<U3UUSUՆԻ <UՆՐԱՊԵՏՈԻԹՅԱՆ ԳԻՏՈԻԹՅՈԻՆՆԵՐԻ</td> U2QU3ԻՆ U4UԴԵՄԻU НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF ARMENIA

 Հայաստանի քիմիական հանդես

 Химический журнал Армении
 77, № 1, 2024
 Chemical Journal of Armenia

DOI: 10.54503/0515-9628-2024.77.1-34

ОСОБЕННОСТИ ПОЛУЧЕНИЯ ВЫСОКОГЛИНОЗЕМИСТОГО ЦЕМЕНТА, СОДЕРЖАЩЕГО ОКСИФТОРИДНЫЕ ДОБАВКИ ТРЕХВАЛЕНТНЫХ ЭЛЕМЕНТОВ

Б.В. МОВСИСЯН

Институт общей и неорганической химии им. М.Г. Манвеляна НАН РААрмения, 0051, Ереван, ул. Аргутяна, 2 пер., д.10 E-mail: *bagrat.movsisyan@polytechnic.am*

Поступило 21.02.2024

В данной работе приведены результаты исследования фазообразования при введении от 3,0 до 6,0 *масс*% Fe₂O₃ и AIF₃ в систему CaO-Al₂O₃-SiO₂, включающей поля первичной кристаллизации соединений C₁₂A₇, CA и ограниченной постоянным содержанием 10 *масс*% SiO₂ и изменения температуры ликвидуса системы. Синтез производился методом плавления исходной шихты при температурах 1400-1500 °C при изотермической выдержке один час. Методами ДТА и РФА исследованы закономерности образования кристаллических фаз по разрезу с постоянным содержанием Al₂O₃ равным 50 *масс*% и уточнены поля первичной кристаллизации сосуществующих фаз при введении легкоплавких добавок. Выявлено, что основными кристаллическими фазами являются C₁₂A₇, CA, а отсутствие в продуктах кристаллизации расплавов алюмоферритных фаз связано с изоморфным замещением Al³⁺ на Fe³⁺ в кальциевых алюминатах. Выявлено, что дополнительное введение Fe₂O₃ и AIF₃ в исходную систему приводит к снижению температуры ликвидуса, способствуя низкотемпературному формированию алюминатов. Показано, что одновременное выделение двух алюминатных фаз, различающихся кристаллической структурой, способствует получению цемента с высокой скоростью схватывания.

Библ. ссылок 11, рис. 3

Ключевые слова: высокоглиноземистый цемент, алюминаты кальция, диаграмма состояния, плавление, кристаллизация, термический и фазовый анализ.

В области неорганического материаловедения свое достойное место занимают цементы, используемые как надежные и устойчивые вяжущие в строительных материалах. Среди вяжущих материалов свое особое место занимает глиноземистый цемент, характеризующийся высокой скоростью тепловыделения и твердения, высокой прочностью. Быстротвердеющий цемент, в составе которого превалируют низкоосновные алюминаты кальция, получают методом плавления или спекания смеси, с последующим дроблением и тонким помолом. Указанный цемент применяется при ускоренных строительных работах, при низких температурах, что способствует быстрому восстановлению сооружений [1, 2]. Глиноземистый цемент отличается высокой устойчивостью к органическим кислотам и практически не коррозирует в морской воде. Его можно получить спеканием сырьевой смеси в печах разной конструкции и способом плавления при температурах 1400-1600 °C. Химический состав и содержание основных компонентов, В зависимости от используемого сырья и свойства цементов, изменяется относительно в узких пределах: *масс%* Al₂O₃ 30-35; CaO 35-45; Fe₂O₃ 5-15; SiO₂ 5-10 [3].

Известно, что в производственных условиях клинкерные фазы являются многокомпонентными, содержащими как основные, так и примесные соединения. Минералогический, и особенно, химический состав сырьевых материалов является основным параметром, определяющим температурно-временные условия протекания спекания, плавления и клинкерообразования, особенности химических процессов гидратации и схватывания цемента. В природных материалах, используемых при получении клинкера, присутствуют целый ряд элементов, которые не являются главными для получения основных кристаллических фаз цемента, но снижают температуру образования расплава за счет образования низкотемпературных эвтектических составов и появления жидкой фазы. Понижение температуры появления жидкой фазы способствует быстрому протеканию диффузионных процессов и образованию не только основных фаз клинкера, но и расширению температурного интервала жидко-твёрдых реакций [3].

Важное значение для химии глиноземистого и высокоглиноземистого цемента приобрели исследования фазовых равновесий систем CaO-Al₂O₃, CaO-Al₂O₃-Fe₂O₃, CaO-Al₂O₃-SiO₂, что позволило выявить температуры плавления и кристаллизации сосуществующих фаз, модификационные превращения, изменения соотношения кристаллической и жидкой фазами и др. Для разработки новых составов, вяжущих на основе алюминатов кальция, особое значение имеют диаграммы состояния трех- и четырехкомпонентных систем на основе CaO, Al₂O₃, Fe₂O₃ и SiO₂ образующие основные клинкерные фазы [3,4]. Для сни-

35

жения температуры образования жидкой фазы в ряде случаев вводятся дополнительные компоненты, учитывая составы исходных сырьевых материалов, снижающих также вязкость клинкерной жидкой фазы.

В двухкомпонентной системе CaO-Al₂O₃, которая является основной для синтеза глиноземистых цементов, существуют пять соединений (в скобках указаны сокращенное обозначение соединений) $3CaOAl_2O_3$ (C₃A), $12CaO_7Al_2O_3$ (C₁₂A₇), CaOAl₂O₃ (CA), CaO₂Al₂O₃ (CA₂) и CaO₆Al₂O₃ (CA₆) [5,6]. В производственных условиях клинкерные фазы являются многокомпонентными, и выявление особенностей образования клинкерных фаз при введении примесных компонентов в исходную систему, влияния на свойства клинкера является важной задачей химии и технологии вяжущих материалов. Исследование, также актуально учитывая снижение температуры синтеза и использование новых месторождений и техногенных отходов.

В работе приведены результаты исследования процессов фазообразования при введении от 3,0 до 6,0 масс% Fe₂O₃ и AlF₃ в систему CaO-Al₂O₃-SiO₂, включающую поля первичной кристаллизации соединений C₃A, C₁₂A₇, CA и ограниченную постоянным содержанием 10 *масс%* SiO₂ и изменением температуры ликвидуса системы. Исследованы закономерности процессов фазообразования по разрезу с постоянным содержанием 50 *масс%* Al₂O₃.

Методы исследования. Синтез определенных составов проводился двумя способами: твердофазовым синтезом и плавлением шихты в электрической печи Nabertherm P570 в атмосфере воздуха при температурах 1400-1500 °С корундовом тигле с продолжительностью 60 *мин*, скорость охлаждения расплава в печи составила ~20 °С*мин*⁻¹. Для синтеза клинкеров применялись химически чистые вещества (хч) СаСО₃, Al₂O₃, Fe₂O₃, AlF₃. Дифференциально-термический анализ (ДТА) проводился при нагревании порошкообразного образца в платиновом тигле на дериватографе Q-1500 (эталон-Al₂O₃), скорость нагрева – 10 °С *мин*⁻¹. Рентгенофазовый анализ синтезированных материалов проводили на дифрактометре URD 63 с использованием Си_{Ка}– излучения и никелевого фильтра, скорость регистрации составляла 2°/*мин*. Электронно- микроскопические исследования проводились на электронном микроскопе (SEM) Prisma E(Thermo Fisher Scientific).

Экспериментальная часть. На рис. 1 представлена часть системы CaO-Al₂O₃-SiO₂ и составы изученных образцов, расположенных по разрезу с постоянным содержанием 50 *масс%* Al₂O₃. Исходный состав на диаграмме CaO-Al₂O₃ расположен левее соединения C₁₂A₇ (содержание Al₂O₃ 51,47 *масс%*), область стабильности которого расположена между соединениями C₃A и CA. Поле кристаллизации трехкальциевого алюмината C₃A граничит₇ с одной стороны с полем кристаллизации

 $C_{12}A_7$, а в высококремнеземистой части_- с полем кристаллизации геленита C_2AS (2CaO·Al₂O₃·SiO₂). C_3A существует только одной кристаллической формой, структура которой строится только из AlO₄ тетраэдров. Соединение плавится инконгруэнтно при ~1540 $^{\circ}C$ с образованием CaO и расплава, гидратируется быстрее других алюминатов и практический прочностью не обладает.

Как видно из кривой ДТА (рис.2, кр.1) соединение $C_{12}A_7$ плавится конгуэнтно при температуре 1395 \mathcal{C} (рис.2 а, кр.1). $C_{12}A_7$ образует таже эвтектику с СА при содержании ~ 52,5 *масс*% Al₂O₃) [6]. Исходя из результатов рентгенофазового анализа можно предположить, что соизмеримость интенсивностей дифракционных максимумов соединений $C_{12}A_7$ и СА (рис.2.6 кр.1) связано, как правило, низким содержанием жидкой фазы и выделением смеси кристаллических фаз. Следовательно, при охлаждении расплва окончательная кристаллизация, учитывая близость сотавов $C_{12}A_7$ и этектики, заканчивается в эвтектической температуре совместным выдилением кристаллов $C_{12}A_7$ и СА.

Область стабильности соединения $C_{12}A_7$ небольшая, расположена в интервале содержания Al_2O_3 от 50,7 до 52,7%. Кристаллическая решетка строится из AlO_4 тетраэдров, ионы кальция находятся шестерной координации по кислороду. $C_{12}A_7$ образует при 1360 \mathcal{C} две эвтектики с 37

С₃А и СА, плавится конгруэнтно при 1392 \mathcal{C} , при гидратации дает высокую прочность, быстро схватывается [4-7]. В работах [8-9] отмечается, что координирующие кислородные атомы вокруг иона кальция образуют большие структурные полости, способствуя поглощению воды и ускорению гидратации алюмината. Из диаграммы состояния видно, что поля первичной кристаллизации С₁₂A₇ и C₂AS разделяет узкая пограничная кривая [6].

Алюминат кальция СА, который отличается наиболее широкой областью первичной кристаллизации в изученной части системы, является основным вяжущим компонентом в клинкере глинземистого цемента. CaAl₂O₄ плавится конгруэнтно при 1600 \mathcal{C} и кристаллизуется, образуя кристаллы призматической или неправильной формы, что придает материалу высокую активность при гидратации [8]. Структура моноалюмината кальция подобно структуре тридимита, в которой атомы кремния замещены атомами алюминия, а большие атомы кальция встраиваются в пустотах пространственного каркаса. Два крупных катиона Ca²⁺ в искаженной структуре находятся в шестерной координации, а третий катион координируется семью ионами кислорода. Направленно закристаллизованный расплав СА гидратируется медленнее, чем алюминаты с высоким содержанием CaO, образуя высокопрочный композит [7, 10].

Рис. 2. а-Термограммы сухих порошковых смесей образцов рентгенограммы синтезированных образцов, полученных охлаждением расплавов. Составы (*масс%*): 1. CaO 50, Al₂O₃ 50; 2. CaO 48, Al₂O₃ 48, SiO₂ 4,0, Fe₂O₃ 3,0; 3. CaO 46, Al₂O₃46, SiO₂ 8, Fe₂O₃ 3,0

На кривых ДТА исходных порошков ярковыраженный эндотермический эффект в интервале 886-900 °С обусловлен разложением карбоната кальция СаСО3 с собразованием оксида кальция и углекислого газа. Слабовыраженные эндотермические эффекты на кривых 2 и 3 при 1357 °С связаны с плавлением образовавшейся эвтектики между соединениями C₁₂A₇ и CA. Результаты рентгенофазового анализа второго образца, состав которого расположен в поле кристаллизации соединения СА, указывают, что в продуктах кристаллизации превалирует моноалюминат кальция, плавящийся конгруэнтно. Об этом свидетельствует также уменьшение интенсивностей дифракционных максимумов соединения С₁₂А₇. Следовательно, путь кристаллизации проходит в сторону конгруэнтной пограничной кривой, на которой при понижении температуры, одновременно выделяются соединения CA и C₁₂A₇. На рентгенограмме проявляются относительно слабые линии, относящиеся к гелениту C₂AS, который также, как и выделившиеся кальциевые алюминаты, плавится без разложения [11]. Состав № 3 образца практически попадает на конгруэнтную пограничную кривую, расположенную между полями первичной кристаллизации CA и C₂AS и, следовательно, при одновременной кристаллизации указанных соединений (CA, C₂AS) изменение состава расплава будет перемещаться в сторону понижения температуры по пограничной кривой. Как видно из рис. 2.б.3. дифракционные максимумы, относящиеся к С12А7, значительно уменьшаются, а максимумы для СА становятся более отчетливыми и интенсивными. Неизменность интенсивностей пиков C₂AS, связывается с высокой температурой плавления геленита (1500 °C) и низкой скоростью образования кристаллов.

Следовательно, путь кристаллизации расплавов, составы которых расположены в поле кристаллизации СА и дополнительно содержат от 3,0 до 6,0 *масс%* Fe₂O₃(AlF₃), при охлаждении завершаются в тройной точке, в которой замыкаются поля первичной кристаллизации $C_{12}A_7$, CA и C_2AS .

Исследования, сканирующим электронным микроскопом (рис. 3.а, б, в), текстурно-структурных особенностей образцов, полученных охлаждением высокотемпературного расплава, показали, что синтезированные материалы представлены полностью кристаллической структурой, где отсутствует стеклообразная фаза. Для текстуры образцов характерна некоторая зональность, связанная, по-видимому, с образованием градиента температуры по объему образца при охлаждении. Согласно данным микрозондового анализа кристаллическая фаза отличается высоким содержанием О, Са и Аl, в небольших количествах присутствуют Fe, Si и F. На основе РФА и микроанализа следует, что

6

a

Рис. 3. ЭМ снимки поверхностей образцова, полученных охлаждением расплава от 1500 °C со скоростью 20 °C мин⁻¹

Составы образцов: а. CaO 50, Al_2O_3 50; б. CaO 48, Al_2O_3 48, SiO_2 4,0, Fe_2O_3 3,0; в. CaO 46, Al_2O_3 46, SiO_2 8, Fe_2O_3 3,0(AlF_3)

при совместном выделении двух алюминатов ($C_{12}A_7$, CA) в поле первичной кристаллизации $C_{12}A_7$, образуется оболочка кристаллической фазы богатой оксидом кальция. При кристаллизации расплавов в поле первичной кристаллизации CA, выделяются сформированные развитые кристаллы $C_{12}A_7$, CA, C_2AS . Образцы отличаются высокой однородностью и вариации содержания основных элементов составляет 0.9-1,5 %.

Выводы. Полученные на основе методов ДТА, РФА и электронной микроскопии результаты исследования системы CaO-Al₂O₃-SiO₂, содержащей Fe₂O₃ и AlF₃, свидетельствуют об эффективном действии оксида и фторида трехвалентных элементов на снижение температуры ликвидуса системы и на скорость образования развитых кристаллов.

Выявлено, что отсутствие в продуктах кристаллизации кальциевого алюмоферрита связано полным внедрением Fe³⁺ в кристаллическую решетку CA.

ԵՌԱՎԱԼԵՆՏ ՏԱՐՐԵՐԻ ՕՔՍԻՖՏՈՐԻԴԱՑԻՆ ՀԱՎԵԼՈՒՄՆԵՐ ՊԱՐՈՒՆԱԿՈՂ ԲԱՐՁՐԱԼՅՈՒՄԻՆԱՑԻՆ ՑԵՄԵՆՏԻ ՍՏԱՑՄԱՆ ԱՌԱՆՁՆԱՀԱՏԿՈՒԹՑՈՒՆՆԵՐԸ

Բ.Վ. ՄՈՎՍԻՍՅԱՆ

 $S_{d(m)}$ աշխատանքում ներկայացված են CaO-Al₂O₃-SiO₂ համակարգ 3.0-ից մինչև 6,0 զանգ% Fe₂O₃-ի և AlF₃-ի ներմուծման դեպքում ֆազագոլացման ուսումնասիրության արդյունքները, որը ներառում է C₃A, C₁₂A7, CA միացույան հարդան հարդան հարդեն հ զանգ.% հաստատուն պարունակությամբ և համակարգի լիքվիդուսի ջերմաստիճանի փոփոխությունները։ Սինթեզն իրականացվել է սկզբնական բովախառնուրդի հայմամբ 1400-1500 ℃ մեկ ժամ հաստատուն ջերմաստիճանային պայմաններում։ ԴԶԱ և ՌՖԱ մեթոդներով ուսումնասիրվել են 50 զանգ% Al₂O₃ հաստատուն պարունակությամբ կտրվածքով բյուրեղային ֆազերի ձևավորման օրինաչափությունները, և ճշտվել են համատեղ բյուրեղացման առաջնային դաշտերը՝ գյուրահալ հավելումների ներմուծմամբ։ Բացահայտվել է, որ հիմնական բյուրեղային ֆազերն են՝ C12A7 և CA, իսկ հայույթների բյուրեղացման ֆազերի բացակալուԹլունը արգասիջներում այլումինաֆերիտալին պալմանավորված է կայցիումի այլումինատներում Al³⁺-ր Fe³⁺-ով իզոմորֆ փոխարինմամբ։ Պարզվել է, որ Fe₂O₃-ի և AlF₃-ի լրացուցիչ ներմուծումը նախնական համակարգ հանգեցնում է լիքվիդուսի ջերմաստիճանի նվազման նպաստելով այլումինատների ցածրջերմաստիճանային ձևավորմանը։ Ցույց է տրվել, որ բյուրեղային կառուցվածքով տարբերվող ալյումինատային երկու ֆազերի միաժամանակյա առաջացումը նպաստում է բարձր արագությամբ կապակցվող ցեմենտի ստացմանը։

FEATURES OF OBTAINING HIGH-ALUMINA CEMENT CONTAINING OXYFLUORIDE ADDITIVES OF TRIVALENT ELEMENTS

B.V. MOVSISYAN

M.G. Manvelyan Institute of General and Inorganic Chemistry NAS RA10, Argutyan str, 2 lane: E-mail: bagrat.movsisyan@polytechnic.am

This paper presents the results of a study of phase formation when introducing from 3.0 to 6,0 *wt*% Fe₂O₃ and AlF₃ into the CaO-Al₂O₃-SiO₂ system, including fields of primary crystallization of compounds C₃A, C₁₂A₇, CA and limited to a constant content of 10 *wt* % SiO₂ and changes in the liquidus temperature of the system. The synthesis was carried out by melting the initial charge at temperatures of 1400-1500 °C with isothermal exposure for one hour. The patterns of phase formation along a section with a constant Al₂O₃ content equal to 50 % wt. were studied using DTA and XRA methods. and the fields of primary crystallization of coexisting phases with the introduction of low-melting additives were refined. It has been revealed that the main crystalline phases are C₁₂A₇,

CA, and the absence of aluminoferrite phases in the crystallization products of melts is associated with the isomorphic replacement of Al^{3+} by Fe^{3+} in calcium aluminates. It has been revealed that the additional introduction of Fe_2O_3 and AlF_3 into the initial system leads to a decrease in the liquidus temperature, promoting the low-temperature formation of aluminates. It has been shown that the simultaneous separation of two aluminate phases, which differ in crystal structure, contributes to the production of cement with a high setting rate.

ЛИТЕРАТУРА

- [1] Тейлор Х. Химия цемента. // Мир, 1996, с. 560
- [2] Wieslaw Kurdowski Cement and Concrete Chemistry // Springer Dordrecht, 2014, p.p. 700.
- [3] Бутт Ю.М., М.М. Сычев, Тимашев В.В. Химическая технология вяжущих материалов // Москва Высшая школа, 1980, с. 472.
- [4] Pöllmann H. Calcium Aluminate Cements Raw Materials, Differences, Hydration and Properties // RIMG. 2012, v. 74. p.p. 1–82.
- [5] *Elien Haccuria, Tijl Crivits, Peter C. Hayes, Evgueni Jak* Selected Phase Equilibria Studies in the Al2O₃-CaO-SiO₂ System // J. Am. Ceram. Soc., 2016 v. 99, № 2, p.p. 691–704.
- [6] H. Mao, M. Hillert, M. Selleby, B. Sundman Thermodynamic Assessment of the CaO Al2O₃-SiO₂ System // J. Am. Ceram. Soc., 2006, v. 89, №1, p.p. 298–308.
- [7] Georgin, J.F., Prud'homme, E. Hydration modelling of an ettringite-based binder // Cement Concrete Res, 2015. v. 76, p.p. 51–61.
- [8] *Kim, H.; Son, H.M.; Lee, H.K.* Review on recent advances in securing the long-term durability of calcium aluminate cement (CAC)-based systems // KSCM and IOP Publishing Lim 2021, v. 3, № 3.
- [9] Hofmeister A.M., Wopenka B., Locock A.J. Spectroscopy and structure of hibonite, grossite, and CaAl₂O₄: Implications for astronomical environments // Geochim Cosmochim Acta, 2004, v. 68, № 21, p.p. 4485-4503.
- [10] Krivoborodov Yu., Samchenko S. Synthesis of high alumina cement based on metallurgy wastes // IOP Conf. Series: Mater. Sci. Eng., 2019, v. 687, № 2, p.p.1-7.
- [11] Кащеев, И. Д. Земляной, К. Г. Павлова, И. А. Фарафонтова, Е. П. Физическая химия тугоплавких неметаллических и силикатных материалов, Екатеринбург // Издательство Уральского университета, 2022, с. 400.