ISSN-0571-7132

ВЫПУСК 1

ииѕлиљрдрчи астрофизика

ФЕВРАЛЬ, 1991

TOM 34

СПЕКТРАЛЬНОЕ ИССЛЕДОВАНИЕ ОБЪЕКТОВ ВТОРОГО БЮРА-	
KAHCKOTO OBSOPA. BESCHERTE. OBBERTE. IV.	
Дж. А. Степанян, В. А. Липовецкий, В. О. Чавушян, Л. К. Ерастова,	
А. И. Шаповалова	5
ПЕРВЫЯ БЮРАКАНСКИЯ СПЕКТРАЛЬНЫЯ ОБЗОР НЕБА. ГОЛУБЫЕ	
3BE3 THE OFFEKTE IN TIO AOCA + 41° < $i < +45°$	
E P Afrance P A Aussassing A M Mussaassi Im A Cassessi	12
A DUDUUECHON DOLODIE EAOCTEOOD I	12
O WHENKON TIPHPOLE BAPCTEPOB. I	
Г. С. Саакян, Г. П. Алоджану, А. В. Саркисян	21
КВАЗАРЫ, ГАЛАКТИКИ ТИПА СЕЙФЕРТ I (Syl) И НАБЛЮДАТЕЛЬ-	
НАЯ СЕЛЕКЦИЯ	41
ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ОБОЛОЧКИ SN 1987 А ПО ПРОФИЛЯМ	
ЛИНИЙ НІИ Са ІІ	51
OA THA ALLE CUCTEME TEMELY FACEVA II	
PADIANDIDE CICTENDE TEMIDER TRODUN. IL	64
A. J. I KOABOYAGIRH, D. A. AKONRH	01
водородное излучение в направлении в и к персея	
Л. В. Мирзоян, М. Марселан, А. Т. Гарибяжанян, Ж. Булестекс,	
А. Л. Мирзоян, Н. М. Жоржелан	67
ТЕМПЕРАТУРНАЯ СТРУКТУРА ВЕТРА ЗВЕЗД РАННИХ СПЕК-	
ТРАЛЬНЫХ КЛАССОВ	73
PRABUTALINOHHOE NOAVUEHNE TON ANTUKOAAATCE N BOTHILL	
A T Tootway & C Fugue	83
MA COEPARODIA	0,
МАКСИМАЛЬНО ПРАВДОПОДОБНОЕ ВОССТАНОВЛЕНИЕ ИЗОВРА-	
жении. V. некогерентное освещение	
В. Ю. Теребиж, О. К. Чербунина, Ю. Г. Чербунин, В. В. Бирюков	91
КРАТКИЕ СООБЩЕНИЯ	
ВN Ori: НАЧАЛО НОВОГО ПЕРИОДА АКТИВНОСТИ?	
Г. У. Ковальчик	103
КАТАЛОГ ВСПЫХИВАЮЩИХ ЗВЕЗЛ ОБЛАСТИ ТУМАННОСТИ	
	107
	107
ХРОНИКА	
СИМПОЗИУМ ПО ПРОБЛЕМАМ ТЕОРИИ ПЕРЕНОСА ИЗЛУЧЕНИЯ	
А. С. Колесов	141

EPEBAH

Выходит с 1965 г. 6 газ втод на русском и английском языках

ծութագրական կոյնգիա՝ Գ. Ս. Բիսնովատի-Կոգան, Վ. Գ. Գորբացկի (գլխ. խմթագրի տեղակսզ), Վ. Պ. Գրինին, Վ. Վ. Իվանով, Ե. Ս. Կարդաշև, Վ. Հ. Համբարձումյան, Ա. Գ. Մաաևիչ, Լ. Վ. Միրզոյան (գլխ. խմբագիր), Գ. Ս. Սանակյան, Վ. Յու. Տերեբիժ, Ա. Տ. Քալոշոյյան (պատ. բարտուղար).

Խմբագրական խորքուրդ՝ Ա. Ա. Բոյարչուկ, Ե. Կ. Խարաձե, Ի. Մ. Կոպիլով, Վ. Հ. Համթարձումյան, Լ. Վ. Միրվոյան, Վ. Վ. Սորոլև (նախագան).

Реданционная коллегия: В.А.Амбарцумян, Г.С.Бисноватый-Коган, В.Г.Горбацквй (зам. главного редактора), В. П. Гринин, В. В. Иванов, А. Т. Каллоглян (ответ. сокретарь), Н. С. Кардешев, А. Г. Массивич, Л. В. Мирзоян (главный редактор). Г. С. Саакян, В. Ю. Теребиж.

Феданционный совет: В. А. Амбарцумян, А. А. Боярчук, И. М. Копылов, Л. В. Мирзоян, В. В. Соболев (председатель), Е. К. Харадзе.

«АСТРОФИЗИКА» — научный журнал, издаваемый Академией наук Армечини. Журнал печатает оригинальные статьи по физике звезд, физике туманностей и межавездной среды, по звездной и внегалактической астрономии, а также статьи по областям науки, сопредельным с астрофизикой. Журнал предназначается для научных оаботников, аспирантов в студентов старших курсов.

Журнал выходит 6 раз в гол. подписная плата за год 10 р. 80 к. Подписку можно произвести во всех отделениях Союяпечати, а за границей через агентство «Междуна родьая кцига», Москва, 200

«ԱՍՏՂԱՖԻԶԻԿԱ»-Ն գիտական ճանդես է, որը նրատարակում է Հայաստանի Գիտությունների ակադեսիտն։ Հանդեսը տպագրում է ընքնատիպ նոդվածներ աստղերի ֆիզիկայի, միգամածությունների ու միջաստղային միջավայրի ֆիզիկայի, աստղաբաշխության և արտագաչակտիկական աստղագիտության, ինչպես նաև աստղաֆիզիկային սանմանակից բնագավառների գծով։ Հանդեսը նախատեսված է շիտական աշխատակիցների, ասպիրանաների և թարձր կութաերի սոստնողների նամար։

Հանդեսը լույս է տեսնում տաշեկան 6 տնգամ, բաժանուղացինը 10 ռ. 80 կ. մեկ տաշվա Տամար Բաժանսողագրվել կաշելի է «Սոյուզախչառ»-ի թոլու բաժանմունքներում, իսկ աշտասանմանում: «Մեժդունաշողնայա կնիզա» գուծակալության միջոցով. Մոսկվա, 200.

Издательство АН Армении, Астрофизика. 1991.

АСТРОФИЗИКА

TOM 34

ФЕВРАЛЬ, 1991

выпуск 1

УДК 524:520.84

СПЕКТРАЛЬНЫЕ ИССЛЕДОВАНИЯ ОБЪЕКТОВ ВТОРОГО БЮРАКАНСКОГО ОБЗОРА. ЗВЕЗДНЫЕ ОБЪЕКТЫ. IV

Дж. А. СТЕПАНЯН, В. А. ЛИПОВЕЦКИЙ, В. О. ЧАВУШЯН, Л. К. ЕРАСТОВА, А. И. ШАПОВАЛОВА

Поступила 18 декабря 1990 Принята к печати 27 декабря 1990

Представљены данные о 26 квазизвездных объектах, открытых в ходе Второго-Бюраканского слектраљеного обзора в области северного неба, ограниченного координатами $8^h < a < 17^h$ и $+49 < a < +61^{\circ}$. Приводятся основные параметры эмиссионных линий и другие данные для всех квазизвездных объектов, а также сканы больпинства из них.

1. Введение. Приводится четвертая статья этой серии. В первых трех статьях [1—3] нами были приведены спектральные данные о 156 эвездных объектах, расположенных в шести полях SBS-обзора. Как известно, SBS-обзор проводится в области северного неба, охватывающей около 1000 кв. градусов, заключенной между 8^h и 17^h по α и +49° и +61° по δ [4].

В указанной области нами отобрано более 1500 звездных объектов. Для более чем трети из них получены щелевые спектры в основном с помощью 6-м телескопа САО АН СССР и на 2.6-м телескопе БАО АН Армении. Помимо указанных выше данных о 156 звездных объектах, изученных в отдельных полях SBS-обзора, среди которых открыто 69⁻ QSO, один LINER, семь сейфертовских галактик первого типа, одна сейфертовская галактика второго типа и пять эмиссионных галактик, открыто еще 47 QSO, находящихся вне опубликованных полей SBS-обзора. Остальные объекты оказались в основном белыми карликами и горячими субкарликами, данные о которых будут опубликованы позднее. Методика наблюдений, отбора, классификации и обработки приведена в [1].

В настоящей статье приводятся спектральные и другие данные обочередных 26 квазизвездных объектах.

2. Ревультаты исследований. В табл. 1 приведены сводные данные об изученных объектах: 1—обозначение SBS; 2 и 3—экваториальные координаты с точностью до минуты дуги для эпохи 1950 г.; 4—дата наблюдений; 5—исследованный спектральный диапазон в ангстремах; 6—время экспозиции в секундах; 7—глазомерные оценки видимой ввездной величины в голубых лучах (В); 8—обзорный тип; 9—спектральный тип.

Обвор-TMD Координаты Спектраль-Эхспо-эиция (сек) Спок-траль-пый ти Обозначение ный двапаmB Дата SBS G anto alies. зон (А) 5 8 9 1 2 3 4 6 7 167 09^h09^m5 QSO 25.02.88 3520-6980 788 QSO +530 12' 0909-1-532 oso 3700-5700 1080 18 **OSO** 0916+595 09 16.4 +59 31 14.11.79 08.02.83 3709-5700 1200 3575-5260 1347 06.12.85 +57 51 3700-5700 1080 ·0917-+578 09 17.2 **BSO** 15.11.79 18 3700-5700 1200 08.02.83 3800-5300 2309 06.12.85 oos 24.11.87 3420-6810 1863 0920--580 09 20.0 +58 00 29.03.87 3170-6740 2026 18 QSO 0925+606 660 QSO 09 25.0 +60 4015.11.79 3700-5700 18 QSO 20.03.87 3180-6750 1590 1010+535 10 10.2 +53 3107.02.89 3550-5600 4200 16 **QSO BSO** 21.02.90 3235-7000 939 1013 + 59610 13.7 +59 33 3700-5700 660 14.11.79 17.5 QSO OSO 3700-5700 90:) 03.02.83 07.12.85 3540-5240 1908 1037+603 10 37.5 720 +60.1803.01.78 3700-5700 17.5 QSO OSO 13 01.73 3700-5700 900 16.11.79 3700-5700 1080 06.12.85 3575 - 52552603 1039+582 10 39.6 +58 12 14.11.79 3700-5700 540 17.5 OSO **OSO** 15.11.79 3700-5700 720 1040+567 10 40.6 +56 43 25.02.88 3425-7095 753 16.5 OSO OSO 1047+550 10 47.7 +55 03 22.02.87 5400 3700-5300 16 QSO QSO 27.03.87 3180-6730 1288 26.04.87 1492 3110-6720 1054+552 10 54.7 +55 1525.02.88 3500-6990 939 16.5 QSO **QSO** 1055-584 10 55.9 +582416.11.79 3700-5700 1080 OSO QSO 18

ЖУРНАЛ СПЕКТРАЛЬНЫХ НАБЛЮДЕНИЯ

Таблица 1

6

Таблица 1 (окончание)

7

1	2	3	4	5	6	7	8	9
1108+560	11 08.5	+56 03	21.02.90	3190-6990	1769	16.5	BSO	QSO
1110596	11 10.9	+ 59 36	13.01.78	3700-5700	1200	18	QSO	QSO
		1.00	15.11.79	3700—5 700	1080	1		- 1
1117+-535	11 17.3	+53 30	13.01.78	37005700	780	17.5	-QSO	QSO
1134+563	11 34.3	+56 21	25.02.88	3480-6980	927	17	QSO	QSO
1151-+570	11 51.2	+57 02	07.03.88	34806980	972	16.5	QSO	QSO
1151+548	11 51.5	+54 52	21.02.90	3200-6920	2713	16.5	QSO	QSO
1204+597	12 04.5	+59 45	13.01.78	3490-4700	720	17.5	QSO	QSO
1215 + 521	12 15.2	+52 11	14.05.85	3660-5160	556	16.5	QSO	QSO
1229+597	12 29.5	+59 45	13.01.78	3700-5700	780	18	QSO	QSO
1233+594	12 33.6	+59 27	21.02.90	3200-6990	1655	16.5	QSO	QSO
1234607	12 34.1	+60 47	21.02.90	3200-6990	1847	16	QSO	QSO
1302- 564	13 02.3	+56 24	26.02.88	3250-6750	2065	17	QSO	QSO
1307- -563	13 07.2	+56 18	26.02.88	3240-6740	1019	17.5	QSO	QSO

Таблица 2

ПАРАМЕТРЫ ЭМИССИОННЫХ ЛИНИЙ

	and see lines	and in the local division of the local divis	-						_
Обовна- чение SBS	т _В	MB	Zem	λ _{набл.}	λ _o	Отождест- васние	FWOI (RM/C)	FWHM (RM/C)	Е W набя.
1	2	3	4	5	6	7	8	9	10
0-09-1-532	16 ^m	$-28^{m}.1$	1.375	3670	1549	CIV	11500	4000	300:
****				3890	1640	Hell	3000	1500	15
				3955	1653	OIII]	3000	1200	10
				4540	1909	CIII]	7000	3000	70
	-			6655	2798	MgII	3500	2000	40:
0916+595	18	24.1	0.562:	4370	2798	MgII	10000	4000	45
-0917+578	18	-25.1	0.901	3630	1909	CIII]	10000	: 4000:	65:
				5320	2798	MgII	7000	3500	35
0920+580	17.5	-26.6	1.378	3685	1549	CIV	12500	6500	85
			1	3900	1640	Hell	5000	2000	20
	100	1		4160	1750	NIII]	2500	1200	7
				4540	1909	CIII]	11800	6000	55
0925606	18	-22.7	0.296	3625	2798	MgII	9800	4200	50
		1.00		6305	4861	Hβ	8800	4800	55
		100		6495	5007	[0[[]]	2000	1000:	45
							1		

ł

Д. А. СТЕПАНЯН И ДР.

30

Таблица 2 (продолжение)

1	2	3	4	5	6	7	8	9	10
1010-1-535	16	-28.2	1.495	3865	1549		10300	5600	30
der i el fe	100		1.20	4760	1909	CIII	15000	7900	30
1013596	17.5	-25.5	0.851:	5180	2798	МдП	5200	3000	55
1037603	17.5	-23.2	0.294:	3620	2798	MgII	4000	2700	25
1040+567	16.5	-28.3	1.951	3590	1216	Le +NV	_	Daria	_
MARTIN	1000		100	4130	1400	SilV+[OIV]	7600	3500	30;
10.000			200	4570	1549	CIV	11500	5000	.50
1			1000	5635	1909	СШЈ	4000	2000	30:
1047-+550	16	-29.0	2.165	3850	1216	La	22000	10000	450
			•	3925	1240	NV∫	22000	_	450
			2.90	4440	1400	SilV+[OIV]	10000	7000	40
18 199		0.7387		4900	1549	CIV	11500	5000	120
670 ((?))	21.51	14	6-31	6040	1909	СШ	_		_
1054- 552	16.5	28.3	1.985	3630	1216	La	19500	5800	250
4.24				3700	1 24 0	NVJ	10.00	_	230
and the second		1111		4180	1400	SilV+[OIV]	6000	2500	20
1000		molith		4620	1549	CIV	6800	3500	80
411.50			- 27.	5695	1909	CIII]	-	-	-
1108+560	16.5	-26.2	0.765:	4940	2798	MgII	6800	3300	25
1134- -563	17	-27.7	1.936	3570	1216	La	20000.	5000:	200.
ALC: NO	1 E.	10.000		3640	1240	NV	20000.	-	300.
N.C.		1		4100	1400	SilV+[OIV]	10000	5000	50
i la		N TRA		4550	1549	CIV	11500	4600	150
200		1		5605	1909	CIII]	9000	5000	80
1151+570	16.5	-28.2	1.892	3515:	1216	La	-		-
1.77.17	S Fire	1.000		4055	1400	SiIV+[OIV]	7800	6000	40
	in kan	E 16.1	100	4480	1549	CIV	10500	5500	70
11-1-1		the Party of	-	5520	1909	CIII]		-	_
1151+548	16.5	-25.0	0.441	4030	2798	MgII	60 0 0	2700	25
Section 1		1. 20	- 161	4590	3188	HeI	3000	-	7
S. Cak		- U.S.	1211	4935	3426	[NeV]	6500:	-	10
100	1.1	1000	164	5375	3727	[01]	4000:		15
22.14	1.11	1		6260	4340	H _T	6000		40
1215+521	16.5	-28.5	2.225	3920	1216	La	2200.3	4000	280
the floor	1 4 1			3995	1240	NV j	22000	-	200
an and the		1-10.0		4995	1549	CIV	9000	4000	100
1233+594	16.5	-29.1	2.824	3940	1030	Ľø +OVI	6800	2700	40

8

КАРТЫ ОТОЖДЕСТВЛЕНИЯ (В ГОЛУБЫХ ЛУЧАХ). Размеры 16' и 16'. Север сверху, восток слева.

СПЕКТРАЛЬНЫЕ ИССЛЕДОВАНИЯ. IV

1	2	3	4	5	6	7	8	9	10
-	-			4650	1216	L. +NV	24000	7000	320
				5320	1400	SiIV+[OIV]	13500	5100	50
	200			5925	1549	CIV	14000	6400	90
234+607	16	-25.4	0.421:	3575	2798	MgII	9000	5400	50
302- -564	17	23.7	0.300	3640	2798	MgII	7000	3000	30
	1.0			5650	4340	HT	-	-	-
	-			6310	4861	Hş	4000:	1500:	50:
307563	17.5	-27.5	2.150:	3830	1216	La	16000	70.10	200-
				3905	1240	NV }	10000	1000	200.
			,	4880	1549	CIV	12000	6000	120
		-							

Таблица 2 (окончание)

Краткно замечания к отдельным объектам табл. 1 и 2.

- 0916-595 Возможен также варнант отождествления zem = 1.821.
- 0925+606 В спектре намечаются также слабые линни [OIII] λ_o 3133 ($\lambda_{\text{нибл.}}$ 4055), [011] λ_o 3727 ($\lambda_{\text{нибл.}}$ 4835) и H_{γ} ($\lambda_{\text{нибл.}}$ 5625).
- 1134-+553 ΒοβΝΟЖΗς ΠΡΗСУТСТВУЕТ АННИЯ NIV] λο 1488 (λιικόλ. 4360).
- 1151+570 Коротковолновая часть сильно недодержана, данные для линин Lα не удается определить. Возможно, есть также липия SiΠ λ₀ 1264 (λ_{набл} 3655).

1215+521 — Lz имеет широкий и узкий компоненты.

1233-594 — С коротковолновой стороны L_α в спектре наблюдеются многочисленные абсорбционные детали, < FWHM > = 2000 ± 500 км/с. Линии L₂ и L₃ + OVI сильно блендированы абсорбциями. В спектре наблюдеются также линии SiII λ₀ 1264 (λ₄₃₆₅, 4815) и SiII λ₀ 1309 (λ₁₁₈₆, 4995).

1307-+563 — Возможен также вариант отождествления $z_{em} = 1.530$.

В табл. 2 собраны результаты измерений параметров эмиссионных линий, выполненных нами для квазизвездных объектов: 1—обозначение SBS; 2—глазомерные оценки видимой звездной величины в голубых лучах (B); 3—абсолютная звездная величина при H=75 км/с/Мпк и $q_0=0$, с учетом галактического поглощения $\Delta m=0.25$ соsec $|b^{11}|$; 4 среднее эначение красного смещения, определенное по сильным эмиссионным линиям; 5—наблюдаемая длина волны эмиссионной линии; 6 и 7—лабораторная длина волны эмиссионной линии иона и ион; 8—полная ширина эмиссионной линии на уровне непрерывного спектра FWOI(км/с); 9—полная ширина линии на половине интенсивности FWHM(км/с); 10—наблюдаемое значение эквивалентной ширины эмиссионной линии EW_{max}

При наличии для одного объекта нескольких спектров нами приво-

9

дятся средние эначения для указанных в таблице величии. Двоеточие означает неуверенное определение параметра.

Из табл. 2 видно, что вне SBS-полей из-за большого объема информация нами был изучен лишь яркий конец выборки. Диапазон видимых величин заключен между $16^m \le m_3 \le 18^m$. Очевидно следствием последнего является открытие очень ярких по светимости QSO, около половины которых имеют $M_B \le -28^m$. Диапазон красных смещений QSO $0.3 < z_m < 2.8$, светимости заключены между -22^m $7 \le M_B \le -29^m 1$.

Рис. 1. Сканы квазизвездных объектов Второго Бюраканского спектрального обзора неба.

На рис. 1—2 приведены сканы 20 QSO, данные для остальных шести были приведены ранее в [4].

СПЕКТРАЛЬНЫЕ ИССЛЕДОВАНИЯ. IV.

К статье прилагаются карты отождествления, отпечатанные с карт Паломарского обозрения в синих лучах.

3. Заключение. Изучена яркая часть выборки QSO SBS-обзора, находящихся вне опубликованных полей. Данные для объектов, оказавшихся в основном белыми карликами и горячими субкарликами, не приводятся

Рис. 2. Сканы квазизвездных объектов Второго Бюраканского спектрального обзора неба.

Открыто еще 26 QSO. В общей сложности опубликованы результаты спектральных исследований о 95 QSO SBS-обзора.

Бюраканская астрофизическая обсерватория Специальная астрофизическая обсерватория АН СССР

Дж. А. СТЕПАНЯН И ДР.

SPECTRAL INVESTIGATIONS OF THE SECOND BYURAKAN SKY SURVEY OBJECTS. STELLAR OBJECTS. IV

J. A. STEPANIAN, V. A. LIPOVETSKY, V. H. CHAVUSHIAN, L. K. ERASTOVA, A. I. SHAPOVALOVA

The data for 26 quasistellar objects from the Second Byurakan Survey (SBS) located on the northern sky, which is boundered by $8^{h} < \alpha < 17^{h}$ and $+49^{\circ} < \delta < +61^{\circ}$ are given. The main parameters of emission lines and the other data for all QSO's and the scans of the 20 QSO's are presented.

ЛИТЕРАТУРА

- 1. Дж. А. Степанян, В. А. Липовецкий, А. И. Шаповалова, Л. К. Ерастова. Астрофизика, 33, 89, 1990.
- 2. Дж. А. Степанян, В. А. Липовецкий. А. И. Шаповалова, Л. К. Ерастова, В. О. Чавушян. Астрофизика, 33, 199, 1990.
- 3. Дж. А. Степанян, В. А. Липовецкий, А. И. Шаповалова, Л. К. Ерастова, В. О. Чавушян, Астрофизика, 33, 351, 1990.
- 4. Б. Е. Маркарян, В. А. Липовецкий, Дж. А. Степанян, Астрофизика, 19, 29, 1983.

АСТРОФИЗИКА

TOM 34

ФЕВРАЛЬ, 1991

ВЫПУСК 1

УДК 524:3-355:520.84

ПЕРВЫЙ БЮРАКАНСКИЙ СПЕКТРАЛЬНЫЙ ОБЗОР НЕБА. ГОЛУБЫЕ ЗВЕЗДНЫЕ ОБЪЕКТЫ. \.ПОЛОСА + 41° < 3 < + 45°

Г. В. АБРАМЯН, В. А. ЛИПОВЕЦКИЙ, А. М. МИКАЕЛЯН, Дж. А. СТЕПАНЯН

Поступила 5 октября 1990

Принята к печати 12 марта 1991

Приводится четвертый список голубых звездных объектов второй части Первого Бюраканского спектряльного обзора неб~ Эбъекты расположены в полосе $+41^{\circ}$ > $< 3 < +45^{\circ}$, $13^{h} 30^{m} < a < 15^{h} 10^{m} + 21^{h} 50^{m} < a < 24^{h} 00^{m}$. Список содержит данные о 106 голубых звездных объектах, из которых 64 открыты впервые. Проведена предварительная классификация объектов. Проведено сопоставление предварительной классификации автором с общепринятой спектральной классификацией и выделены подвыборки для помска QSO, WD и sd.

1. Введение. С 1987 г. авторами начата работа по поиску голубых звездных объектов на пластинках Первого Бюраханского спектрального обзора неба (FBS). Выделение, каталогизация и классификация голубых звездных объектов составляют вторую часть FBS. Работа предусматривает также дальнейшее спектральное исследование наиболее интересных из этих объектов. Данная статья завершает вторую полосу FBS с $+41^\circ \leq \delta \leq +45^\circ$. В первых трех статьях данной серии [1-3] приведены объекты полосы $\delta = +39^\circ$ и первой половины полосы $\delta = +43^\circ$.

FBS покрывает наибольшую площадь среди всех аналогичных обзоров и поэтому представляет особый интерес для проведения наиболее полной статистики разных объектов. Напомним, что параллельно проводится и обзор звезд поздних спектральных классов, в частности, углеродных звезд. В FBS объекты выявляются спектральным методом, что имеет ряд преимуществ перед цветовыми (колориметрическими) методами. Низкодисперсионный спектр позволяет выделять объекты по распределению энергии в спектре, а также учитывать наличие абсорбционных и (или) эмиссионных деталей. Вторая часть FBS нацелена на открытие новых квазаров, белых карликов, субкарликов, а также других интересных голубых звездных объектов.

Описание второй части FBS, методика отбора и принципы предварительной классификации объектов приведены в [1]. Сравнение FBS с другими обзорами голубых звездных объектов и некоторые предварительные ваключения, а также обсуждение классификации авторов и её сопоставление с общепринятой классификацией приведены в [2]. В данной работе сделана попытка создать подвыборки объектов FBS для целенаправленного поиска QSO, WD и sd.

2. Список объектов. В табл. 1 приведен список 106 голубых звездных объектов, обнаруженных в исследуемой полосе. В последовательных столбцах табл. 1 приведены: 1—номер объекта FBS; 2—обозначение согласно рекомендации подкомиссии № 28 МАС; 3,4—экваториальные координаты для эпохи 1950.0 г. с точностью до 0.1^m (α) и 1 (δ); 5 видимая звездная величина с точностью до 0.5^m; 6—тип объекта согласно нашей предварительной классификации; 7—литература, если объект входит в списки других авторов.

	Название	Koop,	ARHATM		10 A 10 A 10	
Ne	FBS	a1950	õ1950	m _a	Тио	Антература
1	- 2	3 4		5	6	· 7
324	1336-+446	13 ^h 36 ^m _. 6	+44°39′	17 ^m	N2a =	
325	1338-+416	13 38.9	+41 38	16	B1	[6]
326	1339-+420	13 39.1	+42 03	17	Nlei	
327	1342-+443	13 42.4	+44 24	16	B1	[6]
328	1348 + 442	13 48.3	+44 13	16.5	Bl	[6], [7]
329	1352-+451	13 52.8	+45 08	17	N2a :	
330	1359+439	13 59.6	+43 56	14	B1	[6], [7]
S 31	1401-438	14 01.9	+43 49	16.5	Bla	[7], [8]
332	1402-+436	14 02.6	+43 41	15	NI	[7], [8]
333	1402-+416	14 02.8	+41 37	17	NI	[7]
334	1410+425	14 10.1	+42 30	16.5	B2	[6], [7]
335	1411-+442	14 11.8	-+44 14	15	NI	[6], [7], [8]
336	1413+420A	14 13.0	+42 03	14.5	Blat	
337	1413+420B	14 13.0	+42 03	14.5	B2	[6], [7]
338	1422+433	14 22.9	+42 23	17	NI	-
339	1430427	14 30.6	+42 43	14.5	Bi	[6]
340	1449+440	14 49.6	+44 06	16	NI	
341	1450-+432	14 50.4	+43 14	14.5	BI	[6]
342	1453+445	14 53.8	+44 30	15.5	B2	
343	1458+422	14 58.5	+12 18	13.5	BI	[6]
344	1459-415	14 59.3	+41 33	13	BI	[6]
345	1501+425	15 01.9	+42 33	15	BI	161
346	1508- -443	15 08.2	+44 19	14.5	BI	161

ГОЛУБЫЕ ЗВЕЗДНЫЕ ОБЪЕКТЫ FBS

Таблица 1

ГОЛУБЫЕ ЗВЕЗДНЫЕ ОБЪЕКТЫ. IV

T (1	()
I aDAUUA /	ふうりつき いちた そうしじしん

1	2	3	4	5	6	7
347	1511+447	15 ^h 11 ^m 2	+44°44′	15.5	Blas	[6]
348	1513-+ 442	15 13.0	+44 13	15.5	B1	[6]
349	1514 +421	15 14.5	+42 10	16	B1	[6]
350	1516- -424	15 16.1		14	B2	1. 1. 1.
351	1520- -447	15 20.6		17	B2	[6]
352	1524438	15 24.2	+43 52	15.5	B2	[6]
353	1525+422	15 25.3	+42 14	16	Bla	[6]
354	1526+440	15 26.3	+44 01	15.5	BI	[6]
355	1526- -427	15 26.4	+42 43	15	NI	1.
356	1529 427	15 29.7	-+ 42 43	16	Bla	
357	1530-+-431	15 30.3	+42 08	16	B2	[6],
358	1531+447	15 \$1.6	+44 45	15.5	NI	[6]
359	1539-+441	15 39.1	+44 19	16	B2	[6]
360	1557+448	15 57.2	+44 49	16.5	deı	
361	1558-+-449	15 58.3		16	B2	[6]
362	1603- -432	16 03.6	+43 13	15	BI	[6]
363	1606 + 424	16 06.8	+42 29	16.5	B2	100.000
364	1607+439	16 07.9	+43 54	16	sleı	
365	1608+419	16 C8.4	+41 58	16.5	B2	[6]
366	1608+439	16 08.9	+43 55	17	N2	
367	1608+443	16 08.9	+44 18	15	BI	[6]
368	1612+436	16 12.2	+43 40	16.5	BI	[6]
369	1613425	16 13.2	+42 35	14.5	BI	[0]
370	1615+413	16 15.9	+41 20	16.5	B2	[0]
371	1618 424	16 18.2	+42 25	16.5	N2c J	
372	1630+448	16 30.8	+41 49	16	s2	100
373	1635+413	16 35.5	+41 22	14	N2	[0]
374	1636+428	16 36.5	+42 51	16	BI	[0]
375	1642+413	16 42.1	+41 22	16	N2	[0]
376	165 8 440	16 58.3	+44 05	15	B1	[0]
377	1658+444	16 58.9	+44 28	15.5	N2	[0]
378	1704+441	17 04.9	+44 07	16	N3	[0]
379	1715+424	17 15.8	+42 29	12	B1	161
380	1716+426	17 16.5	+42 37	13.5	B2 .	[0]
381	1717+413	17 17.0	+41 19	14	N1	[0]
382	1734+422	17 34.3	+42 15	13	Bl	101 1101
383	1737+419	17 37.0	+41 54	15	Bla:	[a], [rok
384	1741+445	17 41.2	+44 32	15	B1	
385	1743+440	17 43.4	+41 03	15	N2e :	

Таблица 1 (продолж

			and the second			
1	2	3	4	5	6	7
386	1745+420	17 ^h 45 ^m 0	+42°02′	13	B2	
387	1745 + 437	17 45.4	+43 47	13	B1	
388	1755+414	17 55.1	+41 26	13 -	B1	
389	1756+441	17 56.2	+44 11	13.5	B2	
390	1801-431	18 01.6	+43 11	13	B2a	
391	1804 + 439	18 04.2	+ 43 59	13	B2	
392	1807+437	18 07.2	⊣-43 47	14.5	B3a :	
393	1812+424	18 12.5	+42 29	13.5	BI	
394	1822414	18 22.3	+41 28	14.5	BI	
395	1833-+447	18 33.4	-+44 47	15.5	Bla	
396	1833+434	18 33.7	+43 25	15	B2	
397	1836+439	18 36.8	-+-43 55	14.5	B2	
398	1850+443	18 50.9	+44 19	11	BI	
399	1858-411	18 58.8	+41 11	13.5	BI	
400	1903+432	19 03.5	+43 14	14.5	BI	
401	1907425	19 07.2	+ 2 34	14	BI	
402	2149+425	21 49.1	-+ :32	13.5	B1	
403	2156+411	21 56.9	+41 09	16	Bla:	
404	2202 + 436	22 02.3	+43 40	13	B1	
405	2212+421	22 12.5	+42 08	13.5	B2	
406	2217 + 413	22 17.9		14.5	B2	
-407	2231+448	22 31.4	+44 50	12.5	Bl	P.,
408	2241 447	22 41.4	+44 42	13	B1	
409	2246-414	22 46.9		16	B2	
410	2247+436	22 47.9	+43 38	14	B1	
411	2248+446	22 48.4	+44 41	16	N2e :	
412	2249+446	22 49.9	+44 41	13	B1	
413	2250+431	22 50.4	+43 09	13	BI	
414	2258+430	22 58.1	+43 00	13.5	BI	
415	2301÷415	23 01.6	+41 33	11	BI	
416	2302+427	23 02.7		16	B2	
417	2304440	23 04.2	+44 02	13.5	BI	
418	2308+425	23 08.4	+42 34	13.5	BI	
419	2310 +421	23 10.3	+42 11	13	Ble :	
420	2311 - 441	23 11.5	+44 07	14.5	B2	
421	2314-+420	23 14.2	+42 05	13	B2	
422	2315-+443	23 15.8	+44 20	17	N20 :	
423	2320+417	23 20.0	+41 45	13	B2	
424	2323+431	23 23.7	+43 10	15.5	B2	
						5

КАРТЫ ОТОЖДЕСТВЛЕНИЯ Размеры II'×II'. Север сверху, восток слева (в голубых лучах).

۳.

ГОЛУБЫЕ ЗВЕЗДНЫЕ ОБЪЕКТЫ. IV

					A dowing a	(UNUNNALITAC)
1	2	3	4	5	6	7
425	2323- -421	23 ^h 23 ^m	+42°08'	13.5	BI	
426	2335-434	23 35.1	+43 30	16	B2	
427	2340 + 422	23 40.9	+ 42 17	15	N3e :	
428	2342+432	23 42.5	+43 15	13.5	B1	
429	2348 409	23 48.3	+40 58	15	B3	1.5.10

Экваториальные координаты определялись по картам Паломарского обзора неба с помощью опорных координатных сеток с использованием точного масштаба по α для данного склонения. Оценка звездных величин выполнена на голубых картах Паломарского обзора на основе калибровки зависимости «диаметр изображения-звездная величина» согласно [4]. Основы классификации объектов приведены в [1]. Напомним, что в нашей классификации тип В обозначает объекты, у которых синяя часть спектра интенсивнее красной, а тип N-объекты, у которых интенсивности обеих частей примерно равны. Индексы 1, 2 и 3 показываю г соотношение длин сине-фиолетовой и красно-желтой частей спектра в убывающем порядке. Индексы «а» и «е» показывают наличие соответственно абсорбционных и эмиссионных линий (деталей) в низкодисперсионном опектре. Знак «:» ставится в случае неуверенности этих данных. В случае протяженных объектов использована классификация, предложенная Б. Е. Маркаряном в 1967 г. [5]. В последней графе приводится идентификация объектов. Если объект имеется в списках других обзоров, приводится литература с данным обзором: [6]-каталог Паломара-Грина (PG), [7]-обзор Паломара-Бергера (PB), [8]-обзор Кейза (CSO), [9]-обзор Джикласа и др. (GD), [10]-списки Эггена-Гринстейна (EG). Приводятся также карты отождествления для всех новых объектов табл. 1 (всего 64 карты), отпечатанные с голубых карт Паломарского обзора неба.

3. Создание подвыборок объектов FBS с помощью предварительной классификации. В четырех списках обзора приводится всего 429 голуобых звездных объектов. Из них 147 имеют общепринятую спектральную классификацию, следовательно, для них можно сопоставить известный класс объекта с типом предварительной классификации авторов. Распределение объектов по типам и процентное соотношение объектов с известным и неизвестным спектром показано в табл. 2. Из табл. 2 видно, что у объектов типа В чаще отмечается абсорбция, тогда как у объектов типа N—наоборот, чаще отмечается вмиссия. Это связано с тем, что объекты типа В в основном являются звездами, а среди объектов типа N чаще встречаются незвездные объекты (в основном кназары).

Г. В. АБРАМЯН И ДР.

Таблица 2

T	Bcero	Втон	ARCY0	С известным споятров		
Тви	объектов	с эмиссией	с абсорбцией	K-B0	%	
BI	186	2	30	75	40	
B2	125	2	28	39	31	
B3	24	-	5	3.	13	
NI	46	14	. 5	15	33	
N2	32	8	8	10	31	
N3	13	5	2	5	38	
Gal.	3	2				
Bcero	429	33	78	147	34	

РАСПРЕДЕЛЕНИЕ ГОЛУБЫХ ЗВЕЗДНЫХ ОБЪЕКТОВ FBS ПО ТИПАМ

В табл. 3 приведено сопоставление предварительной классификации авторов с общепринятой спектральной классификацией. Выделим группы (подвыборки) объектов с неизвестным спектром для поиска различных типов объектов.

Таблица З

Тип	HBB	sd	WD	CV	Bin	PNN	QSO	Sey	Bcero
BI +BIe	1	37	18	2	3	1	1	-	63
BIa	1	1	10	-	-	-		_	12
B2+B2e	1	14	11		2		2	I	31
B2a	_	1	6	_	1	- 1	· _ ·	_	8
B3		_	2			-		-	2
B3a	-	_	. 1	_		1 -	22-2		1
NI+NIa	-	3	1	1		_	7		12
NIe	-	_	1	-	_	.1	1	-	3
N2-+-N2a	1	3	3	-	_	-	3	5 <u>-</u> -	10
N3+N3a		2	2	-	-				4
N3e	-	-	-	-		-	. 1	-	1
Bcero	4	61	55	3	6	2	15	ľ	147

СОПОСТАВЛЕНИЕ ПРЕДВАРИТЕЛЬНОЙ И ОБЩЕПРИНЯТОЙ КЛАССИФИКАЦИЙ

3.1) Квазары. В нашей классификации квазары в основном классифицируются как N-объекты (из 15 известных квазаров—12, из них 2—с индексом «е»), чаще—N1 (8 квазаров). Из трех квазаров, классифицированных как B-объекты, один имеет индекс «е». Следовательно, можно создать подвыборку из объектов FBS для целенаправленного поиска QSO. Из всех известных N-объектов 40% составляют квазары (12 из 30), а среди N1-объектов—53% (среди N2 и N3—всего 27%). Среди объектов с неизвестным спектром у нас есть 61 объект, классифицированный как N (из них 31—N1). Среди них вероятны квазары. Из B-объектов с неизвестным спектром 3 имеют признак эмиссии. Среди них также можно ожидать QSO. Таким образом, 64 объекта FBS (61—N и 3—В с эмиссией) составляют подвыборку кандидатов в QSO. 34 объекта (31—N1 и 3—В с эмиссией) составляют узкую подвыборку кандидатов в QSO.

3.2) Белые карлики. Все 3 белых карлика класса DB классифицированы как В1, но их немного для какого-либо заключения. Для поиска DA-карликов надо выделять объекты B1 (ранние подклассы DA) и B2, ВЗ (поздние подклассы DA). Почти половина DA-карликов нами классифицирована с индексом «а» и «а:». Из 50 DA 44 оказались объектами типа В и только 6-N (в том числе 3-с индексом «а»). DA-карлики надо выделять в основном по признаку абсорбции, а также среди всех В-объектов. Среди В-объектов (всего 117 известных) белыми карликами оказались 44 (38%), а среди В2 и В3 (всего 42 известных)-20 (48%). Это связано с тем, что большинство объектов В1 оказывается субкарликами. Из объектов с неизвестным спектром в 4-х списках есть 54 с индексом «а» (подавляющее большинство их-83%-должны быть DA). Остальные объекты В также входят в подвыборку кандидатов в белые карлики (всего 176 объектов). 137 объектов (54-с индексом «а» и 83-В2 и В3) составляют узкую подвыборку кандидатов в белые карлики. Отметим, что в FBS обнаруживаются в основном DA-карлики ранних подклассов (оказалось всего несколько DA4, 1-DA5 и 1-DA6, классифицированных как ВЗа и N3a). С целью обнаружения белых карликов более поздних подклассов и классов (т. е. более холодных карликов) можно выделять и объекты без УФ-избытка (с менее длинным и интенсивным голубым хвостом спектра) с признаком абсорбции. Низкодисперсионный призменный спектр, по-видимому, поэволяет обнаруживать уширенные бальмеровские линии с большой вероятностью.

Два DC-карлика классифицированы как B2 и N3, и ввиду малогоколичества данных рано делать какие-либо заключения.

3.3). Субкарлики. Большинство субкарликов классифицируется как В1 (средн sdO и sdB-O-71% и средн sdB-58%). Таким образом, субкарлики надо искать в основном среди объектов В1. Много субкарликов также среди В2 без абсорбции (14 из 31, т. с. 45%). Из объектов В1 с неизвестным слектром 93 объекта не имеют индекса «а» (В1а в основном оказываются белыми карликами). Среди них ожидается 59% субкарликов. Эти 93 объекта составляют узкую подвыборку для поиска субкарликов. Более общирная подвыборка включает также объекты В2 без абсорбции (всего 66 объектов). Таким образом, субкарлики надо искать среди объектов В1 и В2 без признака абсорбции (всего 159 объектов).

3.4) Дригие объекты. Известных объектов HBB, CV, Bin, PNN и Sey в наших 4-х списках очень мало (всех вместе-всего 16) и о коитериях их поиска сейчас что-либо сказать крайне сложно. Можно лишь утвеождать, что PNN должны проявлять эмиссию на низкодисперсионном спектре (в одном случае из двух она заметна), а CV, вероятно, классифицируются как объекты ранних подтипов. т. е. В1 и N1 (все три объекта имеют индекс 1).

Бюраканская астрофизическая обсерваторая, -Специальная астрофизическая обсерватория АН СССР

THE FIRST BYURAKAN SPECTRAL SKY SURVEY. BLUE STELLAR OBJECTS.IV. ZONE $+41^{\circ} \le \delta \le +45^{\circ}$.

H. V. ABRAHAMIAN, V. A. LIPOVETSKY, A. M. MICKAELIAN, I. A. STEPANIAN

The fourth list of blue stellar objects of the second part of the First Byurakan spectral sky survey is given. The objects are situated in the zone with $+41^{\circ}$, $+45^{\circ}$, $13^{h}30^{m} \le \alpha \le 19^{h}10^{m}$, and $21^{h}50^{m} \le \alpha \le \le 24^{h}00^{m}$. The list contains data for 106 blue stellar objects among which 64 are new. A preliminary classification of objects is made. A comparison of the au. ...rs' preliminary classification with the generally used spectral classific ion is carried out and subsamples of FBS objects are singled out the searching QSO, WD and sd.

