ay =a/Ey.

fo (?;) =&” we solve SLAE (3.5) at various values of the parameter A,. As a result, the

coefficients X ,E’f ) ( j=1L23k= O,_n) are determined and by formula (3.6) the coefficients
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X, are obtained. Later on from system (3.7) the parameters O, and O, are determined,

and besides it was accepted here that Ry = 0,001, M, =0,00001. Then using the results of
these calculations, the values of the dimensionless contact pressure under the

punch, p, (3';) , as well as the values p, (il) are calculated by the formula (3.8).

In case of fo (&) =1 the graphs of Do (3';) are practically rectilinear segments, parallel to

the axis of the abscissa, which in the process of increase of 4, are removing from the axis

of the abscissa. And in the case of f, (cﬁ) =&’ the graphs of p, (&) at small A,

corresponding to the big values of the local displacements in the contact zone, practically
represent rectilinear segments near the axis of the abscissa. But with the increase of the

parameter 7»0 , when the local displacements become small values, the graphs of p, (&)

gradually take the form of the parabola with branches going to infinity (Fig. 2).

—e—A,=0.1

P& DR

——A,=3

I, . g

R

PO00000 000 S AAAARAANIASAARAEEEE 00000000

-1 -05 0 05 1 5

Fig. 2

Such parabolas are characteristic for the classical contact problems, when the contact
pressure at the ends of the contact zone becomes infinite.

Values 50 , 0y and p, (il) when fo (&) =1 are given in Table 1 for different 7\,0.
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Table 1

Ao () 24 po(=1) po(1)
0.001 | 0.000834 | -0.00015 | 0.000684 | 0.000984
0.005 | 0.002171 | -0.00015 | 0.002022 | 0.002324
0.1 ] 0.034514 | -0.00016 | 0.035603 | 0.03593
0.3 | 0.105856 | -0.00019 | 0.116166 | 0.116546
0.5 ] 0.180771 | -0.00022 | 0.207713 | 0.208146
0.8 | 0.298264 | -0.00026 | 0.361064 | 0.361576
1| 0.379268 | -0.00028 | 0.471833 | 0.472396
5| 2.17879 | -0.00079 | 3.30652 | 3.30809
10 | 4.57025 | -0.0014 7.4174 7.4202
20 | 9.45821 | -0.00261 16.1845 | 16.1898
50 | 24.3141 | -0.00623 | 43.8278 | 43.8403
100 | 49.2167 | -0.01222 | 91.3401 | 91.3645

In Table 2 the same parameters when f, (EJ) = &7 are represented.

Table 2
A [ 24} po(=1) po(1)

0.001 0.0015 | -0.0015 | 0.00135 | 0.00165
0.005 | 0.005502 | -0.00015 | 0.005351 | 0.005652
0.1 | 0.100548 | -0.00016 | 0.100366 | 0.100693
0.3 | 0.300642 | -0.00019 | 0.300393 | 0.300773
0.5 | 0.500736 | -0.00022 | 0.500417 | 0.50085
0.8 | 0.800874 | -0.00026 | 0.800446 | 0.800958

1 1.00096 | -0.00028 | 1.00046 | 1.00103

5] 5.00271 | -0.00079 | 5.00055 | 5.00212

10 | 10.0048 | -0.0014 | 10.0004 | 10.0032

20 20.009 | -0.00261 | 19.9999 | 20.0051

50 | 50.0215 | -0.00623 | 49.9976 | 50.0101
100 | 100.042 | -0.01222 | 99.9931 | 100.018

With the increase of the parameter 7\,0 , which corresponds to the gradual transition into the

smooth contact model, quantities 80 and po(il) greatly increase, while values of 80 all

the time remain very small.
Now we shall find out the conditions of the absence of the punch rotation when a given

system of forces acts on the punch. Setting O, = 0 into system (3.7), we obtain the

following necessary values of M, and 50, providing the absence of the punch rotation:
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My=—{[ -9,2" ][ 2-9,1 |+9,20 (Bt £,-9,1)] [(2-9,1");

(5.1)
8o = [Po +fo _Son(3)}/(2 _San(l) );
=S 0, X0 20N ar, X0 (i-123).
m=0 m=0

The calculated by the formulas (5.1) values of 8, and M, for different A, when
fo (E_,) =1+¢€ or f, (EJ) =E&+E for the same value of P, are given in Table 3.

Table 3
N fo(©)=1+8 fo(®)=&+¢
0 60 M() 80 MO

0.001 0.0015 | 0.000666 | 0.000834 | 0.000666
0.005 | 0.005502 | 0.003318 | 0.002171 | 0.003318
0.1 | 0.100548 | 0.061202 | 0.034514 | 0.061202
0.3 | 0.300642 | 0.157898 | 0.105856 | 0.157898
0.5 | 0.500736 | 0.231072 | 0.180772 | 0.231072
0.8 | 0.800874 | 0.312955 | 0.298264 | 0.312956

1| 1.00096 | 0.35511 | 0.379268 | 0.355111

51 5.00271 | 0.636414 | 2.17881 | 0.636418

10 | 10.0048 | 0.714155 | 4.57033 | 0.714167

20 20.009 | 0.764888 | 9.45859 | 0.764915

50 | 50.0215 | 0.802989 | 24.3169 | 0.803067
100 | 100.042 | 0.818321 | 49.2273 | 0.818474

From this table it is seen that at small 7\,0, when the local displacements are significant,

8, and M,, are enough small. However, they also increase with the increase of A,.

Conclusion. Rather a wide class of contact and mixed problems of mechanics of
deformable solids is described by Fredholm integral equations of the second kind with
symmetric kernels, for which the corresponding integral spectral relationships are well-
known. In the paper for solving such equations, the well-known method of degenerate
kernels is developed which reduces their solution to the solution of SLAE. The described
method is illustrated on the example of the I.Ja. Shtacrman generalized contact problem on
the punch indentation into an elastic half-plane taking into account the surface structure of
the foundation.
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THREE-DIMENSIONAL PROBLEM OF WAVES PROPAGATION
IN HALF-SPACE WITH AN ELASTICALLY RESTRAINED BOUNDARY
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KiroueBble cj10Ba: ynpyroe moIynpoCcTPaHCTBO, TOBEPXHOCTHAS BOJIHA, YIIPYrO-CTECHEHHAS IPaHULA
Putiwh punkp. wnwdquijut Jhuwnwpwdnipnil, dwlbpinmpuwghtt wjhpubp, wnwdquijuinpku
Jupuinjus kqp
Capkucsn C.B.

TpéxmepHast 3a1a4a 0 pacHpOCTPAHEHUHU BOJIH B MOJIYNPOCTPAHCTBE € YIIPYIro-CTeCHEHHOI rpaHuIeii
B pabore mony4eHBl AWCIEPCHOHHBIC ypaBHEHHS] TPEXMEPHON 3aJa4d O PpacIpOCTPaHEHWH BOJH B
HOJIyNIPOCTPAHCTBE C  YNPYro-CTeCHEHHOW rpanuieil. MccienoBaHue 3ajaud  ympoliaeTcss BBEICHHEM
MOTEHUMANBHBIX (yHKImil. Iloka3aHo, 9YTO MHpHM IUIOCKOH  aedopMmaiuu ynpyroe CTECHEHHE TIDaHHIbI
HOJIyNIPOCTPAHCTBA  MPHUBOAUT K YMEHBUICHHIO CTENCHH JIOKAIH3AlMM MOBEPXHOCTHON BONHBL. TpéxmepHas
MOBEPXHOCTHAs] BOJHA  CYLIECTBYET JHIIb JUISL [ABYX BHIOB TPAHUYHBIX YCIOBHi, KOIrZa IIOBEPXHOCTbH
HOJIYIIPOCTPAHCTBA CBOOOZHA OT HANpPSDKEHUH M CTECHEHHas cBOOOJHAs MOBEPXHOCTh. B ciyuae crecHEHHOI
cBOOO/IHOI MOBEPXHOCTH TPEXMEPHAst TOBEPXHOCTHAS BOJIHA 00J1a/1aeT CBOMCTBOM [IMCIEPCHH.

Uwnpquyui U.9.
Gowyurh npuspny wowdquljuinplt juoiwinjusd kqpny Jhummnmwpusdni piniiunid wihpukph

nwpusdwb juunhpp
Grwgunh npjuspny wnunbughwy $niuljghwubph thpdnmisdwdp nhunwplyws b wpwdquijuinpki

Qupuip]ws tqpny Yhuwnwpusnipyniind dwlplinipught wihpibph gnympjut hupgp: Unugqus
kU dwlEplunipuyhtt wphputiph thnoyuyhtt wpugnipiut tfundwdp puntpugnhy hwjuwuwpnidubp: 8nyg
E upjws, np hwpe nhdnpuughugh ghypmu tqpuyhtt wupdwip pipnud £ dwljipinipuyghtt wihph
nbnujiugdut wunhduuh tjuqluip: Gpwywth dwljbplinipughtt whpubpp gnynipnit niikt vhwyu
Epynt pypnud’ Jhuwnwpwénipjub kqpp wqun b jupnudubphg jud juojuindus wqun kqpny
Jhuwwnwpwénipni: Yuwouunqus btqpny Yhuwwnwpwsdnipniund  towswth  dwlbplnipuyght
wyhpubtpp odnjwé ku nhuwbpuhuyng:

In this paper we obtain the dispersion equation of three-dimensional wave propagation problem in half-space
with an elastic- restrained border. Research of the problem is simplified by the introduction of potential functions.

It is shown that by plane strain the elastic half-space constraint of boundary leads to decreasing of the surface wave
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localization degree. Three-dimensional surface wave exists only for two kinds of boundary conditions, when the
surface of half-space is free from the stresses and the free surface is restrained. In the case of constrained free surface

the three-dimensional surface wave has a dispersion property.

Introduction. Surface waves propagation study represents a separate research in science.
In the study of surface waves the plane and antiplane deformation was generally considered.
For the first time the existence of surface waves was indicated by Rayleigh [1], where he
examined the plane problem for half-space with stress free from the boundary. Solution of
the three-dimensional problem was obtained by Knowles [2], who generalized the Rayleigh
problem. These results are mentioned in monograph [3]. Another option of space problem
was investigated in [4]. In work [5] the three-dimensional problems for elastic space waves
propagation in isotropic half-space with two options of half-space boundary conditions was
researched: free boundary and when we have one shear displacement at the border of half-
space, one of the tangential stress and normal stress is equal to zero. In monograph [6] the
summary of elastic waves propagation space problems is given. Study of three-dimensional
surface waves for various types of mixed boundary conditions on the surface of the half-
space is given in work [7]. It is shown that dispersion equation has a root for two types of
boundary conditions: free surface and the surface, where displacements in one tangential
direction are forbidden.

Unlike the classical Rayleigh’ problem, M.V. Belubekyan [8] considers two types of
complex boundary conditions instead of free surface boundary conditions for an isotropic
elastic half-space. It is assumed that either normal stress is constricted in the perpendicular
direction to the surface normal and shear is equal to zero, or the normal stress is equal to zero
and tangent is restrainedly.The conditions are set, at which the surface wave cannot exists.
The problem of periodic waves propagation in an elastic layer when in the layer boundaries
the normal and shear stresses restrained were investigated in works [9,10]. Here the influence
of restraint factor to the phase velocity of the symmetric and asymmetric vibration layer is
shown.

As aresult of the integral Radon’ transformation [11] the space problems of the dynamic
theory of elasticity are reduced to the plane problem regarding the Radon’ transformation
images. In the work [12] the introduction problem of dynamic potential for solving three-
dimensional problems of the dynamic theory of elasticity is investigated, in which the

antiplane displacementis not used (for example, in the problem of the dynamics of the surface
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of an elastic half-space, where the contribution of the surface wave is dominant). Applying
the Radon’ transformation, the solution of three-dimensional elasticity problem is comes to
solving the corresponding plane problem. Development of asymptotic models of Rayleigh’
surface waves, Stoneley’ and Scholte-Gogoladze’ interface waves were studied in work [13].
In work [14] the wave propagation problem in an elastic half-space is studied, when the half-
restrained free edge conditions on the half-space boundary are given. Using the Radon’
integral transformation, a dispersion equation for determining the velocity of surface wave
propagation is obtained and the numerical experiment for the different physical and
mechanical parameters characterizing the media is made.

In this paper we obtain the dispersion equation of three-dimensional wave propagation
problem in half-space with an elastic- restrained border. Research of the problem is simplified
by the introduction of potential functions like plane strain problems [3,5]. It is shown that by
plane strain the elastic half-space constraint of boundary leads to decreasing of the surface
wave localization degree. Three-dimensional surface wave exists only for two kinds of
boundary conditions, when the surface of half-space is free from the stresses and the free
surface is restrained. In the case of constrained free surface the three-dimensional surface
wave has a dispersion property. By mixed boundary conditions at the surface, the propagation
angle affects the phase velocity to the three-dimensional surface wave.

