ISSN-0571-7132

иизлиљрдрчи астрофизика

TOM 36

НОЯБРЬ, 1993

выпуск 4

СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ ВСПЫХИВАЮЩИХ ЗВЕЗД СКОПЛЕНИЯ ПЛЕЯДЫ	
Э.С.Парсамян, Г.Б.Оганян ПЕРВЫЙ БЮРАКАНСКИЙ СПЕКТРАЛЬНЫЙ ОБЗОР НЕБА. ГОЛУ- БЫЕ ЗВЕЗЛИНИЕ ОБЪЕКТИ. И ПОЛОСА	501
$+33^{\circ} \le \delta \le +37^{\circ}$	
Г.В.Абрамян, А.М.Микаелян	517
СВЯЗЬ НЕЙТРАЛЬНОГО ВОДОРОДА С РАДИАЛЬНЫМИ СИСТЕ- МАМИ ТЕМНЫХ ГЛОБУЛ	
А.Л.Гюльбудагян	527
ОКОЛОЗВЕЗДНЫЕ ОБОЛОЧКИ И СПЕКТРАЛЬНАЯ КЛАССИФИ- КАЦИЯ ЗВЕЗД	
Р.А.Варданян	535
СПЕКТРОФОТОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ДВУХ ГАЛАК-	
ТИК С УФ-ИЗБЫТКОМ	
М.А.Казарян	543
К ТЕОРИИ РАДИОИЗЛУЧЕНИЯ ПУЛЬСАРОВ	
Г.С.Саакян	549
ПЕРЕНОС ИЗЛУЧЕНИЯ ПРИ НЕКОГЕРЕНТНОМ РАССЕЯНИИ В	
полубесконечной неоднородной атмосфере,	
СОДЕРЖАЩЕЙ ИСТОЧНИКИ ЭНЕРГИИ	
Г.А.Арутюнян	563
квантование однородной космологической модели в	
ТЕОРИИ ЙОРДАНА-БРАНСА-ДИККЕ И ПРОБЛЕМА	
"НАБЛЮДАЕМОГО ВРЕМЕНИ"	
В.В.Папоян, В.Н.Первушин	575

(Продолжение на 4-стр. обложки)

Выходит с 1965г. на русском н английском языках

Խմբագրական կոլեգիա՝ Գ.Ս.Բիսնավստի—Կոզան, Վ.Գ.Գորրացկի (գլիւ խմբագրի տեղակալ), Վ.Գ.Գրինին, Վ.Վ.Իվանավ, Ն.Ս.Կարդաշեվ, Վ.Հ.Համբարձումյան, Ա.Գ.Մասեվիչ, Լ.Վ.Միրզայան, (գլիւ խմբագիր), Գ.Ս.Սահակյան, Վ.ՅուՏերերիժ, Ա.Տ.Քալլօգլյան (պատ. քարտողար).

Խմբոգրական խորհուրդ՝ Ա.Ա.Քոյարջուկ, Ե.Կ.Խարաձն, Ի.Մ.Կոպիլով, Վ.<.<ամրարձումյան, Լ.Վ.Միրզոյան, Վ.Վ.Սորոլեվ (նախագահ).

Редакционная коллегия: В.А.Амбарцумян, Г.С.Бисноватый-Коган, В.Г.Горбацкий (зам. главного редактора), В.П.Гринин, В.В.Иванов, А.Т.Каллоглян (ответ. секретарь), Н.С.Кардашев, А.Г.Масевич, Л.В.Мирзоян (главный редактор), Г.С.Саакян, В.Ю.Теребиж.

Редакционный совет: В.А.Амбарцумян, А.А.Боярчук, И.М.Копылов, Л.В.Мирзоян, В.В.Соболев (председатель), Е.К.Харадзе.

«АСТРОФИЗИКА» — научный журнал, издаваемый Национальной Академией наук Республики Армения. Журнал печатает оригинальные статьи по физике звезд, физике туманностей и межзвездной среды, по звездной и внегалактической астрономии, а также статьи по областям науки, сопредельным с астрофизикой. Журнал предназначается для научных работников, аспирантов и студентов старших курсов.

«ԱՍՏՂԱՖԻՉԻԿԱ» –ն գիտական հանդես է, որը հրատարակում է Հայաստանի Հանրապետության Գիտությունների Ազգային ակադեմիան։ Հանդեսը տպագրում է ինջնատիպ հոդվածներ աստղերի ֆիզիկայի, ររh– գամածությունների ու միջաստղային միջավայրի ֆիզիկայի, աստղաբաշխութարտագալակտիկական աստղագիտության, ղան և ինչաես նաեւ աստղաֆիզիկային սահմանակից րնագավառների գծով։ Հանդեսը նախատեսված է գիտական աշխատողների, ասպիրանաների եւ բարձր bmnսերի ուսանողների համար։

© Издательство НАН Республики Армения, Астрофизика, 1993.

АСТРОФИЗИКА

TOM 36

НОЯБРЬ, 1993

выпуск 4

УДК:524.338.61—355

СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ ВСПЫХИВАЮЩИХ ЗВЕЗД СКОПЛЕНИЯ ПЛЕЯДЫ

Э.С.ПАРСАМЯН, Г.Б.ОГАНЯН

Поступила 5 июля 1993 Принята к почати 10 августа 1993

Выполнена спектральная классификация 455 вспыхивающих звезд в области скопления Плеяды. Использованы пластинки, полученные на 40° телескопе системы Шмидта Бюраканской обсерватории в сочетании с 105 объективной призмой и красным фильтром. Диаграмма Г—Р для скопления показывает, что многие члены скопления находятся как над, так и под главной последовательностью.

1. Введение. В скоплении Плеяды обнаружено большое число вспыхивающих звезд. К настоящему времени оно превышает 550, а число вспышек 1600. Вывод о том, что почти все слабые члены Плеяд ($m_v > 13^m$) проходят через фазу вспышечной активности, и что она является закономерной эволюционной фазой в жизни карликовых звезд [1] делает актуальным определение спектральных классов по возможности большего числа вспыхивающих звезд.

2. Наблюдательный материал. Наблюдения были выполнены на 40" телескопе системы Шмидта Бюраканской обсерватории. Спектры были получены с помощью 1°5 объективной призмы на пластинках Kodak—IN, Kodak—IIaF и Kodak—103аE (дисперсия 1800 A/мм у Hy).

Инфракрасные пластинки очувствлялись 7% аммиаком или же охлажденной дистиллированной водой.

Для определения спектральных классов использовался метод, ранее примененный в работах [2—6], который позволяет легко выделить звезды типа К7—М на пластинках, полученных на телескопах системы Шмидта в сочетании с объективной призмой и красным фильтром. Большое число звезд типа М было выделено в области скопления Плеяды МакКартни и Тренором [4,5]. Хотя низкая дисперсия ограничивает точность классификации, однако характерный вид спектра, определяемый полосами TiO у звезд поздних типов М, позволяет выделить звезды типа М вплоть до $m_{pg} \approx 19 - 20$. В некоторых случаях для контроля были использованы пластинки Ватикана. Таким путем были определены с точностью до одного-двух подклассов спектральные классы 332 вспыхивающих звезд.

Спектральные классы звезд более ранних, чем К7 (N = 123), определены менее уверенно.

Так как спектральная классификация проводилась только для вспыхивающих звезд, то не возникла проблема определения класса светимости.

В табл. 1 приводятся данные об использованном наблюдательном материале.

Таблица І

No	Дата	Сорт.пл.	Фильтр	Экспоз.
1	1.X.1970	Kodak—IN	RG-2	120 ^m
2	3.X.1970	"	81	
3	29.X.1970	11	U	30
4	31.X.1970		u	
5	22.X.1970	Kodak—IIaF	11	11
6	27.X.1970			и, т
7	25.VIII.1977	Kodak 103aE	-	3
8	25.VIII.1977			10

Спектральные классы вспыхивающих звезд, определенные нами, приведены в табл.2. В первом столбце табл.2 приведены порядковые номера вспыхивающих звезд Плеяд [7], во втором — номера звезд по единой нумерации, начатой в Тонантцинтла и продолженной в Бюракане [8], в третьем — звездная величина [9—13] и в четвертом — спектральный класс.

Для сравнения в табл.3 приводятся спектральные классы 90 звезд, определенные разными авторами [7, 14—18].

На рис.1 приведена гистограмма распределения вспыхивающих звезд по спектральным подклассам. Относительно малое число звезд типа МО—М1 по сравнению с К7—МО является, по-видимому, заниженным, вызванное трудностью определения этих подклассов.

Малое число звезд спектральных классов М4 и позднее объясняется наблюдательной селекцией, вызванной тем, что такие звезды обнаруживаются липь при вспышках с большими амплитудами.

Расчеты, приведенные в работе [19], показали, что вспыхивающие звезды галактического поля с амплитудой $\Delta m \geq 1^m$ составляют лишь 4% среди вспыхивающих звезд скопления Плеяды. Новые расчеты лишь подтвердили эту величину [20].

Рис.1. Гистограмма распределения вспыхивающих звезд по спектральным подклассам в скоплении Плеяды

С помощью всех имеющихся в настоящее время данных (табл.2,3) о спектральных классах вспыхивающих звезд скопления Плеяды была построена диаграмма Герципрунга— Рессела [19, 21]. Диаграмма Герципрунга— Рессела для вспыхивающих звезд скопления показывает расширение главной последовагельности с продвижением к слабым звездам. Расширение главной последовательности наблюдается и в ассоциации Ориона [22], что обусловлено возрастом звездного агрегата и связанной с ней вспышечной активностью [23].

Национальный институт астрофизики, оптики и электроники, Мексика Бюраканская астрофизическая обсерватория

Э.С.ПАРСАМЯН, Г.Б.ОГАНЯН

SPECTRAL CLASSIFICATION OF THE FLARE STARS IN THE PLEIADES CLUSTER

E.S.PARSAMIAN, G.B.OHANIAN

The spectral classification of 455 flare stars in the region of the Pleiades cluster was carried out. The spectral plates were obtained on the 40" Schmidt telescope of the

Byurakan observatory with combination of 1.5 objective prism and red filter. H-R diagram of the flare stars of Pleiades cluster shows that many cluster-members are above and below the Main Sequence.

ЛИТЕРАТУРА

- 1. В.А.Амбарцумян, Звезды, туманности галактики, ред.Л.В.Мирзоян, Изд.АН Арм.ССР, Ереван, 1969, 283.
- 2. J.J.Nassau, J.P. van Albada, Astrophys. J., 109, 391, 1949.
- 3. J.J.Nassau, G.Belghe, Astrophys. J., 139, 190, 1964.
- 4. M.F.McCartny, P.J.Treanor, Specola Vaticana 6, No26, 535, 1964.
- 5. M.F.McCartny, P.J.Treanor, Specola Vaticana 7, No12, 367, 1968.
- 6. G. Haro, E. Chavira, Bol. Obs. Tonantzintia, 31, 23, 1969.
- 7. G. Haro, E. Chavira, G. Gonzalez, Bol. Inst. Tonantzintia, 3, Nol, 1982.
- 8. В.А.Амбарцумян, Л.В.Мирзоян, Э.С.Парсамян, О.С.Чавушян, Л.К.Ераспова, Э.С.Казарян, Г.Б.Оганян, И.И.Янкович, Астрофизика, 9, 461, 1973.
- 9. H.L.Johnson, R.I.Mitchell, Astrophys. J., 128, 31, 1958.
- 10. О.С. Чавушян, А.Т.Гарибджанян, Астрофизика, 11, 565, 1975.
- О.С. Чавушян, Л.К. Еристова, Н.Д.Меликян, М.К.Цветков, И.И.Янкович, Сообщ. Бюраканской обс. 52, 78, 1980.
- Л.В.Мирзоян, О.С. Чавушян, Н.Д.Меликян, Р.Ш.Нацелишениц, Г.Б.Оганян, В.В.Амбарян, А.Т.Гарибджанян, Астрофизика, 17, 197, 1981.
- Л.В. Мирзоян, О.С.Чавушян, Н.Д.Меликян, Р.Ш. Нацалишвили, В.В. Амбарян, Г.А.Брутан, Астрофизика, 19, 725, 1983.
- 14. G.H. Herbig, Astrophys. J., 135, 736, 1962.
- M.F.McCartny, Low Luminosity Stars, ed. S.S.Kumar, Gordon and Breach Science Publishers, 1969, p.83.
- R.P.Kraft, J.L.Greenstein, Low Luminosity Stars, ed. S.S.Kumar, Gordon and Breach Science Publishers, 1969, p.65.
- 17. B.Iriarte, Bol. Inst. Tonantzintia, 1, No4, 209, 1975.
- 18. J.R. Stauffer, Astron.J., 85, 1341, 1980.
- 19. E.S. Parsamian, Star Clusters and Associations, ed. B.A.Balazs, G.Szecsenyi-Nagi, 115, 1986.
- 20. Л.В.Мирзоян, В.В.Амбарян, А.Т.Гарибджанян, А.Л.Мирзоян, Астрофизика, 29, 531, 1988.
- 21. Э.С. Парсамян, Г.Б.Оганян, Астрофизика, 30, 220, 1989.
- 22. A.D. Andrews, Bol. Obs. Tonantzintia, 6, No38, 161, 1972.
- G.Haro, B.Chavira, Vistas in Astronomy, Vol.8, ed.A.Beer and K.As.Strand, Pergamon Press, London, 1964, p.89.

Таблица 2

СПЕКТРАЛЬНЫЕ КЛАССЫ ВСПЫХИВАЮЩИХ ЗВЕЗД СКОПЛЕНИЯ ПЛЕЯДЫ

HCG	NE	V	Sp	HCG	NE	V	Sp
1	2	3	4	1	2	3	4
11	536	18.6u	M2—M3	39	427	12.99	M0-M1
12	528	16.6u	M1-M2	41	356	20.5 _{pg}	M4
13	552	>18.0u	K7M0	43	394	19.4 _u	M1M2
14	454	16.4 _{pg}	G—K	44	181	16.47	M2—M3
15	415	16.66	M2	46	442	15.8 _{pg}	K
17	138	16.87	M3—M4	47	447	16.8 _{pg}	K7—M0
18	62	15.27	K7-M0	48	481	18.43	M2—M3
20	308	14.10	MO	49	225	18.28	M2—M3
21	361	17.85	M2-M3	50	205	17.89	M3—M4
22	309	20.5u	M3—M4	51	223	16.81	M1—M2
23	540	14.73	K7-M0	52	34	16.65	M1-M2
24	393	19.8 _u	M2	53	390	17 _{pg}	G-K
25	429	16.99	M1-M2	54	525	16.7 _{pg}	K
27	63	16.45	M1—M2	55	346	17.6 _{pg}	M1-M2
29	188	17.32	K	57	524	17.3u	M1—M2
30	300	18.5 _{pg}	MO	59	129	20.0 _{pg}	M3
31	66	17.99	M3—M4	61	555	15.8 ₂	K7—M0
32	210	17.8 _{pg}	M1M2	62	224	13.61	K7—M0
33	116	17.45	M3M4	63	310	16.72	M2—M3
34	297	16.69	M2-M3	64	292	16.37	M2—M3
35	553	>18.0u	M2	65	306	13.32	K7—M0
36	102	17.63	M5	66	172	17.22	M3-M4
37	554	16.2 _u	K7-M0	68	36	16.01	M1M2
38	231	17.80	G—K	69	266	15.96 _u	K

505

Э.С.ПАРСАМЯН, Г.Б.ОГАНЯН

Таблица 2 (продолжение)

1	2	3	4	1	2	3	4
70	320	19.3	K	101	173	15.25	M1-M2
71	256	14.58	K7—M0	102	245	17.65	M3—M4
73	67	17.99	M3	103	118	16.07	M2M3
74	426	20.5 _{pg}	M3—M4	104	222	14.87	K
75	289	14.46	K	105	359	17.31	M5—M6
76	440	17.8 _{pg}	M2	106	438	18 _{pg}	M
77	298	15.07	M1-M2	107	322	20.5 _u	M3
78	38	16.32	G—K	109	167	17.71	M3—M4
79	174	17.97	M3-M4	110	444	18 _{pg}	K
80	3	15.89	M3—M4	112	395	19.0 _u	M2
81	237	16.71	G	113	215	15.93	G—K
82	37	19.03	G—K	114	557	16.8u	G—K
83	349	17.2 _u	G—K	115	5	18.6 _{pg}	M3
85	556	13.46 _{pg}	K	116	- 4	20.9 _{pg}	-M
86	278	17.07	M3—M4	117	170	16.43	G—K
87	544	16.64	K	120	385	16.2 _{pg}	G
88	168	17.79	M4—M5	122	6	18.58	M4
89	236	18.77	G—K	123	41	15.53	M3
90	418	18.84	M1-M2	124	119	18.38	>M4
92	420	19.0 _{pg}	G—K	125	323	20.0 _u	M3
93	147	18.4 _u	M3	126	69	17.9 _u	M1-M2
94	370	17.48	K	128	344	18.38	M3—M4
95	377	17.0 _{pg}	K	129	450	17.4 _{pg}	M2
96	351	17.88	M3—M4	131	398	14.8 _u	K
97	39	15.66	M1—M2	132	503	16.9 _u	K
98	377	17.0 _{pg}	K	133	324	18.09	M2—M3
99	373	17.79	K	134	150	18.3 _u	M2-M3
100	40	16.80	M1—M2	135	477	20.0 _u	M3

СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ ЗВЕЗД

Таблица 2 (продолжение)

1	2	3	4	1	2	3	4
136	558	>18.0 _u	K7	176	281	19.7 _{pg}	K
138	249	17.56	M2-M3	178	143	16.44	М3
139	517	>20.5 _u	M4—M5	179	45	14.27	K7—M0
140	391	17u	M3	180	76	21.6 _u	M3—M4
143	326	17.35	M3—M4	181	196	16.58	M1-M2
145	559	>18.0u	M3—M4	182	561	17.2 _u	K7-M0
146	325	20.7 _u	M3	183	327	8.3u	K7—M0
147	302	1 2.9 8	K	184	77	18.17	M2—M3
148	399	19.0 _u	K7—M0	186	184	17.62	М
149	400	17.7 _u	M0-M1	187	461	16.6u	M0-M1
150	179	17.0	M1—M2	189	328	21.0 _u	M3—M4
151	136	19 _{pg}	M1-M2	191	414	16.5u	K
152	280	15.14	K7—M0	193	484	14.48	K
155	560	>18.0u	M2	194	203	17.20	M1-M2
156	9	16.30	M2-M3	195	78		M2—M3
157	497	19.0 _{pg}	M2—M3	197	518	20.0 _u	М
159	378	>17.5pg	K—M	198	526	15.2 _{pg}	K
160	104	17.33	M3	199	197	15.37	M2—M3
161	139	16.88	M2M3	200	491	12.90	K
162	12	16.02	M3-M4	202	500	17 _{pg}	K7—M0
163	511	17.9 _u	G—K	203	360	16.52	M3—M4
165	59	15.73 _{pg}	G—K	204	218	21.0 _{pg}	М
166	43	18.29	M3—M4	205	284	18.48	M3—M4
170	44	16.75	G—K	208	491	14.28	K
171	161	19.5 _u	M3—M4	209	541	17.7	M3—M4
172	505	18.0	G—K	212	468	20.2 _{pg}	· M
173	548	17.4 _{pg}	M2-M3	213	259	17.16	K
175	296	17.97	K	214	472	13.94	K7—M0

507

Э.С.ПАРСАМЯН, Г.Б.ОГАНЯН

Таблица 2 (продолжение)

1	2	3	4	1 -	2	3	4
216	131	16.08	K7-M0	261	545	>20.0u	M5
217	354	17.62	M4—M5	263	313	17.22	M2—M3
218	330	20.5 _u	M3	265	535	20.1 _{pg}	M3-M4
220	537	19.5 _{pg}	M3	266	336	20.0u	M2-M3
22 1	379	17.3 _{pg}	G—K	267	312	21.0u	M3M4
222	212	14.28	K	268	483	18.2 _{pg}	M0-M1
227	195	14.48	M1-M2	269	564	>18.0u	M2—M3
231	402	14.08	M1-M2	270	352	17.81	.M2—M3
232	244	16.21	G	271	228	16.07 .	G—K
233	332	19.0 _u	M1-M2	272	199	18.65	M3—M4
234	122	17.69	M1-M2	274	337	17.5 _u	K7—M0
235	480	14.20	К7—М0	279	498	20.3pg	M3
236	200	15.36	K	281	347	14.46	G—K
239	251	17.44	K	282	186	17.98	М
240	49	18.02	M1—M2	283	489	14.02	M0-M1
241	267 •	16.42	M1—M2	284	132	17.48	M2—M3
242	175	16.80	G—K	286	27(13.85	K
243	50	18.46	G—K	287	20	20.2 _{pg}	M4
245	333	18.8 _u	M2	288	140	15.97	G—K
246	121	17.91	M1—M2	289	519	20.0 _u	M4
247	187	14.88	M1—M2	291	448	15.60 _{pg}	К
248	180	16.64	M3—M4	292	357	18.48	M1-M2
250	417	17.61	К	293	229	18.00	G—K
252	220	16.09	G—K	294	268	15.76	K
253	563	>19.0u	M3	295	240	16.40	M0-M1
254	153	22.0 _u	М	296	490	16.1 _{pg}	G—K
255	358	13.43	K	297	479	15.79 _{pg}	K7—M0
258	363	16.11	M2-M3	299	145	18.85	M3—M4
259	252	18.03	G—K	301	404	21.0 _u	M4

СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ ЗВЕЗД

Таблица 2 (продолжение)

1	2	3	4	1	2	3	4
302	120	17.62	M1—M2	347	193	16.23	G—K
306	380	16.5 _{pg}	G	349	476	16.04	M2—M3
307	350	>18.6pg	M3—M4	350	317	18.9 _u	K
308	451	16.5 _{pg}	G—K	351	176	17.30	> M4
309	154	16.44	M2—M3	352	538	13.4	K
310	467	16.29	M1—M2	353	239	15.46	M1-M2
311	155	19.5 _u	M2—M3	354	157	15.28	M2—M3
314	22	20.0 _{pg}	M3—M4	355	26	17.84	M3—M4
315	194	17.74	M3—M4	356	455	16.6 _u	K
316	428	17.0 _u	G—K	357	338	19.8 _u	M2
317	376	15.51	M1-M2	360	435	13.75	M0-M1
318	384	14.47	M1—M2	361	421	17.0 _{pg}	G—K
319	51	14.93	M0-M1	363	242	17.59	M1—M2
320	123	16.03	K7—M0	364	53	17.58	К
322	364	18.12	M1-M2	365	408	19.0 _u	M2
323	303	17.5 _{pg}	M2	366	539	17.64	M2
326	522	20.05 _u	M4	367	339	16.3 _u	M2
327	565	>18.0 _u	M1—M2	368	381	17.3 _{pg}	G—K
328	185	18.74	М	370	89	16.06	M2—M3
329	25	13.88 ·	К	371	54	18.18	M1-M2
330	502	16.9 _{pg}	G—K	373	410	19.1 _u	M1—M2
333	257	18.17	M1—M2	374	419	14.10	K
336	506	15.31 _{pg}	K	375	208	18.06 ·	М
337	314	18.8 _u	M1—M2	379	457	18.4 _u	К
339	207	16.96	M1—M2	381	144	15.17	K
J42	264	17.47	G—K	385	246	18.11	M1—M2
343	47C ·	17.9	M4	386	307	16.5 _{pg}	G—K
345	232	17.26	K	388	294	13.30	K
346	192	19.02	M3—M4	389	28	16.85	K

Э.С.ПАРСАМЯН, Г.Б.ОГАНЯН

Таблица 2 (продолжение)

					2	3	4
	2	3	4	1	2	12.50	K
392	273	17.15	K	429	110	13.50	K
393	382	17.0 _{pg}	K	431	413	13.58	
395	478	17.39	M2	432	31	18.6pg	MU-MI
396	94	18.9 _u	K	433	368	17.2 _u	K
397	272	14.72	K	437	96	17.80	M2—M3
398	412	17.34	M0—M1	438	543	20.0 _u	M5
399	534	20.0 _u	M3—M4	440	125	18.63	M3—M4
400	164	17.55	M3—M4	442	465	15.58	K
401	443	17.5 _{pg}	M0-M1	443	508	18.0	К7—М0
402	510	16.0 _{pg}	G—K	444	567	12.69	K
403	213	16.78	M3—M4	445	114	17.37	M1-M2
404	496	18.9 _u	M0-M1	446	279	17.99	· M3—M4
405	464	16.5 _u	K	447	375	18.3	K
406	158	17.04	M2M3	449	58	21.5	M4
407	512	14.93 _{pg}	K	450	227	17.92	G—K
409	475	15.88 [.]	M2—M3	453	269	15.91	K
410	253	17.18	G	454	115	15.50	M2—M3
412	211	17.28	M4	455	416	16.8	G
413	57	15.30	G—K	456	216	17.27	M3—M4
414	520	20.5 _{pg}	M4	457	340	15.4 _u	K
415	523	18.5 _u	M1—M2	458	60	16.05	M2—M3
416	290	16.21	G	459	462	16.7 _u	G—K
420	566	14.5	K	461	474	19.7 _u	M0-M1
422	135	16.36	M1—M2	462	274	17.51	M2—M3
424	219	16.28	M0-M1	463	568	17.5 _u	M0-M1
425	542	20.0 _{pg}	M4—M5	464	182	18.11	M2—M3
426	362	18.8 _{pg}	K	465	98	18.35	M4
427	- 29	17.08	M2—M3	466	469	16.9 _{pg}	M0-M1
428	238	16.48	M3—M4	467	369	17.11	M2—M3

510

СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ ЗВЕЗД

Таблица 2 (окончание)

1	2	3	4	1	2	3	4
468	319	18.3 _u	M0-M1	489	571	15.0 _u	K
470	178	16.03	M3—M4	490	282	15.77	K∙
471	32	18.57	M3—M4	491	127	14.88	M0-M1
472	550	18.7 _u	K7	492	441	16.2 _{pg}	K
474	265	18.15	M1—M2	493	353	17.0 _u	K
475.	551	18.3 _u	G—K	494	367	16.50	M1M2
476	460	17.5 _u	·K	495	572	15.5 _u	K7-M0
477	61	14.31	K	496	277	14.75	K
479	254	17.26 -	G—K	497	446	17.2 _u	K
480	258	17.20	К	498	341	16.0 _u	K7—M0
481	234	17.21	· K	501	449	17.2 _u	K
482	142	17.03	M1—M2	502	100	14.91	M2-M3
483	371	16.10	K	503	504	16.5 _u	K
484	569	18.0 _u	K	504	301	17.5 _{pg}	M2—M3
485	570	16.7 _u	G	506	183	18.17	М
487	33	20.4pg	M3—M4	23.5		1 1 1 1 1 1	170.000

511

Э.С.ПАРСАМЯН, Г.Б.ОГАНЯН

Таблица З

СРАВНИТЕЛЬНАЯ ТАБЛИЦА СПЕКТРОВ ВСПЫХИВАЮЩИХ ЗВЕЗД ПЛЕЯД, ОПРЕДЕЛЕННЫХ РАЗНЫМИ АВТОРАМИ

тс	ни	NБ	Хер- биг [14]	Мак- Карт- ни, Тре- нор [4]	Крафт, Грин- стейн [16]	Аро, Ча- вира [6]	Ири- арте [17]	Штауф- фер [18]	Парсамян, Оганян
1	2	3	4	5	6	7	8	9	10
16		101				> M2			M3—M4
19	- /2	1	60			M3-4	i	- 100	M3—M4
26		64		1.27		(M2)	-		M3M4
40	2	2				М			M4—M5
58		35		12		М	3-1		K7—M0
67		255				dM3	19	- 1	M2—M3
91		103		dM3e		> M3			M3
108		431		- 711			K3	- 2 10	K3—K5
118	133	397			K5.5Ve			-	K7—M0
119	134	68			K7Ve				M0—M1
121	146	149			K7—M0Ve	1			K7—M0
127	191	7	dK7	dK7	K7—M0Ve				K7—M0
130	212	70			K7Vc		6 1-		K7—M0
141		71				(>M2)			M1M2
142		10				М			M3—M4
144		72				М			M2
153	335	73		-	K5Ve				К7—М0
154	347	160	K5	dM1	K7Ve				K.5
158	357	8	K5	K4e	K6Ve			dM0.5c	K5
164		74				M		110.000	M2—M3
167		11	100		* _ n	М			M3-M4

СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ ЗВЕЗД

1.							
5	6	7	8	9	10		
	K5Ve	1000		dM0	K5-K7		
14.5	1241-	(K7—M0)		147	K		
113 8	56 T	- C - 2			K		
11 12	S11211	dM5			M4M5		

Таблица З(продолжение)

168	451	486	dK5		K5Ve	1000		dM0	K5—K7
169		75			124	(K7—M0)		1	K
174	566	243	dK4	113 8	151				K
185		202		12-1-2	9112112	dM5			M4—M5
188	624	113	and a	See an	M2Ve	11 Alton		dM2.5	M2
190	676	162	SpT_		K3,5Ve				K5—K7
192	686	13	- 100	dK7e		11-		1.2.0	K7—M0
196	2.25	79	5320	100	A. T.	(M)	-	1.14	M2M3
201	793	46		dM0, dM1	1 dec	alizen.		1.21	M0—M1
210	890	439	2	1.1-6	M0Ve:			100	K7—M0
211	906	14		dM2e	K7—M0Ve				M2—M3
215	915	492		6-112	K6Ve			148	K5—K7
219	vM6	47	a l'			М		10	M1—M2
223	1039	452		- 1	102	15.00	K2V		M1—M2
224	1061	48	dK5	2	1 11				K5—K7
225	1069	80	1007		A 1130	K7:			K7—M0
228	1100	401	dK3				K3e	1-1-	K3
229	1103	151			K7Ve				K5—K7
237	1173	81	1. 1. 1. 1. 1.	Carl See		M:		dM2	M2—M3
244	M16	15	i han	dM1e, dM2e	- 1 84	8-1-27			M2—M3
249	1280	334	dK7.M0		1. 100			E (101)	K7—M0
251	1286	16		12.5.4		М		dM2.5	M1—M2
256	1306	17	dK5e		Trail Co.	М			K7—M0
257	1321	335	1.		2.61			dM3e	M2—M3
262	1355	403		dK7e, dM0e	K5Ve			dM1.5	K7—M0
273		82	3			М			M1—M2
275	12.0	18		dM3e		dM3— dM4e			M3—M4

Э.С.ПАРСАМЯН, Г.Б.ОГАНЯН

Таблица З(продолжение)

1	2	3	4	5	6	7	8	9	10
276		473		dKSe					M0-M1
277		105		dM3e		> M3		16	M4
278	1454	432	K5				K3V (e?)	1.0	K5
280	1485	271	no		K5Ve	13			. K5
285	1531	10		dK7e	1010	1.	1 -		к7-М0
205	1001		1 mm	dM0e	1.0	2011-		10	and the
290	1553	433			5		K2.5V(c)		K5—K7
298	1000	83	107	100		(M3-4c)			M2-M3
300	1653	21	К7	dK7	K4.5Ve		1.1.1		K7
303		106				> M4			M3-M4
312	1785	84				(K6–M0)	11710	110	M0-M1
313		23					1	dM5	M2-M3
324	vM46	156						dM3	M2-M3
325	T.U.	86	1111			(M)	1.0		M3-M4
331	1886	406	51.2		1		K2V		K5—K7
332		24		1.12	13.00	М		125	M3—M4
341	11	87		dM2:	1	М		1.105	M1—M2
344	2016	493		dK7:	K4Ve		1.11		K7—M0
348	2034	316		1.00	1.		K2.5Ve	10	K2—K3
358	2193	88		1.15.1	K6Ve	1.11-	1.81		K5—K7
359	2208	107	dK6		K6Ve		-		K7—M0
369	2244	409			1		K2.5V (e?)	•	К7—М0
372		90		1.3	1000	М			M2—M3
376		91				(K7–M0)			M0-M1
377	2411	55	dM4e	dM3e,		1.1	dM5	M4—	Pro T. S.
						11	lin i	M5	1 - 1 - 1
				dM4e			· · ·		-15
380	_ 1	92				(M)	-	2 1	M2-M3
382		27		1.1.1.1		M	1.2.	1	M3
								The last	

СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ ЗВЕЗД

Таблица 3(окончание)

1	2	3	4	5	6	7	8	9	10
384	-	108				М			K5—K7
387	2588	165			K3V(e)				K7—M0
390	2601	56	M2	1.5	M3Ve			dM3	M2-M3
391	2601	93	1 4 3 7	1.40	M2.5Ve	10072		dM3	M2M3
394		214	- 12	1.	1000			dM5	M3—M4
417	2908	166	K3	- 1741	K3Ve	1. T. S.		1	K.5
418	2927	109	-		K4Ve	land and			K5-K7
419	2940	547	M0,M1	-	-1 17	-	1		M0-M1
423		95		-	a na handara	(M)			M1—M2
430	3030	30	dK7	-		-			K7
435	3104	111	-			M0-M1			K7—M0
439	10	97	- s aka	and a p	1.1 5.15	(M)	a farmer		M3—M4
441		201	100					dM5.5	M4—M5
448	3197	434		-	-		K3Ve		K3-K5
473		112	-			> M2	1000	-	M1-M2
499		99			-	(M:)			M1—M2

R

515

АСТРОФИЗИКА

TOM 36

НОЯБРЬ, 1993

выпуск 4

УДК 524.3-355

ПЕРВЫЙ БЮРАКАНСКИЙ СПЕКТРАЛЬНЫЙ ОБЗОР НЕБА. ГОЛУБЫЕ ЗВЕЗДНЫЕ ОБЪЕКТЫ. VI. ПОЛОСА $+33^{\circ} \le \delta \le +37^{\circ}$.

Г.В.АБРАМЯН, А.М.МИКАЕЛЯН

Поступила 18 августа 1992 Принята к печати 20 ноября 1992

Приводится шестой список голубых звездных объектов второй части Первого Бюраканского спектралного обзора неба (FBS). Объекты расположены в полосе $+33^0 \le \delta \le +37^0$, $13^h 30^m \le \alpha \le 18^h 30^m$ и $21^h 30^m \le \alpha \le 24^h 00^m$. Из обнаруженных 98 голубых звездных объектов 54 не были известны раньше. Проведена предварительная классификация объектов.

Распределение 638 объектов всех опубликованных списков настоящего обзора показывает, что с ростом галактической широты плотность объектов типа В по классификации авторов падает, а плотность объектов типа N наоборот — увеличивается. Это свидетельствует, что среди объектов типа N больший процент составляют внегалактические объекты, в частности — квазары, а тип В в основном представляют субкарлики и белые карлики.

1. Введение. С 1987 года проводится вторая часть Первого Бюраканского спектрального обзора неба (FBS — First Byurakan Survey) — выделение, каталогизация и классификация голубых звездных объектов. В пяти опубликованных списках [1-3] содержится 540 объектов. Данная работа завершает исследование полосы + $33^{\circ} \leq \delta \leq +45^{\circ}$. Обнаружено еще 98 голубых звездных объектов. Параллельно проводится спектральное исследование объектов второй части FBS [4], где поставлена задача классификации всех объектов и детального исследования наиболее интересных из них.

Среди 638 обнаруженных объектов с учетом настоящей статьи 395 открыты впервые, что составляет достаточно большой процент (62%) для объектов с предельной величиной в 17^m-17.5^m. Количестве объектов позволяет уже проводить некоторые статистические оценки. В данной работе сделана попытка рассмотреть галактическое распределение этих объектов с целью изучения их природы.

Описание второй части FBS, методика отбора и принципы предварительной классификации объектов приведены в [1]. В работах [2] приведены сравнения с другими аналогичными обзорами и анализ предварительной классификации авторов путем сопоставления с общепринятой спектральной классификацией для известных объектов. В работе [5] описана методика определения координат и звездных величин с карт Паломарского обзора неба.

2. Список объектов. В табл.1 приведен список обнаруженных 98 голубых объектов FBS. Объекты расположены в полосе + $33^{\circ} \le \delta \le + 37^{\circ}$, $13^{h}30^{m} \le \alpha \le 18^{h}30^{m}$ и $21^{h}30^{m} \le \alpha \le 24^{h}00^{m}$. В последовательных столбцах таблицы приведены: 1 — номер объекта в обзоре, 2 — обозначение объектов FBS согласно рекомендации подкомиссии N28 MAC, 3,4 — экваториальные координаты для эпохи 1950.0 года с точностью до $1^{s}(\alpha)$ и $0.1'(\delta)$, 5 — видимая звездная величина m_{ν} с точностью до $0^{m}.3$, 6 — тип объекта согласно нашей предварительной классификации [1], 7 — отождествление известных объектов (номер соответствующего источника в списке литературы).