ΛΗΤΕΡΑΤΥΡΑ

- 1. Г. В. Абранян, В. А. Липовенкий, Дж. А. Степанян. Астрофизика, 32, 29, 1990.
- .2. Г. В. Абрамян, В. А. Липовецкий, А. М. Микаелян, Дж. А. Степанян, Астрофизика, 33, 213, 1990.
- З. Г. В. Абрамян, В. А. Липовецкий, А. М. Микаелян, Дж. А. Степанян, Астрофизика, 33, 345, 1990.
- 4. P. G. Hayman, C. Hazard, N. Sanlit, Mon. Notic. Roy. Astron. Soc., 189, 853. 1979.
- 5. Б. Е. Маркарян, Астрофизика, 3, 55, 1967.
- 6. R. F. Green. M. Schmidt, / Liebert, Astrophys. J. Suppl. Ser., 61, 305, 1986.
- 7. J. Berger, A-M. Fringant, Astron. and Astrophys. Suppl. Ser., 28, 123, 1977.

- P. Fesch, N. Sandulesk, Astrophys. J. Suppl. Ssr., 70, 163, 1987.
 H. L. Giclas, R. Burnham, Jr., N. G. Thomas, Lowell Proper Motion Survey, Lowell Obserw. Bull., No 166, v. 8, 6, 157, 1980.
 J. L. Greenstein, Astrophys. J., 158, 281, 1969.

АСТРОФИЗИКА

TOM 34

ФЕВРАЛЬ, 1991

выпуск 1

УДК: 524.38—43

О ФИЗИЧЕСКОЙ ПРИРОДЕ БАРСТЕРОВ. 1

Г. С. СААКЯН, Г. П. АЛОДЖАНЦ, А. В. САРКИСЯН

Поступила 24 декабря 1990

Исследовано явление вспышех барстеров. В компактной двойной системе, состоящей из нейтронной и обычной звезд, характерной величиной является темп аккреции. M_R ≈ 1.3 · 10¹⁸ г/с, соответствующий эддингтоновскому пределу светимости L_E. Когда темп аккрецен M M R, мы вмеем дело с источником мягкого рентгеновского нэлучения, который при достаточно сильном маниитном поле проявляет себя как рентгоновский пульсар. Барстеры-это объекты с $M \ge M_R$ н. по-видимому, сравнительнослабым магнитным полем, в, наконец, в объектах с релятивистскими струями (напримор. SS 433) M>M_R. Показано, что в барстерах температура нейтрозной. звезды практически одна и та же от центра до се поверхности, где происходит остановка аккреционного потока, пончем $T \approx 2.10^7$. Колебания температуры около втого среднего значения порядка $\Lambda T \approx 10^{-3} T$. Показано, что вспышки обусловлены тепловым состояниюм адровного ядра, являющимся опромным резорвуаром тепловой энергии нейтроимой звезды. Именно небольшие колебания тепловой энсргии этого резсовувод служат пончиной остулярных вспышех. Перед вспышкой тепловая энергия адрожного ядра достигает овоего наябольшего значения, при этом светяжность L становется чуть больше L_R. За время вспышки аккреция на нейтронную звезду приостанавливается, а потери возрастают: адронное ядро расходует небольшую часть своей тепловой энергии на совершение работы при выбросе масс и значительно меньше на излучение. Вспышка прекращается, и аккреция возобновляется как только L становится меньше L_E. После этого до определенного времени $t = \tau_1 (\tau_1 - время спокой$ ного лериода жизни барстера) часть выделенной по поверхности ажкреционной энергии передается вовнутрь звезды на разопрев се адронного ядра, но с течением времени поступающей к адронному ядру поток энергии уменьшается и когда L достигает эначения L_R, происходит новая вспышка, затем история повторяется. В барстерах вейтринные лотери энергии не играют сколько-нибудь заметной роли.

1. Введение. Нейтронные звезды представляют исключительный научный интерес не только из-за того, что являются звездными конфигурациями из ядерного вещества и обладают мощным магнитным полем, но и не в меньшей мере благодаря своим уникальным астрофизическим проявлениям. Так, изолированные, достаточно быстро вращающиеся нейтронные звезды проявляют себя как пульсары, излучающие направленный пульсирующий лоток радионзлучения. Вторым важным типом

интенсивно исследуемых объектов является двойная система, один из компонентов которой-нейтрочная звезда. Характерной особенностью втих объектов является непрерывное перстехание масс от заполняющего свою полость Роша рыхлого компонента (обычная звезда) к сверхилотному компоненту, то есть аккреция вещества на нейтронную звезду. Аккоеционный лоток вещества при своем торможении разогревает тонкий поверхностный слой нейтронной звезды, и затем выделенная тепловая энергия излучается в виде чернотельного мягкого рентгеновското излучения. При этом, в зависимости от темла аккреции, ориентации оси магнитного диполя относительно оси вращения нейтронной звезды и величины магнитной индукции, тесная двойная система проявляет себя каж рентгеновский пульсар, барстер, объект с релятивистскими струями (например, SS 433) или же просто как точечный источник рентгеновского излучения. В течение последних двух десятилетий опубликовано много работ, посвященных проблеме аккрецирующих нейтронных эвезд. Мы не имеем воэможности привести здесь их полный список. Отметим лишь, что ссылки на многие из них можно найти в [1-3].

Нас интересует эдесь проблема барстеров, теоретическому исследованию которой посвящены работы [2-12]. В втих работах предложен интересный механизм возникновения рентгеновских волышек в аккрециоующих нейтронных звездах и разработана соответствующая теория. Предполагается, что по ходу аккреции вещества, в промежутке между вспышками, на глубине, где $\rho \approx 10^8 \ r/cm^3$. происходит накопление гелия (при больших плотностях ядра гелия не могут существовать, так как они быстро исчезают в ликноядерных реакциях), который имеется в падающем потоке и возможно отчасти образуется в процессах термоядерного синтеза водорода в верхнем слое. Далее считается, что когда плотность числа ядер гелия достигает определенного критического значения, при температуре T ≈ 5 · 10⁸ (достижение такой высокой температуры считается возможным благодаря термоядерному синтезу водорода в тех же местах) происходит внезалный мгновенный синтез ядео этого эдемента, в реакциях так называемого тройного столкновения с-частиц [13]. и в результате этого в виде взрыва выделяется то количество энергии, которое наблюдается в вспышках. Однако нам представляется более правдоподобным, что на поверхности нейтронной звезды ни коим обравом не могут возникнуть те экстремальные условия, которые необходимы для вэрывного сгорания гелия в тройных столжновениях его ядер. Мы считаем, что невоэможны ни столь высокие температуры, ни накопление гелия. Скорее всего аккреционный поток после остановки на поверхности продолжает медленно всасываться вглубь звезды. При этом часть водорода ло пути конечно подвергается термоядерному синтезу, но, по-ви-Анмому, основная его часть достигает слоя с р(r₂)≈3·10⁷ г/см, где

протоны распадаются на нейтроны, которые сразу же поглощаются аточными ядрами. Что касается гелия (в том числе и той части его, которая образуется в процессах термоядерного синтеза водорода), то он, просачиваясь под поверхность, тде $\rho(r_1) \approx 10^8 \text{ г/см}^3$, исчезает в пикноядерных реакциях синтеза [14]. Мы придерживаемся той точки зрения, что причину вспышек барстеров следует искать в тепловом состоянии нейтронной звезды. Подавляющая часть тепловой внергии звезды накоплена в её адронном ядре, которое является тепловым резервуаром, управляющим её состоянием. Ниже мы убедимся, что вопышки в барстерах являются откликами на те небольшие изменения температуры, которые происходят в адронном ядре по ходу аккреции.

2. Основные уравнения. Выпишем те уравнения, которые определяют внутреннее строение, параметры и тепловое состояние нейтронной эвезды, находящейся в квазистационарном режиме аккреция [15, 16]:

$$\frac{dP}{dr} = -\frac{G(\rho c^2 + P)}{c^2 r^2 (1 - 2 G u/c^2 r)} \left(u + \frac{4\pi}{c^2} P r^2\right), \qquad (1)$$

$$\frac{du}{dr} = 4 \pi \rho r^2, \qquad (2)$$

$$\frac{dv}{dr} = -\frac{2}{\rho c^3 + P} \frac{dP}{dr},$$
(3)

$$\frac{\partial (Le')}{\partial r} = \frac{4\pi r^2 e'}{(1-2 Gu/c^3 r)^{1/2}} \left(\rho_0 s_i - \rho_0 s_y - c_v \frac{\partial T}{\partial x} \right), \qquad (4)$$

$$\frac{\partial (Te^{\nu/2})}{\partial r} = -\frac{3\chi_{\rho_0} Le^{\nu/2}}{64\pi\sigma T^3 r^2 (1-2 Gu/c^2 r)^{1/2}}.$$
 (5)

Здесь за основу принята шварцшильдовская метрика,

$$ds^{2} = e^{r}c^{2}dt^{2} - \frac{dr^{2}}{1-2Gu/c^{2}r} - r^{2}(d\theta^{2} + \sin^{2}\theta \, d\varphi^{2}),$$

P—давление, ρc^2 —плотность полной энергии, включающая в себя энергию покоя частиц, кинетическую энергию, ядерную и гравитационную энергив взаимодействий, $\rho_0(r) = \sum m_k n_k (r)$ —собственная плотность массы покоя, n_k —собственная плотность частиц

$$\int n_{\star} dV_{p} = N_{\star}, \ dV_{p} = dV (1 - 2 \, Gu/c^{3}r)^{-1/2},$$

u(r)—с определенной оговоркой является накопленной массой, c_{p} —собственная теплоемкость единицы объема ($c_{v} = cn$, c—теплоемкость на одну частяцу), $\rho_{0}s_{l}$ —собственная плотность энергии источника (энергия, выделяемая в единице объема за единицу собственного

$$E_l = \int p_0 e_l \, dV_p$$

полная энергия, выделяемая в единицу времени, рось-собственная мощность нейтоинных потерь энергии:

$$E_{v} = \int \rho_0 \varepsilon_{v} dV_{\rho}$$

полная энергия нейтринных потерь за 1 с (нейтринная светимость ввезды), $\chi(r)$ — коэффициент непроврачности, наконец, т — собственное время.

Граничные и начальные условия к уравнениям (1)—(5):

$$r = 0, P(0) = P_c, u(0) = 0,$$

$$v(R) = \ln(1 - r_{e}/R), \ T(0, 0), \ L(0, 0) = 0,$$
(6)

воемени)

где R—раднус звезды. Переменные P, u, v зависят только от расстояния до центра r, а T и L кроме r зависят также от времени τ .

В определенных экстремальных случаях у самой поверхности звезды возникает необходимость учета в уравнении (1) также вклада давления излучения. Но независимо от того, в каком тепловом состоянии находится нейтронная звезда, первые три уравнения, по сути дела, не переплетаются с двумя последними, и поэтому можно их проинтегрировать отдельно. Иначе говоря, распределение масс в звезде и, следовательно, масса, радиус и момент инерции нейтронной звезды заметным образом не подвержены влиянию температуры. В отличие от этого уравнения (4) и (5) существенным образом связаны с (1)—(3) и их интегрирование возможно только совместно с ними.

3. Материальные параметры. Мы придеоживаемся той точки зрения. что пои переходе от Ае-оболочки (где плазма состоит из атомных ядео и вырожденного газа электронов) нейтронной звезды к её адронному ядоу плотность массы изменяется от значения 5.8.1011 г/см3 к значению 2.85.10¹⁴ г/см³, т. е. на поверхности их раздела испытывает скачок примерно в 500 раз, при неизменном давлении $P = 6.4 \cdot 10^{29}$ врг/см³, сравнительно тонкая оболочка из Ас-плазмы является как бы атмосферой для адронного шара, в котором заключена почти вся масса звезды. У стабильных нейтронных конфигураций в центре кварков нет, адронное ядоо при центральных давлениях $6.5 \cdot 10^{29} < P(0) \leq 6 \cdot 10^{33}$ вог/см³. состоит только из ядерного вещества (нуклоны, л-мезоны и сравнительно небольшая примесь электронов), при $6 \cdot 10^{33} \leq P(0) \leq 4 \cdot 10^{35}$ вог/см³ в центральной области из адронного вещества (нуклоны, гипероны, резонансные частицы, п--мезоны и небольшая примесь электронов), а в наружном слое из ядерной материи. Под ядерной материей здесь подравумевается вырожденная нлазма при плотности $\rho = 2.8 \cdot 10^{14}$ г/см³. Она

характеризуется тем, что обладает высокой степенью несжимаемости (жидкая фаза при $P \lesssim 6 \cdot 10^{33}$ г/см³) и состоит из смеси нейтронов, протонов, π^- — мезонов с примерно одинаковой концентрацией с небольшой примесью электронов:

$$y_n = 0.591, y_s = 0.409, y_s = 0.4, y_s = 0.0035,$$

где $g_k = n_k/n$, $n = n_n + n_p = 1.7 \cdot 10^{38}$ см⁻³ — плотность числа вукло нов [17, 18, 19]. Таким образом, в вырожденной плазме нейтронных звезд ни при каких плотностях не существует ситуации с преобладающим числом нейтронов. В связи с этим уместно напомнить, что название этих объектов условное и не соответствует реальной картине, существующей в них. Ниже мы пользуемся уравнением состояния и эначениями материальных параметров, соответствующих именно этому представлению. Отметим, однако, что во многих работах по физике нейтронных звезд придерживаются представления о том, что переход от Ae-фазы к фазе ядерного вещество состоит преимущественно из нейтронов. Заметим однако, что упомянутое различие представлений о сверхплотной вырожденной плазме не так уж сильно сказывается на значениях интегральных параметров нейтронных конфигураций.

Для мощности нейтринных потерь энергии для ядерного вещества с учетом роли пионного конденсата мы пользуемся формулой

$$e_{1} = 10^{-63} T^{8} \text{ spr/r} \cdot c,$$
 (7)

полученной в работе [20]. По известной причине вклад Ас-оболочки в нейтринную светимость звезды весьма мал.

Мощность источника энергии, обусловленная аккрецией вещества на нейтронную звезду, описывается следующей удобной формулой:

$$\varepsilon_{l}(r) = \frac{\dot{M}c^{2}\sqrt{1-r_{g}/R}}{4\pi\rho_{0}(R)R^{2}} \left(\frac{1}{\sqrt{1-r_{g}/R}}-1\right)\hat{c}(r-R) + \frac{1}{\sqrt{1-r_{g}/R}} \left(\frac{1}{\sqrt{1-$$

+
$$\frac{X_H M b_1 \sqrt{1-r_g/r_1}}{4\pi m_p \rho_0 (r_2) r_2^2} \delta(r-r_1) + \frac{M b_1 \sqrt{1-r_g/r_1}}{4\pi m_p \rho_0 (r_1) r_1^2} \delta(r-r_1).$$

Здесь г — гравитационный радиус звезды, $M = \frac{dM}{dt}$ — темп аккреции. Это выражение написано в соответствии с обсуждением, проведенным в [14]. Первое слагаемое в (8) — кинетическая внергия аккреционного потока, выделяемая при его торможении на поверхности звезды, где плотность порядка нескольких г/см³ [21]. Второе слагаемое — энергия, выделяемая при распаде протонов и с последующим поглощением нейтронов ядрами под поверхностью $r=r_2$, где плотность $\rho(r_2)$ 3.2 · 10⁷ г/см³, $b_2=7.13$ МъВ, X_H —массовая концентрация водорода в аккреционном потоке. Ниже предполагается, что аккреционный лоток в основном состоит из водорода и телия с массовыми концентрациями $X_H=0.64$. $X_{He}=0.34$, а доля остальных элементов составляет $X_z=0.02$. Последнее слагаемое представляет собой энергию, выделяющуюся в пикноядерных реакциях под поверхностью $r = r_1$, где плотность $\rho(r_1) \approx$ $\approx 10^8$ г/см³, $b_1=1.63$ МъВ. В (8) б-функции введены ради удобства.

Теплоемкость единицы объема вырожденного газа частиц со спином 1/2 равна

$$c_{p} = \frac{cm^{2}k^{2}x\left(1+x^{2}\right)^{1/2}}{3n^{3}}T,$$
(9)

где m—масса частиц, x—граничный импульс Ферми в единицах mc. Используя эту формулу, можно оценить теплоемкость адронного ядра звезды. Прежде всего заметим, что здесь вклад электронов пренебрежимо мал, так как плотность их числа на несколько порядков меньше плотности числа барионов. Не существенна также и роль π -мезонного конденсата, поскольку для его теплового воэбуждения требуются чрезвычайно высокие температуры. Таким образом, тепловая энергия адронного ядра определяется в основном барионами. Адронная плазма имеет весьма сложный химический состав. Поэтому фактически речь может идти только об оценках. С этой целью мы рассматриваем адронную плазму как барионный газ, состоящий из частиц со средней массой $m \approx 2.3 \cdot 10^{-24}$ г, что является неплохим приближением для рассматриваемых здесь вопросов. Теперь мы можем использовать формулу (9) для оценки удельной теплоемкости такого вещества. Учитывая, что здесь $x \ll 1$, находим

$$c_b \approx \frac{k^3 m}{\hbar^2} n^{1/3} T \approx \frac{k^2 m^{2/3}}{\hbar^2} \rho_0^{1/3} T \approx 3 \cdot 10^6 T \rho_0^{1/3}, \tag{10}$$

где *п*-плотность числа барионов.

Практически вся масса звезды, а следовательно и тепловая энергия ваключены в её адронном ядре, поэтому малый вклад Ас-оболочки в тепловую энергию можно не учитывать.

Перейдем к вопросу непрозрачности адронного ядра. Для сильно вырожденной плазмы доминирующим механизмом переноса энергии является теплопроводность. Обусловленный ею коэффициент непрозрачности равен

$$\chi = \frac{16 \sigma T^{s}}{3 \rho_{0} \lambda} , \qquad (11)$$

где λ коэффициент теплопроводности, для оценки которого используем элементарную формулу кинетической теории газов:

$$\lambda \approx \frac{c_v \, \overline{v^2}}{3 \, v} \, . \tag{12}$$

где c_{v} -удельная теплоемкость (единицы объема) для данного сорта частиц, v-средняя скорость их хаотического движения, v-число столкновений пробной частицы в единицу времени. При оценке величины необходимо учесть, что вследствие вырождения в столкновениях с пробной частицей принимают участие в основном только барионы (число влектронов относительно мало), с внергией в полосе шириной $\Delta e_b \approx kT$, вблизи поверхности Ферми. Число таких частиц порядка

$$\Delta n \approx \frac{3}{2} \cdot \frac{\Delta e_b}{e_b} n \approx \frac{3 \, m k \, T \, n^{1/3}}{(3 \, \pi^2)^{2/3} \, h^3}, \qquad (13)$$

 $r_{Ae} = (3\pi^2)^{2/3} \hbar^2 n^{2/3}/2m.$

Для числа столкновений электрона с барионами имеем

$$\gamma_{eb} \approx \frac{\Lambda e^4 e_e \Delta n}{c^2 P_e^3} \approx \frac{\Lambda c e^4 \Delta n}{e_{e_1}}$$
 (14)

$$\mathcal{K}_{e} \approx \frac{96 \,\Lambda_{5} \,\hbar m^{3/3} \,e^{4} \,T^{3}}{(3 \,\pi^{3})^{2/3} \,k m_{*}^{4} \,c^{6} \,\mathbf{x}_{*}^{4} \,\rho_{0}^{2/3}} \approx 3 \cdot 10^{-30} \,T^{3} / \rho_{0}^{2/3}. \tag{15}$$

Здесь $x_e = \frac{P_e}{m_e c} \approx 100$, а кулововский логариты для ультрарелятиви-

стского электронного газа $\Lambda \approx 0.5 \ln \left(\frac{\pi c \hbar}{4 e^2}\right) \approx 2.5.$

Число столкновений бариона с барионами порядка

$$v_b \approx \pi r_0^2 \overline{v_b} \Delta n, \qquad (16)$$

где $\overline{v}_b \approx (3\pi^2)^{1/3} \frac{\hbar n^{1/3}}{m}$, а $r_0 = 1.12 \, 10^{-13}$ — раднус действия ядерных сил. Используя (16), (13), (12) из (11) для непрозрачности, определяемой барионами, находим

$$\chi_b \approx \frac{32 \,\sigma \,r_0^2 \,m^{4/3} \,T^3}{3 \,\pi k \hbar \,\rho_0^{4/3}} = 4.2 \cdot 10^{-19} \frac{T^3}{\rho^{4/3}} \,. \tag{17}$$

Отношение влектронной и барионной непрозрачностей приблизительно равно

г. с. саакян и др.

$$\chi_{0}/\chi_{0} \approx 7 \cdot 10^{-12} \rho_{0}^{-2/3}$$

Для устойчивых нейтронных конфигураций плотность в пределах адронного ядра изменяется в интервале $3 \cdot 10^{14} \lesssim \rho \lesssim 2 \cdot 10^{15}$ г/см³ ($\rho_0 \lesssim \rho$) в. этом интервале $\chi_s \ll \chi_b$ поэтому непрозрачность адронной плазмы определяется электронами, т. е. формулой (15).

Приведем сводку формул непрозрачностей для вырожденной и невырожденной областей нейтронной звезды. В области адронното ядра коэффициент непрозрачности определяется формулой (15). В Ас-оболочке

$$\chi = \frac{64 \pi \sigma e^{i \hbar^{3}}}{m_{p} m_{e}^{4} c^{6} k^{2}} \left(\sum_{l} \frac{X_{l} Z_{l}^{2} (\ln 26.3 Z_{l})}{A_{l}} \right) \times \frac{1 + x^{2}}{x_{e}^{6}} T^{2} =$$

$$= 4.45 \cdot 10^{-20} \left(\sum_{l} \frac{X_{l} Z_{l}^{2}}{A_{l}} \ln 26.3 Z_{l} \right) \frac{1 + x^{2}}{x_{e}^{6}} T^{2}, \qquad (18)$$

где X_i — массовая концентрация ядра с параметрами Z_i , A_i . Если принять, что Ас-плазма в среднем состоит из ядер железа Z = 26, A = 56, то

$$\chi \approx 3.5 \cdot 10^{-18} T^2 \frac{1+x^2}{x_e^5}$$

Формула (18) взята из работ [23, 24], она непосредственно получается но вышеприведенной простой схеме с использованием формул (11) и (12) и соответствующего выражения для числа столкновений у. Далеев наружной невырожденной оболочке звезды [13]

$$\chi_{ff} \approx 3.68 \cdot 10^{22} \left(X_H + X_{He} \right) \left(1 + X_H \right) \frac{\rho}{T^{3.5}},$$
 (19)

$$\chi_{bf} \approx 4.34 \cdot 10^{25} X_s (1 + X_H) \frac{\rho}{T^{3.5}}$$
 (20)

Наконец, в области, где $\rho < 100$ г/см³ непрозрачность определяется томсоновским рассеянием

$$A_e = 0.19 \, (1 + X_H). \tag{21}$$

Примерная граница раздела вырожденной и невырожденной областей определяется соотношением

 $P(r_4) \approx 2.2 \cdot 10^3 T_7^{3/2}$

(мы сохраняем обозначения, принятые в [21]). Масса области $r > r_4$. порядка

$$\Delta M_{4} \approx 10^{15} T_{7/L_{36}}^{4}.$$

28

Для нейтронной звезды, находящейся в режиме непрерывной аккреция, химический состав области $r > r_4$ будет сходным с химическим составом падающего на поверхность звезды потока вещества.

4. О тепловом состоянии нейтронной звезды. Выберем конкретную конфигурацию нейтронной звезды [25], что позволит провести более предметное обсуждение проблемы:

$$P(0) = 3.96 \cdot 10^{34} \text{ врг/см}^3, R_0 = 11.19 \text{ км}, \qquad R = 11.73 \text{ км},$$

$$M = 2.162 \cdot 10^{33} \text{ г}, \qquad \Delta M = 3.24 \cdot 10^{-5} M_{\odot}, \quad r_g = 3.206 \text{ км},$$
(22)

где R_0 —раднус адронного ядра, ΔM —масса Ae-оболочки. Приведенному значению центрального давления соответствует плотность массы $\rho(0) = = 4.65 \cdot 10^{14} \ r/cm^3$.

Следующим важным параметром барстера является его эддингтонов ский предел светимости, который для рассматриваемой конфигурации равен

$$L_E = \frac{4\pi GM_c}{\chi_c V (1 - r_g/R_j)} = 2.04 \cdot 10^{38} \text{ spr/c.}$$
(23)

Здесь $\chi_{e} = 0.19 (1 + X_{H}) = 0.312$ —ковффициент непрозрачности для томпсоновского рассеяния в предположении, что на поверхности звезды массовая доля водорода равна 0.64. При квазистационарном режиме и в предположении, что нейтринная светимость относительно мала (это в самом деле так), для звезды с параметрами (22) соответствующий эддингтоновскому пределу светимости темп аккреции равен

$$\dot{M}_E \approx \frac{4\pi GM}{c \lambda_e \sqrt{1-r_g/R}} = 1.31 \cdot 10^{18} \, r/c.$$

Эдесь не учтен вклад ядерных реакций, происходящих в аккрецирующем веществе при $r \approx r_2$ и $r \approx r_1$, его учет приводит к небольшому уточнению M_E :

$$\dot{M}_E = 1.262 \cdot 10^{18} \,\mathrm{r/c.}$$
 (24)

Заметим, что для нейтронных звезд темп аккреции, соответствующий эддингтоновскому пределу светимости почти не зависит от массы. В этом мы убеждаемся рассматривая нерелятивистское приближение

$$\frac{4\pi GM_c}{\chi_e}\approx \frac{GMM_E}{R}$$

Отсюда

$$\dot{M}_E \approx \frac{4 \pi c R}{\chi} \approx 1.2 \cdot 10^{18} R_6 \ r/c.$$

Нейтронные звезды имеют примерно одинаковый радиус, следовательно и их предельные темпы аккреции мало отличаются друг от друга.

При постоянном темпе аккреции $M < M_0$ нейтронная звезда безусловно находится в стационарном тепловом состоянии и в зависимости от магнитного поля, проявляет себя либо ках рентгеновский лульсар (при сильном магнитном лоле), либо как компактный источник рентгеновского излучения (когда магнитное поле относительно слабое). Мы считаем, что барстеры являются объектами с $M \ge M_0$. В этом случае в нейтронной звезде устанавливается квазистационарное тепловое состояние, в котором спокойные продолжительные периоды ($\tau \sim 10^4 \div 10^5$ с) медленного нагревания прерываются короткими вспышками, сопровождаемыми выбросом определенного количества вещества и лучистой энергии, когда светимость достигая эддингтоновского предела чуть превышаег его

Для последующего, важным является понимание того очевидного обстоятельства, что за короткое время вопышки т ≈ 10 с звезда теояет лишь весьма малую часть своей тепловой энеогии, поэтому ее состояние и следовательно профиль температуры не изменяются заметным образом. Но тем не менее эти небольшие изменения поиводят к важным следствиям. Это обусловлено тем, что темп аккреции близок к его критическому значению М, вследствие чего звезда находится в метастабильном состоянии. В самом деле, как только светимость чуть превышает LE радиационная сила на поверхности превышает гравитационную. что приводит к истечению вещества от звезды и, наоборот, когда светимость спускается чуть ниже LE превалирует гравитационная сила и сраву же возобновляется процесс аккреции. Поскольку при вспышке внутоенняя энеогия звезды уменьшается, то за этот короткий промежуток воемени T (r, т) <0. В промежутке времени между вспышками звезла находится в режиме аккреции, она получает энеогию, но основная часть этой энергии излучается от поверхности и лишь её небольшая часть идет во внутрь на разогрев адрочного ядра. Звезда медленно накопляет ту небольшую энергию, которую потеряла во время вспышки, поэтому за спокойный период её жизни $T(r, \tau) > 0$. Со временем Tуменьшается, так как звезда стремится выйти на стационарное состояние, но этот процесс прерывается следующей вспышкой. Качественная картина изменения Т со временем изображена на рис. 1.

Итак, за время между вспышками (между точками С и D кривой *T*, рис. 1) температура звезды медленно растет и происходит накопление добавочной тепловой энергии, необходимой для очередной вспышки. В этой части плавного возрастания температуры адронного ядра звезды,
в качестве хорошего приближения можно принять за основу следующую аппроксимацию

Рис. 1. Кривая зависимости T от времени. Масштабы по осям-произвольные.

$$T(r, \tau) = T(r, \tau_0) \left[1 - \alpha \left(1 - \frac{\tau}{\tau_0} \right)^2 \right], \qquad (25)$$

где $\tau = t \cdot \exp(v/2)$ — собственное время, отсчитываемое с начала спокойного периода жизни барстера, α и τ0-параметры, определяющие медленный рост температуры в промежутке между вспышками. По сути дела то время выхода звезды на стационарное тепловое состояние, $a = [T(r, \tau_0) - T(r, 0)]/T(r, \tau_0) \ll 1$, в чем мы скоро убединся. У остывающих изолированных нейтронных звезд температура при движении от центра к поверхности падает, но настолько медленно, что вплоть до слоя, где снимается вырождение, она почти остается постоянной. Фактически заметное падение температуры происходит в наружном тонком слое Ас-оболочки, где плазма невырождена. В случае нейтронной звезды, находящейся в условиях непрерывной аккреции эта картина усугубляется. Ивотермичность эвезды (речь идет о сохранении произведения T · e '/2 сохраняется вплоть до поверхности, тде происходит остановка падающего потока, так что в (25) зависимость температуры от г носит сивмолический характер. Скорость изменения температуры звезд за спокойный период времени определяется формулой

$$T(r,\tau) = \frac{2\alpha}{\tau_0} \left(1 - \frac{\tau}{\tau_0} \right) T(r,\tau_0).$$
 (26)

Учитывая (7), (8), (10) и (26) уравнение переноса энертии (4) представим в следующем виде Г. С. СААКЯН И ДР.

$$\frac{d(Le^{*})}{dr} = Mc^{2} \left(\frac{1}{\sqrt{1-r_{e}/R}}-1\right) e^{*\delta(r-R)} + \frac{X_{H}Mb_{2}}{m_{p}} e^{*\delta(r-r_{2})} + \frac{Mb_{1}}{m_{p}} e^{*\delta(r-r_{1})} - (27)$$

$$0^{-\omega} \frac{4\pi\rho_{0}r^{2}T^{*}(r,\tau)e^{*}}{\sqrt{1-2}Gu/c^{2}r} - 6\cdot10^{5} \frac{a\cdot4\pi\rho_{0}^{1/3}T^{2}(r,\tau)e^{*}r^{2}}{\tau_{0}\sqrt{1-2}Gu/c^{2}r} \cdot \left(1-\frac{\tau}{\tau_{0}}\right).$$

Здесь учитывалось, что

$$TT = \frac{2\alpha}{\tau_0} \left(1 - \frac{\tau}{\tau_0} \right) \left| 1 - \alpha \left(1 - \frac{\tau}{\tau_0} \right) \right| T^2(r, \tau_0) \approx \frac{2\alpha}{\tau_0} \left(1 - \frac{\tau}{\tau_0} \right) T^2(r, \tau).$$

Проинтегрируем уравнение (27) от центра до поверлности:

$$L(\tau) = Mc^{2} \left(\frac{1}{\sqrt{1 - r_{g}/R}} - 1 \right) + (X_{H}b_{2} + b_{1})\frac{M}{m_{p}} - \frac{10^{-63}}{1 - r_{g}/R} \int_{0}^{R_{v}} \frac{4\pi \varphi_{0}r^{2}T^{8}(r, \tau)e^{v}dr}{\sqrt{1 - 2 Gu/c^{2}r}} - \frac{6 \cdot 10^{6} \left(1 - \frac{\tau}{\tau_{0}}\right)a}{(1 - r_{g}/R)\tau_{0}} \int_{0}^{R_{v}} \frac{4\pi \varphi_{0}^{1/3}r^{2}e^{v}T^{2}(r, \tau)dr}{\sqrt{1 - 2 Gu/c^{2}r}},$$
(28)

где в всрхным пределе интеграла радиус звезды мы заменили радиусом её адронного ядра R₀, ошибка, допускаемая при этом совершенно несущественна, поскольку масса Ас-оболочки на несколько порядков меньше массы адронного ядра.

Ниже необходимо иметь правильное представление о профиле температуры нейтронной звезды. Барстеры—это объекты со светимостями, близкими к эддингтоновскому пределу (23), поэтому для них температура на поверхности звезды равна

$$T_{R} = \left(\frac{L_{E}}{4 \pi \sigma R^{2}}\right)^{1/4} = 2.14 \cdot 10^{7}.$$
 (29)

Это число относится к конфигурации с параметрами, приведенными в (22). Примерно такая же поверхностная температура и у других барстерных нейтронных звезд. Из-за высокой теплопроводимости вырожденного вещества (в условиях квазистационарного режима аккреции), с точностью до релятивистского множителя $\exp(v/2)$, такая же температура будет и в адронном ядре. Итак, для темпов аккреции, соответствующей эддингтоновскому пределу светимости, характерное значение температуры нейтронной звезды с массой $M \approx M_{\odot}$, приблизительно равно 2.10⁷. При таких температурах нейтринная светимость звезды на много порядков меньше её фотосветимости:

$$L_{1} \approx 10^{-63} M T^{\circ} \approx 5 \cdot 10^{20} M M_{\odot}.$$
 (30)

Как видим в Ас-оболочке нейтронной звезды температура значительно меньше той, которая требуется для протекания реакций тройного столкновения ^{*a*-} частиц.

5. Механиям вспышек в барстерах. Рассмотрим формулу светимости (28) для модели нейтронной звезды с параметрами, представленными в (22). Имеем

$$L_{28} = 1.617 \,\dot{M}_{18} - 1.785 \cdot 10^8 \cdot \frac{\alpha}{\tau_0} \cdot \left(1 - \frac{\tau}{\tau_0}\right) J_1 - 7.6 \cdot 10^{-10} J_2, \qquad (31)$$

где введены следующие обозначения:

$$J_{1} = \frac{10^{10}}{M} \int_{0}^{R_{0}} \frac{4\pi \rho_{0}^{1/_{3}} r^{2} e^{\tau} T^{2}(r,\tau) dr}{\sqrt{1 - \frac{2G \cdot u}{c^{2}r}}}$$
$$J_{2} = \frac{0.01}{M} \int_{0}^{R_{0}} \frac{4\pi \rho_{0} r^{2} e^{\tau} T^{6}(r,\tau) dr}{\sqrt{1 - 2Gu/c^{2}r}}.$$

Нетрудно убедиться, что $f_1 \approx 27_7^2 \approx 10$, $f_2 \approx 7_7^3 \approx 3$. Заметим, что $Te^{s/2} \approx const$, повтому соответствующие комбинации втого выражения можно вынести из под интегралов. Ниже в (31) член, представляющий нейтринную светимость мы опускаем, что вполне оправданное приближение для рассматриваемых здесь темпов аккреции. Итак,

$$L_{38} \approx 1.617 \, \dot{M}_{18} - 1.785 \cdot 10^{6} \, \frac{\alpha}{\tau_{0}} \left(1 - \frac{\tau}{\tau_{0}} \right) J_{1}. \tag{32}$$

С течением времени светимость звезды растет до выхода при тако на стационарный режим.

По сути дела, в уравнении (32) содержится идеология действия барстера. Так, рассмотрим ситуацию, где выполнены условия

$$.617 M > 10^{-x_0} L_E$$
, T. e. $M > M_E$, (33)

$$1.617 M - 1.785 \cdot 10^{14} \frac{a}{\tau_0} J_1 < 10^{-20} L_E .$$
 (34)

3-370

Они как раз и являются необходимыми и достаточными условиями для того, чтобы аккрецирующая нейтронная звезда работала в качестве барстера. Второе условие означает, что в момент времени == 0 (конец вспышки, начало спокойного периода барстера) светимость нейтронпой ввезды должна быть меньше своего эддингтоновского предела

$$L \approx 1.617 \cdot 10^{20} \, \dot{M} - 1.785 \cdot 10^{14} \, \frac{\alpha}{\tau_0} \, J_1 < L_E \, .$$

Это наименьшее значение снетимости нейтронной звезды, при темпах аккреции, совместимых с условнями (33) и (34).

Согласно (26), начиная с момента т=0, скорость изменения тем-T>0, это означает, пературы. что в спокойном периоде барстера имеется поток энергии от поверхности к адронному ядру, в результате чего температура звезды медленно растет. Как видно из (32) с течением времени светимость растет, и если ничего не случится, то она при ч = чо достигнет своего наибольшего значения L_{BB}≈ 1.617 M₁₈, которое больше эддингтоновского предела. Но это не происходит, ибо как только L достигает значения L_B и начинает превышать его, на повержности звезды нарушается равновесие сил, и происходит вспышка. Во время вспышки адронное ядро теряет сравнительно небольшую порцию энергии, а в спокойном периоде приобретает её и создает условие для очередной вспышки. Итак, все обстоит весьма просто: этот огромный резервуар тепловой энергии естественным образом регулирует хронологию вспышки.

Момент вспышки барстера определяется условнем $L = L_{B}$, т. е.

$$1.617 \,\dot{M}_{18} - 1.785 \cdot 10^6 \,\frac{\alpha}{\tau_0} \left(1 - \frac{\tau_1}{\tau_0}\right) J_1 = 2.04. \tag{35}$$

Этим уравнением определяется время ^т, между двумя последовательными вспышками, конечно ^т, ^с, ³а время вспышки Δ⁻ выдувается поглощающий слой вещества над поверхностью, и благодаря этому светимость несколько повышается, что приводит к некоторому уменьшению внутренней энергии звезды (адронного ядра). Однако, за этот короткий промежуток времени значительно больше энергии теряется в виде работы, совершаемой при выбросе масс от поверхности. Вспышка прекращается как только температура звезды понижается настолько, что светимость снова опускается ниже эддингтоновского предела, затем наступает спокойный период, в течение которого адронное ядро пополняет потерянную внутреннюю энергию. Из (35) получаем

$$\frac{\alpha}{\tau_0} \left(1 - \frac{\tau_1}{\tau_0} \right) f_1 = 9.06 \cdot 10^{-25} \left(\dot{M} - \dot{M}_E \right). \tag{36}$$

о физической природе Барстеров

При $M \to M_E$. $\tau_1 \to \tau_0$, т. е. прекращается поток энергии от поверхности к адронному ядру, звезда выходит на стационарный тепловой режим, но это не успевает произойти, так как до этого наступает вспышка. Учи-

тывая, что $f_1 \approx 10$, $\tau_0 \sim 10^5$, $\dot{M} - \dot{M}_E \sim 10^{18}$. и $1 - \frac{\tau_1}{\tau_0} \approx 1$ мы убеж-

даемся, что $a = \frac{\Delta T}{T} \lesssim 10^{-3}$, где ΔT – максимальное значение измене-

ния температуры.

6. Балланс энергии в промежутке между вспышками. Тепловая энергия адронного ядра равна

$$Q = \int dv_{p} \int_{0}^{T} e^{v} c_{v} dT = 1.5 \cdot 10^{6} \int_{0}^{R_{0}} \frac{4\pi \varphi_{0}^{i_{1}} T^{2}(r, \tau) e^{v} r^{2} dr}{\sqrt{1 - 2 \, Gu/c^{2} r}}, \qquad (37)$$

здесь использована формула (10) для удельной теплоемкости, и по извсстной причине вклад Ас-оболочки не учтен. Энергия Q приблизительно равна $3 \cdot 10^{43} J_1 \approx 3 \cdot 10^{44}$ эрг. За интервал времени между двумя соседними вспышками тепловая энергия нейтронной звезды возрастает на величину

$$\Delta Q = 1.5 \cdot 10^6 \int_0^{R_0} \frac{4\pi \,\rho_0^{1/3} [T^2(r, z_1) - T^2(r, o)] e^v r^2 dr}{\sqrt{1 - 2Gu/c^2 r}}$$

Учитывая (25), малость параметра а и соотношение (36), находим

$$\Delta Q = 6 \cdot 10^{6} \frac{a \tau_{1}}{\tau_{0}} \left(1 - \frac{\tau_{1}}{2\tau_{0}} \right) \int_{0}^{K_{0}} \frac{4\pi \nu_{0}^{1/3} T^{2}(r, \tau_{0}) e^{v} r^{2} dr}{\sqrt{1 - 2Gu/c^{2}r}} = 1.2 \cdot 10^{38} (\dot{M}_{18} - 1.262) \tau_{1} \frac{1 - \tau_{1}/2\tau_{0}}{1 - \tau_{1}/\tau_{0}}.$$
(38)

Здесь мы учли, что для рассматриваемой конфигурации $M_E = 1.262$. Время $\tau_1 \approx (10^4 \div 10^5)$ с, последний множитель порядка единицы, поскольку $\tau_0 > \tau_1$ (напомним, что при, $\tau_1 \to \tau_0$, $M \to M_E$), следовательно $\Delta Q \approx 2 \cdot 10^{38} \tau_1$, что примерно на три порядка превышает ту энергию $(E \sim 10^{39}$ эрг), которая выделяется в вспышке. В то время как, в соответствии с предложенным механизмом действия барстера вся энергия, накопленная за время τ_1 , должна быть израсходована во яремя вспышки. Выше мы отметим, что она в основном расходуется на совершение работы для извержения векоторого количества звездного вещества. Оценим величину массы m_b , которая выбрасывается во время вспышки, от тех мест звезды, где $L > L_E$. По порядку величин имеем

$$T = \frac{GMm_B}{R} \approx 2Q, \tag{39}$$

где ү—лоренцовый фактор для выброшенных масс. Учитывая (38) получаем

$$m_{B} \approx 10^{18} \frac{\tau_{1}}{\gamma} \left(\dot{M}_{18} - 1.262 \right) \frac{1 - \tau_{1}/2\tau_{0}}{1 - \tau_{1}/\tau_{0}} \approx 10^{18} \frac{\tau_{1}}{\gamma} \left(\dot{M}_{18} - 1.262 \right).$$
(40)

Эта масса порядка $m_B \approx 10^{23} + 10^{23}$ г.

До сих пор мы не учитывали роль магнитного поля в изучаемом явлении. Принято считать, что в барстерах магнитное поле нейтронной звезды относительно слабое, поскольку в противном случае их излучение одновременно с всплесками непременно имело бы периодически прерывающий характер, как это имеет место в рентгеновских пульсарах. Попытаемся учесть возможное влияние магнитного поля на рассматриваемый круг вопросов в предположении, что оно по сравнению с полем тульсаров заметно слабое.

Магнитосфера нейтронной звезды состоит из области альфеновской сферы, образованной замкнутыми силовыми линиями магнитного поля и узкого канала открытых силовых линий. Последняя «невозмущенная» аккреционным потоком силовая линия, замыкающаяся внутри альфеновской сферы, выходит с поверхностей магнитных шапок под полярным утлом

$$\theta_A \approx \left(\frac{R}{r_A}\right)^{1/s} \approx 0.28 \left(\frac{\dot{M}_{18}^2}{I^4_{28}} \cdot \frac{M}{M_{\odot}}\right)^{1/s} R_6^{1/s},$$

тде г_А-радиус альфеновской сферы:

$$r_A \approx 1.35 \cdot 10^7 \left(\frac{\mu_{28}^4 M_{\odot}}{\dot{M}_{16} M} \right)^{1/7},$$

а и-магнитный момент звезды. Исходящие от магнитных шапок открытые силовые линии образуют телесный угол

$$\Omega \approx \pi \vartheta_{\mathcal{A}}^2 \approx 0.23 \left(\frac{\dot{M}_{18}^2 \ M}{\mu_{2s}^4 \ M_{\odot}} \right)^{\prime \tau} \mathcal{R}_{\mathfrak{n}} \,. \tag{41}$$

Аккреционный поток в основном осуществляется в рамках этого телесного угль.

о физической природе Барстеров

Часть массы m_B, выброшенной при вспышке нейтронной звезды, повидимому, попадает в область замкнутых силовых линий, окружающих звезду. Между звездой и плазмой в окружающей её области замкнутых силовых линий, очевидно, должно существовать динамическое равновесие, ибо частицы свободно двигаются по силовым трубкам, опирающимся на поверхность звезды (под воздействием радиационной, гравитационной и центробежных сил). Другая часть, равная

$$m_{e} \approx 2 \frac{Q}{4\pi} m_{B} \approx 4 \cdot 10^{16} \left(\dot{M}_{18} - 1.262 \right) \frac{\tau_{1}}{\tilde{\iota}} R_{e} \left(\frac{\dot{M}_{18}^{2} M}{\mu_{28}^{4} M_{\odot}} \right)^{17} \approx 5 \cdot 10^{20} r \quad (42)$$

выбрасывается по открытым силовым линиям в виде диаметрально противоположных струй. Здесь, измеряя магнитный момент в единицах 10²⁸ врг/Гс, мы тем самым считаем, что магнитное поле вспыхивающей нейтронной звезды примерно на два порядка меньше, чем у пульсаров.

Теперь оценим значения параметров струи. Согласно (29) температура у дна столба, где берет свое начало струя, прибливительно равна 2.14.10⁷. Начальная скорость истечения, очевидно, должна быть порядка скорости звука

$$v_R \approx \left(\frac{\Gamma P}{\rho}\right)^{1/2} = \left(\frac{\Gamma k T}{\mu_A m_\rho}\right)^{1/2} \approx 6.7 \cdot 10^7 \text{ cm/c}_{*}$$
(43)

где $\Gamma = 5/3$ —показатель адиабаты, $\mu_A = 0.65$ —средний молекулярный вес. Начальная же плотность определяется из условия сохранения потока:

$$4\pi R^{i} \rho_{R} v_{R} \Delta \tau = m_{R}, \qquad (44)^{i}$$

где **Δт**—продолжительность вспышки. Отсюда, учитывая (40) и (43), находим

$$P_R \approx 1.2 \cdot 10^{-3} \frac{\tau_1}{\gamma \Delta \tau} \frac{\dot{M}_{18} - 1.262}{R_8^2} = \frac{m_B}{4\pi R^2 v_R \Delta \tau}.$$
 (45)

Принимая $\tau_1/\gamma \Delta \tau \approx 500$, получаем $\rho_R \approx 1$ г/см⁸. Из (45) можно заключить, что

$$\frac{\tau_1}{\Delta \tau} \left(\dot{M} - \dot{M}_E \right) \approx \text{const.}$$
(46)

Продолжительность вспышки Δτ у всех объектов примерно одна и та же, поэтому из (46) следует, что время между вспышками τ₁ приблизительно обратно пропорционально фоновой светимости барстера. 7. Профиль температуры. Как уже отмечено выше, температура, начиная от самой поверхности нейтрошной звезды до её центра, с точностью фактора красного смещения, почти не изменяется. Это утверждение было подтверждено численным интегрированием уравнений (1)— (5) с использованием (25) и (26). Оказалось, что результат совершенно нечувствителен к значениям параметров a, τ_0 и τ . Как видно из последнего столбца таблицы с точностью четырех знаков выражение $T \exp (v/2)$ остается постоянным вдоль радиуса звезды. Результат не сильно зависит также от темпа аккреции. Все это свидетельствует о том, что аккрецирующая нейтронная эвезда практически все время находится в квазистационарном тепловом состоянии.

Изменения, которые происходят во время вопышек и в промежутках между ними, лишь небольшие флуктуации на общем постоянном фоне температуры, разумеется при условии, что темп аккреции не испытывает заметных изменений.

Таблица І

$\frac{r}{R}$	р(г) (г/см ³)	T ₇ (r)	e~/2	T ₇ e ^{*/2}
0.000	4.65.1014	2.410	0.757	1.826
1.17 10-5	4.65-1014	2.410	0.757	1.826
0.102	4.62.1014	2.407	0.758	1.826
0.275	4.49.1014	2.387	0.765	1.826
0.550	4.06.1014	2.320	0,787	1.826
0.805	3.52.104	2.227	0.819	1.826
0.922	3.19.1014	2.175	0.839	1.826
0.973	3.91.1010	2.154	0.847	1.826
0.991	1.49.109	2.146	0.851	1.826
0.999	2.77·10 ³	2.142	0.852	1.826
1.000	3.13 ·	2.142	0.852	1.820

ПРОФИЛЬ ТЕМПЕРАТУРЫ АККРЕЦИРУЮЩЕЙ НЕЙТРОННОЙ ЗВЕЗДЫ С ПАРАМЕТРАМИ, ПРИВЕДЕННЫМИ В (22)

Определим колебания температуры вокруг среднего фона. Согласно (25) изменение температуры звезды за спокойный период её жизни равнс

$$\Delta T = T(\tau_1) - T(o) = \frac{2a\tau_1}{\tau_0} \left(1 - \frac{\tau_1}{2\tau_0}\right) T(\tau_0).$$

Используя (36) и учитывая, что $\int_1 \approx 2T_7^2$, находим

$$\frac{\Delta T}{T} \approx 2.3 \cdot 10^{-3} \left(\frac{\tau_1}{10^4}\right) \left(\frac{2}{T_7}\right)^2 \frac{(1 - \tau_1/2\tau_0)}{1 - \tau_1/\tau_0} \left(\dot{M}_{18} - \dot{M}_{18}^E\right).$$
(47)

При предполагаемых темпах аккреции $M \gtrsim 1.3$, отношение $\Delta T/T \sim 0.001$. Очевидно, такое же относительное изменение испытывает температура и за время вопышки.

Выражаем нашу благодарность участникам семинара кафедры теоретической физики Ереванского университета за обсуждения.

Ереванский государственный

уняверситет

ON PHYSICAL NATURE OF BURSTERS G. S. SAHAKIAN, G. P. ALOJANTS, A. V. SARKISSIAN

The phenomenon of burster flashes is examined. The characteristic value for a compact binary system, consisting of a neutron and ordinary stars, is the rate of accretion $M_E \approx 1.3 \cdot 10^{18}$ g/sm, which corresponds to Eddington limit of luminosity LE. When the rate of accretion $M < M_E$, we have to deal with the source of soft X-ray emission, which becomes an X-ray pulsar in case of sufficiently strong magnetic field. Bursters are objects with $M \ge M_F$ and apparently with a relatively weak magnetic field and, at last, in objects with relativistic jets (e. g. SS 433) $M > M_{_{\rm F}}$. It is shown that the temperature of neutron stars in bursters practically is the same from the centre to the surface, where the accretion flow stops, by the way $T \approx 2 \cdot 10^7$. The variation of temperature near that value is of the order $\Delta T \approx 10^{-3}$ T. It is shown that the burst is conditioned by the thermal state of hadron nucleus, which is an enormous container of thermal energy of the neutron star. Exactly small variations of thermal energy of that container causes regular bursts. Before the bursts the thermal energy of hadron nucleus reaches its biggest value, when luminosity L becomes a little bigger than L_{E} . During the burst, accretion on the neutron star stops and the losses increase. The hadron nucleus looses a small part of its thermal energy on the work carried out during the outburst of the mass and a significantly small part-on emission. The burst stops and the accretion starts just at the very moment when L becomes smaller than L_{E} . After

that until the definite time $t = \tau_1$, (τ_1 is the time of the quiet period of the burster life) a part of the accretion energy separated on the surface passes into the depth of the star to heat its hadron nucleus. After a while the flow of energy to the hadron nucleus decreases and when L reaches the value L_E , a new burst occurs, and the same story is repeated. The neutrino losses in the bursters are not of great importance.

ЛИТЕРАТУРА

- 1. W. H. G. Lewin, P. C. Joss, Space Sci. Rew., 28, 3, 1981.
- 2. S. L. Shapiro, S. A. Taukolsky, Black Holes, White Dwarfs and Neutron stars, 1983.
- S. P. C. Joss, C. A. Rappaport, Ann. Rev. Astron. and Astrophys., 22, 537, 1984.
- 4. S. E. Woosley, R. E. Tamm, Nature, 263, 101, 1976.
- 5. E. V. Ergma, A. V. Tutakov, Astron. and Astophys., 84, 123, 1980.
- 6. L. Maraschi, A. Cavaliere, Highlights Astron. 4, 127, 1978.
- 7. P. C. Joss, Astrophys. (Letters), 225, L 123, 1978.
- 8. P. C. Joss, Nature, 270, 310, 1977.
- 9. R. E. Tamm, R. E. Picklum, Astrophys. J., 233, 327. 1979.
- 10. R. E. Tamm, Astrophys. J., 241, 358, 1980.
- 11. R. E. Tamm, Astrophys. and Space Sci., 77, 257, 1981.
- 12. R. E. Tamm, Astrophys. J., 247, 257, 1981.
- 13. М. Шварушилья, Строение и вволюция эвезд, ИЛ, М., 1961.
- 14. Г. П. Алоджанц, Л. Ш. Григорян, Г. С. Саакян, А. В. Саркисли, Астрофизика, 29, 573, 1988.
- 15. Г. С. Саакян, Равновесные конфигурации вырожденных газовых масс, Наука, 1972.
- 16. K. S. Thorne, Astrophys. J., 212, 825, 1977.
- 17. Л. Ш. Григорян, Г. С. Саакян, ЭЧАЯ, 10, 1075, 1979.
- 18. L. S. Grigorian, G. S. Sahakian, Astrophys. and Space Sci., 95, 305, 1983.
- 19. Л. Ш. Григорян, Г. С. Саакян, Астрофизика, 13, 669, 1977.
- 20. Л. Ш. Григорян, Астрофизика, 17, 395, 1981.
- 21. Г. П. Алоджанц. Л. Ш. Григорян. Г. С. Саакян, А. В. Саркисян, Астрофизшка, 30, 558, 1989.
- 22. Г. П. Алоджану, А. А. Саарян, Астрофизика, 20, 571, 1984.
- 23. R. E. Marshak, Astrophys. J., 92, 321, 1940.
- 24. E. Schatzmun, White Dwarfs, N-Holland Pub. Com., Amsterdam, 1958.
- 25. L. Sh. Grigorian, G. S. Sahakian, Astrophys. and Space Sci., 95, 305, 1983.

АСТРОФИЗИКА

TOM 34

ФЕВРАЛЬ, 1991

ВЫПУСК 1.

УДК: 524.7+524.822

КВАЗАРЫ, ГАЛАКТИКИ ТИПА СЕЙФЕРТ 1 (Sy 1) И НАБЛЮДАТЕЛЬНАЯ СЕЛЕКЦИЯ

Р. А. ВАРДАНЯН

Поступила 12 декабря 1990 Принята к печати 25 декабря 1990

В работе учитывается эффект вляяния абсолютных эвездных велячин на зависямости цветов квазаров и сейфертовских галахтик типа Sy 1 от красного смещения. Указывается, что ход изменения этих величин с красным смещением является следствием наблюдательной селекции. Приводится новое свидетельство о взаимосвязи сейфертовских галактик типа Sy 1 и квазаров, которое может быть рассмотрено в пользу колмоло: ической природы красного смещения этих объектов.

1. Введение. Квазары и галактики типа Сейферт 1 (Sy 1) являются одним из интересных и уникальных объектов во Вселенной.

Оптические свойства этих объектов во многом схожи. Это касается, в частности, переменности блеска и спектра, в котором наряду с широкими эмиссионными линиями иногда встречаются и линии поглощения, мощности потока ультрафиолетового излучения и т. д.

Эти объекты всесторонне исследованы многими авторами. Об этом свидетельствовала уже книга Дж. Бербиджа и М. Бербидж «Квазары», опубликованная еще в 1969 г. [1].

В исследованиях квазаров особое место занимает вопрос о корреляции между показателями цвета U-B, B-V, параметром Q = (U-B)-(B-V) и красными смещениями (z). Отметим, что при изучении втого вопроса исследователи не учитывают влияния корреляции между абсолютной звездной величиной и цветом этих объектов. Возможно, что это одна из причин, из-за которых приведенные в [1] непосредственные зависимости цветов U-B, B-V и параметра Q = (U-B) - (B-V) от красного смещения z очень плохо согласуются с расчетными кривыми, полученными на основе распределения энергии в континууме $F(v) = v^{-1}$ плюс линии изучения с интенсивностями, приведенными к системе покоя квазаров (см. стр. 71—73 в [1]). В настоящей работе нами поставлена цель при рассмотренни вависимости цветов квазаров от красного смещения (z) учесть их зависчмости цветов от абсолютной звездной величины. Учитывая втот вффект, мы будем иметь более полное и точное представление о влиянии наблюдательной селекции на наблюдаемую корреляцию между цветами и красным смещением для квазаров и галактик Сейферта типа Sy 1 (в дальнейшем, говоря о сейфертовских галактиках, будем подравумевать только втот тип).

2. Методика учета влияния абсолютных звездных величин на цвета квазаров и сейфертовских галактик типа Sy 1. Рассмотрим нашу методику учета связи показателей цветов исследуемых объектов от их абсолютной звездной величины.

Для статистического анализа результатов наблюдений квазаров и сейфертовских галактик мы использовали данные, приведенные в табл. 1 и 3 каталога Верона [2], где даны абсолютные величины (M), цвета U—B, B—V и красные смещения (z) указанных объектов.

С целью учета влияния абсолютных звездных величин на цвета исследуемых объектов из каталога Верона [2] выбирались пары квазаров, удовлетворяющие следующим двум требованиям:

a) В каждой паре абсолютные величины объектов одинаковы с точностью до 0[™] · 1.

6) Среди пар одинаковой абсолютной звездной величины для данной пары разности значений показателей цвета между квазарами пары—наибольшие.

Мы говорим не об интервале абсолютных величин, а о данной абсолютной величине, поскольку в каталоге Верона для абсолютных величин приводится только один знак после запятой. Принятый способ группировки, очевидно, обеспечивает интервалы шириной 0^m1.

Аналогичным образом была получена выборка и для сейфертовских галактик. Например, для одной и той же абсолютной эвездной велячины (допустим $M = -23^{m}0$) мы выписали значения z, U-B, B-V и Q = = (U-B)-(B-V) членов пар квазаров, в которых цвета отличаются максимально. Такие же пары выписали и для значений $M = -23^{m}1$, $-23^{m}2$ и т. д. абсолютных звездных величин.

С помощью этих данных для каждой абсолютной звездной величины были определены следующие разности:

$$(U-B)_{1} - (U-B)_{2} = \Delta (U-B)_{\max},$$

$$(B-V)_{1} - (B-V)_{2} = \Delta (B-V)_{\max},$$

$$[(U-B) - (B-V)]_{1} - [(U-B) - (B-V)]_{2} = \Delta Q_{\max}.$$

Индекс «max» в этих выражениях показывает, что выбраны пары, где соответствующие разности наибольшие для данной абсолютной звездной всличины.

Таким образом, мы выбрали две группы объектов, для которых цвета (U-B), (B-V) и параметр Q имеют наибольшие и наименьшие значения. Причем естественно допустить, что среди них встречаются объекты самых различных красных смещений.

Определим для каждого интервала красных смещений величины

$$P(U) = \frac{N_{*}(U-B)}{N_{TU}}; P(B) = \frac{N_{*}(B-V)}{N_{TB}}$$
 и $P(Q) = \frac{N_{*}(Q)}{N_{TQ}}$

где $N_{\rm T}$ —общее число объектов, $N_{\rm M}$ —число объектов для которых соответствующие цвета имеют наименьшие значения, в данном интервале красных смещений. Очевидно, что $N_{\rm N}$ взяты из группы объектов с наименьшими значениями соответствующих величии.

Для квазаров ширина интервала красных смещений взята разной $\Delta z = 0.1$, начиная от z = 0.1 (0.1—0.2, 0.2—0.3. ... 3.5—3.6), а для сейфертовских галактик z = 0.01 (0—0.01, 0.01—0.02, ... 0.9—1.0).

Выбор указанного верхнего значения z(z=0.1) для сейфертовских галактик обусловлен тем, что, начиная с z = 0.1, их количество сильно падает.

Для стлаживания флуктуаций величин P(U), P(B), P(Q), в их зависимостях от z, мы, в конечном счете, брали скольвящее среднее для соседних галактик отдельно, кроме первых интервалов их красного смещения: $z=0.1\div0.2$ и $z=0\div0.01$.

Полученные зависимости величин P(U), P(B), P(Q) от красного смещения z для квазаров приведены на рис. 1, а для сейфертовских галактик на рис. 2. На рис. 1, отмечены и спектральные линии, которые, по-видимому, ответственны за наблюдаемые зависимости (см. ниже).

Зависимости, представленные на рис. 1 и 2, фактически дают распределения квазаров и сейфертовских галактик с максимумами избытков цветов (U—B, B—V, Q) по красному смещению z.

3. Интерпретация полученных результатов. Теперь остановимся на интерпретации полученных зависимостей между частотами распределения квазаров с максимальными избытками цветов и красными смещениями 2.

Для интерпретации полученных зависимостей P(U), P(B), P(Q)от z мы, следуя работе [1], исходили из предположения, что в этих зависимостях основную роль играют широкие и сильные эмиссионные линии и, может быть, отдельные линии поглощения.

С целью определения, какие именно из них играют существенную роль в изменениях величин P(U), P(B), P(Q) в зависимости от крас-

Р. А. ВАРДАНЯН

ного смещения Z, мы использовали наблюдательные и теоретические данные, подтверждающие присутствие в спектрах квазаров сильных эмиссионных линий и линий поглощения. В работе [1] (см. табл. 4.2 и 10.1) приводится список самых сильных эмиссионных линий.

Рвс. 1. Зависимости величин P(U), P(B) и P(Q) от красного смещения для квазаров. На отих зависямостих отмечены слежтральные линия, которые, по-видимому, ответственны за появление наблюдаемых деталей.

Принято считать [3], что на зависимость цвет-красное смещение основное влияние оказывают сильные эмиссионные линии Lyα(1216),

С IV (1549), С III (1909) и Mg II (2798), приведенные в книге Бербиджей [1], (табл. 4.2), а также теоретически ожидаемые сильные эмиссионные линии He II (1640), [O III] (5007) и C IV, Mg II ([1], табл. 10.1).

На основе этих данных мы составили наш список (табл. 1). В наш список мы включили одну сильную линию поглощения OVI (1035), рядом с которой не встречаются эмиссионные линии. Согласно Ленгу [4] (см. табл. 16), эта линия поглощения была обнаружена в спектрах квазаров.

Две линии—Не II (3203) и О III (3312) (см. табл. 15 в [4]), мы включили в наш список с целью объяснения обнаруженного на зависимости P(U) от z сильного максимума вбливи z=0.13.

Таблица 1

Спектраль- ная линия	λο	z (U = 3590)	z (B = 4465) z (V == 5555
О VI (П)	1035	2.57	3.31	4.37
Lya	1216	2.00	2.67	3.57
CIV	1549	1.38	1.88	2.59
He II	1640	1.25	1.72	2.40
CIII	1909	0.53	1.34	1.91
Mg II	2798	0.32	0.60	0.99
Ho II	3203	0.15	0. 19	0.73
O III	3312	0.11	0.35	0.68
[0 [1]]	5007		-	0.11

В табл. 1 представлены: в первом столбце—наименование атома или иона (в скобках добавлена буква П, в случае линии поглощения), во втором—лабораторная длина волны (λ_0); в третьем, четвертсм и пятом столбцах—величины красных смещений z(U), z(B), z(V), соответственно для которых данная линия λ_0 входит в полосу соответственного ультрафиолетового (λ_n), синего (λ_B) и визуального (λ_V) светофильтра, приобретая длину волны, превосходящую на 50 А центральную длину волны фильтра (что предполагает эффективную ширину пропускания фильтра порядка 100 А).

Иначе говоря, в столбцах 3, 4, 5 приводятся величины красных смещений, которые обусловили сдвиг длин волн до значений $\lambda_{B} = 3690$; $\lambda_{B} = 4465$ и $\lambda_{V} = 5555$, превышающих эффективные длины волн системы U, B, V, соответственно.

Из приведенных в табл. 1 данных следует, что существует 7 интервалов красного смещения z, при которых в полосы пропускания вступают сильные вмиссионные линии квазаров. Приведем эти группы линий с возрастанием z вместе со средними значениями красного смещения в группах:

I) [O III]
$$(z_v = 0.11)$$
; O III $(z_v = 0.11)$; He II $(z_v = 0.15)$.
 $\overline{z(1)} = 0.12$

КВАЗАРЫ, ГАЛАКТИКИ Sy 1

O III $(z_B = 0.35)$; He II $(z_B = 0.39)$ II) Mg II ($z_{II} = 0.32$); z(!!) = 0.35He II $(z_v = 0.73)$ III) Mg II $(z_{p} = 0.60);$ O III $(z_{\nu} = 0.68);$ r(III) == 0.67IV) C III $(z_{II} = 0.93);$ Mg II $(z_v = 0.95);$ z(IV) = 0.96V) C III $(z_{B} = 1.34);$ $C IV (z_n = 1.38);$ z(V) = 1.36C III $(z_v = 1.91);$ Ly $\alpha(z_v = 2.0);$ VI) C IV $(z_{\mu} = 1.88);$ = (VI) # 1.93 C IV $(z_v = 2.59)$; Lya $(z_B = 2.67)$; V(1) O VI $(z_{11} = 2.57);$ z(VII) = 2.61

Вместе с этим, есть также две линии, которые попадают в полосы пропускания при красных смещениях z > 3, а именно:

VIII) O VI $(z_R = 3.31)$; IX) Ly $\alpha(z_V = 3.57)$ и X) O VI $(z_V = 4.37)$.

Поделив средние значения 2, полученные для этих девяти групп (начиная с II), на число 0.33, получаем эначения, близкие к целым числам: II) 1.06; III) 2.03; IV) 2.91; V)4.12; VI) 5.85; VII) 7.91; VIII) 10.03; IX) 10.82, а для X) 13.24.

Отметим, что из приведенных в табл. 1 красных смещений только у вмиссионной линии He II (1640) красные смещения $z_U = 1.25$; $z_B =$ = 1.72 и $z_V = 2.40$ не вошли в эти группировки, и частные от деления втих чисел на 0.33 соответственно равны: 3.79; 5.21 и 8.30, т. е. не так близки к целым числам. Вместе с тем, для самых сильных вмиссионных линий Lya и Mg II частные от деления составляют соответственно 6.06; 8.09; 10.82 и 0.97; 1.82; 3.00 и близки к целым числам.

Может быть последнее и стало причиной периодичности в распределении квазаров, имеющих сильное ультрафиолетовое излучение, по красным смещениям [5, 6].

На рис. 1 около максимумов и минимумов зависимостей P(U), P(B) и P(Q) от z указаны те предполагаемые линии в спектрах квазаров, которые ответственны за детали наблюдаемой картины.

Так, например, на рис. 1с за появление максимумов P(Q) ответственны линии I) [OIII] (V); OIII (U); He II(U) 3203; II) Mg II (V); С III (U); Не II (U) 1640; С IV (U); III) С III (V); Ly $\alpha(L')$ и IV) О VI (B); Ly $\alpha(V)$. В скобках отмечены спектральные полосы, в которых появляются эти линии из-за красного смещения.

Соответственно, за минимумы зависимости P(Q) от z ответственны линии: I) Mg II (B); II) He II (B) 1640 и III) O VI (V); Ly $_2(B_1$.

Приведенные на рис. 1 кривые достаточно хорошо совпадают с ожидаемыми Бербиджами [1] кривыми, рассчитанными для распределения внергии квазаров в континууме вида $F(v) = v^{-1}$, плюс линий излучения с интенсивностями, приведенными к системе покоя (см., например, рис. 4.5; 4.6 в [1]).

Что касается третьего миксимума P(B) при z=2.3 на рис 1b, то, как известно [7], он обусловлен наблюдаемым максимумом частоты квазаров в интервале $z=2.1 \div 2.4$, из-за появления в видимой области спектра самой сильной вмиссионной линии Lya.

Таким образом, из анализа статистических данных о квазарах, в частности из зависимости частоты появления квазаров с наименьшими цветами (большими цветовыми избытками) от красного смещения, мы приходим к выводу, что полученные зависимости (рис. 1) обусловлены наблюдательной селекцией, то есть появлением сильных эмиссионных линий соответственно в U, B и V полосах спектра из-за красного смещения. Последний вывод, нам кажется, не оставляет сомнения в космологической природе красного смещения квазаров.

В дополнение к сказанному рассмотрим вопрос о связи сейфертовских галактик с квазарами.

4. О связи сейфертовских залактик типа Sy 1, с квазарами. Вопросо связи сейфертовских галактик с квазарами ранее был рассмотрен в [8]. В настоящей работе мы рассмотрим этот же вопрос, с другим подходом к его решению.

Как было отмечено выше, зависимости величин P(U), P(B) от красного смещения z для квазаров сильно отличаются друг от друга. Например, на рис. 1а зависимость P(U) от z начинается с максимума (при z=1.5), а для P(B) от z—с минимума, и похоже, что өти две зависимости противоположны друг другу по ходу, во всяком случае они смещены друг от друга на $\Delta z \approx 0.33$.

Учитывая то обстоятельство, что значения красных смещений для сейфертовских галактик (см. табл. 3 в [2]) в основном находятся в интервале $z=0\div0.1$, мы рассмотрели ход зависимости P(U), P(B), P(Q) от z для них в этом же интервале (см. рис. 2).

На рис. 2а пунктирной линией приведен ход зависимости частоты встречаемости ультрафиолетовых галактик Маркаряна среди всех сейфертовских галактик для различных значений красного смещения (зависимость $P(M) = \frac{N_{\text{Mark}}}{N_t}$ от z, где N_{Mark} -число галактик Маркаряна. а N_t -общее число сейфертовских галактик). Вычисления отношения P(M) для различных z (треугольники) были выполнены по данным каталога Верона [2] (табл. 3) для сейфертовских галактик с $V < 16^m$ 0.

На этом же рис. 2а сплошная линия (проводимая по точкам) показывает ход зависимости P(U) от z. Как следует из рис. 2а, ход зависимости P(U) от z волнообразный (с общим подъемом), и на значении z=0.04 наблюдается максимум. Максимум частот сейфертовских галактик Маркаряна совпадает именно с этим максимумом.

Фактически одна из причин обнаружения большого количества сейфертовских талактик среди галактик Маркаряна вблизи z=0.04, возможно, кроется в принятом критерии выборки галактик с ультрафиолетовыми избытками. Поэтому становится понятным и то обстоятельство, что среди галактик Маркаряна со значениями z < 0.01 частота встречаемости сейфертовских галактик с небольшими ультрафиолетовыми избытками в списках самого Маркаряна незначительна по сравнению с частотой этих же галактик, обнаруженных другими исследователями [2].

Теперь, сопоставляя ход изменения P(U) и P(B) в зависимости от 2 сейфертовских галактик, мы замечаем, что с увеличением 2 в начале и в конце, приближаясь к значению z=0.1, наблюдается увеличение величины P(U), в то время как величина P(B) уменьшается. Вместе с тем, вблизи значения z=0.1 величины P(U) и P(B) у сейфертовских галактик приближаются к соответствующим величинам P(U), P(B) квазароь.

Это дает нам основание утверждать, что полученные зависимости P(U), P(B) и P(Q) от z для квазаров являются продолжением тех же самых зависимостей, полученных для сейфертовских галактик. Иначе говоря, они являются почти такими же физическими объектами, с той лишь разницей, что квазары имеют сравнительно большие светимости, вследствие чего они наблюдаются на больших расстояниях.

5. Заключение. Итак, из вышеприведенного статистического анализя данных можно сделать следующие заключения.

1. На ход зависимости P(U), P(B), P(Q) от красного смещения г основное влияние оказывают следующие эмиссионные линии: Lya, Mg II, He II (1640), C III, C IV, [O III], O III, He II (3203) и, возможно, линия поглощения OVI.

2. Ход зависимостей P(U), P(B) и P(Q) от z, полученных для квазаров и сейфертовских галактик типа Sy 1, еще раз свидетельствуег о взаимном родстве этих двух типов объектов и о космологической природе их красного смещения.

4---370

3. Отношение числа сейфертовских галактик из списка Маркаряна к общему числу . сейфертовских галактик типа Sy 1 имеет максимум вблизи z=0.04, на котором и наблюдается максимальное значение всличны P(U) тех же галактик. 4. На ближайших расстояниях (2<0.01) наблюдается недобор сей-</p> фертовских галактик среди галактик Маркаряна с ультрафиолстовым избытком (по отношению к найденным другими авторами сейфертовским галактикам): Последнее, возможно, обусловлено принятим Маокаряном критернем выборки талактик с ультрафиолетовым чзбытком. 5. Все выешприведенные данные, в астности, ход зависимостей. P(U), P(B) и P(Q) от 2, являются следствием наблюдательной селекция-тольнов отовной венсокудийо юнчир си вило колически Наши выводы еще не означают, что квазары или сейфертовские галактики, типа Sy 1 не обладают коротковолновыми избытками. Наоборот, нам кажется, что существование сильных эмиссионных линий, тахих, как Lya, Mg II, C III, C IV, [O III] и т. д., является свидетельством наличия подобных избытков у этих галактик. Однако, влияние эмиссионных линий на ход зависимости P(U), P(B), P(Q) от z остается доминирующим. татор данносторий , яктисля эж хите потогода

В заключение считаю своим принятым долгом поблагодарить академика В. А. Амбарцумяна за ценные советы, профессора Л. В. Мирзояна за ценные замечания и научного сотрудника обсерватории А. П. Магтесяна за любезно предоставленные данные, относящиеся к квазарам. Бюратанская астрофизическая тем, обсерватория у (8)9 л (9)9 нологозов 1,0 = с яначение испава нач

QUASARS, SEYFERT 1 (Sy1) TYPE GALAXIES AND OBSERVATIONAL SELECTION ALTONNOLLES MANAGERAND OR. A. VARDANIAN LEDOUDO MEN THE OFF.

The effect of absolute stellar magnitude influence on the observed relations between colours and redshift of guasars and Syl type galaxies is taken into account. A new evidence of connection of Syl- type galaxies and quasars is given which can be considered in favour of cosmoan pointanoial logical nature of their redshift.

ЛИТЕРАТУРА

- 1. Дж. Бербияж, М. Бербияж, Квазары, Мир, М., 1969.
- 2. M. P. Veron-Cetty, P. Veron, A Catalogue of Quasars and Active Nuclei (4th edition), ESO. 1989.
- 3. S. Depaguit, J. C. Pecker, J. P. Vigier, Astron. Nachr. 306, N. 1. 7, 1935.
- 4. К. Ленг, Астрофизические формулы, ч. І. Мир, М., 1978.
- 5. K. G. Karlsson, Astron. and Astrophys., 13, 33?, 1971.

6. М. Ф. Ходячих, Астрон. ж., 56, 1174, 1979.

7. P. Veron, Astron. and Astrophys., 170. 37. 1985.

8. H. L. Marshall, Space Telesc. Sci. Inst., Prepr. ser. No. 58, 1985, p. 5.

АСТРОФИЗИКА

TOM 34

ФЕВРАЛЬ, 1991

the restance limit is atomic and the states of the states and

ALMONDER VERMENT/CONTRACTORIZED BENET & ST

ЕЫПУСК 1

TOTOL DUSINGLY

10-11 (1-11-12) (B)

УДК: 524.3—7—85

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ОБОЛОЧКИ SN 1987 А ПО ПРОФИЛЯМ ЛИНИЙ НІ И СаІІ

А. А. АНДРОНОВА

Поступила 12 декабря 1990 Принята к печати 10 января 1991

В приближении вероятности выхода (истод Соболева) рассчитаны профили линии H_a в потоке излучения, выходящего из сферически-симметричной изотролно расширяющейся изотермической оболочки с параметрами, характерными для сверхисвых звезд II типа на поздних стадиях после вспышки. Из сравненяя с наблюденными профилями лини H_a в сисктре SN 1987 А найдены электронна температура я распределение электронной концентрации в оболочке, которые использовались затем при расчетах профилей линий [Ca II] λ 7300 и Ca II λ 8600. Обнаружено, что полученные таким способом теоретические профили линий кальщия не удается полностью согласовать с наблюденными в спектре SN 1987 А. Делается вывод, что. по-видимому, линии водорода и линии кальщия образуются в разных частях оболочки, с различными физическами условиями.

1. Введение. В спектрах SN II на поздней стадии эволюции и, в частности, в спектре SN 1987 А наблюдаются несколько сильных эмиссионных линий, в том числе H_a и линии [Ca II] λ 7300 и Ca II λ 8600 (см., например, [1]).

В работе [2] автором определялись такие физические характеристики оболочки SN 1987 А, как электронная температура T_e и распределения концентраций электронов $n_e(r)$ и ионов кальция $n_{Ca^+}(r)$ с расстоянием от центра r, используя только линии Ca II. В данной работе для определения T_e и $n_e(r)$ привлекаются также и профили линии H_x . При расчетах профилей линии H_a учитывается ионизация водорода под действием специфических механизмов, которые действуют в оболочках SN II (см. [3]). Для четырех моментов эволюции SN 1987 А делается попытка подобрать такие $n_e(r)$, $n_{Ca^+}(r)$ и T_e , чтобы получить теоретические профили линий H_a , [Ca II] λ 7300 и Ca II λ 8600, соответствующие наблюдаемым. 2. Уравнения стационарности для атома водорода. На поздней стадни эволюции SN II (более 100^d после вспышки) ионизация водорода в основном осуществляется (см. [3]), за счет энергии радиоактивного распада ⁵⁶Со \rightarrow ⁵⁶Fe, а также двухфотонным излучением, возникающим при переходе $2s \rightarrow 1s$ в атомах водорода, и диффузным рекомбинационным излучением водорода в бальмеровском континууме.

С учетом вышеперечисленных эффектов уравнение ионизационного баланса можно записать в следующем виде:

$$\sum_{l=1}^{n} n_{l} (\zeta_{H} + R_{l_{q}}^{(l)} + n_{e} C_{le}) = n_{e} n^{+} \sum_{i=1}^{n} [(A_{ei} + B_{ei} J_{ie}) \hat{\sigma}(z_{ie}) + n_{e} C_{ei}], \quad (1)$$

а уравнения статистического равновесия для дискретного уровня:

$$\sum_{m < l} (n_i A_{lm} + n_i B_{lm} J_{ml} - n_m B_{ml} J_{ml}) + n_l n_e \sum_{k \neq i} C_{ik} + n_i n_e C_{ie} + n_i \zeta_H + n_i R_{2q}^{(l)} = \sum_{k \neq i} (n_k A_{ki} + n_k B_{kl} J_{lk} - n_l B_{lk} J_{ik}) + n_e \sum_{k \neq i} n_k C_{ki} + n_e n^4 [(A_{ei} + B_{ei} J_{ie}) \hat{\sigma}(\bar{\tau}_{ie}) + n_e C_{el}], i = 2, 3, ...$$
(2)

Эту систему необходимо дополнить уравнением сохранения числа частиц:

$$\sum_{l=1}^{\infty} n_l + n^+ = n_H.$$
 (3)

Реально рассматривались нижние 8 уровней атома водорода, поэтому i = 1, 2, ..., 8.

В уравнениях (1)—(3) $n_{\rm c}$ —концентрация свободных электронов, n^+ —концентрация протонов (отметим, что поскольку основным источником электронов в оболочке является водород, то $n^+ = n_{\rm c}$), $g_i = 2 \cdot i^2$ —статистический вес *i*-го уровня, A_{hi} и B_{hi} —эйнштейновские ээффициенты спонтанных и вынужденных переходов, C_{ki} —коэффициент ударных переходов, J_{nm} —средняя по профилю коэффициента поглощения интенсивность излучения в линии, соответствующей переходу n-m, $R_{iq}^{(i)}$ —эффективный коөффициент ионизации двухфотонным излучением, ζ_H —коэффициент ионизации за счет энергии радиоактивного распада, $\delta(\tau_{ic})$ —функция, учитывающая ионизацию собственным излучением.

Вероятности спонтакных переходов брались из [4], а ударных—из [5].

Задача решалась в рамках следующей модели: сферически-симметричная оболочка радиуса r_2 окружает центральное ядро радиуса r_1 , излучающее в непрерывном спектре с интенсивностью $I_* = B_*(T_*)$, где $B_{(T_*)}$ — функция Планка. Считаем также, что оболочка изотермична (электронная температура T = const) и расширяется изотропно, т. е.

 $V(r) = (v(r_1)/r_1)r$.

Величину ("можно оценить из соотношения (см. [3]):

$$K_H \sum_{i=1}^{n} n_i = \frac{L_{SN}}{W_H \cdot V_{\epsilon m}} + \frac{n_H}{n}, \qquad (4)$$

где $W_H = 32$ вВ—работа, затрачиваемая на образование одного иона водорода, L_{SN} -светимость SN, V_{em} -объем оболочки, излучающей • в линии H_a , n — суммарная концентрация всех частиц.

Приближение, в котором учитывался эффект ионизации диффузным излучением, состоит в том, что, если оптическая тлубина в *i*-ом континууме те больше единицы, то считалось, что происходит полная компенсация радиативной рекомбинации и ионизации под действием излучения, и соответствующие члены исключались из уравнений статистическогоравновесия ($\delta(\tau_{ie}) = 0$). В противном случае ($\tau_{io} < 1$) ионизацией под действием диффузного излучения можно пренебречь, и $\delta(\tau_{ie}) = 1$. Отметим, что прямое излучение очень слабое и не влияет на ионизацию.

Ионизация двухфотонным излучением учитывалась в аналогичном приближении: считалось, что при $\tau_{le} < 1$ величина $R_{2q}^{(l)} = 0$, а при $\tau_{le} > 1$ бралось значение $R_{2q}^{(l)}$, которое получается путем интегрирования по частоте от v_{le} до v_{12} коэффициента вероятности излучения кванта с частотой v при двухфотонном переходе (см. [6]). Основной вклад вносит ионизация со второго уровня атома водорода, для которой $R_{2q}^{(2)} = = 2.66 \ c^{-1}$.

Задача решалась в классическом приближении Соболева (см. [6]), согласно которому

$$J_{ik} = [1 - \beta_{ik}(r)] S_{ik}(r) + \frac{1}{2} I_* \beta_{ik}(r) (1 - \sqrt{1 - (r/r_1)^{-2}}), \qquad (5)$$

где вероятность выхода

$$\beta_{ik}(r) = \frac{1 - \exp(-\tau_{ik}(r))}{\tau_{ik}(r)},$$
 (6)

оптическая толщина в линии

$$\tau_{ik}(r) = \frac{c^{*}}{8\pi} \frac{1}{r_{ik}^{*}} \frac{g_{k}}{g_{l}} A_{kl} \frac{r_{1}}{v(r_{1})} \left[n_{i}(r) - n_{k}(r) \frac{g_{i}}{g_{k}} \right], \quad (7)$$

и функция источников

$$S_{ik}(r) = \frac{2h v_{ik}^2}{c^2} \frac{g_i}{g_k} \frac{n_k(r)}{n_i(r) - n_k(r) \frac{g_i}{g_k}}.$$
(8)

Уравнения (1)—(3) с. учетом (5)—(8) представляют собой систему нелинейных уравнений для определения населенностей уровней n_i и электронной концентрации n_e . Эта система решалась методом итераций: вадавалось начальное распределение $n_e^0(r)$, для которого решалась система (2), (3) (также методом итераций), в результате чего определялись n_i , по которым из (1) находилось следующее распределение $n_e(r)$. При этом предполагалось, что $\delta(\tau_{1e}) = 1$ при i = 1, 2, 3 ч $\delta(\tau_{1e}) = 0$ при i > 3. После того, как решение было найдено, все $\delta(\tau_{1e})$ вычислялись заново и, если они отличались от заданных ранее, процесс итераций начинался снова. Отметим, что сходимость практически не зависит от выбора начального приближения.

После того, как найдены п., можно в приближении Соболева вычислить поток выходящего излучения в любой линии водорода (см. [6]):

$$F_{x} = 2 \cdot \pi \int_{0}^{p_{x}} S_{ik}(r) (1 - \exp(-\tau_{ik}(r)) p \, dp +$$

$$\pi J_{o} \int_{0}^{p_{i}} \exp\left(-\tau_{ik}(r)\right) p \, d \, p, \tag{9}$$

где г определяется как функция прицельного расстояния р из соотношения:

op anyadoreadal tepende (ch [5]) Unwented housened wa

$$r \sqrt{1 - \left[\frac{\gamma - \gamma_{ik}}{\gamma_{ik}} \frac{c}{v(r_1)} \frac{r_1}{r}\right]^2} = p.$$
 (10)

3. Определение n_e для разных моментов эволюции SN 1987A. На основании теории, изложенной выше, рассчитывались профили линии H_a , которые затем сравнивались с наблюдаемыми в спектре SN 1987A. При втом распределение $n_H(r)$ бралось в соответствии с распределением ллотности, использованным в [2]:

$$n_H(r) = n_{H'}, r_1 \le r \le r_B,$$

$$n_H(r) = n_H(r/r_B)^{-\alpha}, r_B \le r \le r_2,$$
(11)

где, согласно [2], $\alpha = 18$, а граничное значение $r_{B} = 2.5 \cdot 10^{8} \cdot t$ (t—время после вспышки SN 1987 А).

CORDELES.

1231 1831 1

MORT

いかいえ やえぎ

В задаче имеются параметры: M_H —полная масса водорода в оболочке, влектронная температура T, а также число нетепловых ионизаций $G_H = \zeta_H \cdot \sum_{i=1}^{n} n_i$, которое рассматривается в качестве параметра, так как его трудно определить с хорошей точностью из-за большой неопределенности в значений $V_{\rm cm}$.

В результате расчетов находились распределение $n_{\sigma}(r)$ и профиль линии H₄, которые, как оказалось, очень слабо зависят от величины M_H (окончательное значение которой бралось равным 8 M_☉, что находится в согласии с результатами, полученными в [7]). Кроме того оказывается, что для любого реального значения T₀ можно подобрать такое значение G_H, которое позволяет достичь согласия между теоретическим и наблюдаемым профилями линии H₀. При этом получаются практически одинаковые распределения $n_{\sigma}(r)$ (во всяком случае для $r \leq r_B$). Заметим также, что приближения, сделанные в разделе 2 при учете эффектов ионизации диффузным и двухфотонным излучением, могут вносить опибку в определение величин T₀ и G_H, но практически не влияют на $n_{\sigma}(r)$.

Таким обравом, можно сделать вывод, что распределение $n_{e}(r)$ однозначно определяется по профилю линии H_{a} . Сравнение теоретических и наблюдаемых профилей проводилось для четырех моментов эволюции SN 1937A: 198^d, 289^d, 399^d, 438^d после вспышки. Наблюдаемые профили брались из [1]. Рассчитанные распределения $n_{e}(v)$, где v=r/t, представлены на рис. 1.

представлены на рис. 1. Для того, чтобы определить значения T_e , нужно более точно знать величину G_H . Оказывается, что на 438^d после вспышки профиль линии H_a очень слабо зависит от величины T_e , и наилучшее согласие между теоретическим и наблюдаемым профилями достигается при $G_H = 45$ см⁻³ с⁻¹. Таким образом, пересчитав величину G_H для других моментов времени по формуле:

$$G_H(t) = G_H(t_4) \frac{L_{SN}(t)}{L_{SN}(t_4)} (t_4/t)^3,$$
(12)

где $I_{e} = 438^{d}$, можно для предыдущих фаз подобрать соответствующие значения T_{e} . Результаты представлены в табл. 1, значения L_{SN} брались из [8].

4. Сопоставление результатов, получаемых по профилям линий H_a и Ca II. В работе [2] была сделана попытка из сравнения теоретических и наблюдаемых профилей линий Ca II определить некоторые физические параметры оболочки SN 1987 А, а именно: n_{σ} , T_e и n_{Ca} + для тех же четырех моментов времени. Отмечалось, что необходимо знать хотя бы одну из этих характеристик, чтобы определить две другие однозначно. Теперь мы достаточно точно знаем распределение $n_{\sigma}(r)$, и поэтому имеет смысл вновь вернуться к проблеме профилей линий Ca II.

Рис. 1. Распределения по(о) для четырех моментов вволюции SN 1987 А.

Таблица 1

Т, и л. (r1). ОПРЕДЕЛЕННЫЕ ПРИ ЗАДАННОМ ЗНАЧЕНИИ G

	$G_{H^{+}} \mathrm{cm}^{-3} \mathrm{c}^{-1}$	Т., К	$n_{e}(r_{1}), cm^{-3}$
195 ^d	4.7-103	4700	2.108
289 ^d	6.4.102	6400	9-107
399 ^d	9.0.10 ¹	6500	3.107
438 ^d	4.5.101	-	2-10
	нь после пышкм 195 ^d 289 ^d 399 ^d 438 ^d	ID DOCAE G_{H^*} cm ⁻³ c ⁻¹ 196 ^d 4.7.10 ³ 289 ^d 6.4.10 ² 399 ^d 9.0.10 ¹ 438 ^d 4.5.10 ¹	ID DOCAE G_{H^1} cm ⁻³ c ⁻¹ T_e , K 195 ^d 4.7 · 10 ³ 4700 289 ^d 6.4 · 10 ² 6400 399 ^d 9.0 · 10 ¹ 6500 438 ^d 4.5 · 10 ¹

Необходимо отметить, что в [2] не учитывался такой важный эффект, как нонизация Ca⁺ со второго уровня L_{\bullet} -излучением водорода. поскольку для втого необходимо было знать населенность второго уровня атома водорода. Повтому в уравнениях для Ca⁺ (см. [2]) необходимо ввести член, учитывающий этот процесс. Ковффициент ионизации L_a -квантами брался из [9]. После этого задачи для водорода и Ca⁺ решались совместно. Оказалось, что степень ионизации Ca⁺ очень высока (>90%), и заселение возбужденных уровней происходит, в основном, за счет рекомбинаций. На рис. 2, 3 приведены теоретические и наблюдаемые профили линий Ca II. Для первых трех моментов времени при полученном распределении $n_e(r)$ не удается получить достаточно интенсивный триплет Ca II л8600 ни при каких разумных значениях M_{Ca} (общей массы C² в оболочке SN 1987 A) и T_e . Для того,

Рис. 2. Наблюдаемый спектр SN 1987 А (слева) и теоретические профили линий H_a, [Ca II] λ 7300 и Ca II λ 8600 (справа). а) 198^d после вспышки, б) 289^d после вспышки.

чтобы согласовать теоретический и наблюдаемый дублет [Ca II] λ 7300, необходимо принять очень большие значения M_{Ca} ($\approx 0.1 M_{\odot}$ для 198^d и 289^d и 0.07 M_{\odot} для 399^d), которые на порядок превышают оценку, приведенную в [10] ($M_{Ca} < 0.007 M_{\odot}$). Отметим, что профили линий Ca II слабо зависят от величины T_{s} . Для 438^d удается достичь определенного согласия между теоретическими наблюдаемыми профилями

линий Са II, но также пон очень большом значении Mca = 0.03 M и высокой электронной температуре (Л ≈ 6000 К); что, вообите говоок. противоречит вначению Г. = 2700 К для 400 , полученному в [10] из анализа линий железа. поящом, за счет рекомбинаций. На рис. 2. 3 приведены теоретические и наблюдаежые профили линий Са П. Для перанах трех моментов воз--GTOOL ATHIP LIGHT RO 8719-17 SPRAGE HOR RUSH 28 ALIAN HANNERS PARKEN PARKENS HAVE [Call] Hal INCLOSE SHITCHCHCHERONE -987 AL N I. AAR TOFO. mun 1/2 comei-9%P07.000 8 Macchi

Рис. 3. Наблюдармый спектр SN 1987 А (слева) и теоретические профили линий H_{α} , [Ca II] λ 7300 и Ca II λ 8600 (справа), в) 399^d после вспышки: b) 438^d после вспышки.

А сотхого ликодан и соторый можно сделать из сравнения теоретических и наблюдаемых профилей линий Са II и H I ваключается в том, что, вероятно, оболочка SN 1987 А неоднородна, и линии Са II и водорода обръзуются в разных местах оболочки, причем там, где образуются линии Са II, плотность L_{α} -квантов должна быть существенно ниже, вследствие чего кальций находится главным образом в однократно ионизованном состоянии, и, кроме того, имеет место другое распределение $n_{\phi}(r)$. На возможность такой неоднородностя в оболочке было указано в [9] на основании анализа спектра SN 1970 g.

5. Заключение. Проведенное моделирование профилей линии H_{e} позволило достаточно точно определить распределение $n_{e}(r)$ в оболочке SN 1987 А и сделать некоторые оценки T_{e} . Кроме того, оказалось, что поле L_{e} -квантов настолько сильное, что более 90% всего кальция должно находиться в дважды ионизованном состоянии. Для 198, 289^d и 399^d оказывается невозможным достичь согласия между теоретическими и наблюдаемыми профилями линий H_{e} , [Ca H] λ 7300 н -Ca H λ 8600 одновременно, а для 438^d согласие достигается лишь при довольно больших значениях M_{Oa} и T_{e} . Это объясняется, вероятно, тем, что линии H I и Ca II образуются в разных местах оболочки SN 1987А. В дальнейшем предполагается определить параметры оболочки из сравнения теоретических и наблюдаемых профилей линии [O I] λ 6300—еще одной сильной вмиссионной линии в спектре SN 1987А.

Ленинградский государственный универсятет

THE DETERMINATION OF SN 1987A ENVELOPE PARAMETERS THROUGH THE PROFILES HI AND CAII LINES

A. A. ANDRONOVA

Using the escape probability approximation (Sobolev method) the profiles of $H_{\rm c}$ line are calculated in a flux of radiation emitted by spherical isotropically expanding isothermal envelope with the typical parameters of the type II Supernovae at the late stages after explosion. Electron temperature and electron density distribution in envelope are found through the comparison of the theoretical H_{α} profiles with those observed in the spectrum of SN 1987A. These parameters are used then for the calculations of the profiles of [Ca II] λ 7300 and Ca II λ 8600 lines. Theoretical profiles of calcium lines obtained by this way are found to be not in full agreement with the observed ones in the SN 1987A spectrum. It seems that hydrogen lines and calcium lines are formed in different parts of the envelope under different physical conditions.

А. А. АНДРОНОВА

ЛИТЕРАТУРА

- 1. D. M. Torndrup et al., Proc. Astron. Soc. Austral., 7, 418, 1988.
- 2. А. А. Андронова, Астрофизика, (в печати).
- 3. Н. Н. Чугай, Письма в Астрон. ж., 13, 671, 1987.
- W. L. Wiese, et cl., Atomic Trans., Probabilities 1. H-Ne, NSRDS-NBS, 4, 22, 1966.
- 5. J. E. Vernazza, E. H. Avrett, R. Loeser, Astrophys. J. Suppl. Ser., 45, 635, 1981.
- 6. В. В. Соболев, Курс теоретической аспрофизики, Наука, М., 1985.
- 7. W. D. Arnett et al., Annh. Rev. Astron. and Astrophys., 27, 629, 1989.
 - 8. R. M. Catchpole, et al., Mon. Notic. Roy. Astron. Soc. 234. 5P, 231. 75P, 1988.
 - 9. Н. Н. Чузай, Астрофизика, 29, 74, 1988.
- 10. I. J. Danziger et al., ESO Sci., Prepr., No 680, 1989.

АСТРОФИЗИКА

ФЕВРАЛЬ, 1991

ВЫПУСК 1

УДК: 524.577

TOM 34

РАДИАЛЬНЫЕ СИСТЕМЫ ТЕМНЫХ ГЛОБУЛ. II. СВЯЗЬ ГЛОБУЛ С ИНФРАКРАСНЫМИ ИСТОЧНИКАМИ

А. Л. ГЮЛЬБУДАГЯН, В. А. АКОЛЯН

Поступила 9 октября 1990 Принята к печати 15 ноября 1990

Проведен поиск источников из каталога точечных источников IRAS, которые попадают в темные глобулы и облака, составляющие радиальные системы. В ревультате этого поиска найдено 69 тажих источников. Эти инфракрасные источники подвергнуты классификации.

1. Введение. С появлением каталога точечных источников IRAS [1] открылась возможность для нахождения объектов, скрытых в плотных молекулярных облаках и обладающих интересными свойствами. Это в основном три вида объектов: 1.Источники, связанные с мазерами воды. 2. Звезды типа Т Тельца. 3. Холодные, непрозволюционировавшие источники. В [2] на основе инфракрасных показателей цвета получены оп-

ределенные промежутки, в которые попадают величины $R_{12} = \lg \frac{F_{25} \cdot 12}{F_{12} \cdot 25}$,

 $R_{23} = \lg \frac{F_{40} \cdot 25}{F_{25} \cdot 60}, R_{34} = \lg \frac{F_{100} \cdot 60}{F_{60} \cdot 100}$ для каждого из трех перечисленных

выше видов объектов. Целью настоящей статьи является нахождение точечных инфракрасных источников, погруженных в темные тлобулы, а также определение их вида на основе их ИК-цветов, согласно приведенной выше классификации. Источники искались в основном в приведенных в [3] глобулах радиальных систем, а также в нескольких одиночных глобулах и темных облаках, не входящих в радиальные системы.

2. Инфракрасные источники, погруженные в темные глобулы. Ниже приводится табл. 1, в которой помещены данные об отождествленных с глобулами ИК-источниках. В первом столбце даны номера источников, во втором—названия источников согласно [1], в третьем—поток на 100 µм, в четвертом—вид источников согласно классификации [2], в пятом—номер глобулы (согласно табл. 3 из [3]), в которую погружен источник. В таблице также указаны источники, погруженные в глобулы и темные облака, не входящие в радиальные системы. В шестом столбце дая номер радиальной системы, в которую входит источник (из табл. 1 или 2 в [3]). А. Л. ГЮЛЬБУДАГЯН. В. А. АКОПЯН

- Tabauya 1 FE MO.

AC

инфракрасные источники, связанные с темными глобулами

-		The second diversion of the se		ALL THE MAN		
N	IRAS	F100	Вид	Глоб.	P. C.	
1 1	2	3	4.	, 5 ,	6	
1	00040+6724	47.7	3	. 1		
2	00407- -5208	8.0	3	3	1.00	
3	00418+5209	5.4	3	3		
4	00437+5219	3.6	3	6		
5	02452- -6009	74.8	3	second sizes	1-3	
6	02575+5959	65.4	3	Millpoll 34	1-3	
7	02575+6017	1083	1	19	DIGOR BALTENCE	
8	04159+5510	7.6	1?	and the second	2-2	
9	04191+5459	5.9	S	100 C 634	2-2	
10	04200+5442	4.0	3	dTION NO. M.	2 -2	
-11 E	04207-+5445	6.1	giona Saube	· seasto .	2-2	
12	04220+5451	5.2	3	nedebo anu	2-2	
13	04244+5447	6.6	3	ToT Ton	2-2	
14	04248-+5503	2.9	3	4800 18 JI	2-2	
15	04254+5502	3.7	3		2-2	
16	04284-+5420	7.1	3	Trath Cherry of C	2-2	
17	04298- -5422	5.1	3		2-2	
18	051550550	3.8	3	-	1 2	
19	05159—0538	3.2	3		18	
20	05159-0606	8.6	3	-80785000	6320 A 2285	
21	05160-0558	14.4	3	areas idead	The Property	
22	05164—0532	4.5	3	XI SIDSA	Lagar and	
23	051640518	11.2	3	duct the	and sources	
24	05173-0555	60.3	1?	evidence le	1 100000000	
25	05177-0544	21.3	3	Shop in 22 1	19912 - Ser 199	
26	05185-0052	26.0	3		STATE -	
27	05355-0146	42.1	I	20	- BOTHLORNOR	
28	05373+3543	7.2	3	Carlo and and	The Contractions	
29	05375+3540	1635	1	E SAME	anna ana da	
30	05377+3548	1464	114 - 22.034 - E	as - day an	See E Marines	
31	05382+3547	467.3	Ja	a) prover	Ser H-K-	
32	053840229	135.5	3	21	Thomas 2 - Edd	
33	05386+3541	16.4	3	11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NA . DO A PARA	
34	05393-0156	35331	3	22	NUME O CHUCK	

62

РАДИАЛЬНЫЕ СИСТЕМЫ ТЕМНЫХ ГЛОБУЛ. 11

i are	an-11 it minta notae	SNO MERPOT	DIE IC B	TOAHHKOT	SH OO H	The cuding	A State of the
17.18532	ота, промежуточные	Ter 3MIL	AILANO 4	21 PF 14	5 G	6	1.01
61 MG	05209 0204	25.6	1 - 2	HILLS SAUL	.02		1. 10
26	05330-0304.	56 7	and and and	dis o	43017 1	nur elect	CE1
27		21 9	21224	iad (อ เรวง)	69 Zieo		A STREET
20	05263-F0310	31.07.1	1 1 1 1 1	1 4 A A A A A A A A A A A A A A A A A A	а (итэтэ.	11003 1-2	
1100	00251 1021	10 0	1. 3.51	541 [2]	1 10 8 6 1 3		- Color
39	05351 + 1031	eo.t4:4:01	an hish	E CHINES	CALL ROLL	ann a 1 4 -9	1701
10	07014-1141		DH da	DIT CR	29100000	N NORDEL	
41	0/025-1204	.33.2	agaoqu	diana Ri	25	I THE -	u pioi
42	1/331-2023	00.2	108 801	10 43.200	ин-жлбц	1100 H 1.0	สะกุท
43	17557-2601	86.0	EN LANG	odine iic	HIRPY AL	HADQO N	2000
-14 R/	17560-2551	150.8	: inano	1. 10,10	2] CI ::	AN UT RI	(HOIK
45	17562-2633	62.8	1 3	1.1.5.	TORI	CHE LOHE	прот
40	17563-2601	137.6 81	10 [8]	1E 1. 3	CH 1.700	12 SF EN	ł
47	17564-2539	295.0	i-lecal	TA 672.5.	marand	n a oxigo	i iga
48	12576-2615 R.1.3	1 17001.1	110 32	- C-82:	ни Сер	пенцозов	1.50
49	17587—2522	201.3	3			.i.e] an
50	18012-2407	1308	DA MARE	07.61	27	Kpone in	
51	18016-2405	682.9	BERSS	HHILI POT	NAME NO	T ROTRE	Ditqu
52	18022-2432	1069	3		JINATO	TMARRE	Contraction of the second
53	181 (0-1213	3211	3	250	29		
54	untren 18141 - 1156 at a dor	1138	10 3	318KNDER	30 , 1134	anazoze te	
55	19412+2252	1 77.4	. 3	10447.04	31	· Ape cas	1115.03
56	19416+2312	249.7	3	= .5" =	32	. 02 FTS	R2 =
57	21106+4712	39.0	1?	Sec. 8	Part -	Starblar 5	16
58	21186 + 4320	6.9	3	tream Heat	STT -BIADI	the salks	1.5 70
59	21318- 5444	6.6	S SUSSESS	E ano	594.64	SA main	20775
60	21351-+5416	9.1	3	132. 201	A PAR O	T 1+ 18750	850
61	21374+5442	21.4	1?	THUN!	PRIMATA	- Streenate	
62	21387+5446	20.1	3	ines do		inin and	17 .03
63	21393+5454	15.4	3		5. M. a. 1	土田白田町	204 10 10
64	21398+5442	20.4	3	1	cire a r		
65	22266+6845	25.4	and 1	nd a ma	11/0/04	Tennonde	-
66	23228+6320	7.8	1?	DISH FL	40	TOOLU II	DHT.
67 1	23521+6639	23.5	3	grann I.L	41	Carvea :	A ALEN
68	23536+5838	4.3	3	2.947 7,1982	Tolto E 7	antes mas.	00.210
69	23568+6706	840.9	3	1 10 12 18 18	42	DIG DOA	NILSOI
	NAPHO TO RELEASE	STERBE 2	ELVE E	14 E 1074	FIE Se ands	rathin sh	SMELL

Сотинание) Таблица 1 (окончание)

Как видно из табл. 1, из 69 источников классификации, предложенной в [2], были подвергнуты 66, для трех источников не было достаточных данных о потоках на всех четырех длинск голн. Из подвергнутых классификации 66 источников 51 источник оказался вида 3; 11—вида 1; нет источников вида 2; 4 источника имеют цвета, промежуточные между видами 1 и 2. Вид последних четырех источников отмечен нами как 1а. Эти источники могут быть очень молодыми звездами типа Т Тельца. В [4] втот вид был рассмотрен как промежуточный между видами 1 и 2, в нем R_{12} соответствует виду 2, R_{23} виду 1 и R_{34} обоим видам. Интересно, что, как в настоящей статье, так и в [4], подавляющее большинство не подвергнувшихся классификации источников оказались вида 1а.

Поиск мазеров воды около источников, имеющих цвета, соответствующие виду 1, оказался очень продуктивным. Так, в [5] первый же поиск привел к обнаружению мазеров воды у 52% источников, в то время как поиск среди случайной выборки из всех источников дает процент обнаружения 10 или 15 [5]. Подобный поиск планируется провести и для источников вида 1 из табл. 1.

Из 42 глобул из табл. 3 [3] в 18 обнаружены ИК-источники, то есть примерно в половине глобул. Несколько меньше это отношение для глобул ассоциации Сер ОВ2: из 32 глобул 11 связаны с ИК-источниками [6].

Кроме источников, находящихся в радиальных системах, в табл. 1 приводятся также источники, связанные с отдельными глобулами и темными туманностями.

3. Источники, связанные с отдельными глобулами и темными облаками. Две глобулы с римами ($\alpha_{1950} = 5^{h} 18^{m} 10^{s}$, $\delta_{1950} = -5^{\circ} 53'$; $\alpha_{1950} = 5^{h} 17^{m} 20^{s}$, $\delta_{1950} = -5^{\circ} 57'$) похоже все же не отдельные, а принадлежат системе 1—5. В этих глобулах находятся источники № 18÷26. В отдельные темные туманности, расположенные южнее Сер OB2, попадают источники № 59÷64. В одиночные глобулы попадают источники № 57 и 68 (соответственно в LDN 970 и LDN 1254). Рассмотрены также два больших темных облака: LDN 133, в котором обнаружены источники № 42÷ 49, и облако рядом с областью H II S 235, в котором обнаружены источники № 28÷31 и № 33.

Сравним источники в радиальных системах и в отдельных туманностях и глобулах. Из 19 источников, расположенных в радиальных системах с областью Н II, 11 вида 3, 5 вида 1 и 3 вида 1 а; из 10 источников, расположенных в системах без области Н II, 9 вида 3 и 1 вида 1; из 7 источников, расположенных в отдельных глојулах, не входящих в радиальные системы, 4 вида 3 и 3 вида 1. Делать къкие-то выводы из этих данных пока рано.

Бюракансная астрофизическая обсерватория

РАДИАЛЬНЫЕ СИСТЕМЫ ТЕМНЫХ ГЛОБУЛ. 11

RADIAL SYSTEMS OF DARK GLOBULES. II. CONNECTION OF THE GLOBULES WITH INFRARED SOURCES

A. L. GYULBUDAGHIAN, V. A. HAKOPIAN

A search of IRAS' point sources which are embedded in the dark globules and clouds, mainly composing radial systems was made. 69 such IR sources were found. A classification of these sources was also made.

ЛИТЕРАТУРА

1. IRAS Point Source Catalog, 1985, Joint IRAS sciences working group, Washington, D. C.

2. J. Wouterloot, C. Walmsley, Astron. and Astrophys., 168, 237, 1986.

3. А. А. Гюльбудалян, В. А. Акопян, Астрофизика, 33, 395, 1990.

- 4. А. Л. Гюльбудалян, Р. Швари, Ф. Назарстян, Сообщ. Бюракан. обсери., 1990.
- 5. A. L. Gyalbudaghian, L. F. Rodrigues, S. Curiel, Rev. Mex. Astron. Astrophys. 1990 (in press).

6. А. Л. Гюльбудалян, Астрон. циркуляр (в печати).

АСТРОФИЗИКА

TOM 34

ФЕВРАЛЬ, 1991

выпуск 1

УДК: 524.354—62

HYDROGEN EMISSION IN THE DIRECTION OF h AND χ PERSEI

L. V. MIRZOYAN, M. MARSELAN, A. T. GARIBJANIAN, J. BOULESTEIX, A. L. MIRZOYAN, Y. M. GEORGELIN

Received 16 January 1991

The results of the Fabry-Perot observations in h and χ Persei region are presented. The intrinsic H₂ emission is detected apparently comming from the OB-association situated on the distance of about 1200 pc. The intensity of the detected H₂ emission is estimated to be around 8 Rayleighs which gives in more usual units an intrinsic monochromatic brightness about $2 \cdot 10^{-6}$ erg cm⁻²·s⁻¹sr⁻¹.

1. Introduction. It is well known that the Perseus OB1 association observed in the h and χ Persei region is the only one which is not connected with some diffuse nebula. While, a high abundance of OB-stars in this association shows that the star formation process in it is still going on. Therefore, the absence of diffuse matter in this young system where star formation is not finished yet seems to be a mystery.

Recently a joint study of the distributions of OB-stars and absorbing matter in the direction of h and χ Persei region has allowed us to find out that the Perseus OB1 association is in fact a superposition of two OB-associations, projected one upon the other [1, 2]. The distance between them is about 1000 pc which excludes any physical connection of these associations. It is important for us that the absorbing matter in the direction of h and χ Persei is concentrated completely in associations [1].

The presence of absorbing matter (dust) in the considered OBassociations gives us some grounds to hope that a gaseous matter also exists in them.

In this paper we present the results of a search of the gaseous matter in the direction of the h and χ Persei region.

2. Observations. For the detection of the ionized hydrogen emmision in the direction of the h and χ Persei clusters, supposed to be nuclei of the Perseus OB1 association, interferometric observations were carried out. The scanning Fabry-Perot interferometer "Cigale" of the Marseille
Observatory [3, 4] mounted on the 2.6m telescope of the Byurakan Astrophysical Observatory was used.

We have made attempts to detect an emission of the ionized hydrogen in the direction of h and χ Persei. The coordinates of the field center which we observed are: $\alpha(1985) = 2h$ 19 min 08 s; $\delta(1985) =$ $= 57^{\circ}06'10''$. Its orientation is given in Fig. 1.

The first attempt was made at H_3 wavelength (August 25, 1985). The result of this observation was negative. During 3200 seconds no appreciable signal was obtained. This result showed that if there really exists some emission of the ionized hydrogen in the direction of h and χ Persei it must be very faint.

The next attempt to detect the expected emission was made at H_a wavelength (September 14, 1985). Because of the faintness of the emission we wanted to detect, this observation was carried out with fixed spacing of the Fabry-Perot interferometer plates, that is without scanning. The interference filter used for this observation was centered at the wavelength 6564A with a FWHM=10A. The exposure time of the H_a observation was longer than of the H₃ observation—6000 seconds. For this reason the images of stars on this plate are somewhat trailed. This attempt was quite successful. The H_a emission we tried to detect is observed clearly, at least, on the central ring of the obtained interferogram.

3. Results. The detected H_{α} emission registrated clearly on the central ring contains the following three components (Fig. 1):

1. The brightest ring is also the innermost one. It is due to the geocoronal emission at H_{α} (6562.78A) to which was added the H_{α} emission of the local arm of the Milky way, brought to the same wavelength because of the earth motion.

2. The second ring, corresponds exactly to the expected H_z emission. This emission of the ionized hydrogen is due to the matter situated in the direction of the h and γ Persei. Its mean radial velocity is equal to approximately -30 km s⁻¹ (heliocentric).

3. The third, outermost ring is the faintest. This ring is due to a might sky line of OH at 6568.7A The free spectral range of the interferometer, that is the wavelength difference from one to the following ring of the same spectral line, is equal to 8.2A. This makes our assumption quite probable. Indeed in this case one of the interference patterns can appear at 6560.5A, just one quarter of spectral range outside H_{α} .

For the determination of the radial velocities of the detected H_{ϵ} emission, the emission lines of the H_{α} geocoronal emission and the OH might sky emission were used as comparison ones.

Fig. 1. Heltocentric radial velocities of the H_a emission in the direction of the h and γ Persci region, measured in sectors of 36°. Orientation of the observed field (Image inverted) and sizes of it are given in Fig. 1. The components of the observed emission are: 1. H_a emission of geocoronal nature to which was added the emission of the local arm of the Milky Way. 2. H_a emission we wanted to detect, and 3. OH emission due to the night sky line at 6558.7A.

The radial velocities of the ionized hydrogen emission in the direction of h and γ Persei have been measured in sectors of 30°, averaging the obtained signal for them. The precision of the measurements of these radial velocities is equal to $+10 \text{ km} \cdot \text{s}^{-1}$. The obtained mean radial velocities of the H_a emission are presented in Fig. 1.

The measurements of radial velocities were possible only for the first central interference ring where the different lines are separated enough. They were almost impossible for other rings.

The average value for the heliocentric radial velocity of the detected H_{α} emission is found to be $-30 \pm 6 \text{ km} \cdot \text{s}^{-1}$.

It can be added that we succeeded to obtain a rough estimate of the detected H_s emission intensity by its comparison with the emission of the neighbouring nightskylines. Such an estimate had been already made in the case of the bridge connecting Small and Large Magellanic Clouds (SMC and LMC) [5].

Assuming that for the H. geocoronal emission the typical intensity is 10 Rayleighs [6] the authors of the paper [5] have found for the intensity of the OH 6568.7A line about 8 Rayleighs in the SMC-LMC bridge.

The geocoronal H_a emission observed in the case of the h and χ Persei is however 2-3 times brighter than OH—emission in this line. In fact the observed H_a coronal emission is reinforced by superposition of the H_a emission originated in the local arm of the Milky Way (probably with the same order of intensity). Normally found about -15 km·s⁻¹ (heliocentric) it was brought almost in coincidence with the geocoronal H_a emission at the data of the observation since the solar reduction was +20 km·s⁻¹. At the same time the intensity of the H_a —emission in h and χ Persei is almost equal to the intensity of the OH – emission.

Thus we can conclude that the following components are observed on Fig. 1:

1. The central ring produced by superposition of two H_{α} emissions: geocoronal (~10 Rayleighs) and from local arm of the Milky Way (~10 Rayleighs). Thus total intensity of these emissions is equal to ~ ~20 Reyleighs.

2. The second ring produced by H_{α} emission from h and χ . Persei with intensity equal to ~ 8 Reyleighs.

3. The third ring produced by the nightskyline OH 6568.7A with the same intensity (~ 8 Rayleighs).

Consequently, the intensity of the H_{α} emission detected in h and χ Persei must be around 8 Rayleighs, which is in more usual units an

intrinsic monochromatic brightness about $2 \cdot 10^{-6}$ erg. cm⁻²·s⁻¹·sr⁻¹ or $2 \cdot 10^{-9}$ J·cm⁻². s⁻¹. sr⁻¹.

4. Discussion. From the point of view of the obtained result it is very important to clear up the question whether the detected H_a emission is originated in the considered OB—associations or in the interstellar medium.

The only possibility to solve this problem is the comparison of the radial velocities of these OB—associations and of the interstellar medium with that of the detected H_{α} emission.

According to the paper [2] the radial velocities of the OB-associations in the direction of the h and χ Persei region are equal to -35.90 ± 12.63 and -44.59 ± 8.35 km.s⁻¹, respectively.

On the other hand, the radial velocity of the ionized hydrogen assumed to be more or less distributed in interstellar space due to galactic rotation can be estimated by Oort's formula [7]. For the distance r = 1600 pc of the middle between the censidered OB--associations it is equal to about $-25 \text{ km} \cdot \text{s}^{-1}$.

All these radial velocities are close to the mean radial velocity of the detected H_{α} emission obtained by ξ us $-30 \text{ km}.\text{s}^{-1}$. Therefore, comparison of radial velocities do not allow us to solve the above-mentioned question.

Nevertheless, taking into account that the intensity of radiation of the farther OB—association must be about four times fainter than that of the nearer one and the fact that absorbing matter is concentrated in those associations [1] it seems to us that the detected H_e emission comes mainly from the nearer OB—association.

Byurakan Astrophysical Observatory Marseille Observatory, France

ВОДОРОДНОЕ ИЗЛУЧЕНИЕ В НАПРАВЛЕНИИ h И x ПЕРСЕЯ

А. В. МИРЗОЯН, М. МАРСЕЛАН, А. Т. ГАРИБДЖАНЯН, Ж. БУЛЕСТЕКС, А. Л. МИРЗОЯН, И. М. ЖОРЖЕЛАН

REFERENCES

- 1. A. T. Garibjanian, Astrofizika, 20, 437, 1984.
- 2. L. G. Balaze, A. T. Garlbjantan, Astrofizika, 27, 245, 1987.
- 3. J. Boulesteix, Y. P. Georgelin, M. Marcelin, G. Monnet, SPIE Conf. Instr. Antron. V. 445, 37, 1983.
- 4. A. Laval, J. Boalesteix, Y. P. Georgelin, Y. M. Georgelin, M. Marcelin, Astron. Astrophys., 175, 199, 1987.
- 5. M. Marcelin, J. Boulesteix, Y. Georgelin, Nature, 316, 705, 1985.
- 6. J. W. Chamberlain, Physics of the Aurora and Airglow, Academic, New-Yerk, 1961, p. 571.
- 7. J. H. Oort, Bull Astron. Inst. Netherlands, 4, 269, 1928.

АСТРОФИЗИКА

TOM 34

ФЕВРАЛЬ, 1991

выпуск 1

УДК: 524.5

ТЕМПЕРАТУРНАЯ СТРУКТУРА ВЕТРА ЗВЕЗД РАННИХ СПЕКТРАЛЬНЫХ КЛАССОВ

Л. В. ТАМБОВЦЕВА

Поступила 19 декабря 1991

Принята к печати 7 января 1991

Исследуется температурная структура ветра звезд ранних спектральных классов. Показано, что модель звездного встра с влектронной температурой, доститающей значения > 10^5 K на расстоянии $\cong 1.3R_{*}$ от поверхнести звезды, может объяснить присутстви: в нем аномально высокой стадия иопизации кислорода (OVI). Распределевая скорости я плотности ветра с расстоянием получены из решеняя уразненай динамики встра. При расчете монявационного баланса была учтена ударная нонизация. Аналия результатов говорят о возможной двухкомпонентной структуре звездаюто ветра: оден компонент—саз с визкой влектронной температурой ($T_c < T_{eff}$) и другой—с высокой, порядка 10^5 K.

1. Введение. Ранние исследования ультрафиолетовой области спектра ОВ-звезд с ракет дали прямое доказательство существования звездного ветра. Его скорости непосредственно определялись по смещенным в синюю область абсорбционным компонентам УФ резонансных линий CIV и Si IV с профилями типа Р Суg. Более поздние наблюдения с помощью спутника «Коперник» дали новую информацию о ветре OB-звезд: в их спектрах одновременно с линиями ионов низких стадий ионизации (CIII, C IV, Si III, Si IV) были обнаружены сильные линии ионов аномально высоких стадий ионизаций O VI и NV [1-4]. Ионы пятикратно ионизованного кислорода обнаружены в спектрах гигантов и сверхгигантов до спектрального класса B1. Аналогично, стадии ионизации для ионов NV, C IV и Si IV, присутствующие в звездных ветрах, выше, чем өто позволяет условие лучистого равновесия. Этот факт потребовал объяснения и вызвал появление нескольких взаимоисключающих моделей.

В предложенной Ламерсом и Мортоном модели «теплото» ветра [5] постулируется высокая электронная температура T_e, порядка 2·10⁵ K; ионы OVI образуются вследствие ударной ионизации. Эта модель не объясняет наблюдаемого потока рентгеновского излучения от OB-звезд. В другой модели—горячая корона+холодный ветер [6]—предполагается, что благодаря присутствию горячей $(5 \cdot 10^8)$ тонкой $(0.1 R_*)$ ко роны в основании холодного $(T_e=0.9 T_{eff})$ ветра ионы OVI появляются вследствие оже-ионизации. Наблюдения Эйнштейновской обсерватории (HEAO-2) действительно обнаружили рентгеновское излучение от некоторых звезд высокой светимости, но предсказанный рентгеновский спектр противоречит наблюдаемому [7, 8]. Недавно появились работы ([9] и ссылки в ней), где показывается, что такого типа короны не могут существовать у OB-сверхтигантов с темпом потери массы. превышающим $10^{-10} M_{\odot}$, год $^{-1}$.

Хамман [10], используя эмпирическую модель звездното ветра для ζPup (041 f), по соответствию теоретических и наблюдаемых профилей УФ резонансных линий определил отношение содержания ионов C, N, O, P, S и Si к полному содержанию соответствующих элементов. Найденные им вначения концентрации ионов находятся в хорошем согласии с моделью «теплого» ветра, а температурная структура ветра ζPup имеет следующий вид: на расстоянии r от поверхности ввезды, равном 1.5 R_* эле ктронная температура T_6 достигает значения 130 000 К и увеличивается до 170 000 К на расстоянии $r > 5 R_*$.

Согласно Польдраху [11] ионы ОVI и NV получаются и в рамках модоли холодного ветра: учет не-ЛТР эффектов при расчете ионизационного баланса дал сдвит в сторону высших стадий ионизации. Расчеты были проведены только для двух звезд: $\zeta Pup!(041 f)$ и т Sco !(BOV). Для одной из них !(ζPup) профиль линии OVI воспроизведен качественно и не соответствует наблюдаемому. Электронная температура в ветре ζPup задавалась убывающей функцией с расстоянием для того, чтобы получить нужную концентрацию иона С III ($T_e \sim 25000$ K на $r \ge 10R_*$).

Позднее Польдрах и др. [12] рассчитали теоретические профили линый иона OVI для набора «модельных» звезд различных спектральных типов. Авторами была найдена теоретическая граница на диаграмме Герцшпрунга—Рессела, до которой теория в рамках модели холодного ветра и с трактовкой ионизационного баланса при отсутствии ЛТР воспроизводит профиль линии OVI типа РСуд. Эта граница приходится на $T_e =$ = 38000 K (спектральный класс O6). Кроме того, появление теоретического профиля линии OVI сильно зависит от класса светимости, что противоречит наблюдениям (см., например, [4]). Авторы считают, что для звезд, холоднее 38000 K, следует привлечь механизм оже-ионизации изза присутствия локального ренттеновского поля излучения.

В настоящей работе сделана попытка найти распределение электронной температуры в оболочке звезды СРир, которое соответствовало бы наблюдаемому профилю линии OVI. Распределение скорости и плотности встра с расстоянием получены из решения уравнений динамики ветра. При расчете ионизационного баланса была учтена ударная вонизеция. Результаты моделирования применены к другим ОВ-звездам, в спектрах которых имеются линии пятикратно ионизованного кислорода.

2. Ионизационная структура звездного встра. При расчете ионизационной структуры ветра ζP up предполагалось, что конизационное равновесие определяется балансом между ионизациями с основного уровня и рекомбинациями на все уровни («небулярное» приближение). Допуская также, что звездный ветер является оптически тонким для ионизующего континуума, мы определяем содержание данного влемента в i и i+1 стадиях ионизации по формуле [13]:

$$\frac{N_{i+1}N_{\star}}{N_i} = \zeta W \left(\frac{T_{\star}}{T_R}\right)^{1/2} \left(\frac{N_{i+1}N_{\star}}{N_i}\right)^{\star}_{T_R}.$$
(1)

Поскольку в рассматриваемых нами моделях звездного ветра электронная температура достигает ~ $10^5 K$, нельзя пренебречь ударными ионизациями, и в правую часть выражения (1) введен коэффициент (1+ + C_{1k}/R_{1k}). Здесь C_{1k} и R_{1k} —скорости ударных и радиативных ионизаций соответственно. Для их оценки использовалось отношение [14]:

$$R_{ik}/C_{ik} = \frac{4(2\pi^3 k)^{1/_{e}} h v_{0}^{3}}{3m^{1/_{e}} e^2 c^3} \frac{WT_{R}}{N_{*} T_{*}^{1/_{e}}} \exp\left[h v_{0}\left(\frac{1}{k T_{*}} - \frac{1}{k T_{R}}\right)\right], \quad (2)$$

где У₀ — пороговая частота нонизации, остальные символы имеют общепринятое значение.

Распределение скорости v(r) и плотности $N_e(r)$ расширяющегося гава, темп потери массы M и терминальная скорость ветра v_{-} , необходимые для расчета ионизационного баланса и последующего расчета профилей лянии OVI ($\lambda\lambda$ 1031.95, 1037.63), получены из решения уравнений динамики ветра; течение рассматривалось сферически симметричным и стационарным. Метод решения уравнений дан в работе [15]. Использовались следующие параметры звезды: T_{eff} =42000 K, $M_* = 74 M_{\odot}$, $R_* =$ = 19 R_{\odot} [16]. Параметры α , \varkappa и δ , входящие в выражение для радиационного ускорения в линии, были фиксированы: α =0.59, \varkappa =0.17. $\delta = 0.09$. В результате решения уравнений получены следующие параметры ветра: $M = 5.5 \cdot 10^{-6} M$ год⁻¹, $v_{-} = 2660$ км/с.

Теоретические профили резонансных дублетов вычислялись методом, описанным в [17], в котором функция источников S вычисляется вероятностным методом, тогда как уравнение переноса излучения решается точно. При расчете S учитывалось ударное возбуждение верхнего уровня. Этот метод позволяет рассчитывать профили линий в сферически симметричном расширяющемся ветре с монотонно возрастающей скоростью, в котором присутствуют хаотические («турбулентные») движения. Турбулентная скорость принималась равной 0.1 v(r), где v(r)—регулярная скорость ветра.

3. Распределение электронной температуры. В качестве первого приближения был рассмотрен ряд моделей звездного ветра с постоянной электронной температурой, начиная от $T_e \approx T_{eff}$ до $T_e = 1.5 \cdot 10^5$ К. Некоторые из этих моделей приведены на рис. 1. Здесь даны распределения с расстоянием: а—әлектронной температуры $T_e(x)$, где $x = r^{I}R_{*}$ —бевразмерная радиальная координата; b—логарифма доли иона $q_{OV_I}(x)$; с-логарифма отношения скорости ударной ионизации к радиативной и d-теоретические профили линии OVI для приведенных моделей. На этом же рисунке дан наблюдаемый профиль линии OVI, колученный спутником «Коперник» для ζ Рир [2].

Сравнение профилей показывает, что для достижения нужной концентрации ионов О VI достаточно задать өлектронную температуру равной 10⁵ К. Дальнейшее увеличение температуры приводит к переизбытку ионов, что сильно сказывается на профиле линии (резкое увеличение интенсивности өмиссионного компонента и ширины абсорбционного компонента).

Как повлияет изменение электронной температуры на линии других ионов? Для ответа на этот вопрос были рассчитаны профили линий C IV ($\lambda\lambda$ 1548.20, 1550.77) и NV ($\lambda\lambda$ 1238.81, 1242.80) для двух предельных случаев: модели холодного ветра и «теплого» с $T_e = 10^5$ К (рис. 2). Из рисунка видно, что насыщенные профили этих линий практически нечувствительны к изменению температуры, по крайней мере до указанных иределов.

Линии ионов более низких стадий ионизаций (С III (λ 977.026) и Si IV ($\lambda\lambda$ 1393.76, 1402.77)) гораздо слабее наблюдаемых даже в рамках модели холодного ветра. Доминирующей стадией ионизации углерода является С IV и CV, кремния—SiV. Концентрация ионов C²⁺ и Si³⁺ в ветре ζ Рир слишком низка, чтобы образовать наблюдаемые УФ-линии. Для их образования требуется наличие газа с $T_e < T_{eff}$. К этому вопросу мы вернемся ниже. Трудно предположить, что вещество ветра нагрето до 10^5 К уже на уровне фотосферы. Поэтому был рассмотрен ряд моделей с постепенным увеличением T_e , начиная от значения $T_e=0.9 T_{eff}$ вблизя поверхности

Рис. 1. Модель звездного ветра ζ Рир: а—распределение влатронной температуры T_e с расстоянием х; b—зависимость логарифма отношения скорости ударной ионизации к раднативной от расстояния; с—зависимость логарифма доли иона OVI от расстояния; d—рассчитанные профили линии иона OVI для T_e =80 000 K (----), T_e =90 000 K (----), T_e =100 000 K (....) и наблюдаемый профиль линия (----).

звезды (x=1) до $T_{emax} = 10^5$ К на расстояния $x = x_r$. Часть моделей приведена на рис. З с соответствующими им профилями линии OVI. Анализ результатов показал, что существует некоторое максимальное значение x_{max} такое, что любая модель ветра с подобным ходом әлектронной температуры и $x_1 < x_{max}$ даст наблюдаемый профиль. Значение x_{max} , найденное для ζPup , равно 1.3 и, естественно, не является точным вследствие некоторых допущений, сделанных при расчетах (например, в уравнении движения мы пренебрегли членом, содержащим градиент температуры).

Кроме перечисленных выше моделей были рассмотрены и другие варианты температурной структуры, которые не приводятся в данной работе, так как соответствующие им профили линии OVI далеки от наблюдаемого.

л. в. тамбовцева

Таким образом, наши расчеты согласуются с моделью «теплого» ветра с электронной температурой порядка 10^5 К. Нагрев ветра должен происходить в области, расположенной вблизи звезды до расстояния $r \sim 1.3 R_{\star}$ Механизм ударной ионизации может быть ответственным за появление ионов OVI.

5. Результаты моделирования для других звезд. Благодаря данным, полученным со спутника «Коперник», мы имеем достаточно информации об области спектра вблизи 1000 А для звезд ранних спектральных классов. Наблюдаемые спектры наиболее полно представлены в каталоге Сноу и Дженкинса [4]. Мы выбрали несколько звезд, имеющих в своих спектрах линию OVI, и провели для них расчеты, аналогичные сделанным для ζPup .

В табл. 1 даны параметры выбранных ввезд со ссылкой на источник и рассчитанные для них параметры ветра [15]. В этой же таблице дана принятая электронная температура ветра. Для всех звезд она принималась постоянной и равной $(1.1-1.2)\cdot 10^5$ К. Ее эначение находилось по соответствию теоретических и наблюдаемых профилей линий. На рис. 4 представлены результаты сравнения.

Надо заметить, что температуры $\leq 10^5$ К явно недостаточно для появления нужной концентрации иона OVI в рассматриваемых звездах. Возможно, вто связано с более низкой эффективной температурой этих звезд.

Мы не ставили своей целью детализировать модели ввездного ветра, чтобы добиться лучшего совпадения профилей (например, подбором соответствующего значения x_{max} в вариантах $T_{\sigma}(x) \neq \text{const}$). В данном случае важно было получить качественное согласие. Из рисунка видно, что наибольшее расхождение наблюдается в эмиссионной части профиля. Отчасти это объяснимо тем, что мы не учли в расчетах профилей линий наложение сильных межзвездных линий поглощения. Для большинства звезд мы получили удовлетворительное совпадение профилей, что также подтверждает модель «теплого» ветра.

V (KM/C)

4. Заключение. Моделирование расширяющихся оболочек ОВ-звезд с различной температурной структурой показывает, что модель ветра с электронной температурой, достигающей значений 10⁵ К на расстоянии, не превышающем 1.3 R, от поверхности звезды, вполне удовлетвори-

л. в. тамбовцева

тельно объясняет присутствие в них иона OVI. При этом не ухудшается сходство профилей линий ионов C IV и NV.

Таблица 1

ФИЗИЧЕСКИЕ ПАРАМЕТРЫ ЗВЕЗД И ПАРАМСТРЫ ЗВЕЗДНОГО ВЕТРА

HD	Звезда	Спектр. класс	T _{e JJ} /104 K	M.M.	R,IR.	CCMARB	M 10 ⁻⁶ M⊙/r	* RM/C	T _e /104 K
47839	15 Mon	O7V((f))	3.48	29	11.5	3	0.15	2600	12
36861	λ Ori	O8111((f))	3.50	29	11.5	3	0.36	2650	12
57061	т СМа	0911	3.18	56	30.0	16	3.51	2350	11
214680	10 Lac	09V	3.80	31	9.0	16	0.31	2555	11
37043	t Ori	O9111	3.40	34	15.8	3	0.82	2450	11
36486	d ()ri	09.511	3.35	23	17.0	16	1.10	2300	11
30614	a Cam	O9.51a	3,00	48	30.0	3	3.15	1900	11
37742	¢ Ori	09.51	3.20	60	31.0	16	4.25	2250	11
149757	(Oph	09.5V(0)	3.20	23	10.0	18	0.16	2170	11
37128	= Ori	BOIa	2.50	37	34.0	3	3.08	1980	11
91316	p Leo	BlIa	2.09	24	31.0	3	0.57	2300	12

V/10 -3 (MM/C)

Рис. 4. Рассчитанные (...) и наблюдаемые (—) профили линии нона OVI для звезд различных спектральных классов. Отмечены можзвездные лизии поглошения. Линии таких ионов, как CIII и SiIV, рассчитанных в рамках модели «теплого» ветра, являются слишком слабыми. Наблюдения с очевидностью свидетельствуют об одновременном присутствии сильных линий ионов как низких, так и высоких стадий ионизаций, поэтому предложенная модель встра является несколько идеализированной. Скорее можно предположить, что ветер имеет двухкомпонентную структуру: газ с низкой электронной температурой (T_{eff}) и высокой, порядка 10⁵ К. В данный момент говорить о его геометрии преждевременно. Необходимы хотя бы предварительные расчеты.

В данной работе не упоминается о возможных механизмах нагрева. О них говорится, например, в [19—21]. Задача была бы самосогласованной, если бы температурная структура оболочки непосредственно определялась из решения уравнений динамики ветра с включением уравнения сохранения энергии. В последнем следует учесть все возможные источники нагрева и охлаждения звездного ветра.

Астрофизический институт АН КазССР

TEMPERATURE STRUCTURE OF WINDS IN EARLY-TYPE STARS

L. V. TAMBOVTSEVA

The stellar wind temperature structure of early-type stars is investigated. It is shown that the wind model with the electron temperature reached the values of $\ge 10^{5}$ K at the distance about $1.3R_{*}$ from the stellar surface can explain the presence of superionized oxygen stage O V1. Velocity and density distributions are derived from the solving of wind momentum equations. The collisional ionization was taken into account in ionization balance calculation. The analysis of results gives the possibility of two-component wind structure: one component is the gas with the low electron temperature ($T_{*} \ge 10^{5}$ K).

ЛИТЕРАТУРА

1. D. C. Morton. Astrophys. J, 197, 85, 1975.

2. D. C. Morton. Astrophys. J., 203, 386, 1976,

3. T. P. Sn. w. D. C. Morton, Astrophys. J. Suppl. Ser., 32, 429, 1976.

4. T. P. Snow, E. B. Jenkins, Astrophys. J. Suppl. Ser., 33, 269, 1977.

5. H. J. G. L. M. Lamers, D. C. Morton, Astrophys. J. Suppl. Ser., 32, 715, 1976. 6-370

- 6. J. P. Cassinelli, G. L. Olson, Astrophys. J., 229, 304, 1979.
- 7. F. R. Harnden, G. Brandwardt, M. Elvis et al., Astrophys. J. Lett., 234, L55, 1979.
- 8. K. S. Long, R. L. White, Astrophys. J. Lett., 239, L65, 1980.
- A. G. Hearn, in "Circumstellar Matters". eds. I. Appenzeller. C. Jurdan, Dordrecht, Reidel, 1987, p. 395.
- 10. W.-R. Humman, Astron. and Astrophys., 84, 342, 1980.
- 11. A. Pauldrach, Astron. and Astrophys., 183, 295, 1987.
- 12. A. Pauldrach, R. P. Kudritzki, J. Puls, K. Butler, Astron. and Astrophys., 228, 125, 1990.
- 13. D. C. Abbott, L. B. Lucy, Astrophys. J., 238, 679, 1985.
- 14. Д. Михалас, Звездные атмосферы, Мир, М., 1982, стр. 169.
- 15. Л. В. Тамбовцева, Астрон. ж., 1990(в печатв).
- 16. I. D. Howarth, R. K. Prinja, Astrophys. J. Suppl. Ser., 69, 527, 1989.
- 17. H. J. G. L. M. Lamers, M. Cerruti-Sola., M. Perinotto, Astrophys. J., 314, 726, 1987.
- 18. R. K. Prinja, I. D. Howarth, Astrophys. J. Suppl. Ser., 61, 357, 1986.
- 19. L. B. Lucy, Astrophys. J., 241, 300, 1980.
- 20. Э. Я. Вильковиский, Астрофизика, 17, 309, 1981.
- 21. K. B. MacGregor, L. Hartman, J. C. Raymond, Astrophys. J., 231. 514, 1979-

АСТРОФИЗИКА

TOM 34

ФЕВРАЛЬ, 1991

выпуск 1

УДК: 524.88+52—6

ГРАВИТАЦИОННОЕ ИЗЛУЧЕНИЕ ПРИ АНТИКОЛЛАПСЕ И ВСПЫШКАХ СВЕРХНОВЫХ

А. П. ТРОФИМЕНКО, В. С. ГУРИН

Поступила 31 августа 1990 Принята к печати 10 января 1991

Рассматривается модель Д-тел как антиколлапсирующих объектов (белых дыр)¹ в расширенном пространственно-временном многообразии, учитывающая поле гравитацион::ого излучения. Для описания пространства—времени сферической гравитационной волны используется решение типа Робинсона—Траутмана, похазывающее колебательный характер глобальной структуры пространственно-временного многообразия гравитационно-излучающей белой дыры. Данная модель используется для объяспения внергетихи гравитационного всплеска от сверхновой 1987А. Отмечается, чторождение Д-тел также сопровождается всплеском гуавитационного излучения.

1. Введение. Излучение гравитационных волн является одним из основных предсказаний общей теории относительности (ОТО), но до настоящего времени нет общепризнанного свидетельства об их чепосредственной регистрации [1-3]. Вместе с тем универсальный характер гравитационного взаимодействия и общирная теоретическая разработка проблемы излучения и детектирования гравитационных волн говорят о перспективности гравитационно-волновой астрономии. При этом в качествевозможных источников излучения следует анализировать разнообравные нестационарные, взрывные процессы, об универсальности которых говорится в бюраканской космогонической концепции [4-8]. Взрывы Д-тел могут приводить к сильным возмущениям гравитационного поля и излучению гравитационных волн, которые тогда следует рассматривать. как одно из наблюдательных проявлений Д-тел. Антиколлапсирующие объекты (белые дыры) в расширенном пространственно-временном многообразии (ПВМ) являются одной из моделей Д-тел в рамках ОТО [9]. на которой мы и основываемся в данной работе.

В последние годы проблема регистрации гравитационного излучения. приобрела новое звучание в связи с регистрацией гравитационно-волнового всплеска при взрыве сверхновой 1987А [10, 11]. Интерпретации: излучения от сверхновой 1987А посвящено огромное число работ, но теория гравитационно-волнового всплеска от нее остается практически не разработанной. Вместе с тем, связывание гравитационного всплеска со стандартными моделями сверхновых наталкивается на значительные энергетические трудности, так как из оценки зафиксированной римским детектором энергии [10] следует, что масса излучавшего источника на расстоянии Большого Магеланового облака должна составлять по країней мере несколько тысяч солнечных, что трудно связать со звездами.

Среди множества возможных источников генерации гравитационного излучения (двойные системы, пульсары, столкновение звезд и черных дыр и др.) [12, 13] наиболее адекватной для объяснения гравитационного всплеска от СН 1987А представляется модель белой дыры [14, 15], разработке которой и посвящена данная статья.

2. Модель гравитационно-излучающей белой дыры. Источником антиколлапсирующего вещества, как показывает анализ движений материальных частиц, тонких оболочек и массивных тел в расширенных ПВМ ОТО, может являться черная дыра, т. е. коллапс в другой области втоиго многообразия, отделенной от области с белой дырой (БД) горизонтами событий [14-16]. В такой постановке проблема энергии, выделяюшейся пои антиколлепсе, ставится совершенно по-иному. Основное ее отличие от традиционной отсутствие довольно жестких ограничений на максимальную величину, излучаемую во внешнее пространство в результате какого-либо волно-генерирующего процесса: необходимо рассматривать энергетические ресурсы всего глобального ПВМ. При этом в отношении гравитационного излучения некоторой системой следует учитывать излучение не как результат возмущения стационарного гравитационного поля, а анализировать структуру ПВМ самой гравитационной волны, приводящей к формированию и эболюции сложной и нестационарной топологической структуры. Следует заметить, что в целях решения задачи о направленном гравитационном излучении такой анализ не проводился, но что даже в качественном смысле представляет значительный интерес.

В настоящей работе мы исследуем задачу о гравитационном излучении антиколлапсирующего объекта (БД), построив его модель на основе метрики для сферической гравитационной волны типа Робинсона—Траутмана, учитывая структуру расширенного ПВМ для такого объекта.

В большинстве расчетов излучения гравитационных волн использует ся квазилинейное приближение, т. е. рассматривается излучение слабых волн, когда гравитационное поле самой волны является возмущением на Фоне основной стационарной метрики [1—3]. При очевидной ограничен, ности такого подхода по интенсивности излучения, которая может соотнетствовать возмущению, в нем совершенно невозможно изучить влияние сложной топологической структуры пространства—времени на характер излучения и распространения воли и величину излучаемой энергии. Другими словами, такой подход мало чем отличается от рассмотрения электромагнитного излучения, распространяющегося в гравитационном поле. Однако гравитационные волны в ОТО должны сами оказывать существенное действие на объект-источних и структуру ПВМ в целом. В качестве модели гравитационно-излучающего антиколлапсирующего объекга мы рассмотрим структуру, составленную из поля материи (стационарного) и поля гравитационной волны и ограничимся сферически-симметричным случаем.

Среди точных решений ОТО для описания гравитационной волны, распространяющейся от антиколлапсирующего сферически-симметричноготела, наиболее адекватным представляется решение типа Робинсона— Траутмана [19], и, учитывая тогда, что эта метрика при сведении к нулю волновых возмущений стремится к шварцшильдовской, такая модель будет обобщением канонической модели БД, в которой гравитационное излучение никак не учитывается [20].

Сферическая гравитационная волна будет описываться метрикой Робинсона—Траутмана следующего вида в запаздывающих изотропных координатах [19, 21, 22]:

$$ds^{2} = 2d\rho \, d\sigma + (K - 2H\rho - 4m/\rho) \, d\sigma^{2} - \rho^{2} \, p^{-2} \, \left| \, (dz + q_{\eta} \, d\sigma)^{2} + (d\eta + q_{\eta} \, d\sigma)^{2} \, \right|, \tag{1}$$

где ρ—пространственноподобная координата, σ—времениподобная, ζ, η угловые, связанные с обычными сферическими θ и φ по формулам.

$$\xi = \cos\varphi \operatorname{ctg}(\theta/2), \ \eta = \sin\varphi \operatorname{ctg}(\theta/2), \ \xi^2 + \eta^2 + \operatorname{ctg}^2(\theta/2).$$
(2)

В этой метрике *p* и *q* являются функциями координат σ, ξ и η и не зависят от *ρ* в силу сферической симметрии, *m*—масса источника. Общее выражение для *H* имеет следующий вид:

$$H = p^{-1} p_{\cdot a} + q_{\cdot \cdot i\eta} + p^{-1} P_{i i} q_{i \eta} + p^{-1} p_{i \eta} q_{i i}, \qquad (3)$$

а конкретный вид метрики определяется выбором модели для закона распространения волн, удовлетворяющей волновым уравнениям

$$\Delta q = 0, \ \Delta \ln p = K. \tag{4}$$

Ввиду произвола в выборе *р* н *q* гауссова кривизна *К* (не равная нулю): может быть положена равной единице для соответствия метрики (1) н шварцшильдовской. Мы возьмем для р и q «волнообразную вависимость» следующего вида:

$$q = if \cos{(k:)} \sin{(ik r_i)}; \quad p = \exp{(\tau^2/2)},$$
 (5)

где f-параметр амплитуды волны, k-параметр частоты. Тогда

$$H = \sigma + fk^2 \sin(k \dot{\varsigma}) \cos(ik \eta). \tag{6}$$

При таком выборе q отражает отклонение геометрии от точной сферической симметрии в угловой части, а p—затухание этих отклонений со временем.

Для перехода к форме метрики Робинсона—Траутмана со всеми разделенными переменными, чтобы установить ее соответствие с шварцшильдовской и формой для метрики антиколлапсирующего вещества (например, Фридмана), произведем следующие преобразования координат от изотропных к обычным сферическим и времени t:

$$\sigma = t - \rho^*, \ \rho^* : d\rho^* = F^{-1/2} d\rho.$$
 (7)

Получим

$$ds^{2} = Fdt^{2} - F^{-1} d\rho^{2} - (\rho^{2}/4p^{2}) \sin^{-4} (\theta/2) (d\theta^{2} + \sin^{2} \theta d\varphi^{2}), \qquad (8)$$

где

$$F = 1 - 2\alpha \rho - f\rho k^{2} \sin (k\xi) \cos (ik\eta) - \rho^{2} f^{2} k^{2} \cos [k (\zeta + i\eta)] \cos [k (\zeta + i\eta)]$$
⁽⁹⁾

и только на самом малом расстоянии от источника (в единицах массы) вид F приближается к шварцшильдовскому. В основном же он определяется волнообразной зависимостью слагаемых с f и k; ими же будет определяться и структура ПВМ. Положение горизонта событий (или нескольких горизонтов, как, например, в метриках типа Шварцшильда-.Де Ситтера) будет иметь колебательный характер, а значительность втих колебаний для глобальной структуры пространства-времени обусловлена соотношением f, k и m. В отличие от шварциильдовского предела (р→0) горизонты будут проявляться и при больших р, т. е. такая гравитационная волна при своем распространении будет нэменять причинную структуру ПВМ, лричем периодическим образом, и положение горизонтов (двух или менее) будет задаваться корнями урав-.нения F=0. Таким образом, структуру пространства-временя можно представить как флуктуирующую между метриками Рейсснера-Нордстрема, ее экстремальным случаем и суперэкстремальным (голой синтулярностью). Вопрос о реализуемости такото рода изменений в причинной структуре требует специального рассмотрения, однако уже сам колебательный характер горизонтов даже в простых ПВМ представляет значипельный интерес. Даже при небольшой амплитуде таких колебаний поло-

86

ГРАВИТАЦИОННОЕ ИЗЛУЧЕНИЕ

жение тел-приемников гравитационного излучения относительно горизонта будет существенно сказываться на восприимчивости детектора и будет определять возможность наблюдения излучения. Поэтому в зависимости от фазы гравитационной волны, возмущающей пространство-восмя, в разные моменты времени могут оказаться наблюдаемыми объекты. расположенные в весьма удаленных частях Метагалактики, а также трансмеобъекты [14]. При большой частоте гравитационных тагалажтические воли следует ожидать весьма кратковременные проявления (всплески) излучения, длительностью порядка [-1. Причем такая кратковременность обуславливается не природой самого излучающего объекта, а особенностями сильной гравитационной волны. Очевидно, что изменение структуры ПВМ даст и иные оценки для энергетики пои регистрации гравитационного излучения, и задачу о его детектировании следует рассматривать как поведение детектора (например, механического осциллятора) в искривленном пространстве-времени с метрикой (1).

3. Сверхновые и вспышки Д-тел (белых дыр). Хотя теория сверхновых представляет собой довольно разработанную часть астрофизики [23] и стройно вписывается в общую теорию вволющии звезд, имеется ряд нерешенных проблем. Эначительная их часть обязана своим происхождением наблюдениям событий, связанных с СН 1987А [24], когда впервые были заретистрированы из одной области пространства излучения значительной мощности в различных диапазонах влектромагнитного сиектра, нейтринное и гравитационное. Модель БД, не отрицая результатов классической теории последующей вволющии расширяющегося вещества, может дать ключ к объяснению необычной внергетики и переменности СН 1987А.

Полагая нейтронные звезды как продукты взрывов сверхновых, мы встречаемся с трудностями при моделировании гравитационного коллапса ядра звезды [23]. Эти трудности еще более усилились после наблюдения нейтринных всплесков, энергия которых возможно, на порядок больше, чем энергия связи самой нейтронной звезды [18], и гравитационного всплеска, которому соответствует общая энергия 2400 M_{\odot} [10, 11], что поставило под сомнение стандартную схему образования нейтронных звезд.

Гравитационный всплеск столь большой энертии может быть объяснен взрывом БД [14, 15], и поэтому логично связать феномен сверхновых, в особенности СН 1987 А, со взрывами БД, образующихся ив материи и излучения черных дыр в другой области глобального ПВМ. При этом снимаются энергетические ограничения и имеется возможность допускать различные механизмы генерации гравитационного излучения в нестационарном поле антиколлапсирующей БД.

Следует отметить, что в связи с экспериментами по регистрации гоавитационных воли возникла своеобразная проблема «скрытой знеогии»: энергия выделяется в формах, труднонаблюдаемых или вообще ненаблюласмых в электромагнитном диапазоне. Это известные эксперименты Вебера [25], Садеха [26] и гравитационный всплеск, связанный с СН 1987 А [10]. Считалось, что подобным грандиозным внертовыделениям в форме гравитационных волн должны соответствовать столь же грандиозные космические процессы, связанные с энертовыделениями в области электромагнитных воли, что не наблюдалось в вышеуказанных экспериментах. Для объяснения подобных феноменов необходимы такие объекты, у которых лодавляющая часть энергии может быть излучена в форме гравитационных волн, либо факт регистрации гравитационной волны создает какие-либо особые условия для отсутствия корреляции с другими видами излучения. Подобными объектами могут явиться белыс и сеоые дыры [14, 15]. Поэтому со всплесками гравитационных воли естественно связать столь же кратковременные события в электромагнитном диапазоне, например, гамма-всплески [9], тогда установление корреляции между этими двумя видами всплесков послужило бы подтверждением моделя БД [15, 16].

В заключение авторы выражают благодарность профессорам Дж. Веберу, Р. Пенроузу, Дж. Нарликару за высылку оттисков своих работ и замечания.

Астровомическая секция Минского отделения ВАГО

GRAVITATIONAL RADIATION CONNECTED WITH ANTICOLLAPSE AND SUPERNOVAE EXPLOSIONS

A. P. TROFIMENKO, V. S. GURIN

A model of D-bodies as anticollapsing objects (white holes) is considered in extended space-time manifold taking into account the field of gravitational radiation. The solution by the Robinson-Trautman type is used for the description of spherical gravitational wave spacetime. It shows an oscillating character of space-time manifold global stucture for the gravitationally radiating white hole. Such a model is applied for the explanation of energetics of the Supernova 1987A's gravitational burst. It has been pointed out that a creation of D-bodies is also accompanied by a burst of gravitational radiation.

ЛИТЕРАТУРА

- 1. А. П. Грищук, Успехи физ. наук, 156, 79, 1988.
- 2. И. Бичек, В. Н. Руденко, Гравитационные волны в ОТО в проблема вх обнаружения, МГУ, М., 1987.
- 3. В. Н. Руденко, в кн.: «Эйнштейновский сборняк. 1986—1990», Наука, М., стр. 351, 1990.
- 4. В. А. Амбарцумян. Научные труды, Изд. АН Арм. ССР, Ереван. 1988.
- 5. V. A. Ambarisumlan. Rov. Mex. Astron. y Astrofis., 10, 111, 1985.
- 6. Вопросы физики и эволюции космоса, Изд. АН Армения, Ереван, 1978.
- 7. Л. В. Мирвоян, в кн. «Проблемы современной космоговни», Наука, М., 1972.
- 8. Г. С. Саакян, Пространство—время и гравитация, Изд. Ереванского ун-та, Ереван, 1985.
- 9. А. П. Трофименко, Астрофизнка, 31, 397, 1989.
- 10. M. Aglietta et al. Nuova Cim., C12, 75, 1989.
- 11. E. Amaldi et al, Europhys. Lett.. 3, 1325, 1987.
- 12. B. F. Schutz, Class, Quantum Grav., 6, 1761, 1989.
- 13. Э. Амальди. Г. Пицелла, в кн.: «Астрофизика, кванты и теория относятельвости», Мир, М., 1982.
- 14. A. P. Trofimenko, Rev. Roum. Phys., 34. 533, 1989.
- 15. A. P. Trofimenko, Astrophys. Space Sci., 159, 301, 1989.
- 16. A. P. Trojimenko, V. S. Gurin, Astrophys. and Space Sci., 152, 105, 1989.
- 17. В. С. Имшеник, Д. К. Надежин, Успехи физ. наук, 156, 561, 1988.
- 18. В. Л. Дадыкин, Г. Т. Зацепин, О. Г. Ряжская, Успехи физ. наук, 158, 139, 1989.
- 19. I. Robinson, A. Trautman, Proc. Roy. Soc., A265, 463, 1962.
- 20. J. V. Narlikar. K. M. V. Apparan, N. Dadhich. Nature, 251, 590, 1974.
- 21. K. P. Tod. Class. Quantum Grav., 6, 1159, 1989.
- 22. Дж. Бебер, Общая теория относительности и гравитационные волны, ИЛ, М.,. 1962.
- С. Шапиро, Р. Тьюколски, Черные дыры, белые карлики и нейтронные звезды. Мир, М., 1987.
- 24. T. Nakamura, KEK Progr. Repts., 44, 246, 1989.
- 25. J. Weber, Phys. Rev. Lett., 22, 1320, 1969.
- 26. D. Sadeh, A. Ben Menahem, M. Metdav, Proprint TAUP-270-72, 1972.

АСТРОФИЗИКА

TOM 34

ФЕВРАЛЬ, 1991

. ВЫПУСК1

УДК: 52:53

МАКСИМАЛЬНО ПРАВДОПОДОБНОЕ ВОССТАНОВЛЕНИЕ ИЗОБРАЖЕНИЙ. V. НЕКОГЕРЕНТНОЕ ОСВЕЩЕНИЕ*

В. Ю. ТЕРЕБИЖ, О. К. ЧЕРБУНИНА, Ю. Г. ЧЕРБУНИН, В. В. БИРЮКОВ Поступила 2 ноября 1990

Колжретизировала общая схема MLIR [1] восстановления наображеный для случая, когда имеется априорная информация о пуассоновском распределения накопленных за время виспозвции событий. Алгоритм восстановления при втом заметно упрощается, однако фактический выигрыш от сообщения указанной информации значим лишь для объектов очень малой ярхости.

1. Введение. Последующее обсуждение базируется на общей схеме формирования и восстановления изображений, которая была предложена в [1]. Формулы этой статьи цитируются ниже с добавлением римской цифры I.

Нетрудно видеть, что хотя в упомянутой схеме говорится о «событиях», составляющих «изображение», в действительности информация о свойствах порождающего «события» потока излучения сводится лишь к констатации неотрицательности оригинала. Поэтому рассматриваемая в [1] схема по существу имеет дело с общей постановкой линейной обратной вадачи для случая неотрицательного решения. Для оптических изображений принятый в [1] способ рассмотрения отвечает физической природе задачи; в более сбщем случае произвольной обратной задачи метод максимально правдоподобного восстановления изображений (MLIR) можно использовать, если только иметь в виду, что «события» здесь просто удобная вспомогательная модель. То обстоятельство, что в обоих контекстах—и для фотонных изображений, и при решении произвольных обратных задач—«события» подчиняются классической статистике, обусловлено рассмотрением лишь возможных и действительных их положений, т. е. пространственной различимостью «событий».

Конкретизируем теперь задачу, ограничиваясь обсуждением действительно фотонных изображений. Как отмечено выше, при отсутствии каких-либо дополнительных сведений применять общую методику MLIR (см.

^{*} По вине редакции в статье В. Ю. Теребила и В. В. Бирюкова «Максимально правдоподобное восстановление изображений. III. Алгоритм. Одномерные тестовые задачи», папечаталной в т. 33, вып. 2, стр. 313, 1990 г., допущены ошибжи: на рис. 40 и 5а касштабы по оси ординат искажены в 10 раз. В правильном виде рисучки 4 в 5 представлены в конце настоящей статьи (см. стр. 102).

[1-4]), предполагающую лишь неотрицательность искомой оценки оригинала (объекта). Однако часто в распоряжении исследователя имеются дополнительные сведения о свойствах источника излучения. Например, может быть известно, что объект испускает полностью некогерентный по времени поток (как это имеет место для тепловых источников), либо, напротив, его излучение близко к чисто когерентному (как у лазеров). Естественно, что дополнительная априорная информация о том, как формировалось изображение, должна учитываться при построении оператора восстановления R (см. [1]), и в принципе она позволяет обеспечить более глубокое восстановление, т. е. найти более точную оценку объекта.

В данном сообщения мы обсудим конкретизацию общей схемы для часто встречающегося в приложениях случая, когда поступающий поток излучения некогерентен для различных моментов времени в фиксированной точке наблюдения. При этом, как будет показано, формальная сторона процесса восстановления упрощается, однако фактический выигрыш от сообщения априорной информации такого рода значим лишь для объектов очень малой яркости.

2. Финкционал правдоподобия для пуассоновских объектов. Как полуклассическое приближение, так и строгая квантовая теория восменного распределения фотоотсчетов показывают, что при полностью некогерентком по времени освещении поток порожденных фотонами событий представляет собой дважды стохастический прассоновский процесс. или процесс Кокса-Мандела [5—10]. Этот процесс получается из обычного процесса Пуассона, если считать, что его интенсивность в свою очередь является стационарным случайным процессом. Общие свойства процесса Кокса-Мандела с трудом поддаются аналитическому изучению, однако, к счастью, для весьма широкого круга явлений этот процесс аппроксимируется простым пуассоновским потоком; для этого достаточно, чтобы время экспозиции эначительно превосходило время когерентности света. Именно это условие типично для огромного большинства астрономических и физических экспериментов, так что в дальнейшем мы считаем процесс образования событий при регистрации некогерентного лотока пуассоновским процессом с постоянной интенсивностью.

Напомним, что в рассматривавшейся в [1] схеме формирования изображения объект задавался набором *n* неотрицательных чисел $(S_1, S_2, ..., S_n)$, соответствующих заполнению пикселов событиями при идеальной системе формирования изображения. Для удобства вместо указанного набора вводилась полная яркость объекта $N_* = \sum_{i}^{n} S_i$ и относительное распределение яркости { $S_k \equiv S_k/N$ }, однако во всяком случае нужно найти *n*-мерную оценку объекта, скажем, { S_k }, на основании зарегистрированной совокупности $[N_j]_{j=1}^{n}$, списывающей размытое и зашумленное изображение объекта. Способ получения максимально правдоподобной оценки и обсуждался в [1].

Допустим теперь, что имеется инофрмация, согласно которой процесс регистрации фотонов язляется пуассоновским, так что накопленные за время экспозиции количества событий в пикселах объекта $S_1,...,S_n$ взаимно независимые пуассоновские случайные величины с некоторыми неизвостлыми средними значениями $C_1,...,C_n$. Этот факт позволяет исм продвинуться в постановке решаемой задачи и конкретизировать приведенное в [1] общее выражение для функционала правдоподобия в соответствии с поступившей информацией. Именно теперь вместо поиска оценки реализации $\{S_k\}$ можно искать оценку средних чисел ваполнения $\{C_k\}$. Другими словами, мы можем теперь рассматривать $\{S_k\}$ в качестзе типичной реглизацию в воображаемый ансамбль всех возможных реализаций, искать оценку среднего $\{C_k\}$.

Согласно принятой схеме формирования изображения каждое из поступивших в пиксел k объекта событий с некоторой заданной вероятностью h_{jk} независимо от других событий перераспределяется в j-ый пиксел изображения. При этом, конечно, выполняется условие нормировки (I.3). Ясно, что линейное перераспределение световых событий из объекта в изображение приводит для пуассоновских входных потоков к пуассоновскому же распределению количества световых событий $\{\eta_j\}_{j=1}^m$ в пикселах изображения (Приложение А), причем вектор средних значений равен

$$<\eta_j>\equiv g_j=\sum_{k=1}^n h_{jk} C_k, \qquad \sum_{j=1}^m g_j=\sum_{k=1}^n C_k\equiv C,$$
 (1)

где С-среднее количество световых событий, накопленных за время экспозиции в пределах всего изображения.

Поскольку в [1] совокупность $\{\eta_i\}$ считалась подчиняющейся полинормальному распределению (1.22), может возникнуть подозрение в про тиворечивости высказанных утверждений, но следует иметь в виду, что общая схома предполагала фиксированное (хотя и неизвестное) количество световых событий N, а рассматриваемая здесь пуассоновская схема включает ансамбль возможных значений N_* в соответствии с реализациями потоков в отдельных пикселах. Говоря формально, пуассоновская рандомизация суммарного количества событий в полиномиальной схеме приводит к многомерному распределению Пуассона, и наоборот, условное распределение совокупности независимых пуассоновских случайных величин при заданном значении их суммы совпадает с полиномиальным распределением (Приложение В).

Наконец, ваметим, что принятый закон распределения аддитивного шума $\{\xi_j\}$ —многомерный закон Пуассона с вектором средних вначений $\{b_j\}$. Поскольку при суммировании в (I.21) независимых пуассоновских величин это распределение сохраняет свой вид (с естественным суммированием средних), мы приходим к выводу, что итоговое содержимое пикселов изображения $\{\xi_j\}^m_{-1}$ есть многомерная пуассоновская случайная величина с плотностью распределения

$$D = \Pr \left(\zeta_{1} = N_{1}, ..., \zeta_{m} = N_{m}\right) =$$

$$= \prod_{j=1}^{m} \exp \left[-\left(g_{j} + b_{j}\right)\right] - \frac{\left(g_{j} + b_{j}\right)^{N_{j}}}{N_{1}!} \cdot (2)$$

Это и есть функционал правдоподобия в случае пуассоновских входных потоков. Ввиду (1) отсюда находим следующее выражение для той части In D, которая включает искомые величины $\{C_k\}$:

$$\ln D = \text{const} + \sum_{j=1}^{m} N_j \ln \left(\sum_{k=1}^{n} h_{jk} C_k + b_j \right) - C.$$
(3)

Согласно принципу максимального правдоподобия, оценка $\{C_k\}$ неизвестной совокупности средних разыскивается путем максимизации функционала (3) при естественных ограничениях

$$C_k \ge 0, \quad k = 1, 2, ..., n.$$
 (4)

Как легко видеть, выражение (3) для функционала правдоподобия при пуассоновском потоке следует из выражений (1.32), (1.34) для функционала в общей схеме, если поннять в последних $\Lambda = 1$ (см. также представление (I.17)). В [1] уже отмечалось, что при большой яркости объекта, т. е. при $N \gg 1$, параметр Λ стремится к 1. Это соответствует возможности пуассоновской аппроксимации основного функционала для больших яркостей. Если же изначально входные потоки пуассоновские, то пуассоновость распределения световых событий в изображении является не только асимптотическим, но и строгим свойством пои любых значениях яркости объекта. Таким образом, возможность положить $\Lambda = 1$ и при анализе слабых объектов есть формальное следствие, определяемое дополнительной априорной информацией о пуассоновском распределении входных потоков. В полной мере обусловленной этой информацией выигрыш станет ясен при сравнении максимально правдоподобных оценок объекта, найденных по общей схеме и для чисто пуассоновского функционала (3).

Заметим, что отсутствие в (I.18) имеющегося в (3) слагаемого, отвечающего полной ярхости оригинала, обусловлено непринципиальными причинами, а только выбранным в [1] способом максимизации основного функционала (I.32), (I.34). Параметр N содержится в экспоненте выражения (I.32), но при последовательном оценивании сначала полной ярхости объекта и затем относительного распределения ярхости в функционале (1.18) оценка для N предполагается уже найденной согласно (I.16) и включена в постоянное слагаемое.

3. Сопоставление с методом максимума энтропии в случае пуассоновских потоков. В недавней работе [11] было показано, что восстановление изображений с помощью метода максимума энтропии (МЕМ) базируется на произвольном предположении, а именно, предполагается, что самое подходящее решение является наиболее вероятным с точки зрения равномерного распределения событий. В случае туассоновских потоков некоторые детали аргументации меняются, и мы обсудим здесь эти изменения.

Напомним сначала кратко ход рассуждений для общей схемы. Пусть | v_k|ⁿ_{k-1} —совокупность чисел заполнения для оригинала (объекта), [N_j]ⁿ_{j-1} —наблюдаемое размытое и зашумленное изображение. Для линейной системы формирования изображения и ярких объектов стандарт ная обратная задача ставится следующим образом. Из уравнений

$$N_{j} = \sum_{k=1}^{n} h_{jk} v_{k} + \zeta_{j}, \quad j = 1, ..., m$$
(5)

нужно получить оценку $[v_k]_{k=1}^n$ исходного объекта, являющуюся в определенном смысле близкой к истинному набору $\{v_k\}$.

Подход МЕМ заключается в том, чтобы из множества решений системы (5) выбрать такое решение $\{v_a^E\}$, которое имеет максимальный статистический вес, т. е. может быть реализовано наибольшим числом способов. Последняя величина равна

$$W = \frac{N_{*}!}{v_{1}! v_{2}! \dots v_{n}!},$$
 (6)

где N_{*}=∑v_{*}—полное количество световых событий в оригинале. При. v_k≫1 максимизация W эквивалентна условию

$$S \equiv -\sum_{\star=1}^{n} (\mathbf{v}_{k}/N_{\star}) \ln (\mathbf{v}_{k}/N_{\star}) \max,$$

где 5-энтропия согласно Шеннону [12].

(7).

Основная аргументация [11] сводится к следующему. Вероятность получить реализацию $\{v_h\}$ при исходном объекте $\{s_k\}$, $\sum_{i=1}^{n} s = 1$ равна

$$\Pr(v_1, ..., v_n) = \frac{N \bullet!}{v_1! \cdots v_n!} s_1^{v_1} \cdots s_n^{v_n}, \qquad (8)$$

и максимум этой функции, вообще говоря, не достигается при $v_{z} = v_{z}^{2}$, когда максимальна W. Другими словами, максимально вырожденное решение системы (5) не обязательно является наиболее вероятным решением. Оно будет таковым при

$$s_k = 1/n, \quad k = 1, ..., n$$
 (9)

т. е. при равномерном заполнении пикселов объекта. Но сравнительная оценка возможных решений должна производиться не на основе произвольно выбранного исследователем распределения вероятностей, представляющегося ему оптимальным, а на основе истинного (неизвестного) распределения $\{s_h\}$. Поэтому требование (7), вообще говоря, противоречит имеющейся информации об оригинале. Например, лучше было бы принять $s_k = v_k/N_{\bullet}$, что приводит к требованию максимума функционала Берга [13, 14]:

$$-\sum_{k=1}^{n} \ln\left(\nu_{k}/N_{*}\right) = \max.$$
⁽¹⁰⁾

Возможны и другие формы максимизируемого функционала в зависимости от выбора исходного способа оценки оригинала, предоставленного на усмотрение исследователя.

При пуассоновских входных потоках вместо (8) для вероятности получения набора $\{v_k\}$ имеет место представление:

$$\Pr(v_1, ..., v_n) = e^{-C} \frac{C_1^{v_1}}{v_1!} \cdot ... \cdot \frac{C_n^{v_n}}{v_n!}, \qquad (11)$$

где $C = \sum_{k=1}^{n} C_k$. Вновь нужно констатировать, что максимум этой вероятности не обязательно достигается при $\Psi_{k} = \Psi_{k}^{E}$. Строго говоря, и при равномерном объекте, когда $C_{k} = C/n$, вероятность (11) достигает максимума при условии

$$-\sum_{k=1}^{n} (v_k/C) \ln (v_k/C) - \ln n \sum_{k=1}^{n} (v_k/C) = \max.$$
(12)

не совпадающем с (7), однако фактическая разница уже при умеренно

больших потоках невелика. Это означает, что при пуассоновских потоках требование (7) равносильно максимальной вероятности решения с точки зрения некоторого распределения, близкого к равномерному. Ввиду того, что ни равномерное, ни близкое к нему распределения не обязательно близки к истинному объеку {sk}, указанное требование по-прежнему остается произвольным и почти всегда противоречит имеющимся данным.

Таким образом, MEM неизбежно базируется на логически противоречивых посылках, и это обстоятельство непредсказуемым образом может сказаться на результатах восстановления в конкретных условиях.

4. Численные эксперименты. Поскольку выполнить расчеты с точным функционалом правдоподобия (1.25) не представляется возможным при сколь-нибудь значительной яркости объекта, приведенные в [1] соображения в пользу быстрой «пуассонизации» схемы Формирования качественный характер. Они событий носили опирались на тот факт, что при количестве испытаний и возможных исходов порядка нескольких десятков полиномиальное распределение мало отличается от многомерного распределения Пуассона. Ввиду этого следует ожидать, что результаты восстановления пои помощи максимизации общего функционала (1.17). (1.18), с одной стороны, и функционала (3) для пуассоновских входных потоков, с другой, будут близки уже при $N \simeq 10-100$.

Для проверки были выполнены два численных эксперимента. В первом из них принимались следующие значения основных параметров: $m = n = 2; N_* = 15; h_{11} = h_{22}2/3; h_{12} = h_{21} = 1/3; b_1 = b_2 = 3.$ Во втором эксперименте считалось, что $m = n = 17; N_* = 122; \{h_l\} = \{0.1, 0.2, 0.4, 0.2, 0.1\}; b_j = 1.$ В обоих случаях результаты восстановления при помощи общего и пуассоновского функционалов совпали с точностью до малых долей процента.

Полученные данные можно интерпретировать с различных точек эрения. Прежде всего следует заключить, что введение дополнительной информации о пуассоновском харажтере входных потоков вносит лишь формальное упрощение в выражение для максимизируемого функционала, но практически не дает выигрыша в качестве восстановления, т. е. «пуассоновость»—неэначительная информация. Вместе с тем вто товорит о том, что сравнительно простой функционал (3) может рассматриваться как хорошее приближение к общему функционалу (1.17), (1.18), так что численная реализация MLIR во многих случаях может быть значительно упрощена. Этим обстоятельством мы неоднократно будем пользоваться в дальнейшем.

С целью предварительной проверки надежности восстановления при помощи функционала (3) мы повторили вычисления для второго из ужазанных выше примеров при N = 12200, b = 100. Семь оценок оригинала, 7—370 полученных из различных реализаций его случайно размытого и вашум-ленного изображения, представлены на рис. 1. В данных условиях отно-(отношение стандартного отклосительная точность восстановления пикселах ĸ действительным нения оценок потоков R ЗНаченням 20% при лотоков) составляет οκολο статистически не значизависимости от яркости. Конечно, важный вопрос о соотношемой нии между точностью восстановления и заданными условнями наблюдения (прежде всего-априорной информацией, а затем отношением сигналакшуму и видам ФРТ) нуждается в обстоятельном изучения как с теоретической точки эрения, так и на основе численных экспериментов. Такое исследование будет представлено в одной из последующих публикаций.

Пиклселы

Рис. 1. Оценки (·) оригинального объекта (сплошная линия) на основании семя случайных реализаций его размытого и зашумленного изображения при отношении сигнала к шуму 225. Вторая сплошная линия—оценка объекта по усредненной реализации изображения.

5. Заключительные вамечания. Выше было показано, каким образом следует включить в общую схему инофрмацию о пуассоновском характере входных потоков событий. Очевидно, аналогично проводлтся рассмотрение и других сходных ситуаций, скажем, схемы восстановления когерентного по времени потока.

С другой стороны, нетрудно учесть и отсутствие части априорной информации, которая полагалась заданной. Например, в [1] отмечалось, что в функции рассеяния точки $\{h_{jk}\}$ можно оставить неопределенными некоторые параметры и включить в задачу максимизации уже найденного функционала правдоподобия поиск оптимальных вначений этих параметров. В другом контексте можно оставить свободной часть или даже всю совокупность значений ФРТ, хотя, конечно, качество восстановленной картины при этом сильно снижается. Однако при всяких обстоятельствах. оно соответствует имеющейся априорной информации, величине отношения ситнала к шуму и характеру размывания изображения.

Крымская лаборатория государственного

астрономического институть им П. К Штернберга

Приложение А.

Деление пуассоновского потока. Приведем вывод известного свой ства пуассоновского потока образовывать взаимно независимые пуассоновские же потоки при случайном разбиении его на компоненты.

Предположим, что на вход некоторого «делителя» поступает пуассоновский поток с постоянной интенсивностью I соб/с, так что вероятность получить k событий в течение интервала времени длиной t равна

$$p_k(t) = e^{-a} \frac{a^*}{k!}, \quad k = 0, 1, 2, ...,$$
 (A1)

где a = lt. Пусть далее делитель направляет каждое из поступающих событий независимо от других событий в один из двух каналов соответ ственно с вероятностями ρ и 1- ρ . Нас интересует совместная плотность распределения зарегистрированных в каналах за время t количеств событий P_{and} (t).

Очевидно, искомая вероятность есть произведение вероятности получить на входе в точности $n_1 + n_2$ событий за время t, т. е., согласно (A1), величины

$$-a \frac{a^{n_1+n_2}}{(n_1+n_2)!},$$
 (A2)

на биномнальную вероятность

P

$$C_{n_1+n_2}^{n_1} p^{n_1} (1-p)^{n_2}$$
 (A3)

получить заданное разделение событий по каналам. Производя простые преобразования, находим:

$$p_{n_1,n_1}(t) = \exp\left(-ap\right) \frac{(ap)^{n_1}}{n_1!} \cdot \exp\left[-a\left(1-p\right)\right] \frac{[a\left(1-p\right)]^{n_1}}{n_2!},$$

$$n_1, n_2 \ge 0,$$
(A4)

т. е. потоки в каналах являются взаимно независимыми пуассоновскими потоками с интенсивностями $I \rho$ и $I(1-\rho)$ соответственно. Аналогичное свойство справедливо и при произвольном количестве каналов.

Приложение В.

· Связь многомерного пуассоновского и полиномиального распределений. Первое из использованных в тексте утверждений заключается в следующем.

Пусть $\zeta_1,...,\zeta_m$ —взаимно независимые пуассоновские случайные величины со средними значениями $<\zeta_j>=a_j, j=1,...,m$. Тогда условная плотность распределения совокупности ($\zeta_1,...,\zeta_m$) при фиксированной сумме

$$\sum_{j=1}^{n} \zeta_j = N \tag{B1}$$

есть полиномнальное распределение:

$$\Pr\left(\zeta_{1} = N_{1}, \dots, \zeta_{m} = N_{m}\right) \sum_{i}^{m} \zeta_{j} = N = \frac{N!}{N_{1}! \cdots N_{m}!} p_{1}^{N_{1}} \cdots p_{m}^{N_{m}}.$$
 (B2)

где

$$\sum_{j=1}^{m} N_{j} = N, \quad p_{j} = a_{j}/a, \quad a = \sum_{j=1}^{m} a_{j}.$$
(B3)

Доказательство следует из формулы

$$Pr(\zeta_{1} = N_{1},...,\zeta_{m} = N_{m}) \sum_{j=1}^{m} \zeta_{j} = N) = \frac{Pr(\zeta_{1} = N_{1},...,\zeta_{m} = N_{m})}{Pr(\sum_{j=1}^{m} \zeta_{j} = N)}, \quad (B4)$$

если учесть, что числитель здесь представляет собой произведение m пуассоновских плотностей с параметрами $\{a_j\}$, а знаменатель—пуассоновскую плотность с параметром a.

Второе утверждение в определенном смысле обратно первому. Пусть (η¹,...,η^m) такая совокупность случайных величин, что их сумма

$$\sum_{j=1}^{m} \eta_j \equiv S \tag{B5}$$

подчиняется пуассоновскому закону со средним $\langle S \rangle = \alpha$, и совместная плотность при заданном значении S есть полиномигльное распределение:

$$\Pr(\eta_{i} = N_{1}, ..., \eta_{m} = N_{m} \mid S = N) = \frac{N!}{N_{1}! ... N_{m}!} p_{1}^{N_{1}} ... p_{m}^{N_{m}}, \quad (B6)$$

где

$$\sum_{i=1}^{m} N_{j} = N, \quad \sum_{i=1}^{m} p_{j} = 1.$$
(B7)

Тогда ŋ₁,...,ŋm—взаимно независимые пуассоновские случайные величины со средними значениями ај≡арј.

Для доказательства запишем искомое совместное распределение в. виде:

$$Pr(\eta_1 = N_1, ..., \eta_m = N_m) = e^{-\alpha} \frac{\alpha^N}{N!} \cdot \frac{N!}{N_1! \cdots N_m!} p_1^{N_1} \cdots p_m^{N_m}$$
(B8)

С учетом (В7) выражение в первой части (В8) разбивается на произведение пуассоновских плотностей с параметрами ар, что равносильно высказанному утверждению.

MAXIMUM LIKELIHOOD IMAGE RESTORATION. V. UNCOHERENT FLUXES

V. YU. TEREBIZH, O. K. CHERBUNINA, Yu. G. CHERBUNIN, V. V. BIRYUKOV

The general approach of Maximum Likelihood Image Restoration [1] is adapted to the case, when a *priori* information concerning the Poisson distribution of stored events is available. The restoring algorithm has a simpler form, but the real gain due to such an information is appreciable only for very faint objects.

λΗΤΕΡΑΤΥΡΑ

- 1. В. Ю. Теребиж, Астрофизника, 32, 27, 1990.
- 2. В. Ю. Теребиж, Астрофизика, 33, 1990.
- 3. В. Ю. Теребиж, В. В. Бирюков, Астрофизика, 33, 1990.
- 4. В. Ю. Теребиж, Астрофизика, 33, 1990.
- 5. D. R. Cox, J. Roy. Stat. Soc., 17, B, 129, 1955,
- 6. L. Mandel, Proc. Phys. Soc. London, 72, 1037, 1958.
- 7. L. Mandel, Proc. Phys. Soc. London, 74, 233, 1959.
- 8. R. London, The Quantum Theory of Light, Clarendon Press, Oxford, 1973.
- 9. C. L. Mehta, in "Progress in Optics,, ed. E. Wolf, North-Holland, Amsterdam. London, 8, 1970, p. 375.
- 10. В. Ю. Теребиж, Анализ временных рядов в астрофизике, Наука, М. (в печати).
- 11. В. Ю. Теребиж, Astronomy and Astrophysics (в печати).
- 12. C. Shannon, Bell Syst. Techn. J., 27, 379, 623, 1948.
- J. P. Burg, "Maximum Entropy Spectral Analysis". Stanford Univ. Geoph. Dep. (paper presented at 37th Ann. Soc. of Exploration Geoph. Meeting), Oklahoma, City, 1967.
- 14. B. R. Frieden, in "Picture Processing and Digital Filtering", ed. T. S. Huang Springer, 1979, p. 179

Исправленные рисунки статьи В. Ю. Теребяжа и В. В. Бирюкова, налечатанной в л. 33, вып. 2, стр. 313, 1990 г.

АСТРОФИЗИКА

TOM 34

ФЕВРАЛЬ, 1991

выпуск 1

УДК 524.338.5

КРАТКИЕ СООБЩЕНИЯ

ВN ORI: НАЧАЛО НОВОГО ПЕРИОДА АКТИВНОСТИ?

Г. У. КОВАЛЬЧУК

Поступила 17 октября 1990

Принята к печати 24 декабря 1990

Основываясь на результатах многоциетных фотоэлектрических наблюдений неправильной переменной ВN Огі, полученных в течение 1985—1988 гг., делается вывод о возможном начале нового периода фотометрической активности звезды. Последние 45 лет яркость переменной оставалась постоянной, в то время как в активной стадии наблюдались ослабления блеска с амплитудой до 4^m.

1. Введение. В настоящей работе мы хотим привлечь внимание наблюдателей переменных звезд к интересной переменной звезде ВN Огі. Эвезда классифицирована в ОКПЗ [1] как объект, принадлежащий к неправильным переменным с алголеподобными ослаблениями блеска. Выполнемный Драгомирецкой [2] тщательный анализ более 4000 фототрафических оценок блеска, приведенных в каталоте [3], показал, что переменная характеризуется достаточно продолжительными 4000÷5000 дней—периодами постоянного блеска (нормальное состояние). Эти периоды сменяются интервалами 1000÷2000 дней—«бурной» фотометрической активности, для которых характерны более мелкомасштабные вариации блеска:

1. Уменьшения яркости на 4^т длительностью ~ 50 дней.

2. Быстрые (длительностью 5—10 дней) флуктуации с амплитудами 1^m—1.5^m.

Существенной особенностью изменений блеска является увеличение показателя цвета при ослаблении яркости звезды.

После резкого прекращения активности в конце 1946 г. ни продолжающиеся фотографические, ни начавшиеся в 1966 г. фотовлектрические наблюдения не показали ни малейших признаков возобновления переменности, хотя, по прогнозам Драгомирецкой, этого следовало ожидать в начале 60 г. Как следует из работ [4—6], в последние 45 лет блеск переменной остается постоянным на уровне $V = 9^{m}.64 \pm 0^{m}.04$.

Коэном [7] и Глассом и Пенстоном [8] обнаружен ИК-избыток в излучении ВN Огі. Выполненные Колотиловым, Зайцевой и Шенавриным [5] наблюдения в ИК-области спектра не показали заметных изменений блеска и в ИК-диапазоне.

Проведенные Зайцевой [9] и Колотиловым и Зайцевой [4] спектральные наблюдения звезды показали наличие слабой Н эмиссии, сменяющейся иногда абсорбцией. Вариации эквивалентной ширины Н_о-эмиссии в пределах 1.2—8.0 А с характерным временем порядка одних суток.

2. Наблюдения. В Огі была включена в протрамму исследования неправильных переменных с алголеподобными ослаблениями блеска (так называемых антивспыхивающих звезд, сокращенной АВЗ) в области активного звездообразования в Орионе. Основаниями для включения в список программных звезд послужили следующие особенности переменной: специфический характер кривой блеска, наличие ИК-избытка, H_aэмиссия, расположение в области активного звездообразования.

Все UBVR-наблюдения получены с 0.5-м рефлектором на Высокогорной наблюдательной базе «Терскол» ГАО АН УССР (Кавказ, h= 3100 м). Использовался одноканальный влектрофотометр со счетом фотонов. Методика редукции данных приведена в работе [10]. Звезды сравнения и контрольная—BD+6°969 и BD+6°974, соответственно. Их величины:

 $BD + 6^{\circ}969$: $U = 10^{m}25$; B = 1(m19): $V = 9^{m}77$: $R = 9^{m}36$. $BD + 6^{\circ}974$: $U = 10^{m}88$; $B = 10^{m}69$; $V = 10^{m}05$; $R = 9^{m}51$.

Ошибка единичного определения блеска переменной, полученная из наблюдений звезд сравнения и контрольной, составляет 0^m.02÷0^m.04.

В течение 38 наблюдательных ночей получено 58 оценок яркости. Кривая блеска в фильтре V (рис. 1) типична для ABЗ, т. е. плоский максимум—нормальное состояние с $\delta = 0$. 05- и три ослабления блеска с максимальной амплитудой $\Delta V = 1^m$.1 и длительностью <2 суток.

На рис. 2 показатели цвета U—B, B—V, V—R отложены против V-величины. Подтверждается полученный Драгомирецкой [2] вывод: показатели цвета увеличиваются при ослаблении блеска. Сплошные лишии на рис. 2 соответствуют формулам.

$$\Delta V = 4.0\Delta (U - B); \quad \Delta V = 3.0\Delta (B - V); \quad \Delta V = 3.8\Delta (V - R), \tag{1}$$

а прерывистые линии соответствуют формулам

 $\Delta V = 2.12 \downarrow (U - B); \quad \Delta V = 3.1 \vartriangle (B - V); \quad \Delta V = 3.8 \lrcorner (V - R).$ (2)
Соотношение между V-величиной и тремя показателями цвета для всего интервала изменения блеска оказывается таким же, как и для других АВЗ [11], т. е. совпадает с законом для межзвездной пыли [12] в полосах *B*, *V*, *R*.

Рис. 1. Кривая блеска ВМ Огі в 1985-1988 гг.

Рис. 2. Днаграмма «величина показатель цвета» для BN Ori.

3. Заключение. Мы приохдим к выводу, что по своим фотометрическим и морфологическим характеристикам BN Ori является, возможно, антивспыхивающей эвездой.

На наш вэтляд, переменная BN Ori начинает новый период «бурной» фотометрической активности—период, ожидаемый уже более 45 лет.

Главная астрономическая обсерватория АН УССР

краткие сообщения

BN ORI: IS IT THE BEGINNING OF A NEW PERIOD OF ACTIVITY?

G. U. KOVALCHUCK

From the analysis of multicolour photoelectric observations of BN Ori, obtained in 1985-1988, it has been shown that for this variable star a new period of photometric activity probably begins. During the last 45 years the brightness of BN Ori was constant while in the active stage brightness depressions up to 4^m were observed.

ЛИТЕРАТУРА

- 1. Общий каталог переменных эвезд, под ред. П. Н. Холопова, т. 2, Наука, М., 1985.
- 2. Б. А. Драгомирецкая, Астрофизяка, 1, 445, 1965.
- 3. В. П. Цессвич, Б. А. Драгомирецкая, Эвсзды типа RW Возничего, Наукова думка, Кисв. 1983.
- 4. Е. А. Колотилов, Г. В. Зайцева, Аспрофизека, 12, 31, 1976.
- 5. Е. А. Колотилов, Г. В. Зайцева, В. И. Шенаврин, Астрофизика, 13, 449, 1977.
- 6. В. С. Шевченко, Ав/Ва-звезды Хербига, ФАН, Ташкент, 1989.
- 7. M. Cohen, Mon Notic. Roy. Astron. Soc., 161, 97, 1973.
- 8. I. S. Glass, M. V. Ponston, Mon. Notic. Roy. Astron. Soc., 167, 237, 1974.
- 9. Г. В. Зайцева, Астрофизика, 7, 333, 1971.
- 10. А. Ф. Пузач. Г. У. Ковальчук, Перемен. эвезды, 22, 9, 1983.
- 11. А. Ф. Пузач, Препр. Ин-т теор. физ. АН УССР, ИТФ-81-129, 1981.
- 12. G. V. Shultz, W. Wiemer, Astron. and Astrophys., 43, 133, 1975.

АСТРОФИЗИКА

TOM 34

ФЕВРАЛЬ, 1991

ВЫПУСК 1

УДК: 524.338.6

КАТАЛОГ ВСПЫХИВАЮЩИХ ЗВЕЗД ОБЛАСТИ ТУМАННОСТИ ОРИОНА

Р. Ш. НАЦВЛИШВИЛИ

Поступила 12 декабря 1990

Представлены каталог и карты отождествления для 491 вспыхивающей звезды области Туманности Ориона, выявленных до 1986 г. Приведены результаты предварительного анализа данных об этих звездах.

1. Введение. По обилию вспыхивающих эвезд и примыкающих к ним объектов ассоциация T2 Ориона (эвездный комплекс вокруг известной Трапеции) является одной из богатейших звездных систем. Эта система—одна из наиболее молодых среди систем, содержащих вспыхивающие звезды. По сравнению со вспыхивающими звездами более старых систем они имеют большие светимости и проявляют, по-видимому, более высокую активность. С точки зрения эволющии звезд важно отметить, что в ассоциации Ориона вспыхивающие звезды сосуществуют со звездами типа T Тельца.

Первые вспыхивающие эвезды в системах (эвездных скоплениях и ассоциациях) были открыты в 1953 г. как раз в ассоциации Ориона Аро и Морганом [1]. Это открытие и явилось началом общирных фотографических наблюдений по поиску и исследованию вопыхивающих звезд в системах.

Вначале предполаталось, что вспыхивающие звезды в Орионе представляют собой новый класс (flash) вспыхивающих звезд, отличных от звезд типа UV Кита (flare) окрестностей Солнца. Однако обнаружение Джонсоном и Митчеллом [2] вспыхивающих эвезд в скоплении среднего возраста Плеяды, а позже и системах самото различното возраста (см., например, [3, 4]) и сравнительное исследование совокупностей вспыхивающих звезд в них показало, что все они составляют единый класс объектов, обладающих вспышечной активностью [5].

Принципиально важным результатом в исследовании вспыхивающих звезд явилось установление их вволюционного статуса. Благодаря рабо-

там Аро [6—8] и Амбарцумяна [9—11] стало ясно, что стадия вспыхивающей звезды является эволюционной стадией, одной из наиболее ранних в жизни красных карликовых звезд, которая следует за стадией типа Т Тельца.

Имея в виду большое значение изучения вспыхивающих звезд в системах разного возраста для физики и вволюции звезд мы долгие годы занимались поисками и исследованием вспыхивающих звезд в области ассоциации Ориона.

Результатом этих исследований явился настоящий каталог вспыхивающих звезд в области ассоциации Ориона.

2. Каталог. Первый каталог вспыхивающих звезд был составлен Аро и его сотрудниками [12]. Он содержит сведения о 519 вспыхивающих ввездах, известных к 1982 г. в области эвездного скопления Пленды. Этот каталог в настоящее время широко используется исследователями вопыхивающих эвезд.

В основе нашего каталога лежат результаты патрульных наблюдений вспыхивающих эвезд области ассоциации Ориона, выполненных в обсерваториях: Абастумани (Грузия) [13—22], Азиаго (Италия) [23], Бюракан (Армения) [13, 14, 24—29], Ла-Силла (Чили) [30], Рожен (Болгария) [31, 32], Тонантцинтла (Мексика) [7, 33, 34] и Уппсала (Швеция) [35] до 1986 года.

Следует особо отметить большой вклад в открытие и исследование вспыхивающих эвеэд области Ориона обсерватории Тонантцинтла, где были открыты большинство вспыхивающих звезд, вошедших в настоящий каталог (см. табл. 1). Как было уже отмечено, здесь же были открыты первые вспыхивающие звезды в Орионе [36] и в системах вообще. Это открытие подтвердило вывод В. А. Амбарцумяна [37] о генетической связи вспыхивающих звезд со звездами типа Т Тельца.

В конце настоящей статьи представлены: каталог вспыхивающих звезд области ассоциации Ориона, содержащий 491 известную к началу 1986 г. вспыхивающую звезду, карты отождествления для всех вспыхивающих звезд, а также о повторных вспышках, зарегистрированных на этих эвездах к указанному сроку.

3. Сводные данные о ввездных вспышках Ориона. Сводные данные об обнаруженных к началу 1986 г. в области ассоциации Ориона вспыхивающих звездах и звездных вспышках представлены в табл. 1. Она дает представление о числах отдельных вспыхивающих звезд и наблюденных у них вспышках: общее и по обсерваториям.

В последовательных столбцах табл. 1 приводятся: название обсервагории, где открыты вспыхивающие звезды в области Ориона; число вспыхивающих звезд вспыхивающих один, два,... 7 раз; общее число вспыхивающих звезд, открытых в данной обсерватории; общее число зарегистрированных у них вспышек (в скобках—число вспышек, открытых в указанной обсерватории, плюс—в других обсерваториях) и, наконец, в последнем столбце—число повторных вспышек, зарегистрированных в данной обсерватории у вспыхивающих звезд, открытых в других обсерваториях.

Таблица I

Кратность вспышея Обсег- ватория	1	2	3	4	5	6	7	86*	Полное чис- ло откры- тых ВЗ	Общез число зарегистрир. у них вспышек	Общее число повторных вспышев, откр. в др. обс.
ТОНАНТЦИНТЛА	178	54	19	6	1	1	2		261	392 (337+55)	5
АБАСТУМАНИ	113	10	2						125	139 (138+1)	14
АЗИАГО	43	6	1						50	58 (51+7)	9
БЮРАКАН	20	4		1					25	32 (26+6)	9
УППСАЛА	9	2	1					1	13	16 (12-4)	2
POKEH	10]	10	10 (10+0)	3
ла-силла	7								7	7 (7+0)	2
Общее число ВЗ	380	76	23	7	1	1	2	2 1	491	100	
Общее число вспышея	380	152	69	28	5	6	14	-		654 (581+73)	74

ЧИСЛА ВСПЫХИВАЮЩИХ ЗВЕЗД И ВСПЫШЕК В ОРИОНЕ

* Эти вспышки относятся к необычной вспыхивающей звезде ВЗ461=U14=TZ Ориона [38] и в табл. 1 не включены.

В последних двух строках табл. 1 представлена сумма указанных в соответствующих столбцах чисел.

4. Сравнение с каталогом вспыхивающих ввезд области Плеяд. Сравнение настоящего каталога вспыхивающих звезд в области Орнона с каталогом Аро и др. [12] для области Плеяд представляет определенный интерес, так как в этих случаях мы имеем дело с совокупностями вспыхивающих звезд существенно разного возраста. Этим обусловлены различия, наблюдаемые у вспыхивающих звезд этих двух совокупностей. Например. светимости вспыхивающих эвсэд Орнона, в среднем. значительно выше, чем в Плеядах. В отличие от последних они сосуществуют со евездами типа Т Тельца и диффузной материей, средняя частота «медленных» вспышек у них, по-видимому, выше [39] и т. д.

Следует отметить, что когда мы говорим о совокупностях вспыхивающих звезд, то предполагаем, что все яспыхивающие звезды, открытые в областях Ориона и Плеяд, в сбоем подавляющем большинстве являются физическими членами соответствующих систем. Для этого имсются серьезные основания. Дело в том, что относительное число вспыхивающих звезд галактического поля, которые могли быть обнаружены во время фогографических наблюдений как в Плеядах, так и в Орионе, небольшое—меньше 10% [40]. Это подтверждается на примере вспыхивающих звезд, обнаруженных в области Плеяд. Было показано, что, нозависимо от собственных движений, вспыхивающие звезды, открытые в этой области, могут считаться, в основном, членами скопления (см., например, [41]). Подтверждением этого для области Ориона является резкое падение плотности видимого распределения вспыхивающих звезд от центра системы к краю.

Между рассматриваемыми совокупностями вспыхивающих звезд существуют, однако, различия и другото характера. Так, например, эбщее время патрульных фотографических наблюдений области Плеяд превышает 3000 часов [42], между тсм для области Ориона оно составляет около 1600 часов [43], то есть почти в два раза меньше. Совокупность вспыхивающих звезд в Орионе по крайней мере в 2 раза богаче совокупности в Плеядах [44, 45]. Она находится в 4 раза дальше Плеяд. Этим, по-видимому, обусловлено отсутствие абсолютно слабых вспыхивающих звезд в Орионе.

Несмотря на то, что область Ориона наблюдалась почти в два раза меньше, чем область Плеяд, число обнаруженных вспыхивающих звезд в обсих сбластях мало отличается. Это можно объяснить тем,- что математическое ожидание обнаружения вспышки в Орионе почти в два раза больше: в этой системе больше вспыхивающих звезд, а вффект расстояния компенсируется тем, что в ней светимости вспышивающих звезд почти на 2^m выше, чем в Плеядах.

На основе сравнения двух каталогов можно предположить также, что функции частоты в системах Ориона и Плеяд значительно отличаются. В отличие от совокулности вспыхивающих звезд Плеяд в Орионе существенно меньше число вспыхивающих звезд, показавших повторные вспышки (с учетом различия полных-времен фотографических наблюдений соответствующих областей). Задача более глубокого сравнительного анализа совокупностей вспыхивающих звезд в Орионе и в Плеядах выходит за рамки настоящей работы и мы надеемся вернуться к ней позже.

Автор искрение благодарен профессору Л. В. Мирзояну за постоянное внимание и участие в подготовке настоящей работы.

Абастуманская астрофизическая обсернатория

A CATALOC OF FLARE STARS IN ORION NEBULA REGION R 54. NATSVLISHVILI

The Catalog and identification charts for 491 flare stars in the Orion Nebula region discovered up to 1986 are presented. The results of the preliminary analysis of the data on these stars are given.

ЛИТЕРАТУРА

- I. G. Haro, W. W. Morgan, Astrophys. J., 118, 16, 1953.
- 2. H. L. Johnson, R. I. Mitchell, Astrophys. J., 128, 31, 1959.
- 3. Л В. Мирлоян, Нестационарность в эволюция звезд. Изд АН Арм ССР, Ереван. 1981.
- 4. L. V. Mirzoyan, Vistas Astron., 27. 77, 1984.
- 5. Л. В. Мирвоян, В. В. Амбарян, Аспрефизника, 28, 375, 1988.
- 6. G. Haro, Non-Stable Stars, IAU Symp. No. 3, ed. G. H. Herbig, Cambridge Univ. Press, Cambridge, 1957, p. 26.
- 7. G. Haro, Stars and Stellar Systems, vol. 7, ed. B. M. Middlehurst, L. H. Aller, Univ. Chicago Press, Chicago, 1968. p. 141.
- 8. G. Haro, Boll. Inst. Tonantzintla, 2, 3, 1976.
- 9 В. А. Амбарцумян, Звезды, туманности, галактики, Тр. симпознума, Изд. АН Арм. ССР, Ереван, 1969.
- 10. В. А. Акбарцумян, Астрофизика, 6, 31, 1970.
- V. A. Ambartsumian, L. V. Mirzogan, New Directions and New Frontiers in Variable Stars Research, IAU Colloquium No. 15, Veröff Bamberg, 9, No. 100, 98, 1971.
- 12. G. Haro, E. Chavira, G. Gonzalez, Boll. Inst. Topantzintla, 3, 3, 1982.
- 13. Л. В. Мирвоян, О. С. Чавушян, Н. Д. Меликян, Р. Ш. Нацвлишвили, Г. Б. Оганян, В. В. Амбарян, А. Т. Гарибяжанян, Астрофизика, 17, 197, 1981.
- 14. Л. В. Мирвоян, О. С. Чавушян, Н. Д. Мсликян, Р. Ш. Нацолишоили, В. В. Амбарян, Г. А. Брутян, Астрофизика, 19, 725, 1983.
- 15. R. I. Kiladze, IBVS, No. 670. 1972.
- 16. R. I. Kiladze, R. Sh. Natsulishvili, IBVS No. 1725, 1980.
- 17. Р. И. Киладзе, Р. Ш. Нацвлишвили, Бюлл. Абастум. обсерв. № 55, 123, 1982...
- 18. R. Sh. Natsulishuili, N. D. Melikian, IBVS, No. 1726, 1980.
- 19. R. Sh. Natsvlishutli, IBVS, No. 1925, 1981.
- 20. R. Sh. Natsulishuili, IBVS, No. 2052, 1982.
- 21. R. Sh. Natsulishvili, IRVS, No. 2231, 1982.
- 22. R. Sh. Natsulishuill, IBVS, No. 2565, 1934.
- 23. L. Rosino, L. Pigatto, Contr. Asiago Observ., No. 231, 1969.
- 24. Л. В. Мирзоян, Перемен. звезды, 15, 192, 1964.

- 25. H. S. Chavushian, N. D. Melikian, L. V. Mirzoyan, I. I. Jankovics, IBVS, No. 1628, 1979.
- 26. N. D. Melikian, IBVS, No. 2018, 1981.
- 27. N. D. Melikian, IBVS, No. 2621, 1984.
- 28. Л. К. Ерастова, Астрон .циркуляр. № 1377, 1985.
- 29. N. D. Melikian, Mazeimo Della Valle, IBVS, No. 2929, 1986.
- 30. M. K. Tsvetkov, Flare Stars. IAU Symp., No. 137, Byurakan, 1989.
- 31. M. K. Tsvetkov, S. A. Tsvetkov, G. Tsvetkova, IBVS, No. 1889, 1980.
- 32. M. K. Tsvetkov, G. Tsvetkova, IBVS, No. 2132, 1982.
- 33. G. Haro, E. Chavira, Boll. Observ. Tonantzintia, 5, 59, 1969.
- 34. E. Parsamian, E. Chavira, G. Gonzalez, Boll. Inst. Tonantzintla, 2, 341, 1978.
- 35. C. Roslund, Medd. Uppsala Astron. Observ., No. 169, 1969.
- 36. G. Haro, Flash Stars in Stellar Aggregates, in "The Galaxy and The Magellanic Clouds", IAU-URSI Symp. No. 20. Canberra, eds. F. I. Kerr, A. W. Rodgers Australian Ac. Sci., 1964, p. 30.
- 37. В. А. Амбарцумян, Сообщ. Бюракан. обсерв., 13. 3, 1954.
- 38. Э. С. Парсамян, Г. А. Погосян, Вспыхнвающие звезды и родственные объекты, ред. Л. В. Мирзоян, Изд. АН Арм. ССР. Ереван, 1986, стр. 130.
- 39. Л. В. Мирзоян, Н. Д. Меликян, Вспыхивающие звезды и родственные объекты, ред. Л. В. Мирзоян, Изд. АН Арм. ССР, Ереван, 1986, стр. 153.
- 40. Л. В. Мирзоян, В. В. Амбарян, А. Т. Гарибджанян, А. Л. Мирзоян, Астрофизика, 29, 531, 1988.
- 41. А. Л. Мирвоян, Астрофизнка, 19, 588, 1983.
- 42. Л. В. Мирзоян, Г. Б. Оганян, Вспыхивающие звезды и родственные объекты, ред. Л. В. Мирзоян, Изд. АН Арм. ССР, Ереван, 1986, стр. 68.
- 43. Р. Ш. Нацелишении, Вспыхивающие звезды в областях Ориона и Плеяды, канд. диссертация, Бюракан, 1987.
- 44. Л. В. Мирзоян, О. С. Чавушян, Г. Б. Оганян, В. В. Амбарян, А. Т. Гарибяжанян, Н. Д. Меликян, Р. Ш. Наувлишвили, Астрофизнка, 17, 71, 1981.
- 45. R. Sh. Naturlishvili, Eruptive Phenomena in Stars, ed. L. Szabados, Budapest, 1986, p. 427.
- 46. П. Н. Холопов, Н. Н. Самусь, В. П. Горанский, Н. А. Горыня, Е. В. Казаровец, Н. Н. Киреева, Н. П. Кукаркина, Н. Е. Курочкин, Г. И. Мелведева, Н. Б. Перова, А. С. Расторгусв, М. С. Фролов, С. Ю. Шугаров, Общий каталог перемонных эвсэд, т. 2, Наужа, М., 1985.
- 47. A. D. Andrews (in collaboratio., with H. H. K. Grossie), A Photometric Atlas of the Orion Nebula, Armagh Observ., 1981.
- K. L. Haramundanis, Smithsonian Astrophys. Observ. Star Catalogue, part 3, Washington, 1966.
- 49. Э. С. Парсамян, Вспыхивающие эвезды в звездных агрегатах, докт. диссертация, Ереван, 1982.
- 50. E. S. Parsamian, E. Chavira, Boll. Inst. Topantzintla, 3, 69, 1982.
- 51. П. П. Паренаго, Тр. ГАИШ, т. 25, 1954.
- 52. G. Haro, E. Parsamian, Boll. Observ. Tonantzintla, 5, 45, 1969.
- 53. Р. Ш. Нацвлишвили, Вспыхввающие звезды и родственные объекты, ред. Л. В. Мярзоян, Изд. Арм. ССР, Ереван, 1986, стр. 116.
- 54. О. С. Чавушян, Н. Д. Меликян, Вспыхивающие звезды, ред. Л. В. Мирзоян, Изд. АН Арм. ССР, Ереван, 1977, стр. 74.

Рис. 1. Расположение корт отождествления области Туманности Оргона

I.

К статье Р. Ш. Нацалишвили

КАТАЛОГ ВСПЫХИВАЮЩИХ ЭВЕЗД

КАТАЛОГ ВСПЫХИВАЮЩИХ ЗВЕЗД ОБЛАСТИ ТУМАННОСТИ ОРИОНА

Каталог содержит следующие столбцы:

 Порядковый номер вспыхивающей звезды по настоящему каталогу.
2*—Обозначение звезды по определению обсерватория, где она была открыта (А—Азиаго, АВ—Абастумани, В—Бюракан, LS—Да-Силла, R—Рожен, Т—Тонантцинтла, U—Уппсала).

3**-Номер по Общему каталогу переменных звезд (ОКПЭ) [46]. 4***-Прямое восхождение на 1950-а.

5***-Склонение на 1950-6.

6-Дата открытия по UT.

7-Фотографическая звездная величина-m_{pg} (если не фотографическая, то рядом указана фотометрическая полоса).

8-Фотографическая амплитуда первой вопышки- $\Delta m_{\rm pg}$.

9-Количество фотографически зарегистрированных вспытек-л.

10-Номер примечания.

11-Номер карты отождествления.

12-Литературный источник.

* В литературе некоторые вспыхивающие звезды имеют несколько обозначений, поскольку их «первые» вспышки были зарегистрированы независимо в разных обсерваториях. В этих случаях обозначение в каталоге соответствует се первой зарегистрированной вспышке. Напрямер, вспыхивающая звезда А5 идевтична T124, но поскольку вспышка этой явезды зарегистрирована впервые в Тонантцинтла, то она упоминается под обозначением T124. Отметим, что вспыхивающие звезды B3225=A15= T151, B3270=A17=T157, B3285=A18=T159, B3376=A31=T165 [7, 23, 33], а вспыхивающая звезда T165 на карте отождествления в работе [33] указана неправильно и совпадает с вспыхивающей звездой А31 [23].

** Для идентификации вспыхивающих звезд с переменными объектами использован «Фотометрический атлас Туманности Орнова» Эндрюса [47].

*** Координаты вспыхивающих звезд были определены нами с помощью прибора «Аскорекорд» с использованием опорных звезд [43] по каталоту SAO [48] для 24 декабря 1982 г. с точностью $\tau = \pm 0^{\prime\prime}.4$ и приведены к эпохе 1950.0. Исключение составляют вспыхивающие звезды ВЗ 16, 200, 233, 280. 309, 321, 407, 433, 455, 458, 464, 474, 476, 480, 486, которые либо расположены вне поля зрения Абастуманского 70—см телескопа системы Максутова, либо в минивиуме блеска были слабее предела фотопластинки, на которой были определены координаты.

1	2	3	4	5	6	7	8	9	10	11	12
			· · · · · · · · · · · · · · · · · · ·								1
1	AB99		5 ^h 24 ^m 09 [*] 70	-5° 46' 55" 8	25. 02. 81	17 ^m 0	1 ^m 8	1		2	[20]
2	A48	918	24 13. 76	5 04 50. 3	23. 10. 68	18. 0	2. 9	1		2	[23]
3	A1	919	24 26. 37	-6 01 33. 9	11 12 66	18. 0	2. 8	1		3	[23]
4	AB56	1035	24 40. 02	-6 26 04. 0	28. 01. 79	19. 2	3. 4	.1		3	[18]
5	AB100		24 45. 46	-5 25 20. 3	04. 03. 81	16. 5	1. 6	1		2	[20]
6	AB9	965	24 48. 57	-4 14 28. 5	05. 01. 70	18 1	1. 2	1		1	[15]
7	AB135		25 14. 86	-4 07 49. 7	18. 12. 82	18.7	2. 4	1		1	[22]
8	B10		25 17.07	-4 32 55. 5	19. 10. 77	17. 6U	4. 1U	1 1		- 1	[27]
9	A2	920	25 21. 63	-4 23 06. 4	08. 12. 67	>18. 0 ;	>2. 8	1		1	[23]
10	T 122	676	25 21. 84	-6 52 33. 3	07. 02. 65	17. 1V:	>4. OL	2		3	[7]
11	AB70	1058	25 28. 41	-4 03 08. 2	17. 11. 79	17.5	1 4	1		- 1	[19]
12	AB40	1036	25 29. 41	-5 02 17. 8	09. 12. 71	19. 8	3. 7	1		2	[16]
13	T326		25 30. 53	-6 55 21. 9	09. 01. 77	17. 8U	3. 3L	5.1		3	[34]
14	AB52	1037	25 31. 85	5 42 52. 9	25. 11. 78	18. 0	0. 8	1		2	[18]
15	B31		25 35. 72	-6 55 59. 5	24. 10. 85	19. 2B	5. 3B	3 1		3	[29]
16	T180	677	25 47.6	—3 29. 1	23. 12. 65	15. 4U	0. 8U	J 1	-	1	[33]
17	T257		25 54. 24	-5 46 00. 5	21. 03. 77	17. 2U	2. 81	J 1		2	[34]
18	T181	678	26 03. 17	-4 09 31. 1	05. 01. 68	18. OU	2. OU	1		1	[33]
19	AB73	1059	26 07. 36	-7 06 00, 3	17. 11. 79	18. 7	1. 8	1		3	[19]
20	AB103		26 10. 33	-6 05 36. 1	11. 10. 81	16. 7	1 2	1		3	[21]
21	T1	679	26 23. 95	-3 54 41. 2	26. 12. 59	14. 5V	0 8	1		1	[7]
22	T182	680	26 26. 71	-4 22 36. 0	15. 02. 68	18. 2U	1. 7U	1		1	[33]
23	A56	921	26 27. 43	-4 44 06. 1	21. 01. 69	17. 0	3. 4	2		2	[23]
24	AB10	966	26 35. 26	-5 41 52. 8	05. 01. 70	16. 8	0. 8	1		2	[15]

КАТАЛОГ ВСПЫХИВАЮЩИХ ЗВЕЗД ОРИОНА

1	2	3	4	5
25	T123	682	26 41. 19	-6 12 27. 4
26	T183	681	26 43. 93	-3 42 39. 5
27	T184	683	26 45. 95	-7 01 51. 4
28	A3	922	26 57. 15	-6 34 49. 7
29	T2	684	27 04. 39	—5 34 09. 6
30	Т3	685	27 16. 85	-3 50 35. 7
31	A4	923	27 21. 76	-7 06 24. 4
32	AB84	1060	27 22. 10	-7 00 39. 0
33	B12		27 23. 02	-7 02 35. 5
34	T 124	686	27 37. 17	-4 25 16. 2
35	AB1	967	27 41. 25	-7 00 26. 4
36	AB78	1061	27 56. 25	-5 01 24.7
37	AB113		28 08. 24	-4 39 52.6
38	AB112	538	28 10. 97	—5 27 56. 7
39	AB123		28 13. 62	-4 56 08. 2
40	T125	687	28 13. 76	-4 09 56. 3
41	T4	688	28 14. 38	-7 05 21. 0
42	T126	689	28 20. 02	-6 54 27. 2
43	T5	690	28 24. 07	5 38 35. 7
44	T127	691	28 28. 20	-4 15 10. 2
45	AB36	968	28 33. 53	<u> </u>
46	AB22	969	28 36. 98	-4 06 35.7
47	T128	692	28 42. 67	-7 06 26. 2
48	T 6	539	28 43. 39	-4 38 39. 6

	the state	-	
6	7 8	9 10	11 12
30. 01. 65	17. OV 3. OU	2	3 [7]
14. 01. 67	18. 7U 2. 6U	-1	1 [33]
03. 01. 68	18. 2U 3. OU	2	3 [33]
02. 12. 67	>18. 0 >4. 5	1	3 [23]
23. 12. 59	16. 5V 2. 4	1	2 [7]
23. 12. 63	17. 9V 1. OU	1	1 [7]
30. 01. 68	17 2 0 6	1	3 [23]
16. 01. 80	18. 5 1 7	1	3 [19]
18. 12. 79	18. 4U 5. 0U	1 1	3 [13]
08. 01. 65	17. 7V 4. 0	4	1 [7]
05. 12. 69	17. 7 1. 2	1	6 [15]
27. 11. 79	17. 7 0. 9	1	5 [19]
30. 10. 81	20. 4 5. 0	t	5 [21]
30. 10. 81	15 5 1. 5	1 2	5 [21]
27. 01. 82	19. 8 3. 6	1	5 [21]
02. 01. 65	14. 7V 3. 2	2	4 [7]
26. 12. 59	13. 3V 1. 2	1	6 [7]

КАТАЛОГ ВСПЫХИВАЮЩИХ ЗЕ

State State of Street				and the second s
i	2	3	4	5
51	AB8	970	5 28 58.06	-5 07 26. 2
52	T260		28 59. 18	-5 38 46. 5
53	AB24	971	29 01. 99	-4 27 00. 8
54	R1	1063	29 02. 77	-4 14 34. 4
55	B8	1038	29 10. 04	—7 13 02. 8
56	AB85		29 17. 94	-7 19 48. 4
57	AB95		29 18.80	-7 38 24. 3
58	AB77	1064	29 23. 81	-5 44 14. 7
59	AB11	972	29 26. 36	-4 25 01. 5
60	T129	694	29 27. 88	-4 28 58. 5
61	T185	693	29 32. 87	-3 29 43. 3
62	AB117		29 35. 02	-3 42 35. 3
63	AB5	973	29 36. 48	-4 31 23. 7
64	AB68	1065	29 36. 85	<u> 4 36 53. 8</u>
65	U1	695	29 38. 21	-4 58 17. 7
66	B24	НР	29 41. 07	<u> </u>
67	U 2	696	29 42. 78	-4 57 43. 1
68	T187	698	29 43. 36	—7 05 19. 6
69	AB124		29 43. 65	<u> 4 45 22. 8</u>
70	T 186	697	29 43. 81	<u> </u>
71	T188	699	29 51. 73	<u> 6 48 00. 6</u>
72	T7	700	29 56. 68	—5 05 23. 4
73	TS	701	30 00 96	_4 01 34 2

6 7 05. 10. 70 17. 3	8 0.8	9	10	11	12
05. 10. 70 17. 3	0. 8	1			
				5	[15]
18. 03. 77 17. 4L	12.2	U 2		5	[34]
22. 12. 70 17. 5	0. 7	1		4	[16]
17. 11. 80 18. 5L	J 4. 8	U 1		4	[31]
10. 11. 77 18. 7L	1 5. 2	U 1		6	[27]
09. 01. 81 17. 7	1. 8	1		6	[20]
24. 02. 81 19. 4	4. 4	1		7	[20]
26. 11. 79 17. 1	1. 2	2		5	[19]
05. 01. 70 17. 9	3. 3	1 1		4	[15]
02. 02. 65 15. 5	/ 1. 0) 3		4	[7]
01. 02. 68 17. 30	J O. (5U 1		4	[33]
25. 11. 81 17 4	1. 8	1		4	[21]
08. 12. 69 16. 1	0. 8	1		4	[15]
29. 10. 79 >21. 0	>5. 4	1		4	[19]
19. 12. 63 16. 8E	3 0. 8	BB 1	3	5	[35]
04. 11. 80 16. 90	3. 4	U 1	4	5	[14]

Р. Ш. НАЦВЛИШВИЛИ

1	2	3	4	5	6	7	8	9	10	11 12
77	AB65	1066	5 30 10. 89	6 47 22. 3	28. 10. 79	16. 9 1	. 1	1		6 [19]
78	AB15	974	30 13. 82	-4 00 03. 4	06. 01. 70	17.01	. 0	1		4 [15]
79	A6	926	30 14. 70	-5 01 36. 0	30. 01. 68	16. 2 0	. 8	1	5	5 [23]
80	T130	705	30 14. 79	-5 41 28. 5	01. 01. 65	14. 4V 4	0	1	6	5 [7]
81	T9	703	30 16. 62	-3 16 16. 5	02. 01. 60	14. 4V 2.	0	1		4 [7]
82	AB57	1039	[·] 30 16. 85	-6 38 42. 2	28. 01. 79	18.72	. 2	1		6 [18]
83	AB134		30 18. 53	-3 44 48. 5	11. 12. 82	17.3 1	. 8	1		4 [22]
84	T191	UZ	30 20. 13	-5 41 46. 6	18. 12. 65	17. 8U 2	. 01	12	7	5 [33]
85	T192	707	30 25. 01	-6 40 50. 2	16. 02. 69	17. OU 2	2. 01	J 2		6 [33]
86	T11	706	30 27. 22	-3 07 51. 5	23. 12. 59	14. 2V 2	. 6	1		7 [7]
87	R9		30 29. 20	-5 14 51. 3	03. 02. 81	18. 5U 2	2. 51	J 1		5 [32]
88	T133	711	30 29. 95	-7 20 05. 4	05. 01. 65	16. 5V >	2. 0	U 1		6 [7]
89	B26		30 30. 74	-4 11 19.0	01. 12. 80	15. 8U	I. 21	J 1		4 [27]
90	T131	709	30 31.75	-5 26 28. 9	30. 12. 64	15. OV	1. 50	J 1		5 [7]
91	U3	708	30 32. 21	<u> 4 00 32. 2</u>	20. 12. 63	16. 2B	1. OB	3 1		4 [35]
92	U4	710	30 36. 64	5 01 49. 0	20. 12. 63	16. 8B 2	2. OF	32		5 [35]
93	A60	927	30 37. 39	-4 59 15. 5	20. 01. 66	16. 5 1	. 1	1		5 [23]
94	A7	928	30 40. 63	-5 21 23. 1	04. 01. 68	17. 0 2	. 0	1		5 [23]
95	T13	713	30 42.61	-5 01 10. 4	13. 12. 63	16. 5V 4	1 . 01	U 2		5 [7]
96	T193	712	30 43. 23	-5 10 48. 1	27. 12. 67	16. 2U 1	l. 51	J 2	8	5 [33]
97	T14	384	30 43. 40	-5 44 27. 0	16. 12. 53	14. 7V 1	. 1	1	9	5 [7]
98	T15	714	30 43. 61	-5 01 35. 0	25. 11. 62	15. 5V 2	2. 51	U 3		5 [7]
99	AB127		30 44. 91	<u> </u>	24. 02. 82	19. 2 2	. 9	1		5 [21]
100	AB43	1040	30 45. 31	-4 53 35. 2	17. 12. 71	17. 2 2	. 0	3		5 [16]
101	AB121		30. 52. 74	-7 03 56. 0	27. 01. 82	16. 5 1	. 7	1		6 [21]
102	T195	717	30 53.09	-6 06 25. 0	16. 01. 66	18. 6U 4	1. 51	J 1		6 [33]

КАТАЛОГ ВСПЫХИВАЮЩИХ ЗВЕЗД

1	2	3	4	5	6	7 8 9	10	11 12
103	T12	542	5 30 54. 63	-6 24 35. 0	11. 11. 55	16, 2V 1, 5 2	10	6 [7]
104	A52	929	30 54.68	-4 43 03. 1	29, 11, 68	18. 5 3. 5 1		9 [23]
105	T194	715	30 55.09	-5 34 34, 9	30, 01, 68	17. 5U 0. 8U 4	11	9 [33]
106	T16	394	30 55. 11	-5 08 49, 2	22, 02, 55	15. OV 3. 0 3	12	9 [7]
107	T17	716	30 56.03	-4 05 32, 4	26, 12, 59	15, 1V 3, 1 2		8 [7]
108	AB81	1068	30 56. 40	-5 56 29. 4	15. 01. 80	19. 1 3. 5 2		9 [19]
109	T196	718	30 58. 19	-6 29 36. 0	02. 01. 68	17. OU 1. 5U 2		11 [33]
110	AB76	1067	30 58. 26	-3 14 27. 5	26, 11, 79	19.0 3.6 1		4 [19]
111	AB44	1041	31 00, 30	-5 06 47. 6	17. 12. 71	19.6381		9 [16]
112	T197	719	31 00. 90	-5 19 27. 4	30. 12. 67	17. OU 1. OU 1	13	9 [33]
113	T134	720	31 01. 34	-5 21 33. 0	26. 01. 65	14. 8V 0. 7U 1	14	9 [7]
114	T19	723	31 01. 74	6 04 07. 2	27. 12. 59	15. 5V 1. 5 1		11 [7]
115	T135	722	31 02.06	-5 47 42. 1	31. 12. 64	17. 1V >3. OU 1		9 [7]
116	AB98		31 02. 73	-7 44 18. 9	25. 02. 81	17. 6 2. 0 1		7 [20]
117	T18	721	31 02. 77	-5 04 16. 3	15. 12. 53	15. 3V 1. 5 2		9 [7]
118	AB115		31 03. 50	-6 06 10. 3	06. 11. 81	16. 7 1. 6 1		11 [21]
119	AB111		31 05. 48	-6 26. 17. 5	29. 10. 81	18. 6 2. 2 1	15	11 [21]
120	T20	385	31 06. 57	-5 35 27. 3	14. 12. 54	16. 1V 1. 4 2		9 [7]
121	T198	724	31 07.65	_4 14 24. 6	26. 12. 65	17. OU 0. 7U 1	16	8 [33]
122	AB96		31 07.70	-6 27 56. 6	24. 02. 81	>21. 0 >4. 6 1		6 [20]
123	AB4	999	31 09. 11	-5 54 54. 1	08. 12. 69	15. 6 0. 9 1	17	9 [15]
124	B2	544	31 09. 27	_4 14 32. 5	14. 01. 64	16. 5 2.2 2		8 [49]
125	T 199	725	31 09. 54	-5 25 07. 3	09. 02. 69	19. OU 3. OU 1		9 [33]
126	AB104		31 12. 64	-6 50 38. 9	11. 10. 81	15. 4 1. 5 2	18	11 [21]
127	AB46	1042	31 14. 92	-4 57 43. 6	19. 01. 72	18. 3 2. 5 3		9 [16]
128	T137	727	31 16. 55	-6 07 23. 4	05. 01. 65	17. 3V >3. OU 1		11 [7]

Р. Ш. НАЦВЛИШВИЛИ

1	2	3	4	5	6	7	8	9	10	11	12
129	T201	729	5 31 17. 10	-5 16 10. 2	27. 12. 65	15. 4U	2. OU	1	19	9	[33]
130	T202	730	31 17. 18	-5 23 03. 7	27. 12. 67	16. OL'	0. 6LI	1	20	9	[33]
131	T22	386	31 17. 58	-5 33 08. 2	16. 12. 53	14. 8V	1. 4	2	21	9	[7]
132	T21	726	31 18. 21	-5 38 31. 4	26. 01. 63	18. OV	>0. 5U	2		9	[7]
133	T23	545	31 18.48	-6 16 00. 1	25. 02. 59	14. 2V	1. 9	1	22	11	[7]
134	T200	731	31 19. 57	-4 54 08. 4	18. 02 69	18. 2U	2. 2U	2	23	9	[33]
135	T138	728	31 19. 77	-6 59 04. 8	07. 01. 65	15. 2V	4. OU	2		11	[7]
136	AB130	353	31 19.81	-4 41 27.6	25. 02. 82	17. 3	1. 4	1	24	9	[21]
137	T139	732	31 20. 56	-6 02 36. 6	31. 12. 64	14. 7V	3. 5U	2	25	11	[7]
138	T24	734	31 25. 25	-7 03 14. 9	19. 12. 63	13. 8V	1. 2U	2		11	[7]
139	AB129	468	31 25. 43	-5 21 43. 0	24. 02. 82	16. 5	1. 0	1	26	9	[21]
140	R3	1069	31 25. 95	-4 18 26. 8	14. 01. 80	16. 1U	3. 1U	1	27	8	[31]
141	AB20	975	31 26. 98	-6 19 09. 1	07. 01. 70	18. 9	3. 4	1		11	[15]
142	T205	733	31 27.50	-6 08 36. 2	17. 02. 66	18. 4U	1. 8U	2		11	[33]
143	T203	SU	31 37.62	-4 49 49.3	15. 02. 66	17. 5U	1. 2U	1	28	9	[33]
144	T204	735	31 28.70	-5 08 47. 3	21. 12. 65	18. 5U	2. 3U	1	29	9	[33]
145	LS5		31 31. 18	-4 45 03.9	14. 01. 85	16. 6	1. 1	1		9	[30]
146	T177	SV	31 32. 29	6 38 15. 1	27. 12. 65	19. 7U	8. 4U	4	30	11	[33]
147	T140	736	31 33. 67	-4 47 48.5	02. 02. 65	16. 7V	>3. OU	1		9	[7]
148	AB108	н	31 34 93	-5 38 18. 1	28. 10. 81	16. 0	2. 3	1	31	9	[21]
149	AB12	977	31 35. 36	-4 59 29. 7	05. 01. 70	21. 0	5. 3	1		9	[15]
150	T206	ww	31 35. 76	5 38 55. 8	05. 01. 68	15. 4U	1. 5U	3	32	9	[33]
151	A9	931	31 38. 98	-4 09 15. 5	18. 01. 66	16. 6	1. 5	2		8	[23]
152	AB87	720	31 39. 48	5 13 42. 5	09. 01. 81	15. 5	1. 0	1	33	9	[20]
153	T25	395	31 39. 64	-5 27 58. 6	09. 12. 59	13. 9V	0. 9	1	34	9	[7]
154	T178	738	31 40. 05	6 32 43. 1	30. 01. 65	18. 5U	2. 1U	2		11	[33]

КАТАЛОГ ВСПЫХИВАЮЩИХ ЗВЕЗД

1	2	3	4	5	6	7 8 9	10	11	12
155	AB90		5 31 40. 80	-6 06 44. 1	05. 02. 81	17.8 1.1 1		11	[20]
156	AB42	1043	31 40. 94	-5 03 40. 8	17. 12. 71	17. 5 2. 1 1		9	[16]
157	T179	739	31 41. 56	-6 37 08. 3	02. 01. 68	18. 1U 2. 9U 1		11	[33]
158	U5	737	31 41. 79	-4 30 24. 8	18. 12. 63	17. 6B >2. 4U 1		8	[35]
159	AB29		31 42. 04	-3 11 23. 9	23. 12. 70	17.0 0.5 1		8	[16]
160	T26	741	31 45. 17	-6 49 21. 9	15. 12. 63	16. 5V 2. 0U 1		11	[7]
161	T207	742	31 46. 61	5 57 39. 2	27. 12. 65	18. 4U 3. 0U 3	35	9	[33]
162	A51	930	31 49. 22	-3 48 29. 0	29. 11. 68	17. 4 2. 1 1		8	[23]
163	T208	SW	31 49. 65	-6 38 01. 8	29. 02. 68	14. 8U 0. 6U 1	36	11	[33]
164	T27	740	31 50. 51	-3 29 31. 5	30. 01. 60	19. 6V >4. 0 1		8	[7]
165	T141	744	31 51. 03	5 08 59. 2	30. 12. 64	14. 8V 0. 6U 2	37	9	[7]
166	T28	745	31 52.35	-5 00 53. 7	28. 02. 56	17. 1V 2. 0 1		9	[7]
167	T209	746	31 53. 39	-5 32 44. 5	15. 02. 67	16. 7U 1. 0U 1	38	10	[33]
168	A10	933	31 53. 48	-6 20 45. 3	12. 01. 67	18. 5 3. 4 1		11	[23]
169	A43	932	31 54. 62	-4 37 54. 5	23. 10. 65	17. 5 2. 2 1		8	[23]
170	T29	747	31 56.80	-4 35 03. 8	27. 01. 60	16. 2V 2. 1 1		8	[7]
171	AB2	978	31 56. 94	-4 47 07. 9	05. 12. 69	18. 1 2. 3 1		9	[15]
172	T30	748	31 57. 16	6 20 35. 7	30. 12. 59	15. 8V 2. 2 1		11	[7]
173	B13		31 58. 28	-5 38 59.6	21. 12. 79 :	>18. OV >1. 8V 1		10	[13]
174	LS6		31 58. 53	-5 02 58. 0	15. 01. 85	16. 7 1. 1 1	39	9	[30]
175	B5		31 58.82	-5 03 14. 4	07. 03. 75	18. OU 4. 5U 1		10	[27]
176	T33	752	31 59. 19	-6 05 49. 0	25. 01. 60	18. 3V >2. 5 1		11	[7]
177	T31	749	31 59. 26	-4 57 25. 4	24. 01. 60	15. OV 0. 9 3	40.	9	[7]
178	B25		31 59. 74	-5 34 13. 2	04. 11. 80	17. 8U 4. 3U 2	41	10	[14]
179	B29		32 00. 22	-4 36 36. 9	08. 01. 72	17. 6 2. 8 1		8	[28]
180	AB82	1070	32 00. 32	-3 42 45. 1	15. 01. 80	19. 2 3. 8 1		8	[19]

. Р. Ш. НАЦВЛИШВИЛИ
1	2	3	4	5	6	7 8	9 10	11 12
181	AB13	976	5 32 01. 03	5 26 55, 0	05. 01. 70	15. 3 1. 6	1 42	10 [15]
182	T210	751	32 01. 23	-6 01 49. 1	24. 02. 68	16. 3U 2. 0U	1 43	9 [33]
183	A44	BV	32 01. 32	-4 47 00. 2	24. 02. 66	17. 2 0. 8	1 44	9 [23]
184	A11	934	32 01. 41	-6 01 05. 4	04. 01. 68	17. 2 1. 3	1	9 [23]
185	T34	750	32 01.81	-5 49 10. 3	16. 01. 58	13. 8V 0. 9	1 45	5 9 [7]
186	T142	753	32 02. 33	-6 24 04. 2	29. 12. 64	15. 6V 1. 5L	J 1	11 [7]
187	A53	935	32. 02. 55	-5 49 21. 3	13, 12, 68	17. 3 2. (0 1 4	6 9 [23]
188	T143	755	32 03. 03	-6 40 48. 0	09. 01. 65	15. OV 0. 81	J 1 4	7 11 [7]
189	T32	652	32 04. 94	—5 02 37. 0	26. 01. 60	15. 3V >1. (0 3 4/	8 10 [7]
190	T37	761	32 05. 47	-6 24 45.8	27. 12. 59	16. OV 2. 0	3	11 [7]
191	T35	757	32 05. 51	-6 45 18. 5	07. 12. 58	16. 5V 1. 3	1	11 [7]
192	T211	754	32 06. 12	-4 43 07. 4	14. 02. 66	17. OU 0. 80	J 1 4	9 9 [33]
193	T212	756	32 07.00	-5 58 34. 3	20. 12. 65	18. 4U 3. 51	J 1	9 [33]
194	T36	760	32 07. 49	-6 04 06. 0	06. 11. 59	16. 5V 2. 0	1	11 [7]
195	A13	937	32 08. 09	6 10. 23. 1	01. 02. 68	18. 5 3. 7	1	11 [23]
196	AB 19	979	32 09. 01	-4 21 25. 2	06. 01. 70	20. 5 4. 7	1	8 [16]
197	T144	XX	32 09. 45	<u> 6 07 30. 6</u>	27. 01. 65	15. 2V 0. 91	J 1 5	0 11 [7]
198	AB106		32 10. 01	-4 04 05.7	01. 02. 68	18. 5 3. 7	1	8 [23]
199	AB72	1000	32 10. 54	-5 45 00. 7	17. 11. 79	17. 6 3. 3	1 5	1 10 [19]
200	A12	936	32 11	<u> </u>	07. 12. 67	17. 5 3. 2	1	7 [23]
201	T145	758	32 11. 84	-5 05 02. 1	26. 01. 65	17. 3V >4. 0	U 1	9 [7]
202	A57	938	32 12. 09	6 08 15. 4	10. 02. 69	15. 3 1. 3	1 5	2 11 [7]
203	T148	766	32 12. 61	-6 27 17. 4	31. 12. 64	15. 1V 2. 50	J1 5	3 11 [7]
204	T38	767	32 12. 84	-6 29 17. 0	26. 11. 62	15. 5V 1. 51	U 1	11 [7]
205	T146	398	32 12. 90	-5 42 05. 4	27. 12. 64	12. 4V 1. 30	J 2 5	4 10 [7]
206	AB32	981	32 13. 09	-6 09 09. 0	29. 12, 70	17. 4 1. 5	1	11 [16]

КАТАЛОГ ВСПЫХИВАЮЩИХ ЗВЕЗД

 And in case of the	The result of a	Warner W - Internet		the state of the state
I	2	3	4	5
207	T213	762	5 32 13. 75	-4 50 19. 4
208	AB41	xv	32 14. 10	-5 48 07. 3
209	T146	764	32 14. 43	-5 49 51. 6
210	Т39	IZ	32 16. 03	-5 46 35. 8
211	T215	765	32 16. 83	-6 18 59. 1
212	AB107		32 17.01	-7 38 08, 2
213	B21		32 17. 03	-5 34 13. 2
214	A42	939	32 17. 12	-4 38 03. 7
215	T40	768	32 17. 51	-5 04 03. 6
216	T41	770	32 18. 69	-5 45 39.6
217	T149	763	32 18. 75	-4 59 39. 5
218	T150	775	32 18. 76	-6 23 02. 5
219	T219	771	32 19. 34	-6 23 35. 4
220	AB138		32 19.77	—4 25 06. 1
221	T214	550	32 20. 07	—5 06 50. 3
222	T218	774	32 20. 45	-5 48 25. 6
223	T42	KK	32 21. 02	-5 44 24. 4
224	T217	373	32 21. 32	—5 43 53. 7
225	A15	400	32 22. 03	-5 48 00. 3
226	T216	773	32 22. 21	-4 37 28. 5
227	T43	776	32 23. 83	-5 44 16. 6
228	T46	782	32 24. 03	-6 28 43. 1
229	B30		32 24. 85	-4 23 13. 6
230	T45	YZ	32 25. 15	-5 05 22. 6

6	7 8 9	10 11	12
22. 12. 65	15. 4U 0. 6U 1	55 9	[33]
17. 12. 71	18. 0 3. 2 1	56 9	[16]
27. 01. 65	15. OV 2. OU 1	57 9	[7]
05. 12. 59	16. 8V 2. 0 1	58 9	[7]
29. 12. 67	18. 5U 2. 0U 2	59 11	[33]
27. 10. 81	16. 4 1. 2 1	7	[21]
22. 10. 80	18. OU 3. 7U 1	60 10	[27]
23, 10, 65	15. 6 1. 1 1	61 8	[23]
01. 02. 60	15. 6V >2. 0 2	62 10	[7]
29. 01. 60	17. 2V >2. 0 1	9	[7]
28. 12. 64	16. 8V 4. 4U 3	9	[7]
31. 01. 65	15. 7V 1. 5U 1	63 11	[7]
16. 01. 66	16. 8U 0. 7U 3	64 11	[33]
08. 02. 83	18. 2 2. 2 1	8	[22]
19. 01. 66	17. 3U 0. 5U 1	65 10	[33]
17. 02. 66	18. 2U 3. 3U 2	66 9	[33]
23. 12. 63	15. 1V 1. OU 1	67 10	[7]
28. 02. 68	17. OU 3. OU 1	68 10	[33]
19. 01. 64	16. 4 0. 9 1	69 9	[23]
02. 02. 67	16. OU 1. 2U 2	70 8	[33]

1	2	3	4	5	6	7 8 9	10	11 12	
236	B1	552	5 32 27. 83	-5 49 05. 0	25, 10, 62	16. 5 1. 2 1		9 [24]	
237	T44	778	32 27. 91	3 00 55. 0	25. 01. 60	14. 1V 1. 6 1		7 [7]	
238	T49	553	32 28. 28	-5 07 56. 5	21. 11. 60	16. 6V 2. 2 1		10 [7]	
239	LS12	ко	32 29. 13	—5 33 31. 1	26. 01. 85	16. 1 2. 1 1	74	10 [30]	
240	T50	780	32 30. 39	—5 11 22. 4	22. 11. 62	16. OV 1. OU 1	75	10 [7]	
241	T222	785	32 30. 88	-6 47 48. 9	02. 01. 68	17. 9U 1. 5U 1		11 [33]	
242	T221	784	32 31.00	-5 55 16. 0	24. 02. 68	18. 4U 3. 4U 1		9 [33]	
243	T52	779	32 31. 34	-4 37 00. 2	23. 11. 62	19. 5V >4. OU 1		8 [7]	
244	AB125		32 33. 09	6 44 11. 7	29. 01. 82	17. 7 1. 1 1		11 [21]	
245	T53	783	32 33. 55	<u>4 40 29. 2</u>	31. 01. 60	18. 4V >3. 0 1		9 [7]	
246	T152	787	32 34. 50	5 57 48. 9	01. 01. 65	15. 2V 2. 5U 2		9 [7]	
247	T154	789	32 35. 73	6 32 06. 7	06. 01. 65	15. 2V 2. OU 5		11 [7]	
248	T153	788	32 36. 25	-6 07 19. 4	30. 12. 64	14. 2V 3. 0U 3	76	11 [7]	
249	B19		32 36.80	<u> 4 27 01. 1</u>	17. 10. 80	17. 5U 3. 5U 1	77	8 [14]	
250	T54	408	32 38. 44	-5 35 50. 3	30. 10. 54	17. 2V 1. 0 1	78	10 [7]	
251	B4	482	32 39.09	5 47 5.2	03. 10. 70	16. 5 1. 5 1	79	9 [27]	
252	T223	355	32 41. 30	-5 08 41. 2	23. 12. 65	17. 6U 2. 5U 3	80	10 [33]	
253	T224	790	32 42.00	-6 06 55. 9	14. 01. 66	16. 2U 1. 0U 1	81	11 [33]	
254	T327	557	32 45. 53	-5 11 13. 6	21. 03. 77	18. 5U 5. 0U 1	82	10 [34]	
255	AB136	488	32 46. 22	-5 32 51. 4	19. 01. 83	15. 9 1. 0 1	83	10 [22]	
256	T225	MQ	32 47. 79	-6 07 05. 5	29. 12. 67	15. 2U 1. 7U 1	84	11 [33]	
257	T155	791	32 48. 59	-5 05 23. 8	28. 01. 65	15. 4V 1. 5U 1	85	10 [7]	
258	T55	560	32 49. 34	-5 42 11. 7	29. 01. 59	16. 2V 2. 5 1	86	10 [7]	
259	T156	792	32 49. 53	-7 19 59.6	30. 12. 64	14. 7V 1. 0U 1		11 [7]	
260	AB126		32 50. 66	-6 07 09. 5	18. 02. 82	16. 9 1. 8 1		11 [21]	
261	T226	793	32 50. 98	-5 51 30. 6	16. 01. 66	18. OU 1. 7U 1	87	9 [33]	

КАТАЛОГ ВСПЫХИВАЮЩИХ ЗВЕЗД

1	2	3	4	5	6	7	8 9	10 11	12
262	T56	795	5 32 51. 52	-6 34 16. 6	30. 01. 60	15. 3V	>1. 5 1	88 11	[7]
263	AB140		32 54. 24	-4 19 10. 4	09. 02. 83	16. 8	1. 1 1	8	[22]
264	A16	942	32 54. 61	-6 49 18. 3	23. 01. 66	17. 2	2.1 1	11	[23]
265	AB38	983	32 55. 57	-4 23 58. 3	30. 12. 70	17. 9	1.3 1	8	[16]
266	A50	941	32 55. 64	-3 35 21. 9	27. 11. 68	17. 2	2.61	8	[23]
267	AB88		32 55.68	-5 12 44. 8	26. 01. 81	15. 3	2. 2 1	89 10	[20]
268	AB63	NN	32 56.69	-4 07 25. 5	27. 10. 79	16. 7	1.01	90 8	[19]
269	AB39	1072	32 56. 72	6 03 17. 9	09. 12. 71	16. 4	2.4 1	91 9	[16]
270	A17	NS	32 57. 74	-6 03 39. 0	25. 02. 63	16. 5	1.5 2	92 11	[23]
271	AB49	563	32 58. 54	-4 57 59.6	04. 02. 78	17. 0	4. 2 2	93 9	[18]
272	AB132		32 58.75	-4 13 55. 6	17. 11. 79	17. 4	1.5 1	8	[22]
273	AB50	NT	32 59. 26	-6 49 49. 3	10, 10, 78	14. 7	1. 1 1	94 11	[18]
274	T158	801	33 00. 55	-6 28 39. 7	26. 01. 65	14. 7V	0. 5U 1	11	[7]
275	T57	564	33 01. 33	-6 11. 31. 6	29. 01. 59	15. 7V	2.52	95 11	[7]
276	T58	498	33. 02. 71	-5 50 37. 5	28. 01. 58	13. 6V	3.2 1	96 9	[7]
277	T60	800	33 03. 60	-6 13 58. 0	23. 12. 59	15. 8V	1.8 2	97 11	[7]
278	U6	422	33 03. 62	-5 06 54. 3	20. 12. 63	16. 4B	0. 8B 1	98 10	[35]
279	T227	797	33 03 87	-4 21 55. 6	14. 02. 67	16. 2U	0. 7U 1	99 8	[33]
280	AB37	985	33 04	-7 12. 2	30. 12. 70 >	>21. 0 >	>4. 1 1	11	[16]
281	AB35	984	33 04. 44	-6 00 25. 6	30, 12, 70	17. 0	2.5 1	9	[16]
282	A19	943	33 05. 14	-7 04 00. 0	30. 01. 68	17. 0	1.5 1	11	[23]
283	T59	804	33 06. 59	-5 40 12. 5	03. 01. 60	17. 3V	2.9 1	10	[7]
284	T61	802	33 07. 16	<u> </u>	28. 01. 57	17. 6V	1.5 1	11	[7]
285	A18	.803	33 07. 51	-5 31 06. 3	01. 02. 64	15. 8	1.8 1	100 10	[23]
286	AB47	1047	33 08. 06	3 52 58. 8	19. 01. 72	16. 2	1.01	8	[16]
287	A45	945	33 08. 16	-6 41 34. 6	24. 11. 65	17. 5	1. 9 1	11	[23]

1	2	3		4 -	5
288	T62	567	5 33	08. 98	-4 16 19. 3
289	T228	806	33	09. 03	-7 18 48. 3
290	T229	805	33	10. 35	-6 18 22. 7
291	AB7	986	33	10. 67	-7 10 56. 3
292	T160	807	33	11. 63	-6 13 44. 0
293	T328	571	33	14. 68	-6 24 36. 5
294	T63	569	33	15.44	-5 11 08.8
295	T230	OR	33	15. 93	5 38 19.0
296	T64	570	- 33	16. 06	<u> </u>
297	B11		33	17. 35	-4 19 21. 7
298	AB 139		33	17. 91	4 28 04. 4
299	AB25	987	33	18. 03	_4 20 24. 2
300	T65	808	33	18. 34	-5 12 43. 3
301	T68	378	33	19. 24	<u> </u>
302	AB116		33	19. 61	<u> </u>
303	AB131		33	19. 66	-5 15 09. 9
304	T67	427	33	19. 92	—5 24 40. 8
305	T329		33	20. 32	-6 54 28.6
306	R4	CE	33	20. 43	—5 03 20. 0
307	T66	389	33	20. 88	-4 26 29. 8
308	AB16	988	33	20. 93	-6 31 01. 3
309	A20	946	33	21	5 31. 8
310	AB79	1074	33	21. 11	-6 35. 14. 4
311	T69	812	33	21. 21	5 55 48. 5

and and the second			-	-		
6	7	8	9	10	11	12
02. 11. 59	14. 9V	3. 5	1		8	[7]
03. 02. 68	15. 9U	0. 7U	2		11	[33]
16. 01. 66	17. 6U	2. 5U	2		11	[33]
01. 01. 70	16. 7	1. 3	1		11	[15]
05. 02. 65	9. 5V :	> 4. 0U	1		11	[7]
21. 03. 77	16. 7U	1. 6U	1	101	11	[34]
17. 01. 61	13. 7V	0. 9	1	102	10	[7]
20. 02. 68	15. 2U	1. OU	1	103	10	[33]
01. 03. 57	15. 3V	1. 8	1	104	10	[7]
21. 12. 73	16. 5U	3. OU	2	105	8	[49]
09. 02. 83	16. 9	0.8	1	106	8	[22]
22. 12. 70	16. 9	1. 5	1		8	[15]
22. 01. 60	18. 2V	2. 2	1		10	[7]
30. 01. 52	16. 1V	0.5	2	107	10	[7]
07. 11. 81	19. 6	4. 0	1		11	[21]
25. 02. 2	16. 6	1. 5	1	108	10	[21]
30. 10. 54	16. 2V	2. 1	1	109	10	[7]
22. 12. 76	16. 7U	1. OU	1	110	11	[34]

КАТАЛОГ ВСПЫХИВАЮЩИХ ЗВЕ:

1	2	3	4	5	6	7 8 9	10	11	12
314	A22	947	5 33 22. 19	-5 37 17. 5	27. 12. 67	16 5 1 0 1	115	10	[23]
315	A24	ОТ	33 23. 11	5 18 20. 3	30. 01. 68	16.5 1 0 3	116	10	[23]
316	AB21	989	33 23. 17	-6 42 53 8	07. 01. 70	17. 7 3. 2 1	117	11	[15]
317	T70	575	33 23. 26	-5 08 59. 9	09 10. 58	14. 1V 1. 9 3	118	10	[7]
318	T71	379	33 23. 34	—5 17 00. 0	30. 01. 52	14. 8V 1. 0 2	119	10	[7]
319	T330		33 23. 96	-4 31 56. 5	26. 01. 77	15. 6U 1. 6U 1	120	8	[34]
320	T73	813	33 24. 40	6 35 08. 0	27. 12. 59	16. OV 0. 7 1		11	[7]
321	A46	949	33 26	-4 43. 8	29. 11. 65	17. 8 2. 7 1		9	[23]
322	T161	817	33 26. 26	-6 01 38. 5	07. 01. 65	18. 4V >3. OU 1		11	[7]
323	T74	ох	33 27. 16	-5 28 58. 4	21. 12. 52	15. 8V 0. 5 2	121	10	[7]
324	T75	816	33 29. 23	-5 54 18. 5	29. 01. 60	16. 6V >2. 0 1		9	[7]
325	T331		33 30. 05	-4 31 15.0	14. 02. 77	16. 8U 0. 5U 1	122	8	[34]
326	U7	818	33 30. 82	-6 17 27 7	20. 12. 63	17. 0B 0. 5B 1		11	[35]
327	T76	390	33 31. 23	-5 00 36. 8	04. 01. 54	15. 5V 2. 0 2	123	9	[7]
328	T78	654	33 32. 17	6 04 30. 0	19. 01. 47	18. 3V >1. 0 7	124	11	[7]
329	A27	365	33 33. 02	-5 25 20. 0	21. 01. 68	16. 8 0. 8 1	125	10	[23]
330	A26	950	33 33. 48	<u> 4 20 29. 7</u>	19. 01. 66	17.5 1.9 1		8	[23]
331	T77	578	33 33. 95	-5 19 26. 8	24. 02. 60	13. 4V 0. 6 1	126	10	[7]
332	T80	393	33 34.60	-6 17 21. 5	25. 10. 54	14. 5V 0. 9 1	127	11	[7]
333	AB89		33 34.81	-5 09 26. 9	29. 01. 81	15. 5 1 0 1	128	10	[20]
334	T79	655	33 36. 71	<u> </u>	13. 12. 63	14 2V 0. 6U 1	129	10	[7]
335	AB114		33 36. 98	-4 52 54. 1	31. 10. 81	17. 5 2. 3 1	130	9	[21]
336	T332		33 38. 13	<u>4 22 27.</u> 4	22. 12. 76	16. 8U 0. 9U 1	131	8	[34]
337	T83	822	33 38. 85	<u> </u>	15. 12. 63	14. 3V >1. 0U 7		11	[7]
338	T333	CH	33 39. 76	-4 43 10. 8	21. 03. 77	15. 7U 1. 4U 1	132	9	[34]
339	T81	820	33 39. 81	-4 30 42. 7	16, 02, 61	17. 2V >0. 5 1		8	[7]

1	2	3	4	5	6	7	8 9	10	11	12
340	AB86		5 33 41. 10	-5 22 51.8	09. 01. 81	17. 4	3 1 1		10	[20]
341	T91	831	33 41. 42	-6 59 01 8	23. 12. 59	17. 2V	2. 5 1		11	[7]
342	T84	821	33 41. 85	-5 46 37. 1	05. 10. 56	17. IV	2. 5 1		9	[7]
343	T87	826	33 42. 03	—5 38 28. 5	10, 11, 56	16. 2V	1.5 1	133	10	[7]
344	LS4	-	33 42. 21	—5 52 52. 6	13. 01. 85	17. 5	1.2 1	134	9	[30]
345	T85	656	33 42. 36	-5 48 16. 1	12. 12. 55	14. 4V	2. 0 3	135	9	[7]
346	T88	391	33 42. 54	-5 23 54. 0	02. 12. 53	15. 7V	1.04	136	10	[7]
347	T86	502	33 42. 90	-5 21 34.6	11. 12. 63	13. 7V	3 05 2	137	10	[7]
348	AB133		33 43. 01	6 12 18. 8	26. 10. 81	16. 3	1.1.1	138	11	[22]
349	U9	825	33 43. 06	6 20 25. 9	21. 12. 63	16. 4B	2. 2B 1		11	[35]
350	T82	580	33 43. 83	-5 02 22. 4	12. 02. 59	15. 3V	1. 5 2	139	10	[7]
351	T162	824	33 44. 22	-5 17 44. 4	01. 01. 65	17. 5V >	>3. OU 1	140	10	[7]
352	T163	828	33 47. 27	5 17 2.0	01. 01. 65	15. OV	4. OU 1		10	[7]
353	T89	827	33 47. 41	5 39 24. 2	02. 03. 56	14. 8V	1.5	141	9	[7]
354	Т90	581	33 49. 03	-4 26 24. 0	05. 02. 59	14. 1V	1.7 1	142	8	[7]
355	T231	AZ	33 49. 23	-5 13 31. 8	24. 02. 68	15. 3U	1. 5U 3	143	9	[33]
356	AB64	1076	33 49. 32	-6 16 40. 0	28. 10. 79	18. 8	2. 6 1	144	11	[19]
357	R5	1075	33 50. 76	-5 06 57. 3	18. 01. 80	15. 8U	1. 7U 1	145	9	[31]
358	R12		33 51. 13	—5 02 27. 9	31. 01. 81	~21. OU	6. 9U I		9	[32]
359	T232	829	33 51. 23	-4 23 03. 7	29, 01. 68	18. 8 U	3. 3U 1		8	[33]
360	T233	830	33 51.40	-6 30 25. 0	16. 02. 69	18. 4U	1. 8U 1		11	[33]
361	T334	832	33 52.09	-6 22 27. 4	27. 12. 76	16. 9U	2. 6U 1	146	11	[34]
362	AB69	1077	33 53. 40	5 43 28. 4	16. 11. 79	15. 2	1.3 1	147	9	[19]
363	T93.	839	33 55.05	-7 07 19.6	24. 12. 59	15. OV	0. 9 2	148	11	[7]
364	B28	PP	33 55. 44	-6 04 16. 5	03. 11. 80	15. 1U	4. 3U 1	149	11	[14]
365	AB61	1048	33 56. 26	-4 30 57. 5	19. 03. 79	16. 2	0.71		8	[18]

КАТАЛОГ ВСПЫХИВАЮЩИХ ЭВЕЭД

1	2	3	4	5	6	7	8	9 1	0 1	1 12
366	T92	833	5 33 56. 68	-5 08 57. 8	19. 01. 63	15. 3V	>4. OU	3 1	50 9	7]
367	AB102		33 56. 88	-7 17 54. 9	11. 10. 81	19. 3	3. 4	2	11	[21]
368	AB75	1078	33 58. 02	-6 07 01.8	25. 11. 79	19. 4	3. 2	1	11	[19]
369	T96	837	33 59.76	-6 08 04. 5	05. 12. 59	18. 9V	>4. 0	1	11	[7]
370	A29	951	34 00. 16	-5 32 43. 9	27. 02. 65	16. 2	1. 2	1 15	1 9	[23]
371	AB17	990	34 00. 40	-6 28 17. 0	06. 01. 70	16. 9	0. 7	2	1	[15]
372	T95	840	34 01. 08	-7 49 11. 3	28. 12. 59	15. 5V	0. 7	1	12	2 [7]
373	T94	836	34 0. 21	-4 55 39. 3	28. 02. 63	17. 1V	3. OU	2	9	9 [7]
374	T164	834	34 01. 22	5 16 31. 5	02. 01. 65	16. 6V ;	> 3. OU	1	9	9 [7]
375	T234	835	34 03. 69	<u> 4 29 01. 5</u>	04. 01. 68	17. 6U	2. 7U	1 15	2 8	3 [33]
376	A31	844	34 05. 50	-6 43 01. 1	19. 01. 63	17. 5	2. 0	1	11	[23]
377	A30	952	34 06. 79	-6 41 42. 4	15. 01. 66	16. 6	0.8	1	11	[23]
378	B18	1049	34 08. 32	-3 45 32. 8	29. 01. 79	19. OU	3. 5U	1	8	[27]
379	T236	842	34 09. 07	-5 38 21. 4	15. 01. 66	-18. 5U	5. OU	2	9	[33]
380	T97	657	34 09. 16	-5 06 29. 9	28. 11. 51	14. 8V	>0. 5	3 15	3 9	[7]
381	AB120		34 10. 03	-6 16 13. 0	27. 01. 82	19. 0	3. 8	1	11	[21]
382	AB110		34 10. 17	-5 45 55.0	28. 10. 81	17. 3	1. 7	1	9	[21]
383	T98	843	34 10. 20	-5 50 35. 3	04. 01. 60	18. OV	>2. 0	1	9	[7]
384	T235	841	34 12.05	-4 23 07.8	27. 12. 67	18. 5U	2. 5U	1	8	[33]
385	T99	658	34 14. 47	-6 31 56. 3	27. 11. 57	14. 4V 2	2.6	1 .	11	[7]
386	T166	845	34 14. 90	-6 53 51. 3	01. 01. 65	15. 3V	5. OU	1	11	[7]
387	A32	846	34 15. 21	-6 35 47. 0	06. 01. 68	17. 1 0). 9 1	154	11	[23]
388	T237	847	34 17. 26	-6 17 15. 4	17. 01. 66	18. 6U 3	3. OU 1		11	[33]
389	T168	851	34 18. 87	6 46 14. 7	30. 01. 65	17. 7V >	4. OU	1	11	[7]
390	U10	848	34 20. 76	-5 24 43. 5	19. 12. 63	17. 7B	1. 4B 1		9	[35]
391	AB27	991	34 20, 86	-6 10 07. 1	23, 12, 70	18. 1 1	1.8 1		11	[16]

-

Р. Ш. НАЦВЛИШВИЛИ

I	2	3	4	5	6	7	8	9	10	11	12
392	T167	849	5 34 21. 33	-4 51 36. 9	07. 01. 65	15. 4V	1. 5U	1		9	[7]
393	T100	850	34 21.77	-5 05 56. 3	28. 02. 63	15. 5V	1. OU	4		9	[7]
394	AB101		34 22. 14	-5 58 35.6	11. 10. 81	16. 2	1. 1	2		9	[21]
395	T169	853	34 24.01	-5 15 16. 7	31. 12. 64	13. 5V	0. 7U	1	155	9	[7]
396	T101	852	34 24.06	-5 10 22. 4	26. 01. 60	14. 8V	1. 8	2	156	9	[7]
397	T102	854	34 .25. 22	-5 01 34. 6	02. 01. 60	14. 4V	1. 0	2	157	9	[7]
398	T103	855	34 27. 09	-6 36 46. 1	27. 11. 62	17. 7V ;	>2. OU	1-		11	[7]
399	AB119		34 27.84	-6 21 31. 8	27. 01. 82	18. 6	4. 5	1	158	11	[21]
400	T238	856	34 30. 26	-6 22 11. 8	15. 02. 69	18. 2U	1. 5U	1 *		11	[33]
401	T104	PW	34 32. 29	-5 25 26. 9	27. 12. 59	14. 2V	2. 5	2	159	9	[7]
402	T105	659	34 33. 18	-5 26 46. 7	01. 02. 60	16. 2V	3. 0	1	160	9	[7]
403	T106	857	34 34. 74	-6 34 57.0	26. 12. 59	19. 7V	>5. 0	1		11	[7]
404	T335		34 36. 03	-4 15 33. 2	11. 01. 77	17. 9U	3. 1U	1		8	[34]
405	U11	858	34 37.50	-4 49 07. 0	21. 12. 63 >	>18. 0B :	>4. OB	3		9	[35]
406	T107	860	34 37.65	-5 38 58.4	27. 12. 59	16. 2V	1. 6	1		9	[7]
407	A33	953	34 40	-2 53. 4	09. 12. 66 ;	>18. 0 >	3. 5	1		12	[23]
408	T170	859	34 40. 30	-4 40 09. 3	30. 12. 64	16. 8V :	>0. 4U	11		8	[7]
409	T239	862	34 41.74	_4 46 04. 0	14. 02. 66	19. 5U	4. OU	1.		9	[33]
410	A34	863	34 44. 04	-6 47 30. 8	19. 01. 66	17. 8	2. 0	2		11.	[23]
411	T241	865	34 44. 59	-6 37 12. 8	27. 12 67	16. 9U	0. 5U	1	161	11	[33]
412	T108	864	34 44. 65	-6 32 00. 3	17. 01. 56	18. OV	1. 7	1		11	[7]
413	T242	866	34 47. 45	-6 19 58. 7	07. 01. 67	19. OU	4. 2U	1	162	11	[33]
414	T109	861	34 47. 50	-4 39 33. 6	26. 12. 59	14. 2	0. 9U	1		8	[7]
415	AB118		34 47. 93	-3 33 16. 9	26. 11. 81	15. 6	1. 6	1		13	[21]
416	LS13	**	34 48. 47	-6 21 25. 7	11. 01. 85	21. 0	4. 5	1		11	[30]
417	T243	871	34 50. 94	-6 14 32. 7	24, 02, 68	18. 8U	3. 5U	1		15	[33]

КАТАЛОГ ВСПЫХИВАЮЩИХ ЭВЕЗД

-9--370

I	2	3	4	5	6	7	8 9	10	11 12
418	AB28	992	5 34 56. 34	-5 45 07. 9	23. 12. 70	17. 4	0.82		14 [16]
419	AB122		34 56. 47	6 05 07. 7	27. 01. 82	15. 8	1.5 1	163	14 [21]
420	T244	870	34 56. 87	-5 06 18. 6	29. 02. 68	15. 3U	0. 8U 1	164	14 [33]
421	T245	872	34 59. 64	-5 32 48. 0	16. 02. 69	19. OL	J 2. 7U 1		14 [33]
422	T110	867	35 00. 91	-3 34 09. 9	05. 12. 59	18. OV	>3. 0 1		13 [7]
423	AB109		35 04. 94	-6 57 49.8	28. 10. 81	18. 9	3.01	165	15 [21]
424	R6		35 09. 41	-4 14 55. 4	10. 02. 80	18. 11	J 3. OU 1		13 [31]
425	T111	588	35 10. 48	-5 54 04.7	0.8 01. 54	16. 2V	0.82	166	14 [7]
426	T246	874	35 11. 10	-7 04 47.3	22. 12. 65	17. 5L	J 3. OU 2	167	15 [33]
427	B20		35. 11. 29	-5 10 23. 6	22. 10. 80	17. 4L	J 5. 4U 1	168	14 [27]
428	T112	873	35 12. 34	-4 16 20. 2	26. 12. 59	18. 1V	>4. 0 1		13 [7]
429	AB92		35 13. 11	-6 54 34. 9	23. 02. 81	>21. 0	>4. 5 1		15 [20]
430	T336		35 16. 77	-6 41 58. 4	26. 01. 77	15. 7L	J 0. 9U 1	169	15 [34]
431	AB62	1050	35 16. 81	-5 31 13. 6	19. 03. 79	18. 7	3. 2 2		14 [18]
432	Ţ113	590	35 18. 79	-5 54 50. 2	22. 12. 59	14. 61	7 1. 8 1		14 [7]
433	A35	954	35 25	<u> </u>	31. 01. 68	16. 7	1. 7 1		7 [23]
434	B22		35 29. 44	<u> 6 26 24. 7</u>	22. 10. 80	15. OL	J 1. OU 2	170	15 [27]
435	AB83	1080	35 33. 37	-7 00 27. 6	16. 01. 80	19. 0	4.3 1	171	15 [19]
436	B32		35 35. 07	-4 18 24. 3	12. 09. 70	18. 5U	0.71	172	13 [38]
437	T115	593	35 35. 53	-7 17 35. 1	28. 12. 59	14. 8V	0.81	173	15 [7]
438	T114	877	35 36. 52	6 21 11. 5	31. 01. 60	15. 01	7 1. 4 1	-	15 [7]
439	AB105		35 39. 71	-6 54 55. 5	22. 10. 81	15. 3	1. 0 1	174	15 [21]
440	AB141		35 43. 32	-6 43 26. 3	11. 02. 83	20. 1	4.2 1		15 [22]
441	T337	881	35 44. 28	-6 23 49. 2	14. 02. 77	16. 51	2. 50 1	175	15 [34]
442	T116	880	35 46. 78	-5 07 30. 3	22. 12. 63	14. 9	/ 3. OU 2		14 [7]
443	T247	882	35 50, 20	-5 06 42. 3	23. 12. 65	15, 9U	J 2, 0U 2	176	14 [33]

1	2	3	4	5	6	7	8 9	10	11	12
444	T248	885	5 35 58. 40	-7 09 18. 2	04. 01. 68	17. 6U 1.	5U 1	177	15	[33]
445	AB91		35 58.50	-7 34 48. 1	06. 02. 81	17. 9 3.	5 1		12	[20]
446	AB18	994	36 00. 27	-7 01 31. 0	06. 01. 70	18. 0 1.	. 8 1		15	[15]
447	AB66	1081	36 03. 45	-6 14 33. 6	28. 10. 79	20. 4 4.	. 4 1		15	[19]
448	AB93		36 07.66	-3 31 58. 3	23. 02. 81	19.53	. 4 1		13	[20]
449	A36	955	36 08. 81	-3 48 03. 0	27. 01. 68	16. 3 0	. 8 1		13	[23]
450	LS10		36 08. 92	-5 42 27. 0	26. 01. 85	17. 1	1. 0 1		14	[30]
451	T117	886	36 12. 27	-5 39 57. 3	11. 12. 63	17. 9V >3	3. 5U 1		14	[7]
452	AB74	1082	36 21. 35	-4 52 46. 1	18. 11. 79	17.0 0.	6 1	178	14	[19]
453	LS11		36 30. 86	-4 32 15. 6	26. 01. 85	19. 0 2.	. 7 1		13	[30]
454	U13	888	36 37. 92	_4 44 27. 0	21. 12. 63 >	>18. OB >2	2. 5B 1		-14	[35]
455	A39	956	36 45	-2 20. 7	08. 02. 59	16. 7 1.	9 1		12	[23]
456	T171	889	36 47. 05	<u> </u>	01. 01. 65	15. 4V 3	. OU 2		15	[7]
457	T172	890	36 57. 90	-3 58 38.6	27. 01. 65	15. 2V 2	. OU 1		13	[7]
458	A37	957	36 59	-2 51. 4	24. 01. 66	18. 0 2.	. 4 1		12	[23]
459	T118	891	37 01. 79	—4 27 40. 2	25. 01. 60	14. 4V 3.	. 9 2		13	[7]
460	T119	893	37 12. 25	5 29 11. 9	21. 11. 62	17. 2V 2	. OU 1		_14	[7]
461	U14	ŢZ	37 15. 32	-3 26 50. 4	09. 01. 65	15. 1B 0.	9B>86		13	[35]
462	T173	896	37 20. 47	-6 26 27. 9	02. 02. 65	15. 6V 2	. OU 3		15	[7]
463	T249	895	37 21. 78	-4 56 46. 4	14. 02. 66	18. 4U 2	. OU 1		14	[33]
464	U15	894	37 22.7	-3 48 25	02. 02. 65	17. 6B 1	. 8B 1		13	[35]
465	AB71	1083	37 27.88	-6 34 20. 7	17. 11. 79	16. 9 0	. 7 1		15	[19]
466	T250	897	37 39.86	-6 29 53. 2	07. 02. 67	21. OU 6	. OU 1	179	15	[7]
467	AB26	995	37 44. 39	-7 11 26. 6	22. 12. 70	18. 7 2.	8 1	180	15	[16]
468	T338		37 49. 98	-3 59 43. 4	16. 02. 77	16. 8U 0	. 9U 1		13	[34]
469	T251	899	37 58, 79	-6 17 16. 1	31. 01. 68	17. 8U 2	. 3U 1		15	[33]

КАТАЛОГ ВСПЫХИВАЮЩИХ ЗВЕЗД

		and the second s	the second second second second second			And an and the second s		
	1	2	3	4		5		
	470	T120	900	5 38 07.	67	_3 27	32. 2	
	471	T339		38 07.	70	-3 58	03. 5	
	472	A58	958	38 15.	26	-6 31	59.8	
	473	AB137		38 39.	57	-5 43	45.4	
	474	A38	960	39 03		-1 43.	. 4	
	475	T174	904	39 30.	34	5 58	02. 9	
	476	B16	1052	39 36		-5 12.	6	
	477	T175	905	39 38.	38	-5 27	10. 0	
	478	T121	624	39 47.	08	-4 21	03.8	
	479	T252	906	39 50	. 51	5 38	47. 9	
	480	T253	907	39 55		-7 11	. 5	
	481	R13		40 01	. 72	6 47	23. 4	
×	482	AB31	996	40 08	. 24	-6 41	48.6	
	483	AB94		40 14	. 92	-4 50	29. 0	
	484	B3	908	40 18	. 99	5 51	10. 4	
	485	A54	961	40 24	. 26	-5 20	8.7	
	486	T176	909	40 31		_7 19	. 5	
	487	R8	1084	40 34	. 13	-4 31	18. 4	
	438	AB128		41 08	. 83	-6 15	53. 2	
	489	B7	1053	41 14.	85	-4 55	36. 8	
	490	AB97		41 3	1. 75	_5 59	23.7	
	491	AB30	997	41 33	85	-5 38	01. 4	

						-	
6	7	Γ	8	9	10	11	12
24. 12. 59	18. 1V	>2	. 5	1	100	13	[7]
11. 01. 77	15. 7U	J 1.	2 U	1		13	[34]
10. 02 69	15. 4	1.	1	1	181	15	[23]
02. 02. 83	17. 5	1.	0	1		16	[22]
27. 01. 68	17. 5	2.	1	1		7	[23]
06. 01. 65	12. 7V	3.	0 U	1		16	[7]
29. 11. 78 ;	>21. OU	>7.	0U	1	•	16	[18]
01. 01. 65	16. 5V	>4.	0U	1		16	[7]
03. 01. 59	14. 5V	1.	2	1		12	[7]
16. 02. 69	>20. OL	J 4.	0 U	1		16	[33]
05. 01. 68	20. OU	3.	5U	1		17	[33]
03. 02. 81	19. 2U	3.	4 U	1		17	[32]
29. 12. 70	17. 1	0.	9	1		17	[16]
23. 02. 81	19. 8	3.	7	1		16	[20]
12. 02. 64	16. 5	1.	3	4		16	[27]
18. 12. 68	16. 9	0.	9	1		16	[23]
02, 02, 65	14. 6V	5.	OU	6	182	17	[7]

примечания

Для вспыхивающих звезд, входящих в каталоги Н.-эмиссионных звезд Парсамян и Чавира [50] и переменных объектов Паренаго [51] приводятся соответствующие номера, например, Р981 и Н.13. 1-Вспышка зарегистрирована также в В-лучах: $m_B = 17^m, 6, \Delta m_B = 3^m, 0,$ а в V-лучах она не была заметна ($m_V = 16^m.4$). 2— H_a ·13. 3— H_a 19. 4-Вспышка зарегистрирована также в В-лучах: m_B = 15^m 4, $\Delta m_B = 1^m$ 5. Н. 21. 5-Р981. 6-Р987. 7-Р1009. Н. 36. 8-Р1109. 9-Спектральный класс К [7]. Н. 43. 10-Н. 48. 11-Р1167 [51]. 12-Н. 45 [50]. 13-P1190. H. 51. 14-P1191. 15-H, 58. 16-P1215. 17-P1231. 18-P1245. 19-Р125 4. Н. 67. 20-Р1255. 21-Спектральный класс К5-МО [7]. 22-H. 72. 23-Спектральный класс М1 [33]. H. 70. 24-P1265. 25-Р1274. 26-Р1294. Н. 80. 27-Р1292. Н. 79. 28-Р1301 [51]. Н. 82, в эмиссии также линия Call [33]. 29-P1305. 30-P1323. H. 84. 31-P1333. H. 87. 32-P1341. H. 88. 33-P1351. 34-P1353. 35-H. 103. 36-Р1412. Н. 108. 37-Р1410. 38-1428 [51]. Спектральный класс М2 [33]. Н. 112. 39—Р1458. Н. 117. 40—Р1463. 41—Вспытка зарегистрирована также в В-лучах: m_B = 16^m 4, $\Delta m_B = 2^m$ 5. P1471. 42—P1477. 43-P1486. 44-P1468. H, 119. 45-P1485. 46-H, 125. 47-P1502. H, 128. По данным [52] амплитуда вспышки $\Delta m_U = 1.^{m3}$, а звездная величина— $m_{\mu} = 17^{m}$. 48—P1496, 49—P1500. 50—P1530. H. 132. 51— P1536. H. 134. 52-P1555. 53-H. 145. 54-P1553 [51]. Спектральный класс КО [2] Н. 138. 55-Р1548 [51]. 56-Р1565 [51]. Н. 141. 5?-P1571 [51]. Ha 143. 58-P1576 [51]. Ha 147. 59-Ha 144 [50]. 60-P1588. 61-P1573. 62-P1584. 63-H, 153. 64-P1609 [51]. 65-P1599 [51]. H. 151. 66-P1016 [51]. H. 157. 67-P1614 [51]. H. 156. 68-P1613 [51]. 69-P1625 [51]. Ha 160. 70-P1611 [51]. Ha 154. 71-Р1643 [51], 72-Р1648 [51]. Спектральный класс G-К [33]. Н. 164. 73 - P1669. Ha 173. 74 - P1667. Ha 171. 75 - P1656. 76 - P1741. 77—Вспышка зарегистрирована также в В-лучах: $m_B = 17^m 0$, $\Delta m_B = 1^m 7$. 78-H, 196. 79-P1756 [51]. H, 200. 80-P1764 [51]. 81-P1790 [51]. 82-P1805. H. 213. 83-P1827. H. 218. 84-P1878. 85-P1857. 86-P1899. 87-P1930. H.232. 88-H. 243. 89-P1988. 90-P1982. 91-P2025. 92--P2039. Ha 258. 93-P2019. Ha 254. 94-P2060. Ha 265. 95-Ha 269. 96-Р2078. Снектральный класс К2 [7]. Н. 274. 97-Н. 278. 98-Р2072. Н. 272. 99-P2063. 100-P2112. 101-P2186. H, 306. 102-P2172. 103-P2185. 104-P2184. 105-P2176. 106-P2191. 107-P2210. 108-P2207.

H. -315. 109-P2209. 110-P2239. 111-P2203. H. 313. 112-P2211. Cnexтральный класс К7 [7]. Н. 316. 113-Н. 323 [50]. 114-Р2228. 115-Р2235. 116-P2246 [51]. Спектральный класс К [23]. H. 326. 117-H. 330. 118—Р2243. Н. 325. 119—Р2245. Спектральный класс К7 [7]. 120-P2240. 121—P2270. 122—H. 337. 123—P2282. Спектральный класс КЗ [7]. H_ 341. 124-H, 345. 125-P2295. 126-P2305. 127-H. 359. 128-P2304. 129-P2318 [51]. H. 356. 130-P2315. H. 355. 131-H. -352. 132-P2326. H. 360. 133-H. 368. 134-H. 370. 135-P2348. 136-H. 378. 137—Р2347. Спектральный класс К'1 [7]. H. 371. 138—Р2349. 139— P2337. H. 367. 140-H. 375. 141-P2363. 142-P2365. 143-P2368. Cnexтральный класс К41V [33]. H. 381. 144-H. 382. 145-P2372. 146-H. 388. 147-Р2378. 148-Н. 399. 149-Вспышка зарегистрирована также в B-AVYEX: $m_B = 14^{m}4$, $\Delta m_B = 0^{m}6$. 150-H. 391. 151-H. 394. 152-P2394. 153-H. 407. 154-H. 412. 155-Р2450. Спектральный класс КІ [7]. 156-P2449 [51]. На -421. 157-P2455. Спектральный класс М2 [7]. 158--Ha424. 159-Р2470, Ha 425. 160-Р2472. 161-Р2502. 162-Спекральный класс М [33]. 163—Р2538. 164—Р2532. 165—Н. 437. 166—Н. 441. 167— P2593, 168-P2572, H-443, 169-P2593, 170-P2618, 171-H, 458, 172-Звезда претерпела также фуороподобное изменение блеска [53].173-Н. 459. 174—Р2642. 175—Н. 465. 176—Р2663. Спектральнаый класс МО[33]. 177-H. 470. 178-H. 486. 179-H. 505. 180-H. 510. 181-P2961. 182-H. 531.

КАТАЛОГ ВСПЫХИВАЮЩИХ ЗВЕЗД

ПОВТОРНЫЕ ВСПЫШКИ, ЗАРЕГИСТРИРОВАННЫЕ У ВСПЫХИВАЮЩИХ ЗВЕЗД ОРИОНА

Столбцы имеют следующие обозначения:

1-номер вспыхнвающей звезды в настоящем каталоге,

2-обозначение вспыхивающей звезды,

3-обсерватория, где была зарегистрирована повторная вспышка,

4 дата регистрации повторной вспышки по UT,

5-звездная величина в минимуме блеска вспыхивающей звезды.

6-амплитуда повторной вспышки,

7-номер литературного источника.

				the second se		
1	2	3	4	5	6	7
10	T122	Т	06.01.67	18.9U	2.9U	[33]
23	A56	AB	19.01.72	17.1	2.2	[16]
25	T123	Α	15.02.66	17.8	3.4	[23]
27	T184	AB	22,12.70	17.9	2.8	[16]
34	T124	Α	23,01.66	17.2	2.1	[23]
-271		Т	04.02.67	18.7U	2.8U	[33]
		AB	11.02.83	17.4	1.0	[22]
40	T125	Т	18.01.66	17.8U	2.5U	[33]
-42	T126	Т	05.01.68	18.0U	1.3U	[33]
50	A59	AB	12,12,82	16.7	4.3	[22]
52	T260	LS	26.01.85	16.7	1.3	[30]
58	AB77	AB	05.02.81	17.1	1.5	[20]
.60	T129	Т	12.02.67	18.2U	3.2U	[33]
1.		В	18.12.79	-	5.7U	[13]
67		В	CONTRACTOR DA	17.4B	3.9B	[13]
		В		16.3V	2.2V	[13]
·67	U2	AB	11.10.78	19.3	4.2	[18]
-68	T187	В	25.11.78	18.0U	4.6U	[18]
		AB		15.8	1.7	[18]
73	T 8	Т	29.01.60	16.5V	1.5	[7]
		AB	26.11.79	17.9	1.8	[19]
		AB	27.11.79		1.8	[19]
84	T191	AB	27.12.78	17.2	1.5	[18]
85	T192	Т	16.01.77	17.0U	0.70	[34]
92	U4	Т	27.01.65	15.3V	3.0U	[7]
95	T13	AB	17.12.82	17.7	1.1	[22]
96	T193	Т	28.12.67	16.2U	0.8U	[33]
				and the second se		

Повторные вспышки	(продолжение)
-------------------	---------------

		and a second second		and the second sec	the second se	
1	2	3	4	5	6	7
98	T15	AB	01.01.70	17.0	1.1	[15]
		LS	11.01.85	17.5	1.5	[30]
100	AB43	R	17.11.80	18.3U	3.5U	[31]
		AB	24.12.82	17.2	1.3	[22]
103	T12	Т	26.02.59	16.2V	1.8	[7]
105	T194	AB	28.01.79	15.6	2.3	[18]
		В	29.01.79	17.8U	2.1U	[18]
		AB	25.11.79	15.6	0.8	[19]
106	T16	Т	03.11.56	15.0V	1.5	[7]
		Т	11.02.67	18.1U	2.5U	[33]
107	T17	Т	31.01.68	18.0U	2.0U	[33]
108	AB81	AB	28.10.81	19.1	3.3	[21]
109	T196	Α	22.12.68	16.8	1.8	[23]
117	T18	Т	10.12.55	15.3V	>2.0	[7]
120	T20	Т	20.12.65	18.4U	3.0U	[33]
124	B2	Т	05.01.65	15.0V	· 2.5U	[7]
126	AB104	AB	24.10.81	15.4	13	[21]
127	AB46	AB	06.02.81	18.3	2.0	[20]
		AB	26.09.81		3.8	[21]
131	T22	Т	09.02.69	17.8U	1.0U	[33]
132	T21	AB	03.03.81	20.0	2.9	[20]
134	T200	AB	06.12.69	16.6	0.6	1151
135	T138	Т	14.02.77	18.6U	4.0U	[34]
137	T139	AB	22.01.81	16.2	1.1	[20]
138	T24	Т	27.12.76	16.6U	1.0U	[34]
142	T205	Т	23.01.69	18.4U	2.5U	[33]
146	T177	Т	28.12.65	19.7U	3.6U	[33]
		Т	13.02.67		3.2U	[33]
		AB	03.02.83	18.2	2.7	[22]
150	T206	Α	30.01.68	16,5	0.9	[23]
		Т	27.02.68	15.4U	0.7U	[33]
151	A9	AB	08.01.81	17.1	0.8	[20]
154	T178	Т	03.01.68	18.5U	2.3U	[33]
161	T207	В	07.11.77	17.6U	2.111	[27]
		AB	29.01.81	17.7	2.6	1201
165	T141	Т	30,12.67	17.6U	1.21	[39]
177	T31	B	04.11.80	17.3U	4 011	1141
1	15	B		16 7B	2 4B	[14]
100 10	- ****				D.10	11-21

КАТАЛОГ ВСПЫХИВАЮЩИХ ЗВЕЗД

	-			1 Іовторные	вспышки (пре	одолжение)
1	2	3	4	1 5	6	7
177	T31	В	04.11.80	15.2V	1.6V	[14]
		R	02.02.81	18.0U	3.3U	[32]
178	B25	AB	23.02.82	16.3	1.4	[21]
189	T32	Т	29.01.60	15.3V	>1.0	[7]
		AB	09.01.81	17.0	2.3	[20]
190	T37	Т	17.02.66	18.5U	1.8U	[33]
		AB	29.01.82	18.2	1.9	[21]
205	T146	Т	23.12.65	14.7U	2.0U	[33]
211	T215	Т	03.12.68	18.5U	3.2 U	[33]
212	AB107	AB	29.10.81	16.4	1.1	[21]
215	T40	AB	12.02.82	16.7	1.8	[21]
217	T149	Т	26.01.65	16.8V	1.5U	[7]
		AB	09.02.83	18.0	1.4	[22]
219	T219	Т	01.02.68	16.8U	0.8U	[33]
		Т	14.02.77		2.0U	[34]
222	T218	AB	11.01.72	16.6	2.7	[16]
226	T216	T	14.02.67	16.CU	2.5U	[33]
228	T46	AB	06.01.70	17.9	0.9	[15]
246	T152	Т	22.12.65	18.5U	2.5U	[33]
247	T154	AB	19.11.79	16.0	1.3	[19]
.t.		AB	04.10.81	• 10	1.2	[21]
	1.4	AB	30.10.81	**	2.6	[21]
		AB	24.02.82		1.4	[21]
248	T153	Т	26.01.65	14.2V	>5.0U	[7]
		AB	22.02.82	16.9	3.8	[21]
252	T223	Т	19.01.66	17.6U	2.(U	[33]
		AB	26.09.81	16.1	2.2	[21];
270	A17	AB	30.12.70	17.7	1.3	[16]
271	AB49	AB	29.10.79	17.0	1.1	[19]
275	T57	AB ·	08.01.81	17.3	1.4	[20]
277	T60	Т	22.12.65	18.6U	2.6U	[33]
289	T228	AB	17.11.79	15.2	2.5	[19]
290	T229	Т	09.01.77	17.5U	1.7U	[34]
297	B11	В	26.11.79	15.5U	1.7U	[13]
		В		15.0B	0.8B	[13]
301	T68	A	08.01.64	16.8	1.7	[23]
307	T66	Т	02,02,60	. 14.3V	1.0	[7]
		Т	15.02.67	17.0U	0.7U	[33]

				Повторные	вспышки (пр	одолжение)
1	2	3	4	5	6	7
312	A40	А	01.02.68	17.8	2.4	[23]
315	A24	Т	13.02.69	14.8U	0.8U	1331
		AB	24.02.82	16.5	1.6	1211
317	T70	Т	05.12.59	14.1V	0.7	[7]
		Т	24.12.76	16.7U	1.0U	[34]
318	T71	Α	22.12.66	16.5	· 0.7	[23]
323	T74	Т	30.01.65	15.8V	2.00	[7]
327	T76	Т	18.12.54	15.5V	0.5	[7]
328	T78	Т	22.12.59	18.3V	>1.0	[7]
		Т	29.01.60		>2.0	[7]
		Т	02.02.60		>1.0	[7]
		Т	22.11.62		>1.0U	. [7]
		T _.	18.12.63		>1.0U	[7]
		Т	08.01.65	-	>2.0U	[7]
.337	T83	U	(8.01.65	16.6B	1.6B	[35]
		Т	16.01.66	17.4U	1.0U	[33]
		A	08.12.67	16.6	1.4	[23]
		Т	23.02.68	17.4U	-2.3U	[33]
		AB	24.02.81	16.0	1.0	[20]
		AB	27.01.82		1.0	. [21]
345	T85	Т	22.12.59	14.4 V	2.5	[7]
		Т	09.01.65		1.5U	[7]
.346	T88	Т	19.12.55	15.7 V	2.0	[7]
		Т	21.12.63		1.5U	[7]
		Т	15.01.66	18.4U	3.0U	[33]
.347	T86	Т	31.12.64	13.7V	2.0U	[7]
.350	T82	Т	26.01.65	15.3V	1.0U	[7]
355	T231	В	, 07.12.80	15.2U	1.0U .	[14]
		В		14.7B	1.1B	[14]
		B		13.6V	1.4V	[14] ·
		В	26.11.81	15.2U	3.3U	[14]
1.1		В		14.7B	1.9B	[14]
.363	T93	Т	07.01.65	15.0V	2.0U	[7]
366	T92	Т	07.01.65	15. 3V	>3.0U	[7]
		Т	31.01.68	18.3U	2.2U	[33]
367	AB102	AB	20.03.84	19.3	4.1	[22]
371	AB17	AB	26.10.81	16.9	1.4	[21]
373	T94	Т	18.12.63	17. IV	>1.5U	[7]

КАТАЛОГ ВСПЫХИВАЮЩИХ ЭВЕЗД

1	2	3	4	5	6	7
379	T236	B	08.03.75	18.7U	3.5U	[54]
		B		17.5B	2.3B	[54]
		В		16.4V	1.2V	[54]
380	T97	Т	03.01.60	14.8V	2.7	[7]
		Т	27.01.60		1.2	[7]
393	T100	Т	21.12.63	- 15.5V	>3.0U	[7]
		Т	27.12.64		0.5U	[7]
		AB	24.02.82	17.9	1.7	[21]
394	AB101	AB	30.10.81	16.2	1.2	[21]
396	T101	AB	29.12.70	16.7	1.9	[16]
397	T102	Т	14.02.66	17.3U	1.0U	[33]
401	T104	Т	31.01.68	16.5U	1.5U	[33]
405	U11	А	23.10.68	18.0	2.8	[23]
		AB	16.01.80	19.1	3.1	[19]
410	A34	Т	20.02.68	18.6U	2.6U	[33]
418	AB28	AB	22.12.79	17.2V	2.7V	[13]
425	T111	ប	18.12.63	16.8B	1.2U	[23]
426	T246	Т	22.12.76	17.5U	0.7U	[34]
431	AB62	AB	28.10.81	18.7	2.5	[21]
434	B22	AB	12.12.82	14.6	1.2	[22]
442	T116	Т	27.12.76	18.20	1.7U	[34]
443	T247	Т	28.12.76	15.9U	2.2U	[34]
456	T171	Т	02.01.68	18.5U	2.CU	[33]
459	T118	Т	05.01.65	14.4V	3.5U	[7]
462	T173	R	17.11.80	17.4U	2.4U	[31]
		AB	09,02,83	16.5	1.2	[22]
484	B3	Т	28,02.68	16.0U	1.0U	[33]
	· · · ·	А	28.10.68	16.3	1.3	[23]
		AB	17.11.79		1.1	[19]
486	T176	Т	04.01.68	16.4U	0.6U	[33]
		В	29.10.70	15.8	1.1	[28]
		T	28.12.76	16.4U	0.9U	[34]
		Т	10.01.77		2.6U	[34]
		Т	11.01.77	-	0.8U	[34]

Повторные вспышки (продолжение)

АСТРОФИЗИКА

TOM 34

ФЕВРАЛЬ, 1991

ВЫПУСК 1

УДК: 52 —64(063)

ХРОНИКА

СИМПОЗИУМ ПО ПРОБЛЕМАМ ТЕОРИИ ПЕРЕНОСА ИЗЛУЧЕНИЯ

С 22 по 24 октября 1990 г. в Ленинграде состоялся симпозиум, посвященный столетию уравнения переноса излучения в интегральной форме, полученного известным ученым-физиком О. Д. Хвольсоном, профессором Петербургского—Ленинградского университета. В работе симпозиума приняли участие ученые Ленинградского университета, Крымской астрофизической обсерватории, Института прикладной математики АН СССР, Главной астрономической обсерватории АН УССР, Бюраканской астрофизической обсерватории, Института космических исследований АН СССР, Института астрофизики и физики атмосферы АН Эстонии и ряда других научных учреждений страны. В симпозиуме активно участвовал голландский астрофизик Х.К. ван де Хюлст. Заседания симпозиума проходили на физическом факультете Ленинградского университета в Петродворце, в Пулковской обсерватории и в главном здании университета на Васильевском острове.

Симпозиум открылся докладом В. Я. Френкеля (Физико-технический институт им. А. Ф. Иоффе) о жизни и деятельности О. Д. Хвольсона. В докладе было сказано, что Орест Даниилович Хвольсон (1852-гимназии поступил на физико-математический 1934) после окончания университета, избрав своей специальностью факультет Петербургского математическую физику, и закончил его в 1873 г. с золотой медалью. В 1876 г. он приступил к преподавательской деятельности в университете и продолжал ее непрерывно в течение 53 лет, читая курс общей физики и многочисленные специальные курсы. Главный труд его жизни-создание фундаментального шеститомного курса общей физики, по которому студенты учились в течение нескольких десятилетий. Этот учебник приобрел международную известность, был переведен на немецкий, французский и испанский языки. О. Д. Хвольсон получил ценные научные результаты в различных областях физики и геофизики: в теории электромагнитных волн, атомной физике, оптике, актинометрии, метеорологии и др. Он сочетал в себе способности физика-теоретика и экспериментатора, и его научная работа способствовала преодолению существовавшего в деятельности русских физиков XIX века разрыва между теорией и экспериментом. Научные труды О. Д. Хвольсона получили заслуженное признание, и в 1895 г. он был избран членом-корреспондентом Академии наук, а в 1920 г.—ее почетным членом.

Далее с докладом о становлении теории переноса излучения выступил В. В. Иванов (ЛГУ). Он рассказал о работе О. Д. Хвольсона «Основы математической теории внутренней диффузии света», опубликованной в 1889 г. в «Известиях Петербургской Академии наук». В ней О. Д. Хвольсону удалось свести решение задачи о рассеянии света в молочных стеклах к интегральному уравнению, известному в настоящее время как основное уравнение задачи об изотропном монохроматическом рассеянии в плоском слое конечной оптической толщины. Им было проведено также исследование асимптотического поведения решения этого уравнения в глубоких слоях среды. Однако тогда эта работа значительно опередила свое время и прошла незамеченной. Не имела продолжения и статья немецкого физика Э. Ломмеля, получившего это же интегральнос уравнение несколько позднее и независимо от О. Д. Хвольсона. Интегральное уравнение переноса стало широко использоваться только в начале XX века в связи с работами К. Шварцшильда и Э. Милна, посвященными решению астрофизической задачи о лучистом равновесии солнечной атмосферы. Дальнейшее развитие теории переноса было связано в первую очередь с исследованиями В. А. Амбарцумяна и С. Чандрасекара, которые ввели в теорию метод сложения слоев и принципы инвариантности.

Затем В. В. Соболев (ЛГУ) рассказал о первых своих работах в области теории переноса излучения, о работах астрофизиков-теоретиков Ленинградского университета в втой области, об их научных контактах с учеными других учреждений. Была подчеркнута существенная связь теории с конкретными астрофизическими задачами. Например, решение задачи о световом давлении в оболочках горячих звезд привело к возникновению двух новых направлений теории переноса—в неподвижных средах с перераспределением по частоте и в движущихся с большим градиентом скорости средах.

В. В. Соболев сформулировал проблемы, стоящие в настоящее время перед теорией переноса: 1) Применения разработанной теории к решению конкретных научных задач. Возможно, что при таких применениях почвятся новые направления в теории переноса. 2) Решение обратных астрофизических задач, т. е. определение оптических свойств среды при известных интенсивностях излучения. 3) Разумное соотношение между работой по аналитическому решению уравнений и вычислениями на ЭВМ. К сожалению, в настоящее время задачи ставятся на ЭВМ без предварительного всестороннего аналитического рассмотрения. 4) Разработка методов решения важных для астрофизики нелинейных задач, возникаю-

ХРОНИКА

щих тогда, когда оптические свойства среды не заданы, а зависят от поля ивлучения. Примером может служить задача о переносе излучения черсэ реальную атмосферу звезды (т. е. с многоуровенными атомами). 5) Решение нелинейных нестационарных задач, появляющихся, например, при изучении вспыхивающих звезд.

На заседаниях симпознума были заслушаны обзорные доклады, освещающие различные направления развитня теории переноса излучения. Основное внимание в этих докладах уделялось изложению результатов, полученных представителями школы теоретической астрофизики в Ленииградском университете.

В докладе Д. И. Нагирнера (ЛГУ) говорилось о развитии методов теории переноса, основанных на использовании интегральных уравнений. В частности, он подробно остановился на разработанных В. В. Соболевым резольвентном методе и методе линейных интегральных уравнений для интенсивности выходящего из среды излучения.

Многие важные результаты теории переноса были получены не только путем решения уравнений, но и эвристическими методами, основанными на использовании определенных физических соображений. Эвристическим методам был посвящен доклад И. Н. Минина (ЛГУ), который рассказал о принципе инвариантности и о вероятностном методе, использование которых существенно обогатило теорию переноса.

Эначительным шагом в разработке теории переноса, позволившим успешно применять ее при изучении планетных атмосфер и пылевых туманностей, было обобщение ее на случай анизотропного рассеяния. Обзор работ по развитию такой теории был дан в докладе Э. Г. Яновицкого (ГАО АН УССР), осветившего также вопрос о переносе излучения в неоднородных средах.

А. К. Колесов (ЛГУ) в своем докладе рассказал о результатах точной и асимптотической теории переноса излучения в средах со сферической симметрией и о применениях этой теории к исследованию сферических пылевых туманностсй, околозвездных оболочек, звездных атмосфер и других астрофизических объектов.

С обзором теории переноса поляризованного излучения при рэлеевском рассеянии выступил В. М. Лоскутов (ЛГУ), отметивший важные результаты последних лет.

В основе современной теории звездных спектров лежит теория переноса излучения в спектральных линиях с учетом перераспределения его по частоте. Историю развития этой теории осветил В. В. Иванов (ЛГУ). Он отметил также, что в последние годы началось исследование резонансной поляризации, возникающей при многократных рассеяниях в частотах солнечных спектральных линий. Это открывает новое направление в теории перекоса. Проблемы теории резонансного рассеяния в расширяющихся средах были рассмотрены в докладе С. И. Грачева (ЛГУ). Основное внимание было уделено приближению Соболева и его обобщениям, а также асимптотической теории для линейно расширяющихся сред.

В современной астрофизике существенное место занимает изучение нестационарных объектов различных типов (вспыхивающих, новых и сверхновых звезд, активных ядер галактик и др.), в связи с чем актуальной является разработка теории нестационарного поля излучения. Обзору методов этой теории и результатов применения ее к различным астрофизическим объектам был посвящен доклад В. П. Гринина (КрАО АН СССР).

Кроме обзорных докладов, на симпозиуме состоялись также выступления с изложением оригинальных результатов.

Профессор Х. К. ван де Хюлст (Лейденский университет) рассказал о проводимых им исследованиях свечения межэвездных пылевых сферических облаков при различных условиях освещения.

Вопросам теории распространения поляризованного излучения были посвящены сообщения Н. В. Коновалова (ИПМ АН СССР) «Корректность поляризационной матрицы», М. И. Мищенко (ГАО АН УССР) «Многократное рассеяние поляризованного света хаотически ориентированными несферическими частицами» и Т. Ф. Вийка (ИАФА АН Эстонии) «О молекулярном рассеянии».

Н. Б. Енгибарян (Бюраканская обсерватория) предложил метод расчета полей излучения, основанный на использовании нелинейных и линейных интегральных уравнений. Н. Н. Роговцов (Белорусский политехнический институт) сообщил о результатах исследования асимптотического поведения функций Грина и интегральных характеристик полей излучения. М. А. Лившиц (ИЗМИРАН) рассмотрел задачу совместног решения уравнения переноса излучения и уравнений гидродинамики. Выступление Т. А. Сушкевич (ИПМ АН СССР) «Метод пространственночастотных характеристик и функции влияния в теории переноса» был: посвящено приложениям к решению геофизических задач.

Докладывались также работы, относящиеся к различным астрофизи ческим применениям теории. Таковы были сообщения Н. Н. Фомина (ГАО АН УССР) «Факторы отражения и пропускания света планетной атмосферой при почти консервативном рассеянии», Л. Г. Титарчука (ИКИ АН СССР) «Теория образования спектров барстеров», Н. Н. Чугая (Астросовет АН СССР) «Задача нестационарной теории переноса» (о продолжительности высвечивания оболочки сверхновой эвезды).

Состоялось обсуждение заслушанных докладов и сообщений, были намечены перспективы дальнейших исследований.

А. К. КОЛЕСОВ

правила для авторов

1. Статьи, поступающие в редакцию для напечатания в журнале, должны иметь направление от учреждения, в котором выполнена работа. Автор должен указать в конце статьи название учреждения.

Рукопись статьи должна быть подписана всеми авторами.

2. Рукописи статей (и рисунки) присылаются в двух экземплярах. Они должны быть напечатаны на одной стороне стандартного листа через 2 интервала. Первая страница должна содержать название статьи, инициалы и фамилию автора и аннотацию на русском языке. На второй странице—название статьи, инициалы, фамилия автора и текст аннотации на английском языке, который должен полностью соответствовать русскому. В аннотации должны быть изложены главные результаты работы, без ссылок на литературу. Максимальный объем аннотации—5% основного текста. Таблицы, список литературы и подписи к рисункам печатаются на отдельных листах. Расположение таблиц и рисунков отмечается на полях основного текста. Аннотации, основной текст, список литературы, таблицы и подписи к рисункам должны иметь одну общую нумерацию страниц. Их суммарный объем не должен превышать 16 мащинописных страниц. Объем краткого сообщения—не более 4 стр.

3. Число иллюстраций статьи не должно превышать 6, а кратких сообщений—2. Рисунки должны быть выполнены предельно ясно, не допускается загромождение их надписями. Необходимые объяснения могут быть даны в подписях. Все рисунки представляются отдельно от рукописи и не должны приклеиваться к оригиналу.

4. Таблицы должны иметь номера и название и быть понятны без привлечения текста статьи.

5. Рукописные вставки в тексте не допускаются. Формулы должны быть вписаны четко. Необходимо разграничивать индексы и показатели степени. Надстрочные знаки нужно отчеркивать дугой ∪, подстрочные—дугой ∩. Греческие буквы должны подчеркиваться красным карандашом, готические—синим.

6. Следует делать ясное различие между прописными и строчными буквами в формулах. В тех случаях, когда прописные и строчные буквы одинаковы по начертанию и отличаются только своим размером (V и v, U и u, W и w, O и o, K и k, S и s, C и c, P и p), необходимо прописные подчеркивать двумя черточками снизу, а строчные помечать двумя черточками сверху (S и s). Необходимо делать различие между буквами O, o и O (нулем), для чего буквы подчеркивать двумя черточками O и O, a O (нуль) оставлять без подчеркивания. Необходимо также делать различие между буквами I и J, для чего в рукописи I следует писать как римскую единицу, а букву «джей» писать J. Особенно аккуратно следует вписывать схожие по написанию l и e, h и n, q и g.

7. Цитируемая литература дается порядковым номером в строчку, в прямых скобках (например, [5]) и соответствует номеру в списке литературы. Цитируемая литература должна быть оформлена в следующем порядке:

а) для журнальных статей указываются инициалы и фамилии авторов (в оригинальной транскрипции), название журнала в принятом сокращении, номер тома (подчеркнуть снизу), страница, год издания;

б) для книг надо указывать инициалы и фамилию автора, место и год издания (для книг иностранных авторов указывать данные русского перевода, если таковой имеется);

в) при этом следует руководствоваться списком сокращенных названий журналов ВИНИТИ «Астрономия» (в № 1 каждого тома).

8. В случае представления двух или более статей одновременно необходимо указать желательный порядок их помещения.

9. Редакция посылает автору одну корректуру. Авторская правка в корректурах журнала категорически запрещается. Корректура должна быть выслана обратно в редакцию в течение суток с момента ее получения.

10. К рукописи должны быть приложены адрес, фамилия, имя и отчество автора.

Статьи, оформленные с нарушением вышеперечисленных правил, возвращаются авторам без рассмотрения.

Настоящие правила печатаются в 1 выпуске каждого тома.

Авторам предоставляются 30 оттисков их статей бесплатно.

Сдано в набор 25.03.91 г Подписано к печати 30.10.91 г. Бумага № 1, 70×1100¹/16. Высокая печать. Усл. печ. лист. 14,14. Печ. лист. 9,25+13 вкл. Учет-изд. 13,09. Тираж 800. Заказ. 86. Изд. 7935. Цена 3 р.

Адрес редакции: 375019, Ереван, пр. Маршала Баграмяна, 24, I эт., 14 к., т. 27-34-52. Типография Издательства АН Армении, Ереван-19, пр. Маршала Баграмяна, 24.

CONTENTS

Spectral investigations of the second Byurakan sky survey objects. Stellar objects. IV	
J. A. Stepanian, V. A. Lipovetsky, V. H. Ghavushian, L. K. Erastova, A. I. Shapovalova	5
The fi st Byurakan spectral sky survey. Blue Stellar objects. IV. $Zone+41^{\circ} < < 3 < +45^{\circ}$	
H. V. Abrahamian, V. A. Lipovetsky, A. M. Mickaelian, J. A. Stepanian	13
On physical nature of bursters	
G. S. Sahakian, G. P. Alojants, A. V. Sarkissian Ouesers Seviert 1 (S1) type galaxies and observational selection	21
R. A. Vordanian	41
The determination of SN 1987 A envelope parameters through the profiles HI	
and Call lines.	51
Radial systems of dark globules. II. Connection of the globules with infrared	
sources A. L. Gyulbadaghian, V. A. Hakopian	61
Hydrogen emission in the direction of h and X Persei	
L. V. Mirzoyan, M. Marselan, A. T. Garibjanian, J. Boulesteix,	
A. L. Mirzoyan, Y. M. Georgelin	67
Temperature structure of winds in early-type stars L. V. Tamboutseva	73
Gravitational radiation connected with anticollapse and supernovae explosions	
A. P. Trofimenko, V. S. Gurin	83
Maximum likelihood image restoration. V. Uncoherent fluxes	
V. Yu. Terebizh, O. K. Cherbunina, Yu. G. Cherbunin, V. V. Biryakov	91
Notes	
BN Ori: is it the beginning of a new period of activity? G. U. Kovalchuck	103
A catalog of flare stars in Orion nebula region R. Sh. Natsultshuilt	107