Statement of the Problem. Consider the harmonic vibrations of an isotropic elastic half-
space —0 < X< 0, —00<Z<ow, 0<LYy<oo. Vibrations described by three-
dimensional motion equations [3]:

(L + ) grad divd + pAd = pl (1)
where U - displacement vector, A, L — Lame’ parameter, p — density.

Suppose that the following boundary conditions are given [8] on the boundary of the
half-space Y =0:

o, =aU, o,=Byv, o,=y7.w(o,,p,,v,>0) @)
These conditions were proposed by Mindlin [16] for study the elastic wave reflections
problem from the boundary of the half-space. In work [8] the conditions for the existence of

Rayleigh waves in the case of elastic- restrained boundary (plane strain) were researched by

M. Belubekyan. Periodic waves propagation in elastic layer is studied in works [9,10].
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In particular case by o, =f3, =Y, =0 we get conditions of free boundary.

To solve the problem of surface waves propagation, the potential functions ¢ ( XY, Z t)

and ( X, Y, Z,t) [5] are introduced like in problems of plane strain:
op 0 op 0O
g0 v, o, 0y
OX 0z 0z OX. 3
By means of (1) and (3) with taking into accounts damping conditions

IimU=0,lime=0,limy=0
00 y%OC

y—© y—>
the displacements U, v, W are determined in the form [5]:
Ak cosye " +

u(x,y,zt)=-i
(xy.2t) +(BkcosyJers,iny)e’”zky

expi (ot — xkcosy — Zksiny),

V(X Y, zt)= —k[A\)le_“lky + Buflze_‘)zky]expi (ot—xkcosy—zZksiny), ()

Ak sinye™" +

W(XY,zt)=-I expi (ot —xkcosy—zZKsiny),

( y ) +(Bksiny—Ckcosy)e’Uzky p( ! Y)
¢ o

where K— wave number, v; =1-0m, vi=1-n, 9=?<1, n:kz_Ct2<1

— dimensionless phase velocity of the three-dimensional surface wave, Y — sharp angle of

wave propagation in plane 0XZ, A Band C — arbitrary constants.

Applying Hooke's law the boundary conditions (2) by y=0 comes to the form:

v=0 (%)
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Dispersion equations and numerical results. Satisfying solution (4) to the boundary

conditions (5) we get the dispersion equation:

4v1v2—(2—n)2+v2 [n(a0+ﬁov v, )+a0B0 vl)}t

+Y, [4vl +n(oc0 +[30vlv;1)+oc0[30(v ) (2- n)2 21}+
+tg2y[4v1v2 —(2—1]) +v2n(y0 +B,V,V; )+v2y0B0 (v2 )
+a, (4\/1 -(2- n)2 vy M (Yo +B,Vv, Vs ) +Y,B, (v;1 -V, )) =0,

B. Y.
Mk > YO l_,[k

From equation (6) is follows that three-dimensional surface wave possesses dispersion

(6)

(x‘*
where oL, =—=, B, =

uk

feature. For given equation let’s consider the following particular cases.

Dispersion equation (6) in case of plane strain comes to the following (y =Y = 0)

(2-n)" -4,/(1-1)(1-n0) —ayn1-1n —Bmy/1-10 -
0,8, (1-(1-m)(1-n0) | = 0.

Equation (7) by o, = [30 = 0 is coincides with Rayleigh’ classical equation. Compared with

(7)

the Rayleigh’s equation, the equation (7) is dispersion, since solution depends on Q.,, Bo .

Dispersion equation (7) by oL, = 0 either Bo = ( has been received in work [8], where the

conditions of existence of surface waves were set, depending on the coefficient characterizing

the elastic restraint and the wave length.

Equation (7) has a root 1 = 0, to which the trivial solution is corresponds. Following
to work [15], eliminating root1 = 0, the equation (7) comes to the following:

(-0}

D(n)zn_\/l—n+\/l—en(4_%B°)_ )

—0,/1=N—Boy/1-0n -0 B, =0

Function D(1) takes the following values:
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b)

D(0)=-0.5(1-0)(4—0a,B,)— 0ty =By — 0 Bys

D(1)=1-B,v1-0 —a,B,.

Equation (8) will have solution in the interval € (0,1),if D(0)<0, D(1)>0

and this solution will be unique if — > 0. Choosing values 0, and [3,, which satisfy to

n

the given conditions, we can get the values for surface wave phase velocity depending on the
degree of restraint surface of the half-space.

In table 1 the numerical results are given, which calculated by equation (8) for n
parameter, characterizing the square of phase velocity of space wave depending on
parameters, characterizing degree of restraint surface of the half-space by 6 = 0.33. The
table shows that the restraint boundaries either at the direction of the normal or tangential
direction leads to an increase in the dimensionless phase velocity of the surface wave. By the
oppression of the border at the same time in both directions of the surface wave phase velocity
at first increases, reaching a maximum value, then decreases. Thus, the boundary elastic half-
space constraint reduces the degree of surface wave of localization (slow decay of the
amplitude).

Dispersion equation (6) for three-dimensional problem in case of free boundary

(o, =B, =7, = 0) comes to the following:

(1+tgy)((2-n) ~4,J(1-) (1-n0) ) =0 ©)

By different mixed boundary conditions [7] we get corresponding equations from
dispersion equation (6):

displacement is prohibited in tangent direction

o, =00,=0u=0

(2—1])2—4‘/(1—11)(1—119)—n(l—n)ctg2y=0 (10)

displacement is prohibited in one of tangent directions

o, =0, 6, =0, w=0, (2—11)2—4 (1-1)(1-1n8)—n(1-n)tg*y=0 (11)
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Table 1

o, B, n
0 0 0.8464
0 0.2 0.9005
0 0.4 0.9405
0 0.6 0.9686
0 0.8 0.9867
0 1 0.9966
0.2 0 0.8712
0.4 0 0.8903
0.6 0 0.9052
0.8 0 0.9172
1 0 0.9269
0.2 0.2 0.9045
0.4 0.4 0.9238
0.6 0.6 0.9216
0.8 0.8 0.9001
1 1 0.8540
¢) displacement is prohibited in both tangent directions:
G, =0, U=0, w=0, n(l+tg’y)=0
d) displacement is prohibited in normal direction:
v=0, 6,=0, 6,=0, nﬁ(l+tg2y)=0
e) displacement is prohibited in one of tangent directions and in normal direction
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v=0, w=0, 6, =0, n1-6n +tg2y1/1—n(1—4/(1—11)(1—611)):0

f) displacement is prohibited in one of tangent directions and in normal direction
2

v=0,u=0,0,=0, nyl-6n+ctg’yyl-n (1—‘/(1—11)(1—911)) =0

2) displacement is prohibited in all directions

U=0,v=0,w=0, (1+tg)(1-\[1-m)(1-6m) ) = 0

Studies have shown that three-dimensional surface wave exist only for two kinds of boundary
conditions. In the case where the half-surface is free from stresses, the known Rayleigh
equation is obtained (9). If we have restrained free surface (displacement if forbidden in
tangential direction) dispersion equations are comes to the equation (10) or (11). In case of
free surface constrained these equations have a single rootm < land three-dimensional
surface wave possesses the feature of dispersion. The figure shows dependence of the phase

velocity of the three-dimensional surface wave from the propagation angle. In table 2 the
values of 1 parameter are shown, which characterized the square of phase velocity of three-
dimensional surface wave depends on propagation angle by 6 =0.33.

Table 2 and graph show that by mixed boundary conditions on the surface, and propagation

angle affects to the phase velocity of the three-dimensional surface wave. By the

displacement prohibition in one of tangential direction, with an increase of the angle value,
. . . . T
the three-dimensional surface wave phase velocity decreases (increases). By ¥ = E(O) the

value of the phase velocity of the three-dimensional surface wave is exactly coincides to the

value of the phase velocity of the Rayleigh surface waves.

Table 2
Y 0 /6 /4 n/3 /2
N(10) - 0.9198 0.8850 0.8624 0.8464

(11 0.8464 0.8624 0.8850 0.9198 -
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Conclusion.Dispersion equations for the space problem of wave propagation in half-space
with an elastic-restrained border are obtained. The elastic half-space restraint of boundary in
plane strain leads to decreasing of localization degree of the surface wave (to the slow decay
of the amplitude). Three-dimensional surface wave exists only for two kinds of boundary
conditions - when the surface of half-space is free from the stresses and in case of cramped
free surface (displacement is prohibitedin one of tangential direction). In case of cramped
free surface three-dimensional surface wave possesses the feature of dispersion. By mixed
boundary conditions on the surface, the angle of propagation has the influence to the phase
velocity of three-dimensional surface wave.Increasing this angle the values of three-
dimensional surface wave phase velocity decreases (increases), tends to the value of the phase
velocity of the Rayleigh surface waves.
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