Экваториальные координаты и звездные величины определены на картах Паломарского обзора неба глазомерным методом. Для калибровки использована зависимость «диаметр изображения — звездная величина» согласно [16]. Полученная звездная величина соответствует стандартной фотометрической величине V системы Джонсона с точностью до 0^m.3, обоснованной в работе [5].

3. Распределение голубых звездных объектов FBS по галактической широme. На рис.1 представлено схематическое распределение всех 638 объектов второй части FBS на небе с указанием галактической широты b. Они занимают полосу толщиной в 12° по δ на галактических широтах 10° — 85°. Для наглядности масштаб по δ увеличен в 4 раза по сравнению с масштабом по α . С учетом всех опубликованных работ во второй части FBS исследовано 4° × 4° областей с общей площадью в 2640кв. градусов. Всего выделено 638 объектов. Средняя плотность объектов, таким образом, составляет 0.242 объектов на кв. градус и, как видно из рис.1, примерно одинакова на всех галактических широтах. Отсюда следует, что распределение объектов в Галактике скорее всего соответствует сферической составляющей. Однако такой вывод в нашем случае обманчив, так как наша выборка не состоит из объектов одинаковой природы.

Как было показано в работе [2], голубые звездные объекты FBS включают белые карлики, субкарлики, звезды горизонтальной ветви HBB, взрывные переменные, ядра планетарных туманностей, а также квазары и сейфертовские галактики. При попытке разбить объекты на подвыборки кандидатов в белые карлики, субкарлики и квазары был получен интересный результат: квазары

Рис.1. Схематическое расположение голубых звездных объектов FBS на небе с указанием галактической широты

составляли 40% объектов типа N нашей классификации, в то время как 90% объектов типа В оказались субкарликами и белыми карликами. Причем белые карлики выделились по признаку абсорбции на призменных спектрах (наличие индекса "a" в нашей классификации). Фактически условно можем называть объекты типа N квазарами, типа B с абсорбцией — белыми карликами, а типа В без абсорбции — субкарликами. Благодаря такому разделению есть смысл

Рис.2. Зависимость поверхностной плотности объектов типов В и N предварительной классификации второй части FBS от галактической широты b

Таблица І

СПИСОК ГОЛУБЫХ ЗВЕЗДНЫХ ОБЪЕКТОВ FBS

No	Название FBS	Координаты		mv	Тип	Литература
	8-21	a 1950	ð 1950			
1	2	3	4	5	6	7
541	1335+369	13 ^h 35 ^m 38 ^s	+36°53.0'	14.2	N2e:	[6]
542	1348+369	13 48 43	+36 57.1	13.3	B2	[6]
543	1350+372	13 50 49	+37 10.4	15.1	Bl	[6]
544	1356+354	13 56 45	+35 24.6	15.3	B1	[6]
545	1358+333	13 58 20	+33 20.0	16.4	N1	
546	1403+341	14 03 39	+34 05.1	15.1	B2	
547	1421+373	14 21 19	+37 17.7	16.8	Nle:	
548	1421+345	14 21 28	+34 27.8	14.4	N1	[6], [8], [9]
549	1432+366	14 32 23	+36 35.4	16.1	N1e:	1. 1. 1. 2.2
550	1438+377	14 38 08	+37 43.1	16.0	N2	
551	1442+346	14 42 05	+34 33.9	15.6	B2	[6], [9]
552	1442+343	14 42 55	+34 15.9	14.4	BI	[6], [9]
553	1443+337	14 43 58	+33 41.4	16.0	B2	[6], [9]
554	1454+358	14 54 34	+35 49.1	16.3	B3	[6], [9]
555	1455+369	14 55 27	+36 55.6	17.5	N2	[6], [9]
556	1456+359	14 56 51	+35 58.2	14.3	B3	[6]
557	1459+347	14 59 41	+34 43.8	15.9	B2	[6], [9]
558	1502+351	15 02 02	+35 06.3	15.9	B2	[6]
559	1502+349	15 02 31	+34 58.6	16.8	B2	[9]
560	1503+342	15 03 38	+34 13.1	15.9	B2	[9]
561	1511+367	15 11 25	+36 39.4	13.0	B2	[6]
562	1512+343	15 12 08	+34 20.8	16.5	B3	
563	1512+370	15 12 46	+37 01.6	16.0	B2	[6], [9], [14]
			1			P. 31 F. 31 F. 41

Таблица I (продолжение)

1	2	3	4	5	6	7
564	1514+343	15 ^h 14 ^m 29 ^s	+34°17.9'	17.5	B 1	[9]
565	1519+343	15 19 06	+34 19.3	15.3	B2	
566	1521+357	15 21 36	+35 43.3	16.1	B1	[6], [9]
567	1522+331	15 22 07	+33 08.4	16.0	B2	[9], [10]
568	1523+363	15 23 18	+36 15.2	16.1	N1	
569	1529+338	15 29 04	+33 48.6	14.5	B1	[9]
570	1529+347	15 29 36	+34 43.6	15.6	B1	[9]
571	1533+349	15 33 20	+34 57.2	14.4	B2	
572	1539+355	15 39 03	+35 28.1	14.5	B2	
573	1553+354	15 53 09	+35 22.3	14.4	B3	[6]
574	1559+369	15 59 31	+36 58.2	14.22	N1	[6], [12, 13]
575	1603+369	16 03 44	+36 57.8	14.8	B3	[6]
576	1636+351	16 36 37	+35 06.0	14.9	B1	[6], [7]
577	1637+335	16 37 35	+33 31.6	15.2	B2	[6, 7, 12, 13]
578	1637+346	16 37 44	+34 38.3	15.1	B2	[6], {7]
579	1639+338	16 39 31	+33 50.6	15.5	31	[6], [7]
580	1640+362	16 40 10	+36 09.7	13.5	51	
581	1646+354	16 46 57	+35 25.9	16.2	B1	[6]
582	1649+356	16 49 07	+35 38.7	15.1	B1a:	[6], [7]
583	1650+341	16 50 05	+34 04.5	14.8	B2	[7]
584	1650+366	16 50 43	+36 35.2	14.5	B3	. [7]
585	1651+354	16 51 36	+35 25.2	15.2	B3	
586	1654+352	16 54 40	+35 10.5	12.7	B1	
587	1656+354	16 56 01	+35 25.1	14.0	N1	
588	1656+356	16 56 35	+35 35.1	15.8	B2	[6]
589	1657+344	16 57 01	+34 23.4	16.7	B2	[6]
590	1658+337	16 58 50	+33 42.3	16.0	B2	[6]
591	1701+359	17 01 34	+35 53.0	12.8	B2	[6]

Г.В.АБРАМЯН, А.М.МИКАЕЛЯН

Таблица I (продолжение)

592 593 594 595	1703+355 1704+347 1706+357 1711+336 1713+333	17 ^h 03 ^m 29 ^s 17 04 29 17 06 24	+35° 32.2' +34 43.8 +35 42.9	15.4 15.4	B1	[6]
593 594 595	1704+347 1706+357 1711+336 1713+333	17 04 29 17 06 24	+34 43.8	15.4	-	
594 595	1706+357 1711+336 1713+333	17 06 24	+35 42.9		B2	Rent William
595	1711+336 1713+333	17 11 06		15.4	B2	[6]
0.0	1713+333	1/ 11 00	+33 34.9	13.9	B3	[6], [15]
596		17 13 45	+33 16.4	15.4	B2	[6], [11]
597	1716+367	17 16 35	+36 42.4	16.3	B2	[6]
598	1720+361	17 20 21	+36 05.2	15.7	B3	[6]
599	1722+356	17 22 49	+35 36.9	15.6	B2	[6]
600	1724+372	17 24 44	+37 11.8	14.2	N2	100000-000
601	1739+355	17 39 20	+35 29.7	15.9	B2	Salara Inc
602	1746+333	17 46 20	+33 17.5	16.9	B2	harvest late
603	1756+352	17 56 29	+35 09.3	15.4	B1	million and the
604	1803+369	18 03 49	+36 58.9	15.5	B2	These bears
605	1804+340	18 04 24	+34 01.7	14.8	B1	
606 1	1805+362	18 05 00	+36 11.2	15.4	B2	
607 1	1807+356	18 07 05	+35 35.9	15.2	B3	
608 1	1810+371	18 10 22	+37 05.3	15.3	B1	
609 1	1810+374	18 10 39	+37 24.5	15.7	B2	
610 1	1816+349	18 16 53	+34 52.5	15.7	B3	
611 1	1819+348	18 19 24	+34 45.0	14.8	B1e:	
612 1	1822+352	18 22 21.	• +35 14.4	15.8	B2	
613 2	2154+329	21 54 55	+32 53.6	13.7	B1.	
614 2	2158+360	21 58 33	+36 01.2	14.1	B2	
615 2	2200+337	22 00 53	+33 42.4	17.2	Bla	
616 2	2204+364	22 04 04 [•]	+36 26.1 •	. 12.8	B2	
617 2	2207+359	22 07 32	+35 54.9	13.9	B3	
618 2	2208+349	22 08 57	+34 55.3	16.1	B2	
619 2	2209+354	22 09 08	+35 24.3	15.2	B2	

Таблица I (окончание)

1	2	3	4	5	6	7
620	2212+335	22 ^h 12 ^m 50 ^s	+33°30.1'	15.3	B1	124
621	2219+357	22 19 47	+35 40.1	15.9	B1	
622	2237+362	22 37 06	+36 10.1	15.4	B2	
623	2238+369	22 38 44	+36 58.3	14.5	B3	and the second second
624	2241+336	22 41 37	+33 33.5	15.4 .	B2	- part of the second
625	2243+343	22 43 38	+34 19.8	13.4	B3	
626	2253+335	22 53 37	+33 27.1	12.5	B1	1 million
627	2300+354	23 00 11	+35 26.1	14.1	B2	and the second
628	2303+344	23 03 13	+34 25.5	13.2	B2	
629	2305+366	23 05 07	+36 38.3	15.3	B3	2 martine Press
630	2307+338	23 07 49	+33 45.5	15.2	B 1	a with
631	2317+342	23 17 15	+34 09.8	17.0	B1	
632	2318+341	23 18 31	+34 07.4	15.3	B2	
633	2321+339A	23 21 12	+33 59.0	14.4	B3	and a starting
634	2321+339B	23 21 17	+33 55.3	15.0	B3	and the second
635	2327+335	23 27 06	+33 30.1	16.0	B3	the second second
636	2328+335	23 28 02	+33 27.8	17.1	B2	
637	2331+353	23 31 32	+35 19.6	15.4	B1	aparta E 2
638	2331+342	23 31 46	+34 10.9	16.3	B2	E CH ELFORD

Примечание: объект 595 — катаклизмическая переменная V795 Her, а 631 — двойная, обе компоненты которой голубые.

построить распределение плотности объектов по галактической широте b в отдельности для объектов типов В и N. На рис.2 приведено это распределение.

Плотность объектов типа В с ростом *b* падает, что естественно для звезд Галактики, в то время как плотность объектов типа N увеличивается, что подтверждает наличие среди них большого числа внегалактических объектов. Для белых карликов получается равномерное распределение (для простоты на рисунке не показано), что и следовало ожидать, так как все белые карлики нашего обзора (так же как и подавляющее большинство всех известных карликов) находятся на расстояниях до 300пк, что, по-видимому, меньше их характерной галактической высоты z. Эти объекты фактически находятся в нашей окрестности и показывают равномерное сферическое распределение. Поэтому об истинном характере распределения белых карликов в Галактике сказать что-либо определенно очень трудно.

Грин и соавторы [6] считают, что белые карлики принадлежат к промежуточной составляющей Галактики, хотя предельная величина обзора Паломар-Грина уступает нашей. Отметим также, что принятое мнение, что белые карлики принадлежат к сферической составляющей Галактики, основывается на мнимом сферическом распределении близких объектов и не может быть принято.

Исходя из равномерного распределения бедых карликов и из того факта, что основную часть объектов типа В составляют субкарлики, можно утверждать, что в распределении объектов типа В, показанном на рис.2, ответственны именно субкарлики. Согласно [6] субкарлики sd0 и sdB (основная масса субкарликов в обзоре Паломара-Грина, так же как и в нашем) принадлежат к плоской составляющей Галактики. Максимальное расстояние субкарликов нашего обзора *гтах* = 3кпк, так что убывание их плотности с *b* указывает на подтверждение результатов [6] для горячих субкарликов. Таким образом, можно предполагать, что общепринятое мнение о том, что субкарлики являются объектами сферической составляющей Галактики ошибочно по крайней мере для герячих субкарликов.

Итак, задолго до классификации всех голубых звездных объектов FBS, мы статистически изучили их природу. Независимо подтвердилось наличие внегалактических объектов (в частности квазаров) срсди наших объектов.

4. Заключение. Во второй половине полосы $+33^{\circ} \le \delta \le +37^{\circ}$ обнаружено 98 голубых звездных объектов, из которых 44 отождествлены с ранее опубликованными объектами из других обзоров. Среди этих 44 объектов 1 квазар, 11 белых карликов, 2 катаклизмические переменные, 18 горячих субкарликов, 3 звезды горязонтальной ветви НВВ, одна двойная и 8 голубых звездных объектов, спектральный класс которых пока не известен. Как указывалось в работе [3], это распределение не может дать истинной картины объектов в нашем списке, так как квазары и белые карлики открываются также и некоторыми другими методами.

Спектральное исследование голубых звездных объектов FBS, проводимое параллельно с обзором [4], даст окончательную классификацию этих объектов. Однако количество обнаруженных объектов во второй части FBS позволяет сделать некоторые статистические выкладки без знания спектральных классов объектов. Галактическое распределение, приведенное в данной работе, позволило получить важный вывод: объекты типов В и N предварительной классификации резко отличаются по своей природе и уже сейчас можно выделить группы объектов из наших списков для целенаправленных исследований.

Бюраканская астрофизическая обсерватория

THE FIRST BYURAKAN SPECTRAL SKY SURVEY. BLUE STELLAR OBJECTS. VI. ZONE + 33 $^{o} \le \delta \le$ + 37 o .

H.V.ABRAHAMIAN, A.M.MICKAELIAN

The sixth list of blue stellar objects of the second part of the First Byurakan Spectral sky survey is given. The objects are situated in a zone with $+33^{\circ} \le \delta \le +37^{\circ}$, $13^{h}30^{m} \le \alpha \le 18^{h}30^{m}$, and $21^{h}30^{m} \le \alpha \le 24^{h}00^{m}$. The list contains data for 98 blue stellar objects, among which 54 are new. A preliminary classification of objects is made.

The galactic distribution of 638 objects of the all published lists of the current survey is given. It is shown that the density of B-type objects according to the authors classification decreases with galactic latitude b, while the density of the N-type objects — on the contrary — increases. This testifies the idea that the extragalactic objects, in particular quasars, make up a great percent among the N-type objects, but mainly subdwarfs and white dwarfs represent the B-type.

ЛИТЕРАТУРА

1. Г.В.Абрамян, В.А. Липовецкий, Дж.А.Степанян, Астрофизика, 32, 29, 1990.

 Г.В.Абрамян, В.А.Липовецкий, А.М.Микаелян, Дж.А.Степанян, Астрофизика, 33, 213, 1990; 33, 345, 1990; 34, 13, 1991.

3. Г.В. Абрамян, А.М.Микаелян, Астрофизика, 36, 109, 1993.

4. Г.В.Абрамян, А.М.Микаелян, Астрофизика, 35, 511, 1991.

5. Г.В.Абрамян, А.М.Микаелян, Сообщ. Бюракан. обсерв., в печати.

6.R.F.Green, M.Schmidt, J.Liebert, Astrophys. J. Suppl. Ser., 61, 305, 1986.

7. T.Noguchi, H.Maehara, M.Kondo, Ann. Tokyo Astron. Obs., 2nd ser., 18, 55, 1980.

8. M.Kondo, T.Noguchi, H.Maehara, Ann. Tokyo Astron. Obs., 2nd ser., 20, 130, 1984.

9. P.Pesch, N.Sanduleak, Astrophys. J. Suppl. Ser., 70, 163, 1989.

10.B.Iriarte, E.Chavira, Bol. Obs. Tonantzintla y Tacubaya, 16, 3, 1957.

11. H.L.Giclas, R.Burnham, Jr., N.G.Thomas, Lowell Obs. Bulletin, Nº166, vol. VIII, 6, 157, 1980.

12. O.J. Eggen, J.L. Greenstein, Astrophys. J., 141, 83, 1965.

Г.В.АБРАМЯН, А.М.МИКАЕЛЯН

- 13. W.J. Luyten, A Search for Faint Blue Stars, The Observatory Univ. of Minnesona, Minneapo.is, 1952-1962.
- 14. M.-P. Veron-Cetty, P. Veron, A Catalog of Quasars and Active Nuclei (4th edition), ESO Scientific Report №7, 1989.
- 15. H. Ritter, Astron. Astrophys. Suppl. Ser., 85, 1179, 1987.
- 16. I.R.King, M.I.Raff, Publ. Astron. Soc. Pacif., 89, 120, 1977.

АСТРОФИЗИКА

TOM 36

НОЯБРЬ, 1993

выпуск 4

УДК.524.577

СВЯЗЬ НЕЙТРАЛЬНОГО ВОДОРОДА С РАДИАЛЬНЫМИ СИСТЕМАМИ ТЕМНЫХ ГЛОБУЛ

А.Л.ГЮЛЬБУДАГЯН

Поступила 24 июня 1993 Принята к печати 1 июля 1993

Приведены результаты исследования связи найденных ранее трех радиальных систем темных глобул второго вида с атомарным водородом. Показано, что система No6 [2] не связана с заметным количеством HI. Система No1 связана с облаком HI. Найдены также 3 объекта, внешне похожих на объекты Хербига-Аро, в одной из глобул системы No1 (в кометарной глобуле LBN 613). Рядом с системой No2 найдены два облака HI, которые возможно связаны с этой системой.

1. Введение. Исследование радиальных систем темных глобул имеет важное значение для выяснения эволюционного пути молекулярных облаков и звезд спектральных классов О-В. Как было отмечено в [1], имеется два вида радиальных систем. 1. Системы, связанные с областями НП. В центре этих систем располагаются в основном звезды классов О. 2. Системы, не связанные с областями НП. В центре таких систем располагаются звезды классов позднее, чем в системах 1 вида. Радиальные системы второго вида могут быть связаны с облаком НІ или же вообще не содержать заметного количества атомарного водорода [1]. Предполагается, что в системах второго вида область НП со временем, из-за ослабления центральных звезд, превращается в облако НІ или же рассеивается под воздействием сильного звездного ветра (и/или сильного излучения) из центральных звезд. Рассеяние облака НІ, или даже первоначальной области НП, может быть вызвано также взрывом сверхновой, происшедшим вблизи радиальной системы. В [2] приводятся списки радиальных систем как первого, так и второго видов, найденных на картах Паломарского атласа.

В данной статье нами исследовано распределение НІ в окрестности и внутри радиальных систем второго вида, приведенных в таблице 2 работы [2]. Для

построения карт распределения НІ мы использовали данные каталогов Уивера и Уильямса [3,4].

2. Система около ассоциации Сер ОВЗ. Система No6 из таблицы 2 [2] расположена юго-восточнее звезд, образующих ассоциацию Сер ОВЗ. Распределение НІ в этой области приводится в [5] и [6].

Однако мы получили распределение НІ в этой области, основанное на более точных наблюдениях [3,4]. Наше распределение лучше согласуется с приведенным в [6], чем в [5].

С ассоциацией Сер ОВЗ связано гигантское молекулярное облако. Распределение скоростей внутри этого облака получила Сарджент [7] по линиям ¹²СО и ¹³СО. В непосредственной близости от радиальной системы расположена часть

Р. ..1. Распределение НІ в области, содержащей систему No6. Центр системы отмечен крестиком. Распределение НІ на скорости – 13км/с отмечено цифрой 1, на – 5км/с цифрой 2, на +3км/с цифрой 3, на 0 км/с цифрой 4, а на –9км/с цифрой не отмечено. молекулярного облака, которая, видимо, состоит из нескольких фрагментов, наблюдаемых соответственно на скоростях -9.4, -10.7 и -8.1км/с, причем первые два фрагмента намного массивнее третьего. Целесообразно было поиск распределения НІ также вести на скоростях, близких к вышеназванным. Этот поиск нами велся на скоростях -13, -9, -5, 0 и + 3км/с, на которых в исследуемой области имеются максимумы в спектрах из [3].

Полученные результаты приведены на рис.1. Как видно из этого рисунка, в исследуемой области не имеется связанного с радиальной системой заметного количества HI, облака HI расположены далеко от радиальной системы.

Как отмечено выше, одним из объяснений отсутствия НІ может быть взрыв сверхновой. И на самом деле, недалеко от радиальной системы расположен пульсар PSR 2223+65. Расстояние до этого пульсара оценивается в 730пк [8], а до ассоциации Сер ОВЗ в 800пк. Возраст пульсара оценивается в 1×10⁶ лет, что сравнимо с возрастом звезд ассоциации. Блаау [9] оценивает возраст двух подгрупп звезд, составляющих ассоциацию Сер ОВЗ соответственно в 4 и 8×10⁶лет. Эти данные свидстельствуют в пользу принадлежности пульсара ассоциации Сср ОВЗ.

Результатом взрыва сверхновой, кроме образования пульсара, могло быть также рассеяние облака HI, в которое была погружена радиальная система. Наличие вблизи Сер OB3 облака, движущегося со скоростью + 3км/с (см. рис.1), не типичной для данного места Галактики, можно как раз объяснить следствием взрыва сверхновой. Это облако разреженнее и меньше других облаков, расположенных близ ассоциации Сер OB3, и влияние взрыва сверхновой на него должно было быть намного существенней, чем на другие более массивные облака, имеющие отрицательные скорости (см.рис.1).

Рис.2. Распределение звезд спектральных классов О-В в окрестности радиальных систем: а) в окрестностях системы No6, b) в окрестностях системы No1, c) в окрестностях системы No2. Звезды отмечены точками, а центр системы отмечен крестиком. Поиск точечных источников IRAS в глобулах этой системы не увенчался успехом [10]. В центре этой системы расположена звезда HD 219634. Спектральный класс ее B8, $V = 6^{m}.53$, $B - V = 0^{m}.23$ [11]. Если пренебречь поглощением и расстояние до этой звезды принять равным 800пк, то для абсолютной величины этой звезды будем иметь $M_{\nu} = -3^{m}$. Для спектрального класса B8 это значение абсолютной величины ближе всего к $M_{\nu} = -3^{m}.4$ для класса светимости II, при этом поглощение надо принять $A_{\nu} = 0^{m}.4$. Радиальная скорость звезды (-8км/с) близка к скоростям, полученным по линиям ¹²CO для глобул системы. Так, в [12] для L 1225 приводится скорость – 10.9км/с, а в [13] для L 1227 скорость – 10км/с.

На рис.2а представлено распределение звезд классов О-В в окрестности радиальной системы. Как видно из этого рисунка, радиальная система расположена в области, почти лишенной этих звезд. Можно предположить, что звезды ранних спектральных классов, расположенные вблизи радиальной системы во время ее образования, со временем перешли в более поздние классы.

Рис.3. Распределение HI в области, содержащей систему No1. Центр системы отмечен крестиком. Распределение HI на скорости –9км/с отмечено цифрой 1, на скорости –4.5км/с цифрой 2. На скорости +4.5км/с в исследованной области почти нет HI, поэтому мы не приводим это распределение.

3. Система No1 из таблицы 2 [2]. Эта система полностью изолирована, в непосредственной близости нет молекулярных облаков. Ближайшие ассоциации Cas OB14 и Cas OB9 находятся примерно на одинаковых расстояниях от системы

(в 3°, что при расстоянии в 800пк составляет ~40пк). Средние собственные движения звезд вышеназванчых ассоциаций соответствуют тангенциальным скоростям -8 и -26км/с.

В литературе есть данные о скоростях двух глобул радиальной системы: по линиям ¹²СО измерена скорость глобул GRS2 (-11.3км/с) и LBN 613 (-12.5км/с) [12]. Эти скорости ближе к скорости звезд ассоциации Cas OB14. Поэтому можно предположить, что радиальная система и ассоциация связаны физически.

Глобулы системы GRS 2, 3 и 4 содержат точечные источники IRAS [10]. В центре радиальной системы расположена звезда HD 3950 класса В 1 III, $V = 6^m.91, B - V = 0^m.12, M_V = -4^m.4$ [11]. Если эта звезда находится на расстоянии 800пк, то поглощение в направлении на звезду $A_V = 1^m.8$.

Распределение HI в окрестности радиальной системы построено нами на скоростях – 4.5, + 4.5 и – 9км/с (см.рис.3). Как видно из рис.3, на первых двух скоростях нет заметной концентрации HI на месте радиальной системы. На –9км/с наблюдается заметная концентрация HI, что может свидетельствовать о наличии облака HI на месте системы. Скорость этого облака близка к скоростям глобул и средней скорости ассопиации Cas OB14.

Сами глобулы этой системы напоминают кометарные глобулы наличием ярких ободков и ярких хвостов. Не исключено, что система все же содержит область HII, слабые следы которой видны на Паломарских картах, и тем самым система 1 занимает промежуточное положение между системами видов 1 и 2: она содержит как остатки области HII, так и облако HI.

Рис.4. Распределение HI в области, содержащей систему No2. Центр системы отмечен крестиком. Распределение HI на скорости +4км/с отмечено цифрой 1, на скорости 0 км/с цифрой 2, на -4км/с цифрой 3. Особый интерес представляет глобула LBN 613. В центре вершины расположен размытый красный объект ($\alpha_{1950} = 0^h 46^m 34^s$, $\delta_{1950} = 50^0 28^2 25''$), напоминающий объект Хербига-Аро. Этот объект совпадает с точечным источником IRAS 00465 + 5028, который имеет ИК цвета, типичные для источника, связанного с мазерами воды. Еще пара красных объектов (один с ореолом, другой – без) расположена в середине хвоста глобулы ($\alpha_{1950} = 0^h 46^m 58^s$, $\delta_{1950} = 50^0 26' 38''$), но источника IRAS, связанного с этими объектами, необнаружено. Следы этих трех объектов видны и на синих картах.

На рис.2b представлено распределение О-В звезд в окрестности радиальной системы. Как видно из этого рисунка, радиальная система расположена в области, бедной О-В звездами.

4. Система No2 из таблицы 2 [2]. Система граничит с ассоциацией Сат OBI. Сама ассоциация Сат OBI расположена на расстоянии 800пк и состоит из двух подгрупп звезд. Одна из них имеет среднюю скорость – 19.5км/с, другая — -5.7км/с. В [13] есть данные о скоростях двух глобул, принадлежащих системе No2 — L 1396 (v=3.1км/с) и L 1399 (v=3.2км/с), скорости измерены по линиям ¹²CO. Эти скорости существенно разнятся от вышеприведенных скоростей ассоциации Сат OBI, откуда можно заключить, что система и ассоциация физически не связаны.

Поиск НІ велся на скоростях – 13, –4, 0 и +4км/с. Как видно из рис.4, система расположена на границе довольно массивного облака НІ (–4км/с) и на периферии слабых облаков на +4км/с и 0 км/с. Как отмечено в [14], скорости глобул в одной и той же системе могут различаться на несколько км/с, так что как облако на +4км/с, так и на 0 км/с может быть тем облаком НІ, в которое превратилась первоначальная область НІІ, связанная с радиальной системой. На -13км/с нет облаков, связанных с системой, но можно заметить начало большого облака НІ на расстоянии 5° от радиальной системы. Возможно, это облако связано с ассоциацией Сат ОВІ — как было отмечено выше, средние скорости двух подгрупп звезд этой ассоциации соответственно –19.5 и – 5.7 км/с.

Распределение О-В звезд вблизи радиальной системы представлено на рис.2с. Из этого рисунка можно заключить, что радиальная система расположена на границе области, почти лишенной О-В звезд. Глобулы системы GRS 8-17 связаны с точечными источниками IRAS [10].

В центре системы расположена интересная группа из трех звезд. Главная звезда HD 28446, BO III, $V = 5^{m}.4$, $B - V = 0^{m}.1$, $M_V = -5^{m}.0$ [11]. Если эта звезда находится на 800пк, то поглощение $A_V = 0^{m}.9$. Группа интересна тем, что две другие звезды также класса B — B1 IV и B5 NE. При расстоянии до группы в

800пк расстояние между членами группы $r_{12} = 5.6$ пк, $r_{13} = 4.3$ пк и $r_{23} = 1.6$ пк, что примерно удовлетворяет критерий для кратной системы типа Трапеции. Согласно определению Амбарцумяна [15] r_{12}/r_{23} и r_{13}/r_{23} должно быть < 3, у нас же $r_{12}/r_{23} = 3.5$ и $r_{13}/r_{23} = 2.7$. Это пример широкой системы типа Трапеции, состоящей из В звезд. В [16] приведены примеры подобных систем. То обстоятельство, что все члены подобных систем являются звездами одного спектрального класса, делает вероятность физической связи членов этих систем довольно большой. Вблизи этой системы нет пульсара из каталога [8].

5. Основные результаты. В данной статье приводятся результаты исследования распределения HI вблизи трех радиальных систем темных глобул из табл.2 [2] — систем NoNo1, 2 и 6. Не обнаружено заметного количества HI, связанного с системой No6. С системой No1 связано облако HI, имеющее скорость – 9км/с. Эта же система содержит остатки области HII, что дает нам право отнести ее к виду, промежуточному между видами 1 и 2: область HII, связанная с нею, еще не наблюдается, но в то же время начался процесс образования облака HI. С одной из глобул этой системы связаны три новых объекта, внешне похожих на объекты Хербига-Аро. Один из этих объектов связан с точечным источником IRAS. Рядом с системой No2 есть два облака HI на +4 и 0 км/с. Эти облака могут быть теми облаками, в которые превратилась первоначальная область HII, рансе связанная с этой радиальной системой.

Бюраканская астрофизическая обсерватория

THE CONNECTION OF NEUTRAL HYDROGEN WITH THE RADIAL SYSTEMS OF DARK GLOBULES

A.L.GYULBUDAGHIAN

The results of the investigation of the connection of three previously found [2] type 2 radial systems of dark globules with atomic hydrogen are given. It is shown that the system No6 is not connected with the substantial amount of HI, and the system No1 is connected with a cloud of HI. Three objects, similar to Herbig-Haro objects, connected with a globule LBN 613 from the system No1, are also found. Two clouds of HI near the system No2 are found, which may possibly be connected with that system.

ЛИТЕРАТУРА

- 1. А.Л.Гюльбудагян, Астрофизика, 33, 187, 1990.
- 2. А.Л.Гюльбудагян, В.А.Акопян, Астрофизика, 33, 395, 1990.
- 3. H. Weaver, D.R. Williams, Astron. Astrophys. Suppl.ser., 8, 1, 1973.
- 4. H. Weaver, D.R. Williams, Astron. Astrophys. Suppl.ser., 17, 251, 1974.
- 5. G.E. Assousa, W. Herbst, K.C. Turner, Astrophys. J., 218, L13, 1977.
- 6. S. Simonson, III, H. van Someren Greve, Astron. Astrophys., 49, 343, 1976.
- 7. A. Sargent, Astrophys., 218, 736, 1977.
- 8. J.H.Taylor, R.N.Manchester, Astron. J., 80, 794, 1975.
- 9. A.Blaauw, Ann. Rev. Astron. Astrophys. J., 2, 213, 1964.
- 10. А.Л.Гюльбудагян, В.А.Акопян, Астрофизика, 34, 61, 1991.
- Sky Catalogue 2000.0., v.1, Stars to Magnitude 8.0. Eds. A. Hirshfeld, R.W.Sinnott, Sky Publishing Corporation, 1982.
- 12. D.P. Clemens, R. Barvanis, Astrophys. J. Suppl. ser., 68, 257, 1988.
- 13. M.A. Frerking, W.D.Langer, Astrophys. J., 256, 523, 1982.
- 14. W.J. Zealey, et al., Astrophys. Letters, 23, 119, 1983.
- 15. В.А.Амбарцумян, Сообщ. Бюраканской обс., 15, 3, 1954.
- 16. А.Л.Гюльбудагян, Астрофизика, 19, 747, 1983.

АСТРОФИЗИКА

TOM 36

НОЯБРЬ, 1993

ВЫПУСК 4

УДК: 520.849.07

ОКОЛОЗВЕЗДНЫЕ ОБОЛОЧКИ И СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ ЗВЕЗД

Р.А.ВАРДАНЯН

Поступила 10 мая 1993 Принята к печати 26 августа 1993

Показано, что различия, наблюдаемые в спектральных классах одних и тех же звезд, определенных по спектрам и по диаграммам [спектр-цвет (V—D],двухцветной[(V—R), (R—I)], обусловлены околозвездными пылевыми облаками, содержащих крупные частицы.

В последнее время для спектральной классификации звезд поздних типов (М) иногда применяется двухцветная (V-R, R-I) диаграмма [1]. Однако встречаются многочисленные звезды, для которых в каталогах (IRC) даются только V и I, а величин R — нет. В таких случаях можно и с помощью цвета (V-I) определить спектральные подклассы звезд типа M и их цветовую температуру (T_c).

Спектральные классы звезд, определенные двухцветной диаграммой (V-R, R-I), часто отличаются от спектральных классов, основанных на спектрах.

В настоящей статье рассматривается возможная причина этих различий.

Зависимость между спектральным классом М—звезд и фильтрованными величинами (V-I) ϕ по медиане [2] для звезд типа Миры Кита нами была построена по данным Смака [3] и приведена на рис.1. Здесь и дальше индекс " ϕ " означает, что данная величина сфильтрована по медиане [2].

По приведенному рис.1 можно с достаточной точностью определить спектральный подкласс звезд типа М по известным величинам V-I. Вместе с тем на нем каблюдается почти линейная зависимость между цветами $(V-I)\phi$ и цветовой температурой $(T_c)\phi$, которая выражается формулой

 $(T_c)_{\phi} = 3900 - 240 (V - I)_{\phi}.$

 $(T_c)_{\phi}$

Рис.1. Спектр-цвет (V-I) диаграмма для звезд Миры Кита.

Рис.1 нами был использован для определения величин (V—I) и (T_c) для каждого спектрального подкласса звезд отдельно. Эти данные приводятся в табл.1.

Sp	(V—I)	Tc
M0	2.20	3400
M1	2.50	3325
M2	2.85	3280
M3	3.30	3125
M4	3.80	3000
M5	4.40	2850
M6	5.00	2700
M7	5.80	2500
M8	7.00	2200

Таблица І

В табл.2 для каждого спектрального класса звезд приводятся средние значения (V—I), вычисленные по данным каталога IRC [4] для 5—10 самых ярких звезд и соответствующие нормальные цвета (U—B)0, (B—V)0 [5].

Таблица 2

Sp	(V—I)	(U—B)o	(B—V)o
MO	2.16	1.84	1.54
K5	1.92	1.81	1.52
K3	1.75	1.49	1.34
K0	1.28	0.92	1.00
G5	1.10	0.52	0.85
G0	0.90	0.32	0.69
F5	0.60	0.15	0.40
F0	0.40	0.10	0.26
А	0.10	- 0.05	· -0.03
B9	-0.11	- 0.38	-0.11
B5	-0.20	-0.65	-0.17
B2	-0.27	-0.92	- 0.24
B0	- 0.35	-1.10	- 0.28

Р.А.ВАРДАНЯН

Для иллюстрации на рис.2 приводится двухцветная диаграмма для B0-M0звезд, где точками обозначена зависимость $(U-B)_0$ от (V-I), а крестиками – $(B-V)_0$ от (V-I). Такая же диаграмма на рис.3 приводится отдельно для звезд Миры Кита по данным работы Галиса [1] и для холодных сверхгигантов по данным работы Абрамяна [6].

Рис.2. Двухцветная диаграмма звезд спектральных классов ВО-МО.

Из рис.2 и 3 следует, что для звезд Миры Кита с увеличением цвета V-I цвет $(U-B)_{\phi}$ уменьшается (в среднем на 0.20 при изменении цвета V-I на 1^m.0), в то же время цвет $(B-V)_{\phi}$ остается почти постоянным. Для холодных же сверхгигантов, наоборот, с увеличением V-I цвет (U-B) остается почти постоянным, а (B-V) — увеличивается.

Отметим, что при составлении вышеуказанной двухцветной диаграммы холодных сверхгигантов из расчетов были исключены звезды типа VV Цефея, так как цвета *U*—*B* для этих звезд отклоняются (меньше) от соответствующих цветов остальных холодных сверхгигантов [6]. Итак, учитывая, что спектральный класс цвета (U—B), (B—V) и цветовая температура звезд типа M в основном связаны с величиной V—I, то можно заключить, что цветовые характеристики звезд типа M обусловлены околозвездными пылевыми облаками, а не межзвездными. Приведем ряд наблюдательных и статистических данных, которые говорят в пользу этого вывода.

Рис.3. Двухцветная диаграмма звезд спектральных классов M: a) типа Миры Кита и b) холодные сверхгиганты.

При одинаковом цвете (*I*—*R*) или (*V*—*I*) среди холодных сверхгигантов (согласно нашим расчетам) звезды типа VV Цефея обладают сравнительно меньшей степенью поляризации [6].

Согласно Аллену и др. [7] у ряда инфракрасных звезд доминирующую роль играет поглощение, обусловленное околозвездной пылевой или молекулярной оболочкой.

Наши расчеты показывают также, что не только инфракрасные звезды, но и горячие и холодные сверхгиганты, принадлежащие к звездным ассоциациям, имеют избыточное поглощение по сравнению с карликовыми звездами типа О, В, классов светимости IV и V, принадлежащих к тем же ассоциациям.

Подтверждением к сказанному является рис.4, который построен по данным каталога звездных ассоциаций Хемфри [8] для нескольких десятков звезд.

На рис.4 приводится зависимость средних значений разности поглощения $(\overline{\Delta}A_{\nu})$ между звездами сверхгигантами и О—В звездами классов светимости IV и V от абсолютной звездной величины, раздельно для холодных (точки)

и горячих (крестики) сверхгигантов. Как следует из рис.4, с увеличением абсолютных величин звезд это избыточное поглощение $\overline{\Delta}A_{\nu}$, которое по всей вероятности обусловлено существованием околозвездных пылевых оболочек вокруг звезд, систематически растет с абсолютной величиной соответствующих звезд. Причем для холодных сверхгигантов оно всегда больше чем для горячих сверхгигантов.

Рис.4. Зависимость средних значений разностей избыточного поглощения сверхгигантов, относительно О и В звезд IV и V классов светимостей, от абсолютных звездных величин, раздельно для холодных (точки) и горячих (крестики) сверхгигантов.

В свете этой интерпретации становится понятным тот факт, что цвета B-Vдля звезд типа Миры Кита остаются почти постоянными, несмотря на большие различия цветов V-I, а при изменениях блеска холодных сверхгигантов цвета B-V меняются незначительно [9] (кроме двойных звезд типа VV Цефея). Она естествечно объясняет, почему среди звезд типа Миры Кита одинакового цвета (B-V) или (I-K) слабые по блеску звезды обладают большей степенью поляризации, чем яркие [9-11].

Можно допустить, таким образом, что в наблюдаемых различиях поляризачии (при одинаковом цвете) основную роль играют околозвездные пылевые облака, которые, возможно, содержат необычно крупные пылинки.

На существование таких крупных пылинок вокруг отдельных объектов указывает ряд исследований [12,13].

В рамках вышесказанного предположения о существовании вокруг

сверхгигантских звезд, как холодных, так и горячих, околозвездных пылевых оболочек, содержащих крупные частицы, следует объяснить и следующий результат.

Как было показано нами [14], на основе каталога IRC [4] на диаграмме цвет (I-K) и визуальная звездная величина (V), построенной для звезд спектральных классов В—К, выделяется группа звезд со значением $(I-K) > 3^{m}$.0. Согласно диаграмме спектр-показатель цвета (V-I), они должны быть звездами поздних спектральных подклассов (M2).

Между тем, по классической классификации (МК) они являются звездами ранних типов [4]. Очевидно, что это различие обусловлено сильным избыточным поглощением в околозвездных оболочках указанных звезд.

В заключение выражаю глубокую благодарность профессору Л.В.Мирзояну за ценные замечания.

Бюраканская астрофизическая обсерватория

CIRCUMSTELLAR ENVELOPES AND SPECTRAL CLASSIFICATION OF STARS

R.A.VARDANIAN

It is shown that the differences observed between spectral classes of the same stars determined directly by their spectra and by [spectrum—colour (V-I)] or two—colour [(V-R), (R-I)] diagrams are caused by circumstellar dust envelopes containing large particles.

ЛИТЕРАТУРА

1. L. Gelis S., Astron. J., 87, 1791, 1982.

2. Р.А.Варданян, М.О.Закарян, М.С.Мирзоян, Сообщ. Бюраканской обс., 52, 24, 1980.

3. J.Smak, Acta Astronomica, 29, 187, 1979.

5. П.Г.Куликовсий, Справочник любителя астрономии, Наука, 1971, стр.530.

6. Г.В. Абрамян, Сообщ. Бюраканской обс., 52, 24, 1980.

- 7. D.A. Allen, D.T. Wickramasinghe, Astrophys. Space Sci., 97, 369, 1983.
- 8. R.M. Humphreys, Astrophys.J., Suppl.Ser., 38, 21, 1978.
- 9. Р.А.Варданян, Сообщ. Бюраканской обс., 54, 27, 1983.

10. Р.А.Варданян, Астрофизика, 22, 335, 1985.

^{4.} G.Neugebauer, R.B.Leighton, NASA SP-3047, Pasadena, 1969, p.305.

11. Р.А.Варданян, Астрофизика, 6, 77, 1970.

12. H.H.Human, F.C.Gillet, C.A.Beichman, T.De Jong, J.R.Houck, F.J.Low, G.Neugebauer, P.R.Wessellus, Astrophys.J., 278, L23, 1984.

13. 9. Уини-Уильямс, Д.Крукшенка, Инфракрасная астрономия, Мир, М., 1983, стр. 440.

14. Р.А.Варданян, Сообщ. Бюраканской обс., 58, 21, 1986.

АСТРОФИЗИКА

TOM 36

НОЯБРЬ, 1993

ВЫПУСК 4

УДК:524.7:520.84

СПЕКТРОФОТОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ДВУХ ГАЛАКТИК С УФ ИЗБЫТКОМ

М.А.КАЗАРЯН

Поступила 10 июня 1993 Принята к печати 6 июля 1993

Приводятся результаты спектрального исследования галактик No 123 и 238 с УФ избытком из списков [1,2]. Определены эквивалентные ширины и относительные интенсивности эмиссионных линий, наблюдавшихся в ядрах этих галактик. Определены также полуширины эмиссионных линий и масса ядра галактики No 238. Показано, что ядро галактики No 238 имеет слабые особенности галактик типа Sy2.

1. Введение. Настоящая работа является продолжением серии спектральных исследований галактик с УФ избытком, щелевые спектры которых были получены на 6-ом телескопе САО АН России. В этой статье приведены результаты для двух галактик, которые в списках [1,2] имеют порядковые номера 123 и 238. Спектрально—морфологические характеристики обеих галактик, согласно [1,2], одинаковы — Sd2. Эта характеристика означает, что их центральные области (ядра) имеют сильный УФ избыток. В [1,2] приведено морфологическое описание этих галактик. Первая из них по внешнему виду иррегулярная, с центральной яркой областью, являющейся ее ядром, диаметр которого примерно 3". При полученный спектров щель спектрографа проходила через ядро галактики.

Предварительные спектральные данные ядра галактики No 123: описание спектров, красное смещение (z = 0.0405) и абсолютная звездная величина (M_{pg} = -19^m.0) приведены в [3]. При определении последней величины принималось H = 75 км/с.Мпк.

Галактика No 238 является галактикой типа N с ярким ядром, диаметр которого 3". Для этой галактики получены спектры ядра, репродукция одного из которых приведена на рис. 1. В [3] для нее приведены, z = 0.0431, а M_{pg} = - 19^m.2. 2. Наблюдательный материал. Спектральные наблюдения галактик No123 и 238, как было отмечено выше, проводились на 6-м телескопе со спектрографом UAGS. Щель спектрографа имела ширину 1", дисперсия спектрографа примерно 100 А /мм. При получении спектров были использованы ЭОП УМК 91В и пленка Kodak 103а — О.

Рис.1. Репродукция спектра галактики No 238.

В табл. 1 приведены сведения о наблюдениях этих галактик. Для калибровки использовались спектры, полученные ступенчатым ослабителем СА ределения спектральной чувствительности аппаратуры в качестве стандарта была выбрана звезда Feige 92, распределение энергии в спектре которой известно [4]. Спектры для нее получены тем же способом на 6-м телескопе. Спектры обрабатывались на микрофотометре ИФО-451 кафедры астрофизики ЕГУ.

3. Эквивалентные ширины и относительные интенсивности эмиссионных линий. В табл. 2 приведены эквивалентные ширины линий и относительные интенсивности эмиссионных линий в спектрах галактик No 123 и 238. На рис. 2 приведены контуры эмиссионных линий ядра галактики No 238. Данные табл. 2, приведенные для линий [OIII] $\lambda\lambda$ 5007 и 4959 и H_{β} являются средними значениями двух наблюдений. Для линий H_{β} оба значения эквивалентных ширин в спектрах галактик No 123 и 238 почти совпали, а для каждой из линий [OIII] $\lambda\lambda$ 5007 и 4959 обе величины отличались от их средних значений примерно на 20%.

Из рис. 2 видно, что у галактики No 238 контуры линий [N II] λ 6584, H_{α} и [NII] λ 6548 приведены вместе, так как эти линии широкие и их крылья пере-

ДВЕ ГАЛАКТИКИ С УФ ИЗБЫТКОМ

Таблица 1

ДАННЫЕ О НАБЛЮДЕНИЯХ СПЕКТРОВ ГАЛАКТИК № 123 И 238 [1,2]

No галактики	Дата наблюдения	Экспозиция (в мин)	Спектральная область (в А)
123	2 / X 1984	20	4470-7500
"	_"	15	3550—6400
238	3 / X 1984	12	3550—6400
	_"	17	4470-7500

Таблица 2

ЭКВИВАЛЕНТНЫЕ ШИРИНЫ И ОТНОСИТЕЛЬНЫЕ ИНТЕНСИВНОСТИ ЛИНИЙ В СПЕКТРАХ ГАЛАКТИК No 123 и 238

Ион	λο	No123		No	238
		$W_{\lambda}(A)$	12/1 HB	$W_{\lambda}(A)$	IX/IHR
[SII]	6731	1.0	0.82		· _ ·
[SII]	6717	1.7	1.47	_	
[NII]	6584	7.8	3.39	6.9	2.16
Hα	6563	25.4	12.91	36.9	9.42
[NII]	6548 ′	2.8	1.37	36.9	9.42
[OIII]	5007	4.6	0.60	7.6	1.10
[OIII]	4959	1.4	0.17	3.1	0.40
Нβ	4861	6.1	1.00	6.7	1.00
Hy	4340		1	3.2	0.47
[OII]	3727	2.8	0.65	11.8	1.36

крывают друг друга. При определении эквивалентных ширин и относительных интенсивностей этих линий у ядра галактики No 123 оказалось возможным их разделение и поэтому эти величины вычислялись по отдельности. У ядра галактики No 238 возможно было разделить только линию [NII] λ 6584 и для нее

545

М.А.КАЗАРЯН

упомянутые величины вычислены отдельно, а для линий H_a и [NII Å 6548 эквивалентные ширины и относительные интенсивности вычислены вместе.

4. Полуширины линий. В табл. З приведены полуширины FWHM, без исправления инструментального профиля линий для ядра галактики No 238. В [5] был сделан вывод, что верхний предел полуширины инструментального профиля линий можно принять равным 270 км/с. Это значение инструментального профиля линий можно использовать для исправления полуширины линий ядра галактики No 238, так как его спектры были получены в тех же условиях, что и спектры галактик, изученных в [5]. В этом случае для истинной полуширины линии [OIII] β 5007 в спектре ядра галактики No 238 получается значение

Рис.2. Профили линий в спектре галактики No 238.

220км/с. Эта величина порядка минимального значения —200 —250 км/с., принятого для галактики типа Sy2 [6]. Что касается линий [OIII] λ 4959, то она у галактики No 238 после исправления полуширины инструментального профиля линии получается 200 км/с, т.е. того же порядка, как и у линии [OIII] λ 5007. Из табл. Эвидно, что полуширины линий H_{β} и H_{γ} у галактики No 238 велики. С учетом поправок обе они равны примерно 300 км/с. Учитывая еще то обстоятельство, что линии [OIII] $\lambda \lambda$ 5007 и 4959 довольно интенсивные, можно подтвердить тот вывод, который был сделан в [3], именно о том, что ядро галактики No 238 имеет особенности галактик типа Sy2.

Таблица 3

Ион	λο	FWHM
[NII]	6584	350
H_{α}	6563	330
[OIII]	5007	490
[OIII]	4959	470
Нβ	4861	570
Hγ	4340	570
[OII]	3727	710

ПОЛУШИРИНЫ ЭМИССИОННЫХ ЛИНИЙ В СПЕКТРЕ ЯДРА ГАЛАКТИКИ No 238

5. Масса ядра галактики No 238. При получении спектров этой галактики щель спектрографа проходила через ее ядро. Из спектра видно (рис. 1), что эмиссионные линии H_{α} и [NII] λ 6584 состоят из ярких и слабых частей. Яркие части линий слегка наклонены, а слабые — не показывают заметную наклонность. По этому можно заключить, что яркие части этих линий относятся к ядру галактики, а слабые — к гало, которое его окружает. Наклонность замечается также у линий [OIII] $\lambda \lambda$ 5007, 4959 и H_{β} , которые состоят только из ярких частей. Само собой разумеется, что наклонность ярких частей линий является результатом вращения ядра. По этому наклону нами была вычислена линейная скорость вращения ядра этой галактики, которая оказалась равной примерно 38 км/с на расстоянии 3".1 или 2600 пк от его центра. По формуле $m = RV^2/G$ можно оценить массу ядра галактики No 238, где R — линейный радиус, на расстояния. С учетом этих данных была получена масса ядра $m = 0.9 \cdot 10^9 m_{\odot}$.

М.А.КАЗАРЯН

6. Обсуждение. Как было отмечено, по полуширинам эмиссионных линий и по интенсивностям линий [OIII] λλ 5007 и 4959, ядро галактики No 238 можно отнести к галактикам типа Sy2. Полуширины линий [OIII] λλ 5007 и 4959 галактики No 123 порядка полуширины инструментального профиля линий, т.е. она является эмиссионой галактикой с узкими линиями. В [7] был сделан вывод, что ядро галактики с узкими эмиссиоными линиями, имеющее высокую светимость, обладает особенностью бурного звездообразования. По-видимому, такой особенностью обладает также ядро галактики No 123, так как оно также имеет сходные характеристики.

Из табл. 2 видно, что у обеих галактик отношение $I_{\lambda}/I_{H_{B}}$ намного больше значения $I_{\lambda}/I_{H_{B}}$, полученного для газовых туманностей длятмодели "В". Такое явление наблюдается, обычно, у большинства галактик с УФ избытком и объясняется наличием пыли в этих галактиках.

Ереванский государственный университет

SPECTROPHOTOMETRY OF TWO GALAXIES WITH UV EXCESS

M.A.KAZARIAN

The results of the spectrophotometry of galaxies No 123 and N 238 with UV excess from lists [1,2] are presented. The equivalent widths and relative intensities of the emission lines observed in nuclei of these galaxies are determined. The FWHM of the emission lines and the mass of the nucleus of galaxy No 238 also are obtained. It is shown that the nucleus of the galaxy No 238 has weak properties similar to those of the Sy2 galaxies.

ЛИТЕРАТУРА

М.А.Казарян, Астрофизика, 15, 5, 1979.
 М.А.Казарян, Астрофизика, 15, 193, 1979.
 М.А.Казарян, Астрофизика, 27, 399, 1987.
 R.P.S. Stone, Astrophys. J., 218, 767, 1977.
 М.А.Казарян, Э.С.Казарян, Астрофизика, 33, 169, 1990.
 D.E.Osterbrock, W.G.Mathews, Ann. Rev. Astron. Astrophys., 24, 171, 1976.
 V.A.Balzano, Astrophys. J., 268, 602, 1983.

АСТРОФИЗИКА

TOM 36

НОЯБРЬ, 1993

выпуск 4

УДК:524.354.4-77

К ТЕОРИИ РАДИОИЗЛУЧЕНИЯ ПУЛЬСАРОВ

Г.С.СААКЯН

Поступила 2 августа 1993

На примере модели соосного ротатора с параллельными векторами Ω и B_s (Ω — угловая скорость вращения звезды, Bs — магнитная индукция в звезде) рассмотрена проблема радиоизлучения пульсаров. Показано, что в качестве котерентного источника радиоизлучения пульсара может служить изгибное излучение начального отрезка (длиной порядка типичной длины радиоволн λ) потока первичных электронов, инжектируемых от полноса в начале формирования магнитного зазора, если продольное электрическое поле в нем определяется формулой $E_B = -2 \Omega B_s z/c$, где z — высота над магнитной шапкой. В случае же, если $E_B = -2 \Omega B_s (H - z)/c$ (H — зысота магнитного зазора), то ту же роль играет отрезок (также с длиной $\sim \lambda$) потока в торичных электронов, рожденных волизи потолка магнитного зазора при аннигиляции квантов изимбного излучения. Проведенные оценки радиосветимостей пульсароз согласуются с наблюдательными данными.

1. Сравнительно мощные радиосветимости пульсаров, несомненно, указывают на то, что в этих объектах действует когерентный механизм формирования радиоизлучения. В работах Старрока [1], Рудермана и Сатерланда [2] был предложен остроумный механизм образования такого излучения. Предложенная теория построена на разумных предпосылках и в качественном отношении согласуется с наблюдательными данными, однако в количественном отношении не строго обоснована. Позже на базе идеологии указанных пионерских работ было проведено более строгое рассмотрение проблемы в работах [3–5].

В настоящей работе, в основном, придерживаясь идеологии, развитой в упомянутых работах, мы указываем на наличие другого, более естественного и вероятного канала образования когерентного радиоизлучения. Наше рассмотрение мы начнем кратким обзором основных положений существующей теории, а затем после некоторых критических замечаний перейдем к изложению нашей э. версии о конкретном механизме формирования радиоизлучения. Прибегая к существенному упрощению, мы также рассматриваем случай соосного ротатора, но, разумеется для реальных объектов оси вращения и магнитного диполя не должны строго совпадать, ибо только в этом случае наблюдаемое излучение от нейтронных звезд является пульсирующим.

Вращающаяся намагниченная нейтронная звезда окружена протяженной плазменной средой — магнитосферой, состоящей из области замкнутых магнитных силовых линий и узкого канала открытых силовых линий. Первая заполнена зарядово разделенной электрон-позитронной плазмой, во второй частицы, свободно двигаясь по силовым линиям, уходят в бесконечность или падают на магнитные полюса, смотря каков их заряд [6-9]. Пожалуй, наиболее фундаментальным в теории пульсарного излучения является допущение о наличии у основания каналов открытых силовых линий небольших цилиндрических областей (магнитные зазоры) размерами порядка 100м, где существует мощное продольное (относительно магнитной силовой линии) электрическое поле, генеряруемое вращением [1,2]. Продольное электрическое поле имеется только в каналах открытых магнитных силовых линий, где плазма не удерживается магнитным полем. В области же замкнутых силовых линий частицы удерживаются магнитным полем, поэтому здесь образуется квазиравновесная плазма, жестко вращающаяся со звездой, в которой продольное электрическое поле не может существовать.

Частицы (электрон, позитрон), попадающие в магнитный зазор, ускоряются электрическим полем до высоких ультрарелятивистских энергий и поскольку двигаются по кривым магнитным силовым линиям, они испускают кванты изгибного излучения с характерной энергией $\hbar \omega_c >> m_e c^2$. Из-за высокой эффективности синхротронного излучения (магнитное поле сильное) частица при небольшом отклонении в поперечном к полю направлении, быстро теряет эту составляющую своей скорости и поэтому все время остается прижатой к силовой линии, совершая движение только вдоль нее. Квант изгибного излучения испускается в касательном к магнитной силовой линии направлении и, пройдя некоторое расстояние, когда он пересекает соседние силовые линии под достаточно большим углом, аннигилируется на электрон-позитронную пару [10]. Здесь магнитное поле играет роль третьего тела, обеспечивающего сохранение импульса. Частицы тех пар, которые родились вблизи потолка магнитного зазора (над или под потолком) по силовым линиям уходят в бесконечность. Частип же пар, рожденных в зазоре на заметных глубинах под его потолком, постигает иная участь. При параллельных векторах магнитного диполя $\vec{\mu}$ и угловой скорости вращения Ω, вторичный электрон под влиянием электрического поля с ускорением стремится вверх и уходит в бесконечность, при этом он также может испускать жесткий квант изгибного излучения, если успевает приобрести достаточную энергию, а этот квант новую e^+e^- пару и т.д. А вторичный позитрон

тормозится на небольшом отрезке пути, изменяет направление своего движения, затем, с ускорением направляясь к полюсу, набирая необходимую энергию, испускает квант изгибного излучения с энергией $\hbar \omega_c >> m_e c^2$, который, пройдя небольшое расстояние, аннигилируется на e^+e^- —пару и т.д. Итак, благодаря многократному повторению процессов рождения и аннигиляции квантов изгибного излучения, происходит лавинообразное размножение электронов и позитронов в магнитном зазоре, в результате этого плотность плазмы в нем настолько нарастает, что продольное электрическое поле исчезает, но очень скоро снова появляется, как только плазма удаляется. Восстановление магнитного зазора начинается от магнитной шапки, с образованием небольшого зазора, потолок которого со скоростью света раздвигается вверх до расстояния H (высота магнитного зазора), при котором наступает перенасыщение плазмы, сопровождаемое исчезновением продольного электрического поля [2].

В канале открытых магнитных силовых линий, незамыкающая внутри магнитосферы последняя линия описывается уравнением

$$\theta \approx (\Omega r/c)^{1/2}, r < c/\Omega,$$
 (1)

где считается, что магнитное поле вне звезды является дипольным, центр звезды принят за начало координат, а ось вращения — за полярную ось. В условиях сильного магнитного поля нейтронной звезды движение заряженных частиц совершается только вдоль силовых линий, поэтому оно сопровождается так называемым изгибным излучением. Характерная частота этого излучения равна

$$\omega_c = \frac{3c}{2\rho_c}\gamma^3 , \qquad (2)$$

где ρ_c — радиус кривизны силовой линии, γ — лоренцов множитель частицы ($mc^2\gamma$ — энергия частицы).

Наконец, третьим фундаментальным понятием рассматриваемой теории является эффект бунчировки, состоящий в том, что при прохождении релятивистского потока заряженных частиц через нейтральную холодную плазму в нем образуются стустки (бунчи) зарядов. В рассматриваемой проблеме роль холодной плазмы играет поток e^+e^- — пар с $\gamma \sim 10^3$, формируемый вблизи потолка магнитного зазора при аннигиляции квантов изгибного излучения, а роль пучка релятивистских частиц — поток первичных электронов (позитронов) с $\gamma \sim 10^6$. Обусловленная кулоновскими взаимодействиями частиц, эта ветвь плазменных колебаний возбуждается на частоте, близкой к плазменной, которая в системе наблюдателя равна [2] где R — радмус нейтронной звезды, B_s — магнитная индукция в звезде (звезда считается однородно намагниченной), γ — лоренц множитель первичного потока частиц при выходе из магнитного зазора. В работах [1,2] считается, что радиоизлучение пульсара является изгибным излучением этих сгустков зарядов (бунчев), образующихся в протекающем по каналу открытых магнитных силовых линий в потоке электрон-позитронной плазмы на расстояниях $r \sim 5 \cdot 10^8$ см. При размерах бунчев порядка $2 \pi c / \omega_c$ избыток частиц одного знака в каждом из них оказывается порядка 10^{17} . Такие сгустки зарядов в радиодиапазоне излучают когерентным образом, обеспечивая наблюдаемые радиосветимости пульсаров.

2. Эта идея о механизме образования радиоизлучения пульсаров остроумная, возможно что и верна, однако она не строго обоснована. Прежде всего мы имеем в виду необходимое для явления бунчировки допущение о наличии двух типов чистых потоков, исходящих из магнитного зазора, а именно потока e^+e^- плазмы и проходящего через него пучка первичных частиц. Существование потока первичных частиц с необходимыми параметрами не вызывает сомнения, если исходить из представления о том, что над полюсом имеется магнитный зазор с продольным электрическим полем в нем, описываемым выражением [1]

$$E = -\frac{2\left(\vec{\Omega}\vec{B}_s\right)}{c}z \qquad (4)$$

или сходное с ним выражением [2]

$$E = -\frac{2\left(\vec{\Omega}B_{s}^{*}\right)}{c}\left(H-z\right), \qquad (5)$$

где *H* — высота магнитного зазора, *z* — высота над магнитной шапкой: *z* ≈ *r* − *R*. Высота магнитного зазора равна

$$H \approx 10^{4} \rho_{6}^{2/7} B_{12}^{-4/7} \Omega^{-3/7} \text{ cm}, \qquad (6)$$

где $\rho_c = 10^6 \rho_6$ — раднус кривизны магнитной силовой линии вблизи полюса. В [2] предполагается, что $\rho_c(R) \approx R \approx 10^6$ см, в то время как для чистого дипольного поля он на два порядка больше этого значения. Это допущение мотивируется значительным вкладом высших мультиполей вблизи полюса. Это

(3)

вынужденный шаг, ибо ситуация такая, что без этого допущения построение теории радиоизлучения пульсаров на базе принятого представления о магнитном зазоре по сути дела невозможно. Что касается нейтрального электрон-позитронного плазменного потока с определенным значением релятивистского множителя γ_{\pm} , то он на самом деле в таком идеализированном виде не существует: реальная картина в этом вопросе значительно сложнее и нуждается в специальном обсуждении.

Для рассматриваемых обоих выражений продольного электрического поля из магнитного зазора исходит ток первичных частиц (электронов) с приблизительно одинаковым релятивистским множителем

$$\gamma \approx \gamma_m = \frac{e \Omega B_s}{m_e c^3} H^2 \approx 1.95 \cdot 10^6 \rho_6^{4/7} B_{12}^{-1/7} \Omega^{1/7} , \qquad (7)$$

где $B_{12} = 10^{-12} B_s$. Согласно (2) электроны с энергией $m_e c^2 \gamma_m$ испускают кванты изгибного излучения с энергией

$$\pi \omega_c = 220 \,\rho_6^{5/7} B_{12}^{-3/7} \,\Omega^{3/7} \,\text{M3B.} \tag{8}$$

Параметр γ_{\pm} для частиц e^+e^- – пар, рожденных при аннигиляции квантов с энергией (8), равен

$$\gamma_{\pm} \approx \frac{\hbar \omega_c}{2 m_e c^2} = 215 \rho_6^{5/7} B_{12}^{-3/7} \Omega^{3/7}.$$
⁽⁹⁾

Поток e^+e^- – плазмы с релятивистским множителем (9) формируется только за счет аннигиляции изгибных квантов либо на высотах настолько близких к потолку магнитного зазора, что дальнейшее влияние электрического поля оказывается несущественным, либо над потолком зазора, где нет заметного продольного электрического поля. А электроны и позигроны тех пар, которые родились на сравнительно больших глубинах x = H - z под потолком зазора, оказываются в неодинаковых условиях: сначала они движутся наружу, но под влиянием электрического поля электроны приобретают дополнительную энергию, а движение позитронов тормозится. Часть позитронов тормозится до полной остановки, затем возвращается назад к полюсу и по пути, приобретая достаточно большую энергию, принимает участие в процессах размножения квантов и частиц. Тормозящее действие электрического поля преодолевают и выходят в канал открытых магнитных силовых линий только те позитроны, которые родились на высотах удовлетворяющих условию

 $e\int_{z_1}^{H} E\,dz < m_e c^2 \gamma_{\pm}.$

(10)

Из сказанного следует, что представление о том, что из магнитного зазора исходит поток нейтральной e^+e^- — плазмы с примерно одинаковой энергией частиц, является сильной идеализацией, далекой от истины. В действительности же мы имеем дело с не нейтральным потоком частиц с энергией электронов

$$m_e c^2 \gamma_{\pm} \leq \varepsilon \leq m_e c^2 \gamma_{\pm} + e \int^n E dz \quad , \tag{11}$$

и с энергией позитронов

$$0 \le \varepsilon \le m_e c^2 \gamma_{\pm}. \tag{12}$$

Таким образом, в потоке частиц, протекающем по каналу открытых магнитных силовых линий, вовсе нет тех условий, которые необходимы для возбуждения ветви двухпотоковой плазменной неустойчивости, и поэтому в такой ситуации образование в нем периодических сгущений (бунчи) зарядов априори не очевидно. Следует также иметь в виду, что это ветвь плазменных колебаний чувствительна ко всякого рода возмущениям и поэтому весьма неустойчива. Если ставится под сомнение роль эффекта бунчировки, то нужно искать другие возможные каналы когерентного излучения. Ниже мы покажем, что, в принципе, источником когерентного излучения. Ниже мы покажем, что, в принципе, источником когерентного излучения частиц или же поток вторичных частиц: обе эти возможности обусловлены специфическими особенностями модели магнитного зазора.

3. Восстановление магнитного зазора после его захлопывания, по-видимому, начинается от поверхности магнитной шапки с образованием небольшой щели, потолок которой со скоростью света поднимается вверх до достижения предельной высоты *H*, при которой происходит разряд [2]. Пусть электрическое поле в магнитном зазоре определяется выражением (4), тогда проходящим через щель электронам сообщается энергия

$$\gamma m_{e} c^{2} \approx \frac{e \Omega B_{I}}{c} z^{2}.$$
(13)

Ужепри

$$z \approx (m_e c^3 / \Omega B_s e)^{1/2} \approx 7 \Omega^{-1/2} B_{12}^{-1/2} c_M.$$

Энергия электрона становится релятивистской. Таким образом, как потолок щели, так и поток первичных частиц стремятся вверх со скоростью, весьма близкой к скорости света. Вместе с тем, разумно считать, что относительно потолка щели поток электронов также движется со скоростью света (релятивистское правило сложения скоростей). Следовательно, первичные частицы, обгоняя движение потолка щели, попадают в область, где нет продольного электрического поля и поэтому продолжают двигаться с той энергией, которую они приобрели в момент выхода из щели.

Рассмотрим поток первичных частиц, исходящий из щели при ее высоте $0.5\lambda \le z \le 1.5\lambda$, где λ — длина волны в диапазоне радиочастот. В соответствии с (13) частицы в этом случае характеризуются релятивистским множителем

$$\gamma \approx \frac{e\Omega B_s}{m_e c^3} \lambda^2 . \tag{14}$$

Длина этого отрезка потока первичных электронов приблизительно сохраняется, поэтому где-то на расстояниях *г* >> *R* отдельные кольцеобразные слои этого выброса заряда будут испускать изгибное радиоизлучение с той же длиной волны

$$\lambda = \frac{2\pi c}{\omega_c} = \frac{4\pi \rho_c}{3\gamma^3} = \frac{16\pi r}{9\Theta\gamma^3} , \qquad (15)$$

где для частоты ω_c использована формула (2), а для радиуса кривизны магнитной силовой линии — формула

$$\rho_r \approx 4r/3\Theta. \tag{16}$$

Здесь r и Θ — типичные координаты места, где происходит формирование радиоизлучения пульсара (на расстояниях r >> R магнитное поле звезды считается дипольным). Учитывается также то обстоятельство, что излучение объемного заряда является когерентным только в том случае, когда размеры его не превышают длину излучаемых волн. Из (14) и (15) получаем важную связь между координатами места формирования радиоизлучения и параметром потока первичных частиц γ :

$$\gamma \approx \left(\frac{256\pi^2}{81} \frac{e\,\Omega B_s r^2}{m_e c^3 \Theta^2}\right)^{1/\gamma} \approx 0.932 \, B_{12}^{1/\gamma} \Omega^{1/\gamma} \left(\frac{r}{\Theta}\right)^{2/\gamma} \,. \tag{17}$$

По мере расширения щели над полюсом, параметр γ растет пропорционально z^2 , и поэтому область, где формируется изгибное излучение, отодвигается все дальше и дальше от звезды, так как $r \sim \gamma^{3,5} \sim z^7 (z - высота щели)$. При этом движущийся по магнитным силовым линиям поток частиц расширяется, поэтому плотность в нем пропорционально r^{-3} падает и тем самым условия, необходимые для генерирования когерентного механизма излучения быстро исчезают. Итак, для когерентного механизма излучения образом отбирается начальный отрезок потока первичных частиц с длиной $z \approx \lambda$.

Как видно из (15), частота характерного изгибного излучения изменяется не только вдоль силовых линий, но и в поперечном к ним направлении, поэтому в

качестве когерентного излучающего элемента мы должны выбрать кольцеобразный отрезок потока не только с длиной λ, но и с толщиной колец порядка λ. Заряд этого элемента равен

$$Q \approx 2\pi r \sin \Theta \lambda \lambda n (r) e \approx 2\pi r \lambda^2 \Theta e n (r) ,$$

где n(r) — плотность частиц в рассматриваемом элементе, которая определяется условием сохранения потока

$$\pi(r\Theta)^{2}n(r)c = \pi(R\Theta_{p})^{2}n(R)c.$$

Здесь Θ_p — угол, образованный крайней открытой магнитной силовой линией с осью вращения вблизи полюса, Θ — тот же угол на расстоянии *г*:

$$\Theta_{r} \approx (\Omega R/c)^{1/2}, \ \Theta \approx (\Omega r/c)^{1/2}, \ r < c/\Omega,$$
 (18)

а (R) — плотность облака первичных электронов в магнитном зазоре:

$$n(R) = \frac{\vec{\Omega}\vec{B}_{s}}{2\pi e c} \tag{19}$$

(см.работу [2]). Используя (18) и (19), из условия сохранения потока, получаем

$$n(r) = \frac{\Omega B_s}{2 \pi e c} \left(\frac{R}{r}\right)^3$$
(20)

(напомним, что мы рассматриваем случай $\Omega \mid \mid B_s$). Учитывая (15) и (20) для заряда Q, получаем

$$Q \approx \frac{256 \,\pi^2 \Omega B_{sR}^3}{81 c \,\Theta \gamma^6} \,. \tag{21}$$

Это и есть заряд когерентно излучающего элемента потока первичных частиц, имеющих форму кольца с длиной окружности $2\pi r \sin\Theta$, толщиной и пириной колец порядка λ Ввиду симметрии задачи (соосный ротатор) по кругу кольца нет каких-либо ограничений, накладываемых условием когерентности излучения.

Мощность изгибного излучения заряда Q равна

$$P = \frac{2 c Q^2 \gamma^4}{3 \rho_c^2} \simeq \frac{365 \Omega^2 B_s^2 R^6}{c r^2 \gamma^8}.$$
 (22)

Со временем от магнитной шапки выбрасывается много таких зарядов, следовательно, для получения полной интенсивности излучения мы должны умножить на число выбросов в единицу времени. Время восстановления магнитного зазора порядка *H/c*, а время одного полного цикла (суммарное время восстановления зазора, его работы и захлопывания) должно быть примерно равным $\alpha H/c$, где $\alpha \ge 1$, следовательно, в единицу времени мы имеем приблизительно

1 секунда:
$$(\alpha H/c) = c/\alpha H$$
 (23)

циклов и тем самым столько же выбросов заряда Q. Итак, для заданного угла Θ интенсивность изгибного радиоизлучения равна

$$L\Theta \approx \frac{c}{\alpha H}P \approx \frac{365}{\alpha} \frac{\Omega^2 B_s^2 R^6}{H r^2 \gamma^8}$$

Подставим сюда выражение у из (17):

$$L \Theta \approx \frac{6.41 \cdot 10^{62}}{\alpha H} R_6^6 B_{12}^{6/7} \Omega^{6/7} \frac{\Theta^{16/7}}{.30/7} .$$
 (24)

Из (15) видно, что при заданном r частота изгибного радиоизлучения пропорциональна углу Θ , поэтому (24), по сути дела, определяет спектральное распределение радиоизлучения. Однако нужно иметь в виду, что здесь ω_c — это характерная частота изгибного излучения, т.е. частота в максимуме спектра, который тот же, что и при синхротронном излучении. Таким образом, вопрос о спектре излучения пульсаров нуждается в специальном и более корректном рассмотрении, чем приведенная здесь оценка. Для получения полной радиосветимости пульсара нужно сложить вклады от всех колец длиной λ и толщиной λ , т.е. произвести интегрирование (24) по Θ :

$$L \approx \int_{0}^{\Theta_m} \frac{c}{\alpha H} P \frac{r d \Theta}{\lambda} = \frac{9.29 \cdot 10^{61}}{\alpha H} R_6^6 B_{12}^{9/7} \Omega^{9/7} \int_{0}^{\Theta_m} \frac{\Theta^{17/7}}{r^{24/7}} d\Theta.$$

Здесь $r d \Theta / \lambda$ — число излучающих колец в интервале $r d \Theta$ (они излучают волны разных частот, и поэтому не интерферируют между собой), Θ_m — половина угла раствора пучка открытых магнитных силовых линий (второе выражение в (18)), λ было заменено выражением (15), а γ — выражением (17). Считая r приблизительно постоянным и интегрируя по Θ , приходим к результату

$$L = \frac{2.97 \cdot 10^{39} R_6^6 B_{12}^{6/7}}{\alpha \rho_6^{2/7}} \left(\frac{\Omega^2}{r}\right)^{12/17}, \qquad (25)$$

где для высоты магнитного зазора *H* мы использовали значение, приведенное в (6).

Г.С.СААКЯН

По оценке (25) радиосветимость пульсара имеет сильную зависимость от параметров R, B, , Ω . Для пульсаров известен только их период $P = 2\pi/\Omega$. а о параметрах R и В, нам ничего не известно. Формула (25) содержит также пока не уточненный параметр г — расстояние, где формируется радиоизлучение пульсара. Он, очевидно, определяется магнитной индукцией звезды В, и угловой скоростью ее вращения. При таких обстоятельствах говорить о более или менее аккуратном сравнении оденки (25) с наблюдательными данными трудно. Обычно в работах, посвященных пульсарам, принимается $R_6 \approx 1$, $B_{12} \approx 1$. Ниже, не имся другой возможности, мы также вынуждены пользоваться этим приближением. Но прежде чем вернуться к вопросу о сравнении (25) с наблюдательными данными, выясним возможный масштаб изменений светимостей. -бусловленный параметрами R и Bs нейтронной звезды. Исключая конфигурацию с параметрами P (0) = 1.32·10³³эрг/см³ (соответствующая плотность в центре $3.14 \cdot 10^{14} r/cm^3$), $R \approx 106 км$, $M \approx 0.02 M_{\odot}$, принадлежность которой к устойчивой встви нейтронных конфигураций сомнительна (соответствующая ей точка на кривой М (Ро) расположена у границы раздел а устойчивой н неустойчивой вствей вырожденных звездных конфигураций), значения ралиусов нейтронных конфигураций находятся в интервале 0.78 ≤ R 6 ≤ 1.29. [13]. Следовательно, в значении светимости пульсаров, можно ожидать вариаций порядка (1.29/0.78)⁶≈20, обусловленных только непостоянством радиусов. Еще хуже обстоит дело с вариацией интенсивности, обусловленной магнитным полем звезды. Так, из данных по барстерам и ренттеновским пульсарам известно, что B₅~10¹⁰+ 10¹² Гс (для разных объектов). Тогда при одинаковом Ω и R этот разброс магнитной индукции вызывает изменение в значении светимости примерно в 50 раз, если, конечно, верить оценке (25). Подтверждением вышесказанного является множество фактов о том, что при примерно одинаковом периоде Р радносветимости пульсаров заметно отличаются друг от друга. Так, например, для PSR 1541-52 с периодом P = 0.1786c, L = 1.26·10²⁷ эрг/с, а для PSR 1821-19, спериодом P=0.1893с, L=4.47·10²⁹, т.е. при почти одинаковом периоде радиосветимости этих объектов отличаются друг от друга в 355 раз. Таким образом, помимо обычной информации о пульсарах, весьма ценным является разработка специальной методики для определения радиуса R и магнитной индукции B_s, нейтронной звезды в каждом их объектов.

На фоне такой неопределенной ситуации мы все-таки рискуем довести до конца наши оценки радиосветимости пульсара. Как уже было сказано выше, логично считать, что входящий в (25) параметр r зависит от B_s и Ω . Поскольку мы не располагаем точной информацией о параметре B_s , то в качестве разумной информации примем

 $r = r_o(B_s)\Omega^x$

$$L = 3 \cdot 10^{39} K(B_s) r_o^{-124} \Omega^{12(2-x)/7} , \qquad (26)$$

где

$$K(B_s) = R_6^6 B_{12}^{13/7} / (\alpha \rho_6^{2/7}).$$

Предположим, что значение параметра $K(B_s)$ не сильно отличается от единицы. Далее, аппроксимируя данные наблюдений, будем считать: что при примерно одинаковых R и B_s для медленных пульсаров ($\Omega \approx 2c^{-1}$) радиосветимость $L \approx 10^{25}$ эрг/с, а для быстрых ($\Omega \approx 100c^{-1}$) $L \approx 10^{30}$ эрг/с, тогда в соответствии с этим допущением получаем

$$12(2-x)/7 \approx 3$$
, $x \approx 0.25$,

следовательно,

$$L \approx 10^{24} \Omega^3, \ r \approx 10^9 K^{7/12} \Omega^{1/4}.$$
 (27)

По-видимому, эта аппроксимация более или менее удовлетворительна для пульсаров с $R_6 \approx 1$, $B_{12} \approx 1$.

Ширина среднего профиля радиоимпульсов составляет примерно 3% от полного периода, откуда следует, что характерное значение полярного угла генерации радиоизлучения $\Theta(r) \approx 0.02 \pi$. Учитывая этот факт и приведенную в (27) аппроксимацию для r из (17), можно вычислить параметр γ потока первичных частиц, ответственного за радиоизлучение

$$\gamma \approx 766 \, K^{1/6} \, B_{12}^{1/7} \, \Omega^{3/14} \, . \tag{28}$$

Представляет также интерес определить характерное число частиц в когерентно излучающем кольце потока с зарядом, определяемым выражением (21)

$$N \approx \frac{Q}{e} \approx 2 \cdot 10^{14} R_6^3 B_{12}^{1/7} \Omega^{-2/7} K^{-1} .$$
 (29)

Рассмотренный вариант когерентного излучения не реализуется, если исходить из выражения (5) для электрического поля. Причина в том, что энергия частиц в $H/x \approx 160$ раз больше по сравнению с предыдущим случаем, и поэтому расстояние, где характерная частота изгибного излучения попадает в радиодиапазон, отодвигается так далеко от звезды, что говорить о вышерассмотренном когерентном механизме излучения не приходится.

Г.С.СААКЯН

4. Теперь обсудим еще один возможный вариант когерентного механизма генерации радиоизлучения пульсара, который действует в случае, когда электрическое поле в магнитном зазоре определяется выражением (5). Он обусловлен потоком тех вторичных электронов, которые рождаются при анныгиляции квантов изгибного излучения в слое $x_1 \le x \le 2x_1$ магнитного зазора, где $x_1 = H - z_1$, а определение z_1 приведено в (10):

$$x_1 = \left(\frac{m_e c^3 \gamma_{\pm}}{e \Omega B_s}\right)^{1/2} \approx 105 \rho_6^{5/14} B_{12}^{-5/7} \Omega^{-2/7} \text{ cm.}$$
(30)

Напарники этих электронов — позитроны не выходят их магнитного зазора, следовательно, здесь мы имеем дело с облаком движущихся зарядов с характерным размером порядка длин радиоволн и средним релятивистским множителем

$$\bar{\gamma} \approx 10 \gamma_{\pm} / 3 \approx 717 \rho_6^{5/7} B_{12}^{-3/7} \Omega^{3/7}$$
 (31)

На общем сложном фоне потоков e^{-r} -плазмы, первичных и вторичных частиц этот отрезок тока электронов, по сути дела, является движущимся по силовым линиям сгустком заряда, который на некотором расстоянии *r* испускает (когерентно) изгибное радиоизлучение. Значение этого расстояния можно оценить, используя формулу (15). Так, подставив в ней $\omega_c \approx 2.5 \cdot 10^9 c^{-1}$ (типичная радиочастота, регистрируемая в пульсарах), $\Theta \approx 0.02 \pi$ (типичная ширина среднего профиля импульсов пульсара) и учитывая (31), находим

$$r \approx \frac{9 c \Theta}{8 \omega_c} \gamma_{-}^3 \approx 3 \cdot 10^8 \rho_6^{15/7} B_{12}^{-9/7} \Omega^{9/7} .$$
 (32)

На рассматриваемых высотах магнитного зазора характерная энергия квантов изгибного излучения равна

$$\pi \omega_c = 3 \pi c \gamma_m^3 / (2 \rho_c) \approx 220 \rho_6^{5/7} B_{12}^{-3/7} \Omega^{3/7}$$
 M3B.

При таких энергиях средний пробег для аннигиляции кванта на электрон-позитронную пару порядка $z_1 \approx H$, поэтому число вторичных электронов, образованных в слое $x_1 \leq x \leq 2 x_1$, будет порядка числа самых изгибных квантов, испущенных первичными частицами в этом слое

$$n_{R}(R) \approx n_{ks}(R) \approx \left(\frac{2 e^{2} \gamma_{m}^{A}}{3\rho_{c}^{2}} x_{1} / \frac{3 c \pi \gamma_{m}^{3}}{2\rho_{c}}\right) n(R) =$$
$$= \frac{4}{9} \frac{e^{2}}{\pi c} \frac{x_{1}}{\rho_{c}} \gamma_{m} n(R) \approx n(R).$$

Здесь *n* и *n* — плотности числа первичных и вторичных электронов, *n_{k6}* — плотность числа квантов с характерной энергией (8), а выражение в скобках представляет собой число этих квантов, испущенных одной первичной частицей в слое шириной x_1 на высоте z_1 . На самом деле число вторичных электронов должно быть больше, если учесть, что прохождение первичной частицы через магнитный зазор сопровождается размножением квантов и частиц. Таким образом, *n* (*r*) \ge *n* (*r*) и поэтому число частиц в когерентно излучающем кольце в этом случае, по-видимому, должно быть чуть больше числа, приведенного в (29), т.е. $N > 2 \cdot 10^{14}$. Итак, в принципе мы убеждаемся, что если продольное электрическое поле в магнитном зазоре определяется формулой (5), то в этом случае в качестве когерентного источника пульсарного радиоизлучения вполне может служить изгибное излучение потока вторичных электронов, рожденных вблизи припотолочного слоя $x_1 \le x \le 2 x_1$ магнитного зазора.

Приведенные здесь соображения и оценки, конечно, нуждаются в более серьезном анализе и разработке, но бесспорно то, что теория пульсарного излучения пока в достаточной степени не разработана и в этом вопросе еще многое предстоит сделать.

Ереванский государственный университет

ON THE THEORY OF RADIO RADIATION OF PULSARS

G.S.SAHAKIAN

On the example of coaxial rotator model with parallel vectors Ω and B_s (Ω is angular rotation velocity of star, B_s is the magnetic induction in star) the problem of radio radiation of pulsars is examined. It is shown that as a source of coherent radio radiation of pulsars the initial segment (with a length of the order of typical radio wave length λ) of primary electrons injected from star's pole at the beginning of magnetic gap formation may serve, if the longitudinal electric field in it is determined by the formula $E_B = -2 \Omega B_s z/c$ (z is the height above the star pole). In that case, when $E_B = -2 \Omega B_s (H-z)/c$ (H is the height of magnetic gap), then the role of coherent radiation source plays the segment (with length $-\lambda$) of secondary electrons originated near the top of magnetic gap by annihilation of curvature radiation quantums. The estimated luminosities of pulsars are in agreement with observational data.

Г.С.СААКЯН

ЛИТЕРАТУРА

1. P.A. Sturrok, Astrophys. J., 164, 529, 1971.

2. M.A.Ruderman, P.Q.Sutherland, Astrophys. J., 196, 51, 1975.

3. В.С.Бескин, А.В.Гуревич, Я.Н.Истомин, ЖЭТФ, 58, 401, 1983.

4. V.S.Beskin, A.V.Gurevich, Ya.N.Istomin, Astrophys. Space Sci., 102, 301, 1984.

5. В.С.Бескин, А.В.Гуревич, Я.Н.Истомин, УФН, 150, 257, 1986.

6. P.Michel, Astrophys. J., 180, 207, 1973.

7. L. Mestel, Astrophys. Space Sci., 24, 289, 1973.

8. L.Mestel, Y.M. Wang, Mon. Not. Roy. Astron. Soc., 188, 799, 1979.

9. F.C.Michel, Rev. Mod. Phys., 54, 1, 1982.

10. T.Erber, Rev. Mod. Phys., 38, 626, 1966.

11. Р. Манчестер, Дж. Тейлор, Пульсары, Мир, М., 1980.

12. Г.С.Саакян, Астрофизика, 36, 87, 1993.

13. L.Sh. Grigorian, G.S. Sahakian, Astrophys. Space Sci., 95, 305, 1983.

АСТРОФИЗИКА

TOM 36

НОЯБРЬ, 1993

выпуск 4

УДК: 523

ПЕРЕНОС ИЗЛУЧЕНИЯ ПРИ НЕКОГЕРЕНТНОМ РАССЕЯНИИ В ПОЛУБЕСКОНЕЧНОЙ НЕОДНОРОДНОЙ АТМОСФЕРЕ, СОДЕРЖАЩЕЙ ИСТОЧНИКИ ЭНЕРГИИ

Г.А.АРУТЮНЯН

Поступила 14 октября 1993 Принята к печати 28 октября 1993

В работе рассматриваются две задачи теории переноса излучения в неоднородной среде при общих законах перераспределения излучения по частотам. Принимается, что неоднородность среды обусловлена зависимостью величины альбедо однократного рассеяния от оптической глубины. Учитывается наличие первичных источников энергии в среде. Отдельно рассматриваются случаи степенного и экспоненциального распределения источников энергии. Для данной неоднородной среды рассматривается также задача определения среднего числа рассеяния фотонов. Получены соответствующие уравнения. В частном случае экспоненциальной зависимости альбедо однократного рассеяния от оптической глубины, полученные интегральные уравнения сводятся к системам алтебраических уравнений.

1. Введение. Теория многократного рассеяния излучения в однородной среде интенсивно развивалась десятилетиями и в настоящее время разработано множество методов для решения различных задач данной области. Сравнительно мало результатов получено при учете различного рода неоднородностей. Первые работы, посвященные вопросу образования спектральных линий в неоднородной атмосфере, основывались на предположении о когерентности рассеяния излучения (см., например, [1-3]). В дальнейшем авторы стали исходить из более реальных предположений относительно элементарного акта рассеяния и, в основном, использовали предположение о полном перераспределении по частотам (ППЧ) (например, [4-8]).

В одной из работ автора [9] была рассмотрена задача отражения излучения от полубесконечной неоднородной атмосферы при более общих законах некогерентного рассеяния в частотах спектральной линии. При решении этой задачи были

Г.А.АРУТЮНЯН

использованы модификации методов, разработанных на основе принципа инвариантности Амбарцумяна для решения аналогичных задач в случае однородной атмосферы [10–15]. В настоящей работе мы обсудим вопрос о возможности обобщения разработанных ранее методов для решения задач теории переноса излучения в неоднородных атмосферах, содержащих источники энергии. При этом мы здесь ограничимся рассмотрением лишь неоднородностей по величине альбедо однократного рассеяния.

2. Образование спектральных линий. Пусть имеется одномерная полубесконечная среда, в которой вероятность выживания кванта при элементарном акте рассеяния и распределение первичных источников энергии по оптической глубине τ задаются, соответственно, функциями $\lambda(\tau)$ и $\varepsilon(\tau, x)$, где x безразмерная частота фотонов, показывающая частотное расстояние от центра линии в некоторых единицах (например, в единицах доплеровской полуширины линии). Для решения задачи, следуя работе [8], вместо данной рассматриваемой атмосферы будем рассматривать совокупность усеченных атмосфер, которые отличаются от исходной лишь отбрасыванием верхнего слоя оптической толщины t. Обозначим через $Y(t, \tau, x', x) dx$ вероятность того, что квант частоты x', движущийся на глубине τ данной усеченной атмосферы, выйдет из среды в виде кванта с частотой, заключенной в интервале (x; x + dx). Введем также аналогичную величину для n-кратно рассеянного до выхода из среды кванта и обозначим ее через $Y_n(t, \tau, x', x) dx$. Очевидно, что эти величины связаны между собой следующим соотношением:

$$Y_n(t, \tau, x', x) = \sum_{n=0}^{\infty} Y_n(t, \tau, x', x).$$

Учитывая вероятностный смысл величины Y, для интенсивности выходящего из среды излучения будем иметь

$$I(t,x) = \int_{-\infty}^{\infty} dx' \int_{0}^{\infty} \varepsilon(t+\tau,x') Y(t,\tau,x',x) d\tau.$$
(1)

С другой стороны, применяя принцип инвариантности Амбарцумяна, для величины У получаем следующее интегро-дифференциальное уравнение:

$$\frac{\partial Y}{\partial \tau} - \frac{\partial Y}{\partial t} = -\nu(x) Y(t, \tau, x', x) + \int_{-\infty}^{\infty} Y(t, \tau, x', x'') \alpha(x'') p(t, 0, x', x) dx''.$$
(2)

Введенная здесь функция $p(t, \tau, x', x)$ имеет тот же смысл, что и величина $Y(t, \tau, x', x)$, однако относится она к поглощенному на глубине τ фотону: $v(x) = \alpha(x) + \beta$, где $\alpha(x)$ контур коэффициента поглощения в линии, а β — отношение коэффициентов поглощения в непрерывном спектре и в центре линии.

Умножим уравнение (2) на ε ($t + \tau$, x') $dx' d\tau$ и проинтегрируем по всем частотам и глубинам. Тогда, после некоторых преобразований, учитывая (1), получим

$$\nu(x) I(t,x) - \frac{\partial I(t,x)}{\partial t} = \int_{-\infty}^{\infty} \alpha(x') p(t,0,x',x) I(t,x') dx' + \int_{-\infty}^{\infty} \varepsilon(t,x') \rho(t,x',x) dx',$$
(3)

где $\rho(t,x',x)$ — функция отражения для данной усеченной атмосферы [9]. Сравнение с аналогичным уравнением, полученным ранее для однородной атмосферы [14], показывает, что в рассматриваемом случае нет непосредственной связи между величинами интенсивностей излучений, выходящих из атмосфер с распределениями первичных источников энергии по законам $\varepsilon(\tau,x)$ я $\partial\varepsilon(\tau,x)/\partial\tau$. Вместо этого в уравнении (3) фигурирует производная искомой величины по параметру t. Имея в виду, что задача отражения решена [9], и, следовательно, свободный член в уравнении (3) можно считать известным, мы можем из (3) получить интегральное уравнение, которое легко решается численными методами. Очевидно, что указанное уравнение может быть получено для произвольной зависимости $\varepsilon(\tau, x)$ оптической глубины, однако здесь мы рассмотрим лишь некоторые частные случаи, представляющие наибольший интерес с астрофизической точки зрения.

3. Распределение источников по степенному закону. В астрофизике особенно часто рассматриваются атмосферы, в которых источники энергии распределены по закону

$$\varepsilon_{k}(\tau,x) = u(\tau,x)(\beta\tau)^{k}/k!, \qquad (4)$$

где $u(\tau, x) = [1 - \lambda(\tau)] \alpha(x) + \beta = \nu(x) - \lambda(\tau) \alpha(x)$. Тогда уравнение (3) принимает следующий вид

$$\nu(x) I_{k}(t,x) - \frac{\partial I_{k}(t,x)}{\partial t} = \int_{-\infty}^{\infty} \alpha(x') p(t,0,x',x) I_{k}(t,x') dx' + \frac{(\beta t)^{k}}{k!} \left[u(t,x) + \int_{-\infty}^{\infty} u(t,x') \rho(t,x',x) dx' \right].$$
(5)

Г.А.АРУТЮНЯН

Далее, если функция перераспределения допускает билинейное разложение [10-14]

$$r(x',x) = \sum_{m=0}^{\infty} A_m \alpha_m(x') \alpha_m(x),$$
 (6)

то будем иметь

$$\alpha(x')p(t,0,x',x) = \frac{\lambda(t)}{2} \sum_{m=0}^{\infty} A_m \varphi_m(t,x) \alpha_m(x'), \qquad (7)$$

где $\varphi_m(t, x)$ — обобщенные на случай неоднородной среды функции Амбарцумяна [9]. Тогда вместо (5) получим

$$\begin{aligned} & \psi(x) I_k(t,x) - \frac{\partial I_k(t,x)}{\partial t} = \frac{\lambda(t)}{2} \sum_{m=0}^{\infty} A_m \varphi_m(t,x) I_{km}(t) + \\ & + \frac{(\beta t)^k}{k!} \Big\{ \pi^{1/4} \left[1 - \lambda(t) \right] \varphi_0(t,x) + \beta \left[1 + R_*(t,x) \right] \Big\} . \end{aligned}$$

$$(8)$$

Здесь введено обозначение

$$I_{km}(t) = \int_{-\infty}^{\infty} I_k(t,x) \alpha_m(x) dx,$$

a

$$R_{*}(t,x) = \int_{-\infty}^{\infty} \rho(t,x',x) dx'$$
(9)

контур линии отражения, образуемой при освещении данной усеченной полубесконечной среды излучением в непрерывном спектре единичной интенсивности.

Формальное решение дифференциального уравнения (8) может быть записано в следующем виде:

$$I_{k}(\tau,x) = \frac{1}{2} \sum_{m=0}^{\infty} A_{m} \int_{t}^{\infty} \lambda(\tau) \varphi_{m}(\tau,x) I_{km}(\tau) \exp\left[-\nu(x)\left(\tau - \tau\right)\right] d\tau + \frac{\beta^{k}}{k!} \int_{t}^{\infty} \tau^{k} \left\{\pi^{1/4} \left[1 - \lambda(\tau)\right] \varphi_{o}(\tau,x) + \beta \left[1 + R_{*}(\tau,x)\right]\right\} \cdot \exp\left[-\nu(x)\left(\tau - \tau\right)\right] d\tau.$$
(10)

Так как второй член в правой части уравнения (10) можно считать известным, то оно легко может быть решено простым итеративным методом.

Теперь вкратце остановимся на случае « изотермической » атмосферы, когда k=0 и $\varepsilon_o(\tau, x) = u(\tau, x)$. В данном частном случае уравнение (5) удобно

переписать в таком виде

$$\nu(x) \begin{bmatrix} 1 - I_o(t, x) \end{bmatrix} - \frac{\partial \begin{bmatrix} 1 - I_o(t, x) \end{bmatrix}}{\partial t} =$$

$$= \int_{-\infty}^{\infty} \alpha(x') \rho(t, 0, x', x) \begin{bmatrix} 1 - I_o(t, x') \end{bmatrix} dx' +$$

$$+ \frac{\lambda(t)}{2} \pi^{1/4} \varphi_o(t, x) - \int_{-\infty}^{\infty} \nu(x') \rho(t, x', x) dx'.$$
(11)

Сравнение с аналогичным уравнением, полученным для контура линии отражения [9]

$$v(x) R_{*}(t,x) - \frac{\partial R_{*}(t,x)}{\partial t} = \int_{-\infty}^{\infty} \alpha(x') p(t,0,x',x) R_{*}(t,x') dx' + \frac{\lambda(t)}{2} \pi^{1/4} \varphi_{o}(t,x) - \int_{-\infty}^{\infty} v(x') \rho(t,x',x) dx'.$$
 (12)

показывает, что

 $R_o(t,x) \equiv I_o(t,x) = 1 - R_*(t,x).$ (13)

Соотношение (13), получению и обсуждению которого в случае однородной среды посвящено достаточно много работ (см., например, [14–16]), иногда называется обобщенным законом Кирхгофа. Здесь остается добавить, что как и для однородной среды [14] оно допускает простую вероятностную трактовку. По сути дела оно отражает тот очевидный факт, что фотон частоты x, падающий на границу полубесконечной среды либо погибает в этой среде, либо будет отражен.

4. Экспоненциальное распределение источников энергии. Задача образования спектральных линий в средах с экспоненциальным распределением источников энергии чаще всего рассматривается при интерпретации хромосферных линий. Здесь мы рассмотрим аналогичную идеализированную модель. В общем случае мощность источников может быть задана следующим выражением:

$$\varepsilon_e(\tau, x) = A \alpha_o(x) \exp(-g_1 \tau) + B \exp(-g_2 \tau), \qquad (14)$$

где константы A и B характеризуют мощность источников в частотах линии и в непрерывном спектре. Подобная задача при общих законах перераспределения излучения по частотам для однородной среды нами была рассмотрена в работе [17], где было показано, что решение исследуемой задачи выражается через систему φ функций Амбарцумяна. Не останавливаясь на выкладках, здесь приведем лишь окончательный результат для интенсивности выходящего из среды излучения

$$I_{e}(t,x) = \frac{1}{2} \sum_{m=0}^{\infty} A_{m} \int_{t}^{\infty} \lambda(\tau) \varphi_{m}(\tau,x) \exp\left[-\nu(x)(\tau-t)\right] d\tau + \int_{t}^{\infty} \left\{ A \varphi_{o}(t,x) \exp\left(-g_{1}\tau\right) + B \left[1 + R_{*}(t,x)\right] \exp\left(-g_{2}\tau\right) \right\}.$$
$$\cdot \exp\left[-\nu(x)(\tau-t)\right] d\tau.$$
(15)

Несмотря на то, что в данном случае интенсивность выходящего излучения не записывается через соответствующие φ — функции таким простым образом, как в случае однородной среды, тем не менее знание этих функций позволяет решить поставленную задачу без особых затруднений.

5. Среднее число рассеяний. В работе [18] рассматривалась задача об определении среднего числа рассеяний, испытываемых фотоном при общих законах перераспределения излучения по частотам в одномерной полубесконечной среде. При этом отдельно рассматривались фотоны, которые вследствие многократных рассеяний покидают среду и фотоны, которые в конце концов претерпевают истинное поглощение и погибают в среде. Полученные для отраженных фотонов результаты обобщены на случай неоднородной среды в работе [9]. Здесь же мы остановимся на вопросе определения среднего числа рассеяний тех фотонов, которые погибают в среде.

Введем следующую производящую функцию

$$Y(t,\tau,x',x,s) = \sum_{n=0}^{\infty} s^{n} Y_{n}(t,\tau,x',x), \qquad (16)$$

где $|s| \leq 1$ — некоторый параметр. Исходя из физического смысла величин Y_n , применением принципа инвариантности можно получить следующее уравнение:

$$\frac{\partial Y(t,\tau,x',x,s)}{\partial \tau} - \frac{\partial Y(t,\tau,x',x,s)}{\partial t} = -\nu(x)Y(t,\tau,x',x,s) + \frac{\lambda(t)}{2} \cdot \frac{\lambda(t)}{2} \int_{-\infty}^{\infty} Y(t,\tau,x',x'',s)r(x'',x)dx'' + \frac{\lambda(t)}{2} \int_{-\infty}^{\infty} Y(t,\tau,x',x'',s)dx'' \cdot \frac{\lambda(t)}{2} \int_{-\infty}^{\infty} r(x'',x''')R(t,x''',x,s)dx'', \qquad (17)$$

где

$$R(t, x', x, s) = \sum_{n=0}^{\infty} s^{n} \rho_{n}(t, x', x)$$
(18)

- производящая функция для величин $\rho_n(t, x', x)$, которые представляют собой функции отражения n - кратно рассеянных фотонов [9].

Учитывая, что вероятность гибели фотона при элементарном акте рассеяния задается величиной $u(\tau, x)$, а также принимая во внимание обратимость оптических явлений, мы можем непосредственным образом записать выражение для среднего числа рассеяний фотонов, погибающих в среде. Для этого заметим сначала, что величина

$$R_{o}(t,x) = \int_{-\infty}^{\infty} dx' \int_{-\infty}^{\infty} u(t+\tau,x') Y(t,\tau,x',x) d\tau$$
(19)

помимо данной выше интерпретации (формула (1)) допускает и иную трактовку. Она представляет собой вероятность того, что фотон частоты x, падающий на полубесконечную среду, погибнет в ней.

Тогда, нетрудно видеть, что величина

$$n_0(t,x) = \frac{\partial}{\partial s} \left[\int_{-\infty}^{\infty} dx' \int_{-\infty}^{\infty} u(t+\tau,x') Y(t,\tau,x',x,s) dt \right] \Big|_{s=1}$$
(20)

связана со средним числом рассеяний следующим соотношением:

$$N_o(t,x) = \frac{n_o(t,x)}{R_o(t,x)} + 1, \qquad (21)$$

где добавление в правой части единицы обусловлено тем, что истинное поглощение фотона рассматривается в качестве его «последнего рассеяния».

Исходя из уравнения (17) легко можно показать, что введенная величина $n_o(t,x)$ удовлетворяет уравнению

$$v(x) n_{o}(t,x) - \frac{\partial n_{o}(t,x)}{\partial t} = \int_{-\infty}^{\infty} \alpha(x') (t,0,x',x) n_{o}(t,x') dx' + \int_{-\infty}^{\infty} \alpha(x') p(t,0,x',x) R_{o}(t,x') dx' + \int_{-\infty}^{\infty} u(t,x') n(t,x',x) dx' + \frac{\lambda(t)}{2} \int_{-\infty}^{\infty} R_{o}(t,x') dx' \int_{-\infty}^{\infty} r(x',x'') n(t,x'',x) dx'', \qquad (22)$$

гле

Г.А.АРУТЮНЯН

$$u(t,x',x) = \frac{\partial R(t,x',x,s)}{\partial s} \Big|_{s=1}.$$

В работе [9]нами было получено уравнение для определения величины n(t,x',x). Интегрируя указанное уравнение по x' по всем частотам и обозначив

$$n_{*}(t,x) = \int_{-\infty}^{\infty} n(t,x',x) dx',$$

мы получим

$$v(x) [n_{*}(t,x) - R_{*}(t,x)] - \frac{\partial}{\partial t} [n_{*}(t,x) - R_{*}(t,x)] = = \int_{-\infty}^{\infty} \alpha(x') p(t,0,x',x) n_{*}(t,x') dx' - -\int_{-\infty}^{\infty} v(x') [n(t,x',x) - \rho(t,x',x)] dx' + + \frac{\lambda(t)}{2} \int_{-\infty}^{\infty} \alpha(x') p(t,0,x',x) dx' + + \frac{\lambda(t)}{2} \int_{-\infty}^{\infty} R_{*}(t,x') dx' \int_{-\infty}^{\infty} r(x',x'') n(t,x'',x) dx''.$$
(23)

Теперь складывая уравнения (22) и (23), а также обозначив

$$< N(t,x) > \equiv R_{*}(t,x) N_{*}(t,x) + R_{o}(t,x) N_{o}(t,x) = = n_{*}(t,x) + n_{o}(t,x) + R_{o}(t,x),$$
(24)

мы получим

$$v(x) < N(t,x) > \frac{\partial < N(t,x) >}{\partial t} = \int_{-\infty}^{\infty} \alpha(x')p(t,0,x',x)$$
$$< N(t,x') > dx' + v(x) + \int_{-\infty}^{\infty} v(x')p(t,x',x)dx'.$$
(25)

Из соотношения (24) видно, что величина $\langle N(t,x) \rangle$ является средним значением средних чисел рассеяний фотона частоты x, падающего на границу полубесконечной среды и не зависима от того, будет ли он поглощен в среде или же покинет ее.

6. Экспоненциальная зависимость альбедо однократного рассеяния от оптической глубины. Пусть величина λ (τ) задается выражением

$$\lambda(\tau) = \lambda_o \exp(-q\tau) . \tag{26}$$

Тогда удается все интегрирования по τ произвести аналитически и значительно облегчить дальнейшие численные расчеты. С этой целью представим зависящие от t величины в виде рядов по степеням $\lambda(t)$

$$I_{k}(t,x) = \sum_{l=0}^{\infty} I_{k}^{l}(x) \lambda_{o}^{l} \exp(-lqt),$$

$$R_{*}(t,x) = \sum_{l=0}^{\infty} R_{*l}(x) \lambda_{o}^{l} \exp(-lqt),$$

$$\varphi_{m}(t,x) = \sum_{l=0}^{\infty} \varphi_{ml}(x) \lambda_{o}^{l} \exp(-lqt).$$
(27)

Учитывая (27), вместо (8), для интенсивности выходящего из исходной полубесконечной атмосферы $I_k(0,x)$ будем иметь

$$I_{k}(0,x) = \sum_{l=0}^{\infty} I_{k}^{l}(x)\lambda_{o}^{l} = \frac{1}{2}\sum_{l=1}^{\infty} \frac{\lambda_{o}^{l}}{\nu(x) + lq} \sum_{m=0}^{\infty} A_{m}.$$

$$\sum_{i=0}^{l-1} I_{km}^{l}\varphi_{m,l-i-1}(x) + \beta^{k}.$$

$$\left\{\pi^{\frac{1}{2}}\sum_{l=0}^{\infty} \frac{\lambda_{o}^{l}(\varphi_{ol}(x) - \varphi_{o,l} - 1(x))}{[\nu(x) + lq]^{k+1}} + \frac{\beta}{\nu(x)^{k+1}} + \beta\sum_{l=0}^{\infty} \frac{\lambda_{o}^{l}R_{*}l(x)}{[\nu(x) + lq]^{k+1}}\right\}$$
(28)

откуда получаем

$$I_{k}^{o}(x) = \left[\beta / \nu(x)\right]^{k},$$

$$I_{k}^{l}(x) = \frac{1}{\nu(x) + lq}.$$

$$\cdot \left[\frac{1}{2m}\sum_{m=0}^{\infty} A_{m}\sum_{l=0}^{l-1} I_{km}^{l} \varphi_{m,l-l-l-1}(x) + \left[\frac{\beta}{\nu(x) + lq}\right]^{k}.$$

$$\cdot \left(\pi^{1/4} \left[\varphi_{ol}(x) - \varphi_{o,l-1}(x)\right] + \beta R_{*l}(x)\right)\right],$$
(29)

где учтено, что $\varphi_{oo}(x) = \alpha_o(x)$ [9] и обозначено

$$I_{k\,m}^{n} = \int_{-\infty} I_{k}^{n}(x) \, \alpha_{m}(x) \, dx \, .$$

Таким образом, для любого степенного распределения источников типа (4) в рассматриваемом случае задача определения контуров спектральных линий сводится к простому интегрированию по частотам и суммированию. Также следует отметить, что при не очень малых значениях параметра q величины $I_k^d(x)$ с
Г.А.АРУТЮНЯН

ростом индекса *l* быстро стремятся к нулю. Если параметр *q* достаточно мал, решение задачи стремится к решению аналогичной задачи для однородной среды.

В случае экспоненциальных источников (14) аналогичным образом находим

$$I_{e}^{\rho}(x) = \frac{A \varphi_{\rho\rho}(x)}{\nu(x) + g_{1}} + \frac{B}{\nu(x) + g_{2}} ,$$

$$I_{e}^{l}(x) = \frac{1}{2} \frac{m}{2} \frac{\sum_{i=0}^{A} m \sum_{l=0}^{Z} \int_{em}^{l} \varphi_{m,l-i-l-1}(x)}{\nu(x) + lq} + \frac{A \varphi_{\rho l}(x)}{\nu(x) + lq + g_{1}} + \frac{BR_{*}l(x)}{\nu(x) + lq + g_{2}} ,$$
(30)

(31)

где

$$I_{em}^{i} = \int_{-\infty}^{\infty} I_{e}^{i}(x) \alpha_{m}(x) dx.$$

Соответствующие выражения для определения величины среднего числа рассеяний имеют следующий вид

$$< N(0,x) > = \sum_{l=0}^{\infty} N^{l}(x) \lambda_{o}^{l} = \frac{1}{2} \sum_{l=0}^{\infty} \frac{\lambda_{o}^{l}}{\nu(x) + lq} .$$

$$\cdot \sum_{m=0}^{\infty} A_{m} \sum_{l=0}^{l-1} N_{m}^{l} \varphi_{m,l-l-l-1}(x) +$$

$$+ \pi^{1/4} \sum_{l=0}^{\infty} \frac{\lambda_{o}^{l} \varphi_{ol}(x)}{\nu(x) + lq} + \frac{\beta}{\nu(x)} + \beta \sum_{l=1}^{\infty} \frac{\lambda_{o}^{l} R_{*}l(x)}{\nu(x) + lq} ,$$

откуда

 $N^{o}(x)=1,$

$$N^{l}(x) = \frac{1}{\nu(x) + lq} .$$

$$\left\{ \frac{1}{2} \sum_{m=0}^{\infty} A_{m} \sum_{l=0}^{l-1} N_{m}^{l} \varphi_{m,l-l-1}(x) + \pi^{1/4} \varphi_{ol}(x) + \beta R_{*l}(x) \right\}, \qquad (32)$$

где

- 113 CELEVE ACCESSION

$$N_m^i = \int_{-\infty}^{\infty} N^i(x) \, \alpha_m(x) \, dx \, .$$

Хотя в этом пункте мы рассмотрели интересующие нас задачи липь в случае экспоненциально убывающего альбедо, что чрезвычайно упрощает соответству-

НЕКОГЕРЕНТНОЕ РАССЕЯНИЕ

ющие уравнения, задача может быть сведена к простым уравнениям и при других зависимостях $\lambda(\tau)$ от оптической глубины. В частности, задача достаточно просто решается, например, в случае, когда альбедо однократного рассеяния задается формулой

$$\lambda(\tau) = \lambda_o \exp\left[-\frac{(\tau - \tau_o)^2}{\sigma^2}\right].$$
 (33)

Численная процедура решения всех вышеприведенных уравнений для таких сред почти не отличается от описанной.

7. Заключение. В настоящей работе мы не остановились на рассмотрении задач с трехмерной геометрией. Однако нетрудно видеть, что все результаты, которые получены здесь, легко могут быть обобщены и на этот случай. Могут быть получены средние числа рассеяний фотонов и для атмосфер с такими распределениями источников энергии, которые были рассмотрены в этой работе. Этим вопросам, а также численным результатам будет посвящена одна из следующих работ автора.

Бюраканская астрофизическая обсерватория

RADIATIVE TRANSFER FOR NON-COHERENT SCATTERING IN A SEMI-INFINITE INHOMOGENEOUS ATMOSPHERE CONTAINING ENERGY SOURCES

H.A.HARUTYUNIAN

Two problems of radiative transfer theory for general laws of frequency redistribution in an inhomogeneous medium are discussed. The medium inhomogenity is assumed to be caused by an optical depth dependence of photon survival probability per scattering. The existence of energy sources in a medium is taken into account. The cases of power and exponential distribution of energy sources are considered separately. The problem the mean number determination of photon scatterings for given inhomogeneous medium is considered as well. Corresponding equations are obtained. In a particular case of exponential dependence of photon survival probability on an optical depth the obtained integral equations are reduced to algebraical equations systems.

Г.А.АРУТЮНЯН

ЛИТЕРАТУРА

- 1. В.В.Соболев, ДАН СССР, 111, 1000, 1956.
- 2. S. Ueno, Astrophys. J., 132, 729, 1960.
- 3. В.В.Соболев, Труды АО ЛГУ, т.18.
- 4. E.H.Avrett, The Formation of Spectrum Lines, Cambridge, Smithsonian Inst. Astron. Observ., 1965, p.101.
- 5. G.B.Rybicky, D.G.Hummer, Astrophys. J., 150, 607, 1967.
- 6. Д.И.Нагирнер, К.И.Селяков, Астрофизика, 11, 61, 1975.
- 7. В.В.Соболев, Астрон. ж., 53, 607, 1976.
- 8. В.В.Соболев, Э.Г.Яновицкий, в сб. «Вопросы физики и эволюции космоса», Ереван, изд. АН Арм.ССР, 1978, стр.357.
- 9. Г.А. Арутюнян, Астрофизика, 23, 373, 1985.
- 10. Н.Б.Енгибарян, Астрофизика, 7, 513, 1971.
- 11. N.B. Yengibarian, A.G. Nikoghossian, JQSRT, 13, 787, 1973.
- 12. М.Г.Геворгян, Н.Б.Енгибарян, А.Г.Никогосян, Астрофизика, 11, 1, 1975.
- 13. H.A.Haruthyunian, A.G.Nikoghossian, JQSRT, 19, 135, 1978.
- 14. Г.А.Арутюнян, А.Г.Никогосян, ДАН СССР, 242, 66, 1978.
- 15. В.В.Соболев, ДАН СССР, 209, 1071, 1973.
- 16. В.В.Соболев, Астрофизика, 9, 515, 1973.
- 17. Г.А.Арутюнян, ДАН Арм.ССР, 70, 41, 1980.
- 18. Г.А.Арутюнян, А.Г.Никогосян, ДАН СССР, 268, 1342, 1983.

АСТРОФИЗИКА

TOM 36

НОЯБРЬ, 1993

выпуск 4

УДК: 524.82

КВАНТОВАНИЕ ОДНОРОДНОЙ КОСМОЛОГИЧЕСКОЙ МОДЕЛИ В ТЕОРИИ ЙОРДАНА—БРАНСА—ДИККЕ И ПРОБЛЕМА "НАБЛЮДАЕМОГО ВРЕМЕНИ"

В.В.ПАПОЯН, В.Н.ПЕРВУШИН

Поступила 10 августа 1993 Принята к печати 6 сентября 1993

Методом редуцированного фазового пространства проквантована однородная космологическая модель в теории Йордана.—Бранса.—Дикке. По аналогии с релятивистской частицей (действие которой является простейшим вариантом рассматриваемой модели) строится волновая функция ранней Вселенной и вводится время спектрального представления волновой функции (или время "внешнего наблюдателя") которое с точностью до энергии совпадает с редуцированным действием.

Показано, что наличия скалярного потенциала в рассматриваемой теории достаточно, чтобы описать инфляционную стадию эволюции. Вселенной в терминах квантового времени в начальный период се расширения, Описывается также последующая смена режима инфляции на радиационную стадию.

1. Вседение. Исследование поведения Вселенной спустя несколько мгновений после ее рождения, по-видимому, невозможно без понимания вопросов, что такое квантовая теория гравитации и каковы трудности и границы применимости ее понятий, в частности, "волновой функции" и "времени эволюции" в эпоху, когда еще несправедливы квазиклассическое и классическое поиближения.

В общепринятой в настоящее время схеме квантования Уиллера—Де Витта [1,2] волновая функция Вселенной интерпретируется как стационарное состояние с нулевым собственным значением эйнштейновского оператора энергии

$$H\Psi=0$$

(1)

Это уравнение возникает как условие связи первого рода на физические состояния теории, проквантованной в расширенном фазовом пространстве. В таком подходе, который будем называть редукцией квантованной теории (РКТ),

время эволюции появляется только на квазиклассической стадии расширения, как локальный параметр квазиклассического приближения [2].

В работе одного из авторов [3] рассматривалась возможность введения квантового (глобального) времени, как времени спектрального представления волновой функции Вселенной, в альтернативном подходе квантования редуцированной теории (КРТ), когда вначале разрешаются все связи на классическом уровне и строится редуцированное фазовое пространство а затем проводится схема квантования оставшихся после редукции степеней свободы.

В работах [3,4] были получены функции фридмановской Вселенной в простейших случаях "радиации" и "пыли" и показано, что КРТ — подход удовлетворяет принципу соответствия с классической теорией, а время квантового наблюдателя для неподвижной пыли совпадает с собственным временем Фридмана (аналогично случаю релятивистской частицы в покое).

В настоящей работе мы рассматриваем квантование однородной космологической модели в теории Йордана—Бранса—Дикке с целью найти редуцированную волновую функцию Вселенной и изучить вопрос о влиянии дополнительных степеней свободы на квантовую эволюцию Вселенной. Раздел 1 посвящен детальной постановке вопроса о квантовании и его интерпретации на примере релятивистской частицы. В разделе 2 рассматривается однородная космологическая модель скалярно-тензорной гравитации.

1. Релятивистская квантовая механика. Обсудим используемый метод квантования на простом примере релятивистской частицы, описываемой действием, инвариантном относительно репараметризации времени

$$W_I = \int_0^T d\tau \left[\dot{x}_i p_i + \dot{x}_o p_o - \alpha H \right], \qquad (2)$$

где

$$H = \frac{1}{2} (\omega^2 - p_o^2), \quad \omega = \sqrt{p_i^2 + m^2}.$$
 (3)

Спектральное представление волновой функции в квантовой теории хорошо известно

$$\Phi(x_{o},x_{i}) = \int \frac{d^{3}p}{(2\pi)^{3/2}\sqrt{2\omega}} \left[a_{(p)}^{(+)} e^{ix_{i}p_{i} - ix_{o}p_{o}} + a_{(-p)}^{(-)} e^{-ix_{i}p_{i} + ix_{o}p_{o}} \right], \quad (4)$$

где a⁽⁺⁾, a⁽⁻⁾ есть коэффициенты разложения волновой функции по явным решениям уравнения связи с различными знаками

$$H = 0 \quad | = > \quad p_o = \pm \omega , \qquad (5)$$

а показатели экспонент совпадают с действием, взятым на этих явных решениях

$$W_{I}^{Red} = \int_{0}^{T} d\tau \left[\dot{x}_{i} p_{i} \mp \dot{x}_{o} \omega \right] \equiv x_{i} p_{i} \mp x_{o} \omega$$
(6)

(с точностью до замены переменных ($p_i \rightarrow -p_i$) в последнем слагаемом. Выражение (6) будем называть редуцированным действием. Формальное квантование (6) ведет к волновой функции (4).

Мы видим, что после редукции осталось четыре независимых степени свободы, одна из которых отождествляется со временем спектрального представления (или временем внешнего наблюдателя) *TQ*:

$$T_{Q} = x_{o} \tag{7}$$

В общепринятой интерпретации такое отождествление играет роль калибровки, с энергией частицы связывается не нулевое собственное значение исходного гамильтониана *H*, а коэффициент перед *x*₀ в редуцированном действии (6).

В релятивистской квантовой механике даже частица в покое, $p_i = 0$, обладает волновой функцией с нетривиальной эволюцией во времени

$$\Phi(x_o) = a_o^{(+)} e^{-ix_o m} + a_o^{(-)} e^{+ix_o m}.$$
(8)

В этом случае редуцированное действие в точности совпадает с собственным временем частицы T_F

$$dT_F = m \alpha d\tau |_{m\tau = t} = \alpha dt.$$
⁽⁹⁾

Для частицы в движении можно получить выражение для собственного времени опираясь на исходные классические уравнения теории (2)

$$\frac{m \, dx_o}{\alpha \, dt} = \pm \omega \implies dT_F = \frac{m}{\omega} \, dx_o \,, \tag{10}$$

Как и следовало ожидать эти два времени связаны между собой преобразованием Лоренца

$$x_0(T_F) = \frac{\omega}{m} T_F = \frac{T_F}{\sqrt{1 - v_i^2}}, \quad v_i = \frac{p_i}{\omega}.$$
 (11)

Главной проблемой при квантовании систем, инвариантных относительно репараметризации времени, является выбор времени, или выбор калибровки. На рассмотренном примере можно видеть, что этот выбор резко ограничивается принципом "наблюдаемости", согласно которому в качестве времени можно использовать только инварианты группы репараметризации. Таких инвариантов два: время как интервал (9) (T_F , т.е. время сопутствующего наблюдателя), и время как редуцированное действие (6) (или время спектрального представления T_Q — время внешнего наблюдателя).

В классической релятивистской теории эти времена эквивалентны в силу эквивалентности инерциальных систем отсчета.

В квантовой релятивистской теории волновая функция выражается исключительно через время внешнего наблюдателя. Другими словами, построение волновой функции ведет к выделенности времени TQ (как действия), которое не совпадает с собственным временем.

В работах [3,4] было показано, что квантование редуцированных однородных космологических моделей в теории гравитации Эйнштейна также ведет к двум различным временам T_F и T_Q , которые совпадают для классического случая Вселенной, заполненной неподвижной пылью, точно так же как они совпадают для релятивистской частицы в покое.

Эти совпадения дают основание надеяться на плодотворность как КРТ метода, так и аналогии квантовой Вселенной с релятивистской квантовой частицей для более общих теорий.

2. Однородная космологическая модель в теории Йордана—Бранса—Дикке. Рассмотрим скалярно-тензорную теорию гравитации [5,6]

$$W = \int d^4x \sqrt{-g} \left[-\frac{e^{\sigma}}{12\chi^2} \left(R - \zeta \sigma_{\mu} \sigma^{\mu} \right) + \Lambda_m \right], \qquad (12)$$

где R - 4-х мерная скалярная кривизна, G — логарифм скалярного поля, ζ — безразмерная константа связи, которая по современным данным имеет значение $\zeta \ge 250$ [7], $12 \chi^2 = 16\pi G$, G — ньютоновская постоянная, выделенная в виде фактора для удобства, Λ_m — плотность функции Лагранжа вещества и негравитационных полей.

Геометрия изотропной космологической модели задается метрикой Робертсона—Уокера

$$dS^{2} = (dT_{F})^{2} - a^{2} (T_{F}) \left[\frac{dr^{2}}{1 - kr^{2}r_{o}^{2}} + r^{2} (d\theta^{2} + \sin^{2}\theta d\varphi^{2}) \right], \quad (13)$$

где r_0 определяется a_0 величиной масштабного фактора в современную эпоху, $dT_F = \alpha \, dt \quad (\alpha = \sqrt{g_{00}})$ (14) есть интервал собственного времени, инвариантный относительно преобразова-

ний группы репараметризации времени

$$t \to t' \mid (t)$$
. (15)

После интегирования по трехмерному пространству

$$\int \sqrt{-g} d^{3}x = \alpha a^{3} \int \frac{r^{2} \sin \Theta d^{3}x}{\sqrt{1 - kr^{2}/r_{o}^{2}}} = \alpha a^{3} v_{3}(r_{o}), \qquad (16)$$

действие (12) принимает вид

$$W = v_3(r_o) \int dt \left(\frac{e^{\sigma}}{2\chi^2} \left[e^{-\sigma} \partial_o \left(\frac{e^{\sigma} a^2 \partial_o a}{\alpha} \right) \right] \right) - \frac{1}{2\chi^2} \left[e^{-\sigma} \partial_o \left(\frac{e^{\sigma} a^2 \partial_o a}{\alpha} \right) \right]$$

$$-\partial_{o}\sigma\left(\frac{a^{2}\partial_{o}a}{\alpha}\right) - \alpha\frac{ka}{r_{o}^{2}} - \frac{a(\partial_{o}a)^{2}}{\alpha} + \frac{1}{6}\zeta a^{3}(\partial_{o}\sigma)^{2} + \alpha a^{3}\Lambda_{m}\right).$$
(17)

Для последующего квантования удобно записать это действие в формализме 1-го порядка, сделав конформное преобразование

$$a = R e^{-\sigma/2} \equiv e^{(\mu - \sigma/2)}, dt = d\tau e^{-\sigma/2}.$$
 (18)

После этого вместо (17) подучим выражение

$$W_{I} = v_{3} (r_{o}) \int d\tau$$

$$\cdot \left[\frac{d\mu}{d\tau} p_{(\mu)} + \frac{dr}{d\tau} p_{(\sigma)} - \alpha H - \frac{1}{2} \frac{d}{d\tau} \left(p_{(\mu)} + \frac{6}{3 + 2\sigma} p_{(\sigma)} \right) \right], \quad (19)$$

где

$$H = R^{3} \left[-\frac{1}{2} \frac{\chi^{2} p_{(\mu)}^{2}}{R^{6}} + \frac{1}{2} \frac{12\chi^{2}}{(3+2\zeta)} \frac{p_{(\sigma)}^{2}}{R^{6}} + \frac{k}{2R^{2}\chi^{2}} \frac{1}{r_{o}^{2}} + \Lambda_{m} e^{-2\sigma} \right], \quad (20)$$

есть гамильтониан теории, а $p(\mu)$, $p(\sigma)$ канонически сопряженные импульсы полей μ и σ , соответственно.

В радиационно-доминантную эпоху

$$\Lambda_m(R,\sigma) = \frac{\varepsilon e^{2\sigma}}{R^4} \tag{21}$$

гамильтониан (20) не зависит от σ и $R(\sigma)$ сохраняется:

$$\{p_{(\sigma)}, H\} = \frac{\partial H}{\partial r} = 0.$$
⁽²²⁾

Очевидно, $p(\sigma)^{=}$ const, также и в отсутствие радиации и вещества $\Lambda_m = 0$. Проведем квантование модели (19), (20) методом редуцированного фазового пространства для случая $p(\sigma)^{=}$ const. Рассмотрим действие (19) на явных решениях уравнения связи

$$H\left(p(\mu), p(\sigma), \Lambda\right) = 0 \implies p(\mu) = \mp F\left(R, p(\sigma)\right), \tag{23}$$

где

$$F(R^2) = [A R^4 + B R^2 + C]^{1/2} , \qquad (24)$$

$$A = \frac{k}{r_o^2 \chi^4} , \ B = \frac{2\varepsilon}{\chi^2} , \ C = \frac{12}{3+2\zeta} p_{(\sigma)}^2.$$
 (25)

Подставив это решение в (19), получим редуцированное действие

$$W_{\pm}^{Red} = v_3(r_o) p_{(\sigma)} \cdot \sigma \mp W^H(p_{(\sigma)}, R), \qquad (26)$$

$$W^{H}(p_{(\sigma)}, R) = \frac{1}{2}\nu_{3}(r_{o}) \left[C \int_{0}^{R^{2}} \frac{dx}{x F(x)} + \frac{1}{2} B \int_{0}^{R^{2}} \frac{dx}{F(x)} \right], \quad (27)$$

$$W^{H}(p(\sigma), R) \equiv E_{Q} T_{Q}.$$
⁽²⁸⁾

С точки зрения "внешнего наблюдателя" рассматриваемая система с сохраняющимся импульсом $p(\sigma)$ имеет энергетический спектр E_Q и время T_Q , в качестве параметра спектрального представления

$$\Psi(\sigma) = \int dp_{\sigma} \cdot \left[a_{(p_{\sigma})}^{+}e^{i\nu_{3}p}(\sigma)^{\sigma-iE_{Q}T_{Q}(R)} + a_{(-p_{\sigma})}^{-}e^{-i\nu_{3}p}(\sigma)^{\sigma+iE_{Q}T_{Q}(R)}\right].$$
(29)

Для плоского пространства k = 0, с точностью до константы вычитания расходящихся при R = 0 интегралов (27) получим

$$E_{Q}T_{Q} = \nu_{(3)}(r_{o})\frac{\sqrt{C}}{2}\left[\sqrt{1+R^{2}B_{C}} + \ln\frac{\sqrt{1+R^{2}B_{C}}-1}{\sqrt{1+R^{2}B_{C}}+1}\right].$$
(30)

В пределе $R \rightarrow 0$ доминирует плотность скалярного поля. Поскольку это поле не имеет массы, естественно предположить, что его энергия совпадает с импульсом

$$E_{\mathcal{Q}}(p_{(\sigma)}, \varepsilon_{(r)} = 0) = v_3(r_o) p_{(\sigma)}.$$
⁽³¹⁾

В пределе *p*(σ)→ 0 доминирует плотность излучения, энергия которого, согласно (21) равна

$$E_{\mathcal{Q}}\left(p_{(\mathcal{O})}=0,\varepsilon_{R}\right)=\varepsilon \,\nu_{(3)}(r_{o}), \qquad (32)$$

а время совпадает с конформным

$$T_{\mathcal{Q}}(p_{(\sigma)} = 0) = R \sqrt{1/2 \chi^2 \varepsilon}$$
(33)

Отсюда по аналогии с релятивистской частицей можно предположить, что спектр имеет вид

$$E_Q = v_3(r_o)\sqrt{p(\sigma) + \varepsilon^2}.$$
 (34)

Квантовое время определяется из соотношения (30)

$$T_{Q} = \frac{p_{(\sigma)}\sqrt{3/(3+2\zeta)}}{\sqrt{p_{(\sigma)}^{2}+\varepsilon^{2}}} \left[z + \ln\left(\frac{z-1}{z+1}\right)\right],$$
(35)

$$x = \sqrt{1 + R^2 \frac{\varepsilon(3+2\zeta)}{o\chi^2 p_0^2}}$$
 (36)

В области $z \sim 1$ или $R^2 < \frac{6 p_{cr}^2 x^2}{\varepsilon(3+2\zeta)}$ имеет место инфляционное расширение пространства. С увеличением R стадия инфляции переходит в стадию расширения радиационно доминированной Вселенной (33).

3. Заключение. Работа посвящена обсуждению понятия времени для квантовых космологических моделей, которые инвариантны относительно группы преобразований репараметризации времени. В квантовой теории о времени можно говорить лишь в контексте спектрального разложения волновой функции, которая хорошо известна для квантовой релятивистской частицы, описываемой действием, инвариантным относительно указанной выше группы преобразований.

Мы попытались здесь обобщить понятие времени для квантовой релятивистской частицы на космологическую модель скалярно-тензорной теории гравитации, исходя из внешнего сходства (возможно имеющего глубокий смысл) гамильтонова формализма для этих моделей в редуцированном фазовом пространстве.

Для квантовой частицы проблема выбора времени решается следующим образом: в спектральном представлении волновой функции под временем понимают ту часть редуцированного действия, которая описывает степень свободы с отрицательным квадратом импульса в эйнштейновском гамильтониане H, обращающимся в ноль для физического сектора теории.

В квантовой теории волновая функция и ее эволюция описываются именно этим временем, а не временем наблюдателя, "сопровождающего" систему (сопутствующий наблюдатель).

В этой аналогии с релятивистской квантовой частицей "сопутствующая система отсчета" (где время является собственным) может описывать детектор аблюдателя в состоянии "покоя", т.е. отсутствие всякого физического возбуж-

дения.

В контексте такого понимания времени эволюции квантовой системы любое движение (или любое физическое возбуждение) выводит квантовую систему из области описания классической эволюции собственным временем, т.е. понятия сопутствующего наблюдателя в квантовой и классической теориях различны.

В квантовой космологии под "состоянием покоя" можно понимать Вселенную, заполненную покоящейся пылью. В этом случае, как показано в [3,4], время спектрального представления (время— действие) совпадает с временем эволюции Фридмана (с временем— интервалом).

Состояние "движения" Вселенной может быть описано в неявной форме (например, изменением уравнения состояния пыли на состояние радиации) или в явной форме включением дополнительных степеней свободы. И в этом, и в другом случаях время "внешнего наблюдателя" не совпадает с собственным классическим временем.

Связь этих времен должна описываться группой движения, являющейся обобщением группы Лоренца. Здесь возникает вопрос о группе движения, адекватной описанию рождающейся квантовой Вселенной.

Авторы благодарны Д.А.Киржницу и Р.М.Мурадяну за обсуждения. Один из нас (ВВП) работал при частичной поддержке гранта Фонда Майера, присужденного Американским Физическим обществом.

Ереванский государственный университет (Армения), ОИЯИ, (Дубна, Россия)

THE QUANTIZATION OF HOMOGENEOUS COSMOLOGICAL MODEL IN JORDAN—BRANS—DICKE THEORY AND "OBSERVABLE TIME" PROBLEM.

V.V.PAPOYAN, V.N.PERVUSHIN

Homogeneous cosmological model in Jordan—Brans—Dicke theory by the method of reducted phase space is quantizated. By the analogy with the relativistic particle (it's action is a simple variant of considerable model) the wave function of the early Universe is constructed and the time of spectral representation of the wave function (the time of "external observer") is introducted. This time coincides with reducted action.

It is shown, that the presence of scalar potential in this theory is enough to describe the inflation stage of the Universe evolution. We describe radiation stage which follows the inflation stage.

ЛИТЕРАТУРА

- 2. B.S.De Witt, Phys.Rev., 160, 1113, 1967.
- 3.V.N.Pervushin, JINR Repid Comm. 6, 37, 46, 1982.
- 4.V.N.Pervushin, T.Tovmasjan, J. Moscow Phys.Soc. 3, 1, 1993.
- 5. C.Brans, R.H.Dicke, Phys.Rev., 124, 925, 1961.
- 6. P.Jordan, Schwerkraft und Weltall, Vieweg und Sohn, Braunschweig, 1955.

7. К. Уилл, Теория и эксперимент в гравитационной физике, Энергоатомиздат, М., 1985.

J.A. Wheeler, in "Rekativity, Groups and Topology", ed. B.S.De Witt and C.M.De Witt, New-York-London, 1964.

АСТРОФИЗИКА

TOM 36

НОЯБРЬ, 1993

выпуск 4

УДК:52-423:51

КОСМОЛОГИЧЕСКИЕ РЕШЕНИЯ ТИПА ФРИДМАНА В ТЕНЗОРНО-СКАЛЯРНОЙ ТЕОРИИ ТЯГОТЕНИЯ

Г.Г.АРУТЮНЯН, В.В.ПАПОЯН

Поступила 6 августа 1993 Принята к печати 6 сентября 1993

Показано, что решения вакуумных уравнений ОТО и тензорно-скалярной теории тяголения (ТСТТ) Йордана — Бранса — Дикке можно привести в конформное соответствие. Получены новые решения космологической задачи ТСТТ.

1. Введение. Калуце [1] удалось достичь формального объединения уравнений максвелловской теории электромагнетизма и общей теории относительности (ОТО). Суть этого объединения в следующем: вводится пятимерная риманова метрика

$$g_{AB} = \left(\frac{g_{IK} + A_I A_K}{A_K} \middle| \frac{A_I}{g_{55}}\right),$$

A, B = 0, 1, 2, 3, 5; i,k = 0, 1, 2, 3. (1)

Если редуцировать соответствующие (1) полевые уравнения теория $G_A^B = 0$ в 4-мерие (G_A^B — тензор Эйнштейна пятимерного пространства), то при условии независимости всех величин от x^5 , а также полагая g_{55} = const, получим систему уравнений Эйнштейна — Максвелла.

Рассматривая трансформационные свойства g_{AB} , Йордан [2] обнаружил, что g_{55} является скаляром и модифицировал анзац Калуцы так, чтобы

$$g_{AB} = \left(\frac{g_{iK} + yA_i A_K}{y_K} \middle| \frac{yA_i}{y} \right), \tag{2}$$

где y = y(x) — скалярная функция, которую принято называть гравитационным скаляром, и которая в связи с гипотезой Дирака о "дряхлеюшей" гравитации [3] выбирается так, чтобы в достаточно слабых гравитационных полях $y \rightarrow y_0 \sim \frac{1}{G_o}$ (G_o — ньютоновская гравитационная постоянная). При редукции в 4-х мерие соответствующего метрике (2) уравнения $G_A^B = 0$, сохраняя условие независимости всех величин от x^5 , получим отличные от эйнштейновских уравнения обобщенной теории тяготения (ОТТ)

$$yR_{i}^{k} = 8\pi (T_{i}^{k} - \frac{1-\zeta}{3-2\zeta}T \cdot \delta x_{i}^{k}) + \nabla_{i} y^{k} - \zeta \frac{y_{i}y^{k}}{y^{2}}$$
(3)

$$\nabla_{k} y^{k} = \frac{8\pi T}{3 - 2\zeta} . \tag{4}$$

Здесь T_i^k — тензор энергии-импульса вещества и негравитационных полей, ζ — безразмерная константа ОТТ. В пространственной бесконечности

$$y \to y_o = \frac{2(2-\zeta)}{G_o(3-2\zeta)}$$
 (5)

Легко заметить, что при $y = y_0$ и $\zeta \to \infty$ уравнения ОТТ совпадают с уравнениями ОТО. Физическому содержанию ОТТ посвящена работа [4], поэтому иногда используется также название "теория Йордана—Бранса—Дикке".

В настоящей работе рассматривается конформная связь уравнений ОТО и ОТТ, найдены некоторые космологические решения типа фридмановских.

2. Конформное соответствие уравнений ОТО и ОТТ. Пусть в одном и том же многообразии заданы 4-х мерные римановы структуры, приведенные в конформное соответствие согласно

$$\overline{g}_{ik}(x) = e^{2O} \cdot g_{ik}(x).$$
(6)

Как известно, тензоры Риччи конформно соответствующих римановых пространств \overline{V}_4 и V_4 связаны соотношением [5]

$$e^{2\sigma} \cdot \overline{R}_{i}^{\overline{k}} = R_{i}^{k} - 2 \left[\nabla_{l} \sigma^{k} - \sigma_{i} \sigma^{k} + \delta_{i}^{k} \sigma_{e} \sigma^{e} \right] - \delta_{i}^{k} \nabla_{e} \sigma^{e} , \quad (7)$$

где ∇_i — символ ковариантного дифференцирования, $(...)_k = \frac{\partial (...)}{\partial x^k}$, а черта над индексом или коренной буквой означает принадлежность к $\overline{V_4}$ (в частности, $(...)^{\overline{k}} = \overline{g}^{ke} (...)_k$).

Конформные преобразования (7) одиннадцати функциям $g_{ik}(x)$ и $\sigma(x)$ ставят в соответствие 10 величин $\overline{g_{ik}}(x)$. Уравнения ОТО не ковариантны относительно этих преобразований. В ОТТ гравитационное поле описывается 10 компонентами метрического тензора и гравитационным скаляром. Возникает естественный вопрос — возможно ли подобрать такую связь конформного фактора $\sigma(x)$ и гравитационного скаляра y(x), чтобы в одном из конформно соответствующих пространств были бы удовлетворены уравнения ОТО, а в другом — ОТТ?

Предположим, что gik (x) удовлетворяет вакуумным уравнениям ОТО

$$\overline{R}_{i}^{\overline{k}}=0, \qquad (8)$$

а g_{ik} (x)-- вакуумным уравнениям ОТТ

$$R_i^k = \frac{\nabla_i y^k}{y} - \zeta \frac{y_i y^k}{y^2} , \qquad (9)$$

$$\nabla_{k} y^{k} = 0. \tag{10}$$

Подставив (8) и (9) в (7) получим

$$\frac{\nabla_i y^k}{y} - \zeta \frac{y_i y^k}{y^2} = 2 \left[\nabla_i \sigma^k - \sigma_i \sigma^k + \delta_i^k \sigma_e \sigma^e \right] - \delta_i^k \nabla_e \sigma^e .$$
(11)

Сравнивая (1) и (2) можно заметить, что связь О и у вероятнее всего достаточно проста. Предположим, что она имеет вид

$$e^{2\sigma} = v^n. \tag{12}$$

Используя (12), исключим О из (11), тогда

$$(n-1)\frac{\nabla_{i}y^{k}}{y} = \frac{n(2+n) - 2\xi}{2} \frac{y_{i}y^{k}}{y^{2}} - \frac{n(n-1)}{2}\delta_{i}^{k}\frac{y_{e}y^{e}}{y^{2}}.$$
 (13)

Для того, чтобы удовлетворить (10), свернем по i = k, что дает

$$(14)^2 = \frac{3-2\zeta}{3}.$$

Нетрудно получить условие интегрируемости уравнения (13)

$$\nabla_{[l} \nabla_{k]} y^{l} = \frac{n}{4} \cdot \frac{(n-1)^{2} - (3-2\zeta)}{1-n} \delta^{l}_{[l} y_{k]} \frac{y_{n} y^{p}}{y^{2}}, \qquad (15)$$

(квадратные скобки обозначают антисимметризацию). Перепишем (15), учитывая (14) и одно из определений тензора кривизны:

$$y^{p} R_{pkl}^{l} = n (n-1) \delta_{[l}^{e} y_{k]} \frac{y_{p} y^{p}}{y^{2}}.$$
 (15a)

Целесообразно в последнее выражение вместо тензора Римана ввести инвариант конформных преобразований — тензор Вейля, тогда условие интегрируемости уравнения (13) перепищется в виде:

$$y_p \ C_{lk\,i}^p = 0. \tag{156}$$

Итак, доказано

Утверждение І. Пусть функции $g_{lk}(x)$ и y(x) являются решениями вакуумных уравнений ОТТ, тогда, если

$$y_p C_{lki}^p = 0$$

TO

$$\overline{g}_{ik}(x) = y^n g_{ik}(x); (n-1)^2 = \frac{3-2\zeta}{3}$$

будет вакуумным решением соответствующей задачи ОТО.

Допустим, что $\bar{g}_{ik}(x)$ и y(x) удовлетворяют вакуумным уравнениям ОТТ, а $g_{ik}(x)$ — ОТО. Предполагая, что

$$e^{2\sigma} = v^m \tag{16}$$

и действуя аналогично изложенному в предыдущем пункте нетрудно доказать

Утверждение 2. Пусть g_{ik}(x) является решением вакуумных уравнений ОТО, тогда, если найдено какое-либо решение уравнения

$$\nabla_i \sigma^k + \frac{2(m+1)}{m} \sigma_i \sigma^k = 0, \qquad (17)$$

с условием интегрируемости

$$\sigma_p C_{lki}^p = 0,$$

то

 $\overline{g}_{ik}(x) = e^{2\sigma}g_{ik}(x), y = e^{2\sigma/m}, 3(m+1)^2 = 3-2\zeta$ будет решением соответствующей задачи ОТТ.

Используя (7) нетрудно показать, что если в (6) принять

$$e^{2\sigma} = \frac{G_n}{a} y; \ a = \frac{2(2-\zeta)}{3-2\zeta},$$
 (18)

то после конформных преобразований уравнения ОТТ при наличии вещества и негравитационных полей (3) по форме совпадает с эйнштейновскими

$$\overline{G}_{i}^{\overline{k}} = 8 \pi G_{o} \left(\overline{T}_{i}^{\overline{k}} + \overline{\tau}_{i}^{\overline{k}} \right), \qquad (19)$$

с дополнительным источником в виде тензора «энергии-импульса» скалярного поля

$$\overline{\tau}_{i}^{\overline{k}} = \frac{3-2\zeta}{16\pi G_{o}} \left(\sigma_{i} \, \sigma^{\overline{k}} - \frac{1}{2} \delta_{i}^{k} \, \sigma_{i} \, \sigma^{i} \right) \,, \tag{20}$$

а вместо уравнения (4) будем иметь

$$\overline{\nabla}_k \sigma^{\overline{k}} = \frac{4\pi G_a \overline{T}}{3 - 2\zeta} \,. \tag{21}$$

Таким образом, достаточно по заданному \overline{T} найти $\sigma^{\overline{k}}$, соответствующее значение $\overline{\tau}_{i}^{\overline{k}}$, а затем перейти к решению уравнений Эйнштейна (19). (Подчеркнем, что в таком подходе уравнения движения искажены наличием скалярной части, поскольку здесь $\overline{\nabla}_{k}(\overline{T}_{i}^{\overline{k}} + \overline{\tau}_{i}^{\overline{k}}) = 0$). Отметим также, что в тех случаях, когда отличными от 0 оказываются диагональные компоненты $\overline{\tau}_{i}^{\overline{k}}$, наличие в (19) связанного со скалярным полем слагаемого можно учесть введением эффективных «плотности энергии» ε^{c} и «давления» P^{c} скалярного поля, которые подчиняются предельно жесткому уравнению состояния $\varepsilon^{c} = P^{c}$.

Для полноты приведем малоизвестный результат, доказательство которого элементарно (см., например, [2]).

Теорема (Шюкинг). 11 электровакуумных уравнений ОТТ в пространстве *V₄* эквивалентны 10 уравнениям

$$\bar{R}_{i}^{\bar{k}} = \frac{3-2\xi}{2} y_{i} y^{k} / y^{2}$$
⁽²²⁾

в конформно соответствующем пространстве \overline{V}_4 с метрикой

 $\overline{g}_{lk} = y g_{lk}$. Можно показать, что если $R_{lk} = \psi_l \psi_k (\psi$ — произвольный скаляр), то вследствие свернутых тождеств Бианки $\nabla_k G_l^k = 0$ будем иметь $\nabla_k \psi^k = 0$. Это означает, что в (22) содержится также уравнение для скалярного потенциала.

3. Космологические модели в ОТТ. Геометрия однородной и изотропной Вселенной задается метрикой Робертсона—Уокера (см., например, [6])

$$d\,\overline{S}^{\,2} = dt^2 - R^2(t) \left[\frac{dr^2}{1 - k\,r^2} + r^2 \left(d\theta^2 + \sin^2 \theta \, d\varphi^2 \right) \right], \qquad (23)$$

THe.

 $k = \begin{cases} +1 \\ 0 \\ -1 \end{cases}$

модель с положительной кривизной, квазиевклидова модель, модель с отрицательной кривизной.

Подставим (23) в уравнения ОТТ с гидродинамическим тензором энергии—импульса

$$\overline{T}_{i}^{\overline{k}} = (\mathcal{E} + \overline{P}) \overline{U}_{i} \overline{U}^{k} - \overline{P} \delta_{i}^{k}$$

предиолагая, что уравнение состояния имеет вид:

$$\bar{P} = \alpha \bar{\epsilon},$$

где

$$\alpha = \begin{cases} 0 \\ \frac{1}{3} \\ -1 \end{cases}$$

современная эпоха преобладания вещества, радиационно—доминантная эра, предельно жесткое состояние,

(24)

получим систему уравнений, описывающих эволюцию изотропной Вселенной в ОТТ

$$\left(\frac{R'}{R}\right)^{2} + \frac{k}{R^{2}} + \frac{R'}{R} \frac{y'}{y} + \frac{\zeta}{6} \left(\frac{y'}{y}\right)^{2} = \frac{8\pi E}{3y},$$
(25)

$$\frac{d}{d\tau}\left(y'\bar{R}^{3}\right) = \frac{8\pi R^{3}\mathcal{E}(1-3\alpha)}{3-2\zeta},$$
⁽²⁶⁾

$$\Gamma' R = -3(1+\alpha)\overline{\epsilon}R'.$$
⁽²⁷⁾

Предположим, что (23) получено в результате конформного преобразования

$$d\overline{S}^{2} = e^{2\sigma} dS^{2} = e^{2\sigma} \left[dt^{2} - a^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega^{2} \right) \right],$$

$$d\tau = e^{\sigma} dt; \quad R = e^{\sigma} a, \qquad (23a)$$

(где a(t) — известная функция времени, коэффициент расширения фридмановских моделей в ОТО).

Перепишем систему (25)—(27) с учетом связи (23а)

$$\left(\frac{\dot{a}}{a}+\dot{\sigma}\right)^2 + \frac{k}{a^2} + \left(\frac{\dot{a}}{a}+\dot{\sigma}\right)\frac{\dot{y}}{y} + \frac{\zeta}{\sigma}\left(\frac{\dot{y}}{y}\right)^2 = \frac{8\pi A}{3y} \cdot \frac{a^{-3(1+\alpha)}}{e^{\sigma(1+3\alpha)}}, \qquad (25a)$$

$$\frac{d}{dt}(e^{2\sigma}\dot{y}a^{3}) = \frac{8\pi A(1-3\alpha)}{3-2\zeta}, \frac{e^{\sigma(1-3\alpha)}}{a^{3\alpha}}, \qquad (26a)$$
$$\bar{\varepsilon} = \frac{A \cdot a^{-3(1+\alpha)}}{e^{3\sigma(1+\alpha)}}, \qquad (27a)$$

(точка означает дифференцирование по фридмановскому времени ОТО — t).

Совместное решение уравнений (25а) и (26а) дает возможность, определив конформный фактор $\sigma(t)$, найти как временную эволюцию гравитационного скаляра $y(\tau)$, так и $R(\tau)$ коэффициент расширения в ОТТ.

Наиболее интересной, с точки зрения физических последствий проявление эффектов скалярного поля, является, по-видимому, радиационно-доминантная эпоха развития Вселенной ($\alpha = 1/3$). Будем искать у в виде

$$y=\frac{Be^{-2\sigma}}{a^2}f(t),$$

что согласуется с первым интегралом уравнения (26а)

$$ya^3e^{2O} = B = \text{const}$$
,

и приводит к соотношению $\dot{y}/y = \frac{1}{af}$.

Введем конформное время $d\eta = dt/a$, тогда

$$\frac{df}{d\eta}=1+2af\left(\frac{\dot{a}}{a}+\dot{\sigma}\right).$$

(28)

Правую часть (28) можно исключить, используя уравнение (25а), что приводит к

$$\frac{df}{d\eta} = \sqrt{\frac{3-2\zeta}{3} + 2nf - kf^2}; \ n = \frac{16\pi A}{3B},$$
(29)

которое легко интегрируется и позволяет вычислить

$$R^{2}(\eta) = C f e^{-\int (d \eta / f)},$$
 (30)

а также у (η) .

Для случаев $k = \pm 1$ результаты выглядят весьма громко, а для $\kappa = 0$

$$2f = n \eta^2 - \frac{3 - 2\zeta}{3n} , \qquad (31)$$

$$y = y_{o} \left(\frac{1 - \sqrt{\frac{3}{3 - 2\xi}} n\eta}{1 + \sqrt{\frac{3}{3 - 2\xi}} n\eta} \right)^{\frac{1}{2n} \sqrt{\frac{3 - 2\xi}{3}}}.$$
 (32)

Эпоха преобладания вещества ($\alpha = 0$) квазиевклидово пространство ($\kappa = 0$). Выберем конформный фактор так, чтобы

$$e^{\sigma} = \frac{const}{y}$$

Уравнение ОТТ интегрируется без труда и в результате имеем

$$y = \frac{C_1}{\kappa_o} \cdot \frac{(2-\xi)^2}{(3-2\xi)(4-3\xi)} t^{2\overline{\kappa}} y'_3 \overline{H}_o , \qquad (33)$$

$$R = \frac{C_2}{(H_o a_o^3)^{1/3}} t^{\frac{2}{3}\left(1 + \overline{R}_o / \overline{H}_o\right)}$$
(34)

Здесь H_0 — постоянная Хаббла, a_o — фридмановский коэффициент расширения, C_1 и C_2 — постоянные

$$\overline{\kappa}_o = \sqrt{A \kappa_o / 3 a_o^2}; \quad \overline{H}_o = (2 - \xi) H_o$$

Отметим, что частный случай согласуется с гипотезой Дирака о "дряхлеющей" гравитации ($G_o - \frac{1}{g}$).

Интересным представляется случай, когда логарифмическая скорость убывания гравитационного скаляра совпадает с логарифмической скоростью расширения Вселенной

$$\frac{\dot{y}}{y} = -\frac{\dot{R}}{R} \quad . \tag{35}$$

Примечательно, что предложение (35) является прямым следствием условия Шамы [7], согласно которому размеры наблюдаемой части Вселенной порядка ее гравитационного радиуса

$$\frac{G_{\alpha}m}{c^2r} \sim 1. \tag{36}$$

Это условие допускает весьма правдоподобную интерпретацию — в ходе своей эволюции Вселенная подгоняет значения фигурирующих в (36) величин к предписанным (что служит дополнительным аргументом в пользу переменности G_o). В этом случае, поскольку допускаются только отрицательные значения $\zeta_{\rm p}$ реализуется модель с отрицательной кривизной $\kappa = -1$, а

$$R = R_o + \sqrt{\frac{2}{2-\zeta}} \tau.$$
 (37)

Расширение происходит по линейному закону.

Анализу найденных решений и сравнению с данными наблюдений будет посвящена следующая публикация.

Авторы выражают благодарность Г.С.Саакяну, Н.А.Черникову, участникам семинаров "Теория пространства времени и гравитация" ЛТФ ОИЯИ и кафедры теоретической физики Ереванского университета за стимулирующие обсуждения.

Работа выполнена при частичной поддержке гранта Фонда Майера, присужденного Американским физическим Обществом.

Ереванский государственный университет

Г.Г.АРУТЮНЯН, В.В.ПАПОЯН

THE FRIEDMAN TYPE COSMOLOGICAL SOLUTIONS IN TENSOR-SCALAR THEORY OF GRAVITATION

G.HAROUTYUNIAN, V.PAPOYAN

The possibility of the conform correspondence between the solutions of the vacuum equations GR and Jordan—Brans—Dicke tensor—scalar theory of gravitation (TSTG) is shown. New solutions of the cosmological problem in TSTG frame are obtained.

ЛИТЕРАТУРА

1. Th. Kaluza, Sitz. Preus. Akad. Wiss. S.966, 1921.

2. P. Jordan, Swerkraft und Weltall, Vieweg und Sohn, Braunschweig, 1955.

3. P.A.M. Dirac, Proc. Roy. Soc. A165, 199, 1938.

4. C.Brans, R.H. Dicke, Phys.Rev. 124, 952, 1961.

5. А.З.Петров, Новые методы в общей теории относительности. "Наука", М., 1966.

6. Ч. Мизнер, К.Торн, Дж. Уилер, Гравитация, Мир. М., 1977.

7. D. Sciama, Mon. Not. Roy. Astron. Soc., 113, 34, 1953.

АСТРОФИЗИКА

TOM 36

НОЯБРЬ, 1993

выпуск 4

УДК:523.877

О ВЛИЯНИИ СИЛЬНОГО МАГНИТНОГО ПОЛЯ НА ЭНЕРГЕТИЧЕСКИЙ ВЫХОД "л"-РЕАКЦИЙ

С.С.ЛИПОВЕЦКИЙ, А.М.МОЙСЮК, В.С.СЕКЕРЖИЦКИЙ

Поступила 1 февраля 1993 Принята к печати 25 марта 1993

Исследуется влияние магнитного поля на реакции обмена ядер нейтронами в холодном плотном электронно- ядерном веществе. Показано, что при заданной плотности вещества сверхсильное магнитное поле уменьшает массовое число наиболее устойчивого ядра и увеличивает энергетический выход этих реакций.

В настоящем сообщении мы приведем результаты исследования характера влияния сильного магнитного поля на энергетический выход " n "- реакций реакций обмена ядер нейтронами:

$$(A_1, Z_1) + (A_2, Z_2) \rightarrow (A_1 - 1, Z_1) + (A_2 + 1, Z_2),$$
 (1)

где (A,Z) — символическое обозначение ядра с массовым и зарядовым числами *A* и *Z*. Согласно [1], реакции такого типа представляют собой заключительный этап пикноядерных реакций, посредством которых в плотном веществе белых карликов и нейтроннных звезд происходит переход к абсолютно равновесному состоянию. Возможность существования в недрах сверхплотных астрофизических объектов магнитных полей, способных оказывать квантующее действие на релятивистские электроны вырожденной электронно-эдерной плазмы, делает актуальной задачу об учете их влияния на пикноядерные реакции.

Равновесные термодинамические и ядерные параметры холодного плотного электронно-ядерного вещества в сильном магнитном поле вычислялись нами в [2]. Как и в [2], пренебрегая кинетической энергией и взаимодействием ядер по сравнению с их энергией покоя и считая электронный газ крайне вырожденным и идеальным, представим плотность энергии среды в виде:

$$w = w_A + w_e , \qquad (2)$$

где w_A и w_e — плотности энергий ядер и электронов, $w_A \approx m_A c^2 n_A$, n_A — концентрация ядер, $m_A c^2 = (A - Z) m_n c^2 + Z m_p c^2 + W$ — энергия покоя ядра, m_n и m_p — массы нейтрона и протона, W — энергия связи ядра. Мы не приводим здесь выражений для W и w_e в силу их громоздкости. Они даны в [2], где имеются ссылки на соответствующие оригинальные работы. Полагая среду

B ×10⁻¹⁵ (Γc)

Рис.1. Зависимость массового числа Ao (линия 1) и энергетического выхода "n"- *реакции* Q (линия 2) от индукции магнитного поля B для $\rho = 10^{10}$ ссм 3^{10} и $A_1 = A_0 + 1$. $A_2 = A_0 - 1$, $Z_1 = Z_2 = Z_0$. N - 0, 1, 2, 3, ... – номер квантового уровня Ландау для электронов в магнитном поле. электро-нейтральной, имеем $n = A n_A = A Z^{-1} n_e$, где n_e — концентрация электронов, $n \approx \rho / m_n$ — концентрация нуклонов, ρ — плотность вещества.

При фиксированных значениях индукции магнитного поля *В* и плотности *р* абсолютно равновесному состоянию холодного вещества соответствует минимум его энергии, т.е.

$$\frac{dw}{dZ} = \frac{dw}{dA} = 0.$$
⁽³⁾

Проведение расчетов по изложенной схеме позволяет каждому значению плотности ρ поставить в соответствие массовое A_0 и зарядное Z_0 числа наиболее устойчивого ядра.

Как известно [1], энергетический выход " n" – реакций для средних и тяжелых ядер с достаточной степенью точности определяется выражением

$$Q = \frac{dW(A_1, Z_1)}{dA_1} - \frac{dW(A_2, Z_2)}{dA_2}.$$
 (4)

Результаты численных расчетов представлены на рисунке. В качестве A_1 и A_2 взяты массовые числа, отличающиеся на единицу от A_0 , при равенстве зарядных чисел. Таким образом, рассматривается конечный этап перехода вещества к абсолютно устойчивому состоянию. Легко видеть, что при изменении индукции магнитного поля величины A_0 и Q осциллируют, причем амплитуда осцилляций увеличивается с ростом B. Осцилляции обусловлены квантованием движения электронов в магнитном поле. При $B \ge 1.1 \cdot 10^{16}$ Гс (квантовый предел сверхсильного магнитного поля для релятивистского электронного газа при $\rho = 10^{10}$ гсм⁻³) A_0 убывает, а Q возрастает с увеличением B. Последнее, очевидно, является следствием первого.

Итак, сверхсильное магнитное поле при фиксировнном значении плотности вещества, заметно уменьшая массовое число равновесного ядра и изменяя его энергию связи, увеличивает, тем самым, энергетический выход " n " – реакций.

Отметим в заключение, что если фиксировать значение массвого числа A_0 , то имеют место осцилляции, а затем рост плотности ρ с увеличением индукции поля *B*. При этом энергетический выход "*n*" – реакций практически не зависит от $B \leq 10^{17}$ Гс и начинает заметно уменьшаться лишь при $B \geq 10^{18}$ Гс. Столь сильные поля здесь не рассматриваются, т.к. их существование в реальных астрофизических объектах весьма проблематично.

Брестский педагогический институт

С.С.ЛИПОВЕЦКИЙ И ДР.

ON THE INFLUENCE OF THE STRONG MAGNETIC FIELD ON THE RELEASED ENERGY. "n"-REACTIONS

S.S.LIPOVETSKI, A.M.MOJSJUK, V.S.SEKERZITSKI

The influence of magnetic field on the reactions of nucleiexchange by neutrons in a cold dense electron-nuclear matter is investigated. It is shown that the superstrong magnetic field decreases mass number of the most stable nuclei and increases released energy of these reactions under the given density.

ЛИТЕРАТУРА

Г.С.Саакян, Р.М.Авакян, Астрофизика, 8, 123, 1972.
 С.С.Липовецкий, В.С.Секержицкий, Астрофизика, 20, 315, 1984.

АСТРОФИЗИКА

TOM 36

НОЯБРЬ, 1993

ВЫПУСК 4

УДК: 52-423.4

НОВАЯ ФОРМУЛА ДЛЯ МАССЫ ЗВЕЗДЫ В БИМЕТРИЧЕСКОЙ СКАЛЯРНО—ТЕНЗОРНОЙ ТЕОРИИ ГРАВИТАЦИИ

Л.Ш. ГРИГОРЯН, П.Ф. КАЗАРЯН

Поступила 15 августа 1993 Принята к печати 6 сентября 1993

В рамках биметрической скалярно—тензорной теории гравитации выведена новая формула, связывающая квадрат массы статического сферически—симметрического небесного тела с распределением давления в объеме звезды.

До недавного времени биметрическая формулировка общей теории относительности (ОТО) [1—5] и скалярно— тензорные теории гравитации [6—12] исследовались независимо друг от друга. В [13—17] была предложена биметрическая скалярно— тензорная теория (БСТТ) гравитации. Для наипростейшего варианта БСТТ действие гравитирующих масс определяется выражением [13]

$$S = \int \left(-\frac{\varphi}{2}\Lambda_g + \frac{\zeta}{2\varphi}\varphi_{,n}\varphi^{,n} + L_m\right)\sqrt{-g} d^4\Omega, \qquad (1)$$

 φ — независимая полевая переменная (скаляр), ζ — безразмерная постоянная теории, L_m — плотность лагранжиана вещества и негравитационных полей, $\varphi_n = \partial \varphi / \partial x^n$; $\varphi^{n} = g^{nm} \varphi_m$; скорость света c = I, а $\Lambda_s = \Lambda$, где нведено обозначение

$$\Lambda = g^{ik} (\bar{\Gamma}_{in}^{l} \ \bar{\Gamma}_{kl}^{n} - \bar{\Gamma}_{ik}^{l} \ \bar{\Gamma}_{ln}^{n}). \tag{2}$$

В (2) $\bar{\Gamma}_{in}^{l} = (\Gamma_{ik}^{l} - \Gamma_{ik}^{l})$ — тензор аффинной деформации, определяемы:

символами Кристоффеля Γ_{ik}^{l} искривленного пространства — времени с квадратом интервала $g_{ik} dx^{i} dx^{k}$ и Γ_{ik}^{l} плоского фонового пространства—времени с квадратом интервала $\gamma_{ik} dx^{i} dx^{k}$. В случае $\Lambda_{g} = R$, где R скалярная кривизна искривленного пространства—времени, действие (1) переходит в соответствующее выражение для наипростейшего варианта скалярно тензорной теории (теория Йордана—Бранса—Дикке [6—8]). Если же скалярное поле φ считать постоянным и равным $\varphi_{o} = 1/8 \pi G$ (G — ньютоновская гравитационная постоянная), то (1) перейдет в действие ОТО в биметрической формулировке [1—5].

Равенство [1,2]

где

$$\Lambda = R - \omega_{;n}^{n},$$
$$\omega^{n} = g^{ik} \overline{\Gamma}_{ik}^{n} - g^{ni} \overline{\Gamma}_{ik}^{k},$$

а точка с запятой означает ковариантную производную по отношению к метрике g_{ik} позволяет в (1) отбросить несущественный поверхностный интеграл, что приводит к действию Эйнштейна—Гильберта. Однако в случае переменного φ слагаемое, пропорциональное ω_{in}^{n} , не сводится к поверхностному интегралу. Поэтому уравнения поля [13]

$$\varphi R_{ik} + \varphi_{,n} \overline{\Gamma}_{ik}^{n} - \varphi_{,(i} \overline{\Gamma}_{k)n}^{n} - \frac{\xi}{\varphi} \varphi_{,i} \varphi_{,k} = T_{ik} - \frac{1}{2} T_{g_{ik}}, \qquad (3)$$

$$(2\xi \varphi^{,n} - \varphi \omega^{n})_{;n} = T,$$

вытекающие из (1) с $\Lambda_g = \Lambda$, отличаются как от уравнений теории Йордана— Бранса—Дикке, вытекающих из (1) с $\Lambda_g = R$, так и от уравнений ОТО. В (3) T_{lk} — тензор энергии—импульса вещества и негравитационных полей,

$$f_{(ik)} = (f_{(ik)} + f_{(ki)})/2.$$

В [18,19] показано, что решения уравнений ОТО вместе с $\varphi = \varphi_o$ являются также решениями уравнений (3) и, что уравнения (3) содержат также неэйнштейновские решения с переменным скалярным полем φ . Это обстоятельство приводит к нетрадиционной постановке вопроса о согласии БСТТ с данными наблюдений: задача сводится к согласию ОТО с данными наблюдений и к физической интерпретации неэйнштейновских решений уравнений (3). Последние могут оказаться полезными для предсказания новых эффектов в теории гравитации. В [19] рассмотрен один из подобных эффектов на примере зависимости массы *М* нейтронной звезды от давления *Р* в ее центре. В [20] выведена новая формула:

$$M^{2} = \frac{8}{G} \int P r \sqrt{-g} d^{3} \Omega$$
⁽⁴⁾

для квадрата массы статического сферически—симметрического небесного тела. Она справедлива в изотропной системе координат:

$$g_{ik} dx^{i} dx^{k} = e^{\nu} dt^{2} - e^{\lambda} [dr^{2} + r^{2} (d\theta^{2} + \sin^{2}\theta d\psi^{2})], \qquad (5)$$

с началом в центре небесного тела; $\nu(r)$ и $\lambda(r)$ — функции радиальной координаты r, определяемые из уравнений Эйнштейна.

Выражение (4) дополняет формулу Толмена [21]

$$M = \int (\rho + 3P) \sqrt{-g} d^{3} \Omega$$
 (6)

для массы небесного тела; ρ , P — плотность полной энергии и давления звездного вещества. В [20] формула (4) выведена в рамках ОТО, однако понятно, что (4) и (6) справедливы также для эйнштейновской ветви решений уравнений (3), когда $\varphi = \varphi_0$. Более того, в [13,14,22] показано, что формула (6) справедлива также для неэйнштейновской ветви решений уравнений БСТТ с переменным φ . Численные же значения массы на эйнштейновской и неэйнштейновской ветвях, разумеется, будут отличаться друг от друга. Возможно, и формула (4) справедлива на неэйнштейновской ветви решений уравнений БСТТ. Ниже дан ответ на этот вопрос.

Рассмотрим статическое сферически—симметрическое небесное тело, описываемое неэйнштейновской ветвью решений уравнений БСТТ. Выберем сферическую систему координат с началом в центре звезды такую, чтобы

$$\gamma_{ik} dx^{i} dx^{k} = dt^{2} - dr^{2} - r^{2} (d\theta^{2} + \sin^{2}\theta d\psi^{2}).$$

Из симметрии задачи понятно, что для искривленного пространства — времени

$$g_{ik} dx^{i} dx^{k} = e^{\nu(r)} dt^{2} - e^{\lambda(r)} dr^{2} - e^{\mu(r)} r^{2} (d\theta^{2} + \sin^{2}\theta d\psi^{2}).$$
⁽⁷⁾

Используя уравнения (3) в [13,14] показано, что

 $\mu\left(r\right)=\lambda\left(r\right)$

для всех r, поэтому (7) переходит в (5) (изотропная система координат). С учетом этого обстоятельства уравнения (3) можно преобразовать к виду

$$\varphi \, \mu \nu \,' = \frac{m}{r^2} \,, \tag{8}$$

$$u'' + (\frac{3}{r} + \frac{\varphi'}{\varphi}) u' = \frac{2}{\varphi} P u^{3} e^{-\nu}, \qquad (9)$$

$$\zeta \varphi' u + 2\varphi u' = \frac{m_*}{r^2}, \tag{10}$$

 $rac u = e^{(\nu+\lambda)/2},$

$$m = \int_{0}^{r} (\rho + 3P) r^{2} u^{3} e^{-\nu} dr, \quad m_{*} = 3 \int_{0}^{r} P r^{2} u^{3} e^{-\nu} dr$$

а штрих означает производную по r. Уравнения (8), (10) приведены в [13,14]. Новым является уравнение (9), которое также вытекает из (3).

Функции $\nu(r)$, u(r) в $\varphi(r)$, определяются уравнениями (8)—(10), а P(r) в $\rho(r)$ — из уравнения гидростатического равновесия:

$$P'=-\frac{1}{2}(\rho+P)\nu',$$

с учетом уравнения состояния $P = P(\rho, \tau)$ звездного вещества. Для сверхплотного небесного тела (белый карлик, нейтронная звезда) зависимость от температуры τ не существенна [9], а для звезд типа Солнца зависимость $\tau(r)$ определяется из уравнения лучистого равновесия [23].

Уравнение (9) преобразуется к виду

$$u' [ln(\varphi u'r^{3})]' = \frac{2}{\varphi} P u^{3} e^{-\nu}$$
(11)

и вне небесного тела элементарно интегрируется:

$$\mu' = \beta/\varphi r^3$$
, при $r \ge r_1$,

 r_1 — координатный радиус звезды. Постоянную интегрирования β можно определить, используя аналитическое решение уравнений (8)—(10) вне небесного тела (см., например, в [13] выражения (39), (42)—(45)):

$$\beta = \frac{G}{16\pi} \left(M^2 + \frac{2}{\zeta} M_*^2 \right). \tag{12}$$

Здесь

$$M_* = 4 \pi m_*(r_1) = 3 \int P \sqrt{-g} d^3 \Omega$$

—постоянная с размерностью массы, которая вместе с тяготеющей массой $M = 4 \pi m (r_1)$ фигурирует в аналитическом решении уравнений (8)—(10) вне небесного тела (напомним, речь идет о неэйнштейновской встви решений).

600

Введем функцию $\sigma(r)$, определяемую уравнением

$$\frac{\sigma'}{\sigma} = \frac{2}{\varphi u'} P u^3 e^{-\nu} . \tag{13}$$

Вне небесного тела она постоянна: $\sigma(r) = \sigma_1$ при $r \ge r_1$. При этом (11) интегрируется:

$$a' = \frac{\beta\sigma}{\varphi r^3 \sigma_1} \tag{14}$$

для всех r, $u'(0) = \sigma(0) = 0$. Подставив (14) в (13) :

$$\frac{\sigma}{\sigma_1} = \frac{2}{\beta} P r^3 u^3 e^{-\nu}$$

и проинтегрировав по r от центра до поверхности небесного тела, получим равенство

$$\int_{0}^{r_{1}} P r^{3} u^{3} e^{-\nu} dr = \frac{\beta}{2},$$

которое с учетом (12) сводится к искомой формуле

$$M^{2} + \frac{2}{\zeta} M_{*}^{2} = \frac{8}{G} \int P r \sqrt{-g} d^{3} \Omega$$
 (15)

для квадрата массы на неэйнштейновской ветви решений уравнений БСТТ.

Как видим, для решений с переменным φ формулу (4) необходимо видоизменить, добавив в левой части равенства слагаемое 2 M_*^2/ζ . В пределе $\zeta \to \infty$ скалярно—тензорные теории переходят в ОТО, и поэтому (15) переходит в (4). Заметим также, что формулы (4) и (15) явным образом содержат *r*, и поэтому не инварианты относительно преобразований радиальной координаты $r \to f(r)$.

В [24] приведены численные значения M и M_* для нейтронных звезд с разными значениями давления звездного вещества в центре небесного тела P(0). В следующей публикации будут вычислены значения интеграла, фигурирующего в (15), для различных значений P(0), что позволит проверить точность численных расчетов авторов [24] подстановкой соответствующих величин в (15).

Институт прикладных проблем физики НАН Армении Ереванский государственный университет

Л.Ш.ГРИГОРЯН, П.Ф.КАЗАРЯН

A NEW FORMULA FOR A STAR MASS IN THE BIMETRIC SCALAR—TENSOR THEORY OF GRAVITATION

L.SH.GRIGORIAN, P.F.KAZARIAN

A new formula connecting the mass square of a static spherically—symmetric celestial body with a pressure distribution in the star volume is derived within the frame of the bimetric scalar—tensor theory or gravitation.

ЛИТЕРАТУРА

- 1. N.Rosen, The III International School of Cosmology and Gravitation, Erice, 8-20 May, 1974, p.2
- 2. L.P.Grishchuk, A.N.Petrov, A.D.Popova, Comm. Math. Phys., 94, 379, 1984.
- 3. Я.Б.Зельдович, Л.П.Грищук, Успехи физ. наук, 149, 695, 1986.
- 4. *Н.А. Черников*, Вариационный метод Гильберта и тензор Папапетру, Препр. ОИЯИ, P2—87—683, 1987.
- 5. А.А.Логунов, Лекции по теории относительности и гравитации, Наука, М., 1987.
- 6. P. Jordan, Schwerkraft und Weltall, Braunschweig, Friedr, Vieweg and Sohn, 1955.
- 7. P.Jordan, Zs. Phys., 157, 112, 1959.
- 8. C.Brans, R.H. Dicke, Phys. Rev., 124, 925, 1961.
- 9. Г.С. Саакян, Равновесные конфигурации вырожденных газовых масс, Наука, М., 1972.
- 10. С. Вайнберг, Гравитация и космология, Мир, М., 1975.
- 11. Я. Мизнер, К. Торн, Дж. Уилер, Гравитация, Мир, М., т.3, 1977.
- 12. К.Уиля, Теория и эксперимент в гравитационной физике, Энергоатомиздат, М., 1985.
- 13. Л.Ш.Григорян, А.А.Саарян, Астрофизика, 31, 359, 1989.
- 14. L.Sh. Grigorian, A.A. Saharian, Astrophys. Space Scr., 167, 271, 1990.
- 15. А.А.Саарян, Л.Ш.Григорян, Астрофизика, 32, 491, 1990.
- 16. А.А.Саарян, Л.Ш.Григорян, Астрофизика, 33, 107, 1990.
- 17. L.Sh. Grigorian, A.A. Saharian, Astrophys. Space Scr., 180, 39, 1991.
- А.А.Саарян, Л.Ш.Григорян, Труды IV семинара "Травитационная энергия и гравитационные волны", Препр. ОИЯИ, Р2-92-12, Дубна, 1992, с.193.
- 19. L.Sh.Grigorian, A.A.Saharian, Astrophys. Space Scr., 207, 1, 1993.
- 20. Р.М.Авакян, Астрофизика, 33, 429, 1990.
- 21. Л.Д.Ландау, Е.М.Лифшиц, Теория поля, Наука, М., 1973.
- 22. М.Р.Авакян, Л.Ш.Григорян, А.А.Саарян, Астрофизика, 34, 265, 1991.
- 23. М.Шварциильд, Строение и эволюция звезд, ИЛ, М., 1961.
- 24. М.Р.Авакян, Л.Ш.Григорян, А.А.Саарян, Астрофизика, 35, 121, 1991.

АСТРОФИЗИКА

TOM 36

НОЯБРЬ, 1993

ВЫПУСК 4

УДК: 52:531.51

МОДИФИЦИРОВАННЫЙ ЭИХ ФОРМАЛИЗМ В БСТТ. ГРАВИТАЦИОННОЕ ИЗЛУЧЕНИЕ

А.А.СААРЯН

Поступила 27 апреля 1993 Принята к печати 31 мая 1993

В рамках БСТТ развит формализм для описания систем тел с релятивистским внутренным строением и постныотоновскими орбитальными движениями. Рассчитана интенсивность дипольного гравитационного излучения таких систем. Полученные результаты приложены к двойному пульсару PSR 1913 + 16.

В работе [1] было показано, что биметрическая скалярно— тензорная теория гравитации (БСТТ) в постньютоновском приближении неотличима от ОТО. Для дальнейшего сравнения этих теорий необходимо перейти к новым гравитационным явлениям, выходящим за рамки этого приближения. Ранее в качестве такого примера было рассмотрено излучение гравитационных волн движущимися источниками [2]. Здесь для решений с переменным скалярным полем наряду с квадрупольным излучением БСТТ предсказывает также дипольное излучение, определяемое гравитационной энергией связи составляющих систему тел. Данная работа посвящена исследованию движения компактных объектов в БСТТ, когда орбитальные эффекты можно описывать в постьнютоновском приближении.

Для систем такого типа (примером является хорошо известный двойной пульcap PSR 1913+16), в которых имеются тела с релятивистским внутренним строением, в рамках метрических теорий гравитации разработан формализм, являющийся обобщением метода Эйнштейна—Инфельда—Хофмана (ЭИХ) в ОТО, называемой модифицированным ЭИХ формализмом [3]. Здесь сочетаются постънютоновское описание орбитальных эффектов с релятивистским описанием внутренного строения гравитирующих тел. Последние предполагаются хвазистатическими, почти сферически — симметричными и достаточно малыми и по сравнению с расстояниями между ними, чтобы приливными взаимодействиями можно было пренебречь. В ОТО модифицированный ЭИХ формализм совпадает с обычным независимо от внутреннего строения тел, что является следствием сильного принципа эквивалентности [3]. В большинстве альтернативных теорий метрика зависит от добавочных гравитационных полей и гравитационное окружение локальной гравитирующей материи может влиять на метрику, создаваемой материей, через граничные значения этих полей. Тело не будет двигаться по геодезической, его движение будет зависеть от его внутреннего строения. Ниже это будет проидлюстрировано на примере решений уравнений БСТТ с переменным скалярным полем.

В этой теории добавочными полями являются скалярное поле φ и плоская фоновая метрика γ_{ik} . Что касается фоновой метрике, то ее граничные значения не влияют на распределение материи (с точностью до приливных членов). Это обстоятельство является следствием того, что в уравнениях поля она входит только через свои символы Кристоффеля. Иначе обстоит дело со скалярным полем. В решении описывающем строение тела, масса зависит от граничного значения φ_{α} этого поля: $m = m(\varphi_{\alpha})$. В частности, для рассматриваемых нами решений уравнений БСТТ с переменным скалярным полем это приводит к отлично от нуля ускорения тела в свободно падающей системе отсчета [3]. Согласно стандартному модифицированному ЭИХ формализму, заменим постоянную инертную массу m, а-ого тела в материальном действий переменной массой $m_{o}(\varphi)$, где φ — значение скалярного поля в центре тела (изменение φ внутри области согласования пренебрегаем). Аналагичную процедуру в теории Йордана-Бранса-Дикке можно найти в [4]. Функциональная зависимость $m_{\rho}(\varphi)$ обусловлена природой и строением тела. Рассмотрим это на примере ньютоновского тела. Пусть такое тело находится во внешнем поле тяготения, а его размеры таковы, что неоднородностями поля можно пренебречь. Тогда масса тела

$$m(\varphi) = m_o - \frac{1}{16\pi\varphi} \int \rho(\vec{r}) \rho(\vec{r}') \left| \vec{r} - \vec{r}' \right|^{-1} d\vec{r} d\vec{r}', \qquad (1)$$

где φ — локальное значение внешнего скалярного поля в месте нахождения тела. Второе слагаемое в правой части представляет собой гравитационный вклад в массу (гравитационная энергия связи). Для обычных тел его вклад мал.

В соответствии с вышесказанным действие БСТТ в модифицированном ЭИХ формализме запишется в виде (космологическую функцию связи полагаем равной нулю, скорость света с = 1)

$$S = -\frac{1}{2} \int \left[\varphi \Lambda_{g} - \zeta g^{i k} \varphi_{i} \varphi_{k} / \varphi \right] \sqrt{-g d^{i}} x - \sum_{a} \int m_{a}(\varphi) dt_{a}, \qquad (2)$$

rge $\varphi_{l} = \partial \varphi / \partial x^{l}, \quad \zeta = \zeta(\varphi),$

$$\Lambda_{g} = g^{ik} \left(\overline{\Gamma}_{im}^{l} \overline{\Gamma}_{ki}^{m} - \overline{\Gamma}_{ik}^{l} \overline{\Gamma}_{lm}^{m} \right), \quad \overline{\Gamma}_{ik}^{l} = \Gamma_{ik}^{l} - \tilde{\Gamma}_{ik}^{l}, \quad (3)$$

 Γ_{ik}^{l} и Γ_{ik}^{l} символы Кристоффеля метрик s_{ik} и γ_{ik} соответственно, a — нумерует частицы, τ_a — собственное время вдоль мировой линии $x_a^n(\tau)$ частицы а. Полученные отсюда уравнения поля имеют вид

$$\varphi R_{ik} + \varphi_{,n} \overline{\Gamma}_{ik}^{n} - \varphi_{,(i} \overline{\Gamma}_{k}^{n})_{n} - \zeta \varphi_{,i} \varphi_{,k} / \varphi = T_{ik} - g_{ik} T/2 , \qquad (4a)$$

$$2\zeta \varphi_{,n}^{,n} + (\zeta' - \zeta/\varphi) \varphi^{,n} \varphi_{,n} + \varphi \Lambda_{g} + 2\varphi \partial T / \partial \varphi = 0 ,$$

$$\zeta' = d\zeta / d\varphi . \qquad (46)$$

Здесь круглые скобки в индексном выражении означают симметризацию по индексам і и k,

$$T^{ik} = \sum_{a} m_{a} u_{a}^{l} u_{a}^{k} \delta\left(\vec{r} - \vec{r}_{a}\right) / \left(\sqrt{-g} u_{a}^{o}\right)$$
(5)

— тензор энергии—импульса системы частиц, \vec{r}_a и $u_a^l = dx_a^l/dt_a$ — раднус вектор и 4—х скорость *a*—ого тела. Уравнения движения негравитационной материи следующие

$$\frac{du_a^i}{d\tau_a} + \Gamma_{kl}^i \, u_a^k \, u_a^l = \frac{\partial \ln m_a}{\partial \varphi} \left(g^{\,l\,k} - \, u_a^l \, u_a^{k\prime} \right) \varphi_{,k} \,, \tag{6}$$

где значения величин берутся в точке нахождения тела *а*. Наличие в этом уравнении правой части приводит к нарушению сильного принципа эквивалентности. Движение тел не происходит по геодезическим и зависит от их природы (так называемый эффект Нордведта [3]). Выражение в правой части (б) представляет собой ускорение, обусловленное скалярным полем.

Полученные ранее выражения сохраняющихся величин в БСТТ [5] остаются в силе и для действия (2), с той лишь разницей, что ковариантная дивергенция тензора энергии—импульса материи теперь не равна нулю

$$T_{;k}^{lk} = \varphi^{l} \partial T / \partial \varphi .$$
⁽⁷⁾

А.А.СААРЯН

Рассмотрим систему гравитирующих тел, в которой скорости малы: $v_u << 1$. Выберем систему координат, в которой асимптотические значения полевых переменных следующие

$$\gamma_{ik} \xrightarrow{\phi_{ik}} = diad(c_{o}, c_{1}, c_{1}, c_{1}), \varphi \xrightarrow{\phi_{o}} \varphi_{o}$$

$$g_{ik} \xrightarrow{\phi_{ik}} = diad(1, -1, -1, -1).$$
(8)

В области вдали от тел можно написать следующие разложения

$$g_{oo} = 1 + g_{oo}^{(2)} + g_{oo}^{(4)} \dots, g_{\alpha\beta} = g_{\alpha\beta}^{(o)} + g_{\alpha\beta}^{(2)} + \dots$$
$$g_{\alpha\alpha} = g_{\alpha\alpha}^{(3)} + \dots, \varphi = \varphi_{o}^{(1 + \varphi)} + \varphi^{(4)} + \dots).$$
(9)

Здесь и далее греческие индексы пробсгают значения 1—3, а f означает слагаемое порядка v^n в разложении соответствующей величины. Отсюда для функции инертной массы a—ого тела имеем

$$m_{a}(\varphi) = m_{a} \left[1 + s_{a} \overset{(2)}{\varphi} + s_{a} \overset{(4)}{\varphi} + \frac{1}{2} \left(s_{a}^{2} - s_{a} - s_{a'}\right) \overset{(2)}{\varphi}^{2} + \dots \right],$$

$$m_{a} = m_{a} \left(\varphi_{o}\right), \qquad (10)$$

где введены обозначения

$$s_{a} \equiv \left[\frac{\partial \ln m_{a}(\varphi)}{\partial \ln \varphi}\right] \varphi = \varphi_{o}, \quad s_{a}' \equiv -\left[\frac{\partial^{2} \ln m_{a}(\varphi)}{\partial (\ln \varphi)^{2}}\right] \varphi = \varphi_{o}$$
(11)

(для этих параметров употребляют термин "чувствительность" [3 ј). Для ньютоновского тела из (1)

$$s_{a} = \frac{G}{2m_{a}} \int \rho(\vec{r}) \rho(\vec{r}') |\vec{r} - \vec{r}'|^{-1} d\vec{r} d\vec{r}', \ G = 1/8\pi\varphi_{o}, \ ^{(12)}$$

т.е. s_a — относительный вклад гравитационной энергии связи в полную массу тела. По порядку величины s ~ G m / d ~ r_g / d , где d — радиус тела.

Подставим разложения (9) в систему уравнений (4). В ньютоновском ($\sim v^2$) и следующем ($\sim v^3$) приближениях уравнение (4а) совпадает с уравнениями Эйнштейна, и поэтому при подходящем выборе координат

$$\begin{pmatrix} 2 \\ g \\ oo \end{pmatrix} = -2U, \quad \begin{cases} 2 \\ g \\ \alpha\beta \end{pmatrix} = 2U \begin{pmatrix} 0 \\ g \\ \alpha\beta \end{pmatrix}, \quad U = G \sum_{a} m_{a} / |\vec{r} - \vec{r}_{a}|$$

$$\begin{pmatrix} 3 \\ a \end{pmatrix} = -\frac{1}{2} G \begin{pmatrix} 0 \\ g \\ \alpha\beta \end{pmatrix} \sum_{a} \frac{m_{a}}{|\vec{r} - \vec{r}_{a}|} \left[7 \nu_{a}^{\beta} + \frac{\vec{v}_{a} \cdot (\vec{r} - \vec{r}_{a})}{|\vec{r} - \vec{r}_{a}|^{2}} (x^{\beta} - x_{a}^{\beta}) \right].$$

$$(13)$$

Поправки к фоновой метрике имеют вид

$$\begin{array}{c} \begin{pmatrix} 2 \\ \gamma \\ \alpha \beta \end{pmatrix} = \eta_{\alpha \, . \, \beta} + \eta_{\beta \, . \, \alpha}, \quad \begin{array}{c} \begin{pmatrix} 3 \\ \gamma \\ 0 \alpha \end{pmatrix} = \eta_{0 \, . \, \alpha} + \eta_{\alpha \, . \, 0}, \quad \begin{array}{c} \begin{pmatrix} 2 \\ \gamma \\ 0 0 \end{pmatrix} = 0, \\ \eta_{\alpha} - v^{2}, \quad \eta_{o} - v^{3} \end{array}$$

а соответствующие символы Кристоффеля равны

$$\Gamma^{i}_{kl} = \eta^{i}_{,kl}, \quad \eta^{i} = \gamma^{i}_{kl} \eta^{k}. \tag{14}$$

В низшем приближении уравнение скалярного поля (4b) примет вид

$$\Delta \varphi^{(2)} = \frac{1}{\varphi_o \zeta_o} \sum_a m_a s_a \delta(\vec{r} - \vec{r}_a), \quad \zeta_o = \zeta(\varphi_o),$$

изчезающие на бесконечности решение которого

$$(p) = -\frac{2 G}{\zeta_0} \sum_a \frac{m_a s_a}{|\vec{r} - \vec{r}_a|}.$$

$$(15)$$

С другой стороны в варианте теории с $\zeta(\varphi) = \zeta_o = \text{const}$ для статического сферически—симметричного тела на больших расстояниях было получено следующее разложение [6]

$$\varphi = \varphi_o \left(1 - \alpha r_g / \zeta_o r + \ldots \right),$$

где r — расстояние от центра тела. Сравнивая с (15) для чувствительности s получим следующие выражение

$$s = \alpha \equiv 3 \frac{\int P \sqrt{-g} d^3 x}{\int (\rho + 3P) \sqrt{-g} d^3 x}$$
(16)
Его значения для моделей из несжимаемой жидкости вычислено в [6], а для реальной уравнении состояния в [7] (.s ≤ 0.4). Они мало отличаются от соответствующих значений ОТО. В нерелятивистском приближении с учетом теоремы вириала [3]

$$3\int P d^{3}x = \frac{G}{2}\int \rho(\vec{r})\rho(\vec{r'}) |\vec{r} - \vec{r'}|^{-1} d^{3}x d^{3}x'$$

и справедливой в БСТТ формулы Толмена для массы [6,8] мы снова приходим к формуле (12).

В том же приближении уравнение движения а-ого тела (б) примет вид

$$\frac{d\vec{v}_{a}}{dt} = -G \sum_{b \neq a} \frac{m_{b}}{r_{ab}^{3}} \vec{r}_{ab} \left(1 + \frac{2 s_{a} s_{b}}{\zeta_{0}}\right), \quad \vec{r}_{ab} = \vec{r}_{a} - \vec{r}_{b}.$$
(17)

Ускорение тела зависит от его внутренней структуры через параметр з...

Выше мы использовали ЭИХ уравнения для нахождения полей в пространстве между телами (ближная зона). Из этих уравнений можно также получить и гравитационно—радиационные поля в дальней зоне, и скорость потери энергии на гравитационное излучение. Главным образом нас будет интересовать потери, обусловленные дипольным гравитационным излучением, дающим основной вклад.

Рассмотрим излучение гравитационных волн системой, описываемой модифицированным ЭИХ формализмом. Поля в волновой зоне представим в виде

$$g_{ik} = g_{ik}^{(0)} + h_{ik}, \ \varphi = \varphi_o (1 + \varphi_1).$$

Рассуждениями, аналогичными [2] можно показать, что в предположении малых скоростей источника

$$\varphi_1(t, \vec{r}) = -\frac{1}{4\pi r} \sum_m \frac{1}{m!} \left(\frac{\partial}{\partial t}\right)^m \int S(t-r, \vec{r}') (\vec{n} \cdot \vec{r}')^m d\vec{r}',$$

 $\vec{r} = \vec{r}/r$,

где функция источника в достаточном приближении (см. (46))

$$S = \frac{1}{\varphi_0 \zeta_{0,a}} \sum_{a = a} m_a s_a \left[1 + (\vec{n} \cdot \vec{v}_a) \right].$$

Величины h_{ik} не дают вклада в дипольное излучение, поэтому мы их не выписываем. Таким образом,

$$\varphi_1 = -\frac{2G}{\zeta_o r} \sum_a m_a s_a \left[1 + \left(\overrightarrow{n} \cdot \overrightarrow{v}_a \right) \right]. \tag{18}$$

Поток энергии гравитационного излучения через элементарную площадку определяется $r^2 d\Omega$ выражением (см. [2])

$$\frac{dI}{d\Omega} = -n_{\alpha}r^{2}\frac{-g\varphi_{o}}{\sqrt{-\gamma}\varphi}t_{LL}^{\alpha\alpha}, \qquad (19)$$

где t_{LL}^{ik} — тензор энергии — импульса гравитационного поля, являющицся обобщением псевдотензора Ландау — Лифшица ОТО (его выражение см. в [5]) На больших расстояниях в достаточно малых областях волну можно считать плоской, и поэтому

$$f_{LL}^{\alpha} = \varphi_{o} n^{\alpha} \left(\frac{1}{4} h_{,o}^{i\,k} h_{i\,k,o} + \zeta_{o} \varphi_{1,o}^{2} \right), \qquad (20)$$

где для $h_{1,k}$ выбрана калибровка, в которой отличны от нуля только h_{23} и $h_{22} = h_{33}$. В дипольное излучение вклад дает лишь второе слагаемое (20) и интенсивность дипольного излучения равна

$$\left(\frac{dI}{d\Omega}\right)_{\partial un} = \frac{G^3}{2\pi\zeta_o} \left[\sum_{a\neq b} \frac{m_a m_b s_a}{r_{ab}^3} \left(1 + \frac{2s_a s_b}{\zeta_o}\right) \left(\vec{n} \vec{r}_{ab}\right)\right]^2.$$

Отсюда для полных потерь энергии, обусловленных дипольным излучением получим следующее выражение

$$I_{\partial un} = \frac{2G^3}{3\zeta_o} \left[\sum_{a \neq b} \frac{m_a m_h}{r_{ab}^3} s_a \left(1 + \frac{2s_a s_h}{\zeta_o} \right) \vec{r}_{ab} \right]^2.$$
⁽²¹⁾

В случае двойной системы, разлагая движение на координаты центра масс и относительного движения, из (21) получим

$$I_{\partial Mn} = \frac{2 G^3 m_1^2 m_2^2}{3 \zeta_o r^4} \left(1 + \frac{2 s_1 s_2}{\zeta_o} \right)^2 (s_1 - s_2)^2,$$

А.А.СААРЯН

где $r = |\vec{r}_2 - \vec{r}_1'|$. Для усредненной по периоду обращения потери энергии на дипольное излучение [3]

$$\frac{dE}{dt} = -\langle I_{\partial uu} \rangle = \frac{2G^3 m_1^2 m_2^2}{3\zeta_o a^4} \left(1 + \frac{2s_1 s_2}{\zeta_o}\right) (s_1 - s_2)^2 \frac{1 + e^2/2}{(1 - e^2)^{5/2}},$$

где е и а эксцентриситет и большая ось орбиты системы. Скорость изменения периода вследствие дипольного гравитационного излучения имеет вид

$$\left(\frac{\dot{P}}{P}\right)_{\partial HL} = -\frac{2 G^3 M}{\zeta_o} (s_1 - s_2)^2 \left(\frac{2 \pi}{P}\right)^2 \frac{1 + e^2/2}{(1 - e^2)^{5/2}},$$

 $M = m_1 m_2 / (m_1 + m_2)$ — приведенная масса системы. Для параметров двойного пульсара PSR 1913+16 отсюда имеем

$$\left(\frac{\dot{P}}{P}\right)_{\partial MH.} = -\frac{6}{\zeta_o} \left(\frac{s_1 - s_2}{0,1}\right)^2 \frac{M}{m_o} 10^{-7} \cos^{-1}$$

Если предположить, что наблюдаемое значение уменьшения орбитального периода двойного пульсара $P/P \approx 10^{-9}$ год $^{-1}$ обусловлено излучением гра витационных волн (о других возможных причинах изменения периода см. [3]), то получим следующее ограничение на параметры

$$\left(\frac{s_1 - s_2}{0.1}\right)^2 \zeta_o^{-1} \le 10^{-2}.$$

Еще раз подчеркнем, что приведенные выше результаты получены на основе решений уравнений БСТТ с переменным скалярным полем. Наряду с этими решениями теория допускает конфигурации, в которых скалярное поле постоянно [7,9]. В этом случае предсказания БСТТ совпадают с результатами ОТО и поэтому дипольное излучение отсутствует (сравнение наблюдаемых параметров двойного пульсара и предсказаний ОТО см. [3]).

Таким образом, в предположении, что изменение орбитального периода PSR 1913+16 обусловлено потерей энергии на гравитационное излучение, возможны три случая: а) компоньон пульсара является нейтронной звездой с близкой структурой ($s_1 \approx s_2$), б) параметр теории $\zeta_2 \geq 100$, либо в) в двойном

пульсаре реализуется решение с постоянным гравитационным скаляром $\varphi = \varphi_0 = \text{const}$.

В заключении, выражаю признательность Л.Ш.Григоряну за ценные обсуждения и замечания.

Ереванский государственный университет

MODIFICATED EIH FORMALISM IN BSTT. GRAVITATIONAL RADIATION

A.A.SAHARIAN

Within the framework of BSTT a formalism is developed for the description of systems of bodies with relativistic inner structure and post-Newtonian orbital motions. The intensity of dipole gravitational radiation is calculated for such systems. The obtained results are applied to the binary pulsar PSR 1913+16.

ЛИТЕРАТУРА

1. А.А.Саарян, Л.Ш.Григорян, Астрофизика, 32, 491, 1990.

2. А.А.Саарян, Астрофизика, 36, 3, 1993.

3. К.Уиля, Теория и эксперимент в гравитационной физике, Энергоатомиздат, М., 1985.

4. D.M. Eardley, Astrophys. J., 196, 59, 1975.

5. А.А.Саарян, Л.Ш.Григорян, Астрофизика, 33, 107, 1990.

6. L. Sh. Grigorian, A.A. Saharian, Astrophys. and Space Sci., 167, 271, 1990.

7. М.Р.Авакян, Л.Ш.Григорян, А.А.Саарян, Астрофизика, 35, 121, 1991.

8. М.Р.Авакян, Л.Ш.Григорян, А.А.Саарян, Астрофизика, 34, 265, 1991.

9. А.А.Саарян, Астрофизика, 36, 245, 1993.

АСТРОФИЗИКА

TOM 36

НОЯБРЬ, 1993

ВЫПУСК 4

КРАТКИЕ СООБЩЕНИЯ

СПЕКТРАЛЬНОЕ ИССЛЕДОВАНИЕ ПЕКУЛЯРНОЙ ЗВЕЗДЫ V 1331 ЛЕБЕДЯ

Пекулярная звезда V 1331 Лебедя ($L_k H_{\alpha}$ = HRC 302) была отнесена к звездам типа Т Тельца [1]. Среди этих звезд V 1331 Лебедя выделяется большой массой, равной 3–4 M_n [2], наибольшей светимостью L=86L₀ [2], самой высокой.

согласно модели Кюи [3], скоростью потери массы, весьма необычным спектром, содержащим эмиссионные линии типа Р Лебедя [3]. Звезда окружена эллиптической оболочкой радиуса 10–15", а расстояние и межзвездное покраснение у V 1331 Лебедя такие же, как для Т-ассоциации в NGC7000 / IC 5070, что позволяет сделать предположение о ее связи с этим комплексом [2].

С целью спектрального исследования V 1331 Лебеда в Бюраканской обсереатории Национальной Академии наук Республики Армения на телескопе ЗТА-2.6м с дифракционным спектрографом UAGS+УМК 91 В 10 ноября 1987 года были получены четыре спектрограммы с дисперсией 100А/мм, на пленке Kodal IIaO.

Для калибровки пленок через трубочный фотометр впечатывался эталонный источник света. Спектром сравнения служила лампа сложного излучения He, Ar, Ne. Записи спектров с дисперсией 3.16А/мм были получены на микроденситометре PDS 1010А. Измерения длин волн, а также смещений компонентов поглощения водородных линий H_{β} и H_{α} были выполнены на координатометре «Ascorecord».

В спектре V 1331 Лебедя представлены как эмиссионные, так и линии поглощения оболочки звезды. В исследуемой спектральной области *З* 3830-6570A были отождествлены линии, принадлежащие элементам: H, Ti, TiII, CrI, CrII, ScI, ScII, FeI, FeII, HeI, CaI, CaII, [SII] и др. Линии поглощения звезды не наблюдались.

Ранние Бальмеровские линии водорода (рис.1) и К линия ионизированного кальция показывают структуру Р Лебедя.

Рис.1. Профили типа Р Лебедя линий *Н*_В и *Н*_а в спектре V 1331 Лебедя.

Следует отметить, что-в спектре присутствует также характерный для звезд с оболочками дублет NaI 5890-5895А.

Для области спектра 3800–4800А, по обычно применяемому в Бюраканской обсерватории методу [4,5] были получены относительное распределение энергии и абсолютный спектрофотометрический градиент Ф. В качестве звезды сравнения использовалась стандартная звезда спектрального типа A1V Feige 15, для которой был принят \mathcal{P}_o = 1.19 (средний абсолютный спектрофотометрический градиент для звезд A1 – A2 [6]). Полученное для V 1331 Лебедя значение Φ = 1.85 соответствует спектральному классу F_2 (цветовая температура 8000 K).

При изучении спектрограмм мы попытались определить скорость расширения оболочки. С этой целью на координатометре «Ascorecord» измерялись смещения компонентов поглощения H_{β} и H_{α} относительно компонентов излучения. Среднее значение скорости расширения оболочки, соответствующее измеренным смещениям, оказалась равной 500 ± 30 км/с. Это значение находится в согласии с $V = -434 \pm 15$ км/с, полученной для наиболее заметных Р-абсорбций Чаварриа [2].

В настоящее время астрономы располагают многочисленными исследованиями спектров V 1331 Лебедя: в голубой области Кюн [3], в красной — Хербига [7], в инфракрасной — Андриллат и Свингса [8], эмиссионного спектра — Пенстона и Киви [9].

Во всех этих работах отмечалась неправильная переменность эмиссионных линий и смещений компонентов поглощения в коротковолновую часть спектра.

Согласно нашим наблюдениям, в спектре V 1331 Лебедя, как и в 1976 году [10], произошло ослабление эмиссии и усиление компонентов поглощения, исчезла эмиссия в H_{Λ} и H_{γ} .

В подтверждение в исследовании Чаварриа [2], продолжалось со скоростью 500км/с расширение оболочки и потеря массы звезды.

Значительная нестационарность V 1331 Лебедя, а также возможная ее принадлежность к Т-ассоциации в NGC7000 / IC 5070 [2], свидетельствуют о молодости этой звезды.

Выражаю благодарность Г.Гаспаряну, А.Мелконяну и Г.Оганян за предоставление в мое распоряжение спектров V 1331 Лебедя.

19 июля 1993. Бюраканская астрофизическая обсерватория

Н.Л.ИВАНОВА

A spectral investigation of the peculiar star V 1331 Cygni. The results of an investigation of spectrograms of the T Tauri type star. V 1331 Cyg, obtained with 2.6-m telescope of the Byurakan observatory are presented.

ЛИТЕРАТУРА

1. G.H.Herbig, Symp. on Stellar Evolution (La Plata), p.23, 1960.

5. Н.Л.Иванова, Изв. АН Арм.ССР, серия Физмат наук, 6, 1953.

6. D.Barbier, D.Chalonge, Ann. d'Astrophys. 3, №2, 1940.

^{2.} C. Chavarria, Astron. Astrophys. 101, 105, 1981.

^{3.} L. V. Kuhi, Astrophys. J. 140, 1409, 1964.

^{4.} Л.В.Мирзоян, Сообщ. Бюракан. обсерв. 7, 1951.

7. G.H.Herbig, Astrophys. J., 214, 747, 1977.

- 8. V. Andrillat, J.P. Swings, Proc. IAU Coll. 42, 100, 1977.
 - 9. M.V.Penston, P.M.Keavey, Mon. Not. Roy. Astron. Soc., 180, 407, 1977.

10. G. Welin, Inf. Bull. Variable stars, No314, 1977.

АСТРОФИЗИКА

TOM 36

НОЯБРЬ, 1993

выпуск 4

BOOK REVIEWS

ANDRZEJ SIEMIANOWSKI

"THE PRINCIPLES OF CONVENTIONALISTIC PHILOSOPHY OF PHYSICS AHD ASTRONOMY". Polish Scientific Publishers, Warsaw 1989.

The book is devoted to revealing the methodological character of physics and various methodological approaches to physics. The following monographies are the basic starting material for this study: La science et l'hypotheses (1925), La valeur de la Science (1935), Science et methode (1908) of Henri Poincare, and La systeme du monde, Histoire des doctrines cosmologiques de Platon a Copernik, vols. VII and VIII (1958), La theorie physique, son object, sa structure (1914), and Introduction a la mechanique chimique (1883) of Pierre Duhem. The new synthesis of Siemianowski includes 132 bibliographic positions. Although the works of Poincare and Duhem form the basic "date" of the book, nevertheless one can find the concepts of others, for example of Eddington, Berkeley, Mach, Klein, De Broglie et al.

The mentioned above sources of Duhem and Poincare concern meta-theoretical contribution in the field of mathematic and natural history. They are basic for our general view ligitimated by science. Meta-theoretical studium of Siemianowski is a continuation of Lvov-Warsaw School and Polish methodology (Cf Philosophical Lvov-Warsaw School, J.Wolenski, D.Reidel 1988). Poincare and Duhem studied the important fragments of modern science — mathematics, physics and astronomy, hence the study of Siemianowski represents itself the metasearche — theory of theories (of Poincare and Duhem plus the related topics). His study has a meta-methodological character since the study presents itself as two-folded: it concerns the conventionalistic character of physics and varieties of conventionalistic approaches to physics.

Different *empirical* questions are discussed in Ch.1. Ch.2. — affecting all or nearly all topics of the book — is devoted to methodological questions in relation to *practice* of searches. Ch.3. concerns the general questions of *methodology vs history* of science. The second part of the book contains seven chapters. Ch.1. describes the main trends

BOOK REVIEWS

in conventionalistic philosophy of physics and is fundamental for all or most parts of the monography. Ch.2. is devoted to the historical questions, e.g. of origin and evolution, of conventionalism. Ch.3. presents metatheory of facts in physics. In Chs.4. and 5. one can find original conclusions on conventionalism — conventions — falsificationism in physics and astronomy. Ch.6. concerns the subject of holism, while Ch.7. — of instrumentalism.

In Siemianowski's book one can find a whole catalogue of concrete problems and ideas discussed in science and related to phylosophy of physics and astronomy such as, e.g., Poincare's approach to the principles of mechanics resembling Heisenberg's ideas of closed groups of assertions working together. Poincare's discussion of the epistemological status of the principles of dynamics, inquiry about the assessment of Young and Fresnel theories of light in the context of Young and Fresnel experiments (the question of experimentum crucis), Mill's view on inductivism in physics and Poincare's view — point on the limitations of the inductivism in physics and astronomy are also regarded by Siemianowski.

In this monography there are such concrete ideas as the opposition "local vs global" categories in physics and astronomy, the empirical sense of mechanics and dynamics which are not treated as systems of synthetic (and a priori) statements, the affair of the principle of correspondence. With respect to the last problem let us mention only the problem of the original Kepler's laws (Kepler's physics) in the light of Newtonian theoretical system (Newtonian system of Kepler's physics). The author gives also a critical account of very methodological questions: great Duhem's system of physics, Duhem's claims on the inertial law, verification and empirical status of inertia, Duhem's "de la methode positive" vs Poincare's "les hypotheses qu'en apparence", "les definitiones deguisees", Popper's *basic* sentences in physics, Poincare's "razor" principle, De Broglie's view on Duhem's system of physics, affair of Ampere. Foucault and Newton orderliness, debate on wave and corpuscular theories.

List of the interesting problems can be extended. Let us mention also the problem of relation between part and wholeness in physics and cosmology, Schlick's criticism of non-empirical theorems in physics, views on relation between bodies and space, status of axioms of Euclidean and non-Euclidean geometry, Berkéley's judgements and many others.

Siemianowski discusses the methodological questions concerning the debate on the nature of gravitational law, on the role of generalisation and methods of reasoning and discovering the universal laws from individual facts (the relation between the *original* Kepler's system and *Newtonian-like* system of Kepler is only an example). The discrepancies between declarations of scientists and real procedures involved by them, methodological meaninglessness of popular stories (sometimes imaginations) about discovering in physical science, which are usually presented in textbooks and

scientific articles (not only related to gravitation — vide the story about Newtonian apple) and popular opinion are under critical discussion presented by the author. His system (new synthesis) condenses the physical material, so the book may be read from many view-points.

The important part of Siemianowski's study is devoted to the problem of measurement in physics: time and space measurement, assoluteness of space-time, Wiener vs Neumann views, measurements in astronomy (of methodological aspects of the astronomical system presented in Almagest of Ptolemy) and the role of astronomical measurements in appearing of *modo astronomico science* (referring to Mansion's "Sur les principles fondamentaux de la Geometrie, de la Mecanique et de l'Astronomie").

The methodological content of this book ought to be taken by the all authors working on monographies devoted to Einstein's ontology and to the analysis of special relativity (cf "The operationism postulate in the classical kinematics", in: Isaac Newton's Philosophiae Naturalis Principia Mathematica, N.Kaminski (ed.), World Scientific, 1968, 193–204), assessment of Newtonian and Einsteinian theories (cf "The correspondence between the Einsteinian and Newtonian theories", in: Isaac Newton's Philosophiae..., ibid., 61-68; and the methodological content of this book will be recommended for the authors of books devoted to redshift interpretation controversy, cosmological anomalies, part and wholeness relation, epistemological aspects of measurements in astronomy (particulary extragalactic astronomy).

Poincare's system is important for our theory of knowlege. The whole system of Poincare appeared as the consequence of new problem-situation revealed by non-Euclidean geometry. Poincare's system concerns only physics, astronomy and mathematics. Poincare disagreed with Mill's understanding of geometry. According to Poincare the axioms of geometry are a priori and not necessary. At the same system axioms of mathematical theories are analitic, thus we have deal with unusual theoretical system. Of course, mathematician Klein influenced Poincare's system, Poincare's understanding — at the metalevel — of geometry and physics. And the first methodological works of Poincare were devoted just to geometry (Poincare's metageometrical search), while the first metathcoretical paper in physics appeared later (1901). Poincare's results are important part of metatheoretical reflection appeared after the origin of non-Euclidean geometry and contemporary cosmology involving non-Euclidean geometry. Poincare developed his distinguishing between geometry and mathematics. We rejected the view that mathematics has a status of synthetic a posteriori (unnecessary) sentences. Siemianowski's book clearly indicates that the debate on the status of geometry, arithmetics and mathematics is not closed in the light of modern science. Poincare did not treat mathematics as a giant tautology, rejected many ideas of Hilbert's School, he disagreed with Cantor's actual infinity, improved many imperfections of systems of synthetic a priori sentences.

The study of Siemianowski correctly indicates that the philosophical sense of metasystems of Poincare and Duhem was not properly recognized as far. For example he points out that they created two (i.e. not one) separate systems; in particularly Duhem's system is not - according to Siemianowski - the extremal case of Poincare's syntheses. In the book, Poincare's metatheoretical system is clearly distinguished from the others given by Duhem, Ajdukiewicz, Fleck, Dambska and Eddington. The last methodological system of Eddington distinctly preferred the so called transcendental laws, i.e. laws describing the behaviour of microparticles. Sit Eddington treated classical mechanics as a system of statements that are obviously true (untranscendental). In this sense Eddington should agree with philosophy of quantum mechanics of von Weizsaecker and - to some degree - of Wheeler (cf "The Weizsaecker and Everett interpretations of quantum mechanics" in: Problems in Quantum Mechanics-Gdansk'87, L.Kostro et al. (eds.), World Scientific, 1988,880-906; "The antiNewtonian concept of the observer", in: Isaac Newton's Philosophiae..., ibid., 178-192). On the other side Eddington's idea of transcendental laws (presented in Eddington's "The Nature of the Physical World") and Poincare's theory of things (objects) are related to Mach's system.

Many affairs are open. For instance anomalies and ad-hocness problems are connected with appraisal in physical science. Anomalies appearing in science require new hypotheses which may be ad-hoc: empirically, heuristically and theoretically. Anomalies, such as redshift peculiarities, imply changes in the belt of auxiliary hypotheses, sometimes in the hard core of the research programme. Anomalies charge programmes (e.g. other programme). There are no doubts that the book can be enlarged with respect to the sections devoted to anomalies and ad-hocness in physics and astronomy. Next, the problem of verification of sequence of theories $T_1 \subset T_2 \subset ...$ is solved insufficiently because it depends on the search on the principle of correspondence. The popular, conjunctural understanding of the correspondence principle violates the intellectual high-principled atmosphere (cf Newton's Scientific and Philosophical Legacy, P.B.Scheurer and G.Debrock (eds.), Kluwer, 1988, 193-199). The problem of verification of theories and sequences of theories is fundamental in Duhem's "La theorie physique". Duhem was interested only in physics and astronomy (cf De Broglie's "Pierre Duhem, sa vie et son oeuvre", in: Nouvelles perspectives en microphysique, De Broglie (ed.), Paris, 1976) and did not created meta-theory of science as a whole.

The condensed Siemianowski's search should not be ignored in the future studies on the status of laws in theoretical physics — gravitation, cosmology, extragalactic astronomy and other branches of space science. Let us remind that Poincare anticipated a lot of contemporary problem situations in astronomy, e.g. the situation concerning missing mass (missing light, dark matter), redshift anomalies, etc. He anticipated other problem situations in measurement theory, foundation of relativity, cosmography (cf "La valeur de la science", p.238).

It is our personal impression that the problems, concepts and views discussed by Siemianowski are similar to problems considered by W.I.Scott in "An Intellectual Biography of Michael Polanyi" which is in final stages of interdisciplinary research.

Siemianowski has created a monography of great influence. He takes particular case to quote and clarify the evidence for just about every assertion and according to the best exposition style. The author who conceived a new meta-theoretical reflection in physics has a lot to say that is moreover completely new. No comparable syntheses can be find among the most advanced monographies. This book will find an enthusiastic new audiences and will inevitably raise debate on puzzles, history, problem solving in physics and astronomy. There is no doubt that physics and astronomy cannot neglect the importance of understanding their own methods and aims, unity of physical sciences, interrelatedness of physics, astronomy and metascience. The book translated in English will be available to physicists, astronomers, students and philosophers and methodologists of science.

> Miroslaw Zabierowski, Institute of Physics, Wroclaw Technical University

ВИКТОР АМАЗАСПОВИЧ АМБАРЦУМЯН

(К 85-летию со дня рождения)

18 сентября 1993г. исполнилось 85 лет со дня рождения Виктора Амбарцумяна — крупнейшего астрофизика современности.

Будучи студентом Ленинградского (Санкт-Петербургского) университета В.А.Амбарцумян печатает свои первые научные статьи по астрофизике. После окончания университета и аспирантуры Пулковской обсерватории он в университете создает школу теоретиков-астрофизиков и кафедру теоретической астрофизики, первую в бывшем СССР.

В 1943г. В.А.Амбарцумян — член-корреспондент АН СССР становится одним из членов-учредителей Академии наук Армении и навсегда связывает свою судьбу с ней как вице-президент (1943), президент (1947), а в настоящее время — почетный президент (1993), ставшей под его руководством крупным научным центром. В 1946г. им была основана Бюраканская астрофизическая обсерватория АН Армении, которая, благодаря работам В.А.Амбарцумяна и его учеников, впоследствии становится одной из «столиц» мировой астрофизики.

Работы В.А.Амбарцумяна отличаются совершенством и почти всегда открывали новые направления в астрофизике.

Классическими являются работы В.А.Амбарцумяна по физике газовых туманностей и переносу излучения, которые сыграли важнейшую роль в этой области, в частности, в теории многократного рассеяния излучения. Сформулированные в этих работах впервые «принципы инвариантности» нашли широкое применение также в математической физике, радиофизике, геофизике и ядерной физике.

В изучении межзвездной поглощающей среды в Галактике решающее значение имели выдвинутое В.А.Амбарцумяном представление о клочковатой ее структуре и разработанная им на этой основе теория флюктуаций.

Замечательные результаты были достигнуты ученым в звездной динамике, заложившие основы новой, статистической механики звездных систем. Применение этой статистики к двойным звездам и звездным скоплениям привели к фундаментальным выводам о возрасте Галактики, о самом эффективном механизме распада звездных скоплений и т.д.

Исследования В.А.Амбарцумяна по проблеме эволюции звезд, начатые еще в 1937г., содержащие указания о первых признаках изменений в состояниях звезд и звездных систем привели в 1947г. к открытию звездных систем нового типа звездных ассоциаций. Существование в Галактике звездных ассоциаций, динамически неустойчивых и распадающихся, было первое наблюдательное свидетельство в пользу продолжающегося в настоящее время звездообразования в ней. Так как формирование звезд путем конденсации диффузной материи не может объяснить распад звездных ассоциаций и, имея ввиду генетическую связь между звездами и диффузной материей, ученый выдвинул гипотезу о совместном возникновении звезд и диффузных туманностей из плотных тел неизвестной природы — из протозвезд. В связи с новой гипотезой протозвезд им, совместно с Г.С.Саакяном, была разработана теория сверхплотной материи, обладающей плотностью, порядка ядерной.

Фундаментальные результаты были получены В.А.Амбарцумяном в изучении ранних стадий эволюции звезд и звездных систем. Было показано, что в ранних стадиях эволюции проявляется нестационарность состояний, которая является закономерной фазой космогонических процессов. Среди этих результатов следует особо отметить выводы о существовании в Галактике звездных систем положительной полной энергии, о нетепловой природе излучения звезд типа Т Тельца и вспыхивающих, установление эволюционного статуса вспыхивающих звезд.

Новые принципиальные результаты были достигнуты В.А.Амбарцумяном в исследованиях по эволюции галактик. Впервые было показано, что в грандиозных явлениях нестационарности, наблюдаемых в галактиках, решающую роль играют их центральные сгущения — ядра галактик, которые, кроме звезд и диффузной материи должны содержать плотные массивные тела неизвестной пока природы. Активность галактических ядер и определяет их эволюцию. Идея об активности ядер галактик вначале была принята скептически и только через много лет, под давлением наблюдений (открытие квазаров, радиовспышки галактик, последствия взрывов в ядрах, выбросы из ядер и т.д.), получила признание.

Открытие звездных ассоциаций, активности ядер в свете полученных на основе фундаментальных результатов, являются одними из крупнейших открытий астрофизики второй половины XX века. Вполне естественно, поэтому, что исследования В.А.Амбарцумяна об активности ядер галактик и процессе звездообразования в расширяющихся звездных ассоциациях, по мнению выдающегося голландского астрофизика Яна Оорта, являются «наиболее важным вкладом» ученых бывшего СССР в астрономию.

В.А.Амбарцумяну принадлежит большая заслуга в создании многочисленной группы учеников, работавших во многих университетах и обсерваториях и оставивших заметный след в области астрофизики.

В.А.Амбарцумян является крупным организатором науки, значительно способствовавшим международному научному сотрудничеству. В 1948–1955гг. он был вице-президентом, а в 1961–1964гг. — президентом Международного астрономического союза, в 1968 и 1970гг. он дважды избирался президентом Международного совета научных союзов.

Многогранная деятельность В.А.Амбарцумяна получила высокую оценку. Он удостоен правительственных наград ряда стран, награжден золотыми медалями им. Ломоносова АН СССР, АН Словакии, им. Брюс Британского Королевского астрономического общества, Тихоокеанского астрономического общества (США), им. Жансена Французского астрономического общества, им. Гельмгольца АН ГДР и другими.

Он избирался почетным и иностранным членом АН более 20 стран (Англии, Голландии, Дании, Греции, Италии, Индии, США, Франции, Чехословакии и др.), почетным членом научных обществ многих стран, почетным доктором университетов Канберры (Австралия), Ла Плата (Аргентина), Льежа (Бельгия), Варшавы и Торуна (Польша), Пражского (Чехословакия) и Сорбонны (Франция).

PERSONALIA

Поздравляя основателя и главного редактора (до 1987г.) нашего журнала «Астрофизика» с 85-летним юбилеем, желаем юбиляру долгих лет жизни, крепкого здоровья и плодотворной работы на благо родной науки.

> Редакционная коллегия Редакционный совст

ГУРГЕН СЕРОБОВИЧ СААКЯН

(К 80-летию со дня рождения)

Исполнилось 80 лет со дня рождения выдающегося физика-теоретика, академика Национальной Академии наук Армении, заслуженного деятеля науки, активного члена редакционной коллегии журнала "Астрофизика" профессора Гургена Серобовича Саакяна. Его научная биография — прекрасное свидетельство тому, как, несмотря на отягощающее бремя страстей человеческих, можно целенаправленно подвигаться по трудному пути к познанию неизвестного.

В 1939 году после окончания физико-математического факультета Ереванского университета Г.С.Саакян в условиях жесточайшего конкурса (39 претендентов на 7 мест), заслужив похвальные отзывы членов экзаменационной комиссии (С.И.Вавилов, И.Е.Тамм, Г.С.Ландсберг, Н.Д.Папалекси, В.И.Векслер и др.) был зачислен в аспирантуру ФИАН им. П.Н.Лебедева в Москве. В связи с призывом в армию в том же году ему пришлось прервать учебу, а до истечения срока службы началась Великая Отечественная война, и прошагал ее лейтенант Саакян в рядах действующей армии от Ленинграда через Белоруссию, Польшу и Венгрию до Австрии. Демобилизовавшись в январе 1946г., благодаря энергичному содействию И.Е.Тамма, вернулся аспирантом в ФИАН. Незаурядные способности и унаследованные от родителей — потомственных земледельцев — упорство и трудолюбие позволили восстановить потерянное и уже в январе 1950г года защитить кандидатскую диссертацию «Учет размеров ядра в тормозном излучении и рождении пар», в которой впервые был предложен эффективный метод изучения структуры нуклонов с использованием особенностей упругого рассеяния электронов высоких энергий на большие углы. Оригинальные результаты, полученные Г.С.Саакяном по формфактору нуклонов, были чрезвычайно актуальны в свое время.

Вернувшись на Родину, Г.С.Саакян с энтузиазмом подвижника-миссионера занялся преподавательской деятельностью в Ереванском университете. В 1951г. он организовал и возглавил кафедру теоретической физики, оставаясь ее заведующим до 1986 года. Колоссальная учебная нагрузка 50-ых годов не помешала ему совместно с А.И.Алиханяном и Н.М.Кочаряном в качестве лабораторного теоретика заняться изучением энергетических спектров и взаимодействий частиц космического излучения. Итогом этой работы явилась его первая монография, которая вскоре после выхода в свет стала библиографической редкостью.

Несмотря на несколько запоздалое увлечение новым развитием идей квантовой электродинамики, благодаря богатой интуиции, Г.С.Саакяну удалось обнаружить интересный эффект однофотонной аннигиляции и рождения электрон-позитронных пар в достаточно плотных средах. Эта работа ознаменовала начало нового, самого значительного этапа его научной деятельности исследованиям по физике нейтронных звезд, теории гравитации и свойств вещества при больших плотностях и температурах. Результаты, полученные Г.С.Саакяном совместно с академиком В.А.Амбарцумяном, а также со своими учениками, можно смело назвать фундаментальными для бурно развивающейся в те годы релятивистской астрофизики. Оценивая этот период научной деятельности Г.С.Саакяна, Я.А.Смородинский писал: «Работы Саакяна представляют исключительное явление в теоретической астрофизике. Широкий круг вопросов, необычная, смелая постановка проблемы, современный стиль качественного решения задач и, что самое главное, большое число идей для новых исследований».

В 1972г. издательство «Наука» выпустило монографию «Равновесные конфигурации вырожденных газовых масс». Интерес к этой книге Г.С.Саакяна был настолько велик, что за короткий срок (около полутора лет) она была переведена и увидела свет в США. Не опасаясь преувеличений, можно смело утверждать, что трудно найти специалистов по физике нейтронных звезд и смежных обла-

PERSONALIA

стей, не испытавших в той или иной мере влияния результатов и идей этой, не утратившей своего значения и сегодня, замечательной книги Г.С. Саакяна.

В период до 1985г. Г.С.Саакян, вместе с группой учеников со свойственной ему скрупулезностью углублял исследования предыдущих лет, что позволило псреключиться на систематическое изучение внешних проявлений нейтронных звезд (радиопульсары, рентгеновские источники, барстеры). Получены оригинальные результаты, и сегодня продолжаются интенсивные изыскания.

Несмотря на обилие первоклассных научных результатов, сам Саакян своей главной заслугой считает учебно-организаторскую работу. Трудно переоценить его роль как в становлении физического факультета ЕГУ, так и кафедры теоретической физики, укомплектованной благодаря его стараниям высококлассными специалистами. Он автор двух учебников «Квантовая механика» и «Пространство, время и гравитация» (оба на армянском и русском языках), которые используются студентами как основные пособия по соответствующим курсам. Многочисленные ученики Саакяна являются признанными специалистами по физике нейтронных звезд и классической теории гравитации. В отличие от многих, он не стремился видеть в учениках только лишь свое повторение, но всячески пытался привить им вкус к тем направлениям, в которых лучше всего проявилась бы их индивидуальность. Школа, созданная Саакяном — это содружество единомышленников, но не совокупность личностей, сообща копирующих почерк и пристрастия своего научного кумира.

В настоящее время готовится к изданию на немецком языке новая монография Г.А.Саакяна «Физика нейтронных звезд». В свои 80 лет он полон новых замыслов и ведет активную творческую деятельность, которой могут позавидовать молодые.

Пожелаем юбиляру крепкого здоровья и новых творческих достижений.

Редакционная коллегия Редакционный совет

АЛФАВИТНЫЙ УКАЗАТЕЛЬ

журнала "Астрофизика", том 36, 1993 год

Абрамян Г.В., Микаелян А.М. Первый Бюраканский спектральный обзор	
неба. Голубые звездные объекты. V. Полоса $+33^{\circ} \le \delta \le +37^{\circ}$	109
Абрамян Г.В., Микаелян А.М. Первый Бюраканский спектральный обзор	
неба. Голубые звездные объекты. VI. Полоса $+33^{\circ} \le \delta \le +37^{\circ}$	517
Абрамян Г.В., Гигоян К.С. Первый Бюраканский спектральный обзор	
неба. Звезды поздних спектральных классов. IV. Полоса	
$+61^{\circ} \leq \delta \leq +65^{\circ}$	431
Абрамян Г.В., Гигоян К.С. Спектрофотометрическое исследование спа-	
бых углеродных звезд на высоких галактических широтах II.	
Спектрофотометрические характеристики 21 углеродной звезлы	181
Амбарян В.В. (см. Мирзоян Л.В.)	
Амбарян В.В. (см. Варданян Р.А.)	195
Андреасян Р.Р., Аршакян Т.Г. Радиосветимость пульсаров и распределе-	
ане электронной концентрации в Галактике	
Андреасян Р.Р. (см. Аршакян Т.Г.)	
Анисимова Г.В. Кинематика звезд в фигурах Ковальского-Каптейна. III	251
Арутюнян Г.А. Перенос излучения при некогерентном рассеянии в пол-	
убесконечной неоднородной атмосфере, содержащей источники	
энергии	563
Арутюнян Г.Г., Папоян В.В. Космологические решения типа Фридмана	
в тензорно-скалярной теории тяготения	583
Аршакян Т.Г., Андреасян Р.Р. Дискретность скоростей разлета компоне-	-
нтов протяженных двойных радиоисточников	385
Аршакян Т.Г. (см. Андреасян Р.Р.)	375
Байер Ф.Б. (см. Шахбазян Р.К.)	333
Варданян Р.А., Амбарян В.В., Погосян А.В. Межзвездные поглощения в	
галактической плоскости	195
Варданян Р.А., Погосян А.В. Зависимость период-истинный цвет для	
классических цефеид	417
Варданян Р.А. Околозвездные оболочки и спектральная классификация	
звезд	535
Волчкова Н.А. Поиск периодичности изменений блеска изолированной	
Ас-звезды Хербига WW Лисички	61
Волчкова Н.А. (см. Миникулов Н.Х.)	55

АЛФАВИТНЫЙ УКАЗАТЕЛЬ

Гаспарян К.Г. (см. Парсамян Э.С.)	23
Гигоян К.С. (см. Абрамян Г.В.)	181
Гигоян К.С. (см. Абрамян Г.В.)	431
Григорян О.А, Саркисян А.В., Чубарян Э.В. Интегральные параметры	
вращающихся релятивистских политроп в биметрической теории	
тяготения	117
Григорян Л.Ш., Казарян П.Ф. Новая формула для массы звезды в би-	
метрической скалярно-тензорной теории гравитиции	597
Гюльбудагян А.Л. Связь нейтрального водорода с радиальными система	
ми темных глобул	527
Даниелян Э.Х. К теории изотропного рассеяния излучения в плоском	
слое. Метод раздельных линейных интегральных уравнений	225
Джавахишвили Г.Ш., Павлов М.В., Салуквадзе Г.Н. Лучевые скорости	
компонентов кратных звездых систем типа Трапеции. І	273
Епремян Р.А. (см. Товмасян Г.М.)	35
Епремян Р.А. (см. Товмасян Г.М.)	165
Ерицян М.А., Микаелян А.М. Поляриметрические наблюдения голу-	
бых звездных объектов FBS. II	203
Заблеровски М. Рецензин	617
Ибрагимов М.А. (см. Парсамян Э.С.)	23
Иванова Н.Л. Нестационарные процессы в атмосфере RW Возничего	409
Иванова Н.Л. Спектральное исследование пекулярной звезды V 1331	
Лебедя	613
Исраелян Г.Л., Никогосян А.Г. Спектральные изменения у Р СҮС	189
Казарян М.А. Спектрофотометрическое исследование одной галактики	
типа Сейферта	217
Казарян М.А. Спектрофотометрическое исследование двух галактик	
типа Сейферта	353
Казарян М.А. Спектрофотометрическое исследование двух галактик с	
УФ-избытком	543
Казарян М.А., Казарян Э.С. Спектрофотометрическое и морфологиче-	
ское исследование галактик с УФ-избытком. IX	211
Казарян М.А., Тамазян В.С. Спектральное исследование трех галактик	
с УФ-избытком	363
Казарян П.Ф. (см. Григорян Л.Ш.)	597
Казарян Э.С. (см. Казарян М.А.)	211
Каллоглян А.Т., Никогосян Е.Г. UBV — фотометрия галактик в группах	
и их окрестностях. Группа галактик Геллер-Хукра НЗ	315
Кандалян Р.А., Харюпаа П. Обзор СВ и ННL объектов в линиях	

молекул НСО ⁺ и ¹³ СО	15
Кондратьева Л.Н. Быстрые эволюционные изменения в спектре объек	
та Th 4-4	67
Липовецкий С.С., Мойсюк А.М., Секержицкий В.С. О влиянии сильного	,
магнитного поля на энергетический выход "n" – реакций	593
Магакян Т.Ю., Мовсесян Т.А. Детальное спектральное исследование объ-	
екта Хербига-Аро- RN 043N	5
Масевич А.Г. (см. Эргма Э.)	129
Микаелян А.М. (см. Абрамян Г.В.)	109
Микаелян А.М. (см. Ерицян М.А.)	203
Микаелян А.М. (см. Абрамян Г.В.)	517
Миникулов Н.Х., Рахимов В.Ю., Волчкова Н.А., Пихун А.И. Исследовани	e
кривых блеска молодых неправильных переменных I. SV. СЕР и СQ	
TAU	55
Мирзоян Л.В. Вспыхивающие звезды и эволюция красных карликовых	
звезд	277
Мирзоян Л.В. Амбарян В.В., Мирзоян А.Л. Вспышечная активность	
звезд как критерий принадлежности скоплению	395
Мирзоян А.Л. (см. Мирзоян Л.В.)	395
Мовсесян Т.А. (см. Магакян Т.Ю.)	5
Мойсюк А.М. (см. Липовецкий С.С.)	593
Никогосян А.Г. (см. Исраелян Г.Л.)	189
Никогосян Е.Г. (см. Каллоглян А.Т.)	315
Нотни П. (см. Шахбазян Р.К.)	333
Оганесян Р.Х. (см. Товмасян Г.М.)	35
Оганесян Р.Х. (см. Товмасян Г.М.)	165
Оганян Г.Б. (см. Парсамян Э.С.)	23
Оганян Г.Б. (см. Парсамян Э.С.)	501
Павлов М.В. (см. Джавахшивили Г.Ш.)	273
Папоян В.В., Первушин В.Н. Квантование однородной космологической	
модели в теории Йордана-Бранса-Дикке и проблема "наблюдае-	
мого времени"	575
Папоян В.В. (см. Арутюнян Г.Г.)	583
Парсамян Э.С., Ибрагимов М.А., Оганян Г.Б., Гаспарян К.Г. Фотомет-	
рия Субфуора V 1118 ORI (1988–1990)	23
Парсамян Э.С., Оганян Г.Б. Спектральная классификация вспыхиваю-	
щих звезд скопления Плеяды	501
Первушин В.Н. (см. Папоян В.В.)	575
Пихун А.И. (см. Миникулов Н.Х.)	55

633

Погосян А.В. (см. Варданян Р.А.)	195
Погосян А.В. (см. Варданян Р.А.)	417
Рахимов В.Ю. (см. Миникулов Н.Х.)	55
Решетников В.П., Сотникова Н.Я. Взаимодействующие галактики:	
наблюдательные и теоретические аспекты	435
Саакян Г.С. К теории радиоизлучения пульсаров	87
Саакян Г.С. К теории радиоизлучения пульсаров	549
Саарян А.А. Сферические и симметричные решения ОТО являются	
частными решениями БСТТ	245
Саарян А.А. Излучение гравитационных волн в БСТТ	423
Саарян А.А. Модифицированный ЭИХ формализм в БСТТ. Гравитаци-	
онное излучение	603
Салуквадзе Г.Н. (см. Джавахишвили Г.Ш.)	273
Саркисян А.В. (см. Григорян А.О.)	117
Секержицкий В.С. (см. Липовецкий С.С.)	593
Сотникова Н.Я. (см. Решетников В.П.)	435
Тамазян В.С. (см. Казарян М.А.)	363
Тамбовцева Л.В. Терминальные скорости и турбулентность в звездном	
ветре ОВ-звезд	73
Товмасян Г.М., Оганесян Р.Х., Епремян Р.А, Югенен Д. Комплекс ОВ-	
звезд в туманности Сагіпа	35
Товмасян Г.М., Оганесян Р.Х., Епремян Р.А, Югенен Д. Распределе-	
ние горячих звезд и пылевой материи в Киле	165
Харюпаа П. (см. Кандалян Р.А.)	15
Чубарян Э.В. (см. Григорян О.А.)	117
Шахбазян Р.К., Нотни П., Байер Ф.Б. Фотографическая фотометрия	
двух небольших групп галактик	333
Югенен Д. (см. Товмасян Г.М.)	35
Югенен Д. (см. Товмасян Г.М.)	165
Эргма Э., Масевич А.Г. Маломассивные рентгеновские двойные звезды	
и миллисекундные пульсары	129

INDEX OF AUTHORS

Abrahamian H.V., Mickaelian A.M. The first Byurakan spectral sky survey.	
Blue stellar objects. V. Zone $+33^{\circ} \le \delta \le +37^{\circ}$	109
Abrahamian H.V., Mickaelian A.M. The first Byurakan spectral sky survey.	
Blue stellar objects. VI. Zone $+33^{\circ} \le \delta \le +37^{\circ}$	517
Abrahamian H.V., Gigoyan K.S. The first Byurakan spectral sky survey.	
Late-type stars. IV. Zone + $61^{\circ} \le \delta \le + 65^{\circ}$	431
Abrahamian H.V., Gigoyan K.S. Spectrophotometric investigation of faint	
carbon stars at high galactic latitudes. II. Spectrophotometric data	
for 21 carbon stars	181
Andreassian R.R., Arshakian T.G. The radio luminosity of pulsars and the	
distribution of electron concentrations in the Galaxy	375
Andreassian R.R. (see Arshakian T.G.)	385
Anisimova G.B. The stellar kinematics in Kovalsky-Kapteyn figures. III	251
Arshakian T.G. (see Andreassian R.R.)	375
Arshakian T.G., Andreassian R.R. The quantizing of the velocities of	
separation of the components of extended double radio sources	385
Baier F.W. (see Shahbazian R.K.)	
Chubarian E.V. (see Grigorian H.A.)	117
Danielian E.Kh. On the study of isotropic scattering in the plane slab. The	
method of separated linear integral equations	225
Djavakhishvili R.Sh., Pavlov M.V., Salukvadze G.N. Radial velocities of com-	
ponents of Trapezium type multiple stellar systems. I	273
Epremian R.A. (see Tovmassian H.M.)	35
Epremian R.A. (see Tovmassian H.M.)	165
Ergma E., Masevich A.G. Low-Mass X-ray double stars and millisecond pul-	
sars	129
Eritsian M.H., Mickaelian A.M. Polarimetric observations of the FBS blue	
stellar objects. II	203
Gasparian L.G. (see Parsamian E.S.)	23
Gigoyan K.S. (see Abrahamian H.V.)	181
Gigoyan K.S. (see Abrahamian H.V.)	431
Grigorian L.Sh., Kazarian P.F. A new formula for a star mass in the bimetric	
scalar-tensor theory of gravitation	597
Grigorian H.A., Sarkissian A.V., Chubarian E.V. Integral parameters of rota-	
ting relativistic politrops in bimetric theory of gravitation	117
Gyulbudaghian A.L. The connection of neutral hydrogen with the radial sys-	

INDEX OF AUTHORS

tems of dark globules	527
Hambarian V.V. (see Mirzoyan L.V.)	395
Hambarian V.V. (see Vardanian R.A.)	195
Harjunpca P. (sec Kandalian R.A.)	15
Haroutyunian H.A. Relative transfer for non-coherent scattering in a semii	
finite inhomogeneous atmosphere containing energy sources	563
Haroutyunian G.G., Papoyan V.V. The Friedman type cosmological solutions	
in tensor-scalar theory of gravitation	583
Hovhannessian R.Kh. (see Tovmassian H.M.)	35
Hovhannessian R.Kh. (see Tovmassian H.M.)	165
Huguenin D. (see Tovmassian H.M.)	35
Huguenin D. (see Tovmassian H.M.)	165
Ibragimov M.A. (see Parsamian E.S.)	23
Israelian G.L., Nikoghossian A.G. Spectral variations of P Cyg	189
Ivanova N.L. Non-stable processes in the atmosphere of RW Aurigae	409
Ivanova N.L. A spectral investigation of the peculiar star V 1331 Cygni	613
Kalloghlian A.T., Nikoghossian H.H. UBV - photometry of galaxies in groups	
and in surroundings. The Geller-Huckra group GH3	315
Kandalian R.A., Harjunpaa P. HCO ⁺ and ¹³ CO survey of CB and HHL	
objects	15
Kazarian E.S. (see Kazarian M.A.)	211
Kazarian M.A. Spectrophotometry of one Seyfert type galaxy	217
Kazarian M.A. Spectrophotometry of two Seyfert type galaxies	353
Kazarian M.A. Spectrophometry of two galaxies with UV-excess	543
Kazarian M.A., Kazarian E.S. Spectrophotometry and morphology of the gala-	
xies with UV-excess. IX	211
Kazarian M.A., Tamazian V.S. Spectral investigation of three galaxies with	
UV-excess	363
Kazarian P.F. (see Grigorian L.Sh.)	597
Kondratjeva L.N. The fast evolutional variations in the spectrum of objects	
Th 4-4	67
Lipovetski S.S., Mojsjuk A.M., Sekerzitski V.S. On the influence of the strong	
magnetic field on the released energy "n" - reactions	593
Magakian T.Yu., Movsessian T.A. Detailed spectral investigation of Herbig-	
Haro object-RN 043N	5
Masevich A.G. (see Ergma E.)	129
Mickaelian A.M. (see Abrahamian H.V.)	109
Mickaelian A.M. (see Eritsian M.H.)	203
Mickaelian A.M. (see Abrahamian H.V.)	517

INDEX OF AUTHORS

Minikhulov N.H., Rahimov V.Yu., Volchkova N.A., Pihun A.I. The light cur-	
ves of young irregular variables. I. SV Cep and CQ Tau	55
Mirzoyan A.L. (see Mirzoyan L.V.)	395
Mirzoyan L. V. Flare stars and evolution of red dwarf stars	277
Mirzoyan L.V., Hambarian V.V., Mirzoyan A.L. Flare activity of stars as clu-	
ster membership criterion	395
Mojsjuk A.M. (see Lipovetski S.S.)	593
Movsessian T.A. (see Magakian T.Yu.)	5
Nikoghossian A.G. (see Israelian G.L.)	189
Nikoghossian H.H. (see Kalloghlian A.T.)	315
Notni P. (see Shahbazian R.K.)	333
Ohanian G.B. (see Parsamian E.S.)	23
Ohanian G.B. (see Parsamian E.S.)	501
Papoyan V.V., Pervushin V.N. The quantization of homogeneous cosmolo-	
gical model in Jordan-Brans- Dicke theory and observable time prob-	
lem	575
Papoyan V.V. (see Haroutyunian G.G.)	583
Parsamian E.S., Ibragimov M.A., Ohanian G.B., Gasparian L.G. Photometry of	
subfuor V 1118 ORI (1988–1990)	23
Parsamian E.S., Ohanian G.B. Spectral classification of the flare stars in	
the Pleiades cluster	501
Pavlov M.V. (see Djavakhishvili R.Sh.)	273
Pervushin V.N. (see Papoyan V.V.)	575
Pihun A.I. (see Minikhulov N.H.)	55
Poghossian A.V. (see Vardanian R.A.)	195
Poghossian A.V. (see Vardanian R.A.)	417
Rahimov V.Yu. (see Minikhulov N.H.)	55
Reshetnikov V.V., Sotnikova N.Yu. Interacting galaxies: observational and	
theoretical aspects	435
Sahakian G.S. On the theory of pulsars radio radiation	87
Sahakian G.S. On the theory of pulsars radio radiation	549
Saharian A.A. Spherical — symmetric solutions of GR are partial solutions of	
BSTT	245
Saharian A.A. Radiation of gravitational waves in BSTT	423
Saharian A.A. Modificated EIH formalism in BSTT. Gravitational radiation	603
Salukvadze G.N. (see Djavakhishvili R.Sh.)	273
Sarkissian A.V. (see Grigorian H.A.)	117
Sekerzitski V.S. (see Lipovetski S.S.)	593

Shahbazian R.K., Notni P., Baier F.W. Photographic photometry of two	
small groups of galaxies	333
Sotnikova N. Yu. (see Reshetnikov V.V.)	435
Tamazian V.S. (see Kazarian M.A.)	363
Tambovtseva L.V. Terminal velocities and turbulence in stellar winds of OB-stars	73
Tovmassian H.M., Hovhannessian R.Kh., Epremian R.A., Huguenin D.	
OB-stars complex in the Carina nebula	35
Tovmassian H.M., Hovhannessian R.Kh., Epremian R.A., Huguenin D, The	
distribution of hot stars and absorbing matter in Carina	165
Vardanian R.A., Poghossian A.V. Period-intrisic colour dependence for clas-	
sical cepheids	417
Vardanian R.A. Circumstellar envelopes and spectral classification of stars	535
Vardanian R.A., Hambarian V.V., Poghossian A.V. Interstellar absorption in	
the galactic plane	195
Volchkova N.A. Search for periodicity in light variations of isolated Herbig	
Ae-star WW Vulpeculae	61
Volchkova N.A. (see Minikhulov N.H.)	55
Zablerowski M. Book review	617

журнала «Астрофизика», том 36, 1993

Выпуск 1

Детальное спектральное исследование объекта Хербига-Аро-RN 043	
Т.Ю.Магакян, Т.А.Мовсесян	5
Обзор CB и HHL объектов в линиях молекул HCO ⁺ и ¹³ CO	
Р.А.Кандалян, П.Харюпаа	15
Фотометрия Субфуора V III8 ORI (1988-1990)	
Э.С.Парсамян, М.А.Ибрагимов, Г.Б.Оганян, К.Г.Гаспарян	23
Комплекс ОВ-звезд в туманности Carina	
Г.М.Товмасян, Р.Х.Оганесян, Р.А.Епремян, Д.Югенен	35
Исследование кривых блеска молодых неправильных переменных.	
I. SV. CEP и CQ TAU	
Н.Х.Миникулов, В.Ю.Рахимов, Н.А.Волчкова, А.И.Пихун	55
Поиск периодичности изменений блеска изолированной Ас-звезды Хер-	
бига WW Лисички	
Н.А.Волчкова	61
Быстрые эволюционные изменения в спектре объекта Th 4-4	
Л.Н.Кондратьева	. 67
Терминальные скорости и турбулентность в звездном ветре ОВ-звезд	
Л.В.Тамбовцева	73
К теории радиоизлучения пульсаров	
Г.С.Саакян	87
Первый Бюраканский спектральный обзор неба. Голубые звездные	
объекты. V. Полоса $+33^{\circ} \le \delta \le +37^{\circ}$	
Г.В.Абрамян, А.М.Микаелян	109
Интегральные параметры вращающихся релятивистских политроп в би-	
метрической теории тяготения	
А.О.Григорян, А.В.Саркисян, Э.В.Чубарян	117
and a second second second a second definition of the second second second second second second second second s	
ОБЗОРЫ	
Маломассивные рентгеновские двойные звезды и миллисекундные пуль-	
сары	

Э.Эргма, А.Г.Масевич 129

Выпуск 2

Распределение горячих звезд и пылевой материи в Киле	
Г.М.Товмасян, Р.Х.Оганесян, Р.А.Епремян, Д.Югенен	165
Спектрофотометрическое исследование слабых углеродных звезд на вы-	
соких галактических широтах II. Спектрофотометрические	
характеристики 21 углеродной звезды	
Г.В.Абрамян, К.С.Гигоян	181
Спектральные изменения у Р СҮС	
Г.Л.Исраелян, А.Г.Никогосян	189
Межзвездные поглощения в галактической плоскости	
Р.А.Варданян, В.В.Амбарян, А.В.Погосян	195
Поляриметрические наблюдения голубых звездных объектов FBS. II	
М.А.Ерицян, А.М.Микаелян	203
Спектрофотометрическое и морфологическое исследование галактик с	
УФ-избытком. IX	
М.А.Казарян, Э.С.Казарян	211
Спектрофотометрическое исследование одной галактики типа Сейфер-	
та	
М.А.Казарян	217
К теории изотропного рассеяния излучения в плоском слое. Метод	
раздельных линейных интегральных уравнений	
Э.Х.Даниелян	225
СФерически-симметричные решения ОТО являются частными решени-	
SMR BCTT	
А.А.Саарян	245
Кинематика звезд в фигурах Ковальского-Каптейна. III	
Г.В.Анисимова	251
КРАТКИЕ СООБЩЕНИЯ	
Лучевые скорости компонентов кратных звездых систем типа Трапе-	
ции. І	
Г.Ш.Джавахишвили, М.В.Павлов, Г.Н.Салуквадзе	273
ОБЗОРЫ	
вспыхивающие звезды и эволюция красных карликовых звезд	
Л.В.Мирзоян	277

640

Выпуск 3

UBV- Фотометрия галактик в группах и их окрестностях. Группа галак-	
тик Геллер-Хукра НЗ	
А.Т.Каллоглян, Е.Г.Никогосян	315
Фотографическая фотометрия двух небольших групп галактик	
Р.К.Шахбазян, П.Нотни, Ф.Б.Байер	333
Спектрофотометрическое исследование двух галактик типа	
Сейферта	
М.А.Казарян	353
Спектральное исследование трех галактик с УФ-избытком	
М.А.Казарян, В.С.Тамазян	363
Радносветимость пульсаров и распределение электронной концентра-	
ции в Галактике	
Р.Р.Андреасян, Т.Г.Аршакян	375
Лискретность скоростей разлета компонентов протяженных двойных	
ралиоисточников	
Т.Г.Аршакян, Р.Р.Андреасян	385
Вспышечная активность звезл как критерий принадлежности скопле-	
П В Мирзовн В В Анбаран А Л. Мирзовн	395
Нестационалные пролессы в атмостере RW Возничего	0,00
Н Л. Иванова	409
	105
Зависимость период-истанный цвет для классических цефенд	417
Г.А.Бароанян, А.Б.Погосян	717
Излучение гравитационных волн в DC11	472
А.А.Саарян	423
Первый Бюраканский спектральный обзор неоа. Звезды поздних спек-	
тральных класс: в. IV. Полоса $+61 \le \hat{o} \le +65$	
Г.В.Абрамян, К.С.Гигоян	431
and the second s	
ОБЗОРЫ	
Взаимолействующие гала кляки: наблюдательные и теоретические аспекты	

В.П.Решетников, Н.Я.Сотникова 435

Выпуск 4

Спектральная классификация вспыхивающих звезд скопления Плеяды	
Э.С.Парсамян, Г.Б.Оганян	501
Первый Бюраканский спектральный обзор неба. Голубые звездные объ-	
екты. VI. Полоса $+33^\circ \le \delta \le +37^\circ$	
Г.В.Абрамян, А.М.Микаелян	517
Связь нейтрального водорода с радиальными системами темных глобул	
А.Л.Гюльбудагян	527
Околозвездные оболочки и спектральная классификация звезд	
Р.А.Варданян	535
Спектрофотометрическое исследование двух галактик с УФ-избытком	
М.А.Казарян	543
К теории радиоизлучения пульсаров	
Г.С.Саакян	549
Перенос излучения при некогерентном рассеянии в полубесконечной	
неоднородной атмосфере, содержащей источники энергии	
Г.А.Арутюнян	563
Квантование однородной космологической модели в теории Иордана-	
Бранса-Дикке и проолема "наолюдаемого времени"	
В.В.Папоян, В.Н.Первушин	575
Космологические решения типа Фридмана в тензорно-скалярной тео-	
рии такотения	507
	383
оклании сального магнитного поля на энсргетический выход п -ре-	
акции	502
Новая формила пля массы звезлы в биметринеской скаларистензовной	393
теории гозвитиции	
П III Гризоран П Ф Козоран	507
Молифицированный ЭИХ формализм в БСТТ. Гравитационное излу-	557
чение	
А.Саарян	603
КРАТКИЕ СООБЩЕНИЯ	000
Спектральное исследование пекулярной звезды V 1331 Лебедя	
Н.Л.Иванова	613
РЕЦЕНЗИИ	617
PERSONALIA	623

Number 1

Detailed spectral investigation of Herbig-Haro object-RNO 43N	
T.Yu.Magakian, T.A.Movsessian	5
HCO ⁺ and ¹³ CO survey of CB and HHL objects	
R.A.Kandalian, P.Harjunpaa	15
Photometry of subfuor V1118 ORI (1988–1990)	
E.S.Parsamian, M.A.Ibragimov, G.B.Ohanian, L.G.Gasparian	23
OB-stars complex in the Carina nebula	
H.M.Tovmassian, R.Kh.Hovhannessian, R.A.Epremian, D.Huguenin	35
The light curves of young irregular variables. I. SV Cep and CQ Tau	
N.H.Minikhulov, V.Yu.Rahimov, N.A.Volchkova, A.I.Pihun	55
Search for periodicity in light variations of isolated Herbig Ae-star WW	
Vulpeculae	
N.A. Volchkova	61
The fast evolutional variations in the spectrum of objects Th 4-4	
L.N.Kondratjeva	67
Terminal velocities and turbulence in stellar winds of OB-stars	
L.V.Tambovtseva	73
On the theory of pulsars radio radiation	
G.S.Sahakian	87
The first Byurakan spectral sky survey. Blue stellar objects. V. Zone	
$+33^{\circ} \leq \delta \leq +37^{\circ}$	
HV Abrahamian A M Mickaelian	100
Integral parameters of rotating relativistic politrons in himetric theory of	105
gravitation	
H.A.Grigorian, A.V.Sarkissian, E.V.Chubarian	117
REVIEWS	
Low-Mass X-ray double stars and millisecond nulsars	

E.Ergma, A.G.Masevich 129

Number 2

The distribution of hot stars and absorbing matter in Carina	
H.M.Tovmassian, R.Kh.Hovhannessian, R.A.Epremian, D.Huguenin	165
Spectrophotometric investigation of faint carbon stars at high galactic	
latitudes. II. Spectrophotometric data for 21 carbon stars	
H.V.Abrahamian, K.S.Gigoyan	181
Spectral variations of P Cyg	
G.L.Israellan, A.G.Nikoghossian	189
Interstellar absorption in the galactic plane	
R.A. Vardanian, V.V.Hambarian, A.V.Poghossian	195
Polarimetric observations of the FBS blue stellar objects. II	
M.H.Eritsian, A.M.Mickaelian	203
Spectrophotometry and morphology of the galaxies with UV-excess. IX	
M.A.Kazarian, E.S.Kazarian	211
Spectrophotometry of one Seyfert type galaxy	
M.A.Kazarian	217
On the study of isotropic scattering in the plane slab. The method of	
separated linear integral equations	
E.Kh.Danielian	225
Spherical - symmetric solutions of GR are partial solutions of BSTT	
A.A.Saharian	245
The stellar kinematics in Kovalsky-Kapteyn figures. III	
G.B.Anisimova	251
NOTES	
Radial velocities of components of Trapezium type multiple stellar systems. I	
R.Sh.Djavakhishvili, M.V.Pavlov, G.N.Salukvadze	273
REVIEWS	
Flare stars and evolution of red dwarf stars	
L.V.Mirzoyan	277
Number 3	

UBV - photometry of galaxies in groups and in surroundings. The Geller-Huckra group GH3

A.T.Kalloghlian, H.H.Nikoghossian 315.

Photographic photometry of two small groups of galaxies	*
R.K.Shahbazian, P.Notni, F.W.Baier	333
spectrophotometry of two Seyfert type galaxies	
M.A.Kazarian	353
Spectral investigation of three galaxies with UV-excess	
M.A.Kazarian, V.S.Tamazian	363
The radio luminosity of Pulsars and the distribution of electron	
concentrations in the Galaxy	
R.R.Andreassian, T.G.Arshakian	375
The quantizing of the velocities of separation of the components of extended	+
double radio sources	
T.G.Arshakian, R.R.Andreassian	385
Flare activity of stars as cluster membership criterion	
L.V.Mirzoyan, V.V.Hambarian, A.L.Mirzoyan	395
Non-stable processes in the atmosphere of RW Aurigae	
N.L.Ivanova	409
Period-intrinsic colour dependence for classical cepheids	
R.A.Vardanian, A.V.Poghossian	417
Radiation of gravitational waves in BSTT	
A.A.Saharian	423
NOTES	
The first Byurakan spectral sky survey. Late-type stars. IV.	
Zone $+61 \le \delta \le +65$	
H.V.Abrahamian, K.S.Gigoyan	431
REVIEWS	
Interacting galaxies: observational and theoretical aspects	

V.V.Reshetnikov, N.Yu.Sotnikova 435

Number 4

spectral classification of the flare stars i	in the Pleiades cluster	
	E.S.Parsamian, G.B.Ohanian	501
· first Byurakan spectral sky surwey	. Blue stellar objects. VI. Zone	
$+33^{\circ} \leq \delta \leq +37^{\circ}$		

The connection of neutral hydrogen with the radial systems of dark globules					
A.L.Gyulbudaghian •	52				
Circumstellar envelopes and spectral classification of stars					
R.A. Vardanian	53.5				
Spectrophotometry of two galaxies with UV-excess					
M.A.Kazarian	54j				
On the theory of pulsars radio radiation					
G.S.Sahakian	549				
Radiative transfer for non-coherent scattering in a semiinfinite inhomogene-					
ous atmosphere containing energy sources					
H.A.Haroutyunian	563				
The quantization of homogeneous cosmological model in Jordan-Brans-					
Dicke theory and observable time problem					
· V.V.Papoyan, V.N.Pervushin	575				
The Friedman type cosmological solutions in tensor-scalar theory of					
gravitation					
G.G.Haroutyunian, V.V.Papoyan	583				
On the influence of the strong magnetic field on the released energy "n" – reactions					
S.S.Lipovetski, A.M.Mojsjuk, V.S.Sekerzitski	593				
A new formula for a star mass in the bimetric scalar-tensor theory of					
gravitation					
L.Sh.Grigorian, P.F.Kazarian	597				
Modificated EIH formalism in BSTT. Gravitational radiation					
A.A.Saharian	603				
	10 .				
NOTES					
A spectral investigation of the peculiar star V 1331 Cygni					
N.L.Ivanova	613				
BOOK REVIEWS					
Andrzej Siemianowski, Polish scientific Publishers, Warsaw,					
1989					
PERSONALIA	62.				
CO	N	T]	en	11	S
----	---	----	----	----	---
----	---	----	----	----	---

Spectral classification of the flare stars in the Pleiades cluster	
E.S.Parsamian, G.B.Ohanian	501
The first Byurakan spectral sky surwey. Blue stellar objects. VI. Zone + $33^{\circ} < \delta < + 37^{\circ}$	
UV Abachemian A M Michaelian	517
The connection of neutral hydrogen with the radial systems of dark globules	517
A.L.Gyulbudaghian	527
Circumstellar envelopes and spectral classification of stars	
R.A. Vardanian	535
Spectrophotometry of two galaxies with UV-excess	
M.A.Kazarian	543
On the theory of pulsars radio radiation	
G.S.Sahakian	549
Radiative transfer for non-coherent scattering in a semiinfinite inhomogene-	-
ous atmosphere containing energy sources	
H.A.Haroutyunian	563
The quantization of homogeneous cosmological model in Jordan-Brans- Dicke theory and observable time problem	-
V.V.Papovan, V.N.Pervushin	575
The Friedman type cosmological solutions in tensor-scalar theory of gravitation	0.0
G.G.Haroutvunian, V.V. Papovan	583
On the influence of the strong magnetic field on the released energy	
"n" – reactions	
S.S. Lipovetski, A.M.Moisiuk, V.S. Sekerzitski	593
A new formula for a star mass in the bimetric scalar-tensor theory of	
I. Sh Grigorian P F Kazarian	597
Modificated EIH formalism in BSTT Gravitational radiation	0,77
A A Sabarian	603
NOTES	000
A spectral investigation of the peculiar star V 1331 Cygni	
N.L.Ivanova	613
BOOK REVIEWS	
"The principles of conventionalistic Philosophy of Physics and Astronomy"	
Andrzej Sicmianowski, Polish scientific Publishers, Warsaw.	
1989	617
PERSONALIA	623

30081

индекс 70022

СОДЕРЖАНИЕ (продолжение)

космологические решения типа фридмана в тензор	
НО-СКАЛЯРНОЙ ТЕОРИИ ТЯГОТЕНИЯ	
Г.Г.Арутюнян, В.В.Папоян	583
О ВЛИЯНИИ СИЛЬНОГО МАГНИТНОГО ПОЛЯ НА ЭНЕРГЕТИЧЕ-	
СКИЙ ВЫХОД " N "— РЕАКЦИЙ	
С.С.Липовецкий, А.М.Мойсюк, В.С.Секержицкий	593
новая формула для массы звезды в биметрической	
СКАЛЯРНО-ТЕНЗОРНОЙ ТЕОРИИ ГРАВИТИЦИИ	
Л.Ш.Григорян, П.Ф.Казарян	597
МОДИФИЦИРОВАННЫЙ ЭИХ ФОРМАЛИЗМ В БСТТ. ГРАВИТА-	
ционное излучение	
А.Саарян	603
КРАТКИЕ СООБЩЕНИЯ	
CHEVTON THUCE MCCHERODALINE HEVITADUOR SPESILI V 1221	
ЛЕБЕДЯ	
Н.Л.Иванова	613
РЕЦЕНЗИИ	
- М. Заблеровски	617
PERSONALIA	623