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1. Introduction. Some uniform proof systems E on the base of determi-
native disjunctive normal forms and some elimination rules have been formerly
constructed for propositional two-valued Classical, Intuitionistic, Minimal
Logics [1, 2] and some Many-valued Logics [3]. These systems are dual to the
resolution systems, but the preference of the mentioned systems is in the
possibility of easily receiving the lower exponential bounds for proof comp-
lexities of many tautology classes. For the construction of systems type E in any
logic, it is necessary to define:

o the concept of literals, through which the determinative conjuncts will

be formed,

o the opposite literals, through which the inference rules will be defined.

In this paper a system of type E is defined for propositional Modal Logic.
If previously Modal Logic was mainly used for linguistic structures, parti-
cularly, their truth, possibility, necessity, temporal judgments, as well as for the
study of moral and ethical issues, then recently it has begun to be actively
applied in various fields of computer science. Particularly, for the selection of
program execution directions, formalization or for representing the dynamic
properties of transitioning from one situation to another.

2. Preliminaries. Many systems for representing the propositional modal
logic are known. Except the logical connectives of unimodal logic these systems
use two additional logical connectives: ¢ - 'is possible' and O - 'is necessary', on
the base of which are introduced = - ‘strong implication’ and < - ‘strong
equivalence’ as well.

Our result is based on the most popular system S4. First, let's give some
definitions.
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The logical connectives in S4 are -, A, and 9.
The definition of a formula is as follows:

any logical variable is a formula,
if P and Q are formulas, then (=P), (¢ P) and (P A Q) are formulas,
there are no other formulas.

Other logical connectives are defined in the following ways:

o g &~ w DB

P v Q is defined as = (=P A =Q).

P — Q is defined as = (P A =Q).

P & Qisdefinedas (P = Q) A (Q — P).
P = Qisdefinedas—= (P A=Q).

P o Qisdefinedas (P = Q) A (Q = P).

OP is defined as = —P.

The following function is also introduced for the future use:

(0 P)? as (0 P) © o. It is not difficult to see that (¢ P)!is (¢ P) and
(0 P)0is=(0 P)

The axioms of S4 are:

1
2
3
4.
)
6

pPAg=Dp,

PAg=qAD,

[pA@) AT]=[pA(qAT)]

p= (@AD),

[(p=pAr@=>n]=>@=>r1),
p =0 p.

The inference rules are:

1.

2.

4.

Substitution. A derived formula remains derivable if any logical va-
riable in it is replaced everywhere in the formula.

Union.

P, Q

PAQ

Separation.

P, P=>Q

Q

Replacement. If P < Q is derived, then the derived formula remains
derivable if some entries of Q in it are replaced by the formula P.

Let us describe the method of solvability of the S4 system developed by
Anderson [4].

1. First, the formula is brought to the normal form, in which

o there are no logical connectives other than —, A and ¢,

no subformula has the form of =—a or —(a A B).
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It is not difficult to see that it can be done on the base of some formulas

derived in the system S4 (see [4,5]).
2. To all constituents-logical variables and subformulas of the form
a for any variable a — we assign arbitrary values from the set {0,1}
in all possible ways.
3. The following three types of invalids are removed from the sets of
assigned values:
e since the formula p —¢ p can be proved in the system S4, then the set
in which p is assigned to 1 and p is assigned to 0 is invalid,
e since in the system S4 the formula P — (0 Q,V ...V0 Q,,) can be
derived from the formula P —» (Q; V ...V Q,,) and the formula P —¢
Q can be derived from the formula P -0 Q, then the set in which every
Q; isassignedto O and P is assigned to 1 is invalid,
e since in the system S4 the formula oP can be derived from the formula
P and the formula — ¢ P can be derived from the formula —P, then the
set in which =P is assigned to 1 and ¢ P is assigned to 1 is invalid.

It is known that a formula can be proved in a system S4 (is a modal
tautology) if and only if, for all valid sets of values assigned to all its
constituents, the formula takes the value 1.

3. Main Results. Now we can define the concept of determinative conjunct
and determinative disjunctive normal form for modal logic.

We call a replacement-identities each of the following trivial identities for
a propositional modal formula g
0OAg =0, gno=o, 1Ag =g, gnhnl=g, ghg =g,
-0 =1, -1=0, -1g =49, 1=1, g=<)g,
and replacement relation 0 < 1, which can be presented as two variants of
identities: 0 0 =1 or ¢ 0 = 0.

Application of a replacement-identities to some word consists in replacing
some its subwords, having the form of the left-hand side of one of the above
identities, by the corresponding right-hand side.

Let ¢ be a formula of a modal propositional logic, A = {a4, @3, ..., @, } be
the set of all constituents of that formula and A" = {a; , a;,, ..., a; } (where
1 < m < n) be the subset of A.

Definition 2.3. If 0 = {0y, 05,...,0,,} € E™ is valid set of values (see 3.1)
for constituents «; ,a;,, ..., a; of formula ¢, then modal conjunct K’ =

{a]*,a?,...,a;™} will be called a ¢ —1-determinative (¢—0-determinative) if

iy ? iy !

assigning g; (1 <j <m) to each a;, and successively using replacement
identities (one or both variants of replacement relation) we obtain the value of ¢
(1 or 0) independently of the values of the remaining constituents.

¢—1-determinative conjunct and ¢—0-determinative conjunct are also
called ¢-determinative or determinative for ¢.

DNF D ={K;,K;,...,K;} is called a determinative disjunctive normal
form (dDNF) for ¢ if ¢ and D are semantically equivalent and every conjunct
K; (1 < i <r)is 1-determinative for ¢.
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Definition of the system Eoq:

The axioms of Eq are not fixed, but for any formula ¢, each conjunct of
its some dDNF can be considered as an axiom.

Elimination rule (e-rule) represents the following rules:

K,Up K,U-p
K1UK,
K1U0p KzU—| p

K,UK, !
KiUp K,U-0p
K1 UK,

KiU-p K,Udp
K1UK, !
where K; and K; are conjuncts and p is a variable.

The proof in En is a finite sequence of conjuncts such that every conjunct
in the sequence is one of the axioms of E,.q or is inferred from earlier
conjuncts in the sequence by one of the e-rules.

DNF D = {K;,K5,...,K;} is called tautology if using the e-rules, one can
prove the empty conjunct (@) from the axioms {K;, K5, ..., K;}. It is not difficult
to prove that system E o is full and sound.

Taking into consideration that every classical tautology is modal tautology
and using the results of [1] it is not difficult to prove the following.

Theorem. For sufficiently large n there are sequences of tautologies such,
that

1) size of them is n by order,

2) number of lines in any E .4 -proofs of them is at least 2" by order.
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H. A. Tamazyan

Some New Proof System for Propositional Modal Logic

A method of constructing some proof system for propositional modal logic is
described. Earlier for unmodal logics introduced notions of determinative conjunct and
determinative disjunctive normal, as well as the elimination rule, are generalized for
propositional modal logic and on the base of them, the proof system E g4 is constructed.
For some sequences of tautologies, lower exponential bounds for the number of proof
lines in the described system are easily obtained.
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2.U. Prudwuqui

Uunypughtt dnnu) npudupwuimipyui
wpwdnidubph inp hwdwljupg

Ljwpwugpdws E upunwsdwt npnywjh hwdwlupgh jurnigdw tnubtwlp wuny-
pughtt Unpu npudwpwinipjut hwdwp: Cinhwbpugdws b twpiljhtinid ny Unnuy
npudwpwinipiniitiph hwdwp thpdnisgws npnohs Yntyniiljnnh b npnohs nhqmnibly-
wnhy tnpdwy dlh, hswytu twb pugundwt Jubnup, qunuthwpubpp, b gputg hhdwh
Jpu Jupnigqué b Emd wpunubdwt hwdwlwupgp: Lnyhwpwinipnibibph npnowlh
hwonppuljwiimpinitutbph hwdwp htownnpbt vnwugdws b gnigswjhtt jupgh uwnnpht
quwhwnwlub tjupugpjuws hwdwlupgnid wpunwsdut Wwuqugnyt puptph pw-
wlh hwdwp:

A. A. Tamazan

HogBasi cucreMa BbIBOJOB 1JIS1 NPONO3MLIMOHAJIBHONH MOJAIbHOM JIOTUKH

OmnucaH MeToJ MOCTPOSHHUS HEKOTOPOH NMPOIMO3ULMOHATIBHOM CHCTEMBI BBIBOJIOB
JUIl MOJIaJbHOM JIOTMKHU. BBeneHHbIE paHee A HEMOJAIBHBIX JIOTHK IOHSATHS OIpe-
JICTSIFOLIET0 KOHBIOHKTa M ONpENeNsIoNieil AN3bIOHKTUBHON HOpMalbHOW (GOpMBI, a
TaKXKe MpaBWIa NTUMHUHALUN 0000IIEHB! I IPOMO3UIIMOHAIBHOW MOIANbHOM JIOTHKH,
U Ha MX OCHOBE IOCTpoeHa chUCTeMa Epgg. I HEKOTOPBIX MOCIENOBATENBHOCTEN
TaBTOJIOTHH JIETKO TOJy4€Hbl HHXKHHE SKCIIOHEHIUAIbHBIE OLEHKH MHHHUMAIIbHOTO
KOJINYECTBA IIAar0B BHIBOJOB B OMHCHIBAEMON CHCTEME.
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