иислибрдрчи астрофизика

TOM 8

МАЙ, 1972

ВЫПУСК 2

ГАЛАКТИКИ С УЛЬТРАФИОЛЕТОВЫМ КОНТИНУУМОМ. V. Б. Е. Маркарян, В. А. Липовецкий	155
О ПРИРОДЕ ГАЛАКТИК С УЛЬТРАФИОЛЕТОВЫМ КОНТИНУУМОМ. I. ОСНОВНЫЕ СПЕКТРАЛЬНЫЕ И ЦВЕТОВЫЕ ОСОБЕННОСТИ Б. Б. М. С.	1/2
D. L. таркарян	102
СПЕКТРЫ ГАЛАКТИК МАРКАРАНА. У. М. А. Аракелян, Э. А. Дибай, В. Ф. Есипов	177
ВОДОРОДНЫЕ ЛИНИИ В СПЕКТРЕ ГАЛАКТИКИ МАРКАРЯН 6 В ПЕ- РИОД ЕЕ АКТИВНОСТИ · · · · · · В. И. Проник, К. К. Чуваев	187
РАССЕЯНИЕ СВЕТА В ОДНОРОДНОМ ШАРЕ В. В. Соболее	197
НЕКОГЕРЕНТНОЕ РАССЕЯНИЕ. III. · · · Н. Б. Екибарян, А. Г. Никогосян	213
О ВОЗМОЖНОСТИ УСКОРЕНИЯ ВЕЩЕСТВА В ГОРЯЧИХ ЗВЕЗДАХ ЗА СЧЕТ ПОГЛОЩЕНИЯ В СПЕКТРАЛЬНЫХ ЛИНИЯХ · И. Ф. Малов	227
О ДИФФУЗИИ ИЗЛУЧЕНИЯ В ЗВЕЗДНОЙ ОБОЛОЧКЕ, РАСШИРЯЮ- ЩЕЙСЯ С ПОСТОЯННОЙ СКОРОСТЬЮ · · · · · В. В. Витязее	235
О ПРИРОДЕ ИЗЛУЧЕНИЯ ВСПЫШЕК ЗВЕЗД ТИПА UV СЕТІ А. А. Коровяковская	247
ЭВОЛЮЦИЯ БЕЛОГО КАРЛИКА ПРИ АККРЕЦИИ БОГАТОГО ВОДО- РОДОМ ВЕЩЕСТВА. І. · · · · · · · · · · · · · · · · · Ю. Н. Редкобородый	261
АТМОСФЕРА НЕВРАЩАЮЩИХСЯ БАРИОННЫХ ЗВЕЗД	
Г. С. Саанян, Д. М. Седранян	283
ФАЗОВОЕ РАЗМЕШИВАНИЕ ВТОРОГО РОДА В ЗВЕЗДНЫХ СИСТЕ- МАХ. II	295
ИЗМЕНЕНИЕ СКОРОСТИ ЗВЕЗДЫ КАК ЧИСТО РАЗРЫВНЫЙ СЛУЧАЙ- НЫЙ ПРОЦЕСС. III. ЗВЕЗДЫ РАЗЛИЧНЫХ МАСС В РАССЕЯННОМ СКОПЛЕНИИВ. С. Калиберда, И. В. Петроеская	305
К ДИНАМИКЕ ГРАВИТИРУЮЩИХ СИСТЕМ НА НЕЙТРИННОМ ФОНЕ ВСЕЛЕННОЙ Б. Омаров	315

EPEBAH

Խմրագրական կոլեգիա

Ա. Ա. Բոյարչուկ, Յա. Բ. Ձելդովիչ, Հ. Մ. Թովմասյան, Ս. Ա. Կապլան, Ի. Մ. Կոպիլով, Վ. Հ. Համբարձումյան (գլխավոր խմբագիր), Բ. Ե. Մարգարյան, Լ. Վ. Միրզոյան (գլխ. խմրագրի տեղակալ), Վ. Վ. Սոբոլև

Редакционная коллегия

В. А. Амбарцумян (главный редактор), А. А. Боярчук, Я. Б. Зельдович, С. А. Каплан, И. М. Копылов, Б. Е. Маркарян, Л. В. Мирзоян (зам. главного редактора), В. В. Соболев, Г. М. Товмасян

"АСТРОФИЗИКА" — научный журнал, издаваемый Академией наук Армянской ССР. Журнал печатает оригинальные статьи по физике звезд, физике туманностей и межзвездной среды, по звездной и внегалактической астрономии, а также статьи по областям науки, сопредельным с астрофизикой.

Журнал предназначается для научных работников, аспирантов и студентов старвих курсов.

Журнал выходит 4 раза в год, цена одного номера 1 рубль, подписиая плата за год 4 рубля. Подписку можно произвести во всех отделениях Союзпечати, а за границей через агентство "Междувародная книга", Москва, 200.

«Ասառոֆիզիկա»-ն գիաական նանդես է, որը նրաատրակվում է Հայկական ՍՍՀ Գիաությունների ակադեմիայի կողմից։ Հանդեսը ապագրում է ինքնաաիպ նոդվածներ ասաղերի ֆիզիկայի, միգամածությունների ու միջաստղային միջավայրի ֆիզիկայի, աստղարաջխության և արտագալակտիկական աստղագիտության, ինչպես նաև աստրոֆիզիկային սաճմանակից բնագավառների գծով։

Հանդեսը նախաահոված է գիտական աջխատակիցների, ասպիրանաների և բարձր կուրսերի ուսանողների նամար։

Հանդեսը լույս է աեսնում տաշեկան 4 անգամ, 1 ճամաշի աշժեքն է 1 ռութլի, թաժանուդագինը 4 ռութլի մեկ տաշվա ճամաշ։ Բաժանսողագշվել կաշելի է «Սոյուզպելատ»-ի թոլոշ թաժանմունքներում, իսկ աշտասաճմանում «Մեժդունաշոդնայա կնիգա» գուծակալության միջոցով, Մոսկվա, 200: АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 8

МАЙ, 1972

выпуск 2

ГАЛАКТИКИ С УЛЬТРАФИОЛЕТОВЫМ КОНТИНУУМОМ. V

Б. Е. МАРКАРЯН, В. А. ЛИПОВЕЦКИЙ Поступила 14 октября 1971

Приводится пятый список галактик с ультрафиолетовым континуумом, в который вошли наблюдательные данные о 106 новых объектах. Методика наблюдений и поиска галактик описана в предыдущих статьях этой серин [1 — 3]. Все обозначения в настоящем списке остались прежними. У 82 объектов обнаружено или заподозрено существование эмиссконных линий. 47 объектов классифицированы как s-sd, 4 из них, весьма вероятно, являются объектами сейфертовского типа. Их номера в списке отмечены одной звездочкой. Другие 7 объектов отмечены двумя звездочками и являются кандидатами в QSO.

В течение 1969—1970 гг. в Бюраканской обсерватории продолжался обзор неба для поиска галактик с ультрафиолетовым континуумом. Наблюдения велись с помощью полутораградусной объективной призмы, установленной на телескопе системы Шмидта (40—52"). Использовались фотопластинки Kodak II AF английского производства.

Обзор был начат в 1965 г. Данные об обнаруженных объектах опубликованы в прежних статьях этой серии [1-4]. Вся методика наблюдений, поиска и изучения галактик с избыточным ультрафиолетовым излучением осталась без изменений. По программе обзора снимаются области неба с галактической широтой $|b| > 30^\circ$, лежащие севернее склонения —5°. Более южные области имеют зенитные расстояния в верхней кульминации > 45°, что приводит к заметному ослаблению ультрафиолетового излучения и ухудшению качества изображений объектов на снимках, повтому планомерные наблюдения их нецелесообразны.

К настоящему времени снято около четырехсот областей, общей площадью 6000 кв. градусов, что составляет половину всей программы. В покрытой обзором области обнаружено свыше 500 объектов. Таким образом, в среднем на 12 кв. градусов приходится одна галактика в интервале видимых величин от 13^m до 17^m5. Это значение является только нижним пределом и не противоречит значению, полученному раньше [3]. Нужно учитывать, что поскольку наблюдения производились на эмульсиях разных серий выпуска, в различных атмосферных условиях, то предельная звездная величина на снимках колеблется в больших пределах от 16^m до 17^m5. Речь идет о видимой величине объекта, спектр которого уверенно регистрируется на пластинке. Поэтому предварительные статистические данные, касающиеся плотности галактик с ультрафиолетовым континуумом и характера распределения их на небесной сфере, подвержены наблюдательной селекции.

Несколько замечаний о спектральных типах галактик. При изучении спектров галактик применяется двумерная классификация. Каждый объект характеризуется степенью интенсивности ультрафиолетового континуума, которая довольно тесно коррелирует с протяженкостью спектра на наших пластинках и степенью конденсированности или резкости спектра; побочный признак—наличие в спектре эмиссионных линий [1, 2]. В действительности при тщательном изучении и отборе объектов используется практически вся доступная информация, например, морфологический тип, характер распределения энергии в спектре, сравнительная интенсивность красной и синей частей спектра, соответствие интенсивности спектра и яркости прямого изображения, и под названием галактики с ультрафиолетовым континуумом мы обычно понимаем объекты с избыточным ультрафиолетовым излучением, при этом избыточным для данного морфологического типа, как это определялось в работе [5].

В пятом списке приведены данные о 106 новых объектах. Все обозначения в списке остались прежними [1-3]. У 82 объектов было обнаружено или заподозрено существование эмиссионных линий. 47 объектов были классифицированы как s-sd, у четырех из них можно ожидать присутствия широких эмиссионных линий, т. е. основной спектральной особенности сейфертовских галактик. Их порядковые номера отмечены одной звездочкой. Двумя звездочками отмечены порядковые номера семи звездообразных объектов, которые, судя по распределению энергии в спектре, можно считать кандидатами в QSO.

В примечаниях к списку даны описания внешнего вида объекта и, отчасти, его спектра, кроме того указана номенклатура объекта, если он встречается в различных списках и обзорах. Для семи объектов, у которых изучались щелевые спектры разными авторами, цитируется также соответствующая литература. Карты отождествления отпечатаны с красных карт Паломарского обозрения неба.

ГАЛАКТИКИ С УЛЬТРАФИОЛЕТОВЫМ КОНТИНУУМОМ. V 157

СПИСОК ГАЛАКТИК С УЛЬТРАФИОЛЕТОВЫМ КОНТИНУУМОМ

Таблица Т

10	T	Koopa	инаты	D		Спектр.
348	I ALAKTHKA	a1950	ک ₁₉₅₀	Газмеры	mpg	тип.
1	2	3	4	5	6	7
402 -		9 ^h 32 ^m 3	+30°39′	12"×8"	16 ^m	sd2e:
403		38.0	21 28	14×12	16.5	d2e
404	.—	39.9	32 05	-	15.5	d2
405	2970	40.6	32 13	22×20	15.5	d3
406	-	41.1	29 51	15×12	15.5	ds2e
407	_	44.7	39 20	12	15	sd3e:
408	_	45.1	33 06	14×12	15	ds2
409	3011	46.7	32 27	18×14	15	d3e
410	-	50.1	37 59	12×9	16	sd2
411	2524*	54.5	33 51	18×12	15.5	d3 .
412	5-24-5	55.0	32 28	14×10	15.5	sd2e
413	-	56.3	31 57	9	15.5	s2e
414	6-23-1	10 10.2	35 31	18×12	16.5	dle:
415	-	25.8	40 06	12	16	d2e:
416	4-25-44	40.3	20 41	15×10	15.5	sd2e:
417		46.8	23 13	10	16	d3e:
418	3442	50.3	34 10	24	14.5	d2e:
419	-	55.8	24 28	8	16.5	ds3e
420	- 1	11 00.8	38 10	14×10	15.5	d2e
421*	-	01.7	38 28	18×14	13.5	sle
422	3558	08.2	28 49	20	15.5	sd3e:
423	6-25-72	24.1	35 31	20	15.5	ds3e:
424	-	27.7	37 00	20×12	15.5	ds2e:
425**		11 31.2	64 26	7	16	sl
426	6-26-16	38.2	35 28.	24×12	15	d3
427	-	40.8	36 23	20×10	15.5	d3e:
428		41.5	37 27	18×12	15.5	sd3e
429	-	43.8	35 07	16×14	14.5	ds2e:
430	3921	48.5	55 21	24×18	14.5	sd2e
431	6-26-42	48.8	35 43	30×18	14.5	s2e:
432	4004	55.4	28 09	35×20	14.5	ds2e:
433	9-20-49	56.4	54 30	18×12	15	sd3e:
434	6-26-67	56.9	35 10	18×12	15.5	ds2e:
435		12 09.4	40 56	14×9	15	d2e
436**	_	11.6	37 02	7	16	s2e

Б. Е. МАРКАРЯН, В. А. ЛИПОВЕЦКИЙ

Таблица 1 (продолжение

1	2	3	4	5	6	7
437**	_	12 ^h 13 ^m 3	+41° 09'	6″	16 ^m	sle:
438	_	20.4	22 42	12×8	16.5	ds3e:
439	4369	22.1	39 40	36	12.5	sd2e:
440		25.0	36 58	8	16.5	sdle:
441	3723*	42.1	41 01	18×10	15.5	d2e:
442	4687	45.0	35 37	18×16	15	sd3e
443	_	45.6	33 36	10×3	16.5	ds2
444	6-28-32	46.3	34 46	10	15.5	d2e:
445	3808*	46.5	40 52	24×12	15.5	sd2e:
446	4719	47.7	33 25	18×12	15	s2e:
447	-	55.4	24 39	10×8	16.5	ds3e:
448**		59.1	30 19	7	17	sle:
449	5014	13 09.2	36 32	60×18	14	d2e
450	6- 29-65	12.5	35 08	6	17	dle
451	-	22.1	36 51	12	15	d2e
452	5142	22.8	36 40	24×16	15.5	sd3
453	_	23.8	33 16	24×18	16.5	d2e:
454	5-32-20	24.6	26 51	10	16	sd2e
455	5-32-35	28.3	31 32	25×10	15.5	d2
456	6-30-32	30.8	37 27	12×10	15.5	d3e
457	_	30.8	39 17	8	16	sd3
458**	13	32.3	40 22	7	16	s2e
459	- 100	32.8	34 18	9×7	17	d2e
460**	_	42.1	40 16	7	16	sle:
461	6-30-85	45.1	34 24	24×16	15.5	sd3e
462	7—29—2	49.3	40 27	9	16	sd2
463	35	53.6	18 37	25×15	16	dsle
464	-	53.9	38 48	6	16.5	sd1e
465	6-31-44	59.2	37 02	10	16	sd2e:
466	6-31-48	59.7	37 15	20×18	15.5	sd3
467	_	14 10.3	34 47	14×7	16.5	ds2e:
468	-	13.7	41 13	12×10	15.5	d2
469	_	16.1	34 35	8×6	17	dsle
470	5596	20.4	37 20	24×18	15.5	sd3e:
471	6-32-14	20.8	33 04	24×18	15.5	d2e

158

ГАЛАКТИКИ С УЛЬТРАФИОЛЕТОВЫМ КОНТИНУУМОМ. V

4	50
- 1	74
	51

Таблада Т (продолжение)						
1	2.	3	4	5	6	7
472	-	14 ^h 26 ^m 9	+36°10′	20"×12"	15 5	d2e:
473		30.8	57 05	12	16	d3e:
474	5683	33.1	48 52	12×10	16.5	sd2e
475	·	36.9	37 01	10	17	ds2e
476	7-30-45	36.9	41 14	50×15	16	d2
477	· -	39.1	53 44	14×12	16	d2e
478*	-	40.1	35 39	10×8	15	sle
479	1076*	52.6	18 14	30×18	15	d3
480	5860	15 04.7	42 50	20×12	14.5	d2
481	-	26.5	55 36	8	15.5	d3
482	9-25-55	26.8	55 43	24×12	15	ds3e:
483	_	28.7	34 06	10×8	17	d2e
484	_	29.7	54 51	12×10	15.5	d2e
485		30.3	51 56	20×12	15	d2
486*	-	35.5	54 42	8	15	sle
187	_	35.8	55 25	10	16	d2e
188		38.5	35 05	14×12	16.5	d3
189	5992	42.6	41 15	12	14.5-15.5	d2+d2e
190	_	44.9	46 09	12×10	15.5	dle
191	1144*	49.7	43 33	16×12	16	d3e
192	5-38-6	56.6	26 58	25×15	15.5	s3e:
193	6-35-17	57.3	35 10	10	16	sdle:
94	5-38-9	58.4	30 31	8	16.5	ds2e:
95**		16 02.1	26 12	7	15.5	s2e:
96 •	6090	10.4	52 35	10×8	16+16.5	s2e+sd2
197	9-27-7	15.4	52 09	8	16	d2
198		17.0	52 58	7	17	s3
199	100 h - 100	47.0	48-47	12	15	s3e:
500 -	8-31-1	47.2	48 48	18×10	16.5	d2e:
501	7-35-2	52.2	39 50	25×20	13.5	s2e:
502	_	53.1	64 12	12	15.5	s3
503	6275	55.0	63 20	14×10	16.5	d3
504	5-40-26	59.2	29 29	18×12	17	sd2e
505	_	17 19.7	39 45	12	15.5	sd2
506*	5-41-12	20.7	30 56	24×18	15.5	sle
507	_	48.8	68 43	10×8	16	sd2e:

Примечания к списку

- 402 Овальной формы с тупыми концами у большой оси. Вытянута по направлению NE—SW. Спектр довольно кондексированный, по-видимому, присутствует Н_п.
- 403 Сферондальное компактное образование.
- 404 Восточный компонент яркой галактики ~ 12^m NGC 2964. Возможно, NGC 2964—68—70 образуют группу. Размеры не приведены, т. к. объект находится в передержанной части NGC 2964 и выделяется только в спектре.
- 405 Сферондальная, слегка вытянута по а.
- 406 -Компактная. В эмиссия наблюдается Н.,
- 407 Имеет сферическую форму, выглядит компактной.
- 408 -Почти компантная, с туманом, прилогающим на юго.
- 409 Сферондальная, с заметной оболочкой.
- 410 Имеет эллиптическую форму. Вытянута по 8.
- 411 Сферондальная, имеет слабую корону. Возможно, что объект-двойной.
- 412 -- Компактная, с небольшими выбросами. Наблюдаются Н., и узлы в синей части.
- 413 Компактный сферический объект без розких границ. Непрерывный спектр интенсивен. Уверенно наблюдается Н...
- 414 -Вытянута почти по а. Двойная Holm №169.
- 415 Сферическая компактиая галактика.
- 416 Главное тело галактики вытянуто по диагонали NW-SE, в этом же направлении вытянута оболочка.
- 417 -Компактная, сферическая.
- 418 Возможно, это иррегулярная галактика круглой формы.

419 — Компактная сферическая галактика. В спектре, как будто, присутствует λ 3727. 420 — Вытянута по α.

- 421 Конденсированная сферойдальная галактика с нерезкими краями. На NE в контакте спутник 18^m Возможно присутствие сейфертовских особенностей. В споктре уверенно присутствует H_a.
- 422 Сферической формы. Спектр ядра распространяется до далекого ультрафиолета, но весьма слабый.
- 423 Сферической формы с выбросом.
- 424 —Вытянута по диагонали NE-SW, намечается слабая корона.
- 425 Распределение энергии типично для QSO. Ультрафиолет довольно сильный и в спектре намечаются слабые признаки присутствия эмиссионных линий.
- 426 —Вытянута почти по с. Возможно, что это иррегулярная галактика.
- 427 Пара соприявсяющихся сферондальных галактик, расположенных по кругу склонений. На NW слабый выброс с центральным голубым сгущением или спутник.
- 428 Неправильной формы с кольцеобразным выступом на восточной стороне. В вмиссии H_n н (N₁ + N₂ + H₃).
- 429 Сферопдальная.
- 430 Сферондальное образование с кольценым выбросом. В спектре замстны H₂ и (N₁ + N₂ + H₃). I Zw 27.
- 431 —Галактика овальной формы. Вытянута по направлению NW—SE. Судя по спектру, должна иметь звездоподобное ядро. Спектральные данные относятся к ядру.
- 432 Галахтика крайне неправильной формы, имсет ядро и выбросы: к северу веером, к югу — струей.

ГАЛАКТИКИ С УЛЬТРАФИОЛЕТОВЫМ КОНТИНУУМОМ. V

433 - Сфероидальная, слегка вытянута по а.

- 434 Сферондальный объект со звездообразным ядром, которое окружено значительной оболочкой. На SW наблюдается образование, которое может быть церазделенным компонентом или значительным выбросом. Спектр мало конденсированный.
- 435 Сферондальная, слегка вытянута по диагоналя NE—SW. Западный компонент двойной системы.
- 436 На прямых снижках не отличается от звезд. Не исключена возможность, что это звезда, но вероятнее всего — квазизвездный объект с умеренным ультрафиолетом. Спектр питочный. Присутствует H_a.
- 437 На прямых снижках объект звездообразный. Красная часть спектра чуть сильнее синей, но распределение в целом типа QSO. Возможно присутствие эмиссконных линий.
- 438 Очень компактиая сфероидальная галактика.
- 439 Яркая сферическая галактика с оболочкой.
- 440 Сферическая, компактная, с двумя выбросами, выходящими из противоположных точек.
- 441 -Вытянута по а, возможно двойная.
- 442 Сферическая, без резких границ.
- 443 Слабая сферондальная галактика.
- 444 Сферическая, вид пушистый, имеет весьма слабую оболочку, вытянутую по направлению NS. Haro 37, [7].
- 445 Малоразвитая спираль с заметным ядром.
- 446 Пекулярная по структуре галакгика. Как будто, намечается присутствие перемычки и двух слабых рукавов. Спектральные данные относятся к ядру.
- 447 Слегка вытянутое компактное образование.
- 448 Распределение внергни типично для QSO. В спектре намечаются слабые узлы. На красной карте Паломарского обозрезня, как будто, слегка вытянута.
- 449 Довольно яркая галактика, имеет форму линам, по-видимому, это спираль, наблюдаемая с ребра. Спектральные данные отпосятся к ядру.
- 450 Компактный сферичоский объект, от него тянется по направлению SW выброс, который кончается голубым сгущением ~ 18^m К SE—обширнов диффузное об
 - разование. В спектре хорошо заметны Ha, (N1+N2+H3) и намечается λ 3727.
- 451 Сферическая галактыка с короной.
- 452 Вытяпута по 6, имеет корону, спектр в фиолетовой частя слабый, но распространяется далеко.
- 453 Выглядит компактной.
- 454 Сфероидальная, на восточной стороне туманное образование, явно связанное с ней. Спектр ниточный в тумане. Наблюдается На.
- 455 По-видимому, ядро сперальной галактики с перемычкой. Возможно, восточный компонент двойной системы.
- 456 Сфероидальная с выбросом, образующим кольцо вокруг галактики. На расстояния 35" к SE спутник слабее 16^m5 типа d2.
- 457 -Компактное образование сферической формы.
- 458 На прямых снимках звездообразна, в спектре заметна На.

459 — Сферондальная, слегка вытянута, по виду компактная.

460 — Красная часть ярче синей, ультрафиолет несколько слабее, чем обычно у QSO, но распространяется далеко.

- 461 Сфероидальная, слогка вытянута по направлению NW—SE. Намечается слабая корона.
- 462 Сферическая, компактная, имеет слабую оболочку.
- 463 Вытянута по α , имеет слабый выброс. Четко наблюдаются эмиссионные линии H_{α} , (N₁ + N₂ + H_β) и λ 3727.
- 464 Сферическая и очень компактная. В спектре хорошо заметна H₂ и едва намечаются (N₁ + N₂ + H_β) и λ 3727.
- 465 Компаятная, сферической формы. Окружена протяженной оболочкой правильной формы. Узел в синей части спектра.
- 466 -Вытянута по д, имеет корону.
- 467 Двойной объект.
- 468 -Компактное образование.
- 469 Незначительно вытянутое, компактное образование.
- 470 Ядро яркой галактики, вытянутой по а. Спектр в сине-фиолетовой части слабый, но распространяется далеко.
- 471 Сферондальное образование с выбросами, напоминающими тонкие спиральные ружава.
- 472 Вытянута по'д.
- 473 Компантная.
- 474 Слегка вытянута, с заметным гало. Составляет пару с NGC 5682. Двойная Holm № 663.
- 475 Компактная, выглядит пушистой. Наблюдаются эмиссионные линии H_{α} , $(N_1 + N_2 + H_{\beta})$ и λ 3727.
- 476 Сильно вытянута по днагонали NE-SW. Данные относятся к ядру.
- 477 —Компактная, со слабыми выбросами. I Zw 91, [8].
- 478 На прямых снимках очень компактная. Спектральное изображение звездоподобно, распределение энергии типично для QSO. Весьма вероятно присутствие особенностей, характерных для ядер галактик Сейферта.
- 479 Вытянутая галактика неясной структуры. Большая ось отклоняется от круга склонения к востоку на 20°.
- 480 Как будто, двойной, слившийся объект, данные относятся к южному, возможно, сферическому, I Zw 101.
- 481 Сферическая, компактная.
- 482 Сильно вытянута по д, имеет эллиптическую форму.
- 483 --- Компактный объект с небольшим выбросом на востоке.
- 484 -- Сфероидальная, компактная, с выбросами, направленными на север и на юг.
- 485 Компактная галактика, незначительно вытянута.
- 486 Очень компактная, почти сферической формы. Присутствие признаков галактик Сейферта почти не вызывает сомнения. На видна уверенно. С ней по координатам, как будто, совпадает объект I Zw 120, но по исследованиям Саржента [6] все данные для этого объекта: яркость mpg=17^m, размеры 14^{*}×8["] и особенно спектр—Call absorp. не совпадают с нашими. Нужно полагать, что речь идет о соседней более слабой галактике.
- 487 Сферическая и компактная. I Zw 122, [6].
- 488 Компактная, с короной.
- 489 Двойной объект, эмиссия паблюдается у восточного компонента, имеющего сферическую форму, западный компонент вытякут почти по 3. Возможно, обравует группу с NGC 5993, которая сама имеет спектральный тип sd3.

162

- 490 Сферическая, с резкими границами. В эмиссии наблюдаются H_2 , $(N_1 + N_2 + H_3)$ и λ 3727.
- 491 Компактный объект с небольшой слабой короной.
- 492 Вытянута по и, намечается слабая корона. Данные относятся к ядру.
- 493 Спиральная галактика с яркой перемычкой и ядром небольшой светимости. Рукава сильно закручены и создают почти кольцо. В спектре заметна Н₂ -Возможно, что вмиссионные линии широкие.
- 494 Сферический и компактный южный компонент двойной системы.
- 495 Объект звездообразный. Распределение энергии типа QSO. По внешнему виду спектр врсьма напоминает Топ 256. Наложение звезды 18—19^т в синей части спектра.
- 496 Пара взанмодействующих галактик. Восточный компонент более яркий и имеет эмиссию. I Zw 134, [6].
- 497 Сферическое образование с резкими границами и выбросами.
- 498 Компактное образование с довольно значительной оболочкой. I Zw 139.
- 499 -- Сферондальная компактная галактика. I Zw 165, [6].
- 500 Вытянута. Большая ось отвлоняется от круга склонения к востоку на 20°.
- 501 Сфероидальная галактика со слабой короной. Вытянута печти по δ. В красной части непрерывный спектр очень интенсивен, в синей—интенсивен и распространяется до далекого ультрафиолета. В спектре намечается Нα и λ 3727. Судя по спектру, должно быть звездообразное ядро. Возможно присутствие слабо выраженных сейфертовских признаков.
- 502 Очень компактный объект со слабой асимметричной короной.
- 503 Сфероидальный объект с выбросами со стороны юга.
- 504 Похожа на валиптическую галактику типа Еб. Вытянута почти по а. Заметна На.
- 505 Как будто, объект имеет сферическую форму, окружен асимметричной оболочкой, обладающей заметной яркостью. Красная часть непрерывного спектра много ярче синей, но последняя тянется довольно далеко.
- 506 Двойной объект. Восточный компонент овальной формы, с нерезкими краями, вытянут почти по. α. Имеет сильную эмиссию в H₂ и намечается (N₁ + N₂ + H_β). Непрерывный спектр весьма конденсированный и по распределению энергии похож на спектр QSO. Весьма вероятно присутствие сейфертовских особенностей.
- 507 Компактная галактика несколько необычной неправильной формы. Спектральный тип определен неуверенно из-за малой яркости. Намечаются узлы в спектре.

Особенного внимания заслуживает объект № 444—вто голубая галактика Наго 37 [9]. В статье [7], где приведены результаты изучения спектров галактик Аро, была предпринята попытка распространить развитую нами спектральную классификацию галактик с ультрафиолетовым континуумом на щелевые спектры. В качестве привязки были использованы спектры четырех объектов первого списка [1], являющихся в то же время галактиками Наго 2, 3, 4 и 8. Объекту № 444 был приписан тип s1, что резко отличается от нашей оценки—d2e:. Многие другие классифицированные в этой работе объекты вообще не вошли в наши списки по критериям отбора: в первую очередь из-за отсутствия у них достаточно интенсивного ультрафиолетового излучения. В этой связи отметим, что щелевые спектры по ряду очевидных причин мало пригодны для применяемой нами спектральной классификации галактик.

Отметим, что сейфертовские свойства обычно проявляются у сильно конденсированных галактик, т. е. в основном у объектов типа s-sd. Тем не менее, у небольшой части объектов, отнесенных к типу ds-d, тоже были обнаружены широкие эмиссионные линии. Это объекты N_{2} 3, 34, 78, 110, 270 и 273. По-видимому, в этих случаях мы имеем дело с ядрами галактик низкой светимости, которые слабо выделяются на наших снимках. Так как число таких объектов невелико, то нужно полагать, что доля галактик, имеющих сейфертовские свойства, возрастает со светимостью ядер. Но является ли это реальной закономерностью или результатом наблюдательной селекции, покажет дальвейшее исследование.

Бюраканская астрофизическая обсерпатория Специальная астрофизическая обсерватория АН СССР

GALAXIES WITH ULTRAVIOLET CONTINUUM. V

B. Ye. MARKARIAN, V. A. LIPOVETSKY

The fifth list of galaxies with ultraviolet continuum is presented. The list contains observational data for 106 new objects. The method of observations and search is described in the previous papers of this series [1-3]. All designations of the present list are the same as in the former lists. The existence of emission lines is suspected or proved in the spectra of 82 objects; 47 objects are classified as of the s-sd type, 4 of them are most probably objects of the Seyfert type. Their ordinal numbers in the list are marked with asterisk, 7 other objects are candidates to QSO, their numbers are marked with two asterisks.

ЛИТЕРАТУРА

- 1. Б. Е. Маркарян, Астрофизика, 3, 55, 1967.
- 2. Б. Е. Маркарян, Астрофизика, 5, 443, 1969.
- 3. Б. Е. Маркарян, Астрофизика, 5, 581, 1969.
- 4. Б. Е. Маркарян, В. А. Анповедкий, Астрофизика, 7, 511, 1971.
- 5. Б. Е. Маркарян, Сообщ. Бюр. обс., 34, 3, 1963.
- 6. W. L. W. Sargent, Ap. J., 160, 405, 1970.
- 7. D. L. Du Puy, A. J., 75, 1143, 1970.
- 8. F. Zwicky, Ap. J., 143, 192, 1966.
- 9. G. Haro, Bol. Obs. Tonantzintla, 14, 8, 1956.

КАРТЫ ОТОЖДЕСТВЛЕНИЯ

(в красных лучах). Каждая карта покрывает область 16' × 16'. Север сверху. Восток слева.

-

К ст. Б. Маркаряна, В. Анповецкого

АКЛДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 8

МАЙ, 1972

ВЫПУСК 2

О ПРИРОДЕ ГАЛАКТИК С УЛЬТРАФИОЛЕТОВЫМ КОНТИНУУМОМ. І. ОСНОВНЫЕ СПЕКТРАЛЬНЫЕ И ЦВЕТОВЫЕ ОСОБЕННОСТИ

Б. Е. МАРКАРЯН Поступна 10 марта 1972

Рассматриваются результаты спектральных и фотоэлектрических наблюдений галактик с избыточным UV-излучением. В щелевых спектрах почти всех галактик, обадающих интенсивным UV-континуумом, наблюдаются эмиссионные линии, свидетельствующие о присутствии горячего газа и центрального источника высокочастотного излучения в их ядрах. Результаты фотоэлектрии говорят о сходстве рассматриваемых галактик с QSO по карахтеру распределения энергии в спектре, откуда следует нетепловая природа их излучения. Подавляющее большинство галактик типа s--sd и небольшая часть галактик типа d--ds имеют конденсированные--звездоподобные ядра. Каждый четвертый из таких объектов обладает сейфертовскими особенностями. Рассматриваемые объекты представляют собой особый класс галактих, обладающих ядрами, нагодящимися на разных стадиях активной деятельности, включая и сейфертовскую фазу.

1. Яркие галактики с аномальными цветовыми и спектральными признаками центральных частей. Колориметрические и спектральные исследования [1—4] показывают, что излучение центральных частей нормальных галактик в основном обуславливают красные и желтые гиганты. Поэтому центральные части галактик обычно обладают красным цветом и спектральными признаками, характерными для эвезд классов G и K.

Однако в начале 60-х годов нами было установлено существование среди ярких галактик особой категории объектов, характеризующихся спектральными признаками, свойственными звездам спектральных классов А и F, и голубым цветом центральных частей [5].

Анализ колориметрических данных ряда таких галактик, в число которых входили и некоторые сейфертовские галактики, привел к важ-

ному выводу о том, что аномальные цветовые и спектральные признаки центральных частей подобных залактик обуславливаются избыточным ультрафиолетовым излучением нетеплового происхождения, исходящим из их ядер. Вывод о присутствии нетеплового компонента в излучении ядер галактик с аномальными физическими признаками в дальнейшем подтвердился результатами их радионаблюдений, выполненных Г. М. Товмасяном [6] в Парксской обсерватории на волнах 11 и 20 см. Радионаблюдения показали, что галактики с аномальными цветовыми и спектральными признаками центральных частей обладают радиоизлучением, заметно превосходящим радиоизлучение нормальных галактик. Помимо втого было установлено, что радиоизлучение в втих галактиках локализуется в их ядерных областях, откуда следует непосредственная связь обнаруженного у них радиоизлучения с их ядрами.

Примечательно, что и избыточное ультрафиолетовое излучение в этих галактиках исходит главным образом непосредственно из их ядер. Об этом свидетельствует установленный факт возрастания ультрафиолетового избытка в этих галактиках при приближении к их центрам.

Все вто подтверждало наш вывод о наличии нетеплового компонента в излучении ядер небольшой части ярких галактик, отличающихся от основной массы галактик аномальными цветовыми и спектральными признаками.

Таким образом, присутствие избыточного ультрафиолетового излучения у ядер галактик является важным феноменом, свидетельствующим о нестационарном состоянии галактик, обусловленном активной деятельностью их ядер.

После этого возникла необходимость исследования слабых галактик с целью выяснения степени распространенности среди них указанного феномена и выявления различных его оттенков.

2. Объекты с избыточным ультрафиолетовым излучением среди слабых галактик. а) В середине 50-х годов Г. Аро опубликовал список четырех десятков сравнительно слабых галактик, обладающих голубым цветом [7]. Они были обнаружены по разработанному им методу трехцветной фотографии. Фотовлектрия этих галактик, однако, показала, что лишь немногие из них обладают заметным ультрафиолетовым избытком. Спектральные же исследования пока не обнаружили в них необычных особенностей. Судя по всему, голубой цвет у большинства галактик Аро обуславливается богато представленными в них горячими гигантами.

В конце 50-х годов В. А. Амбарцумян и Р. К. Шахбазян опубликовали список полутора десятков слабых (m > 19) голубых объектов,

О ПРИРОДЕ ГАЛАКТИК С УЛЬТРАФИОЛЕТОВЫМ КОНТИНУУМОМ. I 167

расположенных в окрестностях эллиптических и линзовидных галактик [8]. Эти образования, как показывают расчеты авторов, по размерам и светимостям занимают промежуточное положение между карликовыми и обычными галактиками. Природа их пока полностью не ясна. В. А. Амбарцумян полагает, что они были выброшены из ядер галактик, в окружении которых они находятся. Это представление, по-видимому, соответствует истине, так как некоторые из этих объектов, струями связаны с ядрами соответствущих галактик.

Голубые галактики Аро и объекты Амбарцумяна—Шахбазян представляют собой определенный интерес, но по характеру распределения энергии в спектре они отличаются от рассмотренных выше ярких галактик с аномальными физическими характеристиками. Поэтому опи не могут быть аналогами последних среди слабых галактик. В этом отношении некоторый интерес могут представлять голубые объекты, изредка встречающиеся среди компактных галактик Цвикки.

б) Эффективные поиски среди слабых галактик объектов, аналогичных рассмотренным выше ярким галактикам с аномальными цветовыми и спектральными характеристиками, можно производить путем массового просмотра и изучения их спектров.

С этой целью в Бюраканской обсерватории, после разработки специальной методики, в 1966 году нами был начат обзор неба с 40— 52" светосильным (D/F ~ 1/2) телескопом системы Шмидта в комбинации с набором объективных призм.

Как известно, спектры, получаемые с объективной призмой, вообще дают мало информации, в особенности же для протяженных объектов. Именно повтому объективные призмы до сих пор не применялись для исследования галактик. Но разработанная нами методика и малые угловые размеры слабых галактик позволили с помощью объективных призм производить массовое определение некоторых, на наш взгляд, важных физических характеристик галактик, речь о которых пойдет далее.

Обзор неба производится, в основном, с полутораградусной объективной призмой, которая в сочетании с вышеупомянутым телескопом дает очень низкую дисперсию, всего 1800 А/мм при H_{τ} , но позволяет при этом распространить исследования спектров на объекты вплоть до 17^{тв}. Другие—трехградусная и четырехградусная объективные призмы, обладающие большей дисперсией, применяются для получения контрольных снимков. Повторное фотографирование спектров производится не всегда, но довольно часто. Фотографирование производится обычно на панхроматических пластинках типа F фирмы Kodak, без расширения спектра. Обзор производится на высоких галактических широтах (b $\geq 30^{\circ}$). В настоящее время обзором охвачена значительная часть неба, покрывающая свыше 5000 кв. градусов. При изучении спектров слабых звезд и галактик на снимках нами выделяются объекты, в спектрах которых наблюдается необычно сильный для данного рода объектов ультрафиолетовый континуум. На полученных снимках были обнаружены свыше 500 галактик и 2000 звезд с ультрафиолетовым континуумом, сравнимым по интенсивности с континуумом звезд классов О и В. Данные об обнаруженных галактиках, обладающих интенсивным ультрафиолетовым континуумом, уже опубликованы в журнале "Астрофизика" в виде пяти отдельных списков [9-10]. Из них последние два составлены совместно с В. А. Липовецким. В следующих разделах настоящей статьи рассматриваются общие особенности этих галактик на основании полученных для них к настоящему времени, спектральных, фотовлектрических и морфологических данных.

3. Спектральные особенности.

а) Непрерывный спектр. Наиболее важной особенностью обнаруженных объектов, отличающей их от основной массы галактик, является присутствие у них интенсивного непрерывного излучения в коротковолновой части спектра. Поэтому они и были названы галактиками с ультрафиолетовым континуумом. Но, несмотря на общность этой важной характеристики, обнаруженные галактики не составляют однородный класс объектов. Шелевые спектры их показывают ряд общих свойств, но в то же время и множество различий. Подлинная классификация этих образований станет возможной после окончания их обстоятельного спектрального и фотоэлектрического исследования. Изучение же их спектров, полученных с объективными призмами, привело нас к заключению о необходимости разделения их на два основных типа, обозначаемых через s и d (начальные буквы слов starlike и diffuse). Объекты промежуточного типа обозначаются через sd и ds, в зависимости от того, к какому из основных двух типов s или d они более близки.

Проводимая нами классификация является двумерной. Каждый объект характеризуется степенью кондексированности и резкости непрерывного спектра в последовательности s, sd, ds и d, т. е. от звездоподобного до диффузного.

Разумеется, термины "конденсированный" и "диффузный" отражают лишь современное состояние рассматриваемых образований и не имеют прямого отношения к предполагаемым чисто эволюционным процессам конденсации или рассеяния.

Второй характеристикой является интенсивность ультрафиолетового излучения, которая хорошо коррелируется с протяженностью ультрафиолетового континуума спектра. Последняя разбивается на три подкласса, обозначаемые через 1, 2 и 3, примерно соответствующие про

О ПРИРОДЕ ГАЛАКТИК С УЛЬТРАФИОЛЕТОВЫМ КОНТИНУУМОМ. І 169

тяженности ультрафиолетового континуума звезд спектральных типов O-B0, B1-B3 и B5-B7, соответственно. Цифры 1, 2 и 3 приставляются к обозначению липа конденсированности и резкости спектра, т. е. к знакам s, sd, ds и d и к ним прибавляется "е" или "е:", если в спектре обнаруживается или подозревается присутствие эмиссионных линий.

В опубликованных пяти списках содержатся данные для 507 объектов. Для точности статистики отметим, что десять из них являются двойными системами^{*} с разделившимися компонентами, данные для которых в списках приведены под одним номером. Таким образом, в списках фактически приведены данные для 517 объектов. Из них 249 отнесены к типу s—sd, а остальные 268—к типу d—ds.

Галактики типа s—sd. К типу s относятся сильно конденсированные объекты, нерасширенные спектры которых по общему виду мало отличаются от эвездных. Они имеют интенсивный континуум с довольно ревко очерченными краями вдоль всего спектра. А наиболее важная их физическая особенность заключается в том, что они сходны с квазиявездными объектами (QSO) по характеру распределения энергии в спектре. Это подтверждается результатами фотовлектрии, выполненной для части галактик типа s—sd. Подобно квазиявездным объектам распределение внергии в спектре у галактик типа s—sd характеризуется положительным В—V и существенно отрицательным U—B. Но небольшая часть этих галактик имеет умеренный ультрафиолетовый избыток. Такие случаи, однако, встречаются и среди объектов сейфертовского типа, нетепловая природа излучения которых ныне не вызывает никакого сомнения.

На двухцветной диаграмме (рис. 1) нанесены фотоэлектрические данные для ряда галактик типа s—sd, взятые из работ [11—13]. Эти данные получены диафрагмами, диаметры которых находятся в пределах 10" и 36".

Сравнение данных для одних и тех же объектов, полученных с диафрагмами разных диаметров, показывает, что при уменьшении размеров диафрагмы во всех случаях убывает U—B, т. е. растет ультрафиолетовый избыток. Это свидетельствует о том, что источником избыточного ультрафиолетового излучения является ядро, имеющее, судя по всему, малые размеры. При фотоэлектрии рассматриваемых галактик до сих пор употреблялись диафрагмы значительных размеров, по-

[•] Среди обнаруженных галактик имеются и более широкне, также как и более тесные пары. Для части из них имеются соответствующие указания в примечаниях к табляцам.

Б. Е. МАРКАРЯН

втому полученные показатели цвета фактически относятся не к ядрам, а к более обширным центральным областям. И, несмотря на это, на двухцветной диаграмме (рис. 1) галактики типа s—sd в большинстве случаев попадают в область, занимаемую обычно квазизвездными объектами. За пределами втой области находятся галактики с малыми ультрафиолетовыми избытками, являющимися в основном результатом употребления больших диафрагм при измерениях этих галактик.

Рис. 1. Двухцветная днаграмма галактик типа s—sd. Крестиками отмечены объекты с широкими эмиссионными линиями, а точками—объекты с узкими эмиссионными линиями. Сплошная линия представляет собой главную последовательность ввезд.

Из всего этого следует, что излучение галактик типа s—sd, подобно излучению ядер сейфертовских галактик и QSO, имеет нетепловую природу или, во всяком случае, содержит сильную нетепловую составляющую.

Щелевые спектры этих галактик тоже говорят в пользу нетепловой природы их излучения. В частности, в их спектрах отсутствуют абсорбционные линии, присутствующие в спектрах обычных галактик. Это значит, что в излучении галактик типа s—sd компонент звездного происхождения отсутствует или незначителен.

О ПРИРОДЕ ГАЛАКТИК С УЛЬТРАФИОЛЕТОВЫМ КОНТИНУУМОМ. І 171

Галактики типа d-ds. К типу d-ds относятся мало конденсированные образования, у которых непрерывный спектр хотя и тянется до далекого ультрафиолета, но слабый по яркости. Их нерасширенные спектры имеют плохо очерченные размытые края вдоль всего спектра, поэтому их спектральные изображения, полученные с объективной призмой, выглядят диффузными, чем они довольно легко отличаются от звезд. Спектры галактик этого типа по своим особенностям напоминают спектры компактных ассоциаций и сверхассоциаций горячих гигантов и сверхгигантов, погруженных в газовые туманности, которые часто наблюдаются в поздних спиралях и иррегулярных галактиках типа І. И по цветовым показателям галактики типа d-ds близки к ассоциациями голубых гигантов. Ввиду всего этого можно предположить, что галактики типа d—ds представляют собой конгложераты газа и голибых гигантов. Звездное население второго типа не играет в их излучении сколько-нибудь заметной роли, т. к. в их шелевых спектрах очень редко обнаруживаются абсорбционные линии К и Н ионизованного кальция и G-полоса, наблюдаемые обычно в спектрах нормальных галактик. Не исключено, что галактики этого типа являются исключительно молодыми образованиями. Представляет большой интерес природа их ядер. В настоящее время у них не наблюдаются сильно конденсированные — звездоподобные ядра. Возможно, что ядра этих галактик прошли фазу активной деятельности и теперь либо исчерпали себя, либо находятся в стадии переизлучения и обладают очень низкой светимостью.

Во всяком случае, возможность присутствия у части галактик этого типа конденсированных ядер низкой светимости нельзя отрицать.

6) Линейчатый спектр. Часто в спектрах рассматриваемых галактик, полученных с объективной призмой, наряду с интенсивным ультрафиолетовым континуумом наблюдаются эмиссионные линии. Однако из-за очень низкой дисперсии (1800 А°/мм при H₇) применяемой для обзора аппаратуры, на наших снимках обнаруживаются только сильные эмиссионные линии. Присутствие эмиссионных линий умеренной интенсивности удается лишь заподозрить. В ходе изучения спектров на снимках обзора нам удалось обнаружить или заподозрить присутствие эмиссионных линий примерно у 60% обнаруженных нами галактик, обладающих интенсивным ультрафиолетовым континуумом. Процент эмиссионных объектов среди указанных галактик сильно повысился после того, как начали получать для них щелевые спектры. Щелевые спектры для галактик с ультрафиолетовым континуумом получили В. В. Видман и Э. Е. Хачикян [12, 13], В. Л. Саржент [14] и М. Э. Ульрих [15] в американских обсерваториях, М. А. Аракелян

2-212

Э. А. Дибай, В. Ф. Есипов и Б. Е. Маркарян [16, 17] и Э. К. Денисюк [18] в советских обсерваториях и Н. Карози, М. Шопине и Р. Дюфло [19] во Франции.

Полученные спектры обладают различной дисперсией, от 28 до 430 А/жм и охватывают разные области спектра в интервале λ 3500 и λ 7500. Чаще всего, однако, снималась синяя область. спектра и лишь изредка красная, т. к. в этом случае требуются более длительные экспозиции. Но эмиссионные линии иногда обнаруживаются только в красной части спектра, т. к. линии здесь наиболее интенсивны. Число эмиссионных объектов среди залактик, изученных в сине-золубой части спектра, доходит до 80%, а при изучении в красной части это число доходит до 90%, Это очень важный результат, т. к. достаточно сильная эмиссия у ядер галактик вообще встречается очень редко.

Отсюда неминуемо следует важный вывод о том, что наблюдаемая в коротковолновой части спектров рассматриваемых галактик непрерывная эмиссия почти всегда сопровождается сильной эмиссией в линиях. При этом в эмиссии бывают как разрешенные, так и запрещенные линии. Это в большинстве случаев водородные линии бальмеровской серии и линии нейтрального и ионизованного кислорода, гелия, азота, серы и т. д. Таким образом, следует констатировать, что рассматриваемые галактики обладают двумя важными спектральными особенностями: интенсивной непрерывной эмиссией в коротковолновой части спектра и эмиссией в линиях. Такое сочетание свидетельствует о присутствии газа и возбуждающего его высокочастотного излучения в ядрах этих галактик.

Вышеупомянутые авторы отождествили линии в спектрах изученных ими галактик, дали характеристики линий, определили красные смещения, иногда и некоторые другие характеристики галактик.

Следует отметить, что картина линейчатого спектра меняется при переходе от одного объекта к другому. При этом меняются как абсолютные, так и относительные интенсивности и ширины линий. Иногда меняются и протяженности линий, свидетельствующие о различии размеров зон их возникновения. При этом зона возникновения запрещенных линий не всегда превосходит по размерам зону возникновения разрешенных линий. Линии в спектрах часто наблюдаются в наклонном положении, свидетельствуя о наличии заметного вращения у ядер.

Интенсивности эмиссионных линий, как известно, зависят от массы и плотности среды, где они возникают. Эмиссионные линии в спектрах рассматриваемых галактик обладают различными интенсивностями. У одних они очень сильны, у других умеренные. Но в большинстве случаев в спектрах галактик, обладающих избыточным ультрафиолетовым излучением, наблюдаются достаточно интенсивные эмиссионные линии.

О ПРИРОДЕ ГАЛАКТИК С УЛЬТРАФИОЛЕТОВЫМ КОНТИНУУМОМ. 1 173

Судя по этому, масса имеющегося в их ядерных областях газа должна быть значительной.

Поскольку газ не может долго удержаться в ядрах галактик и нет основания рассматриваемые галактики считать исключительно молодыми, то присутствие газа в их ядрах должно быть скорее результатом непрерывного истечения или выброса облаков газа из недр ядер, откуда исходит и возбуждающее газ высокочастотное излучение. Такие ядра принято считать активными.

Понятие активности ядер галактик, введенное в науку В. А. Амбарцумяном [20, 21], легло в основу развиваемого им и его последователями представления об эволюции галактик.

Подавляющее большинство галактик типа s—sd обладает конденсированными — звездоподобными ядрами*, находящимися в активной стадии. Об этом свидетельствуют нетепловая природа излучения, сильная эмиссия в спектре и высокая светимость этих галактик. У части галактик типа d—ds также, по-видимому, имеются звездообразные — активные ядра, обладающие, однако, низкой светимостью, вследствие чего они не выделяются на ярком фоне центральных частей галактик. У остальных галактик типа d—ds видимо ядра прошли весь период активности и исчерпали себя, а в настоящее время в них идет интенсивный процесс звездообразования.

Другое обстоятельство, говорящее об активной природе галактик типа s—sd, заключается в том, что примерно четвертая часть их являются объектами сейфертовского типа, т. е. обладают ядрами, находящимися в стадии максимальной активности. Им будет посвящена следующая статья этой серии.

Следует отметить, что остальные галактики типа s—sd от объектов сейфертовского типа отличаются тем, что в их спектрах в данное время не наблюдаются широкие эмиссионные линии. Но широкие линии отсутствуют и у многих квазизвездных объектов, в том числе и у части квазаров. Поэтому сходство их с квазизвездными объектами и объектами сейфертовского типа по ряду других признаков (нетепловая природа излучения, сильная конденсированность ядер, высокая светимость, сильная эмиссия в спектре и т. д.) дает достаточное основание для признания активной природы их ядер.

Наблюдаемые узкие эмиссионные линии в спектрах галактик типа s—sd могут быть результатом разных причин. Прежде всего они могут быть результатом малых скоростей газа в ядрах галактик. Такая ситуация может возникнуть, например, при малых скоростях непрерыв-

Из-за возможных ошибок при классификации, среди галактик, отнесенных к. типу s—sd, могут встречаться объекты, не обладающие конденсированными ядрами.

ного истечения газа из ядер. Узкие линии в спектрах активных ядер можно объяснить и неблагоприятной ориентировкой галактик в отношении наблюдателя, если допустить, что облака газа всегда выбрасываются из полюсов ядер в направлении их осей вращения. Обе эти возможности, однако, нуждаются в серьезной проверке, для которой в настоящее время нет пока необходимых данных.

Имеется еще одна возможность для объяснения присутствия узких линий в спектрах галактик типа s—sd, которая нам кажется наиболее вероятной. Она заключается в следующем.

Судя по проценту объектов сейфертовского типа среди всех галактик, можно считать, что общая длительность пребывания галактик в сейфертовской фазе, во всяком случае, должна превосходить миллионы лет. Эта общая длительность должна быть еще больше, если допустить, что не все галактики проходят сейфертовскую фазу. С другой стороны, наблюдения указывают на быстрые изменения яркостей ядер, также, как интенсивностей и профилей спектральных линий галактик сейфертовского типа. Это указывает на быстрые изменения активности ядер и заставляет допустить прерывистый или рекуррентный характер сейфертовской фазы. Если сейфертовская фаза в самом деле имеет прерывистый или рекуррентный характер, то галактики типа s-sd с узкими линиями можно рассматривать как объекты, родственные с сейфертовскими, но находящиеся или в досейфертовской или в послесейфертовской стадиях. Соответствующие признаки этих стадий удастся выявить в будущем, после завершения обстоятельного исследования рассматриваемых галактик.

Таким образом, можно констатировать, что большинство рассматриваемых галактик обладает ядрами, находящимися на разных стадиях развития активной деятельности, включая и сейфертовскую как фаву максимальной активности.

Все это приводит к выводу, что рассматриваемые объекты представляют собой особый класс галактик с активными ядрами. Эти галактики по своим физическим и морфологическим характеристикам занимают промежуточное положение между обычными галактиками и квазизвездными объектами.

В заключение считаю своим приятным долгом выразить глубокую благодарность академику В. А. Амбарцумяну за постоянный интерес и внимание к исследованиям, ведущимся по галактикам с ультрафиолетовым континуумом.

Бюраканская астрофизическая обсерватория

О ПРИРОДЕ ГАЛАКТИК С УЛЬТРАФИОЛЕТОВЫМ КОНТИНУУМОМ. І 175

ON THE NATURE OF GALAXIES WITH ULTRAVIOLET CONTINUUM I. PRINCIPAL SPECTRAL AND COLOUR CHARACTERISTICS

B. Ye. MARKARIAN

The results of spectral and photoelectric observations of galaxies with UV excess are considered. On the slit spectrograms of almost all galaxies, having a strong UV continuum, emission lines are present. This testifies to the presence of a hot gas and a central source of high frequency radiation it their nuclei. The results of photoelectric observations show that according to the character of energy distribution in their spectra, there exists a similarity between the considered galaxies and QSO-s. Therefore it follows that the radiation of these galaxies has a nonthermal character. The overwhelming majority of the s-sd type galaxies and a small part of the d-ds type, have condensed—stellar nuclei. Each fourth of these objects has the Seyfert characteristics. The considered objects represent a special class of galaxies, having nuclei in different stages of activity including the Seyfert stage.

ЛИТЕРАТУРА

1. Б. Е. Маркарян, Э. Я. Озанесян, С. Н. Аракелян, Сообщ. Бюр. обс., 30, 3, 1961.

- 2. Б. Е. Маркарян, Э. Я. Оганесян, С. Н. Аракелян, Астрофизика, 1, 38, 1965; 2, 53, 1966.
- 3. G. de Vaucouleurs, Ap. J., Suppl. ser., No. 48, 5, 233, 1961.
- 4. W. W. Morgan, N. U. Mayall, P. A. S. P., 69, 291, 1957.
- 5. Б. Е. Маркарян, Сообщ. Бюр. обс., 34, 3, 1963.
- 6. N. M. Tovmassian, Austr. J. Phys., 19, 565, 1966.
- 7. G. Haro, Bol. Obs. Tonantzintla, No. 14, 8, 1956.
- 8. В. А. Амбарцумян, Р. К. Шахбазян, ДАН Арм.ССР, 25, 185, 1957; 26, 277, 1958.
- 9. Б. Е. Маркарян, Астрофизика, 3, 55, 1967; 5, 443, 581, 1969.
- 10. Б. Е. Маркарян, В. А. Липовецкий, Астрофизика, 7, 511, 1971; 8, 152, 1972.
- 11. Э. А. Дибай, Астрофизика, 6, 350, 1970.
- 12. Д. В. Видман, Э. Е. Хачикян, Астрофизика, 4, 587, 1968; 5, 113, 1969.
- 13. D. W. Weedman, Ap. J., 171, No. 1, Part 1, 1971.
- 14. W. L. W. Sargent, Ap. J., 159, 765, 1970; 173, 7, 1972.
- 15. M. H. Ulrich, Ap. J., 163, 441, 1971.
- 16. М. А. Аракелян, Э. А. Дибай, В. Ф. Есипов, Астрофизика, 6, 39, 1970; 8, 33, 1972.
- 17. М. А. Аракелян, Э. А. Дибай, В. Ф. Есипов, Б. Е. Маркарян, Астрофизика, 6, 367, 1970; 7, 177, 1971.

- 18. Э. К. Денискок, Астрон. цирк., 615, 4, 1971; 621, 7, 1971.
- 19. N. Carozzi, M. Chopinet, R. Duflot, Comptes Rendus, Acad. Sci. Paris, 273, B151, 1971.
- 20. V. A. Ambartsumtan, Transactions of the IAU, XIB, 145, 1962.
- 21. В. А. Амбаруумян, Нестационарные явления в галактиках, Ереван, 1968, стр. 11.

АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 8

МАЙ, 1972

выпуск 2

СПЕКТРЫ ГАЛАКТИК МАРКАРЯНА. V

М. А. АРАКЕЛЯН, Э. А. ДИБАЙ, В. Ф. ЕСИПОВ Поступила 18 января 1972

Приведены результаты спектральных наблюдений семидесяти шести объектов из четвертого списка [7] галактик с ультрафиолетовым континуумом. Эмиссионные линии обнаружены в спектрах шестидесяти одного объекта. Объекты № 304, 335, 348, 352, 372 и 374 проявляют спектральные особенности ядер сейфертовских галактик.

В сообщениях [1—4] были представлены результаты спектральных наблюдений примерно двухсот объектов из списков галактик с ультрафиолетовым континуумом Б. Е. Маркаряна [5,6]. Настоящая статья содержит аналогичные результаты относительно части объектов из нового, четвертого списка [7] подобных галактик, полученные с помощью 125-см рефлектора Южной станции ГАИШ. Аппаратура и методика наблюдений описаны в [1]. Как и в [4], обзор производился в красной области спектра (5500—7500 А). В синей области спектра наблюдались лишь объекты, у которых проявляются спектральные особенности ядер сейфертовских галактик.

Полученные результаты суммированы в нижеследующей таблице, где индексы "s", "m" и "w" обозначают, соответственно, высокую, среднюю и низкую интенсивность эмиссионной линии.

Далее приводятся краткие морфологические характеристики и описания спектров объектов с эмиссионными линиями.

Маркарян 303. Эллипсоидальный объект со слабой короной. В спектре имеются умеренной интенсивности H_a и слабый дублет [N II] 10. 6548/83.

Маркарян 304. Крайне компактный объект с диффузными краями. В красной области спектра наблюдается лишь широкая и очень сильная эмиссионная деталь, являющаяся блендой Н_а и дублета [N II] λ .

М. А. АРАКЕЛЯН, Э. А. ДИБАЙ, В. Ф. ЕСИПОВ

7	6			
- 4	uo	~"	44	

			Интенсквност	Спектральный			
No	m _{pg}	z	[S II] XX 6717/31	[N II] λλ 6548/83	Ha	тип	
1	2	3	1 4	5	6	7	
303	15	0.025	-	W	m	d2	
304	15.5	0.065		-		sdle	
306	15	0.019		w	m	d2	
307	15.5	0.019	_	w	m	d2e	
308	15.5	0.024	-		8	sd2e	
309	16	0.042	-	m	m	• sdle	
311	15	0.031		ซ	m	ds2e	
312	16	0.033	-	w	m	d3	
313	14	0.007	20	m	m	sd2	
314	14.5	0.006	m	W		d2e	
315	15	0.040				d2e	
316	16	0.041	-	m	8	d2e	
317	16	0.021	eu eu			s3e	
318	16	0.016			5	d2	
319	15.5	0.028	w		8	sd2e	
321	14.5	0.032		E E	m	sd2e	
322	15.5	0.027	w		-	sd2e	
323	15.5	0.015	en e	w	w	sd2	
324	15.5	0.005	-	W		d2	
325	13.5	0.011	w	w w	3	d2e	
326	15	0.013			5	ds30	
328	16	0.004	m	m		dsle	
330	15.5	0.014	-	- •	w	dsle	
331	16	0.018	m			sd3e	
332	15.5	0.009	w	m	8	s2e	
334	15	0.023	m		5	sd2e	
335	14	0.025	-			sle	
336	16	0.017	e and a second s	m	1	d3e	
338	15.5	0.018	-	-	w	d3	
339	15	0.018	e a	TU TU	m	d3	
340	16.5	0.021	-		8	sd2e	
341	15	0.015	w	τυ.	en en	sd2e	
342	16.5	0.037	-		w	ds3	
343	16	0.018	-	w	m	d3e	
345	15.5	0.015	w.	พ	m	sd3e	
346	16.5	0.018		-	m	d2	
					1		

СПЕКТРЫ ГАЛАКТИК МАРКАРЯНА. V

T.	6	1 1.	-		auual
10	10 A K K U U	1 11	LDOX	0.4.00	erte.

1	2	3	4	5	6	7
347	15	0.020	m	3		d2e
348	15.5	0.014		8		d2e
349	15.5	0.023		m	8	#d2e
350	15.5	0.017			w	d2
352	15	0.015	_			sle
353	15.5	0.016	m			s3e
354	16.5	0.047	1 h t	W	w	ds3e
356	16	0.030	m	m	8	ds2e
357	16	0.054	W	w		s2e
358	16	0.042	W	W	w	ds2e
359	15.5	0.017	8		8	sd2e
360	15.5	0.027	-	W	m	sd2e
361	16	0.027	U	W		sd2e
363	15.5	0.010	m	m	8	d2 .
364	15.5	0.027	W	Ø	m	d2e
365	15	0.016		W	8	sd2e
366	15.5	0.026	. —	Ø	w	sd3e
367	16	0.037	W	W	m	d3 -
368	15	0.030	W	W	m	d3e
369	16	0.013	m	m	8	sdle-
370	14.5	0.003	m	m		ds2
372	15.5	0.031		2	8	s2e
373	16.5	0.020	m	m	8	ds2e
374	15.5 + 16.5	0.044	- 12		8	s1e + s3
375	16	0.012	w	W	8	d2

6548/83. Ширина этой бленды—около 100 А. Визуальная область спектра содержит широкую Н_β и узкие линии [OIII] λ 4959/5007. Водородные линии асимметричны. По спектральным характеристикам уверенно может быть отнесен к объектам типа ядер сейфертовских галактик. С другой стороны, отличие этого объекта от квазизвездных, с точки зрения морфологии, проявляется лишь благодаря присутствию слабой короны.

Маркарян 306. Объект иррегулярной формы с Н_α умеренной интенсивности и слабым дублетом [N II] № 6548/83.

Маркарян 307. Структура объекта неясна, т. к. на картах Паломарского обозрения он передержан. В спектре имеются умеренной. интенсивности Н₄ и слабый дублет [N II] № 6548/83.
Маркарян 308. Эллипсоидальный объект со слабой короной. Н_а очень сильна и диффузна. Имеется также [сильный дублет [N II] λ .6548/83.

Маркарян 309. Центральный и наиболее яркий компонент цепочки, содержащей три объекта. Спектр содержит умеренной интенсивности Н_α и дублет [N II] № 6548/83. Н_а диффузна.

Маркарян 311. Яркий объект формы, напоминающей треугольник. В спектре содержится умеренной интенсивности Н_« и слабый дублет [N II] № 6548/83.

Маркарян 312. Пара компактных объектов, неразрешенных на карте Паломарского обозрения. В фокусе 125-см телескопа она разрешается. В спектре яркого компонента имеются умеренной интенсивности и, возможно, несколько диффузная H_α и слабый дублет [N II] $\lambda\lambda$ 6548/83. Линии, по-видимому, наклонны. В спектре слабого компонента эмиссионные линии проследить не удается.

Маркарян 313. Вероятная спиральная галактика с большим центральным сгущением. В спектре содержатся умеренной интенсивности Н_α и дублет [N II] λλ6548/83, а также слабый дублет [S II] λλ6717/31.

Маркарян 314. Эллипсоидальный объект с очень сильной H_α, очень слабым дублетом [N II] λλ 6548/83 и умеренной интенсивности дублетом [S II] λλ 6717/31.

Маркарян 315. Крайне компактный объект с очень слабой короной из числа компактных галактик Цвикки. Ранее наблюдался У. Л. У. Сарджентом [8]. На нашей спектрограмме имеются сильные линии H_a, [N II] λλ 6548/83 и [S II] λλ 6717/31. Линии сильно наклонны и, возможно, диффузны.

Маркарян 316. Сфероидальный объект с очень слабой короной. В спектре имеются сильная Н_а и умеренной интенсивности дублет [N II] № 6548/83.

Маркарян 317. Эллиптический объект с короной. В спектре имеются сильные H_α и [N II] λλ 6548/83 и умеренной интенсивности дублет [S II] λλ 6717/31.

Маркарян 318. Сфероидальный объект с оболочкой. Спектр содержит сильные Н_а, [N II] λ 6548/83 и [S II] λ 6717/31. Линии наклонны. Маркарян 319. Галактика с перемычкой и заметным ядром. В спектре имеются сильные Н_α и [N II] 1). 6548/83, а также слабый дублет [S II] 1). 6717/31.

Маркарян 321. Спиральная галактика. Спектр содержит умеренной интенсивности Н₄ и слабый дублет [N II] № 6548/83.

Маркарян 322. Сфероидальный объект с несимметричной короной. Спектр содержит сильные H_a и [N II] D. 6548/83, а также слабый дублет [S II] D. 6717/31.

Маркарян 323. Возможно, спиральная галактика. В спектре ядра имеются слабая Н₄ и очень слабые [N II] № 6548/83 и [S II] № 6717/31.

Маркарян 324. Крайне компактный, почти звездообразный объект. Спектр содержит сильную Н₄ и очень слабый дублет [N II] № 6717/31.

Маркарян 325. Сфероидальный объект с короной. Спектр содержит сильную Н_а и слабые [N II] № 6548/83 и [S II] № 6717/31. В числе компактных галактик Цвикки ранее исследовался Сарджентом [8].

Маркарян 326. Большое центральное сгущение ядра спиральной галактики, имеющей слабые аморфные рукава. В спектре имеются очень сильная H_α и сильные [N II] λλ 6548/83 и [S II] λλ 6717/31. Все линии диффузны.

Маркарян 328. Незначительно вытянутый, но компактный объект с сильной Н_а и умеренной интенсивности дублетами [N II] № 6548/83 и [S II] № 6717/31. Ранее исследовался Р. Барбоном [9].

Маркарян 330. Объект, вытянутый с запада на восток и отмеченный в [7] как возможная пара. Однако при спектральных наблюдениях со щелью, ориентированной вдоль большой оси, двойственность не выявляется. В спектре объекта имеется лишь слабая H_a.

Маркарян 331. Сфероидальный объект, возможно, с небольшим выбросом. Спектр содержит сильные Н_а и [N II] № 6548/83 и умеренной интенсивности дублет [S II] № 6717/31.

Маркарян 332. Сферическая галактика, являющаяся компонентом двойной системы. В спектре имеются сильная H_α, умеренной интенсивности дублет [N II] λλ 6548/83 и слабый дублет [S II] λλ 6717/31. Высота H_α примерно в полтора раза превосходит высоту запрещенных линий. Это свидетельствует о том, что линейные размеры зоны свечения водорода превосходят размеры зоны свечения запрещенных линий.

Маркарян 334. Сфероидальное ядро со слабыми малоразвитыми спиральными рукавами. В спектре, кроме очень сильной и диффузной H_α, имеются сильный дублет [N II] λλ 6548/83 и умеренной интенсивности [OI] λ 6300 и [S II] λλ 6717/31.

Маркарян 335. Звездообразный объект со слабой короной, имеющий, согласно [7], распределение энергии типа квазизвездных объектов. Обладает спектральными особенностями ядер сейфертовских галактик. В красной части спектра присутствует широкая и сильная эмиссионная деталь, являющаяся блендой Н_α и дублета [N II] 12. 6548/83. В визуальной области спектра наблюдается широкая H₃ и узкие линии [OIII] 12. 4959/5007. Подобно Маркарян 304, водородные линии асимметричны. Наличие эмиссионных линий и вероятная принадлежность к сейфертовскому типу отмечены в [7].

Маркарян 336. Эллипсоидальная галактика с сильной H_α, умеренной интенсивности дублетом [N II] 12.6548/83 и слабым дублетом [S II] 12.6717/31.

Маркарян 338. Сильно вытянутый объект со слабой наклонной На.

Маркарян 339. Компактный объект с умеренной интенсивности На, слабыми [N II] 1. 6548/83 и [S II] 1. 6717/31. Линии наклонны.

Маркарян 340. Эллипсоидальный объект с размытыми краями. В спектре имеется лишь сильная наклонная и диффузная H_a.

Маркарян 341. Компактный компонент пары со слабыми H_α. [N II] λλ 6548/83 и [S II] λλ 6717/31.

Маркарян 342. Компактный объект с очень слабой H_a.

Маркарян 343. Компактный объект со спиралевидными отростками. Спектр содержит умеренной интенсивности Н_в и слабый дублет [N II]). 6548/83.

Маркарян 345. Компактный объект со слабой оболочкой. В спектре имеются умеренной интенсивности H_α и слабые [N II] λλ 6548/83 и [S II] λλ 6717/31.

Маркарян 346. Компактный, хотя и несколько вытянутый объект с Н_x умеренной интенсивности.

Маркарян 347. Несколько вытянутый, но компактный объект. Исследовался Сарджентом [8] в числе компактных галактик Цвикки. Спектр содержит очень сильную H_α, сильный дублет [N II] 1. 6548/83 и умерейной интенсивности дублет [S II] 1. 6517/31. Высота линии H_α заметно превосходит высоту запрещенных линий.

Маркарян 348. Сфероидальный объект со слабой короной заметных размеров. Обладает спектральными особенностями ядер сейфертовских галактик—ширина линии H_α около 60 A. H_α, а также [N II] λλ 6548/83 и [S II] λλ 6717/31 сильны. В красной области спектра присутствует также умеренной интенсивности линия [OI] λ 6300. В синей области спектра имеются сильные [OIII] λλ 4959/5007 и умеренной интенсивности диффузная H_β.

Маркарян 349. Несколько вытянутый, но довольно компактный объект. Линии наклонные. Н_а сильна, дублет [N II] № 6548/83—умеренной интенсивности.

Маркарян 350. Несколько диффузный, вытянутый объект со слабой Н₃.

Маркарян 352. Сфероидальный конденсированный объект с размытыми краями. В красной области спектра имеется лишь сильная H_{α} с шириной около 150 А. Таким образом, объект обладает отчетливо выраженными спектральными особенностями ядер сейфертовских галактик. В визуальной области спектра имеются узкие линии [OIII] $\lambda\lambda$ 4959/5007 умеренной интенсивности, широкая H_{β} , а также H_{τ} . Присутствие H_{α} и вероятная принадлежность к сейфертовскому типу отмечены в [7].

Маркарян 353. Ядро эллиптической галактики. В спектре имеются сильные Н₁ и [N II] № 6548/83, а также умеренной интенсивности [S II] № 6717/31.

Маркарян 354. Очень компактный объект со слабыми H_α и [N II] λλ 6548/83. H_α диффузна.

Маркарян 356. Несколько вытянутый, но довольно компактный объект с очень сильной Н₁ и умеренной интенсивности [N II] № 6548/83 и [S II] № 6717/31.

Маркарян 357. Очень компактный объект с выбросом. Спектр содержит очень сильную наклонную H_{α} , слабые [N II] λ 6548/83, [S II] λ 6717/31 и, возможно, очень слабую линию [OI] λ 6300.

Маркарян 358. Ядро спиральной галактики. В спектре имеются очень слабые H_α, [N II] λλ 6548/83 и [S II] λλ 6717/31.

Маркарян 359. Сфероидальный объект с короной. В спектре имеются сильные линии H_a, [N II] $\lambda \delta 6548/83$ и [S II] $\lambda \delta 6717/31$.

Маркарян 360. Компактный объект с несимметричной короной, напоминающей выброс. В числе компактных галактик Цвикки исследовался Сарджентом [8]. Нами наблюдались умеренной интенсивности Н_а и слабый дублет [N II] $\lambda \delta$ 6548/83.

Маркарян 361. Компактный, сфероидальный объект с сильной Н_α и слабыми [N II] λλ 6548/83 и [S II] λλ 6717/31. В числе компактных галактик Цвикки был исследован Барбоном [9].

Маркарян 363. Несколько вытянутый объект с резкими краями. В спектре имеются сильная H_{α} и умеренной интенсивности [N II] $\lambda\lambda$ 6548/83 и [S II] $\lambda\lambda$ 6717/31.

Маркарян 364. Сфероидальный объект со слабой оболочкой. Спектр содержит умеренной интенсивности Н_α и слабые [N II] D. 6548/83 и [S II] D. 6717/31. Высота Н_α заметно больше высоты запрещенных линий.

Маркарян 365. Восточный компонент двойной системы. В спектре имеются сильная Н_а и слабый дублет [N II] 1). 6548/83.

Маркарян 366. Компактный объект с несимметричной оболочкой. В спектре имеются слабые Н_« и [N II] λ . 6548/83.

Маркарян 367. Несколько вытянутый, но компактный объект. В спектре имеются умеренной интенсивности H_α и слабые [N II] λλ 6548/83 и [S II] λλ 6717/31.

Маркарян 368. Сфероидальный объект с короной. Спектр содержит умеренной интенсивности На и слабые [N II] 12. 6548/83 и [S II] 12. 6517/31.

Маркарян 369. Компактный сфероидальный объект с несимметричной оболочкой. В спектре имеются очень сильная Н_а и умеренной

СПЕКТРЫ ГАЛАКТИК МАРКАРЯНА. V

интенсивности [N II] λ 6548/83 и [S II] λ 6717/31. В числе компактных галактик Цвикки был исследован Барбоном [9].

Маркарян 370. Эллиптическая галактика с короной. Спектр содержит сильную Н₄ и умеренной интенсивности [N II] іл 6548/83 и [S II] іл 6717/31.

Маркарян 372. Незначительно вытянутый объект со слабой короной. В красной части спектра наблюдается лишь широкая H_a, что дает основание отнести его к объектам со спектральными особенностями ядер сейфертовских галактик. Ширина H_a—около 100 A. В визуальной области спектра присутствуют умеренной интенсивности узкие линии [OIII] Л. 4959/5007 и широкая H₃.

Маркарян 373. Спиральная галактика, возможно, двойная. Спектр содержит сильную Н_α и умеренной интенсивности [N II] λλ 6548/83 и [S II] λλ 6717/31.

Маркарян 374. Восточный компонент взаимодействующей системы — объект типа ядер сейфертовских галактик. В красной области спектра имеется сильная H_α шириной около 50 А. Наличие H_α и возможность присутствия признаков сейфертовских галактик отмечены в [7]. В визуальной области спектра присутствуют умеренной интенсивности диффузная H_β и узкие линии [OIII] 1. 4959/5007. В спектре западного компонента линии проследить не удается.

Маркарян 375. Очень компактный объект с небольшими выбросами. В спектре имеются сильная Н_• и слабые [N II] 1. 6548/83 и [S II] 1. 6717/31.

Кроме указанных объектов наблюдались также № 310, 320, 327, 329, 333, 337, 344, 351, 355, 362, 371, 377, 378, 379, 386. В спектрах этих объектов эмиссионные линии не обнаружены.

Авторы благодарны Б. Е. Маркаряну и В. А. Липовецкому за предоставление им четвертого списка галактик с ультрафиолетовым континуумом до опубликования.

Бюраканская астрофизическая обсерватория Государственный астрономический ин-т им. П. К. Штернберга

М. А. АРАКЕЛЯН, Э. А. ДИБАЙ, В. Ф. ЕСИПОВ

THE SPECTRA OF MARKARIAN GALAXIES. V

M. A. ARAKELIAN, E. A. DIBAY, V. F. YESIPOV

The results of spectral observations of seventy six objects from the fourth list [7] of galaxies with ultraviolet continuum are presented. The emission lines are detected in the spectra of sixty — one objects. The objects No. 304, 335, 348, 352, 372 and 374 show the spectral pecularities of the nuclei of Seyfert galaxies.

ЛИТЕРАТУРА

- 1. М. А. Аракелян, Э. А. Дибай, В. Ф. Есипсе, Астрофизика, 6, 39, 1970.
- 2. М. А. Аракелян, Э. А. Дибай, В. Ф. Есипов, Б. Е. Маркарян, Астрофязика, 6, 357, 1970.
- 3. М. А. Аракелян, Э. А. Дибай, В. Ф. Есипов, Б. Е. Маркарян, Астрофизика, 7, 177, 1971.
- 4. М. А. Аракелян, Э. А. Дибай, В. Ф. Есипов, Астрофизика, 8, 33, 1972.
- 5. Б. Е. Маркарян, Астрофизика, 5, 443, 1969.
- 6. Б. Е. Маркарян, Астрофизика, 5, 581, 1969.
- 7. Б. Е. Маркарян, В. А. Липовецкий, Астрофизика, 7, 511, 1971.
- 8. W. L. W. Sargent, Ap. J., 160, 405, 1970.
- 9. R. Barbon, Contr. Asiago Obs., No. 218, 1969.

АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 8

МАЙ, 1972

ВЫПУСК 2

ВОДОРОДНЫЕ ЛИНИИ В СПЕКТРЕ ГАЛАКТИКИ МАРКАРЯН 6 В ПЕРИОД ЕЕ АКТИВНОСТИ

В. И. ПРОНИК, К. К. ЧУВАЕВ Поступила 15 марта 1972

В 1970 — 1971 гг. с помощью спектрографа 2.6-метрового телескопа Крымской астрофизической обсерватории, работающего с ЭОП-ом, были получены спектры галактики Маркарян 6 (IC 450) с дисперсиями 330 и 100 А/мм.

В течение года наблюдений поток в линии Н_в уменьшился почти в 2 раза, а интенсивность непрерывного спектра более чем в 3 раза. Между этими величинами наблюдается четкая корреляция. При больших потоках в непрерывном спектре линия Н_в достигает насыщения.

На всех спектрах водородные линии имеют очень широкне крылья (~ ± 5500 — 6000 км/сек). Сложная структура этих линий указывает на существование отдельных облаков газа с различными скоростями.

Обнаруженный в начале 1969 г. Э. Хачикяном и Д. Видманом фиолетовый компонент водородных линий существует до настоящего времени.

1. Астом 1970 г. в программу спектральных наблюдений на 2.6 *м* телескопе им. Г. А. Шайна Крымской астрофизической обсерватории был включен ряд наиболее интересных объектов из опубликованных Б. Е. Маркаряном списков галактик с ультрафиолетовым континуумом [1]. Первые спектры объекта Маркарян 6 (IC 450) получены нами 1/2.XI.1970 г. При их просмотре нельзя было не обратить внимания на тот факт, что линии водорода двойные: с фиолетовой стороны от главного, центрального ядра линии появился компонент, не отмеченный ранее в работе [2]. Позже, во время визита в Крымскую астрофизическую обсерваторию Д. В. Видмана (США) и Э. Е. Хачикяна (Бюраканская обсерваторию Д. В. Видмана (США) и Э. Е. Хачикяна (Бюраканская обсерватория), нам стало известно, что по их наблюдениям фиолетовый компонент у водородных линий был обнаружен еще в январе 1969 г. Результаты этих наблюдений и их интерпретация приведены в [3]. Последний спектр объекта Маркарян 6, на котором еще не было заметно фиолетового компонента, датирован февралем 1968 г. Согласно [3], дополнительный максимум в крыле водородных линий образовался за время меньше или порядка одного года. При столь быстрых изменениях представлялось весьма интересным проследить дальнейшее изменение контуров водородных линий. С этой целью в течение года на спектрографе с 3-х камерным ЭОП-ом нами велись систематические наблюдения спектра галактики Маркарян 6. В результате было получено свыше 20-ти расширенных спектров с дисперсиями 100 и 335 А/мм. При дисперсии 335 А/мм спектры охватывают область от 4300 до 7000 А; при дисперсии 100 А/мм — область протяженностью около 1000 А. Поэтому, для получения линий Н_β и H_α с большей дисперсией, делались две экспозиции при различном положении дифракционной решетки.

Данные о хронологии и количестве спектров приведены в табл. 1. Количество спектров с дисперсией 100 А/жм относится только к области с линией Н₃. Спектры в области H_a фотографировались не во все даты. Спектры за 1/2. XI. 1970 г. сильно передержаны и не обрабатывались.

2. Спектр объекта Маркарян 6 в области длин волн λ . 3700 — 5100 А, относящийся к эпохе 1968 г., описан в [2]. Сведения об интенсивностях и эквивалентных ширинах линий Н_β и N₁ + N₂ [O III] имеются в [3, 4]. Однако никаких замечаний относительно контура линии Н_β в этих работах нет.

На всех наших спектрах (рис. 1) линия Н₃ наблюдается в виде центрального пика, расположенного на широкой подложке, образованной протяженными крыльями. Ширина пика примерно такая же, как и ширина небулярных линий. С фиолетовой стороны от этого пика на расстоянии 50 А четко виден более слабый компонент. Длинноволновое крыло Н_β простирается вплоть до линии). 4959 [O III], так что общая ширина линии Н_β у основания составляет 160 — 180 А.

В красной области спектра (рис. 2) наиболее яркой деталью является линия H_a с широкими крыльями, на которые накладываются линии λ 6548, 6584 [NII]. Интенсивность линии λ 6548 в центре по крайней мере вдвое меньше центральной интенсивности H_a. Полная ширина линии H_a у основания—более 300 А. Из других линий наиболее яркими являются λ 6300 [OI] и дублет $\lambda\lambda$ 6717, 6731 [SII]. Отношение I₂₆₇₃₁/I₂₆₇₁₇ \approx 0.9 — 1.0.

В связи с тем, что контур линии H_« искажен линиями [N II], мы решили ограничиться изучением линии H_β. Все спектры в области линий H_β и [O III] измерены на микрофотометре MФ-2. После учета

λ(Å)

Рис. 1. Спектры галактики Маркарян 6 в области линии Нв. Для карактеристики инструментального контура на спектре 26—27.XII.1970 г. пунктиром изображена линия ночного неба. спектра ночного неба и фона ЭОП-а строилось распределение интенсивности в зависимости от длины волны.

В тех случаях, когда за ночь имелось два и более спектров, они осреднялись. Осреднены также спектры за 21/22, 28/29 марта 1971 г. и 26/27, 27/28 сентября 1971 г.

Рис. 2. Спектр галактики Маркарян 6 в области линии На.

Центральная интенсивность линии λ 5007 [О III] на многих спектрограммах передержана. Повтому, с целью получения однородных данных, на всех спектрах определялась только интенсивность линии λ 4959 и принималось, что отношение $I_{\lambda 5007}/I_{\lambda 4959}$ равно 3 (На спектрах за 30/31.I.1971 г. и 18/19.XI.1971 г., на которых линия λ 5007 не была передержана, вто отношение равно 3.0 и 2.85, соответственно, что весьма близко к теоретическому).

На рис. 1 приведены осредненные интенсивности вдоль спектров, полученных с дисперсией 100 А/мм (Спектры за 18/19.X1.1971 г., в отличии от остальных, получены с несколько меньшей дисперсией (106 А/мм), поэтому шкала длин волн для них отличается от той, которая приведена на рис. 1).

К сожалению, во время наблюдений спектры не калибровались в шкале абсолютных интенсивностей. Нам не известны также какие-либо данные фотометрических наблюдений этого объекта в даты наших наблюдений. Повтому на рис. 1 шкалы интенсивностей подобраны так, чтобы суммарная площадь под контурами линий $N_1 + N_2$ [O III] для всех дат была примерно одинаковой. Такой выбор шкалы интенсивностей соответствует предположению о постоянстве потока излучения в небулярных линиях [O III]. У нас нет прямых доказательств правильности сделанного предположения, но в качестве косвенного аргумента может послужить оценка возможного характерного времени изменения линий [OIII]. Изменение потока в линиях [OIII] может быть вызвано не только изменением ионизации газа, но и изменением электронной температуры. Поэтому, кроме времени рекомбинации, которое зависит от плотности газа, мы должны знать также и линейные размеры области, светящейся в линиях [OIII]. Исходя из средней наблюдаемой яркости галактики ($m_v \sim 15^m$) и средней эквивалентной ширины центрального пика линии H₃ (~ 25 A), можно оценить величину потока в нем, а зная расстояние до объекта (z = 0.019, H = 75 км/секмпс) и полную светимость:

$$E_{\rm H_e}$$
 (ядро) $\approx 6 \cdot 10^{40}$ spi/cex.

Электронная плотность, найденная по отношению $I_{\lambda 6731}/I_{\lambda 6717}$ [5], примерно равна $3 \cdot 10^3 \, cm^{-3}$. Отсюда находим нижнюю границу эффективных размеров области, занятой газом, светящимся в линиях [OIII]: $d \approx 20 \, nc$. При таких размерах и времени рекомбинации $t = (n_e C^{-1}) \approx$ $\approx 25 \, леm$ трудно ожидать заметного изменения потока в линиях [OIII] за 1 - 2 года, если скорость возбуждающего агента не превышает скорости света.

3. Для анализа изменений, происходящих в спектре со временем, были определены полная эквивалентная ширина линии $H_{\beta} - W_{H_{\beta}}$ и суммарная эквивалентная ширина линий $N_1 + N_2$ [O III] — $W_{N_1+N_2}$. Эти величины приведены в табл. 1. Чтобы исключить влияние непрерыв-

Tahanna	1
I UUMAGU	

Даты	Число	Дисперсия	WHB	W _{N1} +N ₂	W _{H3} 103	10 ⁴ (A) ⁻¹
•	спектров	А/мм	(A)	(A)	WN1+Na	WN1+N2
4/5.11.70	3	100	59	156±52	37 <u>+</u> 0.52	62.5
3/4.12.70	2	100	117	405+40	29 <u>+</u> 0.9	24.7
26/27.12.70	2	100	100	302 <u>+</u> 27	33.5 <u>+</u> 1.2	33.3
30/31.1.71	1	100	82	235	35.0	42.5
21,'22.3.71 28/29.3.71	4	335	95	384 <u>+</u> 17	28.5 <u>+</u> 1.0	26.0
26/27.9.71) 27/28.9.71	6	335	114	535 <u>+</u> 35	21.4 <u>+</u> 0.8	18.7
18/19.11.71	2	100	117	510 ± 14	22.5 <u>+</u> 1.0	19.6
14 July 1				1		

ного спектра, на рис. З представлен график изменения отношения $W_{H_o}/W_{N_1+N_2}$ со временем. Вертикальные черточки соответствуют сред-

неквадратичным ошибкам. Полыми кружочками нанесены данные из [3]. Как видно из рисунка, отношение потоков в линиях с начала 1968 г. до начала 1970 г. возросло в 4 раза; последние два года оно уменьшается. Возможно, что полный цикл от минимума до максимума займет 4 — 4.5 года. Поскольку мы считаем, что поток в линиях $N_1 + N_3$ не меняется, то рис. З фактически представляет изменение полного потока в линии H_β. Из графика видно также, что поток в линии H_β меняется не монотонно, а со значительными флуктуациями. Сильная флуктуация, например, имела место в конце 1970 г. и начале 1971 г.

Рис. 3. Изменение полного потока в линии Н3 со временем; поток в небулярных линиях [О III] предполагается постоянным (см. текст). Полме кружки-по данным [3], заполненные-по данным табл. 1.

Если предположение о постоянстве потока в линиях $N_1 + N_2$ [O III] правильно, то изменения ($W_{N_1+N_2}$)⁻¹ характеризуют изменения величины потока в непрерывном спектре.

Из табл. 1 видно, что эта величина в течение последнего года уменьшилась более чем в 3 раза.

Весьма интересным оказалось сопоставление величин WH, /WN, +N,

и $(W_{N_1+N_2})^{-1}$ для разных дат (рис. 4). Цифры около точек на рис. 4 указывают хронологическую последовательность наблюдений. Кроме наших данных, в [3] имеется отношение интенсивностей $H_5 \times N_1 + N_2$, а в [4]—отношение эквивалентных ширин этих же линий для спектра 12.I.1970 г. Крестик на рис. 4 соответствует среднему значению этих отношений, а концы вертикальной линии—самим отношениям.

В рамках предположения $F_{N_1+N_2} = \text{const}$ рис. 4 свидетельствует о тесной связи потока в H_3 с потоком в непрерывном спектре. Такую

ВОДОРОДНЫЕ ЛИНИИ В СПЕКТРЕ ГАЛАКТИКИ МАРКАРЯН 6 193

зависимость можно ожидать, если ионизация конечной массы плотного газа, ответственного за излучение в крыльях водородных линий, меняется с величиной потока L_e-квантов: плато на верхней части кривой рис. 4 соответствует полной ионизации газа.

Рис. 4. Зависимость между полным потоком в линии Н3 и потоком в непрерывном спектре; поток в небулярных линиях [О III] предполагается постоянным (см. текст).

4. До сих пор нет единого мнения о причине возникновения широких крыльев у водородных линий. Обычно рассматриваются два возможных механизма: рассеяние на электронах и доплеровское расширение вследствие больших скоростей.

Очевидно, что в первом случае крылья линий должны быть гладкими и симметричными. Наличие фиолетового компонента у водородных линий в спектре Маркарян б несомненно свидетельствует о существовании сгустка газа, имеющего скорость примерно 3000 км/сек относительно основной массы газа.

Сравнительно большие "шумы" на спектрограммах, обусловленные в основном шумами ЭОП-а, не позволяют рассматривать мелкие детали и неровности контура как реальные. Тем не менее, при сравнении отдельных спектров в разные даты, создается впечатление, что крылья линии H₃ состоят из отдельных деталей.

На рис. 5 приведены фотометрические записи красного крыла H_{β} , полученные по индивидуальным спектрам в разные даты. Некоторые детали, по-видимому, превосходят по интенсивности детали, которые могут быть вызваны шумами. При желании можно увидеть даже систематическое смещение деталей со временем (пунктирные линии на рис. 5). Если отмеченный факт подтвердится в дальнейшем, мы вынуждены будем придти к выводу, что протяженные крылья H_{β} об-

условлены отдельными сгустками газа, скорость которых изменяется со временем.

5. Из рис. 1 видно, что фиолетовый компонент линии H₃, обнаруженный Видманом и Хачикяном [3], продолжает существовать до настоящего времени.

Необычайно интересным оказалось то, что линия H_{β} имеет очень широкие крылья (80—90 А). Контур линии H_{4} (рис. 2) указывает на еще большую ширину крыльев. Это говорит о том, что красное крыло H_{β} , по-видимому, должно частично накладываться на линию λ 4959.

Рис. 5. Красное крыло линии Нр по индивидуальным спектрам в разные даты. Пунктирными линиями отмечены положения, вероятно, одних и тех же деталей.

Остается непонятным, почему в работах [3, 4] широкие крылья водородных линий остались неотмеченными. Более того, в [4] сказано, что галактика Маркарян 6 относится к классу объектов, водородные и запрещенные линии которых имеют примерно одинаковую ширину (второй класс по Видману и Хачикяну). Согласно [4], для объектов этого класса характерно большое отношение интенсивностей линий [OIII] к Н_β: Для объектов с широкими водородными линиям (первый класс объектов) $I_{N_1+N_2}/I_{H_2} \lesssim 1$. В спектре Маркарян 6 до появления фиолетового компонента это отношение равнялось примерно 10; в период наибольшей яркости H_3 оно было равным 2.5. Сейчас $I_{N_1+N_2}/I_{H_3} \approx 5$ и, по-видимому, продолжает увеличиваться.

Таким образом, ни по виду контура линии H_3 , ни по отношению $I_{N_1+N_2}/I_H$, галактику Маркарян 6 нельзя отнести к какому-то одному классу объектов классификации [4], поскольку указанные характеристики меняются со временем. В данном случае можно говорить только о двух состояниях ядра: возбужденном и невозбужденном. Возбужденное состояние соответствует первому классу объектов, невозбужденное — второму.

Полученные наблюдательные данные о сильных изменениях контура водородных линий и интенсивности непрерывного спектра определенно указывают на высокую активность ядра галактики Маркарян б. Наличие фиолетового компонента и сложной структуры широких крыльев водородных линий роднит эту галактику с такими объектами, как 3C 390.3, 3C 227, III Zw2 и, вероятно, NGC 3227. Относительно галактики 3C 390.3 хорошо известно, что она активна. Есть также указания на изменения в контурах водородных линий у ядра NGC 3227 [6].

Таким образом, весьма возможно, что сложная структура контуров водородных линий является хорошим индикатором высокой активности ядер галактик.

В заключение мы выражаем благодарность М. М. Бутслову, В. Ф. Анисимову и Е. С. Агапову за предоставление в наше распоряжение аппаратуры, Б. П. Абражевскому за конструирование и отладку подвижной кассеты для спектрографа, А. И. Смирнову за модернизацию блоков питания ЭОП-а, а также А. И. Брунс и Т. Н. Никулиной за большую помощь в обработке спектров и оформлении настоящей работы.

Примечание при корректуре. На спектрах, полученных в мае 1972 г., фиолетовый компонент у водородных линий продолжает оставаться хорошо заметным.

Крымская астрофизическая обсерватория АН СССР

В. И. ПРОНИК, К. К. ЧУВАЕВ

HYDROGEN LINES IN THE SPECTRUM OF MARKARIAN 6 GALAXY DURING ITS ACTIVITY

V. I. PRONIK, K. K. CHUVAEV

The spectra of Markarian 6 (IC 450) galaxy were obtained in 1970—1971 with dispersion of 335 and 100 A/mm using an image-tube spectrograph at the 2.6 m telescope of the Crimean Astrophysical observatory.

During one year of observations the H_{μ} flux decreased by nearly two times and the intensity of continuum more than three times. A strong correlation between these values has been found. For larger fluxes of continuum the H_{α} line showed a saturation effect.

On all spectra the hydrogen lines have very broad wings ($\sim \pm 5500-6000 \ km/sec$). The complex structure of these lines indicates the presence of separate gas clouds with different velocities.

Blueshifted components of hydrogen lines discovered by E. Khachikian and D. Weedman at the beginning of 1969 still exist.

ЛИТЕРАТУРА

Б. Е. Маркарян, Астрофизика, 3, 55, 1967; 5, 443, 581, 1969.
 Д. В. Видман, Э. Е. Хачикян, Астрофизика, 4, 587, 1968.
 Е. Ye. Khachikian, D. W. Weedman, Ap. J., 164, L 109, 1971.
 Э. Е. Хачикян, Д. В. Видман, Астрофизика, 7, 389, 1971.
 H. E. Saraph, M. J. Seaton, M. N., 148, 367, 1970.

6. И. И. Проник, Астрон. цирк. (в почати).

АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 8

МАЙ, 1972

ВЫПУСК 2

РАССЕЯНИЕ СВЕТА В ОДНОРОДНОМ ШАРЕ

В. В. СОБОЛЕВ Поступела 10 января 1972

Получены формулы, определяющие среднее число рассеяний фотонов в шаре и его светимость при любых источниках энергин. Эти величины выражены через резольвентную функцию Ф (т) для плоского слоя. Специально рассмотрены три случая расположения источников энергии: 1) источники распределены равномерно, 2) шар освещен параллельными лучами, 3) точечный источник находится на произвольном расстоянии от центра шара.

Как известно, астрофизиками весьма подробно рассмотрена проблема рассеяния света в среде, состоящей из плоскопараллельных слоев. Это связано с тем, что такими средами можно считать звездные и планетные атмосферы. Однако при изучении многих астрофизических объектов (звезды с протяженными атмосферами, планетарные туманности, рентгеновские источники, квазары, ядра галактик) в первом приближении следует пользоваться моделью газового шара. В какой-то мере вто относится и к некоторым явлениям на Солнце (хромосферные вспышки, протуберанцы).

Теория рассеяния света в шаре разработана еще не в достаточной степени. Однако для случая однородного шара уже получен ряд существенных результатов. Сначала В. А. Амбарцумян [1] рассмотрел задачу о точечном источнике в бесконечной среде (которую можно считать шаром бесконечно большого радиуса). Им найдено асимптотическое выражение для интенсивности излучения на больших оптических расстояниях от источника. Затем стало известным и точное решение этой задачи (см., например, [2, 3]). Было также получено асимптотическое решение аналогичной задачи для шара, оптический радиус которого по порядку превосходит единицу [4, 5].

Ряд работ посвящен задаче о рассеянии света в шаре произвольного оптического радиуса. Решение ее сильно упрощается тем, что

она сводится к задаче о рассеянии света в плоском слое. Пользуясь этим, Хислет и Уорминг [6] для случая равномерного распределения источников энергии в шаре выразили функцию источников для шара через резольвентную функцию $\Phi(\tau)$ для плоского слоя, а светимость шара — через моменты функций $\phi(\eta)$ и $\psi(\eta)$. В недавнее время Гриттон и Леонард [7] выполнили большое математическое исследование данной задачи.

В работе Малликина [8] найдено среднее число рассеяний фотона в шаре при возникновении его в любом месте шара. Эта величина выражена через функцию источников для плоского слоя, освещенного параллельными лучами.

Следует также отметить, что Беллман, Кагивада, Калаба и Уэно [9] сделали применение принципов инвариантности к проблеме переноса излучения через атмосферные слои, обладающие сферической симметрией.

В настоящей статье рассматривается задача о рассеянии света в однородном шаре при произвольных источниках энергии. Получены формулы, определяющие среднее число рассеяний фотона в шаре и полную энергию, излучаемую шаром (обычно называемую в астрофизике светимостью). Эти величины выражены через резольвентную функцию $\Phi(\tau)$ для плоского слоя, введенную автором ранее [10]. Найденные формулы применены к трем случаям расположения источников энергии: 1) источники распределены равномерно, 2) шар освещен параллельными лучами, 3) точечный источник находится на произвольном расстоянии от центра шара.

Основные уравнения. Будем считать, что в однородном шаре радиуса τ_0 происходят процессы рассеяния и истинного поглощения излучения, причем рассеяние является изотропным, а вероятность выживания фотона при элементарном акте рассеяния равна λ . Обозначим через а объемный коэффициент поглощения, через $\tau_0 = ar_0$ — оптический радиус шара и через $\tau = ar$ — оптическое расстояние от центра шара, соответствующее геометрическому расстоянию r.

Пусть $I(\tau, \vartheta)$ —интенсивность излучения, идущего на оптическом расстоянии τ от центра шара под углом ϑ к радиусу-вектору. Как известно, величина $I(\tau, \vartheta)$ определена уравнением переноса излучения

$$\cos\vartheta \frac{\partial I(\tau, \vartheta)}{\partial \tau} - \frac{\sin\vartheta}{\tau} \frac{\partial I(\tau, \vartheta)}{\partial \vartheta} = -I(\tau, \vartheta) + B(\tau), \quad (1)$$

а входящая в него функция источников $B(\tau)$ выражается через $I(\tau, \vartheta)$ при помощи соотношения

$$B(\tau) = \frac{\lambda}{2} \int_{0}^{\tau} I(\tau, \vartheta) \sin \vartheta d\vartheta + g(\tau).$$
 (2)

Здесь $g(\tau)$ — функция источников, обусловленная непосредственно источниками энергии, расположенными в шаре. Эти источники считаются изотропными. Энергия, излучаемая этими источниками, находящимися в 1 см³, за 1 сех, равна $4\pi\alpha g(\tau)$.

Из уравнений (1) и (2) при учете отсутствия падающего на шар внешнего излучения получается следующее интегральное уравнение для определения функции $B(\tau)$:

$$\tau B(\tau) = \frac{\lambda}{2} \int_{0}^{\infty} \left[E_1(|\tau - t|) - E_1(\tau + t) \right] B(t) t dt + \tau g(\tau), \quad (3)$$

где

$$E_1(\tau) = \int_1^\infty e^{-\tau z} \frac{dz}{z}$$
 (4)

Мы не будем сейчас пытаться решить уравнение (3), а найдем лишь светимость шара L. Эта величина определяется формулой

$$L = 4\pi r_o^2 H(\tau_0), \tag{5}$$

где $H(\tau_0)$ — поток излучения на границе шара, равный

$$H(\tau_0) = 2\pi \int_0^{\frac{\pi}{2}} I(\tau_0, \vartheta) \cos \vartheta \sin \vartheta d\vartheta.$$
 (6)

Для нахождения потока излучения умножим уравнение (1) на $2\pi \sin \vartheta d\vartheta$ и проинтегрируем его по ϑ от 0 до π . Пользуясь уравнением (2), получаем

$$\frac{dH(\tau)}{d\tau} + \frac{2}{\tau} H(\tau) = \frac{4\pi}{\lambda} \left[g(\tau) - (1 - \lambda) B(\tau) \right].$$
(7)

Умножим уравнение (7) и τ^{s} и проинтегрируем его по τ от 0 до τ_{0} . Подставляя найденную таким путем величину $H(\tau_{0})$ в формулу (5), имеем

$$L = [1 - (1 - \lambda) N] E,$$
 (8)

где обозначено

$$E = \frac{16 \pi^2}{\alpha^2} \int_0^{\tau_0} g(\tau) \tau^2 d\tau,$$
$$= \frac{1}{\lambda} \left[\frac{\int_0^{\tau_0} B(\tau) \tau^2 d\tau}{\int_0^{\tau_0} g(\tau) \tau^2 d\tau} - 1 \right].$$

(9)

(10)

Величина E представляет собой полную энергию, вырабатываемую источниками, находящимися в шаре, а величина N — среднее число рассеяний возникающих в шаре фотонов (эдесь первоначальное испускание фотона не считается рассеянием). Так как $1 - \lambda$ есть вероятность истинного поглощения при одном акте рассеяния, то величина $(1 - \lambda) N$ есть доля энергии, поглощенной в шаре. Физический смысл формулы (8) очевиден: светимость шара равна энергии, вырабатываемой в шаре, без энергии, поглощаемой в нем.

Для нахождения величины N по формуле (10) надо знать функцию $B(\tau)$, соответствующую заданной функции $g(\tau)$. Однако, как (мы сейчас покажем, в этом нет необходимости.

Введем в рассмотрение функцию $S(\tau)$, удовлетворяющую интегральному уравнению

$$S(\tau) = \frac{\lambda}{2} \int_{0}^{\infty} [E_1(|\tau - t|) - E_1(\tau + t)] S(t) t dt + \tau, \qquad (11)$$

являющемуся частным случаем уравнения (3) при $g(\tau) = 1$. Из уравнений (3) и (11) имеем

$$\int_{0}^{\tau_{0}} B(\tau) \tau^{2} d\tau = \int_{0}^{\tau_{0}} S(\tau) g(\tau) \tau^{2} d\tau.$$
(12)

Повтому вместо формулы (10) получаем

$$N = \frac{1}{\lambda} \left[\frac{\int\limits_{0}^{\tau_{e}} S(\tau) g(\tau) \tau^{2} d\tau}{\int\limits_{0}^{\tau_{e}} g(\tau) \tau^{2} d\tau} - 1 \right].$$
(13)

РАССЕЯНИЕ СВЕТА В ОДНОРОДНОМ ШАРЕ

Мы видим, что для нахождения величины N (а значит, и светимости шара L) при любой функции $g(\tau)$ достаточно знать лишь одну функцию $S(\tau)$, определенную уравнением (11). Очевидно, что функция $S(\tau)$ представляет собой среднее число рассеяний фотона, возникшего на оптическом расстоянии τ от центра шара (причем акт возникновения фотона считается рассеянием).

Прежде чем переходить к нахождению функции $S(\tau)$, отметим, что полученные формулы для величин N и L могут быть существенно обобщены. При написании уравнений (1) и (2) молчаливо предполагалось, что распределение источников энергии в шаре обладает радиальной симметрией. Однако среднее число рассеяний фотона, возникшего в некотором месте однородного шара, зависит только от τ , но не зависит от других координат данного места. Поэтому в формулах (9) и (13) под величиной $\frac{16\pi^3}{\alpha^2} g(\tau) \tau^2 d\tau$ можно понимать полную.

энергию, излучаемую источниками, находящимися в сферическом слое, ограниченном сферами с оптическими радиусами τ и $\tau + d\tau$, при произвольном расположении источников в этом слое.

Определение функции $S(\tau)$. Уравнение (11), определяющее функцию $S(\tau)$, может быть легко сведено к уравнению, описывающему рассеяние света в плоском слое. Для этого введем новую функцию $S^*(\tau) = \tau S(\tau)$ и будем считать, что $S^*(-\tau) = -S^*(\tau)$. Тогда вместо (11) получаем

$$S^{*}(\tau) = \frac{\lambda}{2} \int_{-\tau_{0}}^{\tau_{0}} E_{1}(|\tau - t|) S^{*}(t) dt + \tau.$$
 (14)

Вводя здесь новые переменные $x = \tau_0 - \tau$ и $y = \tau_0 - t$, приходим к уравнению

$$S^*(\tau_0 - x) = \frac{\lambda}{2} \int_0^{2\tau_0} E_1(|x - y|) S^*(\tau_0 - y) dy + \tau_0 - x.$$
 (15)

Таким образом, величина $S^*(\tau_0 - x)$ является функцией источников для плоского слоя оптической толщины $2\tau_0$, в котором источники энергии линейно зависят от оптической глубины. Эту величину можно представить в виде

$$S^{*}(\tau_{0} - x) = \tau_{0}Q(x) - R(x), \qquad (16)^{n}$$

где функции $Q(\tau)$ и $R(\tau)$ определяются соответственно уравнениями

В. В. СОБОЛЕВ

$$Q(\tau) = \frac{\lambda}{2} \int_{0}^{2\tau_{0}} E_{1}(|\tau - t|) Q(t) dt + 1, \qquad (17)$$

$$R(\tau) = \frac{\lambda}{2} \int_{0}^{2\tau_{0}} E_{1}(|\tau - t|) R(t) dt + \tau.$$
 (18)

Функция $Q(\tau)$ представляет собой среднее число рассеяний фотона, возникшего на оптической глубине τ в плоском слое оптической толщины $2\tau_0$. Эта функция была подробно изучена ранее [11].

Возвращаясь в (16) от переменной $x \kappa \tau$ и от функции $S^*(\tau) \kappa S(\tau)$, находим

$$\tau S(\tau) = \tau_0 Q(\tau_0 - \tau) - R(\tau_0 - \tau). \tag{19}$$

Заменяя здесь т на — т и пользуясь тем, что $Q(\tau_0 + \tau) = Q(\tau_0 - \tau)$, имеем

$$2\tau S(\tau) = R(\tau_0 + \tau) - R(\tau_0 - \tau).$$
⁽²⁰⁾

Формулы (19) и (20) и могут служить для нахождения функции S(т).

Как показано ранее [10], резольвента интегрального уравнения типа (17) выражается через функцию $\Phi(\tau)$, определенную уравнением

$$\Phi(\tau) = \frac{\lambda}{2} \int_{0}^{2\tau_{o}} E_{1}(|\tau - t|) \Phi(t) dt + \frac{\lambda}{2} E_{1}(\tau).$$
(21)

Это значит, что знание функции $\Phi(\tau)$ позволяет определить поле излучения в плоском слое при любых источниках энергии.

Выразим функции $Q(\tau)$ и $R(\tau)$ через функцию $\Phi(\tau)$. Для этого продифференцируем уравнения (17) и (18) по τ и сравним полученные результаты с уравнением (21). Это дзет

$$\frac{dQ(\tau)}{d\tau} = Q(0) \, [\Phi(\tau) - \Phi(2\tau_0 - \tau)], \qquad (22)$$

$$\frac{dR(\tau)}{d\tau} = Q(\tau) + R(0)\Phi(\tau) - R(2\tau_0)\Phi(2\tau_0 - \tau).$$
(23)

Входящие в (22) и (23) постоянные величины определяются из следующих соотношений:

$$Q(0) = \Psi(2\tau_0), \tag{24}$$

$$R(0) + R(2\tau_0) = 2\tau_0 Q(0), \qquad (25)$$

$$[R(2\tau_0) - R(0)] \Psi(2\tau_0) = \int_{0}^{2\tau_0} Q(\tau) d\tau, \qquad (26)$$

где обозначено

$$\Psi(\tau) = 1 + \int_0^{\tau} \Phi(t) dt. \qquad (27)$$

Формула (24) может быть найдена из (17) и (21), формула (25) из (19) и (20), соотношение (26) — путем интегрирования (23) по т от 0 до 2^τ₀.

Пользуясь формулами (20) и (23), для искомой функции S(т) получаем

$$2\tau S(\tau) = \int_{\tau_0-\tau}^{\tau_0+\tau} Q(t) dt - [R(2\tau_0) - R(0)] \int_{\tau_0-\tau}^{\tau_0+\tau} \Phi(t) dt.$$
 (28)

Отсюда при помощи соотношений (22) и (23) можно найти выражение функции $S(\tau)$ через резольвентную функцию $\Phi(\tau)$. Подчеркнем, что функция $S(\tau)$ относится к шару оптического радиуса τ_0 , а резольвентная функция $\Phi(\tau)$ (как и функции $Q(\tau)$ и $R(\tau)$) — к плоскому слою оптической толщины $2\tau_0$.

Функцию $S(\tau)$ можно рассматривать в качестве функции источников в задаче о рассеянии света в шаре при равномерном распределении источников энергии. Этой задачей занимались Хислет и Уорминг [6], выразившие функцию $S(\tau)$ через функцию $\Psi(\tau)$ (это выражение следует из (28)). Однако выше было установлено, что функция $S(\tau)$ имеет и другой смысл, представляя собой среднее число рассеяний фотона, возникшего на оптическом расстоянии τ от центра шара. Это обстоятельство позволяет определять светимость шара при произвольных источниках энергии. Сейчас мы приведем примеры таких определений.

Равномерное распределение источников. Предположим, что источники энергии распределены в шаре равномерно, т. е. $g(\tau) = C$. В этом случае среднее число рассеяний фотонов в шаре обозначим через N_0 , а светимость шара — через L_0 . Согласно (13)

$$N_0 = \frac{1}{\lambda} \left[\frac{3}{\tau_0^3} \int_0^{\tau_0} S(\tau) \tau^* d\tau - 1 \right], \qquad (29)$$

4-212

а на основании формул (8), (9) и (29) имеем

$$L_0 = \frac{16 \pi^2 C}{\alpha^2 \lambda} \left[\frac{\tau_0^3}{3} - (1 - \lambda) \int_0^{\tau_0} S(\tau) \tau^2 d\tau \right]$$
(30)

Входящий в полученные формулы интеграл при помощи. (20) приводится к виду

$$\int_{0}^{\tau_{0}} S(\tau) \tau^{2} d\tau = \frac{1}{2} \int_{0}^{2\tau_{0}} R(\tau) (\tau - \tau_{0}) d\tau.$$
(31)

Пользуясь соотношением (23), мы можем выразить этот интеграл через моменты функции $\Phi(\tau)$, равные

$$\Phi_{k} = \int_{0}^{2\tau_{0}} \Phi(\tau) \tau^{k} d\tau.$$
 (32)

Делая это, находим

$$\int_{0}^{3} S(\tau) \tau^{2} d\tau = \frac{1}{3} \tau_{0}^{3} (1 + \Phi_{0})^{2} - \tau_{0}^{2} (1 + \Phi_{0}) \Phi_{1} + \tau_{0} \Phi_{1}^{2} + \frac{1}{6} (1 + \Phi_{0}) \Phi_{2} - \frac{1}{2} \Phi_{1} \Phi_{2}.$$
(33)

Отметим, что в работе В. В. Иванова [12] получено выражение величины N_0 через моменты резольвентной функции при учете перераспределения излучения по частоте.

Величины N_0 и L_0 можно также выразить через моменты функций $\varphi(\eta)$ и $\psi(\eta)$, введенных В. А. Амбарцумяном [13]. Эти функции подробно изучены Чандрасекаром [14] (который обозначил их через $X(\mu)$ и $Y(\mu)$) и табулированы в работах Собоути [15] и Карлстедта и Малликина [16].

Согласно [10], для плоского слоя оптической толщины 2τ₀ они связаны с функцией Φ(τ) соотношениями

$$\varphi(\eta) = 1 + \int_{0}^{2\tau_{\eta}} \Phi(\tau) e^{-\frac{\tau}{\eta}} d\tau, \qquad (34)$$

$$\psi(\eta) = e^{\frac{2\tau_0}{\eta}} + \int_0^{2\tau_0} \Phi(\tau) e^{\frac{2\tau_0-\tau}{\eta}} d\tau.$$
 (35)

РАССЕЯНИЕ СВЕТА В ОДНОРОДНОМ ШАРЕ

Искомое выражение для величины L₆ можно получить разными способами. Один из них состоит в использовании уравнения переноса излучения в плоском слое, для которого R(-) является функцией источников. С помощью этого уравнения нетрудно найти следующее соотношение

$$\frac{4}{\lambda} \left[\frac{\tau_0^3}{3} - (1-\lambda) \frac{1}{2} \int_0^{2\tau_0} R(\tau) (\tau - \tau_0) d\tau \right] = \int_0^{1} \left[I(2\tau_0, \eta) - I(0, \eta) \right] (\tau_0 + \eta) \eta d\eta,$$

где $I(0, \eta)$ и $I(2\tau_0, \eta)$ — интенсивности излучения, выходящего из слоя под углом агс соз η к нормали через границы $\tau = 0$ и $\tau = 2\tau_0$, соответственно.

Подставляя (31) в (30) и применяя (36), получаем

$$L_{0} = \frac{4\pi^{2}C}{\alpha^{2}} \int_{0}^{1} [I(2\tau_{0}, \eta) - I(0, \eta)](\tau_{0} + \eta) \eta d\eta.$$
(37)

Но на основании формул, найденных ранее (см. [17], стр. 211), имеем

$$I(2\tau_{0}, \eta) - I(0, \eta) = 2 \frac{\tau_{0}[\varphi(\eta) + \psi(\eta)] - \eta [\varphi(\eta) - \psi(\eta)]}{1 - \frac{\lambda}{2} \alpha_{0} + \frac{\lambda}{2} \beta_{0}} - \frac{\lambda - \frac{\alpha_{1} - \beta_{1} - 2\tau_{0}\beta_{0}}{1 - \lambda} [\varphi(\eta) + \psi(\eta)],$$

$$(38)$$

где

$$\alpha_{k} = \int_{0}^{1} \varphi(\eta) \eta^{k} d\eta, \qquad \beta_{k} = \int_{0}^{1} \psi(\eta) \eta^{k} d\eta. \qquad (39)$$

Поэтому светимость шара оказывается равной

$$L_{0} = \frac{4\pi^{2}C}{\alpha^{2}} \left\{ 2 \frac{\tau_{0}^{2}(a_{1} + \beta_{1}) + 2\tau_{0}\beta_{2} - (a_{3} - \beta_{3})}{1 - \frac{\lambda}{2}a_{0} + \frac{\lambda}{2}\beta_{0}} - \frac{\lambda - \frac{\alpha_{1} - \beta_{1} - 2\tau_{0}\beta_{0}}{1 - \lambda} [\tau_{0}(a_{1} + \beta_{1}) + \alpha_{2} + \beta_{3}]}{1 - \lambda} \right\}.$$
(40),

(36)

Легко убедиться, что выражение (40) эквивалентно формуле, полученной раньше [6] другим способом.

Шар, освещенный параллельными лучами. Пусть шар освещен параллельными лучами, создающими освещенность перпендикулярной к ним площади, равную H_0 . Чтобы найти светимость шара по приведенным выше формулам, надо прежде всего определить энергию, поглощенную сферическим слоем, ограниченным сферами с оптическими радиусами τ и $\tau + d\tau$. Мы обозначим эту энергию через $H_0 f(\tau) d\tau$. Нетрудно получить, что

$$f(\tau) = \frac{\pi\tau}{\alpha^2} \int_{\tau_0-\tau}^{\tau_0+\tau} e^{-x} \left(1 + \frac{\tau_0^2 - \tau^2}{x^2}\right) dx.$$
(41)

Величину ${}^{\lambda}H_0 f(\tau) d\tau$ можно считать энергией, излучаемой источниками, находящимися в упомянутом сферическом слое. Повтому согласно замечанию, сделанному в конце первого раздела, для применения формул (8), (9) и (13) следует положить

$$\frac{16\pi^2}{\sigma^2} g(\tau) \tau^2 = \lambda H_0 f(\tau). \tag{42}$$

Применяя указанные формулы, для светимости шара, которую в данном случае обозначим через L₁, находим

$$L_1 = E_1 [1 - (1 - \lambda) N_1], \tag{43}$$

где.

$$E_1 = H_0 \int_0^{\tau_0} f(\tau) d\tau, \qquad (44)$$

$$N_{1} = \frac{\int_{0}^{T} S(\tau) f(\tau) d\tau}{\int_{0}^{T} f(\tau) d\tau}$$
(45)

Очевидно, что величина E_1 есть энергия, поглощенная шаром, а N_1 — среднее число рассеяний фотонов в шаре. В формуле (45) первоначальное излучение фотона в шаре считается рассеянием (как это и [есть на самом деле). Разумеется, [соотношение (43) можно написать на основании простых физических соображений.

· 112+5+69+141

Для определения величин N_1 и L_1 по полученным формулам обратим внимание на следующее обстоятельство. Пусть $B(\tau)$ — функция источников, соответствующая заданной функции $g(\tau)$, т. е. определенная уравнением (3). Светимость шара, как легко видеть, можно находить по формуле

$$L = 4\pi \int_{0}^{\infty} B(\tau) f(\tau) d\tau, \qquad (46)$$

где функция $f(\tau)$ дается формулой (41). При равномерном распределении источников в шаре, т. е. при $g(\tau) = C$, для функции источников имеем: $B(\tau) = CS(\tau)$. Повтому для светимости шара получаем

$$L_0 = 4\pi C \int_0^{\tau} S(\tau) f(\tau) d\tau.$$
(47)

Формулы (44), (45) и (47) дают

$$N_1 = \frac{L_0 H_0}{4\pi C E_1}$$
(48)

Подставляя (48) в (43) и полагая

$$C = \lambda \frac{H_0}{4\pi},\tag{49}$$

находим

$$L_1 = E_1 - \frac{1-\lambda}{\lambda} L_0. \tag{50}$$

Таким образом, среднее число рассеяний фотонов N_1 и светимость шара L_1 при освещении шара параллельными лучами с помощью формул (48) и (50) выражаются через светимость шара L_0 при равномерном распределении источников энергии.

Отметим, что соотношение (50) можно переписать в виде

$$\frac{E_1 - L_1}{L_0} = \frac{1 - \lambda}{\lambda} = \frac{x}{\sigma},\tag{51}$$

где хи с — коэффициенты истинного поглощения и рассеяния, соответственно. С коэффициентом поглощения с они связаны формулами

$$\alpha = (1 - \lambda) \alpha, \quad \sigma = \lambda \alpha.$$

Соотношением (51) выражается следующая теорема: отношение энергии, испытавшей в шаре истивное поглощение при освещении его параллельными лучами, к энергии, излучаемой шаром при равномерном распределении источников, равно отношению ковффициента истинного поглощения к ковффициенту рассеяния. При этом предполагается выполнение формулы (49)*.

Поскольку величина L_0 была определена в предыдущем разделе, то величины N_1 и L_1 также можно считать известными. Приведем, в частности, выражение величины L_1 через моменты функций $\varphi(\eta)$ и $\psi(\eta)$.

Подставляя в формулу (50) выражение (40) и пользуясь соотношением

$$\left(1-\frac{\lambda}{2}\alpha_{0}+\frac{\lambda}{2}\beta_{0}\right)\left(1-\frac{\lambda}{2}\alpha_{0}-\frac{\lambda}{2}\alpha_{0}\right)=1-\lambda,$$
 (52)

получаем

$$L_{1} = E_{1} - \frac{\pi H_{0}}{\alpha^{2}} \Big\{ 2 [\tau_{0}^{2} (\alpha_{1} + \beta_{1}) + 2\tau_{0}\beta_{0} - (\alpha_{3} - \beta_{3})] \times \Big(1 - \frac{\lambda}{2} \alpha_{0} - \frac{\lambda}{2} \beta_{0} \Big) - \lambda (\alpha_{1} - \beta_{1} - 2\tau_{0}\beta_{0}) [\tau_{0} (\alpha_{1} + \beta_{1}) + \alpha_{2} + \beta_{2}] \Big\}$$
(53)

Входящая сюда величина E_1 дается формулой (44). Вводя в нее выражение (41) и производя интегрирование, находим

$$E_{1} = \frac{\pi H_{0}}{\alpha^{2}} \left[\tau_{0}^{2} - \frac{1}{2} + \left(\tau_{0} + \frac{1}{2} \right) e^{-2\tau_{0}} \right]$$
(54)

С помощью формулы (53) можно определить альбедо шара, под которым понимается отношение энергии, рассеянной шаром во всех направлениях, к энергии, падающей на шар. Так как падающая на шар энергия равна $\pi r_o^2 H_0$, то для альбедо шара имеем

$$A = \frac{L_1}{\pi r_0^2 H_0},\tag{55}$$

Величина A зависит от τ_0 и λ . В качестве примера укажем, что из полученных формул при $\tau_0 \to \infty$ вытекает известное выражение

[•] Очевнано, что соотношение (51) обобщается на любое тело, освещенное параллельными лучами. В этом случае под E_1 понимается энергия, поглощаемая телом, под L_1 — излучаемая им энергия и под $L_0/4\pi$ — энергия, излучаемая телом при равномерном распределении источников в единице телесного угла в направлении, обратном направлению упомянутых параллельных лучей.

$$A = 1 - 2z_1 \sqrt{1 - \lambda}, \tag{56}$$

где z_1 — первый момент функции $\varphi(\eta)$ при $z_0 = \infty$ (см., например, [9], стр. 255).

Точечный источник. Пусть точечный изотропный источник светимости L_* находится в шаре на оптическом расстоянии τ от его центра. Тогда согласно физическому смыслу функции $S(\tau)$ среднее число рассеяний фотонов в шаре определяется формулой

$$N(\tau) = \frac{1}{\lambda} [S(\tau) - 1], \qquad (57)$$

а светимость шара на основании формул (8) и (57) равна

$$L(\tau) = \frac{L_*}{\lambda} [1 - (1 - \lambda) S(\tau)].$$
(58)

Подчеркнем, что формулой (58) дается полная энергия, излучаемая шаром во всех направлениях. Энергия же, испускаемая шаром в разные стороны, различна (за исключением случая, когда источник находится в центре шара).

Рассмотрим два частных случая расположения источника. Если источник находится в центре шара, то в формулах (57) и (58) надо положить $\tau = 0$. В данном случае из формулы (28) следует

$$S(0) = Q(\tau_0) - [R(2\tau_0) - R(0)] \Phi(\tau_0).$$
(59)

Заметим, что величины $Q(\tau_0)$ и $\Phi(\tau_0)$ представляют собой значения функций $Q(\tau)$ и $\Phi(\tau)$ в середине плоского слоя оптической толщины $2\tau_0$.

Если источник находится на границе шара, то нам надо найти величину $S(\tau_{\theta})$. Из формул (19) и (20) получаем, что она может быть определена по одной из следующих формул:

$$\tau_{0}S(\tau_{0}) = \tau_{0}Q(0) - R(0), \qquad (60)$$

$$2\tau_0 S(\tau_0) = R(2\tau_0) - R(0).$$
(61)

Пользуясь соотношениями (26) и (22), вместо (61) находим

$$S(\tau_0) = 1 + \Phi_0 - \frac{\Phi_1}{\tau_0},$$
 (62)

где Φ_0 и Φ_1 — нулевой и первый моменты функции Φ (т). Подстановка (62) в формулы (57) и (58) при $\tau = \tau_0$ дает

В. В. СОБОЛЕВ

$$N(\tau_0) = \frac{1}{\lambda} \left(\Phi_0 - \frac{\Phi_1}{\tau_0} \right), \tag{63}$$

$$L(\tau_0) = L_* \left[1 - \frac{1-\lambda}{\lambda} \left(\Phi_0 - \frac{\Phi_1}{\tau_0} \right) \right].$$
 (64)

Величины $N(\tau_0)$ и $L(\tau_0)$ можно также выразить через моменты функций $\varphi(\eta)$ и $\psi(\eta)$. Согласно [11] имеем

$$1 + \Phi_0 = \frac{1}{1 - \frac{\lambda}{2}\alpha_0 + \frac{\lambda}{2}\beta_0},$$
 (65)

$$\Phi_{1} = \frac{\lambda}{2} \frac{\alpha_{1} - \beta_{1} - 2\tau_{0}\beta_{0}}{1 - \lambda}$$
 (66)

Подставляя (65) и (66) в формулы (63) и (64) и применяя соотношение (52), получаем

$$N(\tau_0) = \frac{2 - \alpha_0 + \beta_0 - \frac{1}{\tau_0} (\alpha_1 - \beta_1)}{2(1 - \lambda)}, \quad (67)$$

$$L(\tau_{0}) = \frac{L_{*}}{2} \left[\alpha_{0} - \beta_{0} + \frac{1}{\tau_{0}} (\alpha_{1} - \beta_{1}) \right]$$
(68)

При расположении источника на произвольном расстоянии τ от центра шара для определения функции $S(\tau)$, входящей в формулы (57) и (58), можно использовать формулу (28).

Заключительные замечания. Выше было показано, как можно найти среднее число рассеяний фотонов в шаре N и его светимость L. Для шара оптического радиуса τ_0 при произвольных источниках энергии эти величины выражаются через резольвентную функцию $\Phi(\tau)$ для плоского слоя оптической толщины $2\tau_0$.

Такой результат еще раз подчеркивает важность функции $\Phi(\tau)$ и необходимость ее табулирования. Небольшие таблицы функции $\Phi(\tau)$ уже были даны ранее [18, 19]. Вычислялась также и функция $Q(\tau)$ [20]. В настоящее время в Ленинградском университете ведется работа по составлению более подробных таблиц функций $\Phi(\tau)$ и других, связанных с нею функций. Эти таблицы скоро будут опубликованы.

Следует отметить, что в случае плоского слоя большой оптической толщины автором [21] были найдены асимптотические формулы для резольвентной функции $\Phi(\tau)$, а также для функций $\varphi(\eta)$ и $\psi(\eta)$ -

Наличие таких формул делает излишним табулирование этих функций при больших значениях то. С помощью указанных формул можно получить асимптотические выражения для светимости шара большого оптического радиуса (то >>> 1) при различных источниках энергии.

Заметим еще, что полученные выше формулы можно обобщить на случай рассеяния излучения с перераспределением по частоте и на случай анизотропного рассеяния излучения.

На некоторых из этих вопросов автор предполагает остановиться позднее.

Хенинградский государственный университет

LIGHT SCATTERING IN A HOMOGENEOUS SPHERE

V. V. SOBOLEV

The formulae are obtained for the mean number of photon scatterings in a sphere and the luminosity of a sphere, the distribution of energy source being arbitrary. These quantities are expressed in terms of the resolvent function $\Phi(\tau)$ for a plane layer. Three particular forms of the source distribution are considered in more detail: 1) uniform, 2) external illumination by parallel beams and 3) point source located at an arbitrary distance from the center of the sphere.

ЛИТЕРАТУРА

- 1. В. А. Амбарцумян, Бюлл. Ереванской астр. обс., № 6, 1945 (см. также "Научиме труды", т. I, Ереван, 1960).
- 2. В. Davison, Neutron Transport Theory, Oxford, 1958. (русск. перевод: Б. Девисок, Теория переноса нейтронов, Атомиздат, 1960).
- 3. В. В. Соболев, Курс теоретической астрофизики, Наука, М., 1967.
- 4. В. В. Соболев, Сб. "Киноматика и динамика эвездных систем и физика межзвездной среды", Алма-Ата, 1965.
- 5. Д. И. Нашрнер, Труды АО ЛГУ, 22, 1965.
- 6. M. A. Heaslet, R. F. Warming, J. Quantit. Spectrosc. Radiat. Transfer, 5, 669, 1965.
- 7. E. C. Gritton, A. Leonard, J. Quantit. Spectrosc. Radiat. Transfer, 10, 1095, 1970.
- S. T. W. Mullikin, Some probabilistic results in transport theory, 1969 (препринт).
- R. E. Bellman, H. H. Kagiwada, R. E. Kalaba, S. Ueno, J. Math. Phys., 9, 909, 1968.
- 10. B. B. Cobones, AAH CCCP, 116, 45, 1957; 120, 69, 1958.
- 11. В. В. Соболев, Астрофизика, 2, 135, 239, 1966; 3, 5, 137, 1967.
- 12. В. В. Иванов, Сб. "Звезды, туманности, галактики", Ереван, 1969.

- 13. В. А. Амбарцумян, ДАН СССР, 38, 257, 1943 (см. также "Научные труды", т. І, Ереван, 1960).
- 14. S. Chandrasekhar, Radiat. Transfer, Oxford, 1950. (русск. перевод: С. Чандрасекар, Перенос лучистой энергии, ИЛ, М., 1953).
- 15. Y. Sobont, Ap. J., Suppl. ser., 7, No. 72, 1963.
- 16. J. L. Carlstedt, T. W. Mullikin, Ap. J., Suppl. ser., 12, No, 113, 1966.
- 17. В. В. Соболев, Перенос лучистой внергия в атмосферах звезд и планет, Гостехиздат, М., 1956.
- 18. В. В. Соболев, И. Н. Минин, Астрон. ж., 38, 1025, 1961.
- 19. H. H. Kagiwada, R. E. Kalaba, RM-4958-PR, The RAND Corporation, 1966.
- 20. J. Buell, R. Kalaba, S. Ueno, Астрофизика, 7, 23, 1971.
- 21. B. B. Cobones, JAH CCCP, 155, 316, 1964.

АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 8

МАЙ, 1972

ВЫПУСК 2

НЕКОГЕРЕНТНОЕ РАССЕЯНИЕ. III

Н. Б. ЕНГИБАРЯН, А. Г. НИКОГОСЯН Поступила 2 августа 1971

Рассматривается задача переноса излучения внутри спектральной линии в изотермической среде. Выводятся различные системы функциональных уравнений относительно вспомогательных функций, являющихся обобщением известных функций Амбарцумяна с и . Знание этих функций позволяет определить коеффициенты отражения и пропускания, а также и поле излучения внутри среды.

В настоящей работе, представляющей собой продолжение серии статей [1—3], будет изложена теория переноса излучения внутри спектральной линии в изотермической среде, обладающей плоской симметрией. Индикатриса рассеяния предполагается сферической. Функцию перераспределения будем считать независящей от угла рассеяния. Примем такой закон перераспределения, который может сколь угодно точно аппроксимировать любой истинный закон. Именно, как и ранее в [1], представим функцию перераспределения r(x', x) в виде конечной суммы

$$r(x', x) = \sum_{k=1}^{n} a_{k}(x') a_{k}(x).$$
 (D)

Такое представление можно осуществить, если функцию r(x', x) заменить конечной суммой ее разложения по собственным функциям, учитывая одновременно положительность ее собственных чисел.

В работе выводятся функциональные уравнения относительно вспомогательных функций, являющихся обобщением известных функций Амбарцумяна на случай указанного закона перераспределения по частотам. Знание этих функций позволяет определить коэффициенты отражения и пропускания, а также и поле излучения внутри среды. Пусть изотермическая плоскопараллельная среда геометрической толщины $z_0 \leqslant \infty$ заполнена атомами двух сортов. Примем, что атомы первого сорта обладают двумя дискретными энергетическими уровнями 1, 2, а атомы второго сорта могут ионизироваться излучением частоты, соответствующей переходам между упомянутыми уровнями. Отношение концентраций этих атомов будем считать постоянным во всей среде.

Рассмотрим задачу переноса излучения в спектральной линии (1 + 2) с учетом поглощения и излучения в непрерывном спектре. Учтем также переходы 1 -> 2 и 2 -> 1 вследствие электронных ударов первого и второго рода, соответственно. Как и обычно, удобно ввести безразмерную частоту $x = (v - v_0)/\Delta v$, где v_0 - центральная частота линии, а Δv - ширина спектральной линии. Обозначим далее через $\sigma(v, z)$ и $\sigma^c(z)$ объемные ковффициенты поглощения внутри спектральной линии для атомов, соответственно, первого и второго сортов (см. [4]). Тогда имеем $\sigma(v, z) = k_v n(z)$, где k_v - ковффициент поглощения, рассчитанный на один атом первого сорта, а n(z) - концентрация указанных атомов. Ввиду предположения об изотермичности среды k_v не зависит от z и, следовательно, $\sigma(v, z)$ может быть представлен в виде

$$\sigma(v, z) = \alpha(x) \sigma(z),$$

где $\alpha(x) = k_1/k_2$ – контур коэффициента поглощения. Заметим, что отношение $\beta = \sigma^c(z)/\sigma(z)$ не зависит от z.

Уравнение переноса в линии при сделанных выше предположениях относительно оптических свойств среды имеет следующий вид:

$$\eta \frac{dI(\tau, \eta, x)}{d\tau} = -\left[\alpha(x) + \beta\right]I + \frac{\lambda}{2} \int_{-\infty}^{\infty} r(x', x) dx' \times \\ \times \int_{-1}^{1} I(\tau, \eta', x') d\eta' + \frac{\lambda}{2} \alpha(x) S^* + \beta S^c$$
(1)

с граничными условиями

$$I(0, \eta, x) = I_0(\eta, x) \text{ при } \eta > 0,$$

$$I(\tau_0, \eta, x) = 0 \qquad \text{при } \eta < 0,$$
(2)

где введены следующие общепринятые обозначения [3]: r(x', x) — функция перераспределения по частотам, усредненная по углам рассеяния; $\lambda = A_{21}/(A_{21} + a_{21})$ — вероятность выживания кванта при поглощении последнего со стороны атомов первого сорта; $S^* = (a_{12}/k_{r_0})A hr_0$, при чем a_{18} и a_{21} — козффициенты переходов $1 \rightarrow 2$ и $2 \rightarrow 1$ вследствие электронных ударов, соответственно, первого и второго родов. Наконец, через S^{ε} обозначена функция источника для непрерывного излучения. Оптическая глубина τ и полная оптическая толщина среды τ_0 рассчитаны в центре спектральной линии и относятся к атомам первого сорта. Указанные величины даются посредством

$$\tau = \int_{0}^{\sigma} \sigma(z) dz; \qquad \tau_{0} = \int_{0}^{\sigma} \sigma(z) dz \qquad (3)$$

Сформулированную задачу нетрудно свести обычными путями к решению некоторого интегрального уравнения относительно функции

$$S(\tau, x) = \frac{\lambda}{2} \int_{-\infty}^{\infty} r(x, x') dx' \int_{-1}^{1} I(\tau, \eta', x') d\eta' + \frac{\lambda}{2} \alpha(x) S^* + \beta S^*.$$
(4)

Указанное интегральное уравнение имеет следующий вид:

$$S(\tau, x) = \frac{\lambda}{2} \int_{-\infty}^{\infty} r(x, x') dx' \int_{0}^{\tau_{s}} S(\tau', x') E_{1} \left[\left(\alpha(x') + \beta \right) | \tau - \tau'| \right] d\tau' + \frac{\lambda}{2} \int_{-\infty}^{\infty} r(x, x') dx' \int_{0}^{1} I_{0}(\eta', x') e^{-\frac{\tau}{\eta} r \left[\alpha(x') + \beta \right]} d\eta' + \frac{\lambda}{2} \alpha(x) S^{*} + \beta S^{e};$$
(5)

где $E_n(\tau) = \int_0^1 e^{-\frac{\tau}{r}} \eta_i^{n-2} d\eta$ — интегрально-показательная функция *n*-ого

порядка. Воспользовавшись представлением (D) для функции перераспределения r(x', x), полученное интегральное уравнение легко переписать в виде

$$S(\tau, x) = \frac{\lambda}{2} \sum_{k=1}^{n} \alpha_{k}(x) Q_{k}(\tau) + \beta S^{\epsilon}, \qquad (6)$$

где через $Q_m(\tau)$ обозначено

$$Q_{m|}(\tau) = Q_m^0(\tau) + \int_{-\infty}^{\infty} \alpha_m(x) dx \int_{0}^{\tau_0} S(\tau', x) E_1[(\alpha(x) + \beta) | \tau - \tau' |] d\tau',$$
(7)

причем
$$Q_m^0(\tau) = S^* \int_{-\infty}^{\infty} \alpha_m(x) dx + \int_{-\infty}^{\infty} \alpha_m(x) dx \int_{0}^{1} I_0(\eta, x) e^{-\frac{\pi}{\eta}[\alpha(x) + \beta]} d\eta.$$
(8)

Пользуясь (5) и (6), нетрудно теперь получить систему интегральных уравнений для определения функций $Q_m(\tau)$:

$$Q_m(\tau) = \widetilde{Q}_m(\tau) + \frac{\lambda}{2} \sum_{k=1}^n \int_0^{\infty} K_{mk}(|\tau - \tau'|) Q_m(\tau') d\tau', \qquad (9)$$

где введены следующие обозначения:

$$\widetilde{Q}_{m}(\tau) = Q_{m}^{0}(\tau) + \beta S^{\epsilon} \int_{-\infty}^{\infty} a_{m}(x) dx \int_{0}^{\tau} E_{1}[(\alpha(x) + \beta) | \tau - \tau'|] d\tau'.$$
(10)

$$K_{mk}(\tau) = \int_{-\infty}^{\infty} \alpha_k(x) \alpha_m(x) E_1[(\alpha(x) + \beta)\tau] dx.$$
(11)

Здесь следует обратить внимание на тот факт, что как элементы матрицы-ядра $\|K_{mk}(\tau)\|$, так и свободные члены $Q_m(\tau)$ системы (9) можно представить в виде суперпозиции экспонент. Действительно, как нетрудно убедиться,

$$\mathcal{K}_{mk}(\tau) = \int_{\beta}^{\infty} C_{mk}(s-\beta) e^{-\tau s} \frac{ds}{s} = \int_{0}^{1/\beta} \overline{G}_{mk}(z) e^{-\frac{\tau}{s}} \frac{dz}{z}.$$
 (12)

$$\widetilde{Q}_{m}(\tau) = c_{m} + \int_{-\infty}^{\infty} \alpha_{m}(x) dx \int_{0}^{1} I_{0}(\eta, x) e^{-\frac{\tau}{\eta}[\alpha(x)+\beta]} d\eta - \beta S_{0}^{c} \int_{0}^{1/\beta} \overline{G}_{m}(z) \left[e^{-\frac{\tau}{s}} + e^{-\frac{\tau_{n}-\tau}{s}} \right] dz,$$
(13)

где

$$c_{m} = S^{*} \int_{-\infty}^{\infty} \alpha_{m}(x) dx - \beta S^{c} \int_{-\infty}^{\infty} \frac{\alpha_{m}(x) dx}{\alpha(x) + \beta}, \qquad (14)$$

$$G_{mk}(s) = \int_{C(s)} a_m(x) a_k(x) dx; \quad \overline{G}_{mk}(z) = G_{mk}\left(\frac{1}{z} - \beta\right), \quad (15)$$

$$G_m(z) = \frac{1}{z} \int_{E(s)} \frac{a_m(x) dx}{[a(x) + \beta]^2}, \text{ причем } E(s) = \{x; x(x) \leqslant s\}.$$
(16).

Рассмотрим теперь следующие вспомогательные системы интегральных уравнений (*i* — номер системы), i = 1, ..., n:

$$U_{mi}(\tau, z) = e^{-\frac{\tau}{2}} \delta_{mi} + \frac{\lambda}{2} \sum_{k=1}^{n} \int_{0}^{\tau} K_{mk}(|\tau - \tau'|) U_{ki}(\tau', z) d\tau'.$$
(17)

Нетрудно убедиться, что знание функций U_{mi} позволит определить непосредственно интересующие нас величины Q_k . Действительно, последние выражаются через функции U_{mi} следующим образом:

$$Q_{t}(\tau) = \sum_{i=1}^{n} \left\{ c_{i} U_{ki}(\tau, \infty) + \int_{-\infty}^{\infty} a_{i}(x) dx \int_{0}^{1} I_{0}(\eta, x) U_{ki}[(\alpha(x) + \beta)\tau, \eta] d\eta - \frac{1}{\beta} S^{c} \int_{0}^{1/\beta} G_{i}(z) [U_{ki}(\tau, z) + U_{ki}(\tau_{0} - \tau, z)] dz \right\}.$$
(18)

Как уже было показано в работе [1], решение системы (17) может быть сведено к следующей системе функциональных уравнений вольтерровского типа:

$$\psi_{lj}(\tau_0, \rho) = K_{lj}(\rho - \tau_0) + \frac{\lambda}{2} \sum_{k=1}^{n} \int_{0}^{\tau_0} \psi_{kl}(\tau, \tau_0) \psi_{kj}(\tau, \rho) d\tau \qquad (19)$$

и последующему решению двух линейных систем Вольтерра. Такой подход является эффективным в случае не очень больших оптических толщин. Здесь же мы поступим несколько иначе. Именно, сведем решение системы (17) к системам функциональных уравнений, являющихся в некотором смысле обобщением известных из теории переноса функциональных уравнений для функций X и Y, относящихся к скалярному случаю. Процедура получения упомянутых функциональных уравнений в общих чертах сходна с методом вывода аналогич-

ных уравнений в скалярном случае, хорошо известным в классической теории переноса.

Перейдя к выводу указанных уравнений, продифференцируем обе части уравнений (17) по т. Тогда будем иметь

$$\frac{\partial U_{mi}(\tau, z)}{\partial \tau} = -\frac{1}{z} \delta_{mi} e^{-\frac{\tau}{z}} + \frac{\lambda}{2} \sum_{k=1}^{n} \int_{0}^{\infty} K_{mk}(|\tau - \tau'|) \frac{\partial U_{ki}}{\partial \tau'} d\tau' + \frac{\lambda}{2} \sum_{p=1}^{n} X_{pi}(z) K_{mp}(\tau) - \frac{\lambda}{2} \sum_{p=1}^{n} Y_{pi}(z) K_{mp}(\tau_{0} - \tau),$$
(20)

где

 $X_{pl}(z) = U_{pl}(0, z); \quad Y_{pl}(z) = U_{pl}(\tau_0, z). \tag{21}$

Таким образом, системы интегральных уравнений (20), которым удовлетворяют функции $\partial U_{ml}/\partial \tau$, имеют матрицу-ядро, совпадающую с матрицей-ядром для системы (17). С другой стороны, если учесть (12), то нетрудно убедиться, что свободные члены в (20) являются суперпозицией свободных членов системы (17). Ввиду линейности системы уравнений (20) и (17), будем иметь

$$\frac{\partial U_{ml}(\tau, z)}{\partial \tau} = -\frac{1}{z} U_{ml}(\tau, z) +$$

$$+\frac{\lambda}{2}\sum_{p=1}^{n}X_{pl}(z)\sum_{q=1}^{n}\int_{0}^{1/3}\overline{G}_{qp}(z')U_{mq}(\tau,z')\frac{dz'}{z'}-$$
(22)

$$-\frac{\lambda}{2}\sum_{p=1}^{n}Y_{pl}(z)\sum_{q=1}^{n}\int_{0}^{L_{pl}}\overline{G}_{qp}(z')U_{mq}(\tau_{0}-\tau,z')\frac{dz'}{z'}.$$

Полученное соотношение (22) и дает нам возможность получить уравнения, определяющие величины

$$z\rho_{ml}(z', z) = \int_{0}^{\tau_{0}} U_{ml}(\tau, z) e^{-\frac{\tau}{z'}} \frac{d\tau}{z'}; \quad z\sigma_{ml}(z', z) = \int_{0}^{\tau_{0}} U_{ml}(\tau, z) e^{-\frac{\tau_{0}-\tau}{z'}} \frac{d\tau}{z'}.$$
 (23)

Знание этих величин, как мы увидим далее, позволит нам определить коэффициенты отражения и пропускания.

Умножая соотношение (22) на е , а затем — на е и интегрируя по т в пределах от нуля до то и учитывая (23), получим НЕКОГЕРЕНТНОЕ РАССЕЯНИЕ. ІІІ

$$(z+s) \rho_{mt}(s, z) = \sum_{p=1}^{n} \left\{ X_{pl}(z) \left[\delta_{mp} + \frac{\lambda}{2} s \sum_{q=1}^{n} \int_{0}^{1/\beta} \overline{G}_{qp}(z') \rho_{mq}(s, z') dz' \right] - Y_{pl}(z) \left[\delta_{mp} e^{-\frac{\tau_{q}}{s}} + \frac{\lambda}{2} s \sum_{q=1}^{n} \int_{0}^{1/\beta} \overline{G}_{qp}(z') \sigma_{mq}(s, z') dz' \right] \right\}.$$

$$(24)$$

$$- (z-s) \sigma_{ml}(s, z) = \sum_{p=1}^{n} \left\{ X_{pl}(z) \left[\delta_{mp} e^{-\frac{\tau_{q}}{s}} + \frac{\lambda}{2} s \sum_{q=1}^{n} \int_{0}^{1/\beta} \overline{G}_{qp}(z') \sigma_{mq}(s, z') dz' \right] - (z-s) \sigma_{ml}(s, z) = \sum_{q=1}^{n} \left\{ X_{pl}(z) \left[\delta_{mp} e^{-\frac{\tau_{q}}{s}} + \frac{\lambda}{2} s \sum_{q=1}^{n} \int_{0}^{1/\beta} \overline{G}_{qp}(z') \sigma_{mq}(s, z') dz' \right] - (25)$$

$$- Y_{pl}(z) \left[\delta_{mp} + \frac{\lambda}{2} s \sum_{q=1}^{n} \int_{0}^{1/\beta} \overline{G}_{qp}(z') \rho_{mq}(s, z') dz' \right] \right\}.$$

С другой стороны, учитывая (21), выражения для $\{X_{pi}\}$ и $\{Y_{pi}\}$ мы можем получить из системы уравнений (17), полагая в ней $\tau = 0$ и $\tau = \tau_0$, соответственно. Тогда получим

$$X_{mi}(z) = \delta_{mi} + \frac{\lambda}{2} z \sum_{k=1}^{n} \int_{0}^{1/\beta} \overline{G}_{mk}(z') \rho_{ki}(z', z) dz', \qquad (26)$$

$$Y_{mi}(z) = \delta_{mi}e^{-\frac{\tau_0}{z}} + \frac{\lambda}{2}z\sum_{k=1}^{n}\int_{0}^{1/\beta}\overline{G}_{mk}(z')\sigma_{ki}(z', z)\,dz'.$$
 (27)

Пользуясь теперь полученными соотношениями, нетрудно увидеть, что если функции $\rho_{mi}(s, z)$ и $\sigma_{mi}(s, z)$ удовлетворяют системе уравнений (24)—(27), то функции $\rho_{im}(z, s)$ и $\sigma_{im}(z, s)$ также удовлетворяют указанной системе. Предполагая, что решение должно быть единственным, мы заключаем, что оно должно иметь вид

$$\rho_{mt}(s, z) = \sum_{p=1}^{n} \frac{X_{pt}(z) X_{pm}(s) - Y_{pt}(z) Y_{pm}(s)}{z+s}, \qquad (28)$$

$$\sigma_{mi}(s, z) = \sum_{p=1}^{n} \frac{X_{pi}(z) Y_{pm}(s) - X_{pm}(s) Y_{pi}(z)}{s-z}.$$
 (29)

Подставляя полученные соотношения в формулы (26) и (27), мы при-5-212 ходим к искомым функциональным уравнениям относительно функций X_{mi} и Y_{mi} :

$$X_{mi}(z) = \delta_{mi} + \frac{\lambda}{2} z \sum_{k=1}^{n} \sum_{p=1}^{n} \int_{0}^{1/\beta} \overline{G}_{mk}(z') \frac{X_{pi}(z) X_{pk}(z') - Y_{pi}(z) Y_{pk}(z')}{z + z'} dz'$$
(30)

$$Y_{mi}(z) = \delta_{mi}e^{-\frac{\tau_{*}}{z}} + \frac{\lambda}{2}z\sum_{k=1}^{n}\sum_{p=1}^{n}\int_{0}^{1/\beta}\overline{G}_{mk}(z')\frac{X_{pk}(z')Y_{pi}(z) - X_{pi}(z)Y_{pk}(z')}{z - z'}dz'$$
(31)

Вместо полученной системы уравнений, можно рассмотреть систему относительно функций

$$\overline{X}_{mi}(z) = \sum_{k=1}^{n} \overline{G}_{ik}(z) X_{mk}(z); \quad \overline{Y}_{mi}(z) = \sum_{k=1}^{n} \overline{G}_{ik}(z) Y_{mk}(z), \quad (32)$$

имеющую следующий вид:

$$\overline{X}_{mt}(z) = \overline{G}_{mt}(z) + \frac{\lambda}{2} z \sum_{p=1}^{n} \int_{0}^{1/p} \frac{\overline{X}_{pt}(z) \, \overline{X}_{pm}(z') - \overline{Y}_{pt}(z) \, \overline{Y}_{pm}(z')}{z + z'} \, dz', \quad (33)$$

$$\overline{Y}_{ml}(z) = \overline{G}_{ml}(z) \ e^{-\frac{q}{z}} + \frac{\lambda}{2} z \sum_{p=1}^{n} \int_{0}^{1/p} \frac{\overline{Y}_{pl}(z) \ \overline{X}_{pm}(z') - \overline{X}_{pl}(z) \ \overline{Y}_{pm}(z')}{z - z'} \ dz'. (34)$$

Преимущества приведенной системы уравнений по сравнению с системой (30—31) очевидны.

В частности, в случае полубесконечной среды ($\tau_0 = \infty$) все функции $Y_{mi}(z)$, следовательно, и $\overline{Y}_{mi}(z)$, обращаются в нуль, и вместо системы (33)—(34) будем иметь

$$\overline{H}_{mi}(z) = \overline{C}_{mi}(z) + \frac{\lambda}{2} z \sum_{p=1}^{n} \int_{0}^{1/p} \frac{\overline{H}_{pm}(z') \overline{H}_{pi}(z)}{z+z'} dz'$$
(35)

где $\overline{H}_{mi}(z) = \sum_{k=1}^{n} \overline{G}_{ik}(z) H_{mk}(z)$, а $H_{mk}(z) = X_{mk}(z)$ при $\tau_0 = \infty$.

Пользуясь методом, указанным В. В. Соболевым [5], можно получить еще одну систему, которой удовлетворяют функции X_{mi} и Y_{mi} . В данном случае проще всего можно получить упомянутую систему следующим образом: продифференцируем наше исходное уравнение

(17) по -, отмечая всюду в дальнейшем зависимость от -, Учитывая (12) и (21), будем иметь

$$\frac{\partial U_{mi}(\tau, z, \tau_0)}{\partial \tau_0} = \sum_{k=1}^n \int_0^{\tau_0} K_{mk}(|\tau - \tau'|) \frac{\partial U_{ki}}{\partial \tau_0} d\tau' + \\ + \sum_{p=1}^n Y_{pi}(z, \tau_0) \int_0^{1/\beta} \overline{G}_{mp}(z') e^{-\frac{\tau_0 - \tau}{z'}} \frac{dz'}{z'}.$$
(36)

Таким образом, функции $\partial U_{ml}/\partial \tau_0$ удовлетворяют уравнениям, матрицаядро которых совпадает с матрицей-ядром системы (17). С другой стороны, свободные члены полученной системы представляют собой суперпозицию свободных членов системы (17). Тогда, ввиду линейности системы (36), будем иметь

$$\frac{\partial U_{mi}}{\partial \tau_0} = \sum_{p=1}^n Y_{pi}(z, \tau_0) \sum_{q=1}^n \int_0^{1/p} \overline{G}_{qp}(z') U_{mq}(\tau_0 - \tau, z', \tau_0) \frac{dz'}{z'}.$$
 (37)

Сравнивая теперь полученное соотношение (37) с выведенными ранее соотношениями (20), получим

$$\frac{\partial U_{mi}}{\partial \tau_0} = -\frac{1}{z} U_{mi} - \frac{\partial U_{mi}}{\partial \tau} + + \frac{\lambda}{2} \sum_{p=1}^n X_{pi}(z, \tau_0) \sum_{q=1}^n \int_0^{1/\beta} \overline{G}_{qp}(z'') U_{mq}(\tau, z'', \tau_0) \frac{dz''}{z''}.$$
(38)

Умножая обе части (38) на $e^{-\frac{\tau}{z'}} \frac{d\tau}{z'}$, а затем на $e^{-\frac{\tau_0-\tau}{z'}} \frac{d\tau}{z'}$, интегрируя в пределах от нуля до τ_0 и учитывая (26) и (27), найдем

$$\frac{\rho_{mi}(z', z, \tau_0)}{\partial \tau_0} + \left(\frac{1}{z} + \frac{1}{z'}\right) \rho_{mi} = \frac{1}{zz'} \sum_{p=1}^n X_{pi}(z, \tau_0) X_{pm}(z', \tau_0), \quad (39)$$

$$\frac{\partial \sigma_{mi}(z', z, \tau_0)}{\partial \tau_0} + \frac{1}{z'} \sigma_{mi} = \frac{1}{zz'} \sum_{p=1}^n X_{pi}(z, \tau_0) Y_{pm}(z', \tau_0), \quad (40)$$

откуда получаем

$$\rho_{mi}(z', z, \tau_0) = \frac{1}{zz'} \sum_{p=1}^{n} \int_{0}^{z} X_{pi}(z, \tau) X_{pm}(z', \tau) e^{-\left(\frac{1}{z}z + \frac{1}{z'}\right)(\tau_0 - \tau)} d\tau; \quad (41)$$

$$\sigma_{mt}(z', z, \tau_0) = \frac{1}{zz'} \sum_{p=1}^{n} \int_{0}^{\tau_0} X_{pt}(z, \tau) Y_{pm}(z', \tau) e^{-\frac{\tau_0 - \tau}{z'}} d\tau.$$
(42)

Подставляя теперь (41) и (42), соответственно, в выражения (26) и (27), получим искомые уравнения для функций $\{X_{mi}\}$ и $\{Y_{mi}\}$:

$$X_{mi}(z,\tau_0) = \delta_{mi} + \frac{\lambda}{2} \sum_{k=1}^n \sum_{p=1}^n \int_0^{1/p} \overline{G}_{mk}(z') \frac{dz'}{z'} \times \\ \times \int_0^{\tau_0} X_{pi}(z,\tau) X_{pk}(z',\tau) e^{-\left(\frac{1}{\pi} + \frac{1}{\pi^2}\right)(\tau_0 - \tau)} d\tau;$$

$$(43)$$

$$Y_{ml}(z, \tau_{0}) = \delta_{ml} e^{-\frac{\tau_{0}}{s}} + \frac{\lambda}{2} \sum_{k=1}^{n} \sum_{p=1}^{n} \int_{0}^{\lambda_{l} p} \overline{G}_{mk}(z') \frac{dz'}{z'} \times \\ \times \int_{0}^{\tau_{0}} X_{pl}(z, \tau) Y_{pk}(z', \tau) e^{-\frac{\tau_{0}-\tau}{s'}} d\tau.$$
(44)

Нахождение функций $X_{mt}(z, \tau_0)$ и $Y_{mt}(z, \tau_0)$, или функций $H_{mt}(z)$ в случае полубесконечной среды, по существу решает задачу диффузного отражения и прохождения. Заметим здесь также, что из системы уравнений (43) нетрудно получить уже упоминавшуюся систему функциональных уравнений вольтерровского типа (19), одну из основных систем, решающих рассматриваемую задачу в случае небольших оптических толщин. Действительно, умножив обе стороны системы (43)

на е $G_{mi}(z)(dz/z)$ и проинтегрировав по z в пределах от нуля до 1/ β , а затем и просуммировав по *i* от единицы до *n*, придем к уравнениям (19) относительно функций

$$\Psi_{pm}(\tau, \tau_0) = \sum_{i=1}^{n} \int_{0}^{1/\beta} e^{\frac{-\tau_0 - \tau}{z}} \overline{G}_{mi}(z) X_{pi}(z, \tau) \frac{dz}{z}.$$
 (45)

Обратимся теперь к вопросу об определении светового режима внутри среды. Указанная задача сводится к определению функций $U_{mi}(\tau, z, \tau_0)$. После того, как функции X_{mi} и Y_{mi} известны, нетрудно получить соотношения для определения функций U_{mi} , характеризующих поле излучения внутри среды. Введем с этой целью функции

НЕКОГЕРЕНТНОЕ РАССЕЯНИЕ. III

$$\Phi_{mp}(\tau,\tau_0) = \frac{\lambda}{2} \sum_{q=1}^{n} \int_{0}^{1/5} \overline{G}_{qp}(z) U_{mq}(\tau, z, \tau_0) \frac{dz}{z}.$$
 (46)

Тогда уравнение (22) перепишется в виде

$$\frac{\partial U_{mi}(\tau, z, \tau_0)}{\partial \tau} = -\frac{1}{z} U_{mi} + \sum_{p=1}^{n} [X_{pi}(z, \tau_0) \Phi_{mp}(\tau, \tau_0) - Y_{pi}(z, \tau_0) \Phi_{mp}(\tau_0 - \tau, \tau_0)].$$
(47)

Формально решая полученное дифференциальное уравнение, будем иметь

$$U_{mi}(\tau, z, \tau_0) = X_{mi}(z, \tau_0) e^{-\frac{\tau}{s}} + \sum_{p=1}^{n} \left[X_{pi}(z, \tau_0) \int_{0}^{\tau} \Phi_{mp}(t, \tau_0) e^{-\frac{\tau-t}{s}} dt - Y_{pi}(z, \tau_0) \int_{0}^{\tau} \Phi_{mp}(\tau_0 - t, \tau_0) e^{-\frac{\tau-t}{s}} dt \right].$$
(48)

Таким образом, интересующие нас функции $U_{mt}(\tau, z, \tau_0)$ оказываются выраженными через функции $\Phi_{mp}(\tau, \tau_0)$, дающиеся в (46). Для определения названных функций нетрудно получить систему интегральных уравнений вольтерровского типа. Действительно, умножая (48) на $(\lambda/2) \ \overline{G_{ij}}(z) (dz/z)$, интегрируя от нуля до $1/\beta$, а затем и суммируя по *i*, получим

$$\Phi_{mj}(\tau, \tau_0) = L_{mj}(\tau, \tau_0) + \sum_{p=1}^{n} \int_{0}^{\tau} [\Phi_{mp}(t, \tau_0) L_{pj}(\tau - t, \tau_0) - \Phi_{mp}(\tau_0 - t, \tau_0) M_{pj}(\tau - t, \tau_0)] dt,$$
(49)

где принято

$$L_{pj}(\tau, \tau_0) = \frac{\lambda}{2} \int_{0}^{1/\beta} \overline{X}_{pj}(z, \tau_0) e^{-\frac{\tau}{z}} \frac{dz}{z};$$

$$M_{pj}(\tau, \tau_0) = \frac{\lambda}{2} \int_{0}^{1/\beta} \overline{Y}_{pj}(z, \tau_0) e^{-\frac{\tau}{z}} \frac{dz}{z},$$
(50)

причем функции \overline{X}_{mj} и \overline{Y}_{mj} задаются (32) и удовлетворяют системе

уравнений (33)—(34). В частном случае полубесконечной среды вместо (49) и (50) будем иметь

$$\Phi_{mj}(\tau) = L_{mj}(\tau) + \sum_{p=1}^{n} \int_{0}^{\tau} \Phi_{mp}(t) L_{pf}\tau(-t) dt, \qquad (51)$$

где

$$L_{pj}(\tau) = \frac{\lambda}{2} \int_{0}^{1/\beta} \overline{H}_{pj}(z) \ e^{-\frac{\tau}{z}} \frac{dz}{z}, \tag{52}$$

причем функции \overline{H}_{pj} задаются системой уравнений (35). Систему уравнений в свертках (51) легко решить, если к ее обеим частям применить преобразование Лапласа:

$$\overline{\Phi}_{mj}(s) = \overline{L}_{mj}(s) + \sum_{p=1}^{n} \overline{\Phi}_{pm}(s) \overline{L}_{pj}(s), \qquad (53)$$

причем

$$\overline{\Phi}_{mj}(s) = \int_{0}^{\infty} \Phi_{mj}(\tau) e^{-\tau s} d\tau, \qquad (54)$$

$$\overline{L}_{pj}(s) = \frac{\lambda}{2} \int_{0}^{1/\beta} \frac{\overline{H}_{pj}(z)}{1+sz} dz.$$
(55)

Функции $L_{pj}(s)$ можно определить также из следующей системы, которую легко получить из (35):

$$\overline{H}_{mt}(z) = \overline{G}_{mt}(z) + \frac{\lambda}{2} \sum_{p=1}^{n} \overline{H}_{pt}(z) \ \overline{L}_{pm}\left(\frac{1}{z}\right).$$
(56)

Из соотношений (53) и (56) функции $\overline{\Phi}_{mj}$ можно выразить через функции \overline{H}_{mj} и \overline{G}_{mj} с помощью арифметических действий.

Задачу, сформулированную в начале работы, в принципе можно считать решенной. В самом деле, знание функций $X_{mi}(z, \tau_c)$ и $Y_{mi}(z, \tau_0)$ позволяет определить из (28) и (29) функции $\rho_{mi}(s, z, \tau_0)$ и $\sigma_{mi}(s, z, \tau_0)$, которые в свою очередь определяют интенсивности излучения, выходящего из среды. С другой стороны, зная те же функции X_{mi} и Y_{mi} , можно из системы интегральных уравнений (49) определить функции $\Phi_{ij}(\tau, \tau_0)$, после чего соотношения (48), (18) и (6) позволяют найти . Функцию источника $S(\tau, x)$. Энание последней дает возможность полностью разрешить вопрос о поле излучения внутри среды. Очевидно, что все сказанное в одинаковой мере относится и к случаю полубесконечной среды, только в втом случае надо пользоваться соответствующими уравнениями.

Отметим, что система уравнений (35) была получена в работе авторов [3] в качестве частного случая функциональных уравнений, выведенных при рассмотрении задачи диффузного отражения от полубесконечной среды при [неизотропном рассеянии. Там же было отмечено, что численные методы, разработанные для решения уравнений относительно обычных *H*-функций, могут быть перенесены к решению системы (35).

Результаты, полученные в настоящей работе, в дальнейшем будут применены к различным астрофизическим задачам, в частности, к проблеме образования спектральных линий в звездных атмосферах.

Институт математики АН Арм.ССР Бюраканская астрофизическая обсерватория

NONCOHERENT SCATTERING. III

N. B. YENGIBARIAN, A. G. NIKOGHOSSIAN

The problem of noncoherent radiation transfer in a spectral line across an isothermic medium is considered. The systems of functional equations for the auxiliary functions, which are a generalisation of Ambartsumian's well-known functions φ and ψ have been derived. A knowledge of these functions enables us to determine the reflection and transmission coefficients, as well as the radiation field in the medium.

ЛИТЕРАТУРА

1. Н. Б. Енибарян, Астрофизика, 7, 573, 1971.

2. Н. Б. Енибарян, А. Г. Никогосян, Астрофизика, 8, 71, 1972.

3. Н. Б. Енгибарян, А. Г. Никогосян, ДАН Арм.ССР (в печати).

4. В. В. Иванов, Перенос излучения и спектры небесных тел. Наука, М., 1969.

5. В. В. Соболев, Астрон. ж., 34, 336, 1957.

АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 8

МАЙ, 1972

выпуск 2

О ВОЗМОЖНОСТИ УСКОРЕНИЯ ВЕЩЕСТВА В ГОРЯЧИХ ЗВЕЗДАХ ЗА СЧЕТ ПОГЛОЩЕНИЯ В СПЕКТРАЛЬНЫХ ЛИНИЯХ

И. Ф. МАЛОВ

Поступила 5 августа 1971 Пересмотрена 13 декабря 1971

Получены максимальные значения импульса, который может быть передан от излучения веществу при поглощении в спектральных линиях в атмосферах звезд Вольфа-Райе и OB-сверхгигантов (результаты приведены на рис. 1, 2 и в табл. 1). На основании этих оценок показано, что максимальная скорость потери массы, обусловленная поглощением излучения в линиях, примерно на порядок меньше наблюдательных оценок, и, следовательно, механизм ускорения, связанный с этим поглощением, не играет определяющей ролк в наблюдаемом истечении нещества из звезд Вольфа-Райе и OB-сверхгигантов.

1. Одной из возможных причин ускорения вещества в горячих звездах является поглощение выходящего из звезды излучения в звездной атмосфере в спектральных линиях. При этом, поскольку основной элемент (водород в ОВ-сверхгигантах и гелий в звездах Вольфа-Райе (WR)) почти полностью ионизован, взаимодействие с излучением осуществляется через ионы других элементов, а также через незначительную часть ионов основного элемента, у которых сохранился хотя бы один электрон (HI, HeI, HeII). Возникает вопрос о возможности передачи этими ионами импульса, полученного от излучения, на основную компоненту атмосферы, которая с излучением не взаимодействует^{*}. Если такая передача возможна, то газ начинает

• В ряде работ [1—3] рассматривается возможность выброса нонов некоторых элементов (таких, как Са, С и др.) вследствие селективного взаимодействия этих нонов с выходящим из звезды излучением. Однако в указанных работах не затрагиваются вопросы увлечения этими ионами основной компоненты атмосферы. Возможная роль селективных процессов в истечении вещества из звезд обсуждается также в [4, 5]. течь как целое, а параметры, характеризующие истечение, в этом случае могут быть получены в результате решения системы уравнений гидродинамики, описывающих указанную ситуацию. Попытка гидродинамического рассмотрения проблемы сделана в [6].

Применение строгих методов требует большой вычислительной работы. Может оказаться более целесообразным проведение простых оценок, если с их помощью можно показать непригодность данного механизма к рассматриваемой проблеме. В настоящей работе показывается, что простыми энергетическими оценками можно установить пределы применимости механизма ускорения, связанного с поглощением излучения в спектральных линиях^{*}. Как будет установлено ниже, эти пределы находятся в согласии с результатами совместного решения уравнений гидродинамики, уравнения переноса и уравнения ионизационного равновесия, полученными в работе [6].

2. Наиболее обильными в атмосферах звезд WR следует, повидимому, считать ионы HeII, CII, CIII, CIV, NIII, NIV, NV, OII, OIII, OIV, OV, OVI, SiIV (см., например, [8]). В своих расчетах будем принимать во внимание линии первых трех серий HeII и резонансные линии остальных ионов. Вычислим максимально возможный импульс, который может быть передан газу излучением при взаимодействии в этих линиях.

Будем считать, что при ускорении вещества от нулевой скорости до скорости V вследствие эффекта Доплера линия смещается вдоль спектра и "выедает" из него участок шириной $\Delta v_l = v_l (V/c)$. Энергетическая доля всех таких участков в спектре равна

$$\gamma = \frac{\sum_{i}^{\nu_{i} + \Delta \nu_{i}} B_{\nu} d\nu}{\int_{0}^{\infty} B_{\nu} d\nu} = \frac{2\pi h}{\sigma c^{2} T_{*}^{4}} \sum_{i}^{\nu_{i} + \Delta \nu_{i}} \frac{\nu^{3} d\nu}{\frac{h^{3}}{kT_{*}} - 1}, \quad (1)$$

где B_* — функция Планка, соответствующая температуре T_* . Остальные обозначения общепринятые. Суммирование проводится по всем рассматриваемым линиям.

-228

[•] Мы уже указывали на такую возможность в [7], где использовались усредненные значения параметров звезд WR. Здесь приводятся результаты более детальных расчетов.

ОБ УСКОРЕНИИ ВЕЩЕСТВА В ГОРЯЧИХ ЗВЕЗДАХ

Нетрудно видеть, что γ является функцией температуры T_* , скорости V и химического состава. Мы будем считать, что все указанные выше линии играют роль в ускорении вещества, а их ширины соответствуют скорости $V = 1000 \ \kappa m/cek$. В этих условиях γ является функцией только T_* . Наиболее систематические сведения о температурах звезд WR даны в [9]. Ниже приведена таблица, взятая из этой работы и дополненная вычисленными значениями γ , светимости звезды L и скорости потери массы — M.

Таблица 1

(2)

№ по HD	Sp	<i>T</i> 10 ⁻⁴ ℃K	M _b	L-10 ⁻³⁹ (эрі/сек)	γ (°/v)	-M·10-7 Mo/20A
193576	WN 5.5	10.89	- 9.5	1.92	3.764	3,65
50896	WN 5.5	10.77	-11.4	11.04	3,772	21.86
193793	WC 6	10.37	-11.1	8.38	3.797	16.70
191765	WN 6	10.25	-11.8	15.94	3.806	31.85
192163	WN 6	10.03	-11.6	13.28	3.882	26.65
187282	WN 5	9.56	-10.2	3.65	3.866	7.41
192103	WC 7	9.18	-10.9	6.95	3.911	14.27
165763	WC 6(+?)	8.2:	-11.6:	13.28	4.104	28.61
193077	WN 5	8.19	-10.2	3.65	4.107	7.87
211853	WN 6-1-B0:	7.90	(-11.1)	8.38	4.195	18.46
192641	WC 7	7.60	- 9.7	3.00	4.304	6.78
γ² Vel	₩C7(+07?)	7.20	(-10.5)	4.82	4.486	11.35
193928	WN 6+?	7.04	— 9.5	1.92	4.570	4.60

НЕКОТОРЫЕ ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭВЕЗД ВОЛЬФА-РАЙЕ (WR)

На рис. 1 представлена зависимость γ от температуры звезды. Падение γ с ростом T_* вызвано смещением максимума планковской кривой относительно области, в которой расположены линии, дающие наибольший вклад.

Импульс, теряемый звездой через излучение в единицу времени, равен L/c. На ускорение вещества в результате его взаимодействия с излучением в линиях может пойти доля втого импульса $\leq \gamma$. Это приведет к истечению с потоком импульса вещества на бесконечности, равным $-MV_{\infty}$, где V_{∞} — асимптотическое значение скорости истечения. Следовательно, максимальная скорость потери массы вследствие поглощения излучения в спектральных линиях равна

$$-\dot{M}=\gamma \frac{L}{cV_{\infty}}.$$

Взяв $V_{\infty} = 1000 \ \kappa m/cek$, получим значения — \dot{M} , приведенные в последнем столбце табл. 1. На рис. 2 для сравнения представлены наблюдательные оценки — \dot{M} , взятые из работы [10]. Вычисленные нами скорости потери массы всюду на полтора—два порядка ниже наблюдательных оценок.

Рис. 1. Зависимость энергетической доли линий в спектрах звезд Вольфа-Райе от температуры.

Значения γ , приведенные в табл. 1, являются максимально возможными. Это связано со следующими факторами. 1) При вычислении γ по формуле (1) считалось, что участок планковской кривой, соответствующий данной линии, "выедается" полностью, т. е. остаточная интенсивность всех линий предполагалась равной нулю. Ясно, что это требование не может быть выполнено для всех рассматриваемых линий. 2) При подсчете ширины каждой полосы принималось $V = 1000 \ \kappa m/се\kappa$. Однако вследствие стратификации атмосферы некоторые линии должны образовываться в оболочке, разность скоро-

ОБ УСКОРЕНИИ ВЕЩЕСТВА В ГОРЯЧИХ ЗВЕЗДАХ

стей на границах которой меньше, чем 1000 км/сек. Повтому для некоторых линий Δν, будут меньше, чем принятые здесь значения. 3) Для всех звезд предполагалось, что ионы С и N вносят одновременный вклад. Известно, однако, что существует две последовательности звезд WR: углеродная последовательность (WC), в звездах которой не наблюдаются линии N, и азотная последовательность

Рис. 2. Сравнение значений скорости потери массы, полученных по формуле (2), (точки) с наблюдательными оценками [10] (крестики). Величины — М выражены в Мо/год.

(WN), характеризующаяся отсутствием линий С и О*. Учет этого фактора для реальных звезд уменьшит значение γ . 4) Для линий вблизи границ серий считалось, что происходит полное "выедание" от некоторой линии вплоть до границы. Ясно, что в действительности полного "выедания" нет.

С другой стороны, учет вклада следующих серии Hell и линий других ионов приведет к увеличению 7. Оценки, однако, показывают,

[•] У некоторых звезя WR наблюдается одновременное присутствие в спектре линий С, О и N. Однако одни из них бывают обычно значительно слабее других.

что линии следующих серий He II увеличивают у лишь на 0.1—0.2%, в то время, как исключение линий С и О приведет для звезд WN к уменьшению у примерно на 0.5%. Следовательно, указанный эффект не изменяет вывода о максимальности полученных значений у.

Таким образом, если только наблюдательные оценки для — M не являются систематически завышенными на 1.5—2 порядка, поглощение в спектральных линиях всех влементов не обеспечивает истечения вещества из звезд WR. Этот вывод является обобщением утверждения [4] о том, что излучение в резонансной линии He II не играет существенной роли в ускорении вещества в атмосферах звезд WR.

3. Аналогичные оценки для сверхгиганта с температурой $T_* = 20\,120\,^{\circ}$ К, светимостью $L = 1.9\cdot10^5\,L_{\odot}$ и конечной скоростью $V_{\infty} = 3300\,\kappa$ м/сек [6] с учетом первых трех серий водорода и резонансных линий С III, C IV, N III, N V, Si IV, Si V, S III, SIV, S VI, приведенных в [6], дают следующие максимальные значения: $\gamma = 13.15^{\circ}/_{o}$, $-M = 1.5\cdot10^{-7}\,M_{\odot}/20$ д.

Наблюдения приводят к оценке потери массы OB-сверхгигантами $10^{-6} M_{\odot}/iod$ [11], т. е. на порядок выше, чем значение, полученное нами. Следует отметить, что с помощью строгих методов в [6] получено значение скорости потери массы для рассмотренного нами сверхгиганта $-\dot{M} \sim 10^{-8} M_{\odot}/iod$. Следовательно, только около $10^{0/0}$ импульса, заключенного в соответствующих линиях, передается веществу**. Это подтверждает максимальность приведенных нами оценок и приводит к выводу о том, что и в OB-сверхгигантах поглощение в спектральных линиях не является определяющим механизмом, который обеспечивает наблюдаемое истечение.

В заключение считаю своим приятным долгом выразить благодарность М. В. Конюкову за обсуждение результатов и Р. А. Владимировой за помощь в вычислениях.

Физический институт им. П. Н. Лебедева АН СССР

* Можно ожидать, что вклад других нонов еще меньше.

** Если такая эффективность передачи импульса характерна и для звезд WR, то поглощение в спектральных линиях может обеспечить в этих звездах скорость потери массы порядка $10^{-7} M_{\odot}/10 g$.

ОБ УСКОРЕНИИ ВЕЩЕСТВА В ГОРЯЧИХ ЗВЕЗДАХ

ON THE POSSIBILITY OF ACCELERATION OF MATTER IN HOT STARS BY ABSORPTION IN SPECTRAL LINES

I. F. MALOV

The maximal values of a momentum that may be contributed by radiation to a matter through absorption in spectral lines in Wolf-Rayet stars and OB-supergiants are obtained. (The results are shown in Figs.. 1-2 and listed in the Table 1).

It is shown that the acceleration mechanism connected with an absorption in spectral lines does not play the main role in the observed outflow of matter from Wolf-Rayet stars and OB-supergiants, because the maximal rate of a mass loss due to this mechanism is approximately one order less than observational estimates.

ЛИТЕРАТУРА

1. M. C. Johnson, M. N., 85, 813, 1925.

2. E. A. Milne, M. N., 86, 459, 1926,

3. С. Б. Пикельнер, Астрон. ж., 24, 5, 1947.

4. В. Г. Горбацкий, И. Н. Минин, Нестационарные звезды, Физматгиз, М., 1963_

5. L. B. Lucy, P. M. Solomon, A. J., 72, 310, 1967.

6. L. B. Lucy, P. M. Solomon, Ap. J., 159, 879, 1970.

7. И. Ф. Малов, Астрон. цирк., № 616, 1971.

8. P. Swings, Ap. J., 95, 112, 1942.

9. С. В. Рублев, Кандидатская диссертация, Ростов, 1965.

10. С. В. Рублев, Астрон. ж., 42, 718, 1965,

11. D. C. Morton, Astrophys. Space Sci., 3, 117, 1969.

АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 8

МАЙ, 1972

ВЫПУСК 2

О ДИФФУЗИИ ИЗЛУЧЕНИЯ В ЗВЕЗДНОЙ ОБОЛОЧКЕ, РАСШИРЯЮЩЕЙСЯ С ПОСТОЯННОЙ СКОРОСТЬЮ

В. В. ВИТЯЗЕВ

Поступила 1 октября 1971

В одномерном приближении рассматривается задача о диффузин излучения в двух слоях, движущихся относительно друг друга с постоянной скоростью. Предполагается, что в элементарном объеме происходит полное перераспределение излучения по частотам. Для случая конечных слоев численным методом получены функция источников, интенсивности выходящего излучения и сила светового давления при доплеровском профиле козффициента поглощения. В случае полубесконечных слоев выведены уравнения для интенсивности выходящего излучения и точная формула для функции источников.

1. Введение. Диффузии резонансного излучения в оболочках новых звезд и планетарных туманностях посвящены многочисленные исследования. Изучение диффузии La-излучения в планетарных туманностях начал В. А. Амбарцумян [1]. Сделав предположение о неизменности частоты диффундирующих фотонов в неподвижной или расширяющейся с большой скоростью туманности, он пришел к заключению о значительной роли La-излучения в динамике туманностей. В частности, из его результатов следовало, что световое давление, вызванное диффузией La-излучения, должно привести к дифференциальному движению слоев туманности. Определение поля излучения в туманности, расширяющейся с градиентом скорости, делали многие авторы, однако этого вопроса мы здесь касаться не будем.

При предположении о полном перераспределении излучения по частотам диффузию L₁-излучения в неподвижной туманности рассмотрел Занстра [2]. Для ковффициента поглощения он принял доплеровский профиль. Полученное им интегральное уравнение было численно решено Кулблудом [3]. В этих статьях для силы светового дав-

6-212

ления было получено гораздо меньшее значение, чем в случае диффузии излучения без изменения частоты.

При рассмотрении диффузии излучения в планетарных туманностях обычно применяют модель тонкой сферической оболочки. В указанных работах считалось, что скорость расширения оболочки либо равна нулю, либо очень велика (много больше тепловой скорости атомов). Эти две задачи являются предельными случаями более общей задачи о диффузии излучения в оболочке, расширяющейся с произвольной скоростью. При прямоугольном профиле коэффициента поглощения решение такой задачи для полубесконечной среды дано В. В. Соболевым. Оно вытекает как частный случай из решения задачи о диффузии излучения в среде с отражающей поверхностью [4].

Некоторое отношение к рассматриваемому вопросу имеет работа Куландера [5]. Для доплеровского профиля коэффициента поглощения и при предположении о полном перераспределении излучения по частотам он в приближении Эддингтона решил численно задачу об образовании линий излучения в среде, состоящей из полубесконечного слоя и движущегося относительно него слоя конечной оптической толщины.

В настоящей статье решается задача о нахождении характеристик поля излучения в оболочке, расширяющейся с постоянной скоростью при произвольном профиле коэффициента поглощения и при предположении о полном перераспределении излучения по частотам. В такой постановке она обобщает на случай произвольных оптических толщин оболочки и произвольного профиля коэффициента поглощения задачу, рассмотренную В. В. Соболевым [4]. Решение получено в одномерном приближении, т. е. в качестве среды взяты два отрезка, разлетающиеся с произвольной скоростью. Полученные уравнения можно применять не только к диффузии L₂-излучения в расширяющихся туманностях и звездных оболочках. Их можно также использовать для рассмотрения диффузии излучения в других линиях и в других объектах (например, в двух газовых облаках, движущихся относительно друг друга).

2. Основное уравнение. Рассмотрим два отрезка, движущихся относительно друг друга с постоянной скоростью V. Считаем, что в них происходит диффузия излучения в спектральной линии с полным перераспределением по частотам при элементарном акте рассеяния, причем вероятность выживания фотона λ есть постоянная величина. Профиль ковффициента поглощения обозначим через $\alpha(x)$, где x — безразмерная частота, выраженная в единицах доплеровской полуши-

о диффузии излучения в звезднои оболочке

рины линии. Введем оптическую глубину т и оптическую толщину τ_0 . каждого отрезка. Обе эти величины соответствуют центральному значению коэффициента поглощения. Условимся считать, что границы отрезков $\tau = 0$ обращены друг к другу. Пусть $\varepsilon(\tau, x) d dx$ — количество энергии, излучаемое между оптическими глубинами τ и $\tau + d\tau$ в интервале безразмерных частот от x до x + dx в одном направлении в единицу времени. При предположении о полном перераспределении излучения по частотам величина $\varepsilon(\tau, x)$ представима в виде

$$\varepsilon(\tau, x) = \alpha(x) B(\tau), \qquad (1)$$

где $B(\tau) - \phi$ ункция источников.

Обозначим через $I_1(\tau, x)$ и $I_2(\tau, x)$ интенсивности излучения, идущего на глубине τ в частоте x соответственно в сторону возрастания и убывания оптических глубин. Для этих величин имеем

$$I_1(\tau, x) = I_2(0, x + v) e^{-\alpha(x)\tau} + \int_0^{\tau} B(t) e^{-\alpha(x)(\tau-t)} \alpha(x) dt, \qquad (2)^{\tau}$$

$$I_{2}(\tau, x) = \int_{0}^{\tau} B(t) e^{-z(x)(t-\tau)} \alpha(x) dt.$$
 (3)

Здесь считается, что на границы $\tau = \tau_0$ излучение извне не падает. Первое слагаемое в выражении (2) учитывает смещенное по частоте излучение, приходящее на границу $\tau = 0$ одного отрезка с границы $\tau = 0$ другого отрезка. При втом v = V/u, где u — средняя тепловая скорость атома. Определяя $I_2(0, x + v)$ из (3), находим

$$I_{1}(\tau, x) = \alpha (x + v) \int_{0}^{\tau_{0}} B(t) e^{-\alpha(x)\tau - \alpha(x+v)t} dt + \alpha(x) \int_{0}^{\tau} B(t) e^{-\alpha(x)(\tau-t)} dt.$$
(4)

При сделанных выше предположениях для функции источников имеем

$$B(\tau) = A \frac{\lambda}{2} \int_{-\infty}^{+\infty} [I_1(\tau, x) + I_2(\tau, x)] \alpha(x) dx + g(\tau).$$
 (5),

This by host of a standard to an

В. В. ВИТЯЗЕВ

Здесь $A = 1 \int_{-\infty}^{+\infty} a(x) dx$, $g(\tau)$ — произвольная функция, задающая

распределение источников в среде.

Подстановка (3) и (4) в выражение (5) дает основное интегральное уравнение задачи:

$$B(\tau) = \frac{\lambda}{2} \int_{0}^{\lambda} B(t) \left[K(|\tau - t|) + K_{1}(\tau, t) \right] dt + g(\tau), \quad (6)$$

где

$$K(\tau) = A \int_{-\infty}^{+\infty} \alpha^{\mathfrak{s}}(x) e^{-\alpha(x)\tau} dx, \qquad (7)$$

$$K_1(\tau, t) = A \int_{-\infty}^{+\infty} \alpha(x) \alpha(x+v) e^{-\alpha(x)\tau - \alpha(x+v)t} dx.$$
(8)

При $v = \infty$ имеем $K_1(\tau, t) = 0$. В этом случае уравнение (6) было изучено и решено В. В. Соболевым [6].

3. Определение функции источников. Для численного решения поставленной задачи применим метод разбиения отрезка на n слоев [7]. Будем считать функцию источников постоянной внутри каждого слоя и равной среднему арифметическому ее значений на границах слоя. Все приводимые ниже результаты получены указанным способом при n = 20. Расчеты производились для доплеровского профиля козффициента поглощения, $\tau_0 = 5$ и $\tau_0 = 10$, $\lambda = 1$, $g(\tau) = 1$.

В табл. 1 и 2 даны значения функции источников в зависимости от оптической глубины при различных v. Для конечных v характерно отсутствие симметрии функции $B(\tau)$ относительно середины отрезка $\tau = \tau_0/2$, что объясняется падением на границу $\tau = 0$ излучения второго отрезка. При $v = \infty$ это излучение в первом отрезке не поглощается. В этом случае функция $B(\tau)$ обладает указанной симметрией. Как видно из табл. 1 и 2, при доплеровском профиле коэффициента поглощения такая ситуация осуществляется уже при v = 4. Значения $B(\tau)$ для $v \ge 4$ и $\tau_0 = 10$ совпадают с найденными ранее [6].

4. Интенсивности выходящего ивлучения. Знание функции источников позволяет определить интенсивности излучения на любой опти-

о диффузии излучения в звезднои оболочке

Таблица 1

Таблица 2

Функция в (т) ПРИ то=5									
2	0	0.8	1.6	2.4	3.2	4.0			
0	7.14	5.72	3.81	2.78	2.46	2.41			
0.5	7.11	5.84	4.18	3.26	2.88	2.87			
1.0	7.01	5.88	4.43	3.60	3.23	3.21			
1.5	6.85	5.84	4.58	3.83	3.47	3.45			
2.0	6.62	5.73	4.62	3.96	3.61	3.59			
2.5	6.32	5.53	4.57	3.99	3.66	3.64			
3.0	5.92	5.25	4.43	3.92	3.61	3.59			
3.5	5.46	4.89	4.18	3.74	3.47	3,45			
4.0	4.89	4.42	3.84	3.47	3.23	3.21			
4.5	4.22	3.84	3.38	3.09	2.88	2.87			
5.0	3.43	3.15	2.81	2.58	2.42	2.41			

ческой глубине. Мы найдем интенсивности излучения, выходящего из отрезка. Полагая в (3) и (4) $\tau = 0$ и $\tau = \tau_0$, для этих величин получаем

ФУНКЦИЯ В (τ) ПРИ $\tau_0 = 10$									
0	0.8	1.6	2.4	3.2	4.0				
15.2	11.5	7.11	4.61	3.63	3.44				
15.1	11.8	8.17	6.14	5.14	4.89				
14.9	11.9	8.85	7.16	6.19	5.92				
14.5	11.9	9.24	7.81	6.89	6.60				
13.9	11.6	9.34	8.13	7.29	7.00				
13.1	11.1	9.20	8.16	7.41	7.13				
12.1	10.4	8.80	7.92	7.26	7.00				
10.9	9.49	8.12	7.40	6,84	6.60				
9.32	8.24	7.15	6.57	6.11	5.91				
7.42	6.63	5.82	5.39	5.05	4.89				
5.02	4.53	4.03	3.76	3.54	3.43				
	ФУНК 0 15.2 15.1 14.9 14.5 13.9 13.1 12.1 10.9 9.32 7.42 5.02	ФУНКЦИЯ В 0 0.8 15.2 11.5 15.1 11.8 14.9 11.9 13.9 11.6 13.1 11.1 12.1 10.4 10.9 9.49 9.32 8.24 7.42 6.63 5.02 4.53	ФУНКЦИЯ В (т) П 0 0.8 1.6 15.2 11.5 7.11 15.1 11.8 8.17 14.9 11.9 8.85 14.5 11.9 9.24 13.9 11.6 9.34 13.1 11.1 9.20 12.1 10.4 8.80 10.9 9.49 8.12 9.32 8.24 7.15 7.42 6.63 5.82 5.02 4.53 4.03	ФУНКЦИЯ В (т) ПРИ т ₀ = 0 0.8 1.6 2.4 15.2 11.5 7.11 4.61 15.1 11.8 8.17 6.14 14.9 11.9 8.85 7.16 14.5 11.9 9.24 7.81 13.9 11.6 9.34 8.13 13.1 11.1 9.20 8.16 12.1 10.4 8.80 7.92 10.9 9.49 8.12 7.40 9.32 8.24 7.15 6.57 7.42 6.63 5.82 5.39 5.02 4.53 4.03 3.76	ФУНКЦИЯ В (т) ПРИ $\tau_0 = 10$ 0 0.8 1.6 2.4 3.2 15.2 11.5 7.11 4.61 3.63 15.1 11.8 8.17 6.14 5.14 14.9 11.9 8.85 7.16 6.19 14.5 11.9 9.24 7.81 6.89 13.9 11.6 9.34 8.13 7.29 13.1 11.1 9.20 8.16 7.41 12.1 10.4 8.80 7.92 7.26 10.9 9.49 8.12 7.40 6.84 9.32 8.24 7.15 6.57 6.11 7.42 6.63 5.82 5.39 5.05 5.02 4.53 4.03 3.76 3.54				

 $I_{a}(\tau_{0}, x) = e^{-\alpha(x)\tau_{0}} \int_{0}^{\tau_{0}} B(t) \left[\alpha(x) e^{\alpha(x)t} + \alpha(x+v) e^{-\alpha(x+v)t} \right] dt, \qquad (9)$

$$I_{2}(0, x) = \alpha(x) \int_{0}^{t_{0}} B(t) e^{-\alpha(x)t} dt.$$
 (10)

На рис. 1 и 2 показаны контуры выходящего из отрезка излучения для $\tau_0 = 10$. При больших скоростях контур линии излучения, выходящего через границу $\tau = \tau_0$, должен состоять из двух контуров — смещенного на величину υ и симметричного относительно центральной частоты. На рис. 1 такой вид имеет контур, соответствующий $\upsilon = 4$. При меньших скоростях смещенный и симметричный контуры накладываются друг на друга, из-за чего результирующий контур имеет несимметричную форму.

Рис. 1.

На рис. 2 видно, что интенсивности $I_2(0, x)$ для малых скоростей движения не имеют центрального провала. Это объясняется тем, что функция источников вблизи границы $\tau = 0$ для небольших скоростей достигает своего максимального значения. С ростом скорости втот максимум сдвигается к центру отрезка, вследствие чего в линии излучения появляется указанный провал.

5. Световое давление. Найдем силу светового давления, действующую на единицу объема на границе $\tau = 0$. Эта сила вычисляется по следующей формуле:

$$P(v) = \frac{\sigma_{v_{0}}}{c} \int_{-\infty}^{+\infty} \alpha(x) \left[I_{2}(0, x) - I_{2}(0, x+v) \right] dx =$$

$$= \frac{\sigma_{v_{0}}}{Ac} \int_{0}^{v_{0}} B(t) \left[K(t) - K_{1}(0, t) \right] dt,$$
(11)

где τ_2 — объемный коэффициент поглощения для центральной частоты, c — скорость света. В табл. З приведена зависимость от скорости величины $cP(v)/\tau_1$ для $\tau_0 = 5$ и $\tau_0 = 10$.

Наибольший интерес представляет определение силы светового давления при очень большой оптической толщине оболочки. В этом случае при $v = \infty$ (а практически при значениях v порядка нескольких единиц) можно получить простую асимптотическую формулу для величины *P*. Полагая в формуле (11) $v = \infty$ и пользуясь уравнением (6) при $v = \infty$, $\lambda = 1$, $g(\tau) = B_0$, получаем

$$P(\infty) = \frac{2\sigma_{u_0}}{Ac} [B(0) - B_0].$$
 (12)

В работе В. В. Соболева [8] была изучена функция Q(т), являющаяся

решением уравнения (6) при $v = \infty$ и $g(\tau) = 1$. Очевидно, что $B(\tau) = B_0 Q(\tau)$. Для величины Q(0) в указанной работе получены асимптотические оценки. Применяя их к случаю одномерной среды и доплеровского профиля коэффициента поглощения, вместо (12) получаем

$$P(\infty) = 0.94 \frac{2\sqrt{\pi} \sigma_{v_0}}{c} B_0 \tau_0^{\frac{1}{2}} (\ln \tau_0)^{\frac{1}{4}}, \quad \tau_0 \gg 1.$$
 (13)

Асимптотически точная теория [9] дает ту же формулу с ковффициентом $(\pi/4)^4$ вместо 0.94.

Таблица З

U	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
$\tau_0 = 5$	0.00	0.43	1.42	2.59	3.60	4.29	4.66	4.78	4.82	4.82	4.82
$\tau_0 = 10$	0.00	0.58	2.04	3.77	5.60	7.09	7.97	8.29	8.28	8.20	8.15

ФУНКЦИЯ $cP(v)/\sigma_v$ ДЛЯ $\tau_0=5$ И $\tau_0=10$

Формулу (13) можно применять для определения силы светового давления, вызываемого L_s-излучением в туманностях. В этом случае

$$B_0 = N \frac{q(1-p)}{2\sqrt{\pi}} h v_{\alpha}, \qquad (14)$$

где N — число L_c -квантов, падающих от звезды на внутреннюю границу туманности, q — отношение коэффициента поглощения в лаймановском континууме к коэффициенту поглощения в центре линии L_a , p — доля рекомбинаций на первый уровень, h_{a} — энергия L_a -кванта. Здесь считается, что оптическая толщина туманности в лаймановском континууме меньше единицы. Подставляя (14) в (13), находим

$$P(\infty) = 0.94 \frac{\sigma_{\nu_0}}{c} \tau_0^{\frac{1}{2}} (\ln \tau_0)^{\frac{1}{4}} Nq (1-p) h\nu_a, \quad \tau_0 \gg 1.$$
 (15)

Если бы мы считали, что перераспределение по частотам отсутствует, то для силы светового давления получили бы формулу

$$P_*(\infty) = \frac{1}{2} N(1-p) h v_a \frac{\sigma_{v_a}}{c} q \tau_0.$$
 (16)

Сравнивая (15) с (16), имеем

$$\frac{P(\infty)}{P_{*}(\infty)} = 1.88\tau_{0}^{-\frac{1}{2}} (\ln \tau_{0})^{\frac{1}{4}}, \quad \tau_{0} \gg 1.$$
(17)

При $\tau_0 \sim 10^4$ формула (17) для отношения $P(\infty)/P_*(\infty)$ дает значение порядка 10^{-2} .

6. Случай полубесконечной среды. Будем теперь считать, что т_о = ∞. Для интенсивности I₂(0, x) имеем

$$I(x) \equiv I_2(0, x) = \int_0^\infty B(t) e^{-\alpha(x)t} \alpha(x) dt.$$
 (18)

Оказывается, что можно получить уравнение, непосредственно определяющее эту интенсивность. Действительно, умножим уравнение (6) при $\tau_0 = \infty$ на $\alpha(x) e^{-\alpha(x)\tau}$ и проинтегрируем его по τ от 0 до ∞ . В результате получим

$$I(x) t (x) = I_1(x) + \frac{1}{2} Aa(x) \int_{-\infty}^{+\infty} \left[\frac{a(y)}{a(x) - a(y)} + \frac{a(y-v)}{a(x) + a(y-v)} \right] I(y) dy,$$
(19)

где

$$I_1(x) = \alpha(x) \int_0^\infty g(\tau) x^{-\tau(x)\tau} d\tau, \qquad (20)$$

$$t(x) = 1 - \lambda + \lambda A a^{2}(x) \int_{-\infty}^{+\infty} \frac{a(y) dy}{a^{*}(x) - a^{2}(y)}.$$
 (21)

Если функция I(x) определена, то можно найти функцию источников и тем самым решить задачу до конца. Пусть $\overline{B}(s)$ означает результат применения преобразования Лапласа к функции $B(\tau)$, т. е.

$$\overline{B}(s) = \int_{0}^{\infty} B(\tau) e^{-s\tau} d\tau.$$
(22)

Применяя преобразование Лапласа к уравнению (6), получаем

$$\overline{B}(s)\left[1-\frac{\lambda}{2}\overline{K}(s)-\frac{\lambda}{2}\overline{K}(-s)\right] = \overline{g}(s) + \lambda \int_{0}^{1} G(z)I(z)\frac{dz}{s-z} + \frac{\lambda}{2}\int_{0}^{1} G(z)J(z,v)\frac{dz}{s+z},$$
(23)

где

$$\overline{K}(s) = \int_{0}^{1} G(z) \frac{zdz}{s+z},$$
(24)

$$G(z) = 2A \frac{z}{\alpha' \left[\alpha^{-1}(z)\right]}, \qquad (25)$$

$$J(z, v) = \frac{1}{2} \{ I[a(a^{-1}(z) - v)] + I[a(a^{-1}(z) + v)] \},$$
(26)

$$o\left[\left(a^{-1}\right)z\right)\right] = z. \tag{27}$$

Для получения B(т) из выражения (23) по формуле

$$B(\tau) = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} \overline{B}(s) e^{is\tau} ds$$
(28)

-сделаем достаточно общее предположение относительно функции $g(\tau)$, -считая ее представимой в виде суперпозиции экспонент, т. е.

$$g(\tau) = \int_{0}^{1} g_{0}(y) e^{-\tau y} dy.$$
 (29)

В этом случае $\overline{g}(s)$ есть интеграл типа Коши с известными особенностями в комплексной плоскости. Учитывая также особенности $\overline{K}(s)$ и последнего интеграла в (23), в результате контурного интегрирования находим

$$B(\tau) = \int_{0}^{1} \frac{D(x) e^{-x\tau} dx}{T^{2}\left(\frac{1}{x}\right) + \left[\frac{\lambda}{2} \pi x G(x)\right]^{2}},$$
(30)

где

$$T\left(\frac{1}{x}\right) = 1 - \frac{\lambda}{2}\overline{K}(-x) - \frac{\lambda}{2}\overline{K}(x), \qquad (31)$$

$$D(x) = xG(x) \left[\int_{0}^{1} g_{0}(z) \frac{dz}{z-x} - \frac{\lambda}{2} \int_{0}^{1} G(z) I(z) \frac{dz}{z+x} + \right]$$

$$+\frac{\lambda}{2}\int_{0}^{1}G(z) f(z, v)\frac{dz}{z-x}\Big]+T(x)\Big[g_{0}(x)+\frac{\lambda}{2}G(x) f(x, v)\Big].$$
(32)

'244

При этом $\overline{K}(-x)$, первый и третий интегралы в выражении (32) следует понимать в смысле главного значения по Коши.

Хенинградский государственный университет

ON DIFFUSION OF RADIATION IN STELLAR SHELL EXPANDING WITH CONSTANT VELOCITY

V. V. VITYASEV

In one-dimensional approximation the diffusion of radiation in two moving layers is considered. The complete redistribution in frequency is assumed. In the case of the finite layers the source function, emergent intensities and radiation pressure are found numerically. In the case of semi-infinite layers the equation for the emergent intensity and explicit expression for the source function are derived.

ЛИТЕРАТУРА

- 1. В. А. Амбарцумян, Научные труды, т. І, АН АрыССР, Ереван, 1960.
- 2. H. Zanstra, BAN., 11, 401, 1949; 11, 429, 1951.
- 3. D. Koelbloed, BAN., 12, 465, 1956.
- 4. В. В. Соболев, ДАН СССР, 136, 571, 1961.
- 5. J. L. Kulander, Ap. J., 147, No 3, 1967.
- 6. В. В. Соболев. Перенос лучистой внергии в атмосферах звезя и планет, Гостехиздат, М., 1956.
- 7. Н. Я. Яковкин, Р. И. Костик, Астрофизика, 2, 379, 1966.
- 8. В. В. Соболев, Астрофизика, 3, 135, 1967.
- 9. В. В. Иванов, Перенос излучения и спектры небесных тел, Наука, М., 1969.

АКАЛЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 8

МАЙ, 1972

выпуск 2

О ПРИРОДЕ ИЗЛУЧЕНИЯ ВСПЫШЕК ЗВЕЗД ТИПА UV СЕТІ

А. А. КОРОВЯКОВСКАЯ Поступила 2 ноября 1971 Пересмотрена 27 марта 1972

Рассмотрено высвечивание ионизованного нодородного газа за фронтом ударной волны, распространяющейся по политропной среде. Сравнение теоретических кривых высвечивания газа с паблюдаемыми кривыми вспышек звезд тила UVCet показывает удовлетворительное согласие.

Приводены графики, характеризующие изменение во времени электронной и нонной температур, степени конизации и возбуждения, числа La -квантов за фронтом ударной волны для разных начальных условий в среде.

Введение. Для интерпретации вспышечных явлений в атмосферах звезд типа UV Cet в [1—3] применялась небулярная модель вспышки, которая позволила объяснить многие фотометрические особенности вспышек этих звезд (нисходящие кривые блеска, цветовые характеристики и т. д.). Из сравнения теоретических кривых блеска с наблюдаемыми там же были получены некоторые количественные оценки (плотность, скорость расширения и объем высвечивающегося вещества). Оказалось, однако, что в рамках такой модели для объяснения энергии вспышки размер газового [образования, ответственного за излучение, должен быть принят на порядок большим, чем радиус звезды. Расширение газового образования до необходимого размера за время возгорания вспышки (порядка нескольких секунд или десятков секунд) должно происходить со скоростью, превосходящей световую, что явно не может иметь места.

Более поздние исследования Гершберга [4] вспышек звезд типа UV Cet показали, что плотность высвечивающегося газа выше плотности, полученной в [3], и, следовательно, размер образования, ответственного за излучение звезды во время вспышки, меньше. Оценки плотностей в [4] указывают на то, что вспышка возникает в верхних слоях атмосферы звезды. В [4, 5] проведено исследование хромосфер звезд типа UV Cet в спокойном состоянии и показано, что они подобны солнечной хромосфере. Там же было отмечено сходство хромосферных вспышек на Солнце и вспышек звезд типа UV Cet как по кривым блеска, так и в отношении последовательности угасания спектральных линий различных влементов. Исследования [3-5] позволяют считать, что вспышки возникают в хромосферах звезд типа UV Cet.

Весьма важными для интерпретации вспышечных явлений у рассматриваемых звезд являются наблюдения звезды Wolf 359 Арпом и Гринстейном [6], которые обнаружили движение вещества во время вспышки. Смещение линий кальция оказалось большим, чем линий водорода, что свидетельствует об увеличении скорости движения вещества наружу. Этот наблюдательный факт позволяет в качестве механизма нагрева вещества, ответственного за излучение во вспышке, рассмотреть ударную волну. Попытка объяснить явление вспышки в звездах типа UV Cet прохождением ударных волн в атмосферах была сделана Климишиным [7]. Однако полученные в [7] скорости возгорания и угасания вспышки плохо согласуются с наблюдениями. Здесь, вполне возможно, сказалось несовершенство принимавшейся модели, в первую очередь — предположение о постоянстве плотности вещества в атмосфере звезды. Учет градиента плотности в среде может существенно изменить полученный в [7] характер высвечивания вещества, как из-за различия во времени релаксации в средах с разными плотностями, так и вследствие ускорения фронта ударной волны при движении его в сторону уменьшающейся плотности.

В настоящей работе рассматривается высвечивание вещества, нагретого ударной волной, распространяющейся в среде с градиентом плотности, и полученные результаты применяются для интерпретации вспышек звезд типа UV Cet.

Основные уравнения и их решение. Рассмотрим высвечивание слоя политропной среды, нагретого ударной волной. Целесообразно принять такой интервал значений плотности, который соответствует хромосферам звезд и включает в себя величины плотностей, полученные в предыдущих исследованиях. Из [3] следует, что вклад линий в общее излучение звезды во время вспышки мал, поэтому можно принять во внимание лишь свечение в континууме, в котором, как легко показать, среда остается прозрачной при рассматриваемых плотностях. Будем считать среду водородной, атом водорода трехуровенным (3-е состояние соответствует ионизации). Для получения качественной картины и некоторых количественных оценок (время возгорания и угасания вспышки, ее энергия, размеры и т. д.) достаточно использовать автомодельное решение уравнений газовой динамики, которые описывают выход ударной волны на поверхность среды с уменьшающейся по степенному закону плотностью. Из наблюдений следует, что вспышка—явление локальное [4], поэтому можно рассмотреть одномерный случай. Соответствующее решение, полученное в [8], имеет следующий вид:

$$u = U(r) f(\eta),$$

$$p = \rho_0(r) U^{*}(r) g(\eta),$$

$$\rho = \rho_0(r) h(\eta),$$

$$\eta a r^{-\lambda - 1} t \qquad 0 \le \eta \le 1.$$

Здесь u, p, ρ — скорость, давление и плотность вещества за фронтом ударной волны, U(r) — скорость ударной волны, $\rho_0(r)$ — начальное распределение плотности в среде.

После прохождения ударной волны энергию приобретают сперва тяжелые частицы, которые посредством столкновений передают ее электронам, вследствие чего повышается как электронная температура, так и степень ионизации, затем начинается высвечивание среды.

В рамках принятой модели интенсивность излучения столба газа высотой $\Delta r = r_3 - r_1$ и с основанием в 1 см² может быть записана следующим образом:

$$J = \int_{r_1}^{r_2} n_*^2(r) S(T_*) dr, \qquad (2)$$

(1)

где n_{ϵ} — концентрация электронов, T_{ϵ} — электронная температура, $S(T_{\epsilon}) = \int (\epsilon^{ff} + \epsilon) \psi(\lambda) d\lambda$ — интенсивность излучения, рассчитанная на

пару электрон-протон, обусловленная свободно-свободными переходами и рекомбинациями, $\psi(\lambda)$ — функция спектральной чувствительности аппаратуры. Таким образом, для нахождения интенсивности излучения необходимо в каждый момент времени знать величины n_e и T_e , которые при сделанных выше предположениях зависят, в свою очередь, от населенностей первого (n_1) и второго (n_2) уровней, концентрации L_a -квантов (n_a) и ионной температуры (T_i) . При такой постановке задачи изменение вышеуказанных величин $(n_e, n_1, n_2, n_a, T_e, T_i)$ описывается следующими уравнениями:

$$\begin{aligned} \frac{dn_{e}}{dt} &= n_{e}^{2}(r) C(T_{e}) + n_{1}(r) n_{e}(r) q_{1e}(T_{e}) + n_{2}(r) n_{e}(r) q_{2e}(T_{e}) + \\ &+ n_{2}(r) n_{e}(r) q_{2e}^{2} - n_{e}(r) \frac{v\left(1 + t\frac{dv}{dr}\right)}{r_{0} + vt}; \\ \frac{dn_{3}}{dt} &= n_{2}(r) (A_{21} + B_{21}\rho_{13}) + n_{2}(r) n_{e}(r) q_{31}(T_{e}) - n_{1}(r) B_{12}\rho_{13} - \\ &- n_{1}(r) n_{e}(r) [q_{12}(T_{e}) + q_{1e}(T_{e})] - n_{1}(r) \frac{v\left(1 + t\frac{dv}{dr}\right)}{r_{0} + vt}; \\ \frac{dn_{2}}{dt} &= r_{e}^{2}(r) C(T_{e}) + n_{1}(r) n_{e}(r) q_{13}(T_{e}) + n_{1}(r) B_{12}\rho_{13} + \\ &+ n_{2}(r) (A_{21} + B_{21}\rho_{13}) - n_{2}(r) n_{e}(r) [q_{31}(T_{e}) + q_{2e}(T_{e})] - \end{aligned}$$
(3)
$$&- n_{2}(r) n_{e}(r) q_{2e}(T_{e}) &= n_{2} \frac{v\left(1 + t\frac{dv}{dr}\right)}{r_{0} + vt}; \\ \frac{dn_{e}}{dt} &= n_{2}(r) (A_{31} + B_{31}\rho_{13}) - n_{1}(r) B_{13}\rho_{13} - \\ &- n_{3}(r) n_{4}(r) q_{2e}^{2} - n_{3}(r) A_{31}\beta_{13}; \\ \frac{d\left(\frac{3}{2}kT_{e}n_{e}\right)}{dt} &= -n_{e}^{2}(r) [e^{ff} + \overline{e}C(T_{e})] - n_{3}(r) n_{e}(r) \left[\sum_{n=2}^{\infty} q_{1n}(T_{e}) \chi_{n} + \\ &+ q_{1e}(T_{e}) \chi_{3}\right] - n_{2}(r) n_{e}(r) \left[\sum_{n=3}^{\infty} q_{2n}(T_{e}) (\chi_{n} - \chi_{2}) + \\ &+ q_{2e}(T_{e}) (\chi_{0} - \chi_{2})\right] + hv_{12}n_{2}(r) n_{e}(r) q_{31}(T_{e}) + \\ &+ \frac{2}{3} hv_{13}n_{e}(r) n_{3}(r) q_{3e}^{2} + n_{e}^{2}(r) E_{1e} - \frac{2}{3} T_{e} \frac{v\left(1 + t\frac{dv}{dr}\right)}{r_{0} + vt}; \end{aligned}$$

где n — концентрация тяжелых частиц, q_{ik} , q_{ic} , q_{2e} — сечения возбуждения и ионизации электронным ударом и сечение ионизацив L₂квантом соответственно, v — скорость расширения среды, $C(T_e)$ коэффициент фоторекомбинаций, \bar{e} — средняя энергия рекомбинирующего электрона, ϵ^{ff} — энергия, излучаемая атомом при свободно — свободных переходах, $E_{ie} = 10^{-17} T_e^{-3/2} (T_i - T_e)$ — энергия, передаваемая ионом электрону в результате столкновения (взята из [9]). Остальные обозначения общепринятые. В правых частях уравнений приняты во внимание следующие процессы: возбуждение и ионизация электронным ударом и L₂-квантами, вынужденное и спонтанное излучения, расширение среды, свободно-свободные и свободно-связанные переходы.

Следует отметить, что решение системы уравнений (3) крайне затруднено тем, что их члены, соответствующие ударным и радиативным процессам, отличаются друг от друга на несколько порядков. При решении подобных систем в [3] и [10] использовалось условие стационарности поля излучения в линии L_a:

$$n_2 A_{21} + n_2 B_{21} \rho_{12} = n_1 B_{12} \rho_{12}, \qquad (4)$$

существенно упростившее вычисления. Оценки возможности применения условия (4) показали [3], что поле излучения в линии L_a в процессе высвечивания быстро становится стационарным. Проведенное автором сравнение численного решения системы уравнений, описывающих высвечивание плазмы без предположения о стационарности поля излучения в линии L_a, с соответствующим решением этой же системы с учетом (4), подтвердило оценки, полученные в [3], и корректность сделанного предположения. Вследствие этого воспользуемся соотношением (4) и приведем систему (3) к безравмервому виду. Обозначим

 $x = \frac{n_e}{n_0}; \quad y = \frac{n_2 + n_1}{n_0}; \quad z = \frac{n_2 + n_4}{n_0}; \quad d\beta' = n_0 C(T_e) dt;$ $n_0 = n_1 + n_2 + n_e; \quad T_t = 10\ 000\ T; \quad T_e = 10\ 000\ \sigma;$
А. А. КОРОВЯКОВСКАЯ

$$\begin{aligned} \frac{dx}{d\beta'} &= -x^3 + \frac{n_3n_e}{n_0^2} q_{1e}' + \frac{n_s}{n_0} xq_{2e}' + \frac{n_sn_s}{n_0^2} q_{2e}' - \\ &- \frac{x}{Cn_0} \frac{v\left(1 + t\frac{dv}{dr}\right)}{r_0 + vt}; \\ \frac{dy}{d\beta'} &= x^3 - \frac{n_s}{n_0} xq_{2e}' - \frac{n_1}{n_0} xq_{1e}' - \frac{n_sn_s}{n_0^2} q_{2e}' - \\ &- \frac{1}{n_0C} \frac{v\left(1 + t\frac{dv}{dr}\right)}{r_0 + vt} (n_1 + n_2)/n_0; \\ \frac{dz}{d\beta'} &= x^3 + \frac{n_1}{n_0} xq_{12}' - \frac{n_s}{n_0} x\left(q_{21}' + q_{2e}'\right) - 2\frac{n_sn_s}{n_0^2} q_{2e}' - \\ &- \frac{n_2}{n_0} \frac{A_{21}\beta_{1s}}{n_0C} - \frac{n_s}{n_0} \frac{v\left(1 + t\frac{dv}{dr}\right)}{n_0C(r_0 + vt)}; \end{aligned}$$
(5)
$$\frac{d\sigma}{d\beta'} &= s\left\{-\frac{1}{x} \frac{dx}{d\beta'} - \frac{5}{3} \frac{v\left(1 + t\frac{dv}{dr}\right)}{n_0C(r_0 + vt)} - x\left(\varphi_1 + \varphi_2\right) - \\ &- \frac{n_1}{n_0} (\Lambda_1 + x\Lambda_2) + \Lambda_3 \frac{n_sn_s}{n_0^2} + 0.4831 \cdot 10^s \sigma^{-\frac{5}{2}} \frac{T - \sigma}{C} x\right\}; \\ \frac{dT}{d\beta'} &= -\frac{2}{3} \left[7.246 \cdot 10^s \frac{n_0}{n} x^2 \frac{T - \sigma}{C\sigma^{3/2}} + \frac{T}{n_0C} \frac{v\left(1 + t\frac{dv}{dr}\right)}{r_0 + vt}; \\ &\frac{d\beta}{d\beta'} &= x; \quad \frac{dn}{d\beta'} = \frac{n}{Cn_0^2} \frac{v\left(1 + t\frac{dv}{dr}\right)}{r_0 + vt}; \\ \frac{d\beta}{d\beta'} &= x; \quad \frac{dn}{d\beta'} = \frac{n}{Cn_0^2} \frac{v\left(1 + t\frac{dv}{dr}\right)}{r_0 + vt}; \\ \frac{n_s}{n_0} &= z - \frac{n_2}{n_0}; \quad \frac{n_1}{n_0} = y - \frac{n_s}{n_0}, \end{aligned}$$

252

гле

$$d = 0.118 \sqrt{T} / n_0; \quad q_{ik}^* = \frac{q_{ik}}{C(T_o)};$$
$$x = \frac{n_2}{n_1} / \left(\frac{n_2}{n_1}\right)_{\text{больц}};$$

$$\Lambda_1 = \left(\sum_{n=2}^{\infty} q_{1n} \chi_n + q_{1c} \chi_0\right) / \left(\frac{3}{2} k T_{\bullet} C\right);$$

$$\lambda_{2} = \left\{ \left[\sum_{n=3}^{\infty} q_{2n} (\chi_{n} - \chi_{2}) + q_{2c} (\chi_{0} - \chi_{2}) \right] \cdot 4l^{\frac{\lambda_{2}}{kT_{e}}} - q_{12}\chi_{2} \right\} / \left(\frac{3}{2} kT_{e}C \right);$$

$$\Lambda_3 = \frac{q_{2c} n v_{12}}{q T_e C};$$

$$\varphi_{1} = \frac{4\pi \int_{0}^{\infty} e^{ft} (v, T_{e}) dv}{\frac{3}{2} k T_{e} C}$$

$$\varphi_{2} = 1 - \overline{\varepsilon} / \left(\frac{3}{2} k T_{e}\right).$$

В этой системе уравнений предполагается та же зависимость от r_{*} T_{*} , что и в (3).

При решении поставленной задачи рассматривалось высвечивание столба газа с основанием в 1 см² и высотой 2000 км, распределение плотности в котором подчиняется политропическому закону (показатель политропы n = 3). Систему уравнений (5) и (2) с учетом (1) необходимо интегрировать по двум переменным r и t. Для упрощения вычислений указанный столб газа был разбит на 6 частей, в каждой из которых усреднялись найденные по (1) плотность высвечивающегося вещества и скорость ударной волны. Начальная ионная температура находилась по формуле $T_t = 3u^3/16 R$, где R — универсальная газовая постоянная. Такое рассмотрение позволило решить задачу в два этапа. Сначала интегрировалась система уравнений (5)

(6)

по времени, причем n₀ и T_i являлись параметрами задачи, соответствующими усредненным значениям для разных частей столба. Затем определялась, в зависимости от времени, интенсивность излучения каждой из втих частей по мере прохождения по ней ударной волны. И, наконец, искомое свечение всего столба газа находилось суммированием интенсивностей от всех частей разбиения и сглаживалось, при этом учитывалось, что каждая последующая часть столба газа начинает светиться после прохождения ударной волной предыдущих частей.

В табл. 1 приведены начальные данные, для которых решалась система уравнений (5) методом Рунге-Кутта на ЭВМ БЭСМ-ЗМ, M-222, Odra 1024. Сечение ионизации и возбуждения электронным ударом рассчитывались по формулам, приведенным в [11] для интервала температур 10 000—150 000 °К.

№ варианта	1	2	3	4	5	6
na	1014	3.25.1013	1013	3.25-1013	1013	3.25.1011
Te	19000	27500	46250	78750	135000	232500
Γ.	6500	6500	6500	6500	6500	6500
$(n_{e}/n_{o})_{o}$	0.1	0.1	0.1	0.1	0.1	0.1

Величины φ_1 , φ_2 , λ_1 , λ_2 рассчитывались по формулам (6) для того же интервала температур. Результаты вычислений приведены в табл. 2. $C(T_e)$ было взято из [12].

Обсуждение результатов. Охлаждение среды, обусловленное расширением, оказалось несущественным вследствие малости времени релаксации для рассматриваемых плотностей и из-за малых скоростей расширения вещества. На рис. 1 представлены результаты расчетов T_{\bullet} (штриховые кривые), T_{t} , n_{\bullet}/n_{0} , n_{s}/n_{0} . Номера кривых соответствуют вариантам табл. 1. Как и следовало ожидать, с ростом плотности вещества время релаксации в среде уменьшается, что обуславливает смещение кривых по времени на рис. 1. Важно отметить, что с увеличением начальной ионной температуры заметно растут в процессе высвечивания максимальные значения степени ионизации, степени возбуждения и числа L_{a} -квантов. Максимальное значение влектронной температуры меняется слабо (из-за потери энергии электронами на ударное возбуждение и ионизацию).

Интересно рассмотреть процесс установления равновесия для различных начