ISSN - 0571 - 1712

выпуск 2

Ц U S Ц Ц Ь Р Р Р Ц А С Т Р О Ф И З И К А

TOM 61

МАЙ, 2018

ПАМЯТИ АКАЛЕМИКА Э.Е.ХАЧИКЯНА	163
МОДЕЛЬ ДИНАМО В ТОРЕ ДЛЯ ИССЛЕДОВАНИЯ МАГНИТ- НЫХ ПОЛЕЙ ВО ВНЕШНИХ КОЛЬЦАХ ГАЛАКТИК	
<i>Е.А.Михайлов</i> ВЫСОКОЭНЕРГЕТИЧЕСКОЕ ГАММА-ИЗЛУЧЕНИЕ ОТ PKS 0625-35	165
В.Баеманян, М.Туманян, П.Саакян, Ю.Варданян ХИМИЧЕСКИЙ СОСТАВ ЗВЕЗД ТИПА RR ЛИРЫ ПОЛЯ КАК ИНДИКАТОР ЭВОЛЮНИИ ПОДСИСТЕМ ГАЛАКТИКИ	179
В.А.Марсаков, М.Л.Гожа, В.В.Коваль, Э.И.Воробьек ИССЛЕДОВАНИЕ ШАРОВОГО СКОПЛЕНИЯ NGC 7006	191
А.И.Герашенко, Ю.К.Ананьенская ПЕРВЫЙ ФОТОМЕТРИЧЕСКИЙ АНАЛИЗ ОТКРЫТЫХ СКОП- ЛЕНИЙ ДОЛИДЗЕ 32 И 36	207
<i>М.Амин, В.Г.Елсанури, А.А.Арун</i> возможно ли частичное перемешивание вешества в компонентах двойных систем?	221
Е.И.Старицин	235

(Продолжение на 4-й стр. обложки)

EPEBAH

Խմբագրական կոլեգիա

Գլխավոր խմբագիր՝ Ա.Գ.Նիկողոսյան (Հայաստան) Գլխավոր խմբագրի տեղակալներ՝ Վ.Պ.Գրինին (Ռուսաստան), Հ.Ա.Հարությունյան (Հայաստան) Պատասխանատու քարտուղար՝ Ա.Ա.Հակոբյան (Հայաստան)

Ժ.Ալնսյան (Ֆրանսիա), Գ.Ս.Բիսնովատի-Կոգան (Ռուսաստան), Յու.Ն.Գնեդին (Ռուսաստան), Ե.Թերզյան (ԱՄՆ), Ե.Ե.Խաչիկյան (Հայաստան), Ի.Գ.Կարաչենցե (Ռուսաստան), Տ.Յու.Մաղաքյան (Հայաստան), Ա.Մ.Միբայելյան (Հայաստան), Բ.Մ.Շուստով (Ռուսաստան), Յու.Ա.Շչեկինով (Ռուսաստան), Ա.Մ.Չերեպաշչուկ (Ռուսաստան), Ե.Պ.Պավլենկո (Ռուսաստան), Ե.Ս.Պարսամյան (Հայաստան), Վ.Պ.Ռեշետնիկով (Ռուսաստան), Գ.Ն Սայուկվաձե (Վրաստան), Դ.Մ.Սեդրակյան (Հայաստան), Մ.Տուրատտո (Իտալիա)

Редакционная коллегия

Главный редактор: А.Г.Никогосян (Армения)

Заместители главного редактора: Г.А.Арутюнян (Армения), В.П.Гринин (Россия) Ответственный секретарь: А.А.Акопян (Армения)

Ж.Алесян (Франция), Г.С.Бисноватый-Коган (Россия), Ю.Н.Гнедин (Россия), И.Д.Караченцев (Россия), Т.Ю.Магакян (Армения), А.М.Микаелян (Армения), Е.П.Павленко (Россия), Э.С.Парсамян (Армения), В.П.Решетников (Россия), Г.Н.Салуквадзе (Грузия), Д.М.Седракян (Армения), Е.Терзян (США), М.Туратто (Италия), Э.Е.Хачикян (Армения), А.М.Черепащук (Россия), Б.М.Шустов (Россия), Ю.А.Шекинов (Россия)

"АСТРОФИЗИКА" - научный журнал, издаваемый Национальной академией наук Республики Армения. Журнал печатает оригинальные статьи по физике звезд, физике туманностей и межзвезаной среды, по звездной и инегалактической астрономии, а также статьи по областям науки, сопредельным с астрофизикой. Журнал предназначается для научных работников, аспирантов и студентов старших курсов.

"ԱՍՏՂԱՖԻՋԻԿԱ"-ն գիտական հանդես է, որը հրատարակում է Հայաստանի Հանրապետության Գիտությունների Ազգային Ակադեմիան։ Հանդեսը ապագրում է ինքնատիպ հոդվածներ աստղերի ֆիզիկայի, միգամածությունների և միջաստղային միջավայրի ֆիզիկայի, աստղաթաշխություն և արտագալակտիկական աստղագիտության, ինչպես նաև աստղաֆիզիկային սահմանակից բնագա վառների գծով։ Հանդեսը նախատեսված է գիտական աշխատակիցների, ասպիրանտների և թարձր կութսերի ուսանուղների համար։

Алрес редакции: Республика Армения, Ереван 19, пр. Маршала Баграмяна 24' Релакция ж. "Астрофизика", тел. 56 81 38 e-mail: astrofiz@sci.am

Издательство "Гитутюн" НАН Республики Армения, Астрофизика, 2018

Памяти акалемика Э.Е.Хачикяна

Редакция журнала "Астрофизика" и Бюраканская астрофизическая обсерватория понесли тяжелую утрату. На 90-м году ушел из жизни выдающийся армянский астрофизик, действительный член НАН Армении. Элуард Гремович Хачикян.

Родился Э.Е.Хачикан 16-го декабря 1928 года в г. Ереване. После окончания Греванского государственного университета Э.Е.Хачикан поступал на работу в Бюраканскую астрофизическую обсерваторию, с которой связана вся его научная деятельность. Первые его работы появились в голы аспирантуры в Ленинградском государственном университете (1952-1955), г је его научным руководите јем был В.А.Домбровский. В указанный периот были получены важные результаты, относянниеся поляризании излучения Крабовидной туманности. Именно Э.Е.Хачикану принадлежит открытие по варизании крайне высокой степени в некоторых областях данной туманности. В области физики туманностей известна его работа, вынолненны совместно с американским астрономом Дж.Гринстейном, о выбросе материя из ядра комстарной туманности.

Однако вся дальнейшая научная леятельность Э.Е.Хачикяна была послящена галактической астрономии. Особое место в ней защимает изучение галактик с упътрафиолетовым избытком, получивних в дальнейшем название галактик Маркаряна. По поручению В.А.Амбарпумяна именно Э.Е.Хачикян на крупных телескопах США получил первые спектры указанных галактик. Наиболее важным результатом, полученным в данной области Э.Е.Хачикяном совместно с американским ученым Д.Вилманом, является опенка относительного количества сейфертовских галактик срели галактик с ультрафиолетовым избытком. Ими же была произведена классификания сейфертовских галактик в результате которой последние были разделены на два класса. Известны исследования Э.Е.Хачикяна по изучению явления кратности ядер галактик и их эволюции. О признании его заслуг в области физики галактик, свидетельствует тот факт, что Э.Е.Хачикян в 1991-1994гг. являлся президентом комиссии 28 "Галактики" Межлународного Астрономического Союза. В разные годы Э.Е.Хачикян входил в состав различных всесоюзных и международных совстов и комиссий по астрономии.

Э.Е.Хачикян около десяти лет руководил Бюраканской обсерваторией. Долгие годы он являлся заместителем редактора журпала "Астрофизика". Следует особо отметить заслуги Э.Е.Хачикяна в деле подготовки научных кадров. В Ереванском государственном университете он преполавал различные астрономические диспиглины, был руковолителем пелого ряла диссертационных работ.

Э.Е.Хачикян по натурс был весьма активным и отзывчивым человеком. Память о нем будет долго жить в серднах всех тех, кто его знал.

Редакционная коллегия ж. "Астрофизика"

АСТРОФИЗИКА

TOM 61

МАЙ. 2018

ВЫПУСК 2

МОДЕЛЬ ДИНАМО В ТОРЕ ДЛЯ ИССЛЕДОВАНИЯ МАГНИТНЫХ ПОЛЕЙ ВО ВНЕШНИХ КОЛЬЦАХ ГАЛАКТИК

Е.А.МИХАЙЛОВ

Поступила 16 сентября 2017 Принята к печати 7 марта 2018

В настоящее время практически не вызывает сомнений, что в некоторых спиральных галактиках присутствуют магнитные поля напряженностью несколько мкГс. Их возникновение связано с действием механизма динамо. Уравнения теории динамо достаточно сложны, поэтому часто используется планарное приближение, которое исходит из того, что галактический лиск достаточно тонкий, поэтому можно заменить некоторые частные производные на алгебранческие выражения. У некоторых галактик есть внешние кольца, в которых также можно предположить существование магнитных полей. Их генерация может быть также исследована с помощью планарного приближения, однако ввиду того, что оно было разработано не для колец, а для тонких дисков, в данном случае можно получить лишь качественный результат. Поэтому для изучения данного процесса используется модель динамо в торе. С се помощью был проведен анализ возможных сценариев зволюции магнитного поля во внешних кольцах. Получено, что при не очень интенсивных движениях генерируется поле, обладающее квадрупольной симметрией. При более быстрых движениях возможно при испольвовании планарного приближения.

Ключевые слова: внешние кольца галактик: теория динамо

1. Введение. В настоящее время надежно установлено, что ряд спиральных галактик обладает магнитными полями напряженностью в несколько мкГс. С наблюдательной точки зрения свидстельством их существования является фарадсевское врашение плоскости поляризации электромагнитного излучения, измеряемое на современных радиотелескопах [1]. Стоит отметить значимые результаты, полученные в последние десятилетия с помощью таких инструментов, как LOFAR [2], VLA [3] и других [4]. В будущем имеются планы исследования галактического магнетизма с помощью строяшегося радиотелескопа SKA [5,6]. Возникновение полей описывается с помощью механизма динамо. Он основан на совместном действии лифференциального вращения и альфа-эффекта, связанного с закрученностью турбулентных движений ионизованной компоненты межзвездного газа. Одновременно магнитное поле ослабляется за счет действия турбулентной лиффузии, которая способствует его диссипации. Ввиду этого генерация

Е.А.МИХАЙЛОВ

магнитного поля является пороговым эффектом. При определенных значениях соответствующих управляющих параметров динамо, магнитное поле растет, в противном случае оно может лишь затухать [6].

Эволюция круппомасштабных полей галактик описывается с помощью так называемого уравнения Штеспбека-Краузе-Рэдлера, которос является следствием усреднения уравнений магнитной гидродинамики по характерным масштабам порядка 50 - 100 пк [7,8]. Оно достаточно сложно для изучения, поэтому, как правило, тенерация описывается с номошью так называемого планарного приближения, которое использует тот факт, что галактический лиск достаточно тонкий, поэтому можно считать, что магнитное поле лежит в экваториальной плоскости, а компонентой магнитного поля, перпенликулярной к ней, можно пренебречь. Кроме того, частные производные магнитного поля вдоль вертикального направления могут быть заменены на алгебраические выражения [9-13]. В таком случае уравнения для тенерании поля становятся заметно проще и не содержат зависимости от расстояния до экваториальной плоскости. Результаты, даваемые планарным приближением, хорошо согласуются с данными астрономических наблюдений. Возможность генерации магнитного поля характеризустся так называемым динамо-числом, которос имеет определенное критическое значение. При его превышении затухание поля сменяется его ростом [11,12].

Кроме того, рял галактик обладает так называемыми внешними колынами [14]. Они располагаются на некотором расстоянии от основной части галактики и имеют относительно небольшую ширину. В них также присутствует ионизованный газ, для которого свойственны турбулентные движения. Кроме того, во внешних колынах можно обнаружить дифференциальное вращение. Все это позволяет предполагать существование магнитных полей в данных объектах, рост которых должен быть также обусловлен действием механизма динамо [15].

В настоящее время существует определенный недостаток наблюлательных данных о магнитных полях во внешних кольцах галактик. В связи с этим представляется важным промоделировать возможные сценарии эволюшии поля и указать параметры объектов, при которых можно ожилать его роста, а при каких возбуждение механизма динамо является маловероятным.

При этом возможность применения планарного приближения в случае внешних колен оказывается весьма спорной. В отличие от основной части галактики, размеры которой в радиальном направлении существенно превышают полутолшину, ширина внешнего кольца оказывается вполне сопоставимой с ней. Поэтому требуется использовать другие представления о магнитном поле, учитывающие его зависимость от расстояния до экваториальной плоскости.

Поскольку форма внешнего кольца оказывается достаточно близкой к

тору, улобно использовать модель магнитного поля в торе. В таком случае можно рассмотреть модель магнитного поля в виде комбинации тороидальной компоненты и части векторного потенциала, характеризующей полоидальную составляющую магнитного поля. В случае наличия осевой симметрии модель сволится к системе из двух уравнений, которые могут быть решены численно [16-19].

В данной работе был изучен вопрос о возможности генерации магнитного поля с использованием двух различных подходов. Первый основывается на планарном приближении, второй - на модели динамо в торе. Для того, чтобы возможно было сравнить результаты, даваемые обеими моделями, уравнения планарного приближения переписаны в тех же безразмерных переменных, которые использовались для модели динамо в торе. Были получены пороговые значения управляющих параметров, при которых возможен рост магнитного поля в том или ином случае. Хотя они и отличаются в силу вполне понятных причин, качественно результаты оказываются в обоих случаях схожими. Исследован вопрос о влиянии нелинейных эффектов (связанных с насыщением его роста при приближении напряженности магнитного поля к значению, соответствующему равнораспределению по энергии) на эволюцию магнитного ноля.

Можно сделать вывол о том, что генерация магнитного поля в целом ряде внешних колец вполне возможна. Конечно, для этого необходимы достаточно жесткие условия, которым, однако, удовлетворяют не все объекты. В частности, внешние кольца должны быть достаточно широкими - в противном случае процессы затухания магнитного поля будут превалировать нал генерацией, обусловленной механизмом динамо. Приводятся типичные зависимости магнитного поля от времени в различных случаях.

Отметим, что рост магнитного поля за счет описанных явлений - не единственная возможность для возникновения магнитных полей во внешних кольцах галактик. В частности, возможен перенос поля из внутренних частей галактики за счет распространения нелинейных волн из основной части галактики, который известен в математической физике как эффект Колмогорова -Петровского-Пискунова [15,20-22]. Особую роль данный механизм должен играть в случае так называемых полярных колец, которые располагаются в плоскости, не совпадающей с экваториальной плоскостью галактики.

2. Модель для магнитного поля галактики. Магнитное поле Н как галактик, так и внешних колец состоит из двух основных компонентов - крупномасштабной В и мелкомасштабной b [6,13]:

$\mathbf{H} = \mathbf{B} + \mathbf{b}.$

Эволюция мелкомасштабной составляющей описывается с помощью

Е.А.МИХАЙЛОВ

уравнения Штеенбека-Краузе-Рудзера, получаемого при осреднении основных уравнений магнитной гидродинамики [8]:

$$\frac{\partial \mathbf{B}}{\partial t} = \operatorname{rot}[\mathbf{V}, \mathbf{B}] + \operatorname{rot}(\boldsymbol{\alpha}\mathbf{B}) + \eta \Delta \mathbf{B}, \qquad (1)$$

где $V = r \Omega e_{\phi}$ - скорость крунномаснітабных движений (*r* - расстояние до центра галактики, Ω - скорость се вращения), α - коэффиниент, характеризующий альфа-эффект (связанный с закрученностью турбулентных движений), $\eta = lv/3$ - коэффиниент, характеризующий турбулентную диффузию (*l* - типичный масштаб турбулентности, составляющий величину 50 - 100 нк и совпадающий с типичными размерами областей, в которых сосредоточена мелкомасштабная составляющая галактического магнитного поля, v - скорость турбулентных движений).

Как правило, уравнение (1) решается не в явном виле (ввилу того, что это достаточно сложно и требует значительных вычислительных ресурсов), а с использованием одного из приближений, позволяющих понизить размерность задачи. В случае внешних колен можно предноложить наличие осевой симметрии, что дополнительно облегчает процесс решения залачи. В случае основной части галактики хорошо себя зарекомендовало планарное приближение [10].

2.1. Планарное приближение. Предположим, что магнитное поле лежит в плоскости диска, поэтому в случае использования пилиндрической системы координат $r - \varphi - z$ для нас будут существенны лишь компоненты B_r и B_{φ} . Кроме этого, предположим, что альфа-эффект является нечетной функцией расстояния до экваториальной плоскости [9,23]:

$$\alpha = \alpha_0 \frac{z}{h},$$

гле h - полутолщина кольца. Характерная величина альфа-эффекта связана с лействием кориолисовой силы и может быть описана так:

$$\alpha_0 = \frac{\Omega l^2}{h}$$

Можно считать, что магнитное поле зависит от расстояния до экваториальной плоскости по следующему закону [11]:

$$B_r(r,z) = B_r(r,0)\cos\left(\frac{\pi z}{2h}\right), \quad B_{\varphi}(r,z) = B_{\varphi}(r,0)\cos\left(\frac{\pi z}{2h}\right),$$

поэтому производные магнитного поля вдоль вертикального направления можно заменить на довольно простые выражения [13]:

$$\frac{\partial^2 B_r}{\partial z^2} = -\frac{\pi^2}{4h^2} B_r , \quad \frac{\partial^2 B_{\phi}}{\partial z^2} = -\frac{\pi^2}{4h^2} B_{\phi} .$$

168

Тогла векторное уравнение (1) сведется к системе из двух скалярных уравнений (предполагается наличие плоской кривой вращения, для которой $d\Omega/dr = -\Omega/r$):

$$\frac{\partial B_r}{\partial t} = -\frac{\Omega I^2}{h^2} B_{\varphi} - \eta \frac{\pi^2}{4h^2} B_r + \eta \Delta_r B_r , \qquad (2)$$

$$\frac{\partial B_{\rm c}}{\partial t} = -\Omega B_r - \eta \frac{\pi^2}{4h^2} B_{\rm \phi} + \eta \Delta_r B_{\rm \phi} \,, \tag{3}$$

гле Δ_{μ} - часть оператора Лапласа, связанная с произволными по расстоянию до пентра галактики.

Улобно использовать безразмерные переменные. Время возможно измерять в единицах a^2/η , где *a* - полуширина внешнего кольца (см. рис.1). Расстояния

Рис.1. Схема внешнего кольца галактики.

измеряются в расстояниях до центра галактики *R*. Таким образом, используются переменные $\tilde{r} = r/R$, $\tilde{z} = z/R$, $\tilde{t} = t \eta/a^2$. С целью сокращения записи "тильды" мы будем в лальнейшем опускать. Тогда система уравнений (2)-(3) для магнитного поля будет выглядеть следующим образом:

$$\frac{\partial B_r}{\partial t} = -S_\alpha B_\varphi - \frac{\pi^2 k^2}{4} B_r + \lambda^2 \Delta_r B_r , \qquad (4)$$

$$\frac{\partial B_{\varphi}}{\partial t} = -S_{\omega}B_r - \frac{\pi^2 k^2}{4}B_{\varphi} + \lambda^2 \Delta_r B_{\varphi} , \qquad (5)$$

гле k = a/h характеризует соотношение между полушириной и полутолщиной внешнего кольца, $\lambda = a/R$ соотношение между расстоянием до центра и полушириной. В таких переменных расстояние до центра галактики будет единичным, а полуширина кольца равна λ . Коэффициент $S_{\alpha} = 3\Omega la^2/vh^2$ характеризует альфа-эффект, $S_m = 3\Omega a^2/lv$ - дифференциальное вращение.

Опеним возможность генерации магнитного поля. Радиальную часть оператора Лапласа можно заменить на следующее выражение:

$$\Delta_r \approx -\frac{\pi^2}{4\lambda^2}.$$

Тогда система уравнений (4)-(5) (в таком случае частные производные

Е.А.МИХАЙЛОВ

можно заменить на полные) сведется к виду:

$$\frac{dB_r}{dt} = -S_u B_{\varphi} - \frac{\pi^2 k^2}{4} B_r - \frac{\pi^2}{4} B_r , \qquad (6)$$

$$\frac{dB_{\varphi}}{dt} = -S_{\omega}B_{r} - \frac{\pi^{2}k^{2}}{4}B_{\varphi} - \frac{\pi^{2}}{4}B_{\varphi}, \qquad (7)$$

Предполагая, что магнитное поле растет по экспоненциальному закону:

$$B_r \propto \exp(\gamma t), \quad B_{\varphi} \propto \exp(\gamma t),$$

можно получить следующие скорости роста:

$$\gamma = -\frac{\pi^2}{4} \left(1 + k^2 \right) \pm \sqrt{S_{\omega} S_{\omega}} .$$

Введем число, характеризующее совместное действие альфа-эффекта и дифференциального вращения:

$$Q = S_{\alpha}S_{\omega} = \frac{9\Omega^2 a^4}{v^2 h^2}.$$

Одна из скоростей роста магнитного поля будет всегла отринательной, знак второй зависит от безразмерного параметра Q, характеризующего соотношение между дифференциальным вращением, альфа-эффектом и лиссипацией, связанной с турбулентными движениями. Чем выше интенсивность первых двух механизмов по сравнению с диссипацией, тем больше величина Q. Рост магнитного поля возможен, если хотя бы одна из скоростей роста положительна. Это достигается в ситуании, когда $Q > Q_{cc}$ где:

$$Q_{cr} = \frac{\pi^4}{16} \left(1 + k^2 \right)^2 \, .$$

Смысл Q примерно тот же, что и у динамо-числа D, известного в теории галактического динамо [11]. Возможность роста магнитного поля во внешнем кольце связана с соотношением между его радиальными и вертикальными размерами, характеризуемого числом k. В частности, если полуширина равна полутолщине, k = 1. Тогда:

$$Q_{cr} = 24.4$$
.

Данная оценка получена из достаточно грубых соображений. Поэтому имеет смысл проверить ее численно. Задача решалась с граничными условиями:

$$B_r\big|_{r=1-\lambda} = B_r\big|_{r=1+\lambda} = B_{\varphi}\big|_{r=1-\lambda} = B_{\varphi}\big|_{r=1+\lambda} = 0 \,.$$

Тороидальная компонента магнитного поля в случае, когда порог генерации превышен, показана на рис.2. Отметим, что в данном случае возможен рост лишь квадрупольного магнитного поля - это принципиальное ограничение, следующее из построения планарного приближения. Кромс того, планарное

МОДЕЛЬ ДИНАМО В ТОРЕ

приближение исходит из того, что размеры объекта в вертикальном направлении существенно меныше, чем в экваториальной плоскости. Поэтому рассмотренный нами случай k=1 (когда они равны) не вполне корректен. Ввиду этого имеет смысл рассмотреть другую модель, учитывающую зависимость от расстояния до экваториальной плоскости.

Рис.2. Торондальное магнитное поле, полученное в рамках планарного приближения при t = 3, $S_{\alpha} = 4$, $S_{\alpha} = 15$.

2.2. Динамо в торе. Форма внешнего кольца оказывается достаточно близкой к тору. Поэтому при изучении в них магнитных полей весьма актуальной является модель динамо в торе [16-19]. Можно разделить крупно-масштабную составляющую магнитного поля на две части:

$$\mathbf{B} = B \mathbf{e}_{\varphi} + \operatorname{rot}(A \mathbf{e}_{\varphi}), \tag{8}$$

где *В* - тороидальная компонента, *А* - часть векторного потенциала, характеризующая полоидальную компоненту.

Тогла, ести считать, что тороидальная составляющая существенно превышает полоидальную, а конфигурация поля является осесимметричной, мы получаем следующие уравнения для эволюции [19]:

$$\frac{\partial A}{\partial t} = \frac{\Omega l^2}{h} \frac{z}{a} B + \eta \Delta A, \qquad (9)$$

Е.А.МИХАЙЛОВ

$$\frac{\partial B}{\partial t} = \Omega \frac{\partial A}{\partial z} + \eta \Delta B. \tag{10}$$

Отметим, что оператор Лапласа подразумевает лифференцирование по переменным r и z. Систему уравнений (9)-(10) удобно переписать, используя те же безразмерные переменные, что и в случае планарного приближения (см. выше):

$$\frac{\partial A}{\partial t} = S_{\alpha} z B + \lambda^2 \Delta A , \qquad (11)$$

$$\frac{\partial B}{\partial t} = S_{m} \frac{\partial A}{\partial z} + \lambda^{2} \Delta B.$$
(12)

Логично предположить, что возможность генерании магнитного поля будет также определяться числом *Q*. Данная модель более сложна для оненок, чем планарное приближение. Поэтому приведем качественные оненки, которые дадут лишь приблизительный результат.

Произведение тороидального магнитного поля на расстояние до экваториальной плоскости можно грубо опенить так:

$$zB \sim \frac{\lambda B}{2}$$

Произволную компоненты вскторного потенциала, отвечающей за полоидальное поле, оценим следующим образом (считая, что характерный пространственый масштаб изменения векторного потенциала равен λ):

$$\frac{\partial A}{\partial z} - \frac{A}{\lambda}.$$

Обранцаем внимание, что в данном случае все линейные размеры измеряются в безразмерных величинах (единица измерения соответствует ралиусу внешнего кольца). В рамках таких единиц переменные изменяются в пределах $-\lambda < z < \lambda$, $1 - \lambda < r < 1 + \lambda$.

Аналогично тому, как это делалось для планарного приближения, лапласианы можно заменить так:

$$\Delta A = -\frac{\pi^2}{2\lambda^2} A, \quad \Delta B = -\frac{\pi^2}{2\lambda^2} B.$$

Тогда систему уравнений (11)-(12) для эволюции магнитного поля можно заменить следующим качественным аналогом:

$$\frac{dA}{dt} = S_{\alpha} \frac{\lambda B}{2} - \frac{\pi^2}{2} A, \qquad (13)$$

$$\frac{dB}{dt} = S_{60} \frac{A}{\lambda} - \frac{\pi^2}{2} B.$$
(14)

Точно так же, как и в предыдушем случае, можно предположить, что поле будет расти по экспоненциальному закону:

$$A \propto \exp(\gamma t), \quad B \propto \exp(\gamma t).$$

Для скорости роста мы получим выражение:

$$\gamma = -\frac{\pi^2}{2} \pm \sqrt{\frac{S_\alpha S_\omega}{2}} \,.$$

Она может быть положительной в том случае, если превышен порог генерации:

$$Q = S_{\alpha}S_{\omega} > Q_{cr}.$$

Для критического значения получим, что

$$Q_{rr} = 49.$$

Проверим данный результат численно. Будем решать задачу в области:

$$\rho = \sqrt{(r-1)^2 + z^2} < \lambda \,.$$

В качестве граничных условий выберем следующие [18]:

$$\begin{array}{c} 0.10 \\ 0.05 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.02 \\ 0.04 \\ 0.04 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.$$

Рис.3. Тороилальное магнитное поле, полученное в рамках модели линамо в торе при t=3, $S_{\alpha}=4$, $S_{\omega}=15$.

$$B\Big|_{\rho=\lambda} = \frac{\partial A}{\partial \rho}\Big|_{\rho=\lambda} = 0.$$

Е.А.МИХАЙЛОВ

Численный расчет, в отличие от планарного приближения, достаточно существенно корректирует качественные опенки. Рост при положительных значениях наблюдается в случае, если Q > 42 [19]. Именно при таких значениях дифференциальное вращение и альфа-эффект оказываются достаточно интенсивными, чтобы противостоять диссинации.

Один из характерных результатов для тороидальной компоненты магнитного поля в том случае, когда порог теперании достигается, показан на рис.3. Можно отметить, что результаты в данном случае в целом сходны с тем, что было в случае более планарного приближения, исходящего из более простых соображений. Имеющееся магнитное поле также обладает квадрупольной симметрией: магнитное поле является четной функцией расстояния до экваториальной плоскости:

$$B(z)=B(-z).$$

Кроме того, модель динамо в торе предусматривает возможность генерании структур дипольной симметрии, когда поле является нечетной функцией координаты *z*

$$B(z)=-B(-z).$$

В таком случае в экваториальной плоскости (при z = 0) B = 0. С учетом того, что процессы, способствующие генерании магнитного поля, наиболее интенсивны именно в экваториальной плоскости и быстро слабекя с ростом z, требуется наложить на скорости движений в галактике памного более жесткие условия. Расчет показывает, что дипольные магнитные поля могут генерироваться при Q > 1190 [19]. Это может лостигаться в ситуании, когла угловая скорость вращения внешнего колыга примерно на порядок превышает значения, характерные для центральной части. Кроме того, для генерании магнитных полей полобного типа требуются начальные условия, асимметричные относительно экваториальной плоскости. В случае наличия в начальных условиях даже небольшого симметричного слагаемого, симметрия магнитного поля может со временем переключиться с дипольной на квадрупольную.

Один из примеров генерации дипольного магнитного поля показан на рис.4. Отметим, что этот результат принципиально невозможно получить, пользуясь планарным приближением.

Кроме того, возможна генерация магнитного поля и при отрицательных значениях параметра *Q*. Так же, как и при положительных, возможно возникновение как квадрупольного, так и дипольного магнитного поля. При этом, модуль величины данного числа должен быть выше, чем при положительных значениях [19].

174

МОДЕЛЬ ДИНАМО В ТОРЕ

Рис.4. Торонлальное магнитное поле, полученное в рамках модели динамо в горе при t = 3, $S_{cs} = 4$, $S_{ts} = 300$.

3. Выводы. Был изучен вопрос о генерании магнитного поля во внешних кольнах галактик. Для этого были использованы две различных модели: планарнос приближение, разработанное для тонких галактических дисков, и модель динамо в торе, которая представляется более реалистичной для внешних колен. Показано, что процесс генерации магнитных полей является пороговым, определены критические значения управляющих параметров, которые соответствуют раступция решениям. Построены диаграммы для магнитных полей при различных конфигурациях магнитного поля. Продемонстрировано, что в отличие от планарного приближения, для модели динамо в торе возможна генерация как квадрупольных, так и дипольных структур. Хотя магнитное поле дипольной симметрии может генерироваться при достаточно сненифических условиях, накладываемых на кинематику движений во внешнем кольце, этот результат может быть полезен в будущем при исследовании магнитных полей в других объектах тороидальной формы, например, в аккреционных торах.

Отметим, что работа механизма динамо in situ не является единственной возможностью для возникновения и поддержания магнитных полей во внешних кольцах галактик. Так, в ряде работ было показано, что как в периферийных областях, так и во внешних кольцах одним из механизмов переноса структур

Е.А.МИХАЙЛОВ

ноля является так называемый эффект Колмогорова-Петровского-Пискунова. Он хорошо известен в математической физике и связан с распространением нелинейных волн. Магнитное поле сначала вырастает до уровня насышения в основной части галактики, затем с помощью волны распространяется во внешние области [15,20-22]. Скорость распространения может быть опенена при помощи асимптотической теории контрастных структур. Кроме того, в случае полярных колец, пересекающихся с основной частью галактики, возможна "перекачка" магнитного поля из основной части галактики в кольно. Это может происходить за счет линейных явлений переноса.

Автор выражает благодарность профессору Д.Д.Соколову за полезные рекомендации, данные при подготовке работы, а также оргкомитету конференнии "Современная звездная астрономия-2017" за возможность представить результаты проведенного исследования.

Работа была выполнена при поддержке Российского фонда фундаментальных исследований (проект 16-32-00056 мол_а).

Московский государственный университет им. М.В.Ломоносова, Физический факультет, Москва, Россия, e-mail: ea.mikhajlov@physics.msu.ru

TORUS DYNAMO MODEL FOR RESEARCH OF MAGNETIC FIELDS IN THE OUTER RINGS OF GALAXIES

E.A.MIKHAILOV

Now it is no doubt that some of spiral galaxies have magnetic fields of several μ G. Their generation is connected with the dynamo mechanism. The equations of the dynamo theory are quite complicated, so the no-z approximation is often used. It is based on fact that the galaxy disc is very thin, so some of the partial derivatives can be changed by algebraic expressions. Some of the galaxies have outer rings where it is possible to suppose the existence of the magnetic fields, too. Their generation can be described by the no-z approximation, too, but the model, that was considered for thin disks (not for the rings), can give only qualitative result. So for studying this process the torus dynamo model is used. The possible scenarios of the field evolution in the outer rings have been studied. We have obtained that for slow motions in the outer rings the field of quadrupolar

МОЛЕЛЬ ЛИНАМО В ТОРЕ

symmetry will be generated. For more intensive processes we can obtain the dipolar component growth, which is impossible while using no-z approximation.

Key words: outer rings of galaxies: dynamo theory

ЛИТЕРАТУРА

- 1. R.Beck, A.Brandenburg, D.Moss et al., Ann. Rev. Astron. Astrophys., 34, 155, 1996.
- 2. R. Beck, J.Anderson, G. Heald et al., Astron. Nachr., 334, 548, 2013.
- 3. C. van Eck, J.-A.Brown, 11th Annual Meeting of the Northwest Section of APS, May 14-16, B1.005, 2009.
- 4. M. Haverkorn, P. Katgert, A.G. de Bruyn, Astron. Astrophys., 427, 169, 2004.
- 5. R.Stepanov, R.Beck, T.Arshakian et al., Astron. Astrophys., 480, 45, 2008.
- 6. T.Arshakian, R.Beck, M.Krause, D.Sokoloff, Astron. Astrophys., 494, 21, 2009.
- 7. Г. Моффат, Возбужление магнитного поля в проводящей среде, М., Мир, 1980.
- 8. Ф. Краузе, К.-Х.Рэдлер, Магнитная гидродинамика средних полей и теория динамо, М., Мир, 1984.
- 9. K.Subramanian, L.Mestel, Mon. Not. Roy. Astron. Soc., 265, 649, 1993.
- 10. D. Moss, Mon. Not. Roy. Astron. Soc., 275, 191, 1995.
- 11. A. Phillips, Geophys. Astrophys. Fluid Dyn., 94, 135, 2001.
- 12. D. Moss, D. Sokoloff, Astron. Nachr., 332, 88, 2011.
- 13. Е.А. Михайлов, Письма в Астрон. ж., 39, 474, 2013.
- 14. J.C. Theys, E.A. Spiegel, Astrophys. J., 208, 650, 1976.
- 15. D.Moss, E.Mikhailov, O.Sil'chenko et al., Astron. Astrophys., 592. A44, 2016.
- 16. W. Deinzer, II. Grosser, D. Schmitt, Astron. Astrophys., 273, 405, 1993.
- 17. J.M. Brooke, D. Moss, Mon. Not. Roy. Astron. Soc., 266, 733, 1994.
- 18. J.M. Brooke, D. Moss, Astron. Astrophys., 303, 307, 1995.
- 19. Е.А. Михайлов, Астрон. ж., 94, 741, 2017.
- 20. E.Mikhailov, A.Kasparova, D.Moss et al., Astron. Astrophys., 568, A66, 2014.
- 21. Е.А. Михайлов, Вестник Моск. ун-та. Сер. 3. Физ. Асгрон., 2, 27, 2015.
- 22. D.Moss, A.Shukurov, D.Sokoloff, Geophys. Astrophys. Fluid Dyn., 89, 285, 1998.
- 23. L.Mestel, K.Subramanian, Mon. Not. Roy. Astron. Soc., 248, 677, 1991.

АСТРОФИЗИКА

TOM 61

МАЙ, 2018

ВЫПУСК 2

HIGH-ENERGY 7-RAY EMISSION FROM PKS 0625-35

V.BAGHMANYAN¹, M.TUMANYAN^{1,2}, N.SAHAKYAN^{1,2}, Y.VARDANYAN³ Received 29 January 2017 Accepted 7 March 2018

We present the γ -ray observations of the radio galaxy PKS 0625-35, using the Fermi Large Area Telescope data accumulated during 2008-2017. γ -rays up to 100 GeV have been detected with a detection significance of about 32.3 σ . A power law spectrum with a photon index of 1.88±0.04 and an integrated flux of $F = (1.02 = 0.10) \times 10^{-10}$ photon cm⁻² s⁻¹ above 100 MeV well describes the data averaged over 9 years of observations. There is a hint of deviation from a simple power-law shape around tens of GeV energies; however, the low statistics does not allow to reject power law modeling. The spectral energy distributions during high and low X-ray states are modeled using onezone leptonic models that include the synchrotron, synchrotron self Compton processes; the model parameters are estimated using the Markov Chain Monte Carlo method. The modeling shows that in the jet of PKS 0625-35 the particles (electrons) are accelerated to energies higher than 50 TeV.

Key words: PKS 0625-35: y -rays: radio galaxy

1. Introduction. The recent observations in the High Energy (HE; $100 \text{ MeV} \le E_{\gamma} \le 100 \text{ GeV}$) γ -ray band show that the extragalactic γ -ray sky is dominated by the emission from Active Galactic Nuclei (AGN) of different types. The majority of detected sources are blazars, (BL-Lacs and Flat Spectrum Radio Quasars - FSRQs), which are an extreme class of AGNs that have jets which are forming a small angle with respect to the line of sight [1]. Blazars are known to emit electromagnetic radiation in almost all frequencies that are currently being observed, extending from radio to very high energy (VHE; >100 GeV) γ -ray bands. Their broadband spectra are mainly dominated by the non-thermal emission from a relativistic jet pointing toward the observer. This non-thermal emission is characterized by variability in all observed energy bands with different variability time scales ranging from years down to a few minutes. The shortest variability time scales are usually observed in the HE and VHE γ -ray bands.

The AGNs with the jet pointing away from the observer (non-blazar AGNs) were not considered as favored GeV sources, because the larger jet inclination angle (compared with the jet of blazars) makes their non-thermal emission less Doppler-boosted. After the launch of Fermi Large Area Telescopes (Fermi-LAT), several non-blazar AGNs were detected already in the first year of observations [2-5]. This showed that misdirected AGNs are a new and important class of γ -ray emitters [6], where the emission from extended non-boosted regions, moderately

relativistic plasma, etc., can also be investigated, thereby contributing to the understanding of the physics of AGNs.

Analyzing the Fermi-LAT data accumulated during the first fifteen months of observations of non-blazar AGNs, [6] showed that their average 7-ray spectral indices are comparable, but they are somewhat less 7-ray luminous than their parent population of BL Lacs and FSRQs in accordance with the AGN unification scenario [1]. So far, HE y-ray emission has been detected from 27 non-blazar AGNs, but VHE y -rays have been detected only from four of them. Centaurus A [7], M87 [8], NGC 1275 [9] and PKS 0625-35 [10]. The emission from Centaurus A. M87 and NGC 1275 is well investigated which allowed to obtain important information about the physics of their jets. Only recently VHE y-ray emission above 250 GeV has been detected from PKS 0625-35 [10]. The emission is well described by a power-law with the index of $\Gamma = 2.8 \pm 0.5$ which extends up to 10 TeV. PKS 0625-35 is at a redshift of z = 0.055 [11] having radio morphology more similar to that of the Fanaroff-Riley class I radio sources [12]. In the MeV/GeV band, the γ -ray emission from PKS 0625-35 is described with an unusual hard photon index, $\Gamma = 1.87 \pm 0.06$, as compared with the average photon index of radio galaxies - $\Gamma > 2.3$. The hard photon index and the detection in the VHE γ -ray band have made this radio galaxy an interesting target where the particle acceleration and emission processes can be examined under the most extreme regimes.

Considering the large amount of data available in the γ -ray band (around 9 years), one can study the γ -ray emission properties with improved statistics. Namely, the γ -ray spectra above GeV energies can be investigated with better statistics than before and by considering the data from longer periods, one can look for γ -ray flux variability in long as well as in short time scales, which is necessary for theoretical modeling. This motivated us to have a new look on the emission from PKS 0625-35 using the most recent data available.

The paper is structured as follows. The analyses of Fermi-LAT and Swift XRT/UVOT data are presented in Section 2. The modeling of the SED is presented in Section 3. The results are discussed in Section 4 and summarized in Section 5.

2. Observations and data analysis.

2.1. Fermi-LAT data extraction. Fermi-LAT on board the Fermi satellite is a pair-conversion telescope, operating since August 4, 2008, and is designed to detect HE γ -rays in the energy range 20 MeV-300 GeV [13]. It constantly scans the entire sky every three hours and by default is always in the survey mode. Details about the LAT instrument can be found in [13].

For the present analysis, we use publicly available Fermi-LAT 9 yr data, from

HIGH ENERGY 7-RAY EMISSION FROM PKS 0625-35 181

4 August 2008 to 4 August 2017 (MET 239557417-518227205). We use the Pass 8 data and analyze them using Fermi Sciences Tools v10r0p5 software package. The recommended quality cuts, (DATA QUAL==1)&&(LAT CONFIG==1) and a zenith angle cut at 90° to eliminate the Earth limb events were applied with giselect and gimktime tools. We downloaded photons from a 10° region centered on VLBI radio position of PKS 0625-35 (RA, Dec) = $(96^{\circ}.77, -35^{\circ}.49)$ and worked with a $14^{\circ} \times 14^{\circ}$ square region of interest (ROI). We bin photons with *gtbin* tool with a stereographic projection into pixels of 0°.1×0°.1 and into 35 equal logarithmicallyspaced energy bins. Then with the help of glike tool, we perform a standard binned maximum likelihood analysis. The fitting model includes diffuse emission components and γ -ray sources within ROI (the model file is created based on 3FGL). The Galactic background component is modeled using the LAT standard diffuse background model gll iem v06 and iso P8R2 SOURCE V6 v06 for the isotropic γ -ray background. The normalization of background models as well as fluxes and spectral indices of sources within 10° are left as free parameters in the analysis.

2.2. Spectral analysis. We assume that the γ -ray emission from PKS 0625-35 is described by the power law where the normalization and power law index are considered as free parameters, then the binned likelihood analysis is performed. From a binned *gtlike* analysis, the best-fit power law parameters for PKS 0625-35 are

$$\left(\frac{dN}{dE}\right)_{P} = \left(8.99 \pm 0.47\right) \times 10^{-11} \left(\frac{E}{100}\right)^{-1.88 \pm 0.04} \text{MeV}^{-1} \text{s}^{-1} \text{cm}^{-2} .$$
(1)

This corresponds to an integral flux of

 $F_{\gamma} = (1.02 \pm 0.10) \times 10^{-8} \text{ photon cm}^{-2} \text{s}^{-1}$,

with only statistical errors taken into account. The test statistics (defined as $TS = 2(\log L - \log L_0)$, where L and L_0 are the likelihoods when the source is included or not) is TS = 1041.1 above 100 MeV, corresponding to a $\approx 32.3\sigma$ detection significance. Fig.1 shows the spectrum of PKS 0625-35 obtained by separately running *gtlike* for 10 energy bands, where with dot dashed bowtie is shown the best-fit power law function for the data given in Eq. (1). We note an indication of deviation of the power-law model with respect to the data around 100 GeV. In order to check for a statistically significant curvature in the spectrum, an alternative fit of the power-law with an exponential cutoff function in the form of $dN/dE = E^{-\alpha} \exp(-E/E_{cut})$ is done, which results in $\alpha = 1.76 \pm 0.16$ and $E_{cut} = 80.77 \pm 40.95$ GeV (solid bowtie plot in Fig.1). The power-law and cutoff models are compared with a log likelihood ratio test: the TS is twice the difference in the log likelihoods, which gives 9.9 for this case. Thus, the exponential cutoff

Fig.1. Spectral energy distribution of the core of PKS 0625-35 as compared with the best Power-Law (dot dashed) and Power-Law with Exponential Cutoff (solid) models.

model is preferred over the simple PL only at 32.3 σ level, so that the PL cannot be rejected; but the detection of PKS 0625-35 in the TeV band by HESS [10] gives a photon index of $\Gamma_{\text{TeV}} = 2.8 \pm 0.5$ which strengthens the assumptions of the cut-off in the GeV band.

2.3. Temporal analysis. In order to investigate the temporal variability, light curves with different time binning are generated. A characteristic timescale for flux variation τ would limit the (intrinsic) size of the emission region to $R \le c \times \delta \times \tau/(z+1)$. Thus, it is crucial to do a variability analysis in order to distinguish between different emission processes.

The γ -ray light curve is calculated with the unbinned likelihood analysis method implemented in the *gtlike* tool. (0.1-300) GeV photons are used in the analysis with the appropriate quality cuts applied in the data selection. The photon indices of all background sources are fixed to the best guess values obtained in full time analysis in order to reduce the uncertainties in the flux estimations. The power-law index of PKS 0625-35 is first considered as a free parameter and then as a fixed one. Since no variability is expected for the background diffuse emission, the normalization of both background components is also fixed to the values obtained for the whole time period.

Fig.2 illustrates the γ -ray flux variation above 100 MeV for 60-day (circle) and 90-day (triangle) sampling. A χ^2 test shows that the reduced χ^2 is $\chi^2/dof = 0.95$ (dof - degree of freedom) with the probability of constant flux $P(\chi^2) = 0.56$ for 60-day bins and $\chi^2/dof = 1.45$ with $P(\chi^2) = 0.049$ for the 90-

Fig.2. The light curves in the γ -ray, X-ray and optical bands. The γ -ray light curve was calculated using 60-day (circle) and 90-day (triangle) bins.

day bins. These numbers are consistent with no variability although the light curve with 90-day bins indicates possible variability. Because of limited statistics, however, no definite conclusion can be drawn.

Table 1

FITTING RESULTS OF THE DATA OBTAINED BY THE XRT INSTRUMENT ON BOARD SWIFT

Obs.	ID	Date	Exp. Time (s)	Photon Index"	Unabsorbed Flux ^⁵	x_{red}^2 (dof)
39130 39130 4966 4966	6001 6002 7001 7002	Nov 22, 2009 Feb 01, 2010 Jul 26, 2013 Jul 29, 2013	1379 4523 8079 2452	$\begin{array}{c} 1.97 \pm 0.08 \\ 2.26 \pm 0.05 \\ 2.11 \pm 0.09 \\ 2.12 \pm 0.04 \end{array}$	$15.86 \pm 0.90 \\ 9.42 \pm 0.31 \\ 8.09 \pm 0.23 \\ 6.90 \pm 0.41$	1.20 (20) 1.31 (43) 1.35 (59) 1.05 (15)

Notes:

* Photon index from X-ray data analysis.

*X-ray flux in the energy range 0.3 - 10 keV in units of $\times 10^{-12}$ erg cm⁻² s⁻¹ (corrected for the Galactic absorption).

183

V.BAGHMANYAN ET AL.

2.4. Swift observations. Swift satellite [14] observed PKS 0625-35 only four times, on MJD 55157.8, MJD 56502.8, MJD 56499.8, MJD 55228.2, during the considered period. The data from two of the instruments on board Swift, the Ultra Violet and Optical Telescope (UVOT) and the X-Ray Telescope (XRT), have been used in the analysis.

2.5. Swift XRT. The Swift-XRT observations were made in the photon counting (PC) (Obsid 39136001, 39136002, 49667001, 49667002) mode. The data were analyzed using the XRTDAS software package (v.3.3.0) distributed by HEASARC as part of the HEASoft package (v.6.21). The source spectrum region was defined as a circle with a radius of 47" at the center of the source, while the background region was defined as an annulus centered at the source with its inner and outer radii being 120" and 200" respectively. Since the source count rate was always below 0.5 counts s⁻¹ no pile-up correction was necessary. The spectrum was rebinned to have at least 20 counts per bin, ignoring the channels with energy below 0.3 keV, and fitted using XSPEC v12.9.1a. The 0.3-10.0 keV spectrum is well fitted by an absorbed power-law model with column density $N_{H} = 6.36 \times 10^{20}$ cm⁻². The results of the fit are given in Table 1 and the corresponding spectra are shown in Fig.3. The change of the X-ray flux during these observations can be seen on the light curve shown in Fig.2 (middle panel). Although the X-ray flux did not increase significantly (the highest flux of $F_{0.3-10keV} = (15.86 \pm 0.90) \times 10^{-12} \text{ crg cm}^{-2} \text{ s}^{-1} \text{ observed on November 22, 2009, ex-}$

Fig.3. The broadband SED of PKS 0625-35 emission for low and active states. Black solid and dashed lines show the synchrotron/SSC model fitting for two different X-ray fluxes. The model parameters are presented in Table 2.

184

HIGH ENERGY 7-RAY EMISSION FROM PKS 0625-35 185

Table 2

		-	
	Parameter	Steady	Active
Doppler factor	δ	4	4
Normalization of electron distribution	$N_0' \times 10^{52} \mathrm{eV}^{-1}$	12.02-0.25	1.261-0.03
Electron spectral index	α	2.76 ± 0.12	2.63 ± 0.15
Minimum electron energy	E'ma (GeV)	3.40-22.65	1.26+14.02
Cutoff electron energy	E'_{cut} (TeV)	4.20-1 74	19.71-1.22
Maximum electron energy	E'max (TeV)	44.84+35.78	46.38-35 81
Magnetic field	<i>B</i> [mG]	8.95-2 22	16.27+4.40
Jet power in magnetic field	$L_B \times 10^{41} {\rm erg \ s}^{-1}$	7.69	25.41
Jet power in electrons	$L_e \times 10^{43} \text{ erg s}^{-1}$	7.48	5.58

MODEL PARAMETERS

ceeds the lowest by 2.3 times), the X-ray photon index softened, changing in the range of $\Gamma_x = (1.97 - 2.26)$ during the whole γ -ray observational period.

2.6. Swift UVOT. In the analysis of the Swift UVOT data, the source counts were extracted from an aperture of 5".0 radius around the source. The background counts were taken from the neighboring circular region having a radius of 15". The magnitudes were computed using the *uvotsource* tool (HEASOFT v6.21) then corrected for the Galactic absorption, applying E(B - V) = 0.0562 mag, the $A_{\lambda}/E(B-V)$ values were calculated using the interstellar extinction curves provided in [15], and the effective wavelength of each UVOT filter, were taken from [16]. We converted them into fluxes adopting the latest photometric zero-points for each band provided in [17]. The change of the optical/UV flux during different periods is shown in Fig.2 (lower panel).

3. Modeling the spectral energy distributions. The broadband SEDs of PKS 0625-35 are shown in Fig.3 where the radio data (gray) are archival data from ASI Science Data Center. The SEDs hint at the existence of two nonthermal emission peaks in the IR/optical/UV and HE γ -ray bands. Taking into account the results of the previous studies of other Fermi-LAT-observed radio galaxies [18-21], the multiwavelength emission of PKS 0625-35 is modeled using the synchrotron/Synchrotron Self-Compton (SSC) [22-24] model. The radio through optical emission is due to the synchrotron emission of energetic electrons in the homogeneous, randomly oriented magnetic field, while the X-ray to HE γ -ray emission is due to the inverse Compton scattering of the same synchrotron photons.

V.BAGHMANYAN ET AL.

The emission region (the "blob") is assumed to be a sphere with a radius of R which carries a magnetic field with an intensity of B and a population of relativistic electrons which have a power-law with an exponential cut-off energy distribution expected from shock acceleration theories [25], $N'_{c}(E'_{c}) = N'_{0}(E'_{c}/m_{e}c^{2})^{-\alpha} \times \exp\left[-E'_{e}/E'_{cut}\right]$ and the electron energy density (U_{c}) scales with that of the magnetic fields (U_{b}). Since the blob moves along the jet, the radiation will be amplified by a relativistic Doppler factor of \ddot{o} for which a typical value of (for the radio galaxies) $\delta = 4$ was used. It is hard to estimate the emission region size in the absence of statistically significant γ -ray variability. Most likely, the innermost jet is responsible for the γ -ray emission, and we assume that the blob size is $R \approx 4 \times 10^{17}$ cm ~ 0.1 pc.

3.1. Fitting Technique. In order to constrain the model parameters more efficiently, we employed the Markov chain Monte Carlo (MCMC) method, which enables to derive the confidence intervals for each model parameter. For the current study we have modified the naima package [26] which derives the best-fit and uncertainty distributions of spectral model parameters through MCMC sampling of their likelihood distributions. The prior likelihood, our prior knowledge of the probability distribution of a given model parameter and the data likelihood functions are passed on to the emcee sampler function for an affine-invariant MCMC run. We run the sampling with 64 simultaneous walkers, for 100 steps of burn-in and 100 steps of run. In the parameter sampling, the following expected ranges are considered: $1.5 \le \alpha \le 10$, $0.511 \text{MeV} \le E'_{(cut, min, max)} \le 1 \text{TeV}$, and N_0 and B are defined as positive parameters. The synchrotron emission is calculated using the parameter-ization of the emissivity function of synchrotron radiation in random magnetic fields presented in [27], while the IC emission is computed based on the monochromatic differential cross-section of [28].

4. SED modeling results. The broadband emission modeling results obtained in two different X-ray states are shown in Fig.3 with the corresponding parameters in Table 2. We choose to model the SEDs for two different photon indices in the X-ray band, $\Gamma_X = 1.97 \pm 0.08$ (filled circle) and $\Gamma_X = 2.12 \pm 0.04$ (filled triangle). Also, these periods corresponds to the highest and lowest X-ray fluxes observed during the considered period. In the fit we did not include the radio data since the radio emission can be produced from the low-energy electrons which are accumulated for longer periods, but require that the radio flux should not exceed the observed flux. Thus higher values of E'_{min} are obtained, $E'_{min} = 3.40 \pm 2.18$ GeV (summed the errors in quadrature) and $E'_{min} = 1.23 \pm 1.13$ GeV for the low and active states, respectively. The HE tail of the underlying electron distribution, E'_{max} , is mostly defined by the HESS data, this is why in the modeling of SEDs in the active and low states its values are similar,

HIGH ENERGY 7-RAY EMISSION FROM PKS 0625-35 187

 $E_{max} = 44.84 \pm 34.42$ TeV and $E_{max} = 46.38 \pm 33.88$ TeV, respectively. The γ -ray photon index observed in the MeV/GeV band by Fermi-LAT allows to estimate the power-law index of underlying electrons responsible for the emission. The slope of IC emission, ($\nu F_{\nu} \propto \nu^{1-\epsilon}$) is related with the power-law index of electron by $s = (\alpha - 1)/2$ where $s = 1 + \Gamma = -0.88$. The estimated values are $\alpha = 2.76 \pm 0.12$ and $\alpha = 2.63 \pm 0.15$ for the low and active states respectively, in agreement with the predictions. Since the synchrotron component has increased, the magnetic field in the active state $B = (16.27 \pm 3.95)$ mG is higher than in the low state $B = (8.95 \pm 2.43)$ mG, since the synchrotron emission depends on the total number of emitting electrons N, δ and magnetic field strength B. The magnetic field energy density is $U_B = 0.32 \times 10^{-5}$ erg cm⁻³ and $U_B = 1.05 \times 10^{-5}$ erg cm⁻³ for low and high states, respectively, lower than the same values for electrons, $U_e = 3.10 \times 10^{-4}$ erg cm⁻³ and $U_e = 2.31 \times 10^{-4}$ erg cm⁻³, respectively.

The jet power in the form of magnetic field and electron kinetic energy are calculated by $L_B = \pi c R_b^2 \Gamma^2 U_B$ and $L_e = \pi c R_b^2 \Gamma^2 U_e$, respectively, and are given in Table 2. The jet power in electrons changes within $(5.58 - 7.48) \times 10^{43}$ erg s⁻¹ and that in the magnetic field changes within $(7.69 - 25.41) \times 10^{41}$ erg s⁻¹, which are lower than the Eddington luminosity $L_{EDD} = 1.63 \times 10^{47}$ erg s⁻¹ for the black hole with $1.29 \times 10^9 M_{\odot}$ [29].

5. Conclusion. In this paper, the multiwavelength emission from PKS 0625-35 is investigated using the Swift XRT/UVOT and Fermi-LAT data. The modeling of SEDs in different periods allowed to investigate the jet properties and physical processes that take place in the core where, most likely, the jet is formed.

The γ -ray data analysis shows that the source emission extends above 100 GeV with a hard photon index of $\Gamma = 1.88 \pm 0.04$ and a detection significance of $\approx 32.3\sigma$. There is a hint of a spectral curvature in the γ -ray spectrum of PKS 0625-35, but the power law with an exponential cut-off model is preferred over the simple power-law modeling assuming a break around $E_{cut} = 80.77 \pm 40.95$ GeV with a significance of only 3.2σ . Although the low statistics does not allow to claim for a statistically significant curvature in the spectrum, the γ -ray photon index observed in the VHE γ -ray band, $\Gamma_{TeV} = 2.8 \pm 0.5$ strongly supports the presence of a break or a cutoff in the GeV spectrum of PKS 0625-35. There is a marginal evidence of variability in the light curve with 90-day binning, although because of low statistics no definite conclusion can be drawn.

In the X-ray band, the average flux in the 0.3 - 10.0 keV range is around $(0.7 - 1.6) \times 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1}$ with the X-ray photon index of $\Gamma = 2.0 - 2.3$. When the lowest and highest fluxes from Table 1 are compared, a nearly 2.3 times increase of the X-ray flux is found, which can be related with the changes of magnetic field in the emitting region. The hardest X-ray photon index is

 $\Gamma = 1.97 \pm 0.08$ and the softest is $\Gamma = 2.26 \pm 0.05$. These changes in the X-ray flux level and the photon index softening might indicate that different mechanisms are contributing to the acceleration and/or cooling of electrons, which modify the power-law index and the minimum energy of underlying electrons.

The one-zone synchrotron/SSC model can reproduce the observed multiwavelength SED, assuming the γ -rays are produced in a compact region (~4.17×10¹⁷ cm) in the innermost jet. Assuming the electrons are accelerated up to $E_{max} = 50 \text{ TeV}$ with a power-law index of $\alpha = 2.63 - 2.76$, the observed spectrum above TeV energies can be explained by IC scattering of synchrotron photons on the electron population producing the radio-to-X-ray emission in the jet. The necessary jet kinetic power is $(5.83 - 7.56) \times 10^{43} \text{ erg s}^{-1}$, which corresponds to (0.018-0.023)% of Eddington power.

1 ICRANet, Yerevan, Armenia, e-mail: narsahakyan@gmail.com

² ICRANet, Pescara, Italy

³ Yerevan State University, Yerevan, Armenia

ВЫСОКОЭНЕРГЕТИЧЕСКОЕ ГАММА-ИЗЛУЧЕНИЕ ОТ PKS 0625-35

В.БАГМАНЯН¹, М.ТУМАНЯН^{1,2}, Н.СААКЯН^{1,2}, Ю.ВАРДАНЯН³

Представлены результаты наблюлений гамма-излучения ралиогалактики РКS 0625-35, полученные с помощью Космического гамма-телескопа Ферми за период 2008-2017гг. Гамма-излучение до энергии 100 ГеВ было зарегистрировано со значимостью обнаружения около 32.3σ . Степенной спектр со спсктральным индексом 1.88 ± 0.04 и интегральным потоком $F_{\gamma} = (1.02\pm0.10) \times 10^{-8}$ фотон см⁻² с⁻¹ выше 100 МэВ хорошо описывают данные усредненных за 9 лет наблюдений. Есть некоторый намек на отклонение от простого степенного закона около энергий порядка десяток ГеВ; тем не менее низкая статистика не позволяет отказаться от моделирования степенного закона. Спектральное распределение энергии в состояниях высокого и низкого гамма-излучения моделировано с помощью однозоновой лептонной модели, которая включает в себя синхротронные, а также синхротрон - автокомптонные процессы; параметры модели оценены методом Монте-Карло по схеме марковских цепей. Моделирование показывает, что в струе PKS 0625-35 частицы (электроны) ускоряются до энергий выше, чем 50 ТеВ.

Ключевые слова: РКЅ 0625-35: ү -излучение: радиогалактики

REFERENCES

- 1. C.M. Urry, P. Padovani, Publ. Astron. Soc. Pacif., 107, 803, 1995.
- 2. A.A.Abdo, M.Ackermann et al., Astrophys. J., 719, 1433, 2010a.
- 3. A.A.Abdo, M.Ackermann et al., Astrophys. J., 707, 55, 2009a.
- 4. A.A.Abdo, M.Ackermann et al., Astrophys. J., 699, 31, 2009b.
- 5. A.A.Abdo, M.Ackermann, M.Ajello et al., Astrophys. J. Suppl. Ser., 188, 405, 2010b.
- 6. A.A.Abdo, M.Ackermann et al., Astrophys. J., 720, 912, 2010c.
- 7. F.Aharonian, A.Akhperjanian et al., Astrophys. J., 695, L40, 2009.
- 8. F.Aharonian, A.Akhperjanian et al., Science, 314, 1424, 2006.
- 9. J.Aleksic, E.A.Alvarez et al., Astron. Astrophys., 539, L2, 2012.
- 10. M. Dyrda, A. Wierzcholska et al., on behalf of the H.E.S.S. collaboration, Proceedings of ICRC2015, arXiv:1509.06851, 2015.
- 11. P.Jones et al., The 6dF Galaxy Survey: final redshift release (DR3) and southern large-scale, 2009.
- 12. B.L.Fanaroff, J.M.Riley, Mon. Not. Roy. Astron. Soc., 167, 31P, 1974.
- 13. W.B.Atwood, A.A.Abdo, M.Ackermann et al., Astrophys. J., 697, 1071, 2009.
- 14. N. Gehrels, G. Chincarini, P. Giommi et al., AIP Conf. Proc., 727, 637, 2004.
- 15. N.Fitzpatrick, Publ. Astron. Soc. Pacif., 111, 63, 1999.
- 16. T.Poole, A.Breeveld, M.Page et al., Mon. Not. Roy. Astron. Soc., 383, 627, 2008.
- 17. A.A.Breeveld, W.Landsman, S.T.Holland et al., AIP Conf. Proc., 1358, 373, 2011.
- 18. A.A.Abdo, M.Ackermann et al., Astrophys. J., 699, 976, 2009c.
- 19. A.A.Abdo, M.Ackermann et al., Science, 328, 725, 2010d.
- 20. N.Sahakyan, D.Zargaryan, V.Baghmanyan, Astron. Astrophys., 574, A88, 2015.
- 21. Y.T.Tanaka, A.Doi, Y.Inoue et al., Astrophys. J., 799, L18, 2015.
- 22. L. Maraschi, G. Ghisellini, A. Celotti, Astrophys. J., 397, L5, 1992.
- 23. S.D.Bloom, A.P.Marscher, Astrophys. J., 461, 657, 1996.
- 24. G. Ghisellini, L. Maraschi, A. Treves, Astron. Astrophys., 146, 204, 1985.
- 25. S.Inoue, F.Takahara, Astrophys. J., 463, 555, 1996.
- 26. V.Zabalza, Proceedings of ICRC2015, arXiv:1509.06851, 2015.
- 27. F.A.Aharonian, S.R.Kelner, A.Y.Prosekin, Phys. Rev. D, 82, 043002, 2010.
- 28. F.A.Aharonian, A.M.Atoyan, Astrophys. J. Suppl. Ser., 79, 321, 1981.
- B.Mingo, M.J.Hardcastle, J.H.Croston et al., Mon. Not. Roy. Astron. Soc., 440, 269, 2013.

АСТРОФИЗИКА

TOM 61

МАЙ, 2018

ВЫПУСК 2

ХИМИЧЕСКИЙ СОСТАВ ЗВЕЗД ТИПА RR ЛИРЫ ПОЛЯ КАК ИНДИКАТОР ЭВОЛЮЦИИ ПОДСИСТЕМ ГАЛАКТИКИ

В.А.МАРСАКОВ, М.Л.ГОЖА, В.В.КОВАЛЬ, Э.И.ВОРОБЬЕВ Поступила 17 января 2018 Принята к печати 7 марта 2018

Исследованы связи между химическими и пространственно-кинематическими свойствами переменных звеза типа RR Lyrae (лирил) поля. Показано, что среди них есть металличные лириы с кинематикой тонкого лиска, и обсуждается проблема существования таких лирид. Приводятся свидетельства уменьшения верхней границы массы образующихся звеза с увеличением металличности в тонком диске и лучшем перемешивании межзвезаного вещества в этой полсистеме Галактики. Найдено, что лириды с кинематикой толстого диска в основном имеют металличности в тонком диске и лучшем перемешивании межзвезаного вещества в этой полсистеме Галактики. Найдено, что лириды с кинематикой толстого диска в основном имеют металличности [Fe/H] < -1.0 и высокие отношения [α /Fe] = 0.4, тогда как у карликов поня такой химический состав имеют только примерно 10% звеза так называемого "малометастичного хвоста". При этом резкое уменьшение в Галактике отношений [α /Fe] происходит у лирид, принадлежащих именно толстому диску, что свидетельствует о дли свъмсти периода формирования этой полеистемы. Выявлено несозветствие химического состава нескольких лириы их кинематике. Предполагается, что все они, скорее всего, имеют внегалактическое происхожление.

Ключевые слова: переменные типа RR Lyrae: содержания α -элементов: подсистемы Галактики

1. Введение. Переменные звезды типа RR Lyrae (лириды) находятся на пролвинутой сталии своей эволюции и считаются одними из самых старых звезд Галактики. Поскольку эти звезды легко идентифицируются, видны на больших расстояниях, поэтому часто используются для изучения структуры и эволюции ранней Галактики. Традиционно население звезд типа RR Лиры поля представляют составляющими двух подсистем Галактики - гало и толстого лиска, отделяя лириды толстого диска по металличности критерием [Fe/H] > -1.0. Однако компоненты пространственных скоростей лирид поля настойчиво указывают, что часть из них наверняка принадлежит самой молодой подсистеме Галактики - ее тонкому диску. Анализ форм и размеров галактических орбит 217 лирид поля показал, что примерно треть из них имеют практически круговые орбиты, все точки которых остаются вблизи галактической плоскости [1]. Наряду с такими орбитами есть еще и регрогралные, которые с высокой вероятностью указывают, что их обладатели образовались не из единого протогалактического облака, а цонали в нащу

В.А.МАРСАКОВ И ДР.

Галактику в результате разрушения се приливными силами карликовых галактик-спутников, т.е. имеют внегалактическое происхожление. Другими словами, кинематика свидетельствует о наличии среди лирил поля представителей, по крайней мере, четырех галактических полсистем - топкого и толстого дисков, а также собственного и аккрепированного гало.

Поскольку тонкий лиск моложе 9 млрл. лет (см., например, [2]). лирилы этой подсистемы должны быть также молоды. Авторы работы [1] утвержлают. что такие звезлы имеют массу < 2.5 M , и возраст некоторых из них может достигать 1 млрд. лет. К сожалению, возрасты лирил по теоретическим изохронам оценить не удается. Несколько упорядочить хропологию образования этих звезд может помочь исследование содержаний в них химических элементов. Лело в том, что различные химические элементы синтезируются в реакциях термоядерного синтеза в звездах разных масс, эволюционирующих с разной скоростью и выбрасывающих эти элементы в межзвезлную среду через разные промежутки времени. В частности, а -элементы, элементы быстрых нейтроппых захватов и небольшое количество атомов железного пика выбрасываются массивными сверхновыми типа II через несколько десятков миллионов лет после образования этих звезд. С другой стороны, основная масса элементов группы железа образуется при вспышках сверхновых типа la, происходящих примерно через миллиарл лет после их образования. Поэтому в замкнутой звездно-газовой системе отношения [α/Fe] у звезл, образующихся из межзвездной среды, обогащаемой сверхновыми, примерно через миллиарл лет после вспышки звездообразования булут неуклонно уменьшаться со временем. Таким образом, относительные солержания этих химических элементов становятся статистическими индикаторами возраста звезд.

Авторы работы [3] по высоколисперсионным спектрам определили относительные содержания 15 химических элементов в 23 лиридах поля, которые по кинематическому критерию были стратифинированы по трем полсистемам Галактики. При этом 10 переменных попали в гало, три в толстый диск, а 10 - в тонкий диск. Все звезды, с высокой вероятностью попавшие в тонкий диск, оказались с [Fe/H] > -0.5 и с примерно солнечными $[\alpha/Fe]$. И наоборот, звезды с кинематикой толстого диска и гало оказались менее металличными и с высокими относительными солержаниями α - элементов. Причем, зависимости " $[Fe/H] - [\alpha/Fe]$ " у лирил и карликов поля практически полностью совпали. Значит, молодые металличные лирилы поля все же существуют? Однако, согласно современным представлениям об эволюции звезд, металличные звезды малой массы на сталии горения гелия в ядре должны попадать на диаграмме Герципрунга-Рессела в область красного сгущения, находящуюся в сторопе от полосы нестабильности, и поэтому пульсировать не могут. Поскольку обсуждаемые звезды все же попали в

полосу нестабильности и стали пульсировать, можно предположить, что это более массивные персменные и их классификация требует уточнения.

Целью ланной работы является исследование на значительном статистическом материале по данным созданного нами и представленного в [4] компилятивного каталога закономерностей межлу относительными содержаниями о -элементов и металличностью у лирил поля, приналлежащих разным галактическим полсистемам.

2. Исходные данные. Для проведения комплексных исследований в качестве основного источника пространственно-кинематических данных мы использовали каталог [5], в котором собраны интересующие нас металличности, вычисленные на основе инцекса Престона, собственные движения и лучевые скорости для 392 лирид. На основе этих данных мы вычислили прямоугольные координаты, а также компоненты пространственных скоростей лирид. Еще для 14 лирил с найденными в литературе определениями содержаний α -элементов мы взяли информацию для вычисления прямоугольных координат и скоростей из нескольких источников. Для 217 лирид мы взяли элементы галактических орбит из работы [1].

Для исследования химического состава мы собрали из литературы спектроскопические определения относительных содержаний α -элементов (Mg, Si, Ca, Ti) в 100 переменных типа RR Лиры поля, усреднили и свели их, по возможности, к единому соднечному содержанию. Источниками данных стали 25 статей с 1995 по 2017 годы. Средние значения оппибок для каждого химического элемента оказались в диапазоне (0.11-0.18), при среднем значении для всех химических элементов $\langle \epsilon [el/Fe] \rangle = 0.14$. Подробнее о составлении компилятивного каталога и оппибках всех параметров лирид изложено в статье [4], а сам каталог описан в работе [6].

Для сравнения мы использовали данные из каталога [2], содержащего для 714 F-G-карликов поля металличности, относительные содержания α -элементов и компоненты пространственных скоростей.

3. Стратификация лирид по галактическим подсистемам. Как было уже огмечено, обычно населения старых объектов Галактики, таких как шаровые звездные скопления, субкарлики и переменные звезды типа RR Лиры, разделяют по металличности на две подсистемы - толстый диск и гало. Этому способствует провал или изгиб на их распределениях по металличности в окрестности [Fe/H] ≈ -1.0 . Понятно, что единого и достаточного критерия спратификании звезд по подсистемам Галактики не существует. Для надежного отнесения звезды к той или иной подсистеме следует учитывать многие характерные для каждой подсистемы параметры, такие как положение, кинематика, металличность, содержания разных

В.А.МАРСАКОВ И ДР.

химических элементов, возраст и др. Поскольку пелью пастоящей работы янияется исследование химического состава лирид разных полсистем, мы ограничились определением подсистемы по кинематическим параметрам (подробнее, см., [6]). Для этого мы воспользовались метоликой, предложенной в работе [7], где вычисляются вероятности принадлежности звезд поля подсистемам тонкого и толстого лисков и гало по компонентам их пространственных скоростей относительно локального центроида и лисперсиям этих компонентов в кажлой подсистеме. В этом методе подразумевается, что компоненты пространственных скоростей звезд в кажлой подсистеме подчиняются нормальным распределениям. При этом лирида относилась к той подсистеме, вероятность принадлежности к которой оказывалась выше.

Применение этой методики показало, что из 401 звезды нашего каталога с известными скоростями у 56 лирид вероятность принадлежности подсистеме

Рис.1. Днаграмма Тумре для карликов и лирид поля (а), зависимость азимутальной компоненты скорости (b), апогалактических ралиусов галактических орбит (c) и экспентриситегов орбит (d) от осгаточной скорости для лирид поля. На панели (a) карлики поля обозначены: светлыми спежинками - толкий диск, серыми крестиками - толстый лиск, темными снежинками - гало; темными кружками обозначены лирилы тонкого лиска, серыми - толстого лиска, открытыми - гало.

ХИМИЧЕСКИЙ СОСТАВ ЗВЕЗД ТИПА RR ЛИРЫ ПОЛЯ 195

тонкого лиска оказалась больше, чем лругим полсистемам Галактики. Толстому лиску с большей вероятностью приналлежат 122 лирилы, а подсистеме гало - 223 лирилы. На рис. la приведены распределения F-G-карликов и лирил поля выделенных подсистем на лиаграмме Тумре - " $V_{\Theta} - (V_E^2 + V_Z^2)^{6.5}$ ", где V_{Θ} . V, и V, - компоненты скорости, направленные в сторону вращения Галактики. к центру и к северному галактическому полюсу, соответственно. В целом распределения обоих типов объектов примерно одинаковые. Однако при переходе к более старым подсистемам заметно увеличивается доля лирид по сравнению с более мололыми, в среднем, звездами ГП. Обращает на себя внимание, что тралиционно считающиеся типичными представителями исключительно старых подсистем Галактики лирилы, согласно кинематическим нараметрам, присутствуют и в довольно молодой подсистеме тонкого диска. Согласно современным представлениям, гало, на самом деле, состоит из двух не связанных между собой подсистем - собственного гало и аккрепированного гало. Причем объекты собственного гало генетически связаны с объектами более молодых подсистем Галактики - тонкого и толстого дисков, образованных из вспества единого протогалактического облака. Некоторые шаровые скопления и отдельные звезлы, составляющие аккрецированное гало, захвачены в разное время Галактикой из разрушенных ее приливными силами карликовых галактик-спутников и образованы из вещества, испытавшего иную историю химической эволюции. При идентификации звезд внегалактического происхождения мы руководствовались предположением, что звезды, родившиеся в монотонно коллансирующем сдином протогалактическом облаке, не могут быть на регроградных орбитах. (В нашем каталоге лирил с V_G < 0 км/с в гало оказалось более половины - 139 звезд). В этом случае все звезды с обратным обращением вокруг галактического центра можно считать аккрецированными, но не только - мы включили в группу предположительно аккрецированных все звезды со столь же большими остаточными скоростями, как и у регроградных, т.е. V 230 км/с. Именно при таком критическом значении остаточной скорости, как видно из рис.lb, появляются в нашей выборке звезды на ретроградных орбитах. Рис.1с демонстрируст, что при переходе через критическое значение остаточной скорости резко увеличивается разброс апогалактических радиусов орбит звезд, причем орбиты у звезд с прямым вращением имеют лаже систематически большие размеры, чем у ввезд с тем же значением остаточной скорости относительно локального центроида, но с регроградным вращением. Эксцентриситеты орбит на рис.1d не только резко увеличивают дисперсию при переходе через эту точку, но и демонстрируют различные зависимости. Вначале с ростом остаточных скоростей эксцентриситеты орбит почти линейно увеличиваются, достигая максимальной величины вблизи критического значения скорости. При дальнейшем увеличении

В.А.МАРСАКОВ И ДР.

 $V_{\rm e}$ среднее значение и разброс эксцентриситетов остаются постоянными в пределах опнибок. В нашей выборке оказались 222 лириды аккрепированного гало. При этом в собственном гало осталась только одна лирида со спектроскопическими определениями содержаний химических элементов - RV Oct. Впрочем, по химическому составу эта лирида может с равным уснехом принадлежать как к гало, так и к толстому диску. Заметим, что некоторые авгоры вообще отрицают существование собственного гало у нашей Галактики, объединяя эту подсистему с толстым диском (см., например, [8,9]). Таким образом, практически все лириды с кинематикой гало имсют, скорее всего, внегалактическое происхождение.

4. Связи металличности с кинематикой. На рис.2а привелены диаграммы "азимутальная скорость ($V_{\rm H}$) - металличность" для тех же объектов. Проведенные "на глаз" две наклоппые штриховые линии приблизительно разделяют звезды галактических подсистем. При этом линии проходят по областям, занимаемым звездами с неуверенной стратификанией. Как можно увидеть, практически все лирилы (как и карлики) с кинематикой тонкого диска оказались с высокой металличностью. Зато между лирилами и карликами поля с кинематикой толстого диска налино существенное различие. Неожиданностью оказалось то, что подавляющая часть (83%) лирил толстого лиска имеют [Fe/H] <-1.0. Из диаграммы видно, что несколько лирил с кинематикой тонкого диска оказались менее металличными, чем самые белные металлами

Рис.2. Зависимость металличности от скорости врашения вокруг талактического нентра (а) и от полной остаточной скорости (b) для F-G-карликов и лирид поля. Лириды поля с металличностями из каталога [5] обозначены маленькими треугольниками, а со спектроскопическими металличностями - большими кружками: черные - тонкий лиск, серые - толстый лиск, светлые - гало. Наклонные (а) и вертикальные (b) штриховые линии демонстрируют условное разделение звезл разных полсистем на лиаграммах. Пунктирные горизонтальные линии проведены через [Fe/H] =-1.0. Нанесены имена лирил, у которых спектроскопические металличности или скорости далеко отклоняются от средних для соответствующих подеястем.
ХИМИЧЕСКИЙ СОСТАВ ЗВЕЗЛ ТИПА RR ЛИРЫ ПОЛЯ 197

F-G-карлики этой полсистемы. Большинство их попало как раз в зону нсуверснной стратификании, и некоторые из них на самом деле могут припаллежать толстому лиску. Из рис.2а можно также увилеть, что ни в тонком лиске, ни в гало явно выраженных зависимостей между азимутальными скоростями звеза и их металличностями не наблюлается. Зато в толстом лиске у лирил наблюдается прогрессивное уменьшение верхней границы металличности с уменынснием азимутальной компоненты скорости (V_{α}). Заметим, что у лирил V 456 Ser и BPS CS 30339-046 содержания железа оказались намного меньше, чем у остальных звезд толстого диска. У одной из них скорость вращения вокруг галактического центра даже больше солнечной. Далеко отклоняются они и на других диаграммах. Очень возможно, что эти лирилы, имся скорости, характерные для объектов толстого диска, на самом леле попали в нашу Галактику из распавшихся галактик-спутников, как звезды движущейся группы Арктура (см. [10]). Одна из этих лирид (V 456 Ser) но компонентам пространственной скорости вполне может принадлежать именно этому звезяному потоку. Из рис.2а также видно, что практически все лирилы гало имеют металличность [Fe/H] < -1.0. Но среди них есть и весьма металличные. Так у V 455 Oph спектроскопически определенное содержание металлов больше солнечного. Одна из наиболее удаленных от Солица и самая маломсталличная лирила из нашего каталога SDSS J170733.93+585059.7 (лалее SDSS J1707+58) также имеет ретроградную орбиту.

Для разделения подсистем иногда используется и полная остаточная скорость звезды относительно локального пентроида. На рис.2b приведены распрелеления звезд на диаграмме " $V_{\rm corr}$ - [Fe/H]". Видно, что на этой диаграмме зависимость металличности от скорости в толсгом диске выступает отчетливее. Ошновременно видно, что и этот кинематический параметр можно использовать в качестве статистического индикатора принадлежности звезды к той или иной подсистеме. Две вертикальные штриховые линии на диаграмме приблизительно отделяют звезды толстого диска от тонкого ($V_{\rm acm} \approx 80$ км/с) и от гало ($V_{\rm acm} \approx 230$ км/с).

Из лвух последних диаграмм также можно увилеть, что линия [Fc/H] = -1.0 отделяет в богатую металлами группу у карликов поля практически полностью звезды обеих дисковых подсистем, тогда как у лирид поля - большую часть звезд с кинематикой тонкого диска и лишь малую долю с кинематикой толстого диска. Получается, что химический и кинематический критерии разделения подсистем для лирид не вполне однозначны.

5. Связи относительных содержаний са -элементов с металличностью. Как показал анализ зависимостей относительных содержаний магния и калыция от [Fe/H] для F-G-карликов и лирид поля [6], последо-

вательности обоих объектов для магния и кальния практически совпадают в диапазоне [Fe/H] >-1.0. Тогла как в менее металличном диапазоне лирилы лемонстрируют в среднем некоторое превышение по сравнению с карликами цоля. Несколько большие превышения при малой металличности показывают два других α -элемента - кремний и титан. Но у кремния при малой металличности наблюдается очень большой разброс относительных содержаний. а у титана при высокой металличности для всех лирил наблюдается значительное занижение отношений [Ті/Fe] по сравнению с карликами поля. В дальнейшем, чтобы минимизировать искусственно создаваемые закономерности, мы рассмотрим поведение зависимостей относительных содержаний и -элементов от металличности и скорости, усредненных всего по двум а -элементам магнию и кальнию, для которых систематические отклонения находятся в пределах онновок определения содержаний. А кроме того, одновременно определения всех четырех а -элементов имеются у меньшего числа лирид, чем у этих двух. Более подробно о содержаниях химических элементов в лиридах поля описано в работе [6].

На рис.За приведены зависимости таких усредненных отношений [Mg,Ca/Fe] от металличности для карликов и лирил поля. Видим, что оба типа объектов демонстрируют довольно близкие последовательности. Из рисунка следует, что зависимость отношений [Mg,Ca/Fe] от [Fe/H] у лирил полсистемы тонкого диска неплохо согласуется с повелением ее у карликов поля. Исключением является лирида DH Peg, которая оказалась менее металличной, чем самые бедные металлами карлики поля этой подсистемы. У лирилы TV Lib с металличностью, характерной для большинства звезл тонкого диска, оказалось завышенное отношение [α /Fe]. По положению на рис.За лирилы DH Peg и

Рис.3. Зависимость относительных содержаний, усредненных по лвум α -элементам (Mg и Ca) (a), и отношений первичных к вторичным α -элементам (b) от металличности для карликов и лирид поля. Темные треугольники - нестратифицированные лириды. Другие обозначения как на рис.1 и 2.

TV Lib естественнее отнести к толстому лиску. Лирила КР Суg, имеющая у нас самое низкое относительное содержание [Mg,Ca/Fe] = -0.18, по кинематике также принадлежит тонкому лиску (заметим, что содержания двух других α -элементов (Si и Ti) у нее наоборот, повышенные). Анализу химического состава этой очень металличной звезды с аномально высоким содержанием в атмосфере углерода и азота посвящена работа [11]. В ней делается предположение, что эта звезда, а также UY CrB, на самом деле не долгопериодические лириды, а корогкопериодические цефсиды типа CWB. Другими словами, присутствие их в списках лирил нахолится под вопросом.

На рис.3b, гле приведена лиаграмма "[Fe/H]-[Mg/Ca]", можно увидеть, что у лирил тонкого лиска, как и у карликов поля, наблюдается довольно узкая последовательность и четкое уменьшение отношений [Mg/Ca] с увеличением металличности. У звезд толстого диска и гало разброс этих отношений заметно больше, чем в тонком диске. Напомним, что согласно современным представлениям, выход первичных α -элементов (в частности, магния) увеличивается с ростом массы вспыхивающей сверхновой второго типа по сравнению с выходом вторичных α -элементов (в частности, калыця). Поэтому отношение [Mg/Ca] является индикатором массы вспыхивающей сверхновой. Поскольку металличность является индикатором возраста, уменьшение [Mg/Ca] с увеличением [Fe/H] в тонком диске у обоих типов звезд можно интерпретировать как уменьшение со временем верхней границы массы сверхновых SNe II. Большой разброс отношений [Mg/Ca] в более старых подсистемах свидетельствует, скорее всего, о более слабом, чем в тонком диске, перемешивании в них межзвездного вещества.

Наибольшие систематические различия между лиридами и карликами поля наблюдаются среди звезд с кинематикой толстого диска. Одно отличие выше уже отмечалось, это вместо малочисленного "малометалличного хвоста". как у карликов этой полсистемы, у лирил малометалличные звезды превалируют. Из рис.За также вилно, что карлики толстого диска обнаруживают четкий излом зависимости "[Fe/H]-[α/Fe]" в окрестности [Fe/H]≈ -0.5 (см., также [12]). Зато у лирил на рис.За отслеживается излом в окрестности [Fe/H] ≈ -1.0. Олнако замстим, что вывол о наличии излома у лирид именно при такой металличности не является статистически значимым из-за малого числа объектов. Вилим также, что одна из двух лирид толстого диска с нехарактерно низкими для этой подсистемы металличностями BPS CS 30339-046 демонстрирует весьма заниженные относительные содержания а -элементов по сравнению со средними у звезд такой же металличности. Зато лирида V 456 Ser, удовлетворяющая кипематическому критерию принадлежности нотоку Арктура, попала на рис.За в середину общей последовательности для малометалличных звезд, точно так же, как и выявленные звезды поля этого нотока (см., [2,10]). Это является еще одним подтвержлением принадлежности ее к потоку Арктура. Еще одна лирида ТУ Gru хоть и соответствует по кинематике толстому диску, по она для этой подсистемы имеет апомально низкое содержание тяжелых элементов и нахолится очень далеко от галактической плоскости (z = -4.2 кнк).

Лириды и карлики с кинематикой гало ведут себя примерно одинаково. Можно ожидать заметного разброса исследуемых отношений у лирид гало, поскольку химический состав атмосфер звезд, предноложительно образованных в различных галактиках-спутниках, может оказаться иным, чем у генетически связанных объектов Галактики аналогичной металличности. И действительно, у одной из наименее металличных лирид выборки SDSS J1707+58 и содержания α -элементов оказались аномально высокими по сравнению со всеми звездами поля. Аномальную позицию на рис.За занимает также лирила V455 Oph с практически вертикальной ретроградной орбитой, лежаная в полосе звезд тонкого диска.

6. Связи относительных содержаний α -элементов с кинематикой. На рис.4а, b приведены связи усредненных относительных содержаний двух α -элементов с кинематическими параметрами исследуемых звезд. Поскольку скорости, как и металличность, являются статистическими индикаторами возраста, не удивительно, что зависимости [α /Fe] от этих параметров несколько похожи. Однако есть и особенности. Так, две звезды гало (МАСНО 176.18833.411 и АО Ред) с металличностями и относительными солержаниями α -элементов, удовлетворяющими как толстому лиску, так и гало, имеют скорости вращения вокруг галактического лиска существенно больше солнечной (рис.4а). МАСНО 176.18833.411 посвящена работа [13], в

Рис.4. Зависимость отношений [Mg,Ca/Fe] от скорости вращения вокруг галактического иснтра (а) и от полной остаточной скорости (b) для карликов и лирид поля. Обозначения как на рис.1 и 2.

которой, приняв во внимание ее положение вблизи галактического центра и форму се орбиты, авторы пришли к выводу, что звезда, скорее всего, выброшена из центра Галактики и ведет свое происхождение от "малометалличного хвоста" галактического баллжа. Самая малометалличная и олновременно с наиболее высокой величиной [α /Fe] лирида с кинематикой аккрепированного гало SDSS J1707+58 имеет исключительно большую отринательную азимутальную скорость. Лирида аккрецированного гало V455 Oph при практически нулевой компоненте азимутальной скорости (V_{Θ}) и высокой V_{**} имеет очень низкую, за пределами опнобок отличающуюся от остальных всех звезд гало, величину [α /Fe] = 0.06.

7. Обсуждение. Итак, анализ химических и кинематических свойств переменных звезд типа RR Лиры поля показал, что лириды присутствуют во всех четырсх вылеленных нами подсистемах Галактики - в тонком и толстом лисках, а также в собственном и аккрепированном гало. То есть, вопрски традиционным представлениям, среди них есть и лириды с типичными лля звезд тонкого лиска и кинематикой, и химическим составом. Возраст тонкого лиска по современным оценкам < 9 млрд. лет. Значит, в противоречие с тралиционными представлениями, среди лирид присутствуют не только старые (> 10 млрд. лет), но и более молодые звезды. Как уже отмечалось, звезд типа RR Лиры с металличностью, характерной для тонкого диска, быть не может, носкольку горизонтальная ветвь таких звезд находится в области гигантов красного сгущения, т.е. в стороне от полосы нестабильности, и эти звезды переменными быть не могут. Значит, причину такого несоответствия следует искать в классификации их, как переменных. Выше мы уже отмечали, что наиболее металличная и долгопериодическая лирила из нашего списка -КР Суд - скорее всего, является классической цефеилой ультракороткого периода. Возможно, что все или часть из обсуждаемых металличных звезд на самом деле могут также оказаться нефеидами, пульсирующими в обертонах с периодами менее суток. В этом случае определяемые из наблюдаемых периодов массы, светимости и расстояния оказываются искаженными. Такие нефеилы уже открыты в Больном и Малом Магеллановых Облаках в рамках проекта OGLE. В любом случае, для их верификации гребуется тщательное дополнительное исследование каждой такой переменной.

Основная масса лирид с кинематикой толстого лиска оказалась в диапазоне величин [Fe/H], который у звезд поля обычно считается "малометалличным хвостом" толстого диска. Объяснить это можно тем, что являясь более старыми звездами, чем основная масса карликов, они отслеживают химический состав межзвездной среды на начальных этапах формирования этой подсистемы. Излом зависимости [α /Fe] от [Fe/H] указывает на тот факт, что в звездно-

газовой системе наступила эпоха вспышек сверхновых типа la, т.е. с момента начала звездообразования прошло около 1 млрл. лет. По-вилимому, первые SNe Ia начали взрываться, когда металличность межзвездной среды в Галактике достигла величины [Fe/H]≈-1.0. И только при лостижении [Fe/H]≈-0.5 SNe la начали взрываться в массовом порядке. О большой длительности эволюции подсистемы толстого диска свидетельствуют также отчетливо наблюдаемые на рис.2 и 4 систематические тренлы в пределах данной подсистемы как металличности, так и относительных солержаний а -элементов с изменением кинематических показателей. Выявленные зависимости говорят в пользу гипотезы о длительном формировании толстого диска в пронессе колланса протогалактического облака. Две наименее металличные лирилы этой полсистемы (BPS CS 30339-046 и V 456 Ser) демонстрируют химический состав за пределами ошибок, отличающийся от остальных лирид подсистемы. Это ласт возможность предположить их внегалактическое происхождение, подобно звездам хорошо известного потока Арктура. Причем лирида V 456 Ser, согласно величинам компонентов своей пространственной скорости, вполне может приналежать этому потоку. В пользу внегалактического происхожления V 456 Ser свилетельствуют также очень малая величина отношения [Mg/Ca] = -0.3 и высокая величина относительного солержания элемента быстрых нейтронных захватов [Eu/Fe] = 1.0. Для лирил нашей выборки это самые экстремальные значения (см. наш каталог). Обе эти величины говорят о небольших массах сверхновых II типа, обогативших межзвездное вещество, из которого образовалась данная звезда. Выше мы уже отметили, что отношение [Mg/Ca] уменьшается с уменьшением массы предсверхновой, тогла как практически весь Ец образуется в г-процессе, который происходит при взрывах наименее массивных SNe II массами 8-10 M_☉. В карликовых же галактиках малой массы с большей вероятностью происходят вспышки сверхновых небольших масс. Заметим, олнако, что некоторые авторы отлают прелиочтение гипотезе об образовании потока Арктура в результате гравитационного возмущения звезд поля галактическим баром (см., [2] и ссылки в ней). В противоположность этой звезде, лирила BPS CS 30339-046 демонстрирует очень низкое относительное содержание α -элементов при весьма малой металличности. Такое могло получиться, если звезда действительно образовалась в карликовой галактике, в которой скорость звездообразования была настолько низкой, что SNeIa начали вспыхивать, когда межзвездная среда была мало обогащена железом от сверхновых второго типа. Впрочем, эти предположения требуют дополнительных исследований.

Болышинство лирид с кинематикой гало имсют несколько повышенные относительные содержания α -элементов, что соответствует их малой металличности. Такой химический состав у звезд поля мог получиться только в

ХИМИЧЕСКИЙ СОСТАВ ЗВЕЗД ТИПА RR ЛИРЫ ПОЛЯ 203

случае образования их или из слиного протогалактического облака, или аккрении их из распавшихся довольно массивных галактик-спутников, в которых скорости звездообразования были бы сравнимы со скоростью в нашей Галактике. Но наблюлаемые в настоящее время отношения [a/Fe] у звезд карликовых галактик Местной Группы оказываются систематически ниже, чем у звезя поля нашей Галактики, как полагают, из-за малой в них скорости звезлообразования (см., например, [14]). Вполне возможно, что изначально галактика Млечный Путь формировалась из более массивных карликовых галактик, что вполне соответствует современным представлениям об образовании крупных галактик. Олновременно оказалось, что некоторые лирилы гало обнаруживают значительные отклонения относительных содержаний некоторых α -элементов при данной металличности от средних. Так, лирида SDSS J1707+58 считается малометалличной звездой с увеличенным содержанием углерода и s-элементов (см., [15]). Но у нее, как оказывается, сис и завышенные относительные содержания α -элементов. По-видимому, очень высокое отношение [a/Fe] у лириды SDSS J1707+58 можно объяснить тем, что ес протозвезлное облако было обогашено выбросом очень массивной SNell, взрыв которой и спровоцировал звездообразование в этом облаке, одновременно прилав ему ускорение. Уникальным следует признать химический состав и у звезды V 455 Oph, которая при почти солнечных содержаниях исследованных в данной работе химических элементов имеет ретроградную орбиту, практически перпендикулярную галактической плоскости. Столь большое содержание металлов при такой высокой орбите вряд ли могло получиться в маломассивной карликовой галактике-спутнике. Действительно, согласно численному моделированию нерархического формирования галактического гало, только галактика-спутник малой массы может быть разрушена приливными силами Галактики, находясь еще на дальних подступах к ее плоскости, т.е. на перпендикулярной орбите. Подчеркнем еще раз, что для верификации всех выводов, касающихся индивилуальных звезд, гребуются дополнительные исследования.

Авторы благодарны одному из авторов используемого в работе каталога пространственно-кинематических параметров переменных звезд типа RR Лиры А.С.Расторгуеву за вычисление расстояний до лирид. М.В.А. и Г.М.Л. благодарят за поддержку Минобрнауки РФ (госзадание №3.5602.2017/БЧ), а К.В.В. благодарит за поддержку Минобрнауки РФ (госзадание № 3.858.2017/4.6).

Южный фелеральный университет, Ростов-на-Дону, Россия, e-mail: marsakov@sfedu.ru

В.А.МАРСАКОВ И ДР.

CHEMICAL COMPOSITION OF FIELD RR LYRAE STARS AS AN INDICATOR OF THE GALACTIC SUBSYSTEMS EVOLUTION

V.A.MARSAKOV, M.L.GOZHA, V.V.KOVAL', E.I.VOROBYOV

The relationships between chemical and spatial-kinematic properties of the field RR Lyrae variable stars are investigated. It is shown that among them there are metal-rich RR Lyrae variables with kinematics of the thin disk, and the problem of the existence of such RR Lyrae variables is discussed. The evidences of decrease in the upper limit of the mass of the formed stars with increasing metallicity in the thin disk and better mixing of interstellar matter in this Galactic subsystem are given. It is found that RR Lyrae variables with kinematics of the thick disk basically have metallicity [Fe/H] < -1.0 and high ratios $[\alpha/Fe] \approx 0.4$, whereas only about 10% of the field dwarfs of the so-called "metal-poor tail" have such chemical composition. In the Galaxy, a sharp decrease in the ratio $[\alpha/Fe]$ occurs in RR Lyrae variables belonging precisely to the thick disk, which indicates the duration of the period of this subsystem formation. The discrepancy between the chemical composition of several RR Lyrae variables and their kinematics is revealed. It is assumed that they all, most likely, have extragalactic origin.

Key words: RR Lyrae variables: a -element abundances: subsystems of the Galaxy

ЛИТЕРАТУРА

- 1. G.Maintz, K.S. de Boer, Astron. Astrophys., 442, 229, 2005.
- 2. T.Benshy, S.Feltzing, M.S.Oey, Astron. Astrophys., 562, A71, 2014.
- 3. S.Liu, G.Zhao, Y.-Q.Chen et al., Research in Astron. Astrophys., 13, 1307, 2013.
- 4. М.Л.Гожа, В.А.Марсаков, В.В.Коваль, Астрофизика, 61, 55, 2018. (Astrophysics, 61, 41, 2018).
- 5. A.K.Dambis, L.N.Berdnikov, A.Y.Kniazev et al., Mon. Not. Roy. Astron. Soc., 435, 3206, 2013.
- 6. В.А. Марсаков, М.Л. Гожа, В.В. Коваль, Астрон. ж., 95, 54, 2018, (Astron. Rep., 62, 50, 2018).
- 7. T.Benshy, S.Feldzing, I.Lungstrem, Astron. Astrophys., 410, 527, 2003.
- 8. K.Fuhrmann, New Astron., 7, 161, 2002.
- 9. R.G.Gratton, E.Carretta, S.Desidera et al., Astron. Astrophys., 406, 131, 2003.
- 10. В.А. Марсаков, Т.В.Боркова. Письма в Астрон. ж., 31. 577, 2005. (Astron.

Letters, 31, 515, 2005).

- S.M.Andrievsky, V.V.Kovtyukh, G.Wallerstein et al., Publ. Astron. Soc. Pacif., 122, 877, 2010.
- 12. M.Haywood, P. Di Matteo, M.D.Lehnert et al., Astron. Astrophys., 560, 109, 2013.
- 13. A.Kunder, R.M.Rich, K.Hawkins et al., Astrophys. J., 808, 12, 2015.
- 14. K.A. Venn, M. Irwin, M.D.Shetrone et al., Astrophys. J., 128, 1177, 2004.
- 15. T.D.Kinman, W.Aoki, T.C.Beers, W.R.Brown, Astrophys. J. Letters, 755, L18, 2012.

TOM 61

МАЙ, 2018

выпуск 2

ИССЛЕДОВАНИЕ ШАРОВОГО СКОПЛЕНИЯ NGC 7006

А.Н.ГЕРАЩЕНКО, Ю.К.АНАНЬЕВСКАЯ Поступила 18 лекабря 2017 Принята к нечати 7 марта 2018

Представлены результаты исследования шарового скопления NGC 7006, для которого ло сих нор нет убелительных доказательств наличия в нем нескольких покодений звезд. Епинетвенное указание на возможность их существования следует из зависимости морфологии горизоптальной встви от расстояния от центра скопления. В данной работе показано, что этот наблюдаемый факт можно объяснить неучетом загрязнения диаграммы цвет-величина ввездами фона. Олнако для того, чтобы считать это утверждение доказанным, необходимо дополнительное определение и исследование собственных движений звезд в области скопления.

Ключевые слова: звездные системы: шаровые скопления: фотометрия: звездные населения в шаровых скоплениях

1. Введение. В настоящее время надежно установлено, что шаровые скопления (ШС) могут содержать несколько звездных населений, различающихся химическим составом и в первую очерель содержанием продуктов горения водорода при высокой температуре (He, C, N, O, Na и др.) (см., например, обзор [1]). Этот вывод был получен на основе обнаружения и изучения C-N, O-Na и Mg-Al антикорреляций. На основе изучения богатого и однородного спектрального материала было показано, что в большинстве изученных скоплений звезды первичного населения с химическим составом, соответствующим таковому звезд поля. составляют, в среднем, треть звезд скопления. Остальные две трети составляют звезды вторичного населения, образованные из выбросов первичных звезд. Эти звезды характеризуются, в частности, увеличенным содержанием Na, N и Al и уменьшенным содержанием О, С и Mg. Вторичное население может состоять из нескольких поднаселений, характеризующихся увеличенным содержанием гелия (Y), которое может изменяться в пределах самого скопления [2]. Также было обнаружено, что протяженность Na-O корреляции имеет тенденцию быть тем больше, чем больше масса скопления, и вероятно существует минимальная масса, ниже которой в скоплении эта антикорреляция не наблюдается [3].

Фотометрические признаки наличия различных населений в ШС впервые были обнаружены на основании наблюдений на Космическом телескопе Хаббла (КТХ) в конце 20 в. в ШС юСеп [4]. Впоследствии наличие

А.Н.ГЕРАЩЕНКО, Ю.К.АНАНЬЕВСКАЯ

нескольких населений было подпяерждено в большом количестве этих объектов как космическими, так и наземными паблюдениями. Эти признаки проявляются в расширении или даже расшенлении эволюционных последовятельностей на отдельные компоненты на диаграмме пвет-величина (CMD - color-magnitude diagram) скопления. Изменения в содержании Na, O, He и некоторых других элементов, ответственных за эти фотомстрические признаки, связаны, по проявляются на различных частях CMD по-разному. Эффект изменения Не четко проявляется на Главной последовательности (ГП), вызывая ее распирение (расшенление); еще более явно он влияет на морфологию горизонтальной встви (ГВ), не сказываясь заметно на виде встви красных гигантов (ВКГ). В то же время изменения в содержании C, N, O проявляются на ВКГ, не сказываясь на ГП. Указанные эффекты усиливаются при наблюдениях в ультрафиолетовой (УФ) области спектра и при использовании более широкой спектральной базы.

Настоящая работа посвящена поискам признаков наличия нескольких звездных населений в ШС NGC 7006 на основании его фотометрического исследования.

2. Сведения о ШС NGC 7006. Согласно каталогу [5] ШС NGC 7006 (С2059+160) ($\alpha = 21^{h}01^{m}29^{s}.38$, $\delta = +16^{\circ}11'14".4$ (2000), $l = 63^{\circ}.77$, b = -19'.41) расположено во внешнем гало Галактики на расстоянии Rg = 38.5 кнк от се центра, имеет небольшие угловые размеры ($r_{t} = 4'.37$) и облалает промежугочными значениями некоторых других характеристик (металличность [Fe/H] = -1.63, светимость $M_{v} = -7^{m}.67$). Скопление является олним из самых энергичных скоплений в Млечном Пути с экспентрической орбитой, прелнолагающей внегалактическое происхожление этой системы [6].

Фотометрическому изучению скопления в визуальной и близкой к ней областям снектра было посвящено несколько работ [7-11]. Уже в первом обстоятельном исследовании скопления Сэнлилж и Вилли [7] обнаружили, что оно облалает необычно красной ГВ, не соответствующей металличности скопления. Согласно ([5], редакция 2003г.) инлекс ГВ HBR = (B - R)/(B + V + R) = -0.28. где В и R - число звезд скопления на голубой и красной частях ГВ, соответственно, V - число переменных звезл типа RR Lyr. С тех пор скопление рассматривается как "архитипичное" по влиянию второго нараметра (первый параметр - металличность) на распределение звезя влодь ГВ. Позже Буонанно и др. [9] показали, что вид ГВ изменяется в пределах скопления таким образом, что по мере приближения к центру скопления пвет ГВ становится все более голубым. При этом следует указать, что в этой работе, согласно модели Галактики [12], принималось, что в район CMD в интервале величин 15 ≤ V ≤ 19 и цветов B-V ≤ 0.8 понадают только 4 звезды фона. Поэтому вклад звезд фона не учитывался. Вопрос о звездном фоне скопления NGC 7006 будет рассмотрен ниже.

ИССЛЕДОВАНИЕ ШАРОВОГО СКОПЛЕНИЯ NGC 7006 209

В работах [7-11] не было замечено никаких признаков наличия нескольких населений в скоплении. Однако авторы и не ставили такой цели. К тому же фотометрический материал, используемый в этих работах, был ограничен по светимости началом ГП, вилимой областью спектра и нелостаточной для этой пели фотометрической точностью.

Поиски дополнительных параметров, влияющих на морфологию ГВ и, в частности, приводящих к необычно красной ГВ в ШС NGC 7006, проводились на основе анализа интенсивностей полос молекул СN, CH, CO по спектральному и фотометрическому материалу среднего разрешения [13-19] или интенсивностей линий Na, O, Al по спектрам высокого разрешения [20]. Были обнаружены значимые, но умеренные изменения интенсивностей полос и линий от звезды к звезде скопления, а также антикорреляция содержания Na и O и корреляция Na и N. Амплитуды этих изменений среди звезд одной светимости в ШС одной металличности (NGC 7006, M3, M13 и M10), но различной морфологии ГВ примерно одинаковы. К тому же, как заметили Смит и др. [19], малочисленность выборки звезд (~15) и весьма ограниченный интервал их яркости (все они ярче "bump" ВКГ) не позволили большинству из перечисленных авторов рассматривать содержание CNO в качестве 2-го параметра.

Греттон и др. [21] и Милоне и др. [2] при поиске параметров, ответственных за морфологию ГВ в ШС, выделили, кроме металличности, два дополнительных. Один из них - глобальный (возраст) - изменяется от скопления к скоплению, другой - содержание гелия, изменяется внутри скопления. Оценки возраста ШС NGC 7006 [8,9], выполненные на основании расположения на СМД точки поворота от ГП, говорят о том, что он существенно не огличается от возраста IIIС той же металличности, но имеющих другую морфологию ГВ. Доттер и др. [11], используя более точный фотометрический матернал, полученный по наблюдениям на KTX с камерой ACS (Advanced Camera for Surveys) методом подгонки изохрон к CMD F814W ~ (F606W -F814W), нашли, что NGC 7006 незначительно моложе ШС внутреннего гало. Действительно, в работах [11,22] для ШС NGC 7006, МЗ, М13 и М10 были получены практически неразличимые значения возрастов: 12.25 ± 0.75 Gyr, 12.50 ± 0.50 Gyr, 13.00 ± 0.50 Gyr, 13.00 ± 1.25 Gyr, соответственно, тогла как их ГВ характеризуются широким диапазоном значений индекса HBR = -0.28, 0.08, 0.97, 0.98.

Скопление NGC 7006 богато переменными звездами, в основном, переменными типа RR Lyr. Согласно [23] в нем обнаружено 76 переменных звезд. Из 54 звезд с определенными периодами 47 являются переменными типа RR0, 7 - переменными типа RR1 и 2 - красными переменными. Для 4 звезд (v4, v7, v9 и v34) переменность пе была подтверждена. В отношении звезды v34 верные координаты и комментарий даны в [24] и в электронной версии каталога переменных звезя на сайте C.Clement http://www.astro.utoronto.ca/ ~cclement/read.html. По данным [23] нами были определены отношение числа RR1 к RR0 ($N_{RR'}/N_{RRI} = 0.12$), и величина среднего периода переменных типа RR0 ($P_{RR9} = 0^d.568 \pm 0^d.004$).

Последняя величина совпадает с определенным Вехлау и др. [25] значением 0^e.569. Эти величины определяют NGC 7006, как скопление типа Oo1 по Оостерхоффу, ибо последние характеризуются средним $P = 0^{\circ}.553 \pm 0^{\circ}.017$ [23].

Д'Антона и Калои [26] обратили внимание на одинаковый (пикированный) характер распределения периодов RR Lyr в ШС M3, M5, NGC 3201 и NGC 7006. Кроме того, в этих скоплениях населены красная область, полоса нестабильности и синяя области ГВ, по отсутствуют так называемые "голубые хвосты". Обычно распределение звезд вдоль ГВ в ШС моделирустся, принимая среднюю потерю массы вдоль ВКГ со стандартным отклопением 0.025 M₆. Как считают вышеупомянутые авторы, эти особенности ГВ требуют сильного ограничения на потерю масс, которая должна иметь много меньшую дисперсию. Поэтому в рамках гипотезы мультиплетного содержания гелия в звезлах ШС Калои и Д'Аптона [27] резко уменьшили дисперсию потери массы на ВКГ. При этом они не только воспроизвели пикированное распределение периодов RR Lyr, но и голубая часть ГВ естественно населилась звездами вторичного населения с переменным солержанием гелия, увеличенным по сравнению с его содержанием в звездах первичного населения. Такая модель ГВ полробно рассмотрена ими на примере скопления МЗ. Результаты молелирования показали, что дисперсия потери массы для МЗ должна быть не больше, чем 0.003 М ., содержание гелия в звездах вторичного населения изменяется в пределах 0.26 ÷ 0.28 и сконление имеет равное соотношение звезлных населений. Распространив эту интерпретацию на остальные скопления группы. Д'Антона и Калои [26] лля NGC 7006 получили следующие характеристики: первичное население составляет 72%, вторичное - 28%, при этом солержание гелия в его звездах изменяется в пределах Y = 0.25 - 0.275.

Выводы, полученные в [27] в отношении скопления M3, были проверены с помощью наблюдений звезд скопления. Используя высокоточные фотометрию Стромгрена и спектроскопию для голубых звезл НВ ШС M3, Кейтелен с коллегами [28] обнаружили, что увеличение содержания гелия среди болышинства голубых звезд НВ должно быть меныше 0.01, что исключает более высокие значения его увеличения.

Таким образом, к настоящему времени нет никаких наблюдений, согласно которым можно было бы утверждать, что скопление NGC 7006 солержит несколько звездных населений.

3. Наблюдательные данные. В работе использовалось несколько

рядов наблюдений ШС NGC 7006:

1. V. I фотометрия звезд - website http://archive.stsci.edu/pub/hlsp/acsggct/ ngc7006/.

Наблюления пентральной области (г~2') скопления были проведены на КТХ/ACS, заявитель Доттер. Подробности наблюдений и их обработки, а также необхолимые ссылки, приведены в [11].

2. u, g, r, i SDSS (Sloan Digital Sky Survey) фотометрия звезл - website http://www.sdss.org/dr6/products/value_added/anjohnson08_ clusterphotometry.htm.

Наблюдения выполнены на специализированном 2.5-м телескопе обсерватории Арасhe Point. В данной работе использовалась обработка этих наблюдений, выполненная и описанная Эном и др. [29]. Исследуемое поле является прямоугольником со сторонами ~14'×10', в котором скопление расположено в юго-восточном углу. При этом наименьшее расстояние центра скопления от сторон ноля составляет ~3', а самые удаленные звезды поля от центра скопления расположены на расстоянии ~12'.

3. При выделении членов скопления и очишении CMD от звезд фона большое значение имеют собственные движения звезд. В радиусе ~3' собственные движения звезд скопления были опрелелены Динеску и др. [6]. К сожалению, эта работа основана на фотографическом материале, обладающим меньшими пространственным разрешением, фотометрической точностью и предельной величиной, чем ПЗС наземные наблюдения, а тем более наблюдения на КТХ. В результате при сравнении каталогов [6] (633 звезды до $V \sim 22^m$) и КТХ (~3200 звезд до $V \sim 22^m$) удалось отождествить со звездами Динеску и др. [6] лишь часть одиночных звезд каталога КТХ (~300 звезд, 60 из которых не являются членами скопления).

4. Фотометрия звезд ШС NGC 7006, полученная на KTX. На рис.1 представлена СMD V~(V-1) для всей исследованной области скопления (r - 2') по данным, полученным на KTX, для звезд, опнибка измерения которых не превышает 0^m.1. На нем справа приведены для соответствующих величин типичные фотометрические опнибки. Кружочками (о) отмечены звезды фона по данным [6]. Судить о вкладе звезд фона в соответствующие части CMD позволяют и данные SDSS. Большое поле SDSS позволяет исследовать не только скопление, но и область. удаленную от центра скопления на расстояние, большее приливного радиуса скопления. Мы приняли, что звездами фона являются звезды, расположенные в области с $r \ge 6'$. После перевода фотометрической SDSS системы g и r величин в систему V, I величин эти звезды нанесены косыми крестиками (×) на рис.1, на котором звезды фона образуют несколько достаточно четких структур на CMD. В [30] эти структуры на фоне скопления NGC7006 предварительно отождествлены с огромным

Рис.1. СМД ШС NGC 7006 V от (V-1) для всех наблюденных на КХГ ($r \sim 2'$) звезд (•). О (открытые кружки) - члены скопления по собственным движениям, Δ (открытые греугольники) - звезды фона по собственным движениям, \times - звезды SDSS с r > 6', «-переменные звезды.

облаком в Геркулесе-Водолее и его происхождение авторы [30] связывают с приливным разрушением древней карликовой галактики. Согласно авторам в сценарии иерархического образования Галактики, в котором внешнее гало Млечного Пуги является результатом непрерывной аккреции галактик малой массы, часть системы галактических шаровых скоплений могла возникнуть в вымерних карликовых галактиках и затем была аккреширована вместе с ними. Остатки этих предшественников галактики могут все еще заполнять окрестности этих аккрепированных скоплений. В соответствии с рис.15 из [30] эти структуры заполняют всю красную часть СМD скопления, начиная с (V - I) > 0.8, и прохолят через ВКГ и красную часть ГВ скопления. В более голубой области СМD скопления вклал звезд фона, согласно заключению Буонанно и др. [9], невелик. Он определяется яркими звездами Галактики и вполне описывается модельными расчетами Галактики [12].

Определенные в [6] собственные движения для части звезд красной части ГВ (к сожалению, для многих звезд они неизвестны) позволяют утверждать, что она засорена звездами фона. Этот факт следует учитывать при определении характеристик ГВ. Это касается и других ветвей СМD скопления.

Приведенная на рис.1 СМD в основном соответствует полученным ранее диаграммам этого скопления [8-10]. Четко прослеживается последовательность "голубых бродяг". Положение "bump" на ВКГ ($V_{BRGB} = 18.662 \pm 0.014$) совпадает с определением Натафа и др. [31] ($V_{BRGB} = 18.641 \pm 0.004$). Также совпадает и наше определение положения точки поворота от ГП ($V_{IR} = 22.25 \pm 0.05$) с величинами Натафа и др. [31] (22.26) и Буонанно и др. [9] (22.3 ± 0.1).

В противоречии со всеми предыдущими исследованиями находится вид ГВ. В нашем случае красная и голубая части ГВ содержат почти равное количество звезд. Соответствующий индекс HBR равен 0.02 ± 0.03 , если учесть группу звезд, расположенную правее группы звезд, принадлежащих красной части ГВ и отлеленную от нес небольшим пробелом. Если же считать эту группу звезд продолжением асимптотической ветви, что следует из рис.1, то индекс HBR увеличивается до 0.10 ± 0.03 . В обоих случаях цвет ГВ более голубой, чем в [9,5], где для HBR приводятся отрицательные значения: -0.11 и -0.28, соотвстствению. Такое различие можно объяснить совокупностью двух эффектов: обнаруженной ранее [9] зависимостью распределения звезд вдоль ГВ от расстояния до центра скопления и различной удаленностью от него областей скопления, изучаемых различными авторами. Действительно, наблюдаемая на КТХ область ограничена центральной частью скопления (r~2), где, согласно [9], число голубых звезд на ГВ больше, чем красных. Другой причиной различия, которая будет рассмотрена ниже, может быть неучет звезд фона, вклад когорых в красную часть ГВ увеличивается по мере удаления от центра скопления.

Так как фотометрия звезл скопления выполнена в *V* и *I* величинах практически одновременно, то обе величины для переменных звезды типа RR Lyr относятся к одной и той же фазе блеска. В этом случае все переменные этого типа должны располагаться в пределах некоторой полосы, наклоненной по отношению к ГВ, что наглядно представлено на рис.2. Нахождение в эгой

А.Н.ГЕРАЩЕНКО, Ю.К.АНАНЬЕВСКАЯ

полосе звеза, которые не являются известными переменными, является основанием для изучения этих звеза с целью выявления их переменности [32]. Действительно, на рис.2 в пределах полосы нестабильности находятся звезды, которые не числятся в каталоге переменных звезд [23]. Эти звезды имеют большую вероятность переменности блеска. Однако они расположены в основном

Рис.2. СМД в районе ГВ. Обозначения те же, что на рис.1.

в пределах 0'.2-0'.3 от центра скопления и для обнаружения их переменности необходимы наблюдения высокого пространственного разрешения. Несколько переменных оказались вне этой полосы. Это тоже основание для проверки их на переменность. Действительно, для части из них переменность в дальнейшем не была подтверждена (v4, v7 и v9).

5. Радиальное распределение основных характеристик скопления. На рис.3 приведены СМD для трех областей скопления с приблизительно одинаковым числом звезд, по различной удаленностью от его пентра (0'.15 < r < 0'.2, 0'.5 < r < 0'.6 и 1'.3 < r < 2'.0). Из-за копцентрации звезд скопления к центру существенно увеличиваются размеры колен по мере удаления от центра. Сравнение 3-х диаграмм на рис.3 позволяет выявить некоторые их особенности:

а. Большая концентрация ярких звезд (красные гиганты, звезды ГВ) и "голубых бродяг" к центру скопления. Кумулятивное радиальное распределение плотности этих звезд в кольцах шириной 0.1 приведено на рис.4. Можно

214

ИССЛЕДОВАНИЕ ШАРОВОГО СКОПЛЕНИЯ NGC 7006 215

Рис.3. СМД для 3-х областей скопления. Обозначения те же, что на рис.1.

видеть, что "голубые бродяги" более сконцентрированы к пентру, чем красные гигапты и звезды ГВ. Распределения звезд последних двух ветвей не различаются. Эти качественные оценки полтверждаются количественными оценками, основанными на критерии Колмогорова-Смирнова. Различие между красными

Рис.4. Кумулятивное радиальное (в кольцах шириной 0.1) распределение плотности красных гигантов (+), звезд ГВ (•) и "голубых бродяг" (×).

гигантами и звездами ГВ статистически незначимо на уровне 95%, в то время как различие между этими звездами и "голубыми бролягами" статистически значимо на уровне 99%.

Концентрация красных гигантов визуально проявляется при сравнении рис.3а, с одной стороны, и 3b и 3c (r > 0'.5) - с другой. Уже при r > 0'.5 на СМD ветвь красных гигантов содержит только 3 красных гиганта, более ярких, чем ГВ. Этот факт не позволяет исследовать зависимость положения "bump" на ВКГ от радиуса скопления. Аналогичная концентрания к нентру скопления наблюдается и для звезд ГВ.

b. Отсутствие радиальной зависимости положения ВКГ. На рис.3b $(0^{\circ}.5 < r < 0^{\circ}.6)$ ветвь красных гигантов представлена наилучшим образом подобранной кривой второго порядка. Та же самая кривая проведена на рис.3a и 3c. В пределах ошибок эта кривая удовлетворительно представляет ВКГ для всех 3-х областей скопления: Сумма отклонений от вычисленной кривой для всех 3-х областей практически равна нулю. Отсутствие различия в распределении звезд вдоль ВКГ для 3-х областей полтверждается и критерием Колмогорова-Смирнова на уровне 95%.

с. Независимыми от расстояния от центра скопления в пределах точности определения оказались положение на СМD точки поворота от ГП и яркость встви субгигантов (ВСГ). Одна и та же кривая представляет ВСГ для всех 3-х областей, что также полтверждается критерием Колмогорова-Смирнова на уровне 95%.

d. Из-за малого количества звезд ГВ и концентрации их к центру получить стагистически значимые значения индекса HBR в ранее выделенных нами областях невозможно. Поэтому для его определения вся исследуемая область скопления была разделена на две части с приблизительно равным числом звезд ГВ. Одна часть включает кольно с 0'.1 < r < 0'.4, другая - с r>0'.4. Некоторая псопределенность при подсчете звезд на ГВ возникает изза певозможности точного разграничения красной части ГВ и асимптотической ветви гигантов. HBR, вычисленные в первой и вгорой областях, соответственно равны 0.21±0.03 и -0.06±0.03. Таким образом, казалось бы полтвержлается обнаруженная в [9] зависимость индекса HBR от центра скопления. Олнако этот эффект может быть вызван присутствием звезд фона, которые располагаются полосой, проходящей через красную часть ГВ (рис.5), и количество которых увеличивается к периферии. Для области 0'.1 < r < 0'.4 этот вклад невелик и не может существенно изменить инлекс HBR. Некоторую оценку влияния звезд фона на число членов красной части ГВ для области r > 0'.4 можно сделать, привлекая имсющиеся данные по собственным льижениям звезд скопления [6]. В этой области скопления общее число красных звезд равно 30. 19 из них являются членами скопления на основании

ИССЛЕДОВАНИЕ ШАРОВОГО СКОПЛЕНИЯ NGC 7006 217

измеренных собственных движений. Если предположить, что оставшиеся 11 звеза являются звезлами фона, то соответствующий индекс HBR увеличивается до 0.09 и оказывается в пределах ошибок определения соответствующего

Рис.5. СМД для звеза нентральной области ШС NGC 7006 (левая часть) и для звеза, нахолящихся за приливным раднусом скопления (правая часть) [33].

инцекса HBR для пентральной области.

6. Заключение. В соответствии с обработанным наблюдательным материалом в данной фотометрической системе (V, I величины) ни один нараметр CMD (кроме индекса HBR) не обнаруживает зависимости от расстояния. Это может свидетельствовать о том, что скопление состоит из простого звездного населения, химически однородного. Изменение же индекса ГВ HBR с расстоянием от пентра, как было показано в предылущей части, может быть вызвано дополнительным вкладом звезд фона, которые:

- полосой проходят через красную часть ГВ (рис.1 и, более наглядно, рис.5),

- дают все более увеличивающийся вклад в эту область по мере удаления от центра,

- не учтены при определении индекса HBR.

Таким образом для решения вопроса об изменяемости индекса HBR требуются дополнительные наблюдения на инструменте с высоким пространственным разрешением для получения собственных движений и детального определения принадлежности звезд к скоплению.

С пругой стороны, используемая фотометрическая система величин (*V*, *I*) недостаточно чувствительна к изменению содержания таких химических элементов, как гелий, утлерод, кислород, азот, натрий и др., которые ответст-

А.Н.ГЕРАЩЕНКО, Ю.К.АНАНЬЕВСКАЯ

венны за фотометрические признаки наличия нескольких населений в шаровых скоплениях. К изменению содержания телия на СМД наиболее чувствительна ГП. Однако в этой системе величин слвиг ГП по пвету И-И из-за изменения содержания гелия часто оказывается меньше опнибок измерения пветов звезл. В частности, в скоплении NGC 6752 с той же металличностью, что и у NGC 7006, сдвиг ГП по цвсту (V-I) на уровне М ~6^т составляет 0".02 при том, что различие в содержании гелия в звезлах лвух поколений достигает ∆Y = 0.03 [34]. Соответствующая этой абсолютной величине средняя ошибка определения цвета звезд NGC 7006 $\sigma_{y,1} = 0^m.06$. Даже если принять, что различие в солержании гелия межлу лвумя поколениями звезя этого скондения лостигает 0.03, что нереально, используемая фотометрия не может ни подтвердить, ни опровергнуть гипотезу существования нескольких поколений звезд в этом скоплении. Без сомнения, для решения этой дилеммы необходимы наблюдения в UV области. К сожалению, данные SDSS в полосе "u" для скопления NGC 7006 не годятся для этой цели из-за большой ошибки измерения этих величин.

Авторы благодарят профессора Н.Н.Самуся (ИНАСАН) за помощь в получении наблюдательного материала, Н.В.Яблокову (СПБГУ) за полезную дискуссию.

Главная астрономическая обсерватория, Пулково, Санкт Петербург, Россия, e-mail: ger@gaoran.ru

INVESTIGATION OF THE GLOBULAR CLUSTER NGC 7006

A.N.GERASHCHENKO, Y.K.ANANJEVSKAJA

The results of the study of the globular cluster NGC 7006 are presented, for which convincing evidence of the existence of multiple populations of stars has not yet been presented. The only indication of the possibility of their existence follows from the dependence of the structure of the horizontal branch on the distance from the center of the cluster. In this paper it is shown that this observed fact can be explained by the ignoring of the contamination of the CMD by the field stars. However, in order to consider this statement as proved, it is necessary to obtain and study the proper motions of the stars in the cluster region.

Key words: stellar systems: globular clusters: photometry: multiple populations in globular clusters

ИССЛЕДОВАНИЕ ШАРОВОГО СКОПЛЕНИЯ NGC 7006 219

ЛИТЕРАТУРА

- 1. R.G. Gratton, E. Carretta, A. Bragaglia, Astron. Astrophys. Rev., 20, 50, 2012.
- 2. A.P.Milone, A.F.Marino, A.Dotter et al., Astrophys. J., 785, 21, 2014.
- 3. E. Carretta, A. Bragaglia, R.G. Gratton et al., Astron. Astrophys., 516, 55, 2010.
- 4. J.Anderson, Ph.D. Thesis, Univ. of Callifornia, Berkeley, 1998.
- 5. W.E. Harris, Astron. J., 112, 147, 1996.
- 6. D.I.Dinescu, S.R.Majewski, T.M.Girard et al., Astron. J., 122, 1916, 2001.
- 7. A.Sandage, R. Wildey, Astrophys. J., 150, 469, 1967.
- 8. J.G. Cohen, Astron. J., 90, 2254, 1985.
- 9. R. Buonanno, F. Fuse Pecci, E. Cappellaro et al., Astron. J., 102, 1005, 1991.
- 10. Л.П.Геращенко, Астрон. ж., 84, 604, 2007.
- 11. A.Dotter, A.Sarajedini, J.Anderson, Astrophys J., 738, 74, 2011.
- 12. K.U. Ratnatunga, J.N. Bahcall, Astrophys. J., 59, 63, 1985.
- 13. F.D.A.Hartwick, McClure, Astrophys. J., 176, L57, 1972.
- 14. J.E. Hesser, F.D.A. Hartwick, McClure, Astrophys. J. Suppl. Ser., 33, 471, 1977.
- 15. R.D. McClure, J.E. Hesser, Astrophys J., 246, 136, 1981.
- 16. J.G. Cohen, J.A. Frogel, Astrophys. J., 255, L39, 1982.
- 17. E. Friel, R.P. Kraft, N.B. Suntzeff et al., Publ. Astron. Soc. Pacif., 94, 873, 1982.
- 18. D.Harbeck, G.H.Smith, E.K.Grebel, Astron. Astrophys., 409, 553, 2003.
- 19. G.H.Smith, M.M.Briley, D.Harbeck, Astron. J., 129, 1589, 2005.
- 20. R.P.Kraft, Ch.Sneden, G.H.Smith et al., Astron. J., 115, 1500, 1998.
- 21. R.G. Gratton, E. Carretta, A. Bragaglia et al., Astron. Astrophys., 517, A81, 2010.
- 22. A.Dotter, A.Sarajedini, J.Anderson et al., Astrophys. J., 708, 698, 2010.
- 23. Ch.M. Clement, A. Muzzin, Q. Dufton et al., Astron. J., 122, 2587, 2001.
- 24. A.N. Gerashchenko, PZ, 26, 1, 2006.
- 25. A. Wehlau, S. Demers, Astron. Astrophys., 57, 251, 1977.
- 26. F.D'Antona, V.Caloi, Mon. Not. Roy. Astron. Soc., 390, 693, 2008.
- 27. V.Caloi, F.D'Antona, Astrophys J., 673, 847, 2008.
- 28. M. Catelan, F. Grundahl, A.V. Sweigart et al., Astrophys J., 695, L97, 2009.
- 29. D.An, J.A.Johnson, J.L.Clem et al., Astrophys J. Suppl. Ser., 179, 326, 2008.
- J.A. Carballo-Bello, A.Sollima, D.Martinez-Delgado et al., Mon. Not. Roy. Astron. Soc., 445, 2971, 2014.
- 31. D.M.Nataf, A.P.Gould, M.II.Pinsonneault et al., Astrophys. J., 766, 77, 2013.
- 32. З.И.Кадла, А.П.Геращенко, Изв. ГАО РАН, 199, 86, 1982.
- 33. D. Martinez-Delgado, D.I. Dinescu, R. Zinn et al., ASP Conference Series, 327, 255, 2004.
- 34. A.P.Milone, A.F.Marino, G.Piotto et al., Astrophys. J., 767, 120, 2013.

АСТРОФИЗИКА

TOM 61

МАЙ, 2018

ВЫПУСК 2

THE FIRST PHOTOMETRIC ANALYSIS OF THE OPEN CLUSTERS DOLIDZE 32 AND 36

M.Y.AMIN^{1,2}, W.H.ELSANHOURY^{3,4}, A.A.HAROON^{3,5} Received 13 December 2017 Accepted 7 March 2018

We present a first study of two open clusters Dolidze 32 and Dolidze 36, in the near-infrared region JHKs with aid of PPMXL catalog. In our study, we used a method able to separate open cluster's stars from those that belong to the stellar background. Our results of calculations indicate that for both cluster Dolidze 32 and Dolidze 36 the number of probable member are 286 and 780, respectively. We have estimated the cluster center for Dolidze 32 and Dolidze 36 are $\alpha = 18^{h}41^{m}4 = 188$, $\delta = -04^{\circ}04'57' = 144$, $\alpha = 20^{h}02^{m}29^{4}$, $\delta = 42^{\circ}05'49''.2$, respectively. The limiting radius for both clusters Dolidze 32 and Dolidze 36 are aobout 0.94 ± 0.03 pc and 0.81 ± 0.03 pc, respectively. The Color Magnitude Diagram allows us to estimate the reddening E(B - V) = 1.41 \pm 0.03 mag. for Dolidze 32 and E(B - V) = 0.19 \pm 0.04 mag. for Dolidze 32 and way the distance modulus (m - M) is 11.36 ± 0.02 , and 10.10 ± 0.03 for both clusters, respectively. On the other hand, the luminosity and mass functions of these two open clusters Dolidze 32 and Dolidze 36 have been estimated, showing that the estimated masses are in manner $437 \pm 21 M_{\odot}$ and $678 \pm 26 M_{\odot}$, respectively, while the mass function slopes are -2.56 ± 0.62 and -2.01 ± 0.70 for Dolidze 36, respectively. Finally, the dynamical state of these two clusters shows that only Dolidze 36 can be considered as a dynamically relaxed cluster.

Key words: Star clusters: stellar membership probability: color magnitude diagram: photometry

1. Introduction. Studying the open clusters are one of the most important ways of understanding the star formation. On the other hand, determination of open cluster physical parameters (like distance, reddening, age... etc.) due to observational studies, helps us to understand the galactic structure and evolution [1]. Bukowiecki et al. [2] determined new coordinates of the centres, angular sizes and radial density profiles for 849 open clusters in the Galaxy based on the 2MASS database.

Fundamental parameters of these two poorly studied open clusters Dolidze 32 and Dolidze 36 (hereafter D_{32} and D_{16}) are listed below in Table 1. The images of these two clusters are given in the LEDAS Digitized Sky Survey (DSS).

In our study, we use the fundamental parameters taken from Kharchenko et al. [3] and Dias et al. [4] in the PPMXL¹ catalog [5] to determine the basic

http://vizier.cja.harvard.edu/viz-bin/VizieR?-source=1/317

M.Y.AMIN ET AL.

Table 1

Parameter	D ₃₂	D36	References
α	18 ^h 41 ^m 13 ^s .2	20 ^h 02 ^m 27 ^s .6	Kharchenko et al. [3]
	18 ^h 41 ^m 5 ^s	20 ^h 02 ^m 30 ^s	Dias et al. [4]
õ	-4°02'00".6	42°09'54"	Kharchenko et al. [3]
	-4°04'51"	42°06'00"	Dias et al. [4]
1	28°.177	77°.711	Kharchenko et al. [3]
	28°.120	77°.659	Dias et al. [4]
b	0°.429	6°.022	Kharchenko et al. [3]
	0°.438	5°.982	Dias et al. [4]
r _{cort} (arcmin)	0.6	0.6	Kharchenko et al. [3]
r _{lim} (arcmin)	5.4	4.2	Kharchenko et al. [3]
Distance (pc)	1381	970	Kharchenko et al. [3]
	1381	900	Dias et al. [4]
Diameter (arcmin)	9.80	14.0	Dias et al. [4]
E(B-V)	1.457	0.208	Kharchenko et al. [3]
	1.457	0.220	Dias et al. [4]
E(J-Ks)	0.700	0.100	Kharchenko et al. [3]
E(J-H)	0.467	0.067	Kharchenko et al. [3]
log (age)	6.00	8.920	Kharchenko et al. [3]
	6.00	8.83	Dias et al. [4]

THE FUNDAMENTAL PARAMETERS OF TWO OPEN CLUSTERS D_{12} AND D_{36}

astrometrical and photometrical properties of open clusters D_{10} and D_{26} . We get from the PPMXL catalog a complete worksheet data of right ascension, declination, and the angular distance from the cluster center are extracted for J, H, and Ks (near infra-red) region with radii of 5 and 7 arcmin for D32 and D36 open clusters, respectively.

The structure of this article follows as: in the Section 2 reveals the data analysis, the Section 3 show the color magnitude diagram and isochrone fitting, the Section 4 deals with the luminosity and mass functions. Section 5 present the dynamical state of these clusters. The conclusion was revealed in Section 6.

2. Data Analysis.

2.1. Cluster Center Determination. Since the diameter is unknown in the data of Kharchenko et al. [3] for D_{32} and D_{36} , we use in our study the data of Dias et al. [4] in the PPMXL catalog. After that, we used the total recorded number (worksheet) of stars 1046 and 1363 in the PPMXL catalog for open clusters D_{32} and D_{36} , respectively. To get the new center, we started the data

analysis by re-calculating the location of both open clusters D_{13} and D_{36} , using the common procedure presented by many authors, e.g. Maciejewski and Niedzielski [6], Maciejewski et al. [7], and Haroon et al. [8,9]. In this procedure two perpendicular strips were cut along the right ascension and declination at approximate center of the cluster, and then histogram of the star counts then builds along each strip.

The histogram of both coordinates (α, δ) is fitted by a Gaussian distribution function for the two open clusters D_{32} and D_{36} , whereas the location of maximum number of stars (peak) indicated the new cluster center. The maximum values give the position of new cluster centers for D_{32} and D_{36} are shown in Table 2 and Fig.1.

Fig.1a. The Gaussian fit provides the new center of highest density areas in $\alpha = 18^{h}41^{m}4^{s}.188$, $\delta = -04^{\circ}04'57^{s}.144$, $l = 28^{\circ}.1173$ and $b = 0^{\circ}.4402$ of the image taken from LEDSA Digitized Sky Survey DSS, for open cluster D_{12} .

By comparing our results with that of Dias et al. [4] we noticed that: - For D_{32} the calculated right ascension is less than that given by Dias et al. [4] by about 0^s.812, while the calculated declination is greater than that given by Dias et al. [4] by about 6".144.

Fig.1b. The Gaussian fit provides the new center of highest density areas in $\alpha = 20^{b}02^{-2}29^{-9}5^{-8}$. $\delta = 42^{\circ}05'49^{\circ}2^{\circ}$, $l = 77^{\circ}.6865$ and $b = 5^{\circ}.1781$ of the image taken from LEDSA Digitized Sky Survey DSS, for open cluster D₁₆.

Table 2

Parameter	D ₁₂	D36
α	18 ^h 41 ^m 4'.188	20"02" 29.95
δ	-04°04'57".144	42°05'49".2
1	28°.1173	77°.6865
h	0° 4402	5º 1781

ESTIMATED CENTERS OF D₃₂ AND D₃₆

- For D_{36} the calculated right ascension and the declination are both less than that given by Dias et al. [4] by about 0.05 and 10".8, respectively.

2.2. Radial Density Profile (RDP). By using our calculated values of the new center (α, δ) again in the PPMXL catalog for open clusters D_{12} with

a radius of 5 arcmin and a radius of 7 arcmin for $D_{\mu\nu}$ we get a new worksheet for these two clusters. The new worksheet data contains, right ascension, declination, and the angular distance from the cluster center with J. H. and Ks (near infrared) region for 1046 stars in $D_{\mu\nu}$ and 1357 stars in $D_{\mu\nu}$, respectively.

Cluster density distribution, is a result of the internal and/or external dynamical process taking place in and out of the cluster. Although the spatial shape of the cluster may not be perfectly spherical, the fitting of the King [10] model has also been applied to derive the cluster limited radius and the core radius.

In our study, we find the surface density of stars in rings along a projected radius (with certain distances) from the core to the maximum distance from the center. We get the surface density distribution $\rho(r)$ by using the following equation of the King model [11],

$$\rho(r) = f_{bg} + \frac{f_0}{1 + (r/r_{corr})^2},$$
(1)

where: f_{bg} - the background surface density, f_0 - the central star density, r_{core} - the core radius of the cluster, r - the radius of cluster at certain distance.

Fig.2 presents our calculations for the surface density distribution $\rho(r)$. The numerical values of r_{core} , f_{bg} , and f_0 are listed in Table 3. By comparing our results with that of Kharchenko et al. [3] we noticed that, the calculated r_{core} is greater than that obtained by Kharchenko et al. [3] by about 0.333 arcmin and 0.34 arcmin for D_{32} and D_{36} , respectively.

The limiting radius r_{lim} of the cluster defined as the radius which covers the entire cluster area and reaches enough stability with the background field density [12]. Mathematically, r_{lim} is defined as:

Fig.2. The RDP of the D_{32} and D_{36} open clusters, the solid lines denotes the fitted density distribution and the dashed lines represents the background field density f_{ba} .

M.Y.AMIN ET AL.

Table 3

Parameter	D ₁₂	D 36
f_ (stars/arcmin ²)	8.387 ± 0.20	8.35±0.213
f (stars/arcmin ²)	5.01 ± 0.915	6.32 ± 0.59
r (arcmin)	0.933 ± 0.15	0.94 ± 0.21
cove	0.6	0.6
r (arcmin)	2.53 ± 0.07	2.81 ± 0.09
	5.4*	4.3*
С	2.71	3.00

RDP PARAMETERS

* Values obtained by Kharchenko et al. [3]

$$r_{\rm lim} = r_{\rm core} \sqrt{\frac{f_0}{3\sigma_{\rm bg}} - 1} , \qquad (2)$$

where σ_{bg} is the uncertainty of the background surface density f.

Our estimated r_{lim} for both clusters D_{32} and D_{36} are listed in Table 3. By comparing our results with that of Kharchenko et al. [3] we noticed that the estimated r_{lim} is less than that obtained by Kharchenko et al. [3] by about 2.87 arcmin and 1.39 arcmin for D_{32} and D_{36} , respectively.

As Nilakshi et al. [13] and Tadross [14] the concentration parameter C equal to r_{yy}/r_{corr} . Our calculated values of C for for D_{yy} and D_{y_0} are given in Table 3.

Nilakshi et al. [13] concluded that the angular size of the coronal region is about 6 times the r_{core} . While Maciejewski and Niedzielski [6] reported that r_{max} may vary for individual clusters between $2r_{core}$ and $7r_{core}$. In our study we notice that the limiting radius is about 2.71 and 3.00 times core radius for D_{32} and D_{367} respectively. Therefore, we are in agreement with the results of Maciejewski and Niedzielski [6].

2.3. Membership Probability. One of the main purposes of our work is to produce and construct the Color Magnitude Diagram (CMD) with reduced field star contamination (i.e. cluster members). Zhao et al. [15] used the criteria of multicolor photometry, and proper motion to estimate the membership probabilities.

In our study we use the computational algorithm described by Amin and Elsanhoury [16] which depend on the method of Sanders [17]. In this method, we used a proper motion of individual stars based on the maximum likelihood method. For this method, the membership probabilities in a cluster field from their proper motions, we shall consider some objective criteria for pruning the Vector Point Diagram (VPD). Sanders [17] described for the purpose of orientation (i) a circular normal bivariate distribution function for the cluster, and (ii) an elliptical, normal bivariate distribution function of the field, following Vasilevskis et al. [18].

VPD rotation of the cluster has been done to isolate the field stars (which must remain fixed relative to the other cluster stars to get the real cluster members), using the following procedure developed by Sanders [17] and discussed in [15], i.e. pruning process, into which the stars are rotated in three quarters on the coordinates. By moving the stars located on the first quarter to the second and from the second to the third then in the fourth quarter and compare the resulting coordinates to the initial listed coordinates. By this rotation the field stars will be easily identified and separated and the real members will be listed [19].

At the beginning of our calculations of membership, we used a data file contained of 1046 and 1357 a single star in D_{32} and D_{36} , respectively. As given in Table 4 our calculation of membership starts with a probability limit greater than or equal to 50% for D_{32} and D_{36} indicates that the membership stars are 286 and 780 for D_{34} and D_{36} , respectively.

Table 4

Cluster name	Pruning	No. of cancelled stars	No. of membership stars	Angle of rotation (θ)	Membership stars ($P \ge 50\%$)
D ₃₂	First Second Third	320 440 0	726 286 286	0°.097 45°.065 90°.442	286
D ₃₆	First Second Third	437 140 0	920 780 780	0°.108 45°.185 90°.221	780

MEMBERSHIP PROBABILITIES FOR D₃₂ AND D₃₆ AFTER THE FIRST, SECOND AND THIRD PRUNING

3. CMD and Isochrone Fitting. The main photometric parameters including reddening E(B - V) and distance modulus (m - M) can be determined from the CMD using fitting with the theoretical Padova isochrones¹, as in an example given by Marigo et al. [20] and Girardi et al. [21]. In our study, we construct CMDs for (J, J-H & Ks, J-Ks) of the D₃₂ and D₃₆ open clusters. The fitting of isochrones with the observed CMDs of D₃₂ and D₃₆ are shown in Fig.3. In our results, the best fit was obtained with solar metallicity (Z = 0.019) isochrones with log(age) = 6.0 ± 0.05 and 8.85 ± 0.05 [yrs], respectively.

As we know, reddening determination is one of the major steps in cluster compilation. Therefore, the reddening of the cluster has been determined using

http://stev.oapd.inaf.it/cgi-bin/cmd

M.Y.AMIN ET AL.

Schlegel et al. [22] and Schlafly and Finkbeiner [23]. To calculate the color excess transformations, we used the coefficient ratios $A_{I}/A_{\nu} = 0.276$ and $A_{II}/A_{\nu} = 0.176$, which are derived using absorption ratios by Schlegel et al. [22], while the ratio $A_{IV}/A_{\nu} = 0.118$ was derived by Dutra et al. [24]. In our calculation we used the following results for the color excess of photometric system by Fiorucci and Munari

Fig.3. Padova CMD solar like stars (Z = 0.019), and log(age) over [J. (J-H) and (Ks, (J-Ks)] isochrones for D_{12} and D_{33} open clusters.

[25]: $E_{J,H}/E_{B,V} = 0.309 \pm 0.130$, $E_{J,K}/E_{B,V} = 0.485 \pm 0.150$, where $R_V = A_V/E_{B,V} = 3.1$. By applying the last relations to correct the effects of reddening in the CMDs with an extinction coefficient equal to 0.833 mag. and 0.117 mag. for D_{31} and D_{36} , respectively. We obtained, for D_{32} $(A_{K}/E_{B,V} = 0.368$ and $A_J/E_{B,V} = 0.848)$ and for D_{36} $(A_{K}/E_{B,V} = 0.368$ and $A_J/E_{B,V} = 0.845)$.

By comparing our results of log(age), E(B - V), E(J - H), E(J - Ks) and (m - M) with that obtained by Dias et al. [4] and Kharchenko et al. [3] as listed in Table 1, we notice that:

- For D_{32} : Our calculation of log (age) is in agreement with that of both Dias et al. [4] and Kharchenko et al. [3]. While the obtained value of reddening E(B-V) by Dias et al. [4] and Kharchenko et al. [3] is greater than our results by about 0.047 mag. Our results of the distance modulus (m-M) is greater than that of Dias et al. [4] and Kharchenko et al. [3] by about 0.66. Finaly, our calculations of E(J-H) and E(J-Ks) are less than that of Kharchenko et al. [3] by about 0.031 mag., and 0.016 mag., respectively.

- For D_{36} : Our log (age) is greater than that of Dias et al. [4] by about 0.02, and smaller than that of Kharchenko et al. [3] by about 0.07. Both reddening E(B-V) of Dias et al. [4] and Kharchenko et al. [3] are greater than our estimation with 0.03 and 0.018 mag., respectively. Our distance modulus (m-M) is greater than that of Dias et al. [4] and Kharchenko et al. [3] with about 0.33 and 0.16, respectively. Finaly, our calculations of E(J-H) and E(J-Ks) are less than that of Kharchenko et al. [3] by about 0.007 mag., and 0.008 mag., respectively.

Our calculation indicates that the cluster distance for D_{32} and D_{34} are equals to $1276 \pm 35 \text{ pc}$ [i.e. $(2.63 \pm 0.07) \times 10^{-5}$) arcmin] and $992 \pm 31 \text{ pc}$ [i.e. $(2.04 \pm 0.06) \times 10^{-5}$) arcmin], respectively. By comparing our result of distances with those listed by Dias et al. [4] and Kharchenko et al. [3] catalogs, we notice that our calculated distance for D_{32} is smaller than of them by about 105 pc, while for D_{36} our calculated distance is greater than of them by about 92 and 22 pc, respectively.

On the other hand, the cluster-Sun distance is used to determine the cluster's distance to the Galactic center R, and the projected distance to the Galactic plane $(X_{\odot} \text{ and } Y_{\odot})$, and the distance from the Galactic plane Z_{\odot} . As based on Tadross [14], our calculations for R_{\odot} , X_{\odot} , Y_{\odot} and Z_{\odot} are represented by:

- For D₁₀: 8595 ± 93 pc, 1126 ± 36 pc, 602 ± 25 pc and 9.81 ± 3.00 pc, respectively.

- For D_{16} : 8558 ± 93 pc, 211 ± 15 pc, 965 ± 31 pc, and 89 ± 9 pc, respectively.

4. Luminosity and Mass Function. The total number of the stars as a function of absolute magnitudes in a certain region of surface area can be described in our study as the luminosity function LF. The main attributes of studying the open clusters are to study the mass function MF, which describes the mass distribution (i.e. histogram of stellar masses) of a population stars in terms of their

M.Y.AMIN ET AL.

theoretical initial mass (the mass they were formed before with). The Initial Mass Function IMF is defined in terms of a power law as follows:

$$\frac{dN}{dM} \propto M^{-\Gamma} , \qquad (3)$$

where, dN/dM is the number of stars on mass interval (M: M + dM), and Γ is a dimensionless exponent. From Salpeter [26], the IMF for massive stars (>1 M_{\odot}) has been studied and well established i.e. $\Gamma = 2.35$. The steep slope of the IMF indicates that the number of low-mass stars is greater than the high-mass ones. MF correlated with LF by a relation called mass-luminosity relation MLR.

To determine the cluster LF, we count the observed stars in terms of absolute magnitude after applying the distance modulus. LF of these two open clusters D_{14} and D_{14} are constructed as shown in Fig.4, we can infer that the massive bright stars seem to be centrally concentrated more than the low masses and fainter ones [27].

Fig 4. The distribution of the LF of D_{yy} and D_{yz} open clusters.

In our study the MF will be estimated due to MLR, which constructed based on the adopted isochrones Marigo et al. [20] and Girardi et al. [21], the relation is a polynomial function of second order, i.e.

- For D_{32} : $M/M_{\odot} = (2.910 \pm 0.007) - (0.610 \pm 0.004) M_J + (0.035 \pm 0.0003) M_J^2$

- For D_{36} : $M/M_{\odot} = (2.370 \pm 0.008) - (0.423 \pm 0.005)M_J + (0.020 \pm 0.0009)M_J^2$.

From last polynomials we can get the total estimated mass M_c as $437 \pm 21 M_{\odot}$ and $678 \pm 26 M_{\odot}$ for D_{32} and D_{36} , respectively. Fig.5, shows the MF of these open clusters, the slopes are -2.56 ± 0.62 and -2.01 ± 0.70 for D_{32} and D_{36} . Our results are in agreement with Salpeter [26].

230

Fig.5. The MF of D₃₂ and D₃₆ open clusters.

By using our total estimated mass M_c and the relation 4, which is given by Jeffries et al. [28], our results give a tidal radius r_t of about 11.08 pc and 12.83 pc for D_{12} and D_{16} , respectively.

$$r_t = 1.46\sqrt[3]{M_C} \,. \tag{4}$$

5. Dynamical State. To describe the dynamical state of the open clusters, we calculate the dynamical evolution parameter (i.e. $\tau = T_{age}/T_{relax}$) where T_{relax} is the dynamical relaxation time, which defined as the time the cluster needs to reach a stability (Maxwellian state). During that time, the low mass star in a cluster possesses the largest random velocity, occupying a larger volume than the high mass does [29]. If $\tau >> 1$, then the cluster may be called dynamically relaxed and vice versa. Mathematically, the relaxation time has the form [30]:

$$T_{relax} = \frac{8.9 \times 10^5 \sqrt{N} R_l^{3/2}}{\langle m \rangle^{1/2} \log(0.4 N)},$$
(5)

where R_{h} is the radius containing half of the cluster mass, N is the number of the cluster members and $\langle m \rangle$ is the average mass of the cluster stars. Assuming that the R_{h} is equal to half of the cluster radius linear units estimated in this study, we have adopted R_{h} for these clusters. Table 5 presents the numerical values of these parameters for both D_{12} and D_{36} . As seen from Table 5 the dynamical evolution parameter (i.e. τ), of both clusters D_{12} and D_{36} are 0.56 and 249, respectively. So that D_{36} can be considered as a dynamically relaxed cluster.

M.Y.AMIN ET AL.

Table 5

Parameter	D32	D36
No. of members (N)	286	780
T (log) yrs	6.00 ± 0.05	8.85±0.05
(m)	1.53 ± 0.18	0.844 ± 0.350
R (pc)	0.450 ± 0.001	0.41 ± 0.01
T(Myr)	1.78	2.85
T	0.56	249

THE DYNAMICAL STATE PARAMETERS OF D₁₁ AND D₁₆ OPEN CLUSTERS

6. Conclusion. Our aim of this study is to find main photometric parameters as a first study of open clusters Dolidze 32 and Dolidze 36. Our calculations based on near infrared region JHKs using PPMXL catalog.

Our calculated results are summarized as the following points:

- In our study, we have re-calculate the center of the clusters. For D32, our right ascension is less than that given by Dias et al. [4] by about 0.812, and declination is greater than that given by him by about 6".144. While for D_{361} both right ascension and the declination are less than that given by Dias et al. [4] by about 0'.05 and 10".8, respectively.

- We have determined the membership probability, by means of maximum likelihood method. The results of the memberships are 286 and 780 for D_{32} and D_{34} , respectively.

- We have constructed the RDP, showing that the limiting radius and for D_{12} is 0.94 ± 0.03 pc and about 0.81 ± 0.03 pc for D_{16} .

- Construction of CMD of solar metallicity (Z = 0.019), allows us to calculate some of the photometric parameters of these clusters, like distance modulus (m - M) = 11.36 ± 0.20 mag and 10.10 ± 0.30 mag, which indicated the distance about 1276 ± 35 pc and 992 ± 31 pc for D₃₂ and D₃₆, respectively. In the same manner the reddening E(B - V) = 1.41 ± 0.03 , and 0.19 ± 0.04 for D₃₂ and D₃₆, respectively.

- The LF and MF are determined by applying the MLR, for LF showed a gradual increase towards low luminosity stars from the high luminous ones. On the other hand, the value of MF slopes was about -2.56 ± 0.62 and -2.01 ± 0.70 for D₃₂ and D₃₆ open clusters, respectively, which were found to be around the Salpeter's value.

- The total mass was calculated for these two open clusters to be around $437 \pm 21 M_{\odot}$ and $678 \pm 26 M_{\odot}$, for D₁₂ and D₁₆ respectively.
- Finally, we have calculated the dynamical evolution parameter \pm , for both clusters, form our calculations, we can reveal that the D_{se}, can be considered as dynamically relaxed cluster.

- Astronomy Dept., Faculty of Science, Cairo University, Cairo, Egypt
- Physics Dept., College of Sciences and Humanities, Hawtat Sudair, Majmaah University, Saudi Arabia, e-mail: m.saleh@mu.edu.sa
- Astronomy Dept., National Research Institute of Astronomy and Geophysics (NRIAG), 11421, Helwan, Cairo, Egypt, e-mail: welsanhoury@gmail.com
- ¹ Physics Dept., Faculty of Science, Northern Border University, Rafha Branch, Saudi Arabia
- King Abdul Aziz university, Jeddah, Saudi Arabia, e-mail: aaharoon@kau.edu.sa

ПЕРВЫЙ ФОТОМЕТРИЧЕСКИЙ АНАЛИЗ ОТКРЫТЫХ СКОПЛЕНИЙ ДОЛИДЗЕ 32 И 36

М.АМИН^{1,2}, В.Г.ЕЛСАНУРИ^{3,4}, А.А.АРУН^{3,5}

Представлено первое исследование 2-х открытых скоплений Долидзе 32 и 36 в ближнем UK диапазоне JHK с помощью каталога PPMXL. Использован мстол для выделения звезд скопления из звезд фона. Вычисления показали, что вероятное количество звезл в скоплениях Долидзе 32 и 36 составляет, соответственно 286 и 780. Определены пентры координат скоплений Долидзе 32 и 36 - $\alpha = 18^{h}41^{m}4^{s}.188$, $\delta = -04^{\circ}04'57".144$ и $\alpha = 20^{h}02^{m}29^{s}.95$, $\delta = 42^{\circ}05'49".2$, соответственно. Радиусы скоплений примерно равны 0.94 ± 0.03 пк и 0.81 ± 0.03 пк. Оценены величины покраснений - E(B-V)= $1^{m}.41\pm0^{m}.03$ для Долидзе 32 и E(B-V)= $0^{m}.19\pm0^{m}.04$ для Долидзе 36, а также модули расстояний (m-M) - 11.36 ± 0.02 и 10.10 ± 0.03 , соответственно. Получены также функции светимости и масс. Массы скоплений равны $437\pm21M_{\odot}$ и $678\pm26M_{\odot}$, с крутизной функции масс -2.56\pm0.62 и -2.01\pm0.70. Рассмотрение динамического состояния этих двух открытых скоплений показало, что скопление Долидзе можно рассмотреть как динамически релаксированное.

Ключевые слова: звездные скопления: вероятность членства звезд: диаграмма цвет-величина: фотометрия

M.Y.AMIN ET AL.

REFERENCES

- 1. Y.C.Joshi, A.K.Dambis, A.K.Pandey et al., arXiv:1606.06425v1, 2016.
- 2. L.Bukowiecki, G.Maciejewski, P.Konorski et al., Strobel, A.: Acta Astron., 61, 231, 2011.
- 3. N.V.Kharchenko, A.E.Piskunov, S.Rocser et al., Astron. Astrophys., 558, A53, 2013.
- 4. W.S.Dias, B.S.Alessi, A.Moitinho et al., Astron. Astrophys., 389, 871, 2002.
- 5. S. Roeser. M. Demleitner, E. Schilbach, Astron. J., 139, 2440, 2010.
- 6. G. Maciejewski, A. Niedzielski, Astron. Astrophys., 467, 1065, 2007.
- 7. G.Maciejewski, B.Mihov, Ts.Georgiev, Astron. Nachr., 330, 851, 2009.
- 8. A.A.Haroon, II.A.Ismail, F.Y.Alnagahy, Astrophys. Space Sci., 352, 665, 2014.
- 9. A.A.Haroon, H.H.Ismail, W.H.Elsanhoury, Astrophysics, 60, 173, 2017.
- 10. I.King, Astron. J., 67, 471, 1962.
- 11. J. King, Astron. J., 71, 64, 1966.
- 12. A.L. Tadross, R. Bendary, J. Kor. Astron. Soc., 47, 137, 2014.
- 13. S.R.Nilakshi et al., Astron. Astrophys., 383, 153, 2002.
- 14. A.L. Tadross, Research in Astron. Astrophys., 12, 158, 2012.
- 15. Zhao Jun-Liang, Tian Kai-Ping, Xu Zong-Haiand, Yin Ming-Guan, Chin. Astron. Astrophys., 6, 293, 1982.
- 16. M.Y.Amin, W.H.Elsanhoury, Serbian Astron. J., 194, 59, 2017.
- 17. W.Sanders, Astron. Astrophys., 14, 226, 1971.
- 18. S. Vasilevskis, R.A. Rach, Astron. J., 62, 175, 1957.
- 19. M. El Nazer, M. Sc. Thesis, Cairo University, 2014.
- 20. P.Marigo, L.Girardi, A.Bressan et al., Astron. Astrophys., 482, 883, 2008.
- 21. L. Girardi, B.F. Williams, K.M. Gilbert et al., Astrophys. J., 724, 1030, 2010.
- 22. D.J.Schlegel, D.P.Finkbeiner, M.Davis, Astron. J., 500, 525, 1998.
- 23. E.F.Schlafly, D.P.Finkbeiner, Astron. J., 737, 103, 2011.
- 24. C.M. Dutra, B.X. Santiago, E. Bica, Astron. Astrophys., 381. 219, 2002.
- 25. M.Fiorucci, U.Munari, Astron. Astrophys., 401, 781, 2003.
- 26. E.E.Salpeter, Astrophys. J., 121, 161, 1955.
- 27. K.A.Montgomery, L.A.Marschall, K.A.Janes, Astron. J., 106, 181, 1993.
- 28. R.D.Jeffries, M.R.Thurston, N.C.Hambly, Astron. Astrophys., 375, 863, 2001.
- 29. R.D. Mathieu, D.W. Latham, Astron. J., 92, 1364, 1986.
- 30. L.Spitzer, M.H.Hart, Astrophys. J., 166, 483, 1971.

АСТРОФИЗИКА

TOM 61

МАЙ, 2018

ВЫПУСК 2

ВОЗМОЖНО ЛИ ЧАСТИЧНОЕ ПЕРЕМЕШИВАНИЕ ВЕЩЕСТВА В КОМПОНЕНТАХ ДВОЙНЫХ СИСТЕМ?

Е.И.СТАРИЦИН Поступила 23 августа 2017 Принята к печати 7 марта 2018

Данные об абсолютных элементах компонент двойных систем, находящихся на стадии горения волорода и относящихся к ранним спектральным подклассам В, проанализированы с привлечением молелей звезя, построенных с учетом частичного перемешивания вешества лучистои оболочки и конвективного ядра. Частичное перемешивание способствует большему увеличению светимости и меньшему увеличению размера звезды в процессе ее эволюции на главной последовательности (ГП). Имеющиеся данные о массах, размерах и светимостях компонент люйных систем допускают возможность частичного перемешивания в их недрах анспогично перемешиванию в одиночных В-звездах ГП таких же спектральных подклассов. Механизм частичного перемешивания может служить альтернативой или дополнением к механизму дополнительного перемешивания на границе конвективного ядра при анализе наблюдаемых характеристик двойных систем, в частности при решении проблемы повышенной светимости оптических компонент рентгеновских двойных, и нуждается в дальнейшем исследовании. Имеющихся данных об абсолютных элементах компонент недостаточно лля того, чтобы наложить строгие ограничения на величину частичного перемешивания и выявить количественные различия в перемешивании у компонент двойных систем и одиночных звезд, если таковые имеются.

Ключевые слова: звезды - строение и эволюция: двойные

1. Введение. Олиночные В-звезды ранних спектральных подклассов показывают увеличение поверхностного содержания гелия к концу эволюции на ГП [1,2]. Доля ядер гелия относительно ядер водорода N_{He}/N_{H} в атмосферах звезд с массами $4M_{\odot} \le M \le 12M_{\odot}$ увеличивается на $26\% \pm 10\%$, а у звезд с массами $12M_{\odot} \le M \le 19M_{\odot}$ на ~67% [1]. Согласно [2], увеличение составляет $23\% \pm 13\%$ у звезд с массами $8M_{\odot} \le M \le 16M_{\odot}$, причем это увеличение в среднем больше у звезд с большей проекцией скорости вращения на луч зрения. Исследованные звезды обладают медленным и умеренным вращением. Звезды типа Ве, пульсирующие и химически пекулярные звезды были исключены из исследуемых выборок.

Причина увеличения поверхностного содержания гелия может заключаться в частичном перемешивании вещества лучистой оболочки и конвективного ядра во врашающейся звезде вследствие действия гидродинамических явлений переноса: сдвиговой турбулентности, полуконвекции и дополнительного перемешивания вещества в центральной части звезды (overshooting) [3,4].

Перемешивание вещества в лучистых оболочках В-звезд с устойчивой стратификацией осуществляется вследствие расхода –2%-3% кинетической энергии врашения на генерацию сдвиговой турбулентности. При этом интенсивность частичного перемешивания получается больше в моделях звезд с большим значением момента импульса [4]. Частичное перемешивание способствует увеличению массы синтезированного телия и сопутствующему дополнительному увеличению светимости звезды на стадии ГП. Учет частичного перемешивания вещества оказывает, таким образом, влияние на теоретическое соотношение масса-светимость звезд ГП.

Повышенное поверхностное содержание гелия наблюдается также в некоторых химически пекулярных В-звездах ГП ранних спектральных полклассов. Для объяснения повышенного содержания гелия в атмосферах звезд этого типа предложены модели диффузии гелия в верхнем слое звезды с учетом звездного ветра [5] и выпадения гелия из звездного встра обратно в атмосферу звезды [6]. Модели рассмотрены без учета магнитного поля и могут быть применены к нормальным звездам. В отличие от частичного неременнивания вещества эти модели не ведут к дополнительному синтезу гелия и сопутствующему дополнительному увеличению светимости звезлы на ГП и, поэтому, не влияют на соотношение масса-светимость. Олнако эти модели обладают серьезными недостатками: лиффузия может увеличить содержание гелия в атмосфере только в случае звездного встра с заниженными темнами потери массы, кулоновские взаимодействия между протонами и ионами гелия достаточно сильны, чтобы увлечь гелиевую составляющую звездного встра и разогнать ее до скоростей, необходимых для преодоления гравитационного поля звезды [7].

Наиболее надежным источником информации о массах и светимостях звезд являются двойные системы. Частичное перемешивание вещества может иметь место также и в компонентах двойных систем. Наблюдаемое повышение содержание гелия в атмосферах компонент двойных систем, не проходивших через сталию обмена веществом, в ~2 раза больше, чем у одиночных звезд [8-11]. По сравнению с одиночными звездами, в компонентах двойных систем действуют дополнительные механизмы переноса, которые могут повлиять на результирующее частичное перемешивание вещества. Среди таких механизмов - тепловая циркуляция вещества, вызванная приливной деформацией компоненты [12]. В случае, когда врашение компоненты не синхронизировано с обращением по орбите, может происходить механическая циркуляция вещества [13,14]. Изменение момента импульса компоненты вследствие приливного взаимодействия в отсутствие синхронизма может оказать воздействие на явления переноса, связанные как с приливной, так и с вращательной деформациями.

Описание гипролинамических явлений переноса, связанных с вращательной леформацией звезны, может быть сведено к одномерному [15,16]. Приливное взаимодействие в отсутствие сипхронизма активизирует процессы переноса, связанные с врапательной леформацией компоненты [17,18]. Поступление/отток момента импульса через поверхность компоненты в результате действия момента сил со стороны спутника приводит к усилению меридиональной ширкуляции, которая отволит/полволит момент импульса внутрь/изнутри компоненты [18]. Увеличение скорости мерилиональной ширкулянии приводит к увеличению коэффициентов турбулентного переноса в горизонтальном и, следовательно, в вергикальном направлениях [19]. Несмотря на активизацию процессов переноса, заметного увеличения поверхностного содержания гелия в компонентах двойных систем в [18] не получено. Это может быть связано с тем, что коэффициенты турбулентной вязкости и диффузии в [18] приняты одинаковыми. В случае, если турбулентное число Шмилта меньше единицы, коэффициент диффузии превосходит коэффициент вязкости, и увеличение поверхностного содержания гелия со временем в процессе эволюнии становится возможным даже для олипочных звезд, при условии умеренного вращения [3,4].

В отличие от одиночных звезд, течение вещества в недрах компонент двойных систем является суммой как минимум двух слагаемых. Во-первых, это течение, вызванное вранательной деформацией, симметричное относительно оси врашения и плоскости экватора. Во-вторых, это течение, вызванное приливной деформацией, симметричное относительно линии, проходящей через нентры масс компонент [12]. Скорость суммарного течения в этом случае имеет в пространстве три ненулевые компоненты. Описание гидродинамических явлений переноса в недрах компонент двойных систем остается трехмерным. Влияние циркуляции вещества на частичное перемешивание вещества в компонентах двойных систем остается не изученным. Не исследована также роль механических токов в случае не синхронного вращения.

В данной работе исследуется влияние возможного частичного перемешивания вещества лучистой оболочки и конвективного ядра в компонентах двойных систем на теоретическое соотношение масса-светимость в том же диапазоне масс, для которого найдено увеличение поверхностного содержания гелия к концу эволюции на стадии горения водорода у В-звезд ранних спектральных подклассов. Частичное перемешивание вещества в компонентах двойных систем описывается посредством грубой нараметрической модели. Изменение поверхностного содержания гелия со временем в процессе эволюции компонент задается в диапазоне значений, типичных для В-звезд ГП ранних спектральных подклассов [1,2,8-11]. Теоретические соотношения масса-светимость, определенные с учетом частичного перемешивания вещества различной интенсивности, сопоставляются с надежными данными о массах

и светимостях компонент двойных систем в исследуемом дианазоне масс.

2. Формальное моделирование частичного перемешивания в компонентах двойных систем. Эволюния звезд с массами $6M_{\odot}$, $8M_{\odot}$, $12M_{\odot}$, $16M_{\odot}$, $20M_{\odot}$ и $24M_{\odot}$ рассчитана на сталии ялерного горения водорода в конвективном ядре с использованием программы Пачинского [20]. Химический состав вещества в начале эволюнии задан близким к солнечному: (X, Z) = (0.70, 0.02), X и Z - содержание водорода и тяжелых элементов по массе, соответственно. Непрозрачности взяты из работ [21,22]. Эволюция звездах с большей массой $6M_{\odot}$ рассчитана при постоянном значении массы. В звездах с большей массой учитывалась потеря массы звездным ветром. Темп потери массы в звездах $8M_{\odot}$ и $12M_{\odot}$ определялся по эмпирической формуле из работы [23]. В звездах $16M_{\odot}$, $20M_{\odot}$ и $24M_{\odot}$ потеря массы учтена с использованием теоретических темпов [24].

Частичное переменнивание вещества лучистой оболочки и конвективного ядра моделируется следующей грубой схемой. Задается линейная связь поверхностного содержания водорода X₅ и содержания водорода X₆ в конвективном ядре:

$$X_s = a + b X_c . \tag{1}$$

Увеличение поверхностного отношения числа ядер гелия и водорода $\Delta(N_{He}/N_H)$ к моменту времени, когда $X_c=0$, принимается в качестве свободного параметра. Задание этого параметра определяет коэффициенты *a* и *b* в (1). Содержание водорода в лучистой оболочке считается постоянным и равным X_s . В каждой эволюционной модели масса водорода в лучистой оболочке уменьшается на величину, соответствующую текущему значению X_s . Масса водорода в конвективном ядре увеличивается на эту же величину. Масса гелия в конвективном ядре, соответственно, уменьшается, в лучистой оболочке – увеличивается.

Граница конвективного ядра помещается на расстоянии $d = \alpha H_P$ от места, где радиативный и адиабатический температурные градиенты равны. H_P - высота шкалы по давлению в этом месте, α - параметр. Диапазон возможных значений параметра α ограничен наблюдаемой шириной ГП рассеянных скоплений [25,26]. В данной работе рассчитаны цять вариантов эволюции звезд. Три варианта при $\alpha = 0.05$ и $\Delta(N_{He}/N_H) = \{0\%, 40\%, 80\%\}$ и два варианта при $\Delta(N_{He}/N_H) = 0$ и $\alpha = \{0.15, 0.25\}$.

Учет как частичного перемешивания вещества лучистой оболочки и конвективного ядра, так и дополнительного перемешивания в центральной части звезды приводит к увеличению массы гелия, синтезированного за время ядерного горения водорода в конвективном ядре. В результате, увеличение светимости звезды на стадии ГП становится больше (рис.1), а продолжительность этой стадии эволюции возрастает. Влияние частичного переменивания вешества лучистой оболочки и конвективного ялра и дополнительного перемешивания в центре звезды на увеличение се размера в процессе эволюции различное. Первый процесс ослабляет это увеличение, второй - усиливает.

Рис.1. Эволюционный трек звезды с массой $8M_{\odot}$ на ГП в случаях а) $\alpha = 0.05$ при $\Delta(N_{\odot}/N_{\odot})$ равном 0% (сплошная линия), 40% (штрих), 80% (штрих-пунктир) и b) без частичного перемешивания вещества лучистой оболочки и конвективного ядра при $\alpha = 0.05$ (сплошная линия), $\alpha = 0.15$ (штрих), $\alpha = 0.25$ (штрих-пунктир); линия постоянного радиуса $R = 5R_{\odot}$ показана пунктиром.

Следуст отметить, что прубый модельный учет частичного переменнивания не имитируст полностью результаты решений гидродинамических уравнений переноса во вращающихся одиночных звездах. В частности, в модельном учете отсутствует поступление волорода из лучистой оболочки в слой с переменным химическим составом. По этой причине условия для полуконвскции в слое с переменным химическим составом в звездах с массами $6M_{\odot}$ и $8M_{\odot}$ при $\Delta(N_{He}/N_{H}) = \{0\%, 40\%\}$ не появляются. Слой с переменным химическим составом формируется только вследствие уменьшения массы конвективного ядра. Смещения этого слоя наружу по массе, как это имеет место при решении гидродинамических уравнений [3,4], не происходит. По этой причине увеличение размера звезды в процессе эволюции на ГП в случае, когда частичное перемещивание учтено, в данных расчетах недооценено. В пелях получения однородной системы эволюционных треков полуконвективное перемещивание в звездах с массами $8M_{\odot}$ при $\Delta(N_{He}/N_{H}) = 80\%$ и $12-24M_{\odot}$ также не учитывалось.

3. Данные наблюдений двойных систем. Для исследования влияния частичного перемешивания вещества лучистой оболочки и конвективного ялра на изменение светимости звезды во время эволюции на стадии горения водорода необходимы данные об абсолютных элементах компонент двойных систем, нахолящихся на этой стадии эволюции.

Некоторые процессы, протекающие в двойных системах, например обмен веществом, могут оказывать существенное влияние на характеристики компонент. Газовые потоки в двойной системе затрудняют надежное определение абсолютных элементов компонент системы. Звезла, теряющая вещество, может выйти из состояния теплового равновесия. В этом случае се светимость заметно понижается. После окончания обмена веществом такая звезла имест пониженную массу для своей светимости. Характеристики второй звезды определяются массой и химическим составом аккренированного вещества. Вследствие увеличения массы аккренирующей звезды увеличивается масса се конвективного ядра и возрастает содержание водорода в нем. Происходит "омоложение" звезды. На заключительном этапе обмена компоненты обмениваются веществом, содержащим продукты ядерного горения. Содержание гелия в таком веществе повышено. Аккреция вещества с повышенным содержанием гелия также оказывает влияние на характеристики звезды, в частности на ее размеры. Поэтому двойные системы, испытывающие или испытавшие влияние процессов обмена веществом, должны быть исключены из рассмотрения.

Выборка двойных систем с компонентами на сталии ГП, не подверженных процессу обмена веществом, взята из работы [27]. Эти двойные системы относятся к изученным наилучшим образом: для них получены кривые блеска и кривые лучевых скоростей для обеих компонент. Для исследования возможного частичного перемешивания вещества лучистой оболочки и конвективного ядра огобраны компоненты из того же диапазона масс $7M_{\odot} \le M \le 23M_{\odot}$, в котором у одиночных звезд ГП наблюдается увеличение поверхностного содержания гелия со временем эволюции. Более массивные звезды, для которых такое увеличение тоже установлено, не рассматриваются, так как характерный для них сильный звездный встер также может влиять на соотношение массасветимость. Абсолютные элементы отобранных компонент: M_i - масса, R_i - ралиус, L_i - светимость и погрешности их определения даны в солнечных единицах (табл.1); *i* - номер компоненты (принят равным слинице для более массивной компоненты системы). Ссылки на оригинальные работы с определениями абсолютных элементов и их погрешностей даны в [27].

Болышинство исследуемых компонент входят в состав двойных систем с относительно неболышими периодами (рис.2). Наполнение полости Роша в этих системах произойдет до окончания эволюции компоненты на стадии горения водорода. Компоненты этих систем в настоящее время могут находиться только на ранних или средних этапах эволюции на ГП. Поэтому средний относительный возраст имеющейся выборки компонент t/t_{MS} , скорее всего, не превышает половины времени эволюции на ГП. Здесь: t - возраст

компоненты, t_{м5} - продолжительность стадии ядерного горения водорода в пентре компоненты; усреднение производится по всем звездам выборки.

Рис.2. Период лвойной системы в зависимости от массы первой компоненты (заполненные кружки) или спутника (открытые кружки), если масса первой компоненты находится вне исследуемого диапазона масс. Не показана система 31Суд с периодом ~3784⁴. Показаны зависимости периода двойной системы с отношением масс, равным единице, от массы компоненты, когда наполнение полости Роша происходит на начальной ГП (пунктир), а также в конне эволюнии на ГП, когда радиус звезлы имеет наибольшее значение, в случае $\alpha = 0.05$ и $\Delta(N_{He}/N_{H}) = 40\%$ (штрих) и в случаях без частичного перемешивания вещества лучистой оболочки и конвективного ядра при $\alpha = 0.05$ (сплошная линия) и $\alpha = 0.15$ (штрих-пунктир).

Поверхностные скорости осевого вращения компонент в экваториальной пноскости заключены в пределы ог 20 до 180 км/с (рис.3). Вращение компонент систем V359 Cen, CW Cep, NY Ccp и менее массивных компонент систем 31Cyg, у Ori A не синхронно с орбитальным. Данные о скоростях вращения этих компонент взяты из работ [28-32]. Средняя скорость вращения звезд выборки составляет ~118 км/с. Средняя скорость вращения одиночных звезд из выборки, для которой найдено увеличение поверхностного содержания гелия со временем в процессе эволюции звезды на ГП, составляет ~174 км/с на ранних стадиях горения водорода в ядре и ~134 км/с на поздних [2,33]. Таким образом, имеющаяся выборка компонент двойных систем характеризуется более медленным вращением по сравнению с одиночными звездами тех же масс, для которых найдено увеличение поверхностного содержания со временем.

Выборочный коэффициент корреляции $\log R$ по $\log M$ и $\log L$ по $\log M$ в рассматриваемом диапазоне масс равен, соответственно, 0.80 и 0.97. Линейные регрессии средних значений $\log R$ и $\log L$ по $\log M$ определены методом наименьших квадратов [34]:

$$\log R = (0.08 \pm 0.10) + (0.64 \pm 0.09) \log M \tag{2}$$

$$\log L = (0.94 \pm 0.18) + (3.01 \pm 0.16) \log M .$$
(3)

Стандартная ошибка оценки среднего значения $\log R$ составляет 0.07, для $\log L = 0.11$.

Рис.3. Распределение компонент двойных систем по экваториальной скорости врашения.

Соотношения масса-ралиус и масса-светимость исслеловались неоднократно. Основные усилия были направлены на привлечение многочисленных качественных данных об абсолютных элементах компонент двойных систем в широком диапазоне звездных масс [27,35-37]. В работе [38] на основе анализа среднего темпа ядерного энерговыделения на ГП по данным об абсолютных элементах 268 компонент двойных систем весь диапазон звездных масс разделен на четыре полдиапазона. Показано, что линейная анпроксимания logL по logM в каждом полдиапазоне лучше описывает данные, чем линейная, квадратичная или кубическая анпроксимации во всем диапазоне звездных масс. Свободный член и коэффициент регрессии в (3) совпадают с полученными в [38] в поддиапазоне $M \ge 7M_{\odot}$ с учетом погрешности их определения.

Несколько меньший наклон соотношения масса-светимость (в логарифмических елипипах) получен для В-звезд раннего спектрального подкласса и O-звезд в [39]. В отличие от данной работы и [38] в работе [39] собраны все известные данные об абсолютных элементах компонент с массами $M \ge 10 M_{\odot}$, в том числе данные о компонентах, испытавших потерю/аккрецию вешества в процессе обмена веществом в двойной системе. Некоторые компоненты из выборки [39]. вероятно, уже завершили эволюцию на ГП. Так как в данной работе исследуется возможность частичного перемешивания вещества лучистых оболочек и конвективных ядер В-звезд ГП ранних спектральных полклассов, в дальнейшем используются соотношения (2) и (3), полученные для этих звезд. Как уже упоминалось, в исследуемой выборке компонент двойных систем, по-вилимому, отсутствуют или имеется дефицит звезд, находящихся на поздних этапах сталии горения водорода в центре. Поэтому наблюдаемое соотношение масса-светимость (3) необходимо сравнивать с теоретическим соотношением, построенным для среднего относительного возраста выборки.

4. Средний возраст выборки компонент с известными абсолютными элементами. В процессе эволюции звезды на стадии ядерного горения водорода происходит увеличение ее радиуса и светимости, а также понижение эффективной температуры. Звездный ветер у В-звезд ГП слабый [23,24], поэтому уменьшение массы звезды на этой стадии эволюции незначительное [3]. Массы и радиусы компонент двойных систем определяются непосредственно из наблюдаемых кривых блеска и лучевых скоростей. Для определения эффективных температур и светимостей компонент требуется, кроме знания радиусов, еще и дополнительная информация [40], что приводит, в частности, к увеличению погрешности определения этих величин. Поэтому в качестве индикатора возраста компоненты двойной системы уместно выбрать ее радиус.

Предположение одновременности происхождения компонент тесной двойной системы означает совпадение их возраста, который сстественно принять за возраст двойной системы. Погрешности определения масс и радиусов компонент вносят оннибки в определение возрастов компонент системы, причем возрасты компонент одной и той же системы могут оказаться разными. В настоящее время разработаны методы определения оптимальных возрастов двойных систем - это определенный на основе расчетов эволюции теоретический возраст, одинаковый для двух звезд с массами и радиусами, не сильно отличающимися, в единицах погрешности соответствующих величин, от масс и раднусов компонент двойной системы [41].

В десяти системах из имсющейся выборки обе компоненты попадают в исследуемый диапазон звездных масс. Еще в семи системах в указанный лиапазон попалает только одна компонента. Поэтому в данной работе возрасты компонент определяются индивидуально, а условие совпадения возрастов компонент одной системы используется для оценки качества полученных значений возрастов.

Схема определения относительного возраста компоненты двойной системы с массой M и радиусом R следующая. На основе рассчитанной системы эволюционных треков строится поверхность $r(m, t/t_{MS})$, где r - радиус звезды с массой m на момент времени t. Пересечение этой поверхности плоскостью r=R позволяет получить зависимость $m(t/t_{MS})$ для моделей звезд с радиусом R. Эта зависимость далее используется для определения относительного

возраста t/t_{MS} звезды с массой *M*. Средний относительный возраст выборки определяется как среднее арифметическое относительных возрастов всех компонент.

Оценка абсолютного возраста компоненты и оценка погрепности определения возраста, вызванная погрепностями в определении масс и радиусов компонент двойной системы, осуществляются следующим образом. Результаты расчетов эволюции звезд используются для определения зависимости $t_{MS}(m)$. Время жизни звезды с массой M на стадии горения водорода может быть

Таблица 1

	_						
Звезла	ī	$M_1 \pm dM_1$	$R_i \pm dR_i$	$\log L_i \pm d \log L_i$			
					0%	40%	80%
SZCam	1	18.500±0.700	8.500±0.300	4.730±0.040	5.04±0.31	6.04±0.37	6.92±0.41
	2	16.100±0.600	7.900±0.300	4.520±0.050	5.99±0.40	7.25±0.48	8.36 ± 0.53
DW Car	1	11.340±0.120	4.558+0.045	4.055±0.063	1.06±0.37	1.29±0.47	1.53±0.57
	2	10.630±0.140	4.297±0.055	3.915±0.067	0.79 <u>±</u> 0.11	0.94±0.14	1.1±0.17
EM Car	1	22.890±0.320	9.350±0.170	5.000±0.100	3.77±0.13	4.45±0.15	5.05±0.16
	2	21.420±0.330	8.340±0.160	4.900 ±0.100	3.42+0.17	4.06+0.20	4.65±0.22
QX Car	1	9.267±0.122	4.289±0.091	3.720±0.040	4.44±1.02	5.67±1.31	6.86±1.58
	2	8.480±0.122	4.051±0.091	3.580±0.040	4.65±1.27	5.97±1.64	7.25±1.99
V649 Cas	1	12.900±1.290	6.100±0.610		5.80±1.92	7.23+2.39	8.52±2.77
V346 Cen	1	11.800 ± 1.400	8.200±0.300	4.481	12.38±0.90	15.54+1.15	18.23±1.46
	2	8.400±0.800	4.200±0.200	3.727	7.08±2.82	9.12±3.64	11.04 ± 4.40
АН Сер	1	15.800±1.580	6.300±0.630	4.460±0.030	3.03±1.69	3.69±2.06	4.29±2.39
	2	13.700±1.370	5.800±0.580	4.370±0.030	3.71±2.11	4.59±2.62	5.41±3.07
CW Cep	1	11.820 ± 0.140	5.480±0.120	4.240±0.060	5.53±0.53	6.97±0.67	8.31±0.78
	2	11.090±0.140	4.990±0.120	4.120±0.070	4.70±0.75	5.96±0.95	7.14±1.13
NY Cep	1	12.900±1.000	6.840±0.700	4.468	7.78±1.57	9.69±1.94	11.35 ± 2.20
	2	9.400±1.000	5.680±0.500	3.916	13.76±2.40	17.61±3.04	20.93±3.52
31 Cyg	2	7.100±0.800	5.200±0.500	3.512	26.39±3.93	34.55±5.17	41.54±6.07
V380 Cyg	2	6.950±0.250	3.740±0.070	3.350±0.040	9.89±1.66	13.02±2.20	15.96±2.70
V478 Cyg	1	16.600±0.900	7.430±0.120	4.630±0.015	4.97±0.37	6.01±0.45	6.95±0.51
	2	16.300 ± 0.900	7.430±0.120	4.630±0.015	5.19±0.38	6.29±0.46	7.27±0.52
V1765 Cyg	2	12.200±1.220	5.900±0.590		6.15±2.09	7.72+2.61	9.13±3.04
η Ол А	1	11.000 ± 0.500	6.300±0.600	4.251±0.146	10.48±1.90	13.25+2.37	15.64±2.71
	2	10.600 ± 0.700	5.200 ± 0.400	4.092	7.06±2.29	8.97±2.91	10.71±3.42
VV Ori	1	10.900 ± 0.100	4.980±0.020	4.025±0.066	5.16±0.17	6.55±0.22	7.86±0.26
V431 Pup	2	9.400±0.940	6.500±0.650		16.99±2.15	21.72±2.75	25.71±3.18
V3903 Sgr	2	19.010±0.440	6.125±0.060	4.658±0.032	0.64±0.24	0.76±0.29	0.88±0.33

АБСОЛЮТНЫЕ ЭЛЕМЕНТЫ (солн. ед.) И ВОЗРАСТЫ (млн лет) КОМПОНЕНТ ДВОЙНЫХ СИСТЕМ

244

определено по этой зависимости. Зная t/t_{MS} и t_{MS} для звезды с массой M и ралиусом R_i найдем t. Для каждой компоненты двойной системы делается четыре определения возраста: при $M = M_1 \pm dM_i$ и $R = R_i \pm dR_i$. Полусумма наибольшего и наименьшего из четырех значений принимается в качестве опенки возраста компоненты, а полуразность - в качестве оценки погрешности определения возраста.

Относительные и абсолютные возрасты компонент получаются разными в зависимости от процессов перемешивания, учтенных при построении звездных моделей, и интенсивности этих процессов. В шести системах абсолютные возрасты компонент совпадают во всех рассмотренных вариантах эволюнии звезд на ГП. В четырех системах разность возрастов компонент превышает сумму погрешностей их определения независимо от варианта эволюнии. В табл.1 приведены возрасты компонент при α = 0.05 и различной интенсивности частичного переменивания вещества лучистой оболочки и конвективного ядра, когда увеличение поверхностного отношения числа ядер гелия и водорода $\Delta(N_{He}/N_{H})$ составляет 0%, 40% и 80%. Погрешности в определении абсолютных элементов компонент системы отражают погрешности в исходных данных наблюдений. Однако абсолютные элементы могут содержать значительно большие неопределенности, связанные с используемой моделью двойной системы. Погрешности возрастов оценены в данной работе без учета этой неопределенности. В целом, согласие возрастов компонент, принадлежащих одной системе, удовлетворительное (рис.4).

Как и ожидалось, в исследуемой выборке компонент двойных систем

Рис.4. Возрасты первой *t*, и второй *t*, компонент двойной системы. Двойные системы показаны в случае совпадения возрастов компонент в пределах погрешности их определения (заполненные кружки) и в случае, когда возрасты не совпадают (открытые кружки). Погрешности определения возрастов компонент во втором случае показаны, если они превосходят размер значка для изображения двойной системы. Показана также линия равных возрастов (пунктир).

практически отсутствуют звезды, находящиеся на поздних этапах горения водорода в конвективном ядре (рис.5). Средний относительный возраст имеющейся выборки компонент двойных систем в случае $\alpha = 0.05$ составляет 0.40, 0.43 и 0.47 при $\Delta(N_{He}/N_{H})$ равном, соответственно, 0%, 40% и 80%.

Рис.5. Распределение компонент двойных систем по относительным возрастам в случаях эволюции а) без частичного перемешивания вещества лучистой оболочки и конвективного ядра, и когда увеличение поверхностного отношения числа ядер гелия и водорода к концу эволюции на ГП $\Delta(N_{ue}/N_{u})$ составляет b) 40%, c) 80%. Во всех случаях $\alpha = 0.05$.

Теоретическое соотношение масса-раднус определено для среднего относительного возраста выборки. Для этого в выбранном варианте звездной эволюции для каждого значения массы звезды из системы эволюционных треков определяется среднее значение радиуса $\log R$ для среднего относительного возраста выборки:

$$\overline{\log R} = \sum_{j=1}^{10} w_j \overline{\log R_j},$$

где log R, - среднее значение в интервале

$$0.1(j-1) \le t/t_{MS} \le 0.1 j, \tag{4}$$

полученное по результатам расчета эволюции звезды, w - доля компонент выборки, понадающих в интервал (4). Потеря массы на стадии горения

246

водорода в рассматриваемом диапазоне масс не велика, и может не учитываться при построении соотношения масса-радиус.

Вследствие примененной метолики (наблюдаемые значения радиуса и рассчитанная система эволюниопных треков используются для определения относительного возраста, средний относительный возраст выборки и та же система эволюнионных треков используются для определения среднего радиуса) теоретические соотношения масса-радиус, определенные для разных вариантов эволюнии, удовлетворяют статистической оценке среднего значения радиуса (2) и практически совпалают друг с другом (рис.6). Это обстоятельство и совпадение возрастов компонент, принадлежащих одной системе, свидетельстнует о надежности определения среднего относительного возраста имеющейся выборки компонент двойных систем.

Рис.6. Соотношение масса-радиус. Показаны массивные компоненты (заполненные кружки) и спутники (открытые кружки) лвойных систем. Погрешности определения массы и раднуса показаны, если они превосходят размер значка для изображения компоненты. Показаны отклопения вверх и вниз на величину стандартной ошибки от статистической оценки зависимости среднего значения ралиуса звезды от массы (2) (пунктир), а также теоретические соотношения масса-радиус для вариантов эволюнии без частичного переменивания (сплошная линия), и когда увеличение поверхностного отношения числа ядер гелия и водорода к концу эволюнии на ГП $\Delta(N_{He}/N_H)$ составляет 40% (штрих) и 80% (птрих-пунктир). Во всех вариантах $\alpha = 0.05$.

5. Соотношение масса-светимость. Теоретическое соотношение масса-светимость опрелеляется для среднего относительного возраста выборки. Для каждого варианта звездной эволюции и для каждого значения массы звезды из системы эволюционных треков вычисляется среднее значение светимости log *L*:

$$\overline{\log L} = \sum_{j=1}^{10} w_j \overline{\log L_j} ,$$

где $\log L_{f}$ - среднее значение в лиапазоне (4), полученное по результатам расчета эволюции звезды. Теоретическое соотношение масса-светимость зависит от интенсивности частичного перемешивания вещества лучистой оболочки и конвективного ядра (рис.7).

Рис.7. Соотношение масса-светимость. Показаны массивные компоненты (заполненные кружки) и спутники (открытые кружки) двойных систем. Погрешности определения массы и светимости показаны, если они превосходят размер значка для изображения компоненты. Представлены также компоненты, для которых погрешность определения светимости не известна (треугольники). Показаны отклонения вверх и вниз на величину стандартной ошибки от статистической опенки зависимости среднего значения светимости и везды от массы (3) (пунктир), а также теорегические соогношения масса-светимость для вариантов эволюции без частичного переменцивания (сплощная линия), и когда увеличение поверхностного отношения числа ядер телия и водорода к концу эволюции на ГШ $\Lambda(N_{ue}/N_{H})$ составляет 40% (иприх) и 80% (штрих-пунктир). Во всех вариантах $\alpha = 0.05$. Для сравнения показаны контактные компоненты полуразделенных систем, в которых процесс перемены ролей произонел (ромбики).

Оценим влияние сделанных модельных предположений на полученные теоретические соотношения масса-светимость. Наибольшее отличие светимости модели звезды с однородным распределением водорода в оболочке от случая, когда распределение водорода получено в результате решения гидродинамических уравнений переноса во вращающейся звезде [4], достигается к концу эволюнии на ГП. При одинаковом увеличении массы синтезированного гелия в двух этих подходах наибольшее отличие светимости составляет $\Delta \log L \approx 0.01$. При среднем возрасте выборки компонент $t/t_{MS} = 0.43$, это отличие в 2 раза меньше (рис.8). Недооценка радиуса звезды в модельных расчетах может привести к завышению среднего относительного возраста выборки компонент и, следовательно, к завышению светимости в теоретическом соотношении масса-светимость. При среднем возрасте выборки компонент $t/t_{MS} = 0.43$, недооценка радиуса звезды в модельных расчетах не превышает.

ЧАСТИЧНОЕ ПЕРЕМЕШИВАНИЕ ВЕЩЕСТВА

3% [3,4]. Вычисляя теорегическое соотношение масса-светимость для выборки компонент с искусственно заниженными на 3% радиусами получим, что пелооненка радиуса модели звезлы не может приводить к завышению светимости в этом соотношении более, чем на $\Delta \log L \approx 0.008$. Таким образом, принятые молельные препноложения могут завысить светимость в соотношении масса-светимость не более, чем на $\Delta \log L \approx 0.013$, что составляет ~10% от величины стандартной ошибки статистической оценки (3). Следовательно, лополнительное увеличение светимости звезды, обусловленное увеличением массы волорола, преобразованного в гелий ко времени достижения возраста наблюдаемой выборки компонент, практически не зависит от модельных прелноложений.

Рис.8. Дополнительное увеличение светимости звезды с массой 8 M_{\odot} в зависимости от массы водорода, дополнительно преобразованного в гелий, ко времени окончания эволюции на ПП, согласно модельным расчетам (заполненные кружки, соединенные пунктиром) и работе [4] (открытые кружки, соединенные сплошной линией) и ко времени достижения среднего возраста $t/t_{MS} = 0.43$, согласно модельным расчетам (заполненные треугольники) и работе [4] (открытые треугольники).

Отклонение теоретических соотношений масса-светимость, полученных при различных значениях интенсивности частичного перемешивания, от статистической оценки среднего значения светимости в зависимости от массы (3) не превышает стандартной оннобки (рис.7). Имсющиеся данные об абсолютных элементах компонент двойных систем в исследуемом дианазоне масс допускают возможность протекания эволюции компонент как с частичным перемешиванием такой же интенсивности, как требуется для объяснения наблюдаемого увеличения поверхностного содержания гелия в одиночных звездах, так и без такого перемешивания. Теоретическое соотношение массасветимость для варианта эволюции, когда частичное перемешивание не учиты-

вается, смещено в сторону низких светимостей по сравнению со статистической оценкой (3). Возможно, анализ распределения разностей наблюдаемой и теоретической светимостей, рассчитанных для каждой компоненты выборки, позволит сделать более строгие заключения. В любом случае определение абсолютных элементов компонент для значительно большего числа двойных систем позволит получить более надежную статистическую оценку среднего значения светимости в зависимости от массы в исследуемом диапазоне масс.

Пронесс перемены ролей в лвойных системах вследствие наполнения полости Роша на ГП меняет характеристики звезды, теряющей вещество. Такая звезда приобретает "избыток" светимости для своей массы. Абсолютные элементы некоторых таких звезд належно определены в лвойных системах LY Aur [42], V337 Aql [43], XZ Cep [44], V Pup [45]. Пронесс перемены ролей оказывает более сильное воздействие на соотношение масса-светимость теряющих вещество компонент, чем частичное перемешивание вещества лучистой оболочки и конвективного ядра (рис.7), если интенсивность этого перемешивания находится в пределах, необходимых для объяснения наблюдаемого увеличения содержания гелия в В-звездах ГП ранних спектральных подклассов.

Частичное перемешивание вешества наиболее сильно меняет светимость одиночных звезд на последних этанах ядерного горения водорода в центре [3,4]. Отсутствие компонент, находящихся на этих этанах эволющии, в имеющейся выборке затрудняет исследование частичного перемешивания в компонентах и возможных различий в протекании частичного перемешивания у одиночных звезд и компонент двойных систем.

Дополнительное перемешивание на границе конвективного ядра слабо влияет на теоретическое соотношение масса-светимость, полученного для среднего возраста выборки. Светимость звезды с заданной массой и радиусом возрастает ненамного с увеличением нараметра а (рис.1b). При вычиелении теорстического соотношения масса-светимость лля среднего относительного возраста выборки используются те части эволюционного трека, которые проходят возле наблюдаемого положения звезд. Поэтому вследствие небольшого смещения трска к большей светимости в данном месте лиаграммы Геришпрунга-Рессела с увеличением а, изменение теоретического соотношения масса-светимость с узеличением а также не велико. Метод сравнения наблюдаемой и теоретически рассчитанной зависимостей масса-светимость не может быть применен для изучения переменнивания вещества на границе конвективного ядра, в частности лля определения величины α. Аналогичный вывод был получен ранес при анализе эффективных температур В-компонент двойных систем позднего спектрального подкласса [46]. Сопоставление наблюдаемых и определенных по эволюционным трекам эффективных температур компонент не чувствительно к параметру о.

Попытки объяснить светимость компонент некоторых двойных систем только дополнительным перемешиванием ведут к неоправданно большим значениям $\alpha \approx 0.3 - 0.6$ [47-49]. Параметр α ограничен сверху наблюдаемой нириной ГП [50]. Два механизма: частичное перемешивание оболочки и ядра и дополнительное перемешивание в центре звезды способствуют увеличению светимости звезды, но по-разному влияют на се размер. Первый механизм сокранает увеличение размера звезды на ГП, второй - увеличивает. Сочетание этих двух механизмов может быть более гибким инструментом для объяснения светимости компонент двойных систем. Эти механизмы могут быть важными также для решения проблемы повышенной светимости оптических компонент репттеновских двойных [51].

6. Заключение. Имеющиеся данные о массах и светимостях компонент люйных систем, находящихся на стадии ГП, допускают возможность частичного перемешивания вещества лучистой оболочки и конвективного ядра аналогичного перемешиванию в одиночных звездах тех же масс. Следовательно, дополнительное увеличение светимости, сопутствующее частичному перемешиванию в одиночных В-звездах, пеобходимому для объяснения наблюдаемого увеличения поверхностного содержания гелия, не приводит к противоречиям с належными данными о массах и светимостях звезд.

Интенсивность частичного перемешивания в одиночных звездах опрелеляется моментом импульса. Скорости осевого вращения компонент двойных систем в среднем меньше, чем у олиночных звезд. Приливное взаимодействие компонент активизирует процессы переноса, инициированные осевым вращением [18]. Циркуляция вещества, вызванная приливным возмущением [12], также может вносить дополнительный вклад в частичное перемешивание вещества в компонентах двойных систем по сравнению с одиночными звездами.

Теоретическое соотношение масса-светимость, построенное для среднего относительного возраста наблюдаемой выборки компонент двойных систем, зависит от интенсивности частичного перемешивания вещества. Чем больше интенсивность, тем больше светимость при том же значении массы. Однако отклонение теоретических соотношений от статистической оценки среднего значения светимости в зависимости от массы для наблюдаемой выборки компонент не превышает стандартной ошибки. Чтобы получить более жесткие ограничения на величину частичного перемешивания вещества лучистой оболочки и конвективного ядра, необходимо определить абсолютные элементы компонент для большего числа двойных систем, в том числе для систем с относительно большими периодами, допускающими протекание всех этанов ядерного горения водорода, включая заключительные, до наступления фазы обмена веществом между компонентами.

Часть работ проведена при финансовой поддержке государства в лине Министерства образования и науки Российской Федерании (базовая часть гос. залания, РК № АААА-А17-117030310283-7), а также при финансовой поддержке постановления №211 Правительства Российской Федерании, контракт №02.А03.21.0006.

Уральский федеральный университет им. Ельнина, Екатеринбург, Россия, e-mail: evgeny.staritsin@urfu.ru

IS THERE PARTIAL MIXING IN THE BINARY SYSTEM COMPONENTS?

E.I.STARITSIN

The absolute elements of binary system components which are main sequence early type B-stars are analysed on the base of stellar models taking into account partial mixing of material in the radiative envelope and convective core. Partial mixing enlarges the luminosity increase of a star during its evolution on main sequence and diminishes the increase of its radius. The data on masses, radiuses and luminosities of components we have got by now confirm the presence of partial mixing in the bowels of components. The mechanism of partial mixing may be an addition to the mechanism of convective core overshooting in the decision of problem of the enlarge luminosity of optical components of X-ray binaries. The mechanism of partial mixing needs the further investigation. The data on absolute elements we have got by now are not enough to put a restriction on the power of partial mixing and to find out a difference of partial mixing in the binary components and the single stars.

Key words: stars - structure and evolution: binaries

ЛИТЕРАТУРА

- 1. I.S.Lyubimkov, S.I.Rostopchin, D.Lambert, Mon. Not. Roy. Astron. Soc., 351, 745, 2004.
- 2. W Huang, D.R.Gies, Astrophys. J., 648, 591, 2006.
- 3. Е.И.Стариции, Астрон. ж., 91. 914. 2014.
- 4. Е.И.Стариции, Астрон. ж., 94, 447, 2017.
- 5. G.Michaud, J.Dupuis, G.Fontaine et al., Astrophys. J., 322, 302, 1987.
- 6. K. Hunger, D. Groote, Astron. Astrophys., 351, 554, 1999.
- 7. J.Krticka, J.Kubat, D.Groote, Astron. Astrophys., 460. 145, 2006.
- 8. Л.Любимков, Т.Рачковская, С.Растопчин и др., Астрон. ж., 72, 212, 1995.
- 9. A. Tarasov, P. Harmanec, J. Horn et al., Astron. Astrophys. Suppl., 110, 59, 1995.
- 10. Л.Любимков, Т Рачковская, С.Растопчин и др., Астрон. ж., 73, 55, 1996.
- 11. Л.Любимков, Т.Рачковская, С.Растопчин и др., Астрон. ж., 74, 710, 1997.
- 12. J.L. Tassoul, M. Tassoul, Astrophys. J., 261, 265, 1982.
- 13. J.L. Tassoul, Astrophys. J., 322, 856, 1987.
- 14. J.L. Tassoul, M. Tassoul, Astrophys. J., 359, 155, 1990.
- 15. J.-P.Zahn, Astron. Astrophys., 265, 115, 1992.
- 16. A.Maeder, J.-P.Zahn, Astron. Astrophys., 334, 1000, 1998.
- 17. S.E. de Mink, M.Cantiello, N.Langer et al., Astron. Astrophys., 497, 243, 2009.
- 18. II.F.Song, A.Maeder, G.Meynet et al., Astron. Astrophys., 556, 100, 2013.
- 19. S. Talon, J.-P.Zahn, Astron. Astrophys., 317, 749, 1997.
- 20. B. Paczynski, Acta Astron., 20, 47, 1970.
- 21. C.A. Iglesias, F.J. Rogers, Astrophys. J., 464, 943, 1996.
- 22. D.R.Alexander, J.Ferguson, Astrophys. J., 437, 879, 1994.
- 23. C. de Jager, H.Nieuwenhuijzen, K.A. van der Hucht, Astron. Astrophys. Suppl., 72, 259, 1988.
- 24. J.S. Vink, A. de Koter, H.J.Lamers, Astron. Astrophys., 362, 295, 2000.
- 25. G.Schaller, D.Schaerer, G.Meynet et al., Astron. Astrophys. Suppl., 96, 269, 1992.
- 26. G.Mcynet, J.-C.Mermilliod, A.Maeder, Astron. Astrophys. Suppl., 98, 477, 1993.
- 27. O.Yu.Malkov, Mon. Not. Roy. Astron. Soc., 382, 1073, 2007.
- 28. A. Gimenez, J.V. Clausen, J.Andersen, Astron. Astrophys., 160, 310, 1986.
- 29. K.Pan, Astron. Astrophys., 321, 202, 1997.
- 30. S.Albrecht, J.N.Winn, J.A.Carter et al., Astrophys. J., 726, 68, 2011.
- -31. J.A.Eaton, Astron. J., 106, 2081, 1993.
- 32. K. De Mey, C.Aerts, C.Waelkens et al., Astron. Astrophys., 310, 164, 1996.
- 33. W. Huang, D. R. Gies, Astrophys. J., 648, 580, 2006.
- 34. А.Афифи, С.Эйзен, Статистический анализ. Полход с использованием ЭВМ. М., Мир, 1982.
- 35. O. Demircan, G. Kahraman, Astrophys. Space Sci., 181, 313, 1991.
- 36. С.Ю.Горда, М.А.Свечников. Астрон. ж., 75, 896, 1998.
- 37. С.Ю.Горда, М.А.Свечников. Астрон. ж., 76. 598, 1999.
- 38. Z.Eker, F.Soydugan, E.Soydugan et al., Astron. J., 149, 131, 2015.

- 39. Э.Витриченко, Д.К.Надежин, Т.Л.Разинкова, Письма в Астрон. ж., 33, 287, 2007.
- 40. Л.Я. Мартынов, Курс общей астрофизики, М., Наука, 1979.
- 41. Д.А.Ковалева, Астрон. ж., 78, 1104, 2001.
- 42. P.Mayer, H.Drechsel, P.Harmanec et al., Astron. Astrophys., 559, 22, 2013.
- 43. M.Tüysüz, F.Soydugan, S.Bilir et al., New Astron., 28, 44, 2014.
- 44. T.J.Harries, R.W.Hilditch, G.Hill, Mon. Not. Roy. Astron. Soc., 285, 277, 1997.
- 45. D.Stickland, C.Lloyd, I.Pachoulakis et al., The Observatory, 118, 356, 1998.
- 46. Д.А.Ковалева, Астрон. ж., 79, 259, 2002.
- 47. A. Tkachenko, P. Degroote, C. Aerts et al., Mon. Not. Roy. Astron. Soc., 438, 3093, 2014.
- 48. K.Pavlovski, E.Tamajo, P.Koubsky et al., Mon. Not. Roy. Astron. Soc., 400. 791, 2009.
- 49. E.F. Guinan, I.Ribas, E.L.Fitzpatrick et al., Astrophys. J., 544, 409, 2000.
- 50. Е.И.Попова, А.В.Тутуков, Астрон. ж., 67, 428, 1990.
- 51. В.С.Петров, А.В.Тутуков, А.М.Черепашук, Астрон. ж., 84, 165, 2007.

АСТРОФИЗИКА

TOM 61

МАЙ, 2018

ВЫПУСК 2

ВЛИЯНИЕ ИЗЛУЧЕНИЯ ФОТОСФЕРЫ НА ВЫШЕЛЕЖАЩИЕ СЛОИ АТМОСФЕРЫ ЗВЕЗДЫ

О.М.БЕЛОВА¹, К.В.БЫЧКОВ² Поступила 22 ноября 2017 Принята к печати 7 марта 2018

На примере атома водорода исследовано влияние тенлового излучения фотосферы на расположенные выше слои. Показано, что при температуре излучения выше 5000 К скорости вынужленных процессов при своболно-связанных, связанно-связанных и свободно-свободных переходах сравнимы с соответствующими скоростями спонтанных процессов. Существенную ронь играют также фотовозбуждение и фотонопизация из возбужленных состояний.

Ключевые слова: вынужденные процессы: фотоионизация: звездные атмосферы

1. Введение. В предлагаемой работе мы опениваем влияние излучения фотосферы на пропессы ионизации, рекомбинации, возбужления вышележащих слоев газа и их тормозного излучения.

Во-первых, такими слоями могут быть хромосферы Солнца и звезд спектральных классов G-M в спокойных условиях или во время вспышки. Температура спокойной фотосферы *T*, лежит в диацазоне от 3000 K до 7000 K, а в случае вспышки в ней может образоваться горячее пятно с температурой (10000 + 20000 K). Вгоwп [1], Костюк и Пикельнер [2] при исследовании солнечных вспышек, пользуясь модифицированной формулой Саха, учли фотононизацию водорода со вгорого уровня излучением фотосферы в бальмеровском континууме. Гринин и Катышева [3,4] впервые показали важность учета ионизации фотосферным излучением из возбужденных состояний водорода в околозвездных оболочках. Температуру фотосферы авторы приняли равной 5000 K, типичной для звезд типа T Tauri. Кацова и др. [5] рассмотрели рассеяние излучения в частотах линии Ly α . Более поздние газодинамические NLTE-расчеты [6] учитывают процессы ионизации, возбуждения, деактивации и рекомбинании в 6-уровневом атоме водорода с учетом рассеяния в линиях.

Во-вторых, в пульсирующих звездах - цефеидах, долгопериодических переменных типа Миры Кита и полуправильных переменных - над фотосферой может находиться вызванная пульсациями ударная волна. Расчеты высвечивания газа за фронтом ударной волны для условий в холодных звездах (*T* = 3000 K) выполнены в работах [7,8] с учетом четырех уровней, а также

в [9] в модели 25-уровневой системы. Результаты работы [8] использовали Gillet&Fokin [10] для случая звезд типа RR Lyrae (T_{\star} = 7000 K). Во всех этих статьях фотосферное излучение не учитывалось.

Ниже мы изложим результаты расчетов, позволяющих выяснить, в каких случаях влиянием фотосферы действительно можно пренебречь, а при каких оно оказывается существенным. Излучение фотосферы рассматриваем в рамках модели черного тела. Отсутствие излучения, илущего сверху вниз, учитываем фактором дилющии W = 0.5. Полагаем, что налфотосферный газ состоит из чистого водорода. В разделах 2, 3 и 4 оценен вклад выпужденных процессов в коэффициент фоторекомбинации, в моншость рекомбинационных и тормозных потерь. В 5-м разделе рассмотрены роль фотоионизации из возбужденных состояний и фотовозбуждение субординатных переходов, в 6-м - бальмеровский декремент.

2. Коэффициент вынужденной фоторекомбинации. Ссчения вынужденной s⁽ⁱ⁾ и спонтанной s⁽ⁱ⁾ фоторекомбинации связаны известным соотношением

$$s^{(l)} = s^{(x)} \cdot n_{m}$$
. (1)

Здесь *n*_∞ - число заполнения фотонов, в случае дилютированного поля теплового излучения равное

$$n_{\omega} = \frac{W}{e^{hv/k_{g}T_{e}} - 1},$$
(2)

где *Т*. - температура излучения. В случае агома водорода сечение спонтанной фоторекомбинации на дискретный уровень с главным квантовым числом *k* выражается через сечение фотоиопизации [11]:

$$s_k^{(s)} = \sigma_k \frac{\alpha^2}{2} k^2 \left(\frac{h\nu}{Ry}\right)^2 \frac{Ry}{E},$$
(3)

которос в приближении Крамерса имеет вид [11]:

$$\sigma_k = \frac{64}{3\sqrt{3}} \alpha \pi a_0^2 \frac{1}{k^5} \left(\frac{\mathrm{Ry}}{h\nu}\right)^3. \tag{4}$$

Коэффициент вынужденной фоторскомбинации $r_k^{(t)}$ получается суммированием по всем возможным значениям скорости свободного электрона *и* произведения $s_k^{(t)}u$ с учетом распределения электронов по энергии *E*:

$$r_k^{(r)} = \int_0^\infty s_k^{(r)} u \cdot f(E) dE.$$
 (5)

Для функции распределения пользуемся формулой Максвелла:

$$f(E) = \frac{2}{\sqrt{\pi}} (k_B T_e)^{-3/2} \sqrt{E} \cdot e^{-2/k_B T_e} .$$
 (6)

Полставляя в (5) формулы (1)-(4) и (6), получаем:

$$r_{k}^{(1)} = \int_{0}^{\pi} S_{k}^{(s)} n_{\omega} u f(E) dE = \frac{64}{3\sqrt{3\pi}} \frac{W}{k^{3}} \alpha^{4} \pi a_{0}^{2} c \cdot \beta_{k}^{3/2} e^{\beta_{k}} \cdot J_{1}(\rho, b_{k}).$$
(7)

Здесь введсны обозначения:

$$\beta_{k} = \frac{1}{k^{2}} \frac{Ry}{k_{B}T_{e}}, \quad b_{k} = \frac{1}{k^{2}} \frac{Ry}{k_{B}T_{e}}, \quad \rho = \frac{T_{e}}{T_{e}}, \quad J_{1}(x, y) = \int_{y}^{\infty} \frac{e^{-xt}}{t(e^{t}-1)} dt.$$

Апторитм вычисления интеграла J_1 приведен в разделе 8. Если в подынтегральной функции (7) исключить множитель n_{∞} , то мы получим известное определение коэффициента спонтанной рекомбинации

$$r_k^{(s)} = \int_0^\infty s_k^{(s)} u f(E) dE ,$$

в принятом нами приближении равный

$$r_{k}^{(s)} = \frac{64}{3\sqrt{3\pi}} \frac{W}{k^{3}} \alpha^{4} \pi a_{0}^{2} c \cdot \beta_{k}^{3/2} e^{\beta_{k}} \cdot \mathrm{Ei}_{1}(\beta_{k}),$$

где Ei₁(β_k) - интегральная показательная функция.

Рис.1. Отношение $R_{\rm c}$ коэффициентов вынужденной и спонтанной рекомбинации при грех значениях температуры излучения $T_{\rm c}$: I - 3000 K, II - 6000 K, III - 10000 K, IV - 20000 K; систошные кривые соответствуют электронной температуре 6000 K, штриховые - 10000 K; во врезке - графики I-III для уровней k = 3 + 7.

На рис.1 показано отношение $R_k = r_k^{(t)}/r_k^{(s)}$ как функция главного квантового числа *k* для различных температур излучения и газа. Верхнюю границу $K_{\rm ff}$ определяем по критерию Инглиса-Теллера [12] через электронную плотность N_e , выраженную в см⁻³:

$$K_{\rm IT} = 3.10 - 0.13 \lg (2 N_e).$$

В случае атмосфер звезл-гигантов величину N_e примем равной 10⁻² см⁻¹, ей соответствует K_{II} = 25; для карликов, соответственно N_e = 10¹⁴ см⁻³ и K_{II} = 13.

Для основного и первого возбужленного состояний (k < 3) в рассматриваемом диапазоне *T*. ≤ 20000 К вынужденная рекомбинания относительно невелика. Ее вклад становится существенным у более высоких уровней. Например, вклад 25% при *T*. = 20000 К дает рекомбинация уже на третий уровень, а при *T*. = 10000 К - на пятый. В звездах спектрального класса G, которым соответствует *T*. = 6000 К, областью заметного влияния вынужленной рекомбинации (R > 20%) является k > 5. В случае звезд класса M (T = 3000 К) вынужденная рекомбинация пренсбрежимо мала вплоть до k = 12. Как нами показано в работе [13], тройная рекомбинация начинает доминировать уже при k = 10, т.е., для звезд класса M вынужденную рекомбинацию учитывать не обязательно. Таким образом, вынужденная фоторекомбинация существенна при *T*. > 5000 К в диапазоне значений главного квантового числа 3 < k < 10.

3. Вклад в рекомбинационное излучение. Коэффициент интегрального по частоте излучения ε_k при рекомбинации на k-й уровень в расчете на одну пару "ион-электрон" получается при включении излучаемой энергии $h \vee B$ подынтегральную функцию:

$$\varepsilon_k^{(s,i)} = \int_0^\infty s_k^{(s)} u \cdot h \, v \left\{ \begin{matrix} 1 \\ n_\omega \end{matrix} \right\} f(E) \, dE \, .$$

По аналогии с предыдущим разделом приходим к формулам

$$\varepsilon_{k}^{(s)} = \frac{64}{3\sqrt{3\pi}} \alpha^{4} \pi a_{0}^{2} c \cdot \text{Ry} \cdot \frac{\sqrt{\beta_{k}}}{k^{2}},$$

$$\varepsilon_{k}^{(i)} = \frac{64}{3\sqrt{3\pi}} \alpha^{4} \pi a_{0}^{2} c \cdot \frac{\beta_{k}^{3/2}}{k^{2}} k_{B} T \cdot e^{\beta_{1}} \cdot \text{W} \cdot J_{0}(\rho, b_{k}),$$
(8)

гле

5

$$J_0(x, y) = \int_{y}^{\infty} \frac{e^{-xt}}{e^t - 1} dt.$$

Алгоритм вычисления интеграла J, приведен в Приложении.

Относительный вклал вынужденного излучения характеризуем отношением $\rho_* = \epsilon_1^{(j)} / \epsilon_*^{(j)}$, которое приведено на рис.2. Как и в прелыдущем разделе, этот

ВЛИЯНИЕ ИЗЛУЧЕНИЯ ФОТОСФЕРЫ НА ВЕРХНИЕ СЛОИ 259

вклал при фиксированной температуре возрастает с номером уровня, оставаясь пренебрежимо малым при $T_c = 3000$ K. Его величина достигает 20%, начиная с сельмого уровня для $T_c = 6000$ K. пятого - для $T_c = 10000$ K и третьего - для $T_c = 20000$ K.

Рис.2. Отношение мошности радиационных потерь при вынужленной и спонтанной рекомбинании; обозначения кривых соответствуют рис.1.

4. Тормозное излучение. Сечение спонтанного тормозного излучения с⁽¹⁾ в расчете на сдиницу линейной частоты и на пару электрон-протон в приближении Крамерса [11] равно

$$\varsigma_{\nu}^{(z)} = \frac{h}{\mathrm{Ry}} \frac{16}{3\sqrt{3}} \alpha^3 \pi a_0^2 \left(\frac{\mathrm{Ry}}{E}\right) \left(\frac{\mathrm{Ry}}{h\nu}\right).$$

Спектральная мощность излучения $\varepsilon_v^{(6)}$ получается интегрированием скорости потери энергии по всем возможным значениям энергии электрона в диапазоне E > hv:

$$\varepsilon_{v}^{(g)} = \int_{h_{v}}^{\infty} \varsigma_{v}^{(x)} u \cdot h v \cdot f(E) dE = h \frac{32}{3\sqrt{3\pi}} \alpha^{4} \pi a_{0}^{2} c \cdot \sqrt{\frac{Ry}{k_{B}T_{e}}} \cdot e^{-k v/k_{B}T_{e}} .$$

Сечение выпужденного излучения $\varsigma_{v}^{(i)}$, как и в случае рекомбинации, равно произведению $\varsigma_{v}^{(s)} n_{\omega}$. Множитель n_{ω} не зависит от энергии электронов, поэтому для спектральной мощности имеем:

$$\varepsilon_{v}^{(fi)} = \varepsilon_{v}^{(fi)} \cdot n_{\omega} = W \cdot h \frac{32}{3\sqrt{3\pi}} \alpha^{4} \pi a_{0}^{2} c \cdot \sqrt{\frac{\mathrm{Ry}}{k_{B}T_{e}}} \cdot \frac{e^{-hv/k_{B}T_{e}}}{e^{hv/k_{B}T_{e}} - 1}.$$

Полные тормозные потери получаются в результате интегрирования по всему дианазону частот. Коэффициент спонтанного излучения равен

$$\varepsilon^{(f_2)} = \frac{32}{3\sqrt{3\pi}} \alpha^4 \pi a_0^2 c \cdot \operatorname{Ry} \sqrt{\frac{k_B T_e}{\mathrm{Ry}}}.$$

В случае лиспотированного теплового поля излучения интеграл, описывающий вклад вынужденного излучения, логарифмически расходится на нижнем пределе. Поэтому введем отличную от нуля минимальную частогу v_{run}. Тогда имеет место формула, аналогичная (8):

$$\varepsilon^{(n)} = \frac{32}{3\sqrt{3\pi}} \alpha^4 \pi a_0^2 c \cdot k_B T_{\bullet} \cdot W \cdot J_0(\rho, \gamma_{\bullet}), \qquad (9)$$

гле

 $\gamma_* = \frac{h v_{\rm mm}}{k_B T_*}.$

Соответственно, полный коэффициент тормозного излучения равен

$$\varepsilon^{(f)} = \varepsilon^{(f_{0})} + \varepsilon^{(f_{0})} = \frac{32}{3\sqrt{3\pi}} \alpha^{4} \pi a_{0}^{2} c \cdot \operatorname{Ry} \sqrt{\frac{k_{B}T_{e}}{\mathrm{Ry}}} \cdot \left[1 + F_{\mathrm{ind}}\right],$$

где

$$F_{\text{ind}} = W \cdot \frac{T_*}{T_e} \cdot J_0(\rho, \gamma_*).$$

Величина *F*_{ind} равна отношению мощностей вынужденного и спонтанного излучения.

Нижний предел hv_{min} принимаем равным частоте, на которой возмущенный газ становится непрозрачным по тормозному излучению:

$$\tau_{ff}(\mathbf{v}_{\min}) = 1. \tag{10}$$

Болышая точность в определении частоты v_{min} не нужна в силу того, что зависимость интеграла от нее только логарифмическая. В лиапазоне частот $v < v_{min}$ вынужденное излучение при необходимости учитываем обычным нутем, следуя закону Кирхгофа.

Коэффициент тормозного поглощения вычисляем по формуле

$$\kappa_{\varphi}^{(g')} = \frac{256}{3\sqrt{3}} \alpha \pi^{5/2} a_0^5 \left(\frac{\mathrm{Ry}}{h_V}\right)^3 \sqrt{\frac{\mathrm{Ry}}{k_B T_e}} N_e N_f \,.$$

Сечение поглощения в центре линии Ly а атома водорода равно

$$\sigma_{12} = 4\pi^{3/2} a_0^2 \sqrt{\frac{M_{\rm H}}{m_e}} \frac{\rm Ry}{E_{12}} f_{12} \sqrt{\frac{\rm Ry}{k_B T_{ai}}},$$

гле M_{H} и m_{e} - массы, соответственно, атома водорода и электрона, f_{12} - сила

260

оспиллятора в поглощении, E_{11} - энергия перехода. Найдем отношение о оптических глубин по тормозному поглощению $\tau_{ff}(v)$ на частоте v и в липии Ly α :

$$\mathbf{U} = \frac{\tau_{g}(\mathbf{v})}{\tau_{\mathrm{Lya}}} = \frac{\mathbf{\kappa}_{e}^{(g)}}{\sigma_{\mathrm{L}2} N_{\mathrm{I}}} = \frac{64\pi}{3\sqrt{3}} \frac{\alpha a_{0}^{2}}{f_{12}} \cdot \sqrt{\frac{m_{e}}{M_{\mathrm{H}}}} \cdot \frac{E_{12}}{\mathrm{Ry}} \cdot \sqrt{\frac{T_{z}}{T_{e}}} \cdot \left(\frac{\mathrm{Ry}}{h_{\mathrm{V}}}\right)^{3} \frac{N_{e}N_{e}}{N_{1}}.$$

Величину v_{min} , исходя из условия (10), выражаем через оптическую глубину в линии Ly α :

$$\frac{h v_{\min}}{\text{Ry}} = \sqrt[3]{\frac{64\pi\alpha}{3\sqrt{3} f_{12}}} \cdot a_0 \cdot \sqrt[6]{\frac{m_e}{M_H}} \sqrt[3]{\frac{E_{12}}{\text{Ry}}} \cdot \sqrt[6]{\frac{T_{ai}}{T_e}} \cdot \sqrt[3]{\frac{N_e N_i}{N_1}} \tau_{\text{Ly}\alpha} \approx 1.5 \cdot 10^{-3}$$

Как видно из последней формулы, искомая частога слабо зависит от нараметров высвечивающегося газа. Оптическую глубину в линии Ly α взяли из расчетов высвечивания ударной волны, $\tau_{Ly\alpha} \approx 10^5$. Мы приняли температуры равными, $T_{-} = T_{c} \approx 20000$ K, а степень ионизании газа - половине: $N = N = N_1$. Таким образом, получаем оненку для γ_{-} :

$$\gamma_{*} = \frac{h v_{\text{min}}}{\text{Ry}} \frac{\text{Ry}}{k_{B} T_{*}} \approx 1.5 \cdot 10^{-3} \frac{\text{Ry}}{k_{B} T_{*}}.$$

В последней строке табл. 1 приведены значения величины F_{mat} . Итак, в случае тормозного излучения вклад выпужденных процессов в охлаждение сравним с вкладом спонтанного излучения.

Таблица 1

ВКЛАД ВЫНУЖДЕННОГО ИЗЛУЧЕНИЯ В СКОРОСТЬ ОХЛАЖДЕНИЯ ПРИ СВОБОДНО-СВОБОДНЫХ ПЕРЕХОДАХ

Т., К	3000	6000	10000	20000
Y .	0.08	0.04	0.02	0.01
$J_{\rho}(\rho,\gamma_{*})$	2.45	2.89	3.18	3.46
F	0.2	0.4	0.8	1.7

5. Фотононизация из возбужденных состояний и фотовозбуждение субординатных переходов. Скорость фотононизации тепловым излучением также вычисляем в приближении Крамерса:

$$\Phi_{k}(T,)=4\pi W\int_{v_{k}}^{\infty}\sigma_{k}^{(ph)}\frac{B(T)}{h\nu}d\nu=\frac{8}{3\pi\sqrt{3}}\frac{W}{k_{5}}\alpha^{4}\frac{c}{a_{0}}K_{1}(b_{k}), \quad k\geq 2,$$

где

$$K_1(y) = \int_{y}^{\infty} \frac{1}{t(e'-1)} dt.$$

Алгоритм расчета интеграла $K_1(y)$ с учетом расхолимости в точке y = 0 опубликован в [14]. Для сравнения скоростей фото- и уларной ионизации мы вволим величину ϕ_k , равную логарифму их отношения:

$$\varphi_k = \lg \left(\frac{\Phi_k(T_*)}{q_k(T_*)N_*} \right), \tag{11}$$

где q - коэффициент ионизации электропным ударом, вычисленный по формулам работы [15]. Графики о, приведены на рис.3, величина N принята равной 10^{12} см⁻³. Хорошо видно, что влияние фотоионизации существенно в случае состояний небольшого возбуждения, $2 \le k \le 7$, в то время как электронным ударом контролируется ионизация из высоковозбужденных состояний.

Рис.3. Логарифм отношения скорости фотоионизации и ударной ионизации для возбужденных состояний; обозначения кривых соответствуют рис.1.

Обраннающий слой звезд спектральных классов M-G не сильно поглощает излучение в частотах линий бальмеровской серии, поэтому температуру излучения и в этом случае можно принять равной температуре фотосферы. Скорость фотовозбуждения Φ_{la} с нижнего уровня / на верхний *и* в расчете на один атом на нижнем уровне равна

$$\Phi_{lu}(T_*) = W \cdot n_{\omega}(T_*) \cdot B_{lu} ,$$

пе коэффициент Эйнштейна B_{μ} выражается через вероятность спонтанного перехода A_{μ} и статистические веса уровней $g_{\mu}g_{\mu}$:

$$B_{lu} = \frac{g_u}{g_l} A_{ul} \, .$$

ВЛИЯНИЕ ИЗЛУЧЕНИЯ ФОТОСФЕРЫ НА ВЕРХНИЕ СЛОИ 263

Аналогично (11) для линий бальмеровской серии составляем логарифм отполіения

$$\Psi_k = \lg \left(\frac{\Phi_{2k}(T_*)}{q_{2k}(T_*)N_*} \right),$$

в котором q_{\perp} - коэффициент ударного возбужления, рассчитанный по формуле из работы [15]. Как показывают графики рис.4, фотовозбужление является существенным фактором для звезд класса G и горячее. Величина ψ_{\perp} как функция главного квантового числа k асимптотически стремится к некоторому консчному значению. Это объясняется тем, что при высоких значениях температуры коэффициент ударного возбуждения пропорционален силе оспиллятора в поглошении.

Рис.4. Логарифм отношения скорости фотовозбужления и ударного возбуждения в линиях бальмеровской серии: обозначения кривых соогветствуют рис.1.

6. Бальмеровский декремент. Степень влияния фотосферы на вышележащие слои зависит не только от се температуры T_{a} , по и от нараметров самих слоев - T и N_e . При $N < 10^{12}$ см⁻³ газ прозрачен в линиях бальмеровской серии, и в первом приближении можно не учитывать ударные переходы между возбужденными состояниями. С увеличением плотности возрастает роль уларных процессов, и при $N = 10^{13}$ см⁻³ может возникнуть самопоглощение в линиях бальмеровской серии. Введем обозначения N_p , N_k и N_a , соответственно, для концентрации протонов, атомов водорода на k-м уровне и полной концентрации атомов:

$$N_{\mu} = \sum_{k=1}^{K_{\mu}} N_{k} \,. \tag{12}$$

Полную концентрацию водорода обозначим N_#

$$N_{\rm H} = N_a + N_p \,. \tag{13}$$

Считаем выполненным условие электронейтральности. Для чисто водородной среды оно имсет вил:

$$N_e = N_p$$
.

6.1. Газ, прозрачный в линиях бальмеровской серии. Здесь мы полагаем, что заселение уровней с k = 3 до $k = K_{II}$ происходит путем рекомбинации и возбуждения электронным ударом из основного состояния, а также разиационными переходами с более высоких уровней. Такая постановка задачи имеет некоторое сходство с расчетами рекомбинационного излучения межзвездного газа, но здесь мы рассматриваем все три канала рекомбинации: спонтанную, вынужденияю и безызлучательную.

Результаты расчетов бальмеровского декремента приведены на рис.5 для следующих параметров газа: $T_e = 10000$ K, $N_e = 10^{12}$ см⁻¹. Силопіная кривая построена без учета вынужденных переходов. Немонотонная зависимость интенсивности спектральных линий от квантового числа верхнего уровня k объясняется влиянием тройной рекомбинации, причем положение минимума

Рис.5. Бальмеровский декремент без самоноглощения в линиях субординатных переходоа: штриховые кривые - с учетом выпужленных процессов, сплошная кривая - без учета; обозначения штриховых кривых соответствуют рис.1.

264

зависит от электронной плотности. Четыре штриховые кривые соответствуют разным значениям температуры излучения. Во всех случаях влияние выпужленного излучения проявляется у достаточно высоких членов серии, начиная с Нζ.

6.2. Самопоглощение в первых членах бальмеровской серии. Хромосферный газ в станионарных условиях, как правило, прозрачен в линиях бальмеровской серии. Но нестанионарное охлаждение за фронтом ударной волны сопровождается появлением слоя сильно нагрегого (T > 15000 K) и слабо нонизованного водорода (x < 0.5). Он может оказаться непрозрачным в частотах первых четырех линий бальмеровской серии. Мы приняли $T_e = 10000$ K, $N_{\rm H} = 10^{11}$ см⁻³, T = 20000 K. Толшину слоя L положили равной 300 км. (Обычно размеры возмущенных областей значительно меньше, но в модельных расчетах эта величина позволяет имитировать нестационарные условия).

Относительные населенности лискретных уровней $v_k = N_k/N$ определялись одновременно с состоянием ионизании x путем решения системы уравнений баланса с учетом фотоиопизации, спонтанной и вынужденной фоторекомбинации, спонтанных и вынужденных радиационных переходов с учетом рассеяния в спектральных линиях, а также процессов под действием электронного удара: лискретных переходов q_* , ионизании и тройной рекомбинации γ_k

$$\left[\Phi_{k}(T_{*}) + q_{k}N_{e} + \sum_{k>i} \left(A_{ki}^{*} + \Phi_{ki}^{*} + q_{ki}N_{e} \right) + \sum_{k$$

Из формул (12) и (13) следует условие нормировки для у и х.

$$\sum_{k=1}^{n_{II}} \mathbf{v}_k + x = 1.$$

Знак "*" означает, что учтено рассеяние в частотах спектральных линий при вычислении скорости V_{ik} некоторого радиационного перехода между лискретными состояниями: $V_{ik}^* = V_{ik}/\zeta_{ik}$. Число рассеяний ζ_{ik} мы вычисляем по оптической глубине в центре линии τ_{ik} , используя модель Соболева-Бибермана-Холстейна для доплеровского и хольцмарковского контуров, расчетные формулы приведены в [9]. Оптическая глубина в центре линии выражается через сечение σ_{ik} , паселенность нижнего уровня, полную копцентрацию водорода и толщину слоя:

$$\tau_{ik} = \sigma_{ik} v_i N_H L.$$

Выпишем формулу для сечения поглощения в центре линии в приближении лоплеровского контура:

О.М.БЕЛОВА, К.В.БЫЧКОВ

$$\sigma_{ik} = 4\pi^{3/2} a_0^2 \sqrt{\frac{M_{\rm H}}{m_e}} \frac{{\rm Ry}}{E_{ik}} f_{ik} \sqrt{\frac{{\rm Ry}}{k_B T_{ai}}} \,.$$

Результаты расчетов приведены на рис.6. Сплопнюй кривой изображен бальмеровский декремент без учета излучения фотосферы. Как вилно из рисунка, при $T_{\star} \leq 8000$ К излучение практически не влияет на декремент, а при $T_{\star} \geq 10000$ К меняет результат примерно на 10-20%. Причиной является доминирование электронного удара над радиационными процессами.

Рис.6. Бальмеровский декремент в случае самопоглощения в линиях субординатных переходов: штриховые кривые - с учетом излучения фотосферы, сплошная кривая - без учета; обозначения штриховых кривых соответствуют рис.1

7. Заключение. Излучение фотосферы при T > 5000 К может оказывать влияние на состояние вышележащего газа путем вынужденных пропессов рекомбинации и тормозного излучения, а также путем фотоионизации и фотовозбуждения в частотах суборлинатных линий.

1. Относительный вклад вынужденной фоторекомбинации в полную скорость фоторекомбинации растет с номером уровня k, а при фиксированном значении k - по мере увеличения температуры излучения. Аналогичная ситуация имеет место и для потерь энергии при рекомбинационном излучении.

 Позная по спектру скорость энергетических потерь путем вынужленного тормозного излучения сравнима со спонтанным излучением при T_{*} > 5000 K.

3. Фотононизация наиболее эффективна в случае состояний среднего возбужления, $2 \le k \le 7$.

266

4. Скорость фотовозбужления в частотах линий бальмеровской серии при $T_s > 5000$ К может значительно превышать скорость ударного возбужления при $T_s = 10000$ К и $N_s = 10^{12}$ см⁻³.

 Излучение фотосферы существенно влияет на бальмеровский лекремент налфотосферного газа, прозрачного в линиях бальмеровской серии (N < 10¹² см⁻¹).

6. Бальмеровский лекремент плотного газа ($N > 10^{-4}$ см⁻³), не прозрачного в первых четырех линиях бальмеровской серии, практически не зависит от температуры излучения.

Работа выполнена при частичной поддержке гранта РФФИ 15-03-03302 и гранта научной школы НШ 9670.2016.2.

ПРИЛОЖЕШИЕ

Алгоритм вычисления интегралов J_0 и J_r В обоих случаях алгоритм зависит от величины аргумента у. В лиапазоне

 $y \ge 1$

выполняем разложение по малому параметру e^{-y} . Интеграл J_0 представим в виле ряда:

$$J_0(x, y) = \int_y^\infty \frac{e^{-xt}}{e^t - 1} dt = \sum_{n=1}^\infty \int_y^\infty e^{-(x+n)t} dt = e^{-xy} \sum_{n=1}^\infty \frac{e^{-ny}}{x+n},$$

сходимость которого обусловлена множителем *e^{-ny}*. Последнюю сумму нанишем в виде двух слагаемых:

$$\sum_{n=1}^{\infty} \frac{e^{-ny}}{x+n} = \Sigma_m^{(0)} + R_m^{(0)},$$

гле $\Sigma_m^{(0)}$ - конечная сумма:

$$\Sigma_m^{(0)} = \sum_{n=1}^m \frac{e^{-ny}}{x+n},$$

а $R_m^{(0)}$ - остаток, верхнюю границу которого получаем из неравенства $n \ge m+1$:

$$R_m^{(0)} = \sum_{n=m+1}^{\infty} \frac{e^{-ny}}{x+n} < \frac{1}{x+m+1} \sum_{n=m+1}^{\infty} e^{-ny} = \frac{e^{-(m+1)y}}{x+m+1} \frac{1}{1-e^{-y}}.$$

Интеграл J, раскладываем в ряд по интегральным показательным функциям:

$$J_1(x, y) = \int_{y}^{\infty} \frac{e^{-xt}}{e^t - 1} \frac{dt}{t} = \sum_{n=1}^{\infty} \int_{y}^{\infty} e^{-(x+n)t} \frac{dt}{t} = \sum_{n=1}^{\infty} \operatorname{Ei}_1[(x+n)y].$$

Как и выше, представляем ряд в виде консчной суммы и остатка:

$$J_1(x, y) = \Sigma_m^{(1)} + R_m^{(1)},$$

гле

$$\Sigma_{m}^{(1)} = \sum_{n=1}^{m} \operatorname{Ei}_{1}[(x+n)y], \quad R_{m}^{(1)} = \sum_{n=m+1}^{n} \operatorname{Ei}_{1}[(x+n)y]. \quad (14)$$

Для определения верхней границы остатка воспользуемся неравенством

Ei:
$$(a) = \int e^{-at} \frac{dt}{t} < \int e^{-at} \frac{dt}{1} = \frac{e^{-a}}{a}$$
 (15)

Подставляя (15) в (14), получаем:

$$R_m^{(1)} < \sum_{n=m+1}^{\infty} \frac{e^{-(x+n)y}}{(x+n)y} < \frac{e^{-xy}}{(x+m+1)y} \sum_{n=m+1}^{\infty} e^{-ny} = \frac{e^{-(x+m+1)y}}{(x+m+1)y} \frac{1}{1-e^{-y}}.$$

Рассмотрим область малых значений аргумента у. Хотя оба ряда (14) и (15) сходятся при любых его положительных значениях, при $y \le 1$ требуется слишком много слагаемых. Это связано с расходимостью обоих интегралов на нижнем пределе. Разбиваем область интегрирования J_1 на три интервала:

$$J_i = I_1^{(i)} + I_{21}^{(i)} + I_3^{(i)} = \int_{y}^{m} + \int_{\infty}^{1} + \int_{1}^{1} ,$$

величину ϖ примем равной 0.2. Если $y > \varpi$, то первый интервал отсутствует. Интервал $y \ge 1$ рассмотрен выше, его вклад равен

$$I_3^{(i)} = J_i(x, 1).$$

Для *у* < • пользуемся разложением

$$\frac{t}{e^t-1}=\sum_{k=0}^{\infty}B_k\,\frac{t^k}{k!}\,,$$

где B_1 – числа Бернулли; оно позволяет получить аналитическое выражение лля интеграла. При выбранном значении ϖ достаточно сохранить слагаемые до $B_{10} t^{10}/10!$ включительно; выпишем необхолимые числа Бернулли:

k	0	1	2	4	6	8	10
B_{k}	1	-1/2	1/6	-1/30	1/42	-1/30	5/66

В интервале $\varpi < y < 1$ применяем метод Гаусса.

¹ Московский государственный университет им. М.В.Ломоносова, физический факультет, Москва, Россия,

- e-mail: whitecanvas05122010@mail.ru
- ² Московский государственный университет им. М.В.Ломоносова, Астрономический институт им. П.К.Штернберга, Москва, Россия, e-mail: bychkov@sai.msu.ru

268
ВЛИЯНИЕ ИЗЛУЧЕНИЯ ФОТОСФЕРЫ НА ВЕРХНИЕ СЛОИ 269

INFLUENCE OF PHOTOSPHERIC RADIATION ON ABOVE LAYERS OF STAR ATMOSPHERE

O.M.BELOVA¹, K.V.BYCHKOV²

It is investigated the influence of the photosphere thermal radiation on above located pure hydrogen gas. Rates of induced free-bound, bound-bound, and free-free processes are shown to be comparable to ones of the spontaneous processes, if the radiation temperature exceeds 5000 K. Photoexcitation and photoionization from the excited states also play the important role.

Key words: induced process: photoionization: stellar atmospheres

ЛИТЕРАТУРА

- 1. J.C. Brown, Solar Phys., 29, 421, 1973.
- 2. Н.Л. Костюк, С.Б. Пикельнер, Астрон. ж., 51, 1002, 1974.
- 3. В.П.Гринин, Н.А.Катышева, Изв. КрАО, 62, 59, 1980.
- 4. В.П.Гринин, Н.А.Катышева, Изв. КрАО, 62, 66, 1980.
- 5. М.М.Кацова, А.Г.Косовичев, М.М.Лившиц, Астрофизика, 17, 285, 1981.
- 6. J.C. Allred, A.F. Kowalski, M. Carlsson, Astrophys. J., 809, 104, 2015.
- 7. Yu.A.Fadeev, D.Gillet, Astron. Astrophys., 354, 349, 2000.
- 8. Yu.A.Fadeev, D.Gillet, Astron. Astrophys., 420, 423, 2004.
- 9. О.М.Белова, К.В.Бычков, Е.С.Морченко и др., Астрон. ж., 91, 745, 2014, (Astron. Reports, 58, 650, 2014).
- 10. D. Gillet, A.B. Fokin, Astron. Astrophys., 565, 423, 2014.
- 11. Л.А. Вайнштейн, И.И. Собельман, Е.А. Юков, Сечения возбуждения атомов и нонов атомами, М., Наука, 1973.
- 12. Ч.Каули, Теория звездных спектров, М., Мир, 1974.
- 13. О.М.Белова, К.В.Бычков, Астрофизика, 60, 127, 2017, (Astrophysics, 60, 111, 2017).
- 14. К.В.Бычков, Е.С.Морченко, Вестник МГУ Серия 3, Физика Астрономия, 89, 2011.
- 15. L.C.Johnson, Astrophys. J., 174, 227, 1972.

АСТРОФИЗИКА

TOM 61

МАЙ. 2018

ВЫПУСК 2

МОЩНЫЕ ВСПЫШКИ НА СОЛНЦЕ В СЕНТЯБРЕ 2017. СРАВНЕНИЕ С САМЫМИ КРУПНЫМИ ВСПЫШКАМИ 24 ЦИКЛА

Е.А.БРУЕВИЧ, В.В.БРУЕВИЧ Поступила 13 ноября 2017 Принята к печати 7 марта 2018

Изучается вспышечная активность Солнца в 24 цикле. Используются данные спутниковых наблюлений рентгеновских потоков GOES-15, линий УФ-излучения эксперимента SDO/EVE. Самые мощные вспышки 24 никла классов Х9.3 и Х8.2, произошедшие в сентябре 2017г., рассматриваются в сравнении с крупными вспышками классов М5-Х6.9. Лля 21 крупной вспышки проведено сравнение времени начала вспышечного усиления потоков в линиях 30.4 нм и 9.4 нм, а также в рентгеновском интервале 0.1-0.8 нм. Для 25 вспышек 2011 и 2012гг. вычислены значения полной энергии, прицедшей от вспышек на Землю в линиях 30.4 нм и 9.4 нм, а также в рентгеновском интервале 0.1-0.8 нм. Для 25 вспышек 2011 и 2012гг. вычислены значения полной энергии, прицедшей от вспышек на Землю в линиях 30.4 нм и 9.4 нм, а также в рентгеновском интервале 0.1-0.8 нм - Е₁₀₄, Е₉₄, и Е₁₁₄. Показано, что энергии вспышек, рассчитанные в анализируемых линиях SDO/ EVE и рептеновском интервале GOES-15, тесно взаимосвязаны между собой.

Ключевые слова: Солнце: 24 цикл: вспышечная активность: Вспышки: развитие вспышки в линиях: полная энергия вспышки

1. Введение. Мощнейшие вспышки, наблюлаемые на Солнце, выбрасывают в окружающее пространство огромную энергию - примерно пятую часть энергии, излучаемой Солнцем за одну секунду (для сравнения это равно всей энергии, которую выработает человечество за миллион лет при условии се произволства современными темпами). При этом Солнце в ряду звезя с активностью солнечного типа (например, вспыхивающие звезды типа UV Кита) отличается относительно низкой вспышечной активностью [1,2].

Текущий 24 шикл солнечной активности в настоящее время практически приблизился к самым минимальным значениям по числу солнечных пятен и величинам других глобальных индексов. Число крупных вспышек в 24 никле согласно рентгеновской классификании, базирующейся на измерениях спутников серии GOES (классы >M1 соответствуют вспышкам с амплитулой более $1 \cdot 10^{-5}$ Ватт/м² в диапазоне 0.1 - 0.8 нм), за весь цикл набралось около 800, тогда как в предыдущие, более сильные никлы 22 и 23, эта величина была в 2 раза больше. Самой крупной вспышкой 24 цикла до сентября 2017г. считалась вспышка рентгеновского класса X6.9, произошедшая 09.08.2011 и обланающая не совсем стандартными характеристиками для такой крупной вспышки, в частности, по количеству энергии, поступившей на Землю в соответствующем рентгеновском дианазоне 0.1-0.8 нм, она не вошла даже в первую десятку. До сентября 2017г. вспышка 09.08.2011 была самой значительной в 24 никле. Особенности этой вспышки класса X6.9 дегально рассматривались, в частности, в [3,4].

2. Вспышки в сентябре 2017г. 29 августа из-за восточного лимба в южной полусфере Солнца вышла группа 2673, с площалью 70 МДП (1 МДП -10⁻⁶ видимой полусферы Солнца), и числом пятен, равным 1. Через двое сугок плошаль группы уменьшилась до 60 МДП, число пятен увеличилось до 4, магнитная конфигурация усложнилась. 3 сентября группа достигна нентрального меридиана с площадью 130 МДП, число пятен превысило 10. На следующие сутки площаль группы увеличилась до 680 МДП, число пятен выросло до 28, магнитная конфигурация еще больше усложнилась. Серия солнечных вспышек началась в понедельник 4 сентября, в этот день в группе было зарегистрировано 7 крупных вспышек класса М.

6 сентября эта группа с числом пятен, равным 33, и площалью 880 МДП уже находилась в западном полушарии вблизи центрального мерилиана. В 12.10 МСК в группе зарегистрирована вспышка X2.2 продолжительностью 20мин, а в 15.02 МСК зарегистрирована еще одна более моншая вспышка X9.3, прополжавшаяся 17 мин, (см. рис.1, 2). Обе вспышки сопровождались протонными событиями. За последние двадпать лет были зарегистрированы лишь пять вспышек большей амплитуды, чем вспышка X9.3, а последняя из них класса X17.0 произопциа почти ровно 12 лет назад - 7 сентября 2005г.

Рис.1. Вспышка 06.09.2017 - максимальная по рентеновской классификации в 24 цикле - X9.3. По оси X - гринвичское время GMT.

На рис.1 представлен поток излучения в диапазоне 0.1-0.8 нм (линейная шкала). Отмечена полная энергия, поступившая от вспышки на Землю, вычисленная как плошаль интеграла под заштрихованной временной кривой потока в лианазоне 0.1-0.8 нм с учетом уровня фона.

06.09.2017 в 12.55 по гринвичскому времени, на фоне прололжающегося вгоржения протонов от вспышки М5.5, началось вторжение потоков протонов от вспышки Х9.3 в широком лиапазоне энергий. Для протонов с энергиями ≥100 МэВ это было заметное событие, произошедшее впервые с 2014г.

Рис.2 демонстрирует протонное событие, вызванное вспышкой 06.09.2017, согласно ланным наблюлений потоков протонов на спутнике GOES-15 в лианазонах ≥10 МэВ и ≥100 МэВ. Вилно, что после достижения максимума протонов с энергиями ≥100 МэВ в 12.35 GMT, начался постепенный спал потока протонов. Для протонов с энергиями ≥10 МэВ усиление потока протонов от ланной вспышки практически незаметно наложилось на увеличенный поток протонов от вспышек 4 сентября, после чего началось лальнейшее увеличение потока протонов с энергиями ≥10 МэВ.

Рис.2. Вспышка 06.09.2017. Сверху - поток протонов с энергиями ≥ 10 МэВ, снизу - поток протонов с энергиями ≥ 100 МэВ.

10.09.2017 около 16 ч по гринвичскому времени произошла еще одна мошнейшая вспышка класса X8.2 (см., рис.3, 4). Она явилась продолжением мошнейшей вспышки 6 сентября X9.3, и стала второй по силе с 2005г., уступая лишь своей прямой предшественнице, случившейся четырьмя днями рансе. Эта вспышка, связанная с той же активной областью 7623, произошла

Е.А.БРУЕВИЧ, В.В.БРУЕВИЧ

практически на лимбе, на следующий лень активная область 7623 защла за край Солнца, но источник жестких протонов, связанный с этой вспышкой и расположенный над активной областью в короне, светился нал лимбом еще более суток. На рис.3 представлен поток излучения в дианазоне 0.1-0.8 нм (линейная шкала). Отмечена полная энергия $E_{0.1-0.8}$, поступившая от вспышки на Землю, вычисленная как площаль интеграла под заштрихованной временной кривой потока в диапазоне 0.1-0.8 нм.

Рис.3. Вспышка 10.09.2017 - одна из двух максимальных по ренттеновской классификапии в 24 цикле. По оси X - гринвичское время GMT.

Рис.4. Вспышка 10.09.2017. Сверху - поток протонов с энергиями ≥10 МэВ, снизу - поток протонов с энергиями ≥100 МэВ.

10.09.2017 примерно в 16.30 по гринвичскому времени - GMT, началось вторжение потоков протонов от вспышки X8.2 в широком диапазоне энергий, значительно превосходящее событие, последовавшее за вспышкой X9.3 от 06.09.2017.

Усиление потоков протонов во вспышке 10 сентября достигло рекорлных показателей в этом пикле как для протонов с энергиями $\geq 10 \text{ МэВ}$, так и для более жестких протонов $\geq 100 \text{ МэВ}$. Потоки протонов во вспышке 10 сентября превышали потоки протонов во вспышке 6 сентября более чем на порялок (см., рис.4), что явилось рекорлом по величине во всем 24 никле. Воздействие этих протонов на атмосферу Земли было грандиозным: магнитные бури, последовавшие за этой вспышкой, также были рекордными по величине и лиительности. k_p - индекс, характеризующий степень возмущения магнито-сферы Земли, достигал значений в 6 единиц в течение трех суток согласно данным NOAA/SWPC (см. архив сайта http://www.n3kl.org/sun/noaa_archive).

Вероятно, что воздействие этой протонной вспышки на земную атмосферу было бы значительнее, если бы источник протонов не переместился вместе со вспышечной областью за лимб Солнца.

Полчеркием, что в 24 никле такие мощные вспышки произонли на фоне солнечного минимума. Активная область 7623 просуществовала в течение сще лвух оборотов Солнца, но заметной вспышечной активности у этой области больше не наблюдалось.

3. Крупные вспышки в 24 цикле. Время начала и максимума вспышки в линиях 30.4 нм, 9.4 нм и интервале 0.1-0.8 нм. В 24 никие в сравнении с циклами 21-23 отмечается слабая вспышечная активность - всего 133 вспышки Х-класса >M5.0, из них 49 вспышек Х-класса >X1. Наибольшее количество всех вспышек наблюдалось вблизи первого и второго максимумов цикла (при этом из 10 самых крупных вспышек только две произопли на встви спада - это самые крупные вспышки 24 цикла, произопледние 06.09.17 и 10.09.17) (см., [5,6]). Если сравнить с циклами 21-23, то наиболее крупные рептгеновские вспышки Х-класса >X15 наблюдались на вствях спада циклов 21 и 23, а также в максимуме 22 цикла [7-9]. Наблюдения вспышек на спутниках с высоким временным разрешением позволяют исследовать проблему задержки времени начала вспышек в линиях, относящихся как к нижней части солнечной атмосферы (хромосфера и переходная область), так и к верхней части (корона). Наблюления SDO/EVE в линиях, относящихся к крайнему ультрафиолету, доступны с усреднением в 1 мин. Наблюдения GOES-15 в интервалах 0.1-0.8 нм и 0.05-0.4 нм доступны с временным разрешением в 2.5 с. Таким образом, для каждой исследуемой вспышки мы можем получить данные о времени начала и максимума этой

вспышки в выбранных линиях.

На рис.5 представлены потоки в рентгеновском дианазоне GOES-15 -0.1-0.8 нм и в 5 линиях SDO/EVE для крупной вспышки класса M8.8, ллящейся более 4ч. Это одна из самых крупных вспышек по величине полной энергии ($E_{1,1-0,1} = 0.389 \, \text{Дж/M}^2$) в 24 пикле. На рисунке видны характерные моменты перегиба кривой, соответствующие началу вспышки и се максимуму (в линиях 30.4 нм и 13.3 нм видны по 2 максимума). Время начала и максимума вспышки, указанное на рис.5, уточнялось непосредственно по временным массивам данных наблюдений, используемым для ностроения графиков. Видно, что характерный временной профиль вспышки в интервалс наблюдений GOES-15 0.1-0.8 нм более всего соответствует временному профилю

в корональной линии FeXX 13.3 нм и чуть хуже соответствует временному профилю корональной линии FeVIII 9.4 нм. Максимальные концентрации ионов FeVIII и FeXX наблюдаются в верхней короне при T~10⁷ K, излучение в интерване 0.1-0.8 нм формируется примерно в этой же части короны [10,11].

Как вилно из рис.5 для ланной вспышки 23.01.2012 раньше происходит усиление в коропальных линиях и интервале 0.1-0.8 нм (2:12-2:20), а затем в линиях хромосферы и переходной области (2:25-2:28).

4. Связь полной энергии, излученной вспышками в диапазоне 0.1-0.8 им, с областью первичного энерговыделения. Для дальнейшего анализа определения области первоначального энерговыделения для 21 вспышки мы выбрали линии 30.4 им и 9.4 им. С одной стороны, эти линии формируются на разной высоте в атмосфере Солнца (30.4 им - линия переходной области, 9.4 им - корональная линия). С другой стороны, эти линии обладают дополнительными полезными свойствами: линия 30.4 им - одна из самых сильных в УФ-лианазоне и играст заметную роль в формировании ионосферы Земли, линия 9.4 им - очень чувствительна к вспышечной активности Солнца и при этом на порядок интенсивнее подобной линии 13.3 им. К сожалению, ряды наблюдений в линиях 30.4 им и 9.4 им прервались в мае 2014г. в связи с выходом из строя части измерительных приборов на спутнике SDO.

Мы собрали данные о 21 вспышке класса >M5 (наблюдения 2011-2012). и проанализировали их в линиях 30.4 нм и 9.4 нм и интервале 0.1-0.8 нм.

14 из этих 21 крупных вспышек (помечены символом К в первой колонке табл.1) оказались подобными вспышке 23.01.2012, в которой усиление потоков началось с корональной линии 9.4 нм и интервала 0.1-0.8 нм. В качестве примера такой вспышки рассмотрим вспышку X1.9 в соответственных УФ-линиях и репттеновском интервале, произошелшую 03.11.2011 (см., рис.6).

На рис.6 представлена вспышка 03.11.2011 класса X1.9, довольно длительная по времени (около полутора часов) и характеризующаяся значительной полной энергией, пришелшей от нее на Землю в диапазоне 0.1-0.8 нм - $E_{0.1-0.8} = 0.167 \ Дж/м^2$. В верхней части рис.6 приводится та же вспышка в линиях 30.4 нм и 9.4 нм. Сравнение временных потоков от вспышки 03.11.11 в интервале 0.1-0.8 нм и в линиях 30.4 нм и 9.4 нм показало, что начальное усиление вспышки происходит в короне, а через 3-4 мин в переходной области. При этом максимум вспышки совпадает по времени в обеих линиях и диапазоне 0.1-0.8 нм.

Анализ 6 крупных вспышек из исследуемых дваднати одной (помеченные символами К, ПО в табл.1) показал, что для этих вспышек усиление потоков происходит примерно в одно время (с точностью до 1 мин) в исследуемых линиях и рентгеновском интервале. В качестве примера такой вспышки

Рис.6. Вспышка Х1.9 от 03.11.11.

рассмотрим вспышку 09.03.2011 (см., рис.7). Видно, что эта вспышка не очень длительная (менее часа), и соответственно, не очень круппая по энергетике.

Сравнение временных потоков от вспышки 09.03.11 в интервале 0.1-0.8 нм и в линиях 30.4 пм и 9.4 нм показало, что начальное усиление вспышки происходит практически одновременно и в короне, и в нереходной области. Максимум вспышки немпого запаздывает в линии 9.4 пм.

У олной из самых небольших вспышек МЗ.5, произошелшей 24.02.2011 и

Рис.7. Вспышка X1.2 от 09.03.11.

длящейся около часа (помечена символом ПО в табл.1), четко видно, что усиление начинается с нижней части атмосферы в линии переходной области 30.4 нм, и позже, через 2-3 мин - в корональной линии 9.4 нм и интервале 0.1-0.8 нм (см., рис.8).

Таким образом, прослеживается связь между энергией вспышки и областью ее первичного энерговылеления. Очевидно, что требуется увеличение массива исследуемых вспышек путем добавления более слабых вспышек, начиная с вспышек класса ≥ M1, для подтверждения предположения, что у вспышек с малой энергией область первичного энерговыделения находится не в короне, а в хромосфере и переходной области.

Параметры 21 вспышки, которые мы рассматриваем в настоящей работе,

Рис.8. Вспышка МЗ.5 от 24.02.11.

представлены в табл.1. Для каждой вспышки приволятся данные об уровне фонового потока, величине и времени начала и максимума вспышек в лиапазоне 0.1-0.8 нм.

Вспышки из нашей выборки относятся к относительно круппым вспышкам 2011-2012гг. Полчеркнем, что в табл.1 они расположены по мере убывания полной энергии, излученной в диапазоне 0.1-0.8 нм. Энергия Е_{0.1-0.8} рассчитана лля кажной вспышки в диапазоне 0.1-0.8 нм как площаль под временной кривой потока от вспышки за вычетом фонового потока. Для вспышек 06.09.2017 и 10.09.2017 эти площади под заштрихованными кривыми, соответствующие полной энергии Е_{0.1-0.8} показаны на рис.1, 3 (к сожалению,

Таблица 1

ПАРАМЕТРЫ 21 КРУПНЫХ СОЛНЕЧНЫХ ВСПЫШЕК 2011-2012гг. ПО НАБЛЮДЕНИЯМ GOES-15 В ДИАПАЗОНЕ 0.1-0.8 нм

Дата вспышки/ Обл. первичного энерговыделения	Уровень фона (W/м)/время	Начало вспышки (W/м²)/время	Максимум всяынки (W/м ²)/время	Е _{0.1-0.8} (Дж/м ²)
22.09.11/K	1.05E-6/09:00	7.4E-6/10:35	1.5E-4/11:00	0.756
15.02.11/K	1.12E-6/01:44	1.25E-6/01:47	2.3E-4/01:56	0.2628
09.08.2011/K	8E-7/07:45	1E-6/08:00	7.4E-4/08:05	0.2574
08.03.2011/К, ПО	I.4E-6/18:05	2.0E-6/18:10	4.45E-5/18:27	0.0806
07.03.2011/K	2.2E-6/19:20	3.73E-6/20:12	5.0E-5/20:42	0.179
03.11.2011/K	2.06E-6/20:06	2.35E-6/20:17	2.04E-4/20:27	0.168
03.08.2011/K	1.3E-6/17:45	2E-6/18:10	4.44E-5/18:28	0.148
24.09.2011/K	1.8E-6/09:31	4.00E-6/9:34	1.91E-4/09:40	0.143
06.09.2011/K	1.8E-6/22:03	2.02E-6/22:13	2.16E-4/22:20	0.118
04.08.2011/K	6E-7/03.43	2E-6/03:44	9.5E-5/03:57	0.112
07.09.2011/K, IIO	6.0E-7/22:13	3.0E-6/22:35	1.8E-4/22:38	0.1008
08.03.11-1/K	1.87E-6/10:33	3E-6/10:30	5.42E-5/10:44	0.0803
09.03.11/K, IIO	2.4E-6/23:00	3.0E-6/23:16	1.58E-4/23:23	0.107
13.02.2011/K	6.5E-7/17:26	2.0E-6/17:32	6.9E-5/17:38	0.072
25.09.2011/K	3E-6/14:55	6E-6/15:22	3.7E-5/15:43	0.064
08.09.2011/K	5E-7/15:31	1E-6/15:36	6.76E-5/15:46	0.059
18.02.2011/K	1.2E-6/09:44	3.0E-6/10:11	7.38E-5/10:12	0.053
26.12.2011/110	1.13E-6/20:00	1.6E-6/20:15	2.4E-5/20:30	0.0422
24.02.2011/K, IIO	4.0E-7/07:22	1.0E-6/07:26	3.55E-5/07:35	0.0421
14.03.2011/К, ПО	5.0E-7/19:32	3.0E-6/19:46	4.43E-5/19:52	0.022
31.12.2011/К, ПО	6.8E-7/13:09	1.7E-6/13:12	2.49E-5/13:15	0.0126

в 2017г. данных УФ-наблюлений SDO/EVE нет).

В табл.1 мы разделили вспышки по области первичного энерговыделения. Символ К в первом столбне табл.1 соответствует вспышкам, гле усиление вспышенных потоков началось с короны. Символы К, ПО вместе соответствуют вспышкам, гле усиление вспышечных потоков происходит примерно одновременно как в короне, так и в переходной области.

Олна вспышка 24.02.2011 класса M3.5 с символом ПО соответствует более раннему усилению потока в линии переходной области 30.4 нм, а затем в корональной линии 9.4 нм и интервале 0.1-0.8 нм.

Видно, величина энергин Е_{0.1-0.8} (пятая колонка табл.1), пришедшая от вспышки, связана с начальной фазой развития вспышечного процесса - в какой по высоте части атмосферы начинается усиление в линиях. Из табл.1 следует, что для более энергичных вспышек усиление начинается с короны. Для менее энергичных вспышка начинается либо в короне, либо одновременно в короне и переходной области. Для одной из самых слабых вспышек в данной выборке, занимающей 19 место из 21, усиление вспышечного потока начинается в нижней части атмосферы. Подобная зависимость от класса вспышки (его амплитуды в максимуме - четвертая колонка табя.1) не столь очевидна, так как мощные вспышки рентгеновского класса X могут быть кратковременными, при этом более длительные вспышки класса M могут характеризоваться большими значениями $E_{0.1,0.0}$.

5. Взаимосвязь энергий, излученных вспышкой, в линиях 30.4 нм и 9.4 нм и диапазоне 0.1-0.8 нм. В табл.2 приводятся всличины полной энергии, пришедшей на Землю от 25 крупных вспышек в линиях 30.4 нм, 9.4 нм, а также лиапазоне 0.1-0.8 нм. Всличины энергии $E_{0.1-0.8}$, $E_{30.4}$ и $E_{9.4}$ рассчитаны для кажлой вспышки как площадь под временной кривой потока излучения от вспышки за вычетом фонового потока. В первой колонке рядом с датой вспышки помечены вспышки, сопровождающиеся выбросом протонов (пр).

Таблица 2

Дата вспышки	Е _{0.1-08} (Дж/м ²)	Е ₃₀₄ (Дж/м ²)	E _{9.4} (Дж/м ²)
12.07.2012 up	0.792	0.956	0.118
22.09.2011 пр	0.756	0.66	0.097
23.01.2012 пр	0.389	0.91	0.1123
15.02.2011 пр	0.263	0.27	0.028
09.08.2011 up	0.257	0.099	0.0187
07.03.2011 пр	0.179	0.274	0.024
03.11.2011 np	0.168	0.126	0.0203
03.08.2011 np	0.148	0.183	0.0205
24.09.2011 np	0.143	0.11	0.021
31.12.2011 пр	0.126	0.035	0.0031
23.10.2012 np	0.1188	0.084	0.0195
06.09.2011 пр	0.118	0.124	0.0116
04.08.2011 up	0.112	0.237	0.256
09.03.2011 np	0.107	0.127	0.016
07.09.2011 пр	0.101	0.197	0.0154
08.03.2011-2	0.081	0.012	0.0179
08.03.2011-1	0.080	0.081	0.0124
13.02.2011	0.072	0.101	0.082
25.09.2011	0.064	0.0761	0.0078
08.09.2011 пр	0.059	0.153	0.009
18.02.2011	0.053	0.103	0.006
26.12.2011	0.042	0.065	0.0054
24.02.2011	0.042	0.095	0.0115
14.03.2011	0.022	0.057	0.0045
20.10.2012	0.064	0.594	0.0098

ВЫЧИСЛЕННЫЕ ЗНАЧЕНИЯ ЭНЕРГИЙ 25 КРУПНЫХ ВСПЫШЕК 2011-2012гг. ПО ДАННЫМ GOES-15 И SDO/EVE

Табл.2 лемонстрирует, что величина энергии вспышки связана с тем, булет ли вспышка сопровожлаться протонным событием. Величина Е равная примерно 0.1 Дж/м², является примерным значением, ниже которого вспышки, вероятно, не связаны с послелующим выбросом протонов.

На рис.9 показана зависимость межлу эпергиями $E_{0,1-0,8}$, $E_{10,4}$ и $E_{9,4}$. Мы видим достаточно тесную связь межлу вычисленными величинами энергий. Очевилно, что добавление новых вспышек, характеризующихся большими значениями энергий (вспышек, произошедших до середины 2014г., когда одновременно с наблюдениями GOES-15 проводились полноценные наблюдения в УФ-линиях SDO/EVE), позволит уточнить зависимости, представ-

Рис.9. Взаимосвязь между полной энергией, излученной вспышкой в УФ-линиях 30.4, 9.4 нм и Х-диацазоне 0.1-0.8 нм. Кружки относятся к линии 30.4 нм, звездочки к линии 9.4 нм. Круппые полые кружки и звездочки обозначают, что вспышки сопровождались выбросом протонов.

ленные на рис.9. Поскольку данные наблюдений GOES 0.1-0.8 нм доступны практически в режиме реального времени, а наблюдения SDO/EVE в Уфлиниях прервались в середине 2014г., связь между энергиями становится актуальной для оценки энергий, излученных в линиях, по величине $E_{0.1-0.8}$.

6. Выводы.

1. 24 пикл характеризуется низкой вспышечной активностью. Число крупных вспышек было примерно в 2 раза меньше, чем в циклах 22 и 23. Самые сильные вспышки в сентябре 2017г. характеризовались классами Х9.4 и Х8.3, тогда как в 23 цикле были вснышки баллов Х13-Х17.

2. Наиболее важной характеристикой вспышек является полная энергия,

поступнившая от вспышки на м² земной поверхности: энергия вспышки является входным параметром для анализа воздействия вспышки на верхнюю атмосферу Земли.

Энергии вспышек в линиях перехолной области 30.4 нм и короны 9.4 нм тесно взаимосвязаны между собой и с потоком в рентгеновском дианазоне 0.1-0.8 нм, тогла как амплитулы вспышек в этих линиях и рентгеновском интервале не показывают четкой взаимосвязи. Величина эпергии вспышки определяет, является ли вспышка протонной: начиная с $E_{0.1-0.8} \ge 0.1 \text{ Дж/m}^2$, вспышки сопровожлаются выбросом протонов.

3. Энергия вспышки связана с областью первичного усиления потока вспышечного излучения (по анализу линий перехолной области 30.4 нм и короны 9.4 нм, а также в рентгеновском лиапазоне 0.1-0.8 нм) - чем больше энергия вспышки, тем более вероятно, что область первичного усиления находится в короне.

МГУ им. М.В.Ломоносова, Государственный астрономический институт им. П.К.Штернберга, Россия, e-mail: red-field@yandex.ru brouev@sai.msu.ru

THE MOST POWERFUL SOLAR FLARES IN SEPTEMBER 2017. THE COMPARISON WITH THE LARGEST FLARES OF CYCLE 24

E.A.BRUEVICH, V.V.BRUEVICH

The Sun's flare activity in the 24 cycle is studied. The satellite observations of GOES-15 X-ray fluxes and of SDO/EVE UV-radiation were used. The most powerful flares of cycle 24 of X9.3 and X8.2 classes, which occurred in September. 2017, are discussed in comparison with the large flares of 24-th cycle of classes M5-X6.9. For 21 large flares we have made the comparison of starting time of flares in the EUV-lines 30.4 nm and 9.4 nm and in the X-ray interval 0.1-0.8 nm. For 25 flares in 2011 and 2012 the have calculated the values of the total energy that came from the flares to the Earth in the lines 30.4 nm and 9.4 nm, and in the X-ray interval 0.1-0.8 nm - $E_{30.47}$, $E_{9.4}$ and $E_{0.1-0.87}$. It is shown that calculated energy of the flares in the lines SDO/EVE and X-interval GOES-15 are closely interrelated.

Key words: Sun: cycle 24: flare activity: Flares: flare evolution in different lines: full flare energy

ЛИТЕРАТУРА

- Р.Г. Гериберг, Активность солнечного типа звезд главной последовательности, Одесса, Астропринт, 2002.
- 2. E.Shimanovskaya, V.V.Bruevich, E.A.Bruevich, Research in Astronomy and Astrophysics, 16, №9, 148, 2016.
- 3. И.П.Шарыкин, А.Б.Струминский, И.В.Зимовец. Письма в Астрон. ж., 41. 15, 2015.
- 4. Л.П.Бабин, Э.А.Барановский, А.П.Коваль, Изв. КрАО, 112, 15, 2016.
- 5. Е.А.Бруевич, Г.В.Якунина, Астрофизика, 60, 419, 2017, (Astrophysics, 60, 396, 2017).
- MILI "Preliminary Current Catalog of Solar Flare Events with X-ray Classes M1-X17.5 24 cycle of Solar Activity (1.2009-11.2017)", http://www.wdcb.ru/ stp/data/Solar_Flare_Events/Fl_XXIV.pdf.
- 7. National Geophysical Data Center, Solar Data Service, https://www.ngdc.noaa. gov/stp/solar/sgd.html.
- 8. GOES-15, http://www.n3kl.org/sun/noaa_archive/.
- 9. SDO DATA, http://sdo.gsfc.nasa.gov/data/dataaccess.php.
- 10. J.R.Lemen et al., Solar Phys., 275, 17, 2012.
- 11. Г.С.Иванов-Холодный, Г.М.Пикольский, Солице и ионосфера, М., Наука, 1969.

TOM 61

МАЙ, 2018

ВЫПУСК 2

МАГНИТНЫЕ ТРАНЗИЕНТЫ ВО ВРЕМЯ ВСПЫШЕК 9 МАЯ 2012г. В NOAA 11476 И 4 ИЮЛЯ 2012г. В NOAA 11515

Ο.C.ΓΟΠΑСЮΚ

Поступила 7 декабря 2017 Принята к печати 7 марта 2018

Проведены исследования изменений продольного магнитного поля в NOAA 11476 и NOAA 11515 во время вспышек М-класса. Наблюдения магнитного поля были получены Solar Dynamics Observatory с инструментом Helioseismic and Magnetic Imager (SDO/HMI) с временным и пространственным разрешением 45 с и 0°.5 пиксел⁴, соответственно. Во время максимальной фазы вспышек М5.7/2В 9 мая 2012г. в NOAA 11476 и М5.3/2В 4 июля 2012г. в NOAA 11515 в магнитном поле активных областей произошли резкие изменения. В сильных магнитных полях отрицательной полярности возникли гранзиентные структуры с обратным знаком. Транзиенты располагались в тени пятен и существовали в течение нескольких минуг. Мы дегально исследуем эти особенности магнитного поля.

Ключевые слова: Солнце: активность: вспышки: магнитные поля

1. Введение. Во время вспышск Х- и М-класса происходит существенное изменение фотосферного магнитного поля (см., например, [1-11]). Наблюдения показывают два вида изменений. Первый вид, это необратимые изменения измеренного магнитного поля от состояния перед вспышкой до состояния после вспышки [4,6,12-14]. Такие изменения обычно наблюдаются в виле появления или исчезновения магнитного потока и рассматриваются как реальные изменения магнитного поля. Анализ таких изменений продольного магнитного поля, проведенный для некоторых вспышек Х- и М-класса показал, что в этом случае средняя продолжительность изменений составляет около 15 мин, средняя величина изменения магнитного поля - 69 Гс [7,8]. Второй вид, изменения, происходящие только во время вспышки, так называемые "транзиенты" или "магнитные аномалии". При этом измеренные магнитные ноля возобновляют свое предвенышечное состояние после события [1,5,10,15]. Общепризнано, что измерения магнитных полей во время вспышек значительно искажены. Искажения могут быть вызваны либо необычными условиями вспышечной атмосферы, такими как движение или нагрев, которые сильно изменяют профиль линии, либо инструментальными проблемами насыщение (нелинейность в реакции инструмента на сильные магнитные ноля), рассеянный свет (который может доминировать в темных областях солнечного пятна). Оба эффекта приведут к тому, что измеренное магнитное поле будет намного слабее, чем фактическая напряженность поля. В некоторых крайних случаях магнитная аномалия принимает форму обращения знака, т.е. измеренные магнитные поля временно меняют свои полярности на противоположные.

В этой статье мы исследуем пространственные и временные взаимосвязи между аномальными изменениями продольного магнитного поля во время двух вспышек М-класса, полученными с SDO/HMI, с различными аспектами вспышки.

2. Данные наблюдений. Нами были использованы данные космических инструментов HMI [16]. установленного на борту SDO, и GOES [17], а также данные наземных обсерваторий Kanzelhoehe Solar Observatory¹ (KSO) и. входяших в Global Oscillation Network Group² (GONG), Udaipur Solar Observatory (USO) и Mauna Loa Solar Observatory (MLSO).

SDO/HMI получает изображения в континууме, магнитограммы продольного поля и лоплерограммы полного диска Солнца в фотосферной линии поглошения FeI 6173.3 Å с пространственным и временным разрешением 0".5 пиксел⁻¹ и 45 с, соответственно. Магнитограммы, доплерограммы и изображения в континууме активных областей получены на SDO/HMI во время вспышек M5.7/2B в NOAA 11476 10 мая 2012г. и M5.3/2B в NOAA 11515 4 июля 2012г. Эти наблюления предоставляют информацию о временной и пространственной эволюции фотосферных магнитных полей, движений плазмы и интенсивностей в активных областях.

Для определения местоположения вспышки были использованы наземные хромосферные Hα наблюдения, полученные солнечными обсерваториями KSO, USO и MLSO. Пространственное разрешение этих данных ~1" пиксель⁴. Для вспышки M5.7/2B 10 мая 2012г. были использованы данные USO и MLSO, для вспышки M5.3/2B 4 июля 2012г. - данные KSO. Нα изображения активных областей были совмещены с HMI магнитограммами, доплерограммами и изображениями активных областей в континууме.

3. Анализ данных наблюдений. За время прохождения по диску Солнца активные области (АО) NOAA 11476 и NOAA 11515 показали высокую вспышечную активность. 10 мая 2012г. в активной области NOAA 11476 произонело 17 вспышек С- и М-класса. АО находилась в южном полушарии, на момент вспышки M5.7/2B се координаты были N13E22. В активной области NOAA 11515 4 июля 2012г. произонело 15 вспышек С- и М-класса.

http://www.kso.ac.at

https://gong2.nso.edu

МАГНИТНЫЕ ТРАНЗИЕНТЫ ВО ВРЕМЯ ВСПЫШЕК

Рис 1. Изображения в континууме (верхняя панель), магнитограммы (центральная нанель) и доплерограммы (нижняя панель) активной области NOAA 11476, полученные, на SDO HMI 10 мая 2012г. в начале импульсной фазы (04:11:20 UT), во время максимальной фазы (04:18:50 UT) и на фазе спада (04:37:30 UT) вспышки M5.7/2B.

Рис.2. Изображения в континууме (верхняя панель), магнитограммы (центральная панель) и лоплерограммы (нижняя панель) активной области NOAA 11515, полученные на SDO/HMI 4 июля 2012г. в начале импульсной фазы (09:47:23 UT), во время максимальной фазы (09:55:30 UT) и на фазе спада (10:10:38 UT) вспышки M5.3/2B.

289

О.С.ГОПАСЮК

АО находилась в северном полушарии, во время вспышки M5.3/2В ее координаты были S16W18.

На рис.1 и рис.2 представлены магнитограммы, лоплерограммы и изображения в континууме активных областей NOAA 11476 и NOAA 11515, полученные на SDO/HMI во время вспышек M5.7/2B 10 мая 2012г. и M5.3/2B 4 июля 2012г., соответственно. Данные рис.1 и рис.2 относятся к разным фазам вспышки - импульсной, максимальной и фазе спада вспышки.

В обеих активных областях во время максимальной фазы вспышки в тени пятен в сильных магнитных полях отрицательной полярности наблюдалась инверсия знака поля - область сильных полей положительной полярности (магнитный транзиент или магнитная аномалия). В NOAA 11476 транзиент наблюдался в тени пятна простой конфигурации, в то время как в NOAA 11515 - в тени пятна дельта конфигурации.

Для обеих активных областей был исследован магнитный поток влоль горизонтальной линии AB (рис.3, верхняя панель) во время импульсной и максимальной фазы вспышки. Линия AB была выбрана путем построения профилей магнитного потока вдоль горизонтального растра, движущегося снизу вверх выбранных магнитограмм.

Изменения магнитного потока вдоль линии AB для NOAA 11476/NOAA 11515 показаны на нижней панели рис.3, где пупктирные и сплопппая кривые представляют магнитный поток во время импульсной (04:11:20/09:47:23 UT) и максимальной (04:18:50 UT/09:55:30 UT) фазы вспышек, соответственно. Профили магнитного потока перед вспышкой и во время ее максимальной

Рис.3. НМІ магнилограммы активных областей NOAA 11476 и NOAA 11515 во время максимальной фазы вспышек M5.7/2B и M5.3/2B, соответственно (верхняя панель). На нижней панели соответствующий магнитный поток вдоль линии AB во время импуаьсной (пунктирная кривая) и максимальной фазы вспышки (сплошная кривая). Прямоугольником "Q" показана область магнитной аномалии.

290

МАГНИТНЫЕ ТРАНЗИЕНТЫ ВО ВРЕМЯ ВСПЫШЕК 291

фазы совпали во всех точках влоль AB, за исключением области "Q", что дает четкие доказательства аномального изменения знака полярности в магнитном потоке в области "Q" во время максимальной фазы. В обоих случаях в области апомалии напряженность магнитного поля менялась от ~-1000 Гс (во время импульсной фазы) до +1000 Гс (во время максимальной фазы вспышки).

Чтобы изучить вариании магнитного потока аномалии со временем мы построили пространственно-временные карты магнитного потока в активных областях влоль линии АВ, указанной на рис.3. Временной промежуток включает периолы времени 04:00:05 UT - 04:37:30 UT для вспышки M5.7/2B (NOAA 11476) и 09:35:23 UT - 10:10:38 UT для вспышки М5.3/2В (NOAA 11515). Созданные таким образом пространственно-временные карты для обеих активных областей представлены на рис.4 (верхняя панель). По осям Х и У отложены время и долгота наблюдаемого магнитного потока вдоль динии АВ, соответственно. Эти карты показывают четкую структуру аномалий в магнитном поле вдоль линии АВ. Таким же образом были построены пространственно-временные карты интенсивностей АО в линии На. Соответствующие значения На вспышечных интенсивностей на рис.4 нанесены белыми сплонными линиями. В обоих случаях магнитная аномалия располагалась в узле вспыники и сохраняла свое местоположение со временем. Следует отметить, что плошаль, занимаемая гранзиентом, существенно меньше плошали узла вспышки в линии На.

Рис.4. Верхияя панель - пространственно-временные карты магнитного потока активных областей NOAA 11476 и NOAA 11515 влоль линии AB (рис.3) в области магнитной аномалии с соответствующими Нα вспышечными контурами (белые сплошные кривые). Нижняя панель - временные вариации магнитного потока влоль линии LM (сплошная кривая) и интегрального потока излучения в мягком рентгене по данным GOES-15 в лианазоне 1.0-8.0 Å (закрашенный профиль) в NOAA 11476 и NOAA 11515.

Ο.C.ΓΟΠΑCЮΚ

сплощными кривыми на рис.4 (нижняя панель). Закрашенным контуром представлен интегральный поток мяткого рентгеновского излучения, полученный на GOES-15 в диапазоне 1-8 Å. Рентгеновское излучение начинает расти на 1-2 мин раныше магнитного потока. Максимум напряженности поля в магнитной аномалии NOAA 11476 наступает на 2 мин позже максимума рентгеновского излучения. В NOAA 11515 напряженность в магнитной аномалии лостигает своего максимального значения практически одновременно с максимумом рентгеновского излучения. К моменту окончания вспышки профили магнитного потока в обеих активных областях возвращаются к своему до вспышечному уровню. Все это позволяет преднолагать, что инверсия магнитной полярности в обеих АО была вызвана вспышкой.

Во время максимальной фазы вспышек наблюдались вариации магнитного поля в области "Q", отражающие изменения напряженности существующих магнитных полей. На верхней панели рис.5 показаны среднеквалратичные

Рис.5. Верхняя панель - временные вариации гття магнитного поля, $< B^{2} >^{1/2}$ (сплошная кривая), средней относительной интенсивности в фогосферной линии, $I/I_{0,E:tt}$ (пунктирная кривая), плошади магнитной аномалии, S (шгриховая кривая), в области "Q" активных областей NOAA 11476 и NOAA 11515 и соответствующего интегрального потока мягкого рентгеновского излучения в лиапазоне 1-8Å по GOES-15 (закращенный профиль). На соответствующих нижних панелях временные вариации гття лучевых скоростей нисхолящих, Vdown (штриховая кривая), и восхолящих, Vup (сплошная кривая), погоков плазмы в области "Q" активных областей NOAA 11476 и NOAA 11476 и NOAA 11515 и соответствующих скоростей нисхолящих, Vdown (штриховая кривая), и восхолящих, Vup (сплошная кривая), погоков плазмы в области "Q" активных областей NOAA 11476 и NOAA 11515 и соответствующего интегрального интегрального потока мягкого рентиеновского излучения в диапазоне 1-8Å по GOES-15 (закращенный профиль).

значения магнитного поля $\left< B^2 \right>^{1/2}$ в областях магнитных аномалий как функция времени и соответствующие изменения площади магнитной аномалии *S*, средней относительной интенсивности в фотосферной линии *I*/*I*_{2,твах} и потока мягкого рештеновского издучения в дианазоне 1-8 A, полученного на GOES-15.

Напряженность поля постоянна с разными значениями до и после вспышки. Существенные изменения магнитного поля происходили только вблизи максимума ренттеновского излучения. Эти изменения происходили в тени пятен отрипательной полярности и сопровождались импульсным увеличением средней интенсивности. Для NOAA 11476 интенсивность увеличилась в среднем на 8%. Для NOAA 11515 - на 17%. В обоих случаях максимальные площали аномалий составили примерно 7 кв. с дуги и пришлись на максимальную фазу вспышск. В NOAA 11476 транзиент существовал в течение 8 мин; в NOAA 11515 - 6 мин.

Изменения среднеквалратичных скоростей нисходящих Vdown и восхолящих Vup потоков в области магнитной аномалии и соответствующего потока мягкого рентгеновского излучения представлены на нижней панели рис.5. Восходящая скорость демонстрирует только плоский тренд порядка 400-500 м/с, который в основном определяется врашением Солнца. Видно, что при нарастании вспышечного излучения в NOAA 11476 скорость нисходящих потоков импульсно увеличивается примерно в три раза, и уже через 4-5 мин возвращается к довспышечным значениям. В NOAA 11515 скорость нисходящих потоков не показывает существенного изменения.

В нелом, восхолящие потоки в обоих случаях доминируют над областью апомании. При этом ни нисходящие, ни восходящие потоки не испытывают существенных изменений со временем и не показывают никакой корреляции с областями изменения знака магнитного поля.

4. Выводы. Проведены исследования продольного магнитного поля активных областей NOAA 11476 и NOAA 11515 по данным инструмента SDO/HMI. Обе AO во время вспышек находились вблизи центрального мерилиана. В течение максимальной фазы вспышек M5.7/2B (NOAA 11476, 10 мая 2012г.) и M5.3/2B (NOAA 11515, 4 июля 2012г.) в магнитном поле AO появились транзиентные структуры. Этот феномен не совсем понятен, потому что есть вопросы относительно их физического механизма и связи с наблюдаемым аномальным изменением знака магнитной полурности, ядрами вспышки в Hα и т.д. Из данных наблюдений нами были получены следующие важные характеристики этих особенностей, возникщих во время максимальной фазы вспышек M5.7/2B и M5.3/2B:

1) В сильных магнитных полях отрицательной полярности возникли

Ο.С.ΓΟΠΑСЮК

области сильных полей положительной полярности. Напряженности магнитного поля менялись от -1000 Гс в предвелышечный момент до +1000 Гс во время максимальной фазы вспышек. Изменение магнитного поля в транзиентных сгруктурах сопровожлалось сильным импульсным увеличением средней относительной интенсивности (до 17%). Эти структуры располагались в тени пятен, существовали в течение 6-8 мин и показали пространственное и временное соответствие ядрам вспышек, наблюдаемым в Н α . В обоих случаях площаль, занимаемая аномалиями, составила примерно 7 кв. с дуги, что существенно меньше площади соответствующего узла Н α вспышки.

2) Между изменениями потока мягкого рентгена в диапазоне 1-8 Å, магнитного потока в аномалии, ее площали и изменениями средней относительной интенсивности в фотосферной линии наблюдается хорошая корреляция. Аномальные изменения знака магнитной полярности во время вспышек M5.7/2B 10 мая 2012г. в NOAA 11476 и M5.3/2B 4 июля 2012г. в NOAA 11515 июля 2012г. в NOAA 11476 и M5.3/2B 4 июля 2012г. в NOAA 11515 были схожими по своим характеристикам с событиями, наблюдаемыми во время вспышек Х-класса, например, в NOAA 10486 и в NOAA 11515 во время вспышек X10/2B 29 октября 2003г. и X2.2 15 февраля 2011г., соответственно [10,18].

Аномальное изменение знака магнитной полярности во время монных вспышек наблюлалось и по данным инструментов GONG и MD1, которые в своих измерениях используют линию Ni 1 6768 Å (см., например, [5,18]), тогла как ланные HMI для вспышек M5.7 и M5.3, исследованные в этой статье, основаны на измерениях в линии Fel 6173.3 Å. Таким образом, транзиентные структуры, возникающие во время максимальной фазы вспышек, по-видимому, не связаны с линией и инструментом, используемыми в измерениях. Эти обстоятельства являются дополнительным аргументом, позволяющим рассматривать наблюдаемые магнитные транзиенты как наблюдательные характеристики физических процессов, происходящих в фотосфере активных областей во время максимальной фазы вспышки.

В этой работе используются данные GONG NSO под управлением AURA в соответствии с соглашением о сотрудничестве с NSF и при дополнительной финансовой поддержке NOAA, NASA и BBC США.

Автор благодарен NASA/SDO и HMI научной команде за возможность доступа к базам данных по сети Интернет. Данные о мягких рептгеновских потоках GOES доступны в NASA/GSFC Solar Data Analysis Center (SDAC). Работа выполнена при частичной финансовой поддержке в рамках научного проекта РФФИ 16-02-00221 А.

Крымская астрофизическая обсерватория РАН, Крым, Россия, e-mail: olg@craocrimea.ru

МАГНИТНЫЕ ТРАНЗИЕНТЫ ВО ВРЕМЯ ВСПЫШЕК

MAGNETIC TRANSIENTS DURING THE FLARES ON 2012 MAY 9 IN NOAA 11476 AND ON 2012 JULY 4 IN NOAA 11515

O.S.GOPASYUK

Longitudinal magnetic field changes in NOAA 11476 and NOAA 11515 during M-class solar flares were studied. Observations of the line-of-sight magnetic flux were carried out by the Solar Dynamics Observatory Helioseismic and Magnetic Imager (SDO/HMI) with temporal and spatial resolutions of 45s and 0".5 pixel⁻¹, respectively. During the peak phase of the M5.7/2B flare in NOAA 11476 on 2012 May 9 and the M5.3/2B flare in NOAA 11515 on 2012 July 4 an abrupt change in the magnetic field of active regions occurred. The transient features with the opposite sign appeared in strong magnetic fields of negative polarity. Transients were located in sunspot umbrac and existed for a few minutes. These magnetic field features are studied in detail.

Key words: Sun: activity: flares: magnetic fields

ЛИТЕРАТУРА

- 1. A. Patterson, H. Zirin, Astrophys. J., 243, L99, 1981.
- 2. N.I.Lozitskaya, V.G.Lozitskii, Sov. Astron. Lett., 8, 270, 1982.
- 3. H. Wang, Solar Phys., 140, 85, 1992.
- 4. II. Wang, Jr. M. W. Ewell, H. Zirin et al., Astrophys. J., 424, 436, 1994.
- 5. A.G.Kosovichev, V.V.Zharkova, Astrophys. J., 550, L105, 2001.
- 6. H.Wang et al., Astrophys. J., 576, 497, 2002.
- 7. J.J.Sudol, J.W.Harvey, Astrophys. J., 635, 647, 2005.
- 8. G.J.D.Petrie, J.J.Sudol, Astrophys. J., 724, 1218, 2010.
- 9. S. Wang et al., Astrophys. J., 745, L17, 2012.
- 10. R.A. Maurya, P. Vemareddy, A. Ambastha, Astrophys. J., 747, 134, 2012.
- 11. O.Burtseva, J.C.Martunez-Oliveros, G.J.D.Petrie et al., Astrophys. J., 806, 173, 2015.
- 12. T.J.Spirock, V.B.Yurchyshyn, H.Wang, Astrophys. J., 572, 1072, 2002.
- 13. II. Wang, Astrophys. J., 649, 490, 2006.
- 14. Y.L.Song, M.Zhang, Astrophys. J., 826, 173, 2016.
- 15. A. Patterson, Astrophys. J., 280, 884, 1984.
- 16. J.Schou et al., Solar Phys., 275, 229, 2012.
- 17. S.M. White, R.J. Thomas, R.A. Schwartz, Solar Phys., 227, 231, 2005.
- 18. R.A. Maurya, A. Ambastha, Solar Phys., 258, 31, 2009.

295

АСТРОФИЗИКА

TOM 61

МАЙ, 2018

ВЫПУСК 2

обзоры

ЛЕГКИЕ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ В ЗВЕЗДАХ: ЗАГАДКИ И НЕРЕШЕННЫЕ ПРОБЛЕМЫ

л.с.любимков

Поступила 30 ноября 2017 Принята к печати 7 марта 2018

Рассмотрены первые восемь элементов периолической системы химических элементов: 11. Не, І.І. Вс. В. С. N и О. Их называют ключевыми элементами, учитывая их важную родь в звездной эволюции. Примечательно, что все они первоначально были синтезированы в Большом Взрыве. В обзоре привелены первичные содержания изотопов этих элементов, рассчитанные на основе СМБВ (Стандартная Модель Большого Взрыва). Отмечено хорошее согласие межну СМБВ и наблюдаемыми первичными содержаниями изотопов водорода и (елия D, Че и Че; олнако для лигия (изотоп ⁷Li) имеет место расхождение -0.5 dex межлу СМБВ и наблюдениями старых звезд гало Галактики, которое еще не получило объяснения. Солержания легких элементов в атмосферах звезд зависят от начальной скорости вращения, поэтому рассмотрены типичные скорости вращения молодых звезд на сталии Главной последовательности (ГП). Поскольку данные относительно содержаний легких элементов в звездах очень обширны, основной акцент в обзоре сделан на некоторых нерешенных проблемах. Солержание телия Не/Н у ранних В-звезд III показывает увеличение с возрастом; в частности, лля самых массивных В звезд с массами $M = 12 - 19 M_{\odot}$ величина He/H повышается к конну ПІ более чем в ява раза. Теоретические модели звезд с вращением не могут объяснить столь значительное повышение Не/Н. Для ранних В- и позлних О-звезд ГП, являющихся компонентами тесных двойных систем, величина Не/Н показывает резкий скачок в середине сталии ГП, представляющий загадку для теории. Аномальное содержание гелия (и лития) в атмосферах химически некулярных звезд (пины He-s, He-w, HgMn, Ap и Am) объясняют на основе диффузии атомов в поверхностных слоях звезд, однако эта гипотеза пока не может объяснить всех особенностей химического состава таких звезд. Содержания лития, беридлия и бора у ГСК-карликов показывают тренл с понижением эффективной температуры Т., а также провал на Т - 6600 К в Гиадах и других старых скоплениях. Оба эти явления относятся к числу нерешенных проблем. В случае лития особый интерес вызывают FGKгиганты и сверхгиганты, богатые литием (у них loge(Li) ≥ 2). Большинство их не находит объяснения в рамках стандартной теории звездной эволюции, поэтому привлекаются нестанлартные гипотезы: нелавний синтез лития в звезде и захват звездой гигантской планеты с массой Юнитера и больше. Анализ содержаний углерода, азота и кислорода у ранних В- и нозених О-звезд ГП приводит к выводу о сверхионизации ионов С II, N II и О II в их атмосферах Для ранних В-звезд ГП получено хорошее согласие между наблюдаемыми значениями отношения N/O и расчетами моделей вращающихся звеза. Получено количественное объяснение известной антикорреляции "азот-углерод" у FGK-гигантов и сверхгигантов: она отражает зависимость аномалий N и C от начальной скорости вращения V₀. Однако те же модели врашающихся звезд, которые оказались успешными в случас С, N и O, не могут объяснить наблюдаемое повышение содержания гелия у ранних В-звезд ГП.

Ключевые слова: звезды: химический состав: вращение звезд: звездная эволюция

1. Введение. Первые восемь элементов периолической системы химических элементов - Н. Не, Li, Be, B, C, N и O - могут существенно менять свое наблюлаемое солержание в процессе звездной эволюции, начиная уже с первой, самой прололжительной сталии эволюции, когла в ядре звезды горит волорол: это сталия Главной последовательности (ГП). Их нередко называют ключевыми элементами (key elements), имся в виду их ключевую роль в понимании эволюции звезд. Эти элементы интересны также тем, что их первичный синтез был осуществлен в Большом Взрыве и для первых трех элементов (H, He и Li) имсются наблюлательные данные о первичном содержании их изотопов, которые можно сравнивать с космологическими моделями.

Эти элементы перечислены в табл.1, где наряду с их атомным номером указан наиболее распространенный изотоп, потенциал ионизации $E_{\rm non}$ и содержание loge(El) на Солние [1]. Все содержания приведены по отношению к водороду, который, как известно, является самым распространенным элементом в наблюдаемой Вселенной. Всличина loge(El) здесь дана в стандартной логарифмической шкале, где для водорода принято loge(H) = 12.00.

Следует отметить, что автором уже были опубликованы обзоры по гелию и литию, где были суммированы данные о наблюдаемых содержаниях Не и Li (огносительно H) в звездных атмосферах, а также рассмотрено их соответствие предсказаниям теории звездной эволюнии [2,3].

Литературные данные, касающиеся наблюдаемых содержаний легких элементов из табл.1, а также их теоретической интерпретации, очень богаты в случае Li, C, N и O, менее многочисленны для He и Be и достаточно белны для B. Однако в целом материал для обсуждения столь общирен, что

Таблица 1

Элемент	Атомный помер	Основной изотоп	Ели, ЭВ	loge(El)
Н	1	1H	13.60	12.00
Не	2	'He	24.59	10.99*
Li	3	7Li	5.39	1.05
Be	4	°Be	9.32	1.38
В	5	пВ	8.30	2.70
С	6	¹² C	11.26	8.43
N	7	14N	14.53	7.83
0	8	¹⁶ O	13.62	8.69

СПИСОК ВОСЬМИ САМЫХ ЛЕГКИХ ЭЛЕМЕНТОВ И ИХ СОДЕРЖАНИЯ В АТМОСФЕРЕ СОЛНЦА (Асплунд и др. [1])

Пинии телия в фотосферном спектре Солнпа не наблюдаются; приведенное здесь сопержание телия соответствует среднему содержанию для близких молодых В-звези [2]. его детальный анализ потребовал бы написания отлельной книги. Поэтому в настоящем обзоре основное внимание уделено только некоторым проблемам, которые представляют загадку для современной теории или, по крайней мере, еще не имеют общепринятого объяснения.

Отметим, что обсужлаемые ниже наблюдаемые содержания легких элементов были получены при отказе от условия ЛТР (локальное термодинамическое равновесие), по крайней мере там, где отклонения от ЛТР играют существенную роль.

2. Первичное содержание легких элементов.

2.1. Расчеты, выполненные на основе СМБВ. Загадки возникают уже в самом начале, когда рассматриваются последствия Большого Взрыва. Примечательно, что все эти восемь элементов первоначально были синтезированы в Большом Взрыве. В табл.2 приволятся современные данные [4] о первичном (primordial) содержании их изотопов, основанные на Стандартной Модели Большого Взрыва (СМБВ). В третьем столбне таблицы эти данные представлены в виде содержаний loge(El), редупированных в стандартную логарифмическую шкалу.

Интересно, что, в отличие от ранних работ, где на основе СМБВ предсказывался синтез только пяти первых легких элементов (H, He, Li, Be и B), современные данные включают в первичный нуклеосинтез также C,

Таблица 2

Величина	Содержание	logɛ(El)	logɛ(El) наблюдения
D/H	2.59×10^{-5}	7.41	7.403±0.007 [5]
4He/H	8.23×10 ⁻²	10.92	10.932=0.005 [6]
³ He/H	1.04×10 ⁻⁵	7.02	7.04±0.08 [7]
⁷ Li/H	5.24 × 10 ⁻¹⁰	2.72	2.2±0.1 [8,9]
⁶ Li/H	1.23×10^{-14}	-1.91	
'Be/H	9.60×10^{-19}	-6.02	
10 B /H	3.00×10^{-21}	-8.52	
$^{11}B/H$	3.05×10^{-10}	-3.52	
${}^{12}C/H$	5.34×10 ⁻¹⁶	-3.27	
¹³ C/H	1.41×10^{-16}	-3.85	
¹⁴ C/H	1.62×10^{-21}	-8.79	
$^{14}N/H$	6.76×10^{-17}	-4.17	
¹⁵ N/H	2.25×10^{-20}	-7.65	
16 O/H	9.13×10 ⁻²⁰	-7.04	
CNO/H	7.43×10^{-16}	-3.13	

ПЕРВИЧНОЕ СОДЕРЖАНИЕ ИЗОТОПОВ ВОСЬМИ ЛЕГКИХ ЭЛЕМЕНТОВ, РАССЧИТАННОЕ НА ОСНОВЕ СМБВ [4]

л.с.любимков

N и O. H хотя общий выход этих трех элементов очень мал (в сумме CNO H ~ 7×10^{-16}), даже столь незначительное их содержание могло сыграть определенную роль в эволюции самых первых звезд.

Наибольний выход в Больном Взрыве имели водород, гелий и литий. Для изотонов этих трех элементов имеются наблюлательные данные об их нервичном содержании; они представлены в последнем столбне табл.2. Здесь относительное содержание дейтерия D/H было получено из наблюлений межгалактических облаков нейтрального водорода, находящихся на пути излучения от квазаров с большим красным смещением; это явление известно как "damped Lya systems" [5]. Первичное содержание изотопа ⁴Не было определено из наблюдений областей H II в старых карликовых галактиках с низкой металличностью [6]. Первичное содержание ³Не было опенено из наблюдений областей H I в нашей Галактике [7]. И только первичное содержание лития, точнее, содержание его наиболее распространенного изотопа ⁷Li, было определено по звездам; это старые FGK-карлики гало Галактики [8,9].

Как видно из табл.2, наблюдаемые содержания изотонов волорода и гелия, т.е. дейтерия, ⁴Не и ³Не, очень хорошо согласуются с расчетами СМБВ. Совершенно иная ситуация имеет место для лития: наблюдаемое содержание loge(⁷Li) = 2.2 оказалось на 0.5 меньше значения 2.7, предсказанного теорией. Таким образом, данные о первичном содержании лития, полученные из наблюдений старых звезд гало Галактики, требуют отдельного рассмотрения.

2.2. Литий в старых звездах галактического гало. Первые наблюдения лития в спектрах старых FGK-карликов гало Галактики привели к открытию интересного факта: оказалось, что эти звезды, имеющие низкую металличность [Fe/H] < -1. демонстрируют удивительное постоянство солержания лития. Этот феномен, т.е. постоянство величины $\log_{\epsilon}(Li)$ в области [Fe/H] между -1 и -3, стали называть "литиевым плато" или "плато Спит" ("Spite plateau") по имени двух французских астрономов, которые 35 лет назад первыми открыли это явление [10]. Первое изображение "литиевого ниаго" из их работы воспроизведено на рис.1, где содержания $\log_{\epsilon}(Li)$ представлены как функция эффективной температуры T_{e} Злесь для "литиевого плато" была получена величина $\log_{\epsilon}(Li) = 2.05 \pm 0.15$; современное значение, как уже отмечалось, составляет $\log_{\epsilon}(Li) = 2.2$ [8,9].

Важно, что значение loge(Li) = 2.2 на 0.5 меныше величины 2.7, предсказанной СМБВ. Это расхождение известно уже давно, и все понытки устранить его путем усовершенствования СМБВ ни к чему не привели. В частности, недавно Кибурт и др. [11], использовав в расчетах современные значения скоростей ядерных реакций, получили первичные содержания

300

ЛЕГКИЕ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ В ЗВЕЗДАХ

Li/II = 4.648×10^{-10} и ⁶Li/H = 1.288×10^{-14} , чему в стандартной шкале соответствуют значения loge(⁷Li) = 2.67 и loge(⁶Li) = -1.89; эти значения практически совпадают с данными табл.2. Таким образом, расхождение ~0.5 dex между теорией и наблюдениями относительно первичного содержания ⁷Li сохраняется.

Рис.1. Первое изображение "литиевого плато" в статье Спит и Спит [10].

По мере накопления новых данных о содержании лития в атмосферах старых FGK-карликов галактического гало представление о "литисвом плато" претериело значительные изменения. Современное распределение величины $\log\epsilon(\text{Li})$ по T_{-} и [Fe/H] для таких звезд представлено на рис.2 (Любимков [3], по ланным [12]). Основное изменение по сравнению с рис.1 - "замороженная" горизонтальная линия на $\log\epsilon(\text{Li}) \sim 2$ стала "таять", как бы проливаясь каплями вниз (стрелки вниз указывают, что для содержания Li удалось опенить только верхний предел). Здесь около десятка звезд показывают содержание лития $\log\epsilon(\text{Li}) \leq 1.5$.

Слелует отметить, что в недавней работе Спит и др. [9] на примере большой выборки звезд было показано, что в достаточно ограниченной области металличности -2.8 < [Fe/H] < -2.0, звезды, как и на рис.1, по-прежнему группируются около "литиевого плато" со значением $\log_2(L_1) = 2.2$.

Несмогря на неоднократные попытки решить проблему относительно содержания Li в старых звездах гало Галактики, по-прежнему остаются загадкой для теории два важных вопроса:

1) почему существует несоответствие 0.5 dex между наблюдаемым содержанием лития и предсказанным на основе СМБВ первичным содержанием?

2) почему заметная часть карликов гало показывает содержание лития существенно ниже "литиевого плато"?

Пока не будут получены уверенные ответы на эти вопросы, проблему

Рис.2.Современное распрелеление содержания Li для звезд гало по а) индексу метальничности [Fe/H] и b) эффективной температуре T_{eff} [3]. Значки со стрелками вниз соответствуют верхним пределам значений loge(Li). Штриховая линия соответствует содержанию loge(Li) = 2.2.

лития для старых звезд гало нельзя считать решенной.

3. Скорости вращения молодых звезд. От старых звезд гало Галактики нерейлем к рассмотрению молодых звезд тонкого диска. Эволюция таких звезд, в том числе эволюция содержаний легких элементов в их атмосферах, зависит не только от массы звезды M, но также от начальной скорости вращения V_{α} . Важная роль вращения стала понятной, когла от расчетов

тралинионных звезлных молелей без врашения был совершен переход к молелям вращающихся звезд [13]. Вследствие вращения в звезде возникает перемещивание, которое может привести к изменению содержаний ряда химических элементов на се поверхности. Расчеты показали, что эффект тем заметнее, чем больше масса M и скорость вращения V_0 .

Влияние переменивания, инлунированного вранением, для звезд с массами $M > 2M_{\odot}$ проявляется уже на сталии ГП. Для таких звезд основную роль играют реакции СNO-никла в ядре звезды, и здесь перемениявание вследствие вранения проявляет себя с двух сторон. С одной стороны, из недр звезды на поверхность выносятся пролукты СNO-никла, вследствие чего в атмосфере звезды увеличиваются содержания Не и N и уменьшается содержание С. С другой стороны, с поверхности звезды в более глубокие и более горячие слои переносятся атомы Li, Вс и В, гле они выгорают в реакции (р, α), в результате чего содержания Li, Вс и В в атмосфере звезды понижаются.

Рассматриваемые ниже звезды имеют массы M в диапазоне от 1 до $40 M_{\odot}$ (тесь M_{\odot} - масса Солнца). Эволюционные расчеты показывают, что звезды с массами $M \ge 20 M_{\odot}$ на начальной ГП (то есть на ZAMS = Zero Age Main Sequence) являются О-звездами, а звезды с $M \approx 4-19 M_{\odot}$ на ZAMS соответствуют ранним В-звездам. Звезды с $M \approx 2-3 M_{\odot}$ на ZAMS являются поздними В- и А-звездами, а объекты с $M = 1-2 M_{\odot}$ - F- и G-карликами. Поскольку начальная скорость вращения V_{9} играет важную роль в дальнейшем обсуждении, возникает вопрос: какие реальные скорости вращения наблюдаются у таких звезд в начале стадии ГП?

Слелуст отметить, что скорость вращения в течение стадии ГП, согласно расчетам молелей вращающихся звезд, должна уменьшаться. Например, из расчетов [14] следуст, что скорость вращения к концу ГП может понизиться на 10-20% и даже до 100%; конкретная величина зависит от V_0 и *М*. Однако радикальное понижение скорости вращения происходит позже, когда звезда покидает ГП и переходит в стадию холодного гиганта или сверхгиганта. Поэтому в качестве первого приближения можно принять, что изменения скорости вращения на ГП незначительны; тогда поставленный выше вопрос можно сформулировать в более общем виде: какие скорости вращения наблюдаются у звезд на стадии ГП?

Как известно, из наблюдений находится величина Vsini, проекция скорости врашения на экваторе V на луч зрения. Заметим, что для перехода от Vsini к V следуст принять во внимание, что среднее значение случайной величины sini равно $\pi/4$ [15]. Современные данные, особенно для горячих звезд классов О и В, позволяют существенно пересмотреть представления о значениях Vsini и V у звезд на стадии ГП, имевшие место еще 30 лет назад (см., например, справочник Аллена [15]). Вкратце они сводятся к следующему.

л.с.любимков

Среди звезд классов О и В, как оказалось (в отличие от прежних представлений), велика доля звезд с относительно медленным вращением [16-18]. Действительно, большинство ранних В- и О-звезд, точнее около 70-80%, имели в начале эволюнии на ГП небольшие скорости врашения ~0-150 км/с. При этом значительная их часть попадала в еще более узкий интерван 0-50 км/с. Число тех же звезд с относительно высокими скоростями вращения, от 150 до 300-400 км/с, было невелико: ~20% для ранних В-звезд с массами $M \approx 4-19 M_{\odot}$ и ~30% для поздних О-звезд с $M = 20-40 M_{\odot}$.

Более поздние В-звезды и А-звезды с массами M от 4 до $2.5 M_{\odot}$ показали бимодальное распределение с максимумами на 50 км/с и 260 км/с при полном интервале значений V от 0 до 300-400 км/с [16]. Поздние А- и ранние F-звезды с массами M от 2.0 до $1.6 M_{\odot}$ показали унимодальное распределение скорости V с максимумом на ~150 км/с [19].

При дальнейшем понижении M наблюдается быстрое уменьшение V. Обнаружен резкий спал V от ~150 до 10 км/с для F-звезд с $M \approx 1.4 M_{\odot}$ (карлики подкласса F4). Отметим, что с этим явлением связывают известный "провал Li и Be" на T_{ef} ~6600 K в старых сконлениях, например, в Гиадах (см. раздел 5.1). Для менее массивных звезд с $M \leq 1M_{\odot}$ на ГП характерны малые скорости вращения < 10 км/с. Напомним, что у Солнца, карлика G2V, скорость вранения на экваторе V = 2 км/с [15].

Эти особенности в распределении мололых звезд по скоростям вращения, как будет видно из дальнейшего, играют важную роль в интерпретации наблюдаемых солержаний легких элементов не только для звезд на стадии ГП, но и на последующей стадии AFG-сверхгигантов.

4. Отношение "гелий/водород". Гелий, элемент номер два в периолической системе химических элементов, по своей распространенности в наблюдаемой Вселенной (в звездах и в газовых туманностях) является вторым элементом после водорода. Относительно гелия необходимо зафиксировать две важных величины. Во-первых, первичное (primordial) отношение "гелий/ водород" (по числу атомов) составляет He/Hp = 0.082 (табл.2). Во-вторых, современное начальное содержание гелия для молодых В-звезд в окрестности Солнца в среднем равно He/H = 0.098 ± 0.003 [2]. Обогащение межзвездной среды гелием примерно на 20% за время жизни Галактики, как показывают модели се химической эволюции, произопело в основном за счет взрывов массивных сверхновых II типа.

Ниже обсуждаются данные о содержании наиболсе обильного изотона гелия ⁴Не. Вклад другого изотона ³Не в содержание гелия очень мал; например, для Солнца 3 Не/ 4 Не = 1.7×10^{-4} [1].

4.1. Обогащение гелием атмосфер ранних В-звезд ГП. Линии
нейтрального гелия вследствие высокого потенциала ионизации этого элемента (табл.1) паблюдаются лишь в спектрах горячих звезд от О до ранних А. Особенно полные данные о содержании гелия получены для ранних В- звезд, гле линии Не 1 особенно сильны.

Как известно, на сталии ГП основным источником энергии звезд с массами $M > 2M_{\odot}$ является СNO-пикл. На этой сталии в ядре звезды горит волорол, преврашаясь в гелий, при этом отношение He/H в педрах звезды сильно увеличивается (к концу фазы ГП волорол в ядре звезды полностью перерабатывается в гелий). Как оказалось, одновременно у ранних В-звезд ПП величина He/H может повышаться и в атмосфере. Свидетельства этого были получены автором еще 40 лет назад [20,21], однако тогда они оказались полной неожиданностью для теории. Позже стало понятно, что причиной наблюдаемого увеличения He/H на ГП может быть перемещивание, индупированное вращением звезды и приводящее к выносу продуктов CNO-цикла (включая гелий) из звездных педр на поверхность.

Достаточно полные данные об обогашении атмосфер В-звезд ГП гелием были получены Любимковым, Ростончиным и Ламбертом [22], гле был выполнен не-ЛТР анализ содержания гелия для 102 ранних В-звезд ГП (две из них оказались химически пскулярными звездами типа "He-weak"). Массы 100 звезд, подвергнутых дальнейшему анализу, варьировались от 4 до $19M_{\odot}$, а их наблюдаемые скорости врашения *Vsin1*, найденные в [22] по тем же шести линиям Не I, что и содержание гелия, менялись в диапазоне от 0 до 280 км/с. Анализ этих данных показал, что в течение стадии ГП наблюдается повышение He/H с возрастом звезд, причем этот эффект имеет тепденцию расти с массой M и скоростью вращения.

На рис.3 и 4, взятых из [22], представлена зависимость величины He/H от относительного возраста t/t_{MS} (здесь t - возраст и t_{MS} - время жизни звезды данной массы на ГП) для двух групп звезд с разными массами M: звезды с $M = 4 - 7M_{\odot}$ (рис.3) и более массивные звезды с $M = 12 - 19M_{\odot}$ (рис.4). Для первой группы повышение величины He/H в течение стадии ГП составляет в среднем 28%, а для второй группы обнаружено повышение He/H к концу ГП в среднем более чем в два раза. Особенно высокое содержание гелия He/H = 0.27 и 0.24 здесь показали два гиганта. HR 7446 и 7993, что связано, по-видимому, с их высокими скоростями вращения (*V*sin*i* = 270 и 224 км/с, соответственно).

В целом рис.3 и 4 как будто согласуются с расчетами моделей врашающихся звезд. Теория предсказывает, что обогащение атмосфер звезд гелием в течение стадии ГП тем выше, чем больше масса звезды и ее скорость вращения. Однако если говорить о количественных оценках, то согласия с теорией нет.

Например, современные расчеты [14] предсказывают, что для модели с

 $M = 15 M_{\odot}$ даже при начальной скорости вращения $V_0 = 500$ км/с (0.9 критической скорости) получается повышение He/H в атмосфере только на 28%, что не согласуется с наблюлаемым увеличением He/H в два раза для

Рис.3. Зависимость He/H от огносительного возраста для В-звезд III с массами $M = 4 - 7 M_{\odot}$.

Рис.4. Зависимость He/H от относительного возраста для В-звезд ITI с массами $M = 12 - 19 M_{\odot}$.

звези с $M = 12 - 19 M_{\odot}$ (рис.4).

Межлу тем, как указано в разлеле 3, большинство (~80%) ранних В-звезд ITI с массами $M = 4 - 19 M_{\odot}$ имеет относительно небольшие скорости врашения 0-150 км/с. Важно, что ланные работы [22] вполне соответствуют этому выволу; лействительно, среди 100 исследованных там звезд 85 объектов (т.е. 85%) имеют $V \sin i \le 150$ км/с, 15 звезд показывают $V \sin i \ge 150$ км/с и только 8 звезд - $V \sin i \ge 200$ км/с. Однако только при скоростях вращения 400-500 км/с, согласно расчетам [14], возможно заметное увеличение He/H в атмосфере звезды.

Итак, существуют серьезные разногласия межлу теорией и наблюдениями. Наблюдательные ланные о повышении содержания гелия в атмосферах ранних В-звезд ГП позволяют предположить, что теоретические модели сильно недоопенивают вынос гелия, основного продукта СNO-цикла, на поверхность звезды в результате перемешивания. Иначе говоря, можно предположить, что вынос гелия начинается при гораздо меньших скоростях врашения, чем получено в современных теоретических моделях.

Таким образом, объяснение наблюдаемого обогащения гелием атмосфер ранних В-звезд ГП остается для теории нерешенной проблемой.

4.2. Гелий в тесных двойных системах. Совершенно уникальное новеление He/H наблюдается у горячих звезд, являющихся компонентами тесных двойных систем. Свидетельством этого является рис.5, где представлена зависимость He/H от относительного возраста t/t_{MS} для компонентов пяти двойных В-звезд, исследованных в КрАО [23] (заполненные кружки). Здесь было выполнено индивидуальное определение как базисных параметров T_{MS} и logg, так и содержания гелия He/H отдельно для каждого компонента.

На рис.5 также показаны значения Не/Н для компонентов двух двойных О-звезд, взятые из [24,25] (открытые кружки). Все эти системы имеют орбитальные периолы от 2 до 14 дней и они еще не достигли фазы обмена массой между компонентами.

Как видно из рис.5, в отличие от постепенного, монотонного увеличения He/H, наблюдаемого у одиночных горячих звезд (рис.3 и 4), у компонентов тесных двойных систем в течение первой половины эволюции на ГП ($t/t_{MS} < 0.5$) сохраняется низкое (исходное) содержание гелия. Затем на коротком промежутке t/t_{MS} от 0.5 до 0.7 происходит резкое повышение He/H примерно в два раза, после которого величина He/H до конца стадии ГП остается на этом повышенном уровне.

Для современной теории такое скачкообразное повышение Пе/Н в атмосфере в середине стадии ГП представляет загадку.

Необходимы расчеты перемешивания на ГП не только для одиночных

Рис.5. Зависимость He/H от относительного возраста для ранних В-звезд и О-звезд ГП, являющихся компонентами гесных лвойных систем.

звезд, но и для компонентов тесных двойных систем, где наряду с вращением, по-вилимому, следует учитывать приливное взаимодействие компонентов.

4.3. Гелий в атмосферах химически пекулярных звезд. Особый интерес в течение уже нескольких десятилетий вызывают химически некулярные звезды (СР-звезды) спектральных типов А, В и F, у которых наблюдаются сильные отличия в содержаниях элементов от звезд с нормальным (солнечным) химическим составом. Солержание гелия у них тоже показывает апомалии. Список пяти типов СР-звезд представлен в табл.3, взятой из [2]; здесь для каждого типа указаны характерные интервалы значений $T_{\rm eff}$ и He/H, известные из литературы. По-видимому, все эти звезды находятся на стадии ГП.

В классе В наблюдаются два типа СР-звезд с разными аномалиями гелия: звезды "He-strong" (He-s или He-r = He-rich) с усиленными линиями гелия и звезды "He-weak" (He-w) с ослабленными линиями гелия. Для первого типа наблюдается повышенное содержание гелия He/H $\approx 0.3 - 10$, а для вгорого, напротив, пониженное содержание He/H $\approx 0.005 - 0.05$. Интересно, что в области темнератур $T_{\rm eff}$ между 17000 и 25000 К на стадии ГП одновременно наблюдаются три разных типа В-звезд: He-s, He-w и пормальные В-звезды. Этот феномен остается одной из нерешенных проблем СР-звезд.

Очевидно, что объяснение аномального содержания гелия у СР-звезд слелует искать совместно с объяснением других особенностей химического

Таблица З

ЭФФЕКТИВНЫЕ ТЕМПЕРАТУРЫ *Т.* И СОДЕРЖАНИЯ ГЕЛИЯ Не/Н. ХАРАКТЕРНЫЕ ДЛЯ ПЯТИ ТИПОВ ХИМИЧЕСКИ ПЕКУЛЯРНЫХ ЗВЕЗД [2]

Тип звезд	Область Т _{еї} (приближенно)	Диапазон значений Не/Н
He-strong	17000-32000	0.3-10
He-weak	13000-25000	0.05-0.005
HgMn	10000-14000	0.05-0.005
Лт	7300-10000	0.03-0.006
Магнитныс Ар	7500-11000	< 0.05

состава этих объектов, включая следующие:

1) Для магнитных Ар-звезд и звезд типов Am и HgMn хорошо известен тренд в поведении химических аномалий: избытки элементов в среднем растут с увеличением атомного номера Z (см., например, [26]). Если для легких элементов эти избытки обычно малы или даже имеют знак "минус", то с новышением Z они возрастают вилоть до 6-7 dex для самых тяжелых элементов [27].

2) Для СР-звезд, показывающих значительные магнитные поля (Ар, He-s и некоторые звезды He-w), характерно неоднородное распределение элементов по поверхности звезды. Пятна одних элементов, в том числе пятна гелия и лития, располагаются в области магнитных полюсов, пятна других элементов либо коннентрируются к магнитному экватору, либо вовсе не показывают какой-либо системы в своих положениях.

3) Характерной особенностью СР-звезд является стратификания элементов, т.е. сильная зависимость их содержаний от глубины. При этом разные элементы могут показывать принципиально разнос поведение: у одних обнаруживаются сильные избытки в высоких слоях атмосферы, а у других, напротив, в этих слоях наблюдается дефицит при нормальном или повышенном содержании в более глубоких слоях (это зависит не только от элемента, но и от конкретного типа СР-звезды).

В качестве основного объяснения перечисленных особенностей химического состава СР-звезд предлагается гипотеза диффузии. Это означает, что указанные особенности не связаны с термоядерными процессами в недрах звезды, а являются результатом диффузии атомов в ее поверхностных слоях, происхолящей под действием двух противоположно направленных сил - гравитации и давления излучения. В магнитных СР-звездах добавляется еще действие магнитного поля.

Детальные расчеты лиффузии для какой-нибудь одной конкретной СРзвезды, которые смогли бы дать количественное объяснение всем наблюдаемым явлениям, включая общий тренд избытков всех наблюдаемых элементов с ростом Z, карту распределения иятен различных элементов по поверхности звезды и распределение разных элементов по глубине, является трудной задачей. Полностью она пока не решена ни для одной СР-звезды.

5. Литий, бериллий и бор. Литий, бериллий и бор представляют единую группу элементов с точки зрения эволюции, так как их выгорание в звездах происходит в одном и том же процессе - в реакции (р, α). Однако этот процесс начинается при разных температурах, $T \sim 2.5$, 3.5 и 5.0×10^6 К для Li. Ве и B, соответственно. Следовательно для изменения наблюдаемого содержания Ве и особенно B требуется более глубокое переменцивание, достигающее более горячих слоев звезды, чем для лития.

Отсюда следует заключение, что бериллий и бор являются гораздо менее чувствительными индикаторами эволюции, чем литий. Такой вывод подтверждают как наблюдения, так и теория. Например, расчеты [28] модели звезды с массой $12 M_{\odot}$ и начальной скоростью вращения 100 км/с показали, что к концу ГП изменение содержания лития в атмосфере составляет -3.0 dex. бериллия - -1.5 dex и бора - только -0.5 dex.

Имеются исключительно богатые публикации по литию, гораздо менее многочисленные по бериллию и сравнительно бедные по бору (для последних необходимы УФ наблюдения из космоса). Эти данные позволяют сделать некоторые интересные выводы.

5.1. Особенности содержаний лития, бериллия и бора в атмосферах FGK-карликов диска Галактики. Начальное содержание лития у звезд тонкого диска в окрестности Солнца составляет loge(Li) = 3.2 [3]. Эта величина на порядок превышает "реликтовое" значение loge(Li) = 2.2 ("литиевос плато"), найденное для старых карликов гало Галактики (см., раздел 2.2). Возникает вопрос: как мог появиться этот дополнительный литий в тонком диске?

Современные модели химической эволюции Галактики дают ответ на этот вопрос (см. [3]). Обогащение межзвездной среды литием (изотоном ⁷Li) происходило за счет истечения или выбросов вещества из звезд следующих типов: маломассивные красные гиганты (до 40%), звезды АВГ (Асимитотическая Ветвь Гигантов) и новые. Около 20% изотона ⁷Li (и 100% изотона ⁶Li) дали галактические космические лучи, которые порождали реакции скалывания (spallation reactions) на более тяжелых и гораздо более обильных ядрах атомов С, N и O в межзвездной среде.

Во время эволюнии на стадии ГП солержание лигия в атмосферах

карликов спектральных типов F. G и K заметно изменяется относительно начального значения $\log_{E}(Li) = 3.2$. Этот процесс зависит от эффективной температуры $T_{e^{it}}$ (то есть фактически от массы M) и от возраста, а именно: солержание Li понижается с возрастом, причем тем быстрее, чем меньше $T_{e^{it}}$ или M. В частности, для Солина за время его жизни t = 4.5 млрл лет, как показывают современные опенки [1,29,30], приведенные в табл.4, содержание лития в атмосфере понизилось примерно в 140 раз относительно начального значения $\log_{E}(Li) = 3.2$.

Таблица 4

СОВРЕМЕННЫЕ ОЦЕНКИ СОДЕРЖАНИЯ ЛИТИЯ В ФОТОСФЕРЕ СОЛНЦА, ПОЛУЧЕННЫЕ НА ОСНОВЕ ГИДРОДИНАМИЧЕСКИХ 3D-МОДЕЛЕЙ СОЛНЕЧНОЙ АТМОСФЕРЫ

loga(Li)	Работа
1.05±0.10	Асплунд и лр. [1]
1.03±0.03	Каффау и лр. [29]
1.07±0.02	Монро и лр. [30]

Особенно хорошо зависимость loge(Li) = 3.2 от T_{eff} обнаруживается при исследовании звезд одного скопления, так как их возраст приблизительно одинаков. Помимо тренла в содержании Li с T_{eff} у FGK-карликов старых скоплений, в частности, для скопления Гиалы (возраст ~700 млн лет) был обнаружен еще один загалочный феномен: глубокий провал ("Li dip") в распределении содержания Li вблизи $T_{eff} \approx 6600$ K [31].

На рис.6, взятом из [26], представлено распределение содержания Li для FGK-карликов Гиал, а также (для сравнения) для карликов более молодого скопления Плеяды, его возраст ~100 млн лет. Видно, что в Плеядах тренд в содержании Li с понижением T_{eff} менее выражен, а литиевый провал вообще отсутствует.

Позже аналогичный провал ("Ве dip") для звезд в Гиалах, но не столь глубокий, был обнаружен и для бериллия [32]. Интересно, что в более мололых рассеянных скоплениях Плеяды и α Per ($t \sim 100$ млн. лет) провал Ве не обнаружен, в то время как в скоплении Coma Ber = Mel 111 ($t \sim 500$ млн. лет) провал Ве, сравнимый по глубине с провалом в Гиалах, присутствует [33]. Отсюда следует, что провал Ве, как и провал Li, появляется у звезд ГП с массами $M = 1 - 2M_{\odot}$ в интервале возрастов от 100 до 500 млн лет.

Нелавно Боесгард и др. [34] получили новые данные для звезд в Гиадах, которые показали, что наряду с провалом лития и бериллия наблюдается также провал бора ("В dip"). Здесь содержание бора для нескольких звезд

Рис.6. Распределение содержания лития по эффективной температуре для FGK-карликов скоплений Гиалы (а) и Плеялы (b) [26].

было определено по УФ линии BI 2496.8 Å (наблюдения на HST). Глубина провала в этих трех случаях разная: более 2.0 dex для Li, около 1.0 dex для Be и 0.4 dex для B. Такое различие является вполне ожидаемым, так как из этих трех элементов, как уже отмечалось, наиболее чувствительным инцикатором эволюции является литий, а менее чувствительными бериллий и особенно бор.

Провал в распределении содержаний Li, Ве и В вблизи значения T_{eff} = 6600 K у звезл в Гиадах, возможно, связан с отмеченным выше фактом (см. раздел 3), что как раз на этом значении T_{eff} у F-карликов в Гиадах наблюдается резкий спад в скорости вращения V от ~150 до 10 км/с [34].

Изложенные выше проблемы можно было бы считать решенными, если бы какие-то модельные расчеты позволили воспроизвести наблюдаемое распределение содержаний Li, Be и B по T_{eff} например, для звезд в Гиадах (как на рис.6). Однако такие расчеты пока не выполнены.

Таким образом, понижение содержания лития и бериллия в атмосферах

ЛЕГКИЕ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ В ЗВЕЗДАХ

IGK-карликов (включая Солнце, где Li понижен в 140 раз), а также тренд с Т., и провал в содержаниях Li. Be и B у звезд старых скоплений типа Гиад остается для теории нерешенной проблемой.

5.2. Литий в атмосферах холодных гигантов и сверхгигантов. Литию посвящено огромное число публикаций. Столь богатый материал позволяет, в огличие от бериллия и бора, обсужлать результаты о солержании Li не только для холодных карликов ГП, но и для звезд на более продвинутой сталии эволюции - стадии FGK-гигантов и сверхгигантов.

Как известно, эта стадия сопровождается глубоким конвективным перемешиванием (ГКП), в результате которого происходят значительные изменения в наблюдаемых содержаниях некоторых легких элементов (напомним, что такие изменения могут начаться уже на стадии ГП, если имело место перемешивание вследствие вращения). В частности, ГКП приводит к повышению содержания азота и понижению содержания углерода, а содержание лития в атмосфере можст уменьшиться до необнаружимо малой всличины. При этом, как отмечено в [3], изменения в содержании Li в фазе ГКП начинаются раньше, чем в содержаниях С и N.

Давно известна антикорреляния между солержаниями азота и углерода у FGK-гигантов и сверхгигантов; она обсуждается в разделе 6.3. Что касается лития, то большинство таких звезд вообще не показывает Li в своих спектрах. Таким образом, лития в атмосферах таких звезд мало или он полностью выгорел. Современные модели звезд с вращением вполне объясняют этот факт.

Иллюстрацией к сказанному могут служить результаты, полученные в работах [35] и [36]. В первой из них было получено содержание лития для 55 FGK-сверхгигантов и гигантов, во второй работе число таких звезд было увеличено до 146.

На рис.7 представлено содержание лития $log\epsilon(Li)$, полученное в двух упомянутых работах, в зависимости от массы *M*. Открытыми значками показаны данные [35], заполненными значками - данные [36]. Треугольники соответствуют верхнему пределу величины $log\epsilon(Li)$ (то есть линия лития в спектрах таких звезд не наблюдается).

Эти эмпирические данные, а также данные теории показывают, что FGK-сверхгиганты и тиганты по содержанию лития разделяются на две группы с массами $M \le 6M_{\odot}$ и $M > 6M_{\odot}$.

Для звеза с $M \le 6M_{\odot}$ наблюдается большой разброс в содержаниях Li от начального значения $\log \varepsilon (\text{Li}) = 3.2$ до необнаружимо малых значений $\log \varepsilon (\text{Li}) < 1$. Такой большой разброс связан с очень высокой чувствительностью атмосферного сопержания Li к начальной скорости вращения V_{\odot} . Изменения могут начаться

Рис.7. Содержание лития как функция массы M для FGK-сверхгигантов и гигантов. Открытые значки соответствуют 55 звездам из [35], заполненные значки - дополнительной 91 звезде из [36]. Треугольники - верхний предел loge(Li). Сплощная и штриховая линии - результаты расчетов при $V_a = 0$ и 50 км/с, соответственно.

уже к концу стадии ГП даже при небольших значениях $V_0 \sim 50$ км/с. Как показывают расчеты, при $V_0 = 100$ км/с содержание Li в конце ГП палает на 3-4 dex, т.е. становится необнаружимым (при этом содержания С и N в атмосфере практически не меняются). Изменения в содержании Li на стадии FGK-гиганта/сверхгиганта к концу фазы ГКП даже при $V_0 = 0$ и 50 км/с достаточно велики (см. рис.7, сплопіная и пітриховая линии, соответственно).

Для звезл с $M > 6M_{\odot}$ ситуация проше: здесь наблюдаются только низкие содержания Li (рис.7); в большинстве случаев линия Li в спектре совсем отсутствует. Напомним, что большинство (~80%) таких сравнительно массивных звезд имеет на стадии ГП скорости вращения менее 150 км/с (см. раздел 2). К концу ГП, согласно расчетам звездных моделей, при $V_0 \approx 50-100$ км/с в атмосферах таких звезд весь литий должен практически исчезнуть. Более того, даже при $V_0 \approx 0$ км/с у таких звезд вскоре после выхода из стадии ГП происходит резкое паление содержания Li [35]. Таким образом, у всех звезд с $M > 6M_{\odot}$ еще до их прихода в фазу красного гиганта/сверхгитанта практически весь литий должен выгореть. Из рис.7 видно, что две звезды этой группы, сверхгиганты HR 461 (K0 Ia) и HR 8313 (G5 Ib), у которых детектирован литий на уровне loge(Li)~1.5, находятся в противоречии с теорией.

ЛЕГКИЕ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ В ЗВЕЗДАХ 315

Итак, современные теоретические модели с вращением вполне объясняют отсутствие лития в атмосферах большинства FGK-гигантов и сверхгигантов. Они могут объяснить содержания лития $\log (\text{Li}) \approx 1-2$ для звезд с массами $M \leq 6M_{\odot}$. Однако в той же группе $M \leq 6M_{\odot}$ наблюдаются звезды, богатые литием, с содержаниями $\log (\text{Li}) \geq 2$; в большинстве случаев они представляют загадку для теории. В группе $M > 6M_{\odot}$, как отмечено выше, противоречит теории летектируемый литий у холодных сверхгигантов HR 461 и HR 8313.

5.3. Загадка гигантов, богатых и сверхбогатых литием. Гиганты и сверхгиганты, богатые литием (у них $\log \epsilon(\text{Li}) \ge 2$), привлекают повышенный интерес, так как в своем большинстве они не находят объяснения в рамках стандартной теории эволюции звезд. Такие объекты составляют очень малую часть всех FGK-гигантов и сверхгигантов - по разным данным от 1 до 3%. Тот факт, что таких звезд мало, может свидетельствовать либо об очень краткой продолжительности этой фазы эволюции, либо о необычном сценарии их происхожления.

Следуя наметивніейся в литературе тенденции, можно разделить такие звезды на два подтина - гиганты, просто богатые литием ("Li-rich giants") и гиганты, сверхбогатые литием ("super Li-rich giants"). Принципиальное различие в содержаниях Li между этими двумя группами состоит в том, что аля гигантов "Li-rich" величина loge(Li) не превышает начального значения loge(Li) = 3.2 ± 0.1 , в то время как у гигантов "super Li-rich", показывающих содержания loge(Li) = 3.5 - 4.3, это значение существенно превышено. Усгановлено, что гиганты и сверхгиганты обонх типов имеют массы $M < 6M_{\odot}$. Такой вывод был получен в [35] на основе анализа всех доступных литературных данных.

Какая-то часть гигантов типа "Li-rich", как показывают модели вращающихся звеза, может быть ногомками В-звеза ГП с небольшими начальными скоростями врашения 0-50 км/с (при условии, что эти звезды после завершения стадии ГП еще не пропли фазу ГКП). Остальные гиганты типа "Li-rich" и все гиганты типа "super Li-rich" совершенно необъяснимы в рамках стандартной теории звезлной эволюции. Следует отметить, что многие из этих звезд уже прошли фазу ГКП, на что указывает низкое отношение изотонов углерода "С/¹³С в их атмосферах (см. [3]); в этом случае весь литий в их атмосферах должен был бы выгореть.

В объяснении звезд, богатых литием, конкурируют две гипотезы. Первая из них - это недавний синтез лития после ГКП в результате механизма Кэмерона-Фаулера [37]. Он включает следующие реакции: ³ He + $\alpha \rightarrow$ ⁷ Be + γ ; ⁷ Be + e⁻ \rightarrow ⁷ Li + v_e, т.е. из ³He через ⁷Be синтезируются атомы ²Li. В механизме Кэмерона-Фаулера важную роль должна играть конвекция, которая

способствует быстрому выносу 'Ве в более холодные слои атмосферы. В отличие от звезд АВГ с массами $M \approx 4-6M_{\odot}$, где для выноса 'Ве в верхние слои достаточно обычной конвекции, в случае гигантов с $M \approx 1-2M_{\odot}$, принадлежащих ВКГ (Вствь Красных Гигантов), требуется дополнительное перемещивание (extra mixing).

Вторая гипотеза - это захват звезлой плансты-гиганта с массой Юпитера или больше. Эта гипотеза в последние годы обсужлается все более активно; это объясняется тем, что быстро растущее число вновь открытых экзопланет полтвержлает, что сушествование планетных систем около холодных гигантов - достаточно распространенное явление. Кроме того, как показали расчеты, в формирующихся планетных системах имеет место миграция планет, в результате которой какая-то планета может быть захвачена звездой.

Интересно, что такой захват может: 1) включить упомянутый механизм Кэмерона-Фаулера и 2) заметно повысить скорость вращения звезды (у некоторых гигантов типа "Li-rich" действительно наблюдаются апомально высокие скорости вращения, до ~100 км/с, совершенно нетипичные для FGK-гигантов).

Гипотеза захвата звезлой плансты-гиганта продолжает активно разрабатываться. В частности, недавно в работе [38] были рассчитаны последствия наления на красный гигант планеты с массой до 15 масс Юнитера; оказалось, что содержание лития на поверхности звезды может повыситься до величины $\log_{Li} \approx 2.2$ (без учета эффекта extra mixing). Поскольку этого явно недостаточно для объяснения содержания Li у большинства гигантов "Li-rich", в расчетах следует учитывать действие механизма Кэмерона-Фаулера вместе с extra mixing.

6. Углерод, азот и кислород. Эти три элемента участвуют в СNOникле, который на сталии ГП является основным источником энергии у звезд с массами $M > 2M_{\odot}$. Изменения в содержаниях С. N и O у звезд, нахолящихся на разных сталиях эволюции, уже не одно десятилетие привлекают повышенный интерес исследователей. Линии этих трех элементов наблюдаются в широком дианазоне спектральных типов от O до M. В частности, в спектрах горячих звезд видны линии С II, N II и O II. Максимальной интенсивности они достигают в спектрах ранних В-звезд.

6.1. С, N и O в атмосферах ранних B- и поздних O-звезд. Длительное время для ранних B-звезд ГП разные авторы получали по линиям С II, N II и O II пониженные содержания С, N и O (относительно Солнца). Постепенно это разногласие удалось почти ликвидировать, благодаря: 1) более точным оценкам содержаний С, N и O для B-звезд ГП и 2) уточнению содержаний С, N и O для Coлица на основе нестационарных

гидростатических 3D-моделей солнечной атмосферы. Тем не менее, для углерода значимое различие осталось.

Исследования последних лет показали, что молодые звезды в окрестности Солина имеют в среднем такую же металличность, как и Солине; это было показано для содержаний N, O, Mg, Si, Fe, Cr и Ti. Поэтому дефинит углерода у ранних В-звезд вряд ли можно признать реальным. Скорее можно предположить, что имеют место какие-то дефекты в расчетах линий С II.

Вычисления линий С II, N II и О II для ранних В-, а также О-звезд основаны на стандартных плоско-параднельных моделях звездных атмосфер. Их адекватность вызывает сомнения, так как они: 1) не могут объяснить наблюдаемое рентгеновское излучение от таких звезд, 2) сильно занижают УФ поток в области $\lambda < 912$ Å (континуум H I) и особенно в области $\lambda < 504$ Å (континуум He I); но именно это УФ излучение контролирует фотоионизацию ионов С II, N II и О II. Подтверждением служат УФ наблюдения двух ранних В-звезд, β СМа (В1 II-III) и є СМа (В2 II), с помощью спутника EUVE. Наблюдаемый поток оказался болыше теоретического на два порядка при $\lambda < 504$ Å и в несколько раз при $\lambda < 912$ Å.

В работе [39] сделан вывол, что в атмосферах ранних В- и поздних О-звезл, по-вилимому, имеет место сверхионизация ионов С II, N II и О II, которая не учитывается в обычных расчетах. Она становится заметной при температурах $T_{eff} > 18500$ К в случае линий С II и при $T_{eff} > 26000$ К в случае линий N II и О II. Пренебрежение этим эффектом для столь горячих звезд может занижать солержания С, N и О на 0.2 dex. Если при определении солержания углерода рассматривать только В-звезды с температурами $T_{eff} < 18500$ К, то отмеченный выше дефицит углерода относительно Солнца исчезает.

В некоторых современных работах авторы решают проблему сверхионизации у В-звезд ГП неявным образом, фактически учитывая это явление при определении базисных параметров таких звезд - эффективной температуры T_{-} и ускорения силы тяжести logg. В отличие от традиционной методики определения T_{-} и logg, которая основана на примецении фотометрических индексов и бальмеровских линий, эти авторы базируются исключительно на рассмотрении ионизационного баланса для линий некоторых легких элементов, в частности, линий С II-III, О I-II и Ne I-II (см., например, [40]). Это означает, что для каждой звезды полбираются такие значения T_{-} и logg, аля которых солержания данного элемента, найденные для двух соседних стаций ионизации, должны совпадать. Параметры T_{-} и logg, определенные таким методом, оказались систематически завышенными: T_{-} до 2300 K и logg до 0.5 dex. За счет такого увеличения T_{-} и logg повышается стецень ионизации. Однако возникает другая проблема: систематическое расхождение

Л.С.ЛЮБИМКОВ

между значениями T, и logg. полученными принципиально разными методами.

Чтобы реннить проблему сверхионизации лля горячих звезд, при исследовании солержаний С, N и O в их атмосферах следует перейти к применению более реалистичных моделей атмосфер; это подразумевает перехол от плосконараллельных моделей к сферическим моделям, а также учет звездного ветра и магнитного поля, которое наблюдается у ряда O- и B-звезд. В этой связи интересно отметить, что у двух упомянутых выше B-гигантов с сильным избытком УФ изтучения, β СМа и ε СМа, нелавно быто обнаружено магнитное поле ~100 Гс [41].

6.2. Отношение N/O в атмосферах ранних В-звезд. Из прелыдущего раздела следуст вывол: в случае ранних В-звезл ГП из трех отношений - N/C, C/O и N/O, которые рассматриваются в качестве индикаторов звезлной эволюции, с доверием следует относиться только к величине N/O, так как она оказалась нечувствительной к сверхионизации ионов N II и O II. Величины N/C и C/O, куда входит углерод, напротив, лля звезл с эффективными температурами $T_{eff} > 18500$ К могут содержать систематические опнибки из-за неучтенной сверхионизации ионов С II.

В работе [42] для 46 ранних звезд ГП была определена величина [N/O] - отношение N/O, нормированное к исходному значению (в логарифмической шкале). На рис.8 показана найленная в этой работе зависимость [N/O] от массы M для тех звезд, которые находятся в конне стадии ГП (их относительный возраст $t/t_{rn} = 0.70 - 1.02$). Здесь же сплоннными линиями представлены результаты модельных расчетов [14] для трех значений начальной угловой скорости вращения Ω относительной угловой скорости вращения Ω относительной угловой скорость Ω/Ω_{cnt} , указано соответствующее значение линейной скорости V_0 (это среднее значение, так как V_0 зависит от массы M).

Из рис.8 видно, что болынинство звезд в конне ГП показывает сравнительно низкие значения $[N/O] \le 0.3$ и им с точки зрения теории соответствуют молели с $\Omega/\Omega_{\rm crit} = 0$ и 0.3 (или V_0 от 0 до 130 км/с). Для четырех звезд (18%) с наиболее высокими значениями [N/O] = 0.40 - 0.77 (их номера HR указаны на рис.8) хорошо подходят модели с $\Omega/\Omega_{\rm crit} = 0.5$ и 0.7 ($V_0 \approx 220 - 300$ км/с). Эти результаты хорошо согласуются с приведенными в разделе 3 данными о скоростях вращения ранних В-звезд ГП, а именно: около 80% таких звезд имеют скорости 0-150 км/с и только 20% - скорости 200-400 км/с (18% на рис.8).

Это исследование отношения N/O в ранних В-звездах ГП показывает, что для элементов C, N и O, по крайней мере в данном конкретном случае, имеет место согласие между результатами наблюдений и предсказаниями

ЛЕГКИЕ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ В ЗВЕЗДАХ

теории. В слелующем разлеле будет представлен другой пример согласия межлу наблюдениями и теорией относительно содержаний C, N и O.

6.3. Антикорреляция "азот-углерод" для AFG-сверхгигантов. Как уже отмечалось, после завершения сталии ГП ранние В-звезыы быстро нерехолят в сталию А-, F-, G- и К-сверхгигантов и гигантов. При достижении

Рис.8. Зависимость величины [N/O] от массы М для В-звезд, находящихся в конце сталии ГН ($t/t_{fg} = 0.70-1.02$) [42]. Сплощные линии соответствуют теоретическим зависимостям, основанным на модельных расчетах [14] для трех значений начальной угловой скорости вращения $\Omega/\Omega_{ab} = 0.3$, 0.5 и 0.7.

температуры $T_{eff} \leq 5900$ К в таких звездах начинается глубокое конвективное перемешивание (ГКП), которос приводит к дальнейшему усилению аномалий С, N и О на поверхности, появившихся во время стадии ГП, в частности, лефицита С и избытка N. Отметим, что для этих относительно холодных звезд содержания С, N и О определяются по лициям С I, N I и O I.

Уже более 30 лет известна антикорреляция "азот-углерол" для А-, F- и G-сверхгигантов (см., например, [43]). Качественно такая антикорреляция была понятна: во время CNO-цикла внутри звезды атомы ¹²С перерабатываются в ¹⁴N, поэтому дефицит углерода должен сопровождаться избытком азота. Однако количественная интерпретация этой зависимости была невозможна, пока теоретики от моделей звезд без вращения не перешли к расчетам молелей вращающихся звезд.

На рис.9 из работы [44] наблюдаемая антикорреляция "азот-углерод" для АFG-сверхгигантов сравнивается с расчетами [28] поверхностных содержаний

N и С для модели с массой $M = 12 M_{\odot}$ при разных начальных скоростях вращения V_{\odot} (отметим, что соотношение между N и C в моделях слабо зависит от массы M). На верхней панели расчеты соответствуют концу стадии ГП, на нижней - окончанию ГКП в стадии AFG-сверхгитантов. Значения скорости V_{\odot} указаны рядом с узловыми точками.

Из рис.9 следует важный вывод: антикорреляция "азот-углерод" отражает главным образом зависимость аномалий N и C от начальной скорости вращения V_0 . Этот факт можно было установить только с помощью расчетов моделей вращающихся звезд.

На рис.9 обращает на себя внимание скопление точек в вылеленном сером квадрате. Имеются два возможных объяснения этого "облака": 1) либо это звезды после ГП с начальными скоростями $V_0 \sim 200 - 250$ км/с (верхняя панель), 2) либо это сверхгиганты и гиганты, близкие к окончанию ГКП, имевшие $V_0 \sim 0.150$ км/с (нижняя панель). Если вспомнить, что 80% звезд таких масс ($M \approx 5 - 20 M_{\odot}$) в начале своей эволюции имели скорости вращения <150 км/с (см. раздел 3), становится ясно, что подавляющее большинство звезд в указанном облаке - это сверхгиганты и гиганты в конце ГКП.

Рис.9 (наряду с рис.8 в предыдущем разделе) излюстрирует несомненный уснех теории в объяснении наблюдаемых содержаний С, N и O. В этой связи следует отметить, что многолетние расчеты моделей вращающихся звезд, повидимому, были нацелены прежде всего на объяснение наблюдений именно С, N и O. Как видно из предыдущих разделов данного обзора, в отношении более легких элементов такое согласие между теорией и наблюдениями нерелко отсутствует. В частности, как отмечалось выше, те же модельные расчеты, которые оказались успешными в случае С, N и O, не могут объяснить наблюдаемое повышение содержания гелия у ранних В-звезд ГП.

7. Заключение. В обзоре рассмотрены первые восемь элементов периодической системы химических элементов - Н, Не, Li, Be, B, C, N и O. Примечательно, что все эти элементы первоначально были синтезированы в Большом Взрыве. Приведены первичные содержания изотопов этих элементов, рассчитанные на основе СМБВ (Стандартная Модель Большого Взрыва). Для первичных содержаний изотопов водорода и гелия (дейтерий, Не и Не) имеет место отличное согласие между СМБВ и наблюдательными данными, опнако в случае лития (изотоп ⁷Li) между георией и наблюдениями существует расхожление 0.5 dex. Этот факт получен из наблюдений старых ввезд гало Галактики, для которых обнаружены две особенности, пока не нашелище объяснения в теории: "литиевое плато" с содержанием лития $\log_{E}(Li) = 2.2$ (именно эта величина на 0.5 dex меньше предсказания СМБВ), а также существенное понижение этой величины для ряда звезд.

Рис.9. Наблюдаемая зависимость "азот-углерод" для AFG-сверхгигантов в сравнении с расчетами для модели $M = 12 M_{\odot}$ при начальных скоростях врашения от 0 до 300 км/с [44]. Точки A и C - солнечные содержания N и C в соответствии с данными [1] и [29].

Солержание легких элементов в атмосферах звезд зависит от начальной скорости вращения, поэтому рассмотрены типичные скорости вращения молодых звезд на стадии ГП. Отмечено, что, в отличие от традиционных представлений, современные данные для горячих звезд (классы В и О) указывают на большое число (около 80%) звезд с невысокими скоростями вращения ≤150 км/с; этот факт играст важную роль в интерпретации наблюдаемых содержаний легких элементов.

Учитывая обилие данных о содержаниях легких элементов в звездах, основной акцент сделан на некоторых нерешенных проблемах, включая следующие:

Гелий. Содержание гелия He/H у ранних В-звезд ГП показывает увеличение с возрастом, причем для самых массивных звезд с массами $M = 12 - 19 M_{\odot}$ величина He/H повышается к конпу ГП более чем в два раза. Теоретические модели звезд, в которых учитывается перемешивание, индупированное вращением, не могут объяснить столь значительное повышение He/H. Представляет загадку для теории скачкообразное повышение величины He/H в середине стадии ГП у В- и О-звезд, являющихся компонентами тесных двойных систем.

Аномальное содержание гелия (а также лития) в атмосферах химически пекулярных звезл ГП, включая магнитные звезды (типы He-s, He-w, HgMn, Am и магнитные Ap), пытаются объяснить на основе диффузии атомов в поверхностных слоях. Полчеркнуто, что гипотеза диффузии должна одновременно объяснять и другие особенности химического состава таких звезд, а именно: общий тренд избытков элементов с ростом атомного номера Z. распределение пятен различных элементов на поверхности звезды и распределение разных элементов по глубине.

Литий, бериллий и бор. Выгорание этих элементов происходит в однои и той же реакции (р, α), но при разных температурах (соответственно, 2.5, 3.5 и 5×10⁶ K), поэтому они совершенно по-разному проявляют себя как инликаторы звездной эволюции; это полтверждают как наблюдения, так и теория. Для FGK-карликов не получил объяснения тренл содержаний Li, Be и B с понижением T_{eff} а также провал в распределении содержаний этих элементов на $T_{eff} \sim 6600$ K в Гиадах и других старых сконлениях. Особый интерес вызывают FGK-гиганты и сверхгиганты, богатые литием (у них loge(Li) ≥ 2). Большинство их не находит объяснения в рамках станцартной теории звездной эволюции, поэтому привлекаются нестандартные гипотезы: педавний синтез лития в звезде и захват звездой гигантской планеты с массой Юпитера и больше.

Углерод, азот и кислород. Сделан вывод, что в случае ранних В- и позлних О-звезд ГП имеет место сверхионизация ионов С П, N П и О П, неучтенная в расчетах, основанных на стандартных моделях атмосфер. С другой стороны, для ранних В-звезд ГП получено хорошее согласие между наблюдаемыми значениями отношения N/O и расчетами моделей вращающихся звезд. В полном соответствии с наблюдаемыми скоростями вращения таких молодых звезд, величина N/O к концу стадии ГП показывает новышение на 0.4-0.8 dex лишь для небольшой части (~20%) звезд с достаточно высокими начальными скоростями вращения 200-400 км/с.

Получено количественное объяснение известной антикоррелянии "азотутперод" у АFG-пигантов и сверхгигантов: оно отражает зависимость аномалий N и C от начальной скорости вращения V_{ν} . Отмечено, что те же расчеты молелей вращающихся звезл, которые оказались успешными в случае C, N и O, не могут объяснить наблюдаемое повышение содержания гелия у ранних B-звезл ГП.

Крымская астрофизическая обсерватория РАН, e-mail: lyub@craocrimea.ru

REVIEWS

LIGHT CHEMICAL ELEMENTS IN STARS: MYSTERIES AND UNSOLVED PROBLEMS

L.S.LYUBIMKOV

First eight elements of the periodical system of chemical elements are considered: H, He, Li, Be, B, C, N and O. They are named key elements. considering their important role in stellar evolution. Remarkably that they all have been initially synthesized in the Big Bang. Primordial abundances of isotopes of these elements computed on the basis of SMBB (the Standard Model of Big Bang) are presented in the review. A good agreement between SMBB and the observed primordial abundances of the hydrogen and helium isotopes D, ³He и ⁴He is noted; but for lithium (the ⁷Li isotope) the discrepancy ~ 0.5 dex takes place between SMBB and observations of old stars from the halo of the Galaxy that was not explained yet. The abundances of light elements in stellar atmospheres depend on the initial rotational velocity, so typical rotational velocities of young stars on the Main Sequence (MS) stage are discussed. Since data on the light element abundances in stars are very numerous, we put the accent mainly on some unsolved problems. The helium abundance He/H in early B-type MS stars shows an increment with the age; in particular, for the most massive B stars with masses $M = 12 - 19 M_{\odot}$ the He/H value increases more than two times by the MS end. Theoretical models of rotating stars cannot explain such a steep enhancement of He/H. For early B- and late O-type MS stars that are components of close binary systems the He/H value shows a sharp jump in the middle of the MS stage, which is a mystery for the theory. The anomalous helium (and lithium) abundance in atmospheres of chemically peculiar stars (He-s, He-w, HgMn, Ap and Am types) is explaining on the basis of atom diffusion in surface layers of stars, but this

hypothesis cannot explain so far all features in chemical abundances of such stars. The lithium, beryllium and boron abundances show a trend with decrease of effective temperature T_{a} as well as a dip at $T_{a} \sim 6600$ K in the Hyades and other old clusters. Both these phenomena are unsolved problems. In the case of lithium the Li-rich FGK-giants and supergiants (with $loge(Li) \ge 2$) are of special interest. Most of them cannot be explained by the standard theory of stellar evolution, so non-standard hypothesis are attracted: the recent lithium synthesis in a star and the engulfment by a star of a giant planet with the mass like Jupiter or greater. An analysis of the carbon, nitrogen and oxygen abundances for early B- and late O-type MS stars leads to the conclusion that there is an over-ionization of the C II, N II and O II ions in their atmospheres. For early B-type MS stars a good agreement is found between the observed values of the N/O ratio and the computed ones from models of rotating stars. A quantitative explanation of the known anti-correlation "nitrogen-carbon" for FGK-giants and supergiants is obtained; it reflects a dependence of the N and C anomalies on the initial rotational velocity V_0 . However, the same models of rotating stars, which seem to be successful in the case of C. N and O. cannot explain the observed helium enrichment in early B-type MS stars.

Key words: stars: chemical composition: stellar rotation: stellar evolution

ЛИТЕРАТУРА

- 1. M.Asplund, N.Grevesse, A.J.Sauval et al., Ann. Rev. Astron. Astrophys., 47, 481, 2009.
- 2. Л.С.Любимков, Кинсматика и Физика Небесных Тел, 26, 32, 2010, (Kinematics and Physics of Celestial Bodies, 26, 169, 2010).
- 3. Л.С.Любимков, Астрофизика, 59, 459, 2016, (Astrophysics, 59, 411, 2016).
- 4. A.Coc, S.Goriely, Y.Xu et al., Astrophys. J., 744, 158, 2012.
- 5. R.J. Cooke, M. Pettini, R.A. Jorgenson et al., Astrophys. J., 781, id. 31, 2014.
- 6. Y.I.Izotov, T.X.Thuan, N.G.Guseva, Mon. Not. Roy. Astron. Soc., 445, 778, 2014.
- 7. T.Bania, R.Rood, D.Balser, Nature, 415, 54, 2002.
- 8. M.Spite, F.Spite, P.Bonifacio, Mcm. Soc. Astron. Italiana Suppl., 22, 9, 2012.
- 9. M.Spite, F.Spite, E.Caffau et al., Astron. Astrophys., 582, A74, 2015.
- 10. F.Spite, M.Spite, Astron. Astrophys., 115, 357, 1982.
- 11. R.H. Cyburt, B.D. Fields, K.A. Olive et al., Modern Physics, 88, id. 015004, 2016.
- 12. P.Bonifacio, L.Sbordone, E.Caffau et al., Astron. Astrophys., 542, A87, 2012.

ЛЕГКИЕ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ В ЗВЕЗДАХ

- A.Maeder, Physics, Formation and Evolution of Rotating Stars, Springer, Berlin, 2009.
- 14. C.Georgy, S.Ekstrom, A.Granada et al., Astron. Astrophys., 553, A24, 2013.
- 15. К.У.Ален, Астрофизические величины (3 изд.), М., Мир, 1977, (Astrophysical Quantities (3 ed.), London, Athlone Press, 1973).
- 16. II.A.Abt, II.Levato, M.Grosso, Astrophys. J., 573, 359, 2002.
- 17. S.Simon-Diaz, A.Herrero, Astron. Astrophys., 562. A135, 2014.
- 18. G.A. Bragança, S. Daflon, K. Cunha et al., Astron. J., 144, 130, 2012.
- 19. J.Zorec, F.Royer, Astron. Astrophys., 537, A120, 2012.
- 20. Л.С.Любимков, Письма в Астрон. ж., 1, 11, 29, 1975.
- 21. Л.С.Любимков, Астрофизика, 13, 139, 1977, (Astrophysics, 13, 71, 1977).
- 22. L.S.Lyubinkov, S.I.Rostopchin, D.L.Lambert, Mon. Not. Roy. Astron. Soc., 351, 745, 2004.
- 23. L.S.Lyubimkov, Astrophys. Space Sci., 243, 329, 1996.
- 24. E.Sturm, K.P.Simon, Astron. Astrophys., 282, 93, 1994.
- 25. K.P.Simon, E.Sturm, A.Fiedle, Astron. Astrophys., 292, 507, 1994.
- Л.С.Любимков, Химический состав звезд: метод и результаты анализа. Одесса, Астропринт, 1995, (Chemical Composition of Stars: Method and Results of Analysis, Odessa, Astroprint, 1995).
- 27. Л.С.Любимков, Известия Крым. Астрофиз. Обс., 110, 6, 2014, (Bull. Crimean Astrophys. Obs., 110, 9, 2014).
- 28. A. Heger, N. Langer, Astrophys. J., 544, 1016, 2000.
- 29. E.Caffau, H.-G.Ludwig, M.Steffen et al., Solar. Phys., 268, 255, 2011.
- 30. T.W.R.Monroe, J.Melendez, I.Ramirez et al., Astrophys. J. Lett., 774, L32, 2013.
- 31. A.M. Boesgaard, M. Tripicco, Astrophys. J., 302, L49, 1986.
- 32. A.M. Boesgaard, J.R. King, Astrophys. J., 565, 587, 2002.
- 33. A.M. Boesgaard, Astron. Soc. Pacific Conf. Ser., 336, 39, 2005.
- 34. A.M.Boesgaard, M.G.Lum, C.P.Deliyannis et al., Astrophys. J., 830, id. 49, 2016.
- 35. L.S.Lyubimkov, D.L.Lambert, B.M.Kaminsky et al., Mon. Not. Roy. Astron. Soc., 427, 11, 2012.
- 36. Л.С.Любимков, Д.В.Петров, Асгрофизика, 60, 359, 2017, (Astrophysics, 60, 333, 2017).
- 37. A.G.W. Cameron, W.A. Fowler, Astrophys. J., 164, 111, 1971.
- C.Aguilera-Gômez, J.Chaname, M.H.Pinsonneault et al., Astrophys. J., 829, id. 127, 2016.
- 39. Л.С.Любимков, Астрофизика, 56, 517, 2013, (Astrophysics, 56, 472, 2013).
- 40. M.F.Nieva, N.Przybilla, Astron. Astrophys., 539, A143, 2012.
- 41. L. Fossati, N. Castro, T. Morel et al., Astron. Astrophys., 574, A20, 2015.
- 42. Л.С.Любимков, Астрофизика, 59, 519. 2016, (Astrophysics, 59, 472, 2016).
- 43. R.E.Luck, D.L.Lambert, Astrophys. J., 298, 782, 1985.
- 44. L.S.Lyubimkov, D.L.Lambert, S.A.Korotin et al., Mon. Not. Roy. Astron. Soc., 446, 3447, 2015.

CONTENTS

In memory of academician E.E.Khachikyan	163
Torus dynamo model for research of magnetic fields in the outer rings of galaxies	
E.A.Mikhailov	165
High-energy 7-ray emission from PKS 0625-35	
V. Baghmanyan, M. Tumanyan, N. Sahakyan, Y. Vardanyan	179
Chemical composition of field RR Lyrae stars as an indicator of the galactic subsystems evolution	
V.A. Marsakov, M.L. Gozha, V.V. Koval', E.I. Vorobyov	191
Investigation of the globular cluster NGC 7006	
A.N.Gerashchenko, Y.K.Ananjevskaja	207
The first photometric analysis of the open clusters Dolidze 32 and 36	
M.Y.Amin, W.H.Elsanhoury, A.A.Haroon	221
Is there partial mixing in the binary system components?	
E.I.Staritsin	235
Influence of photospheric radiation on above layers of star atmosphere	
O.M.Belova, K.V.Bychkov	255
The most powerful solar flares in september 2017. The comparison with the largest flares of cycle 24	
E.A. Bruevich, V.V. Bruevich	271
Magnetic transients during the flares on 2012 May 9 in Noaa 11476 and on 2012 July 4 in Noaa 11515	
O.S. Gopasyuk	287
REVIEWS	
Light chemical elements in stars; mysteries and unsolved problems	

Light chemical elements in stars: mysteries and unsolved problems L.S.Lyubimkov 297

Индекс 70022-

СОДЕРЖАНИЕ (продолжение)

ВЛИЯНИЕ ИЗЛУЧЕНИЯ ФОТОСФЕРЫ НА ВЫШЕЛЕЖАЩИЕ СЛОИ АТМОСФЕРЫ ЗВЕЗДЫ

О.М.Белова, К.В.Бычков 255

МОЩНЫЕ ВСПЫШКИ НА СОЛНЦЕ В СЕНТЯБРЕ 2017. СРАВНЕНИЕ С САМЫМИ КРУПНЫМИ ВСПЫШКАМИ 24 ЦИКЛА

Е.А.Бруевич, В.В.Бруевич 271

МАГНИТНЫЕ ТРАНЗИЕНТЫ ВО ВРЕМЯ ВСПЫШЕК 9 МАЯ 2012г. В NOAA 11476 И 4 ИЮЛЯ 2012г. В NOAA 11515

О.С.Гопасюк 287

ОБЗОРЫ

ЛЕГКИЕ ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ В ЗВЕЗДАХ: ЗАГАДКИ И НЕРЕШЕННЫЕ ПРОБЛЕМЫ

Л.С.Любимков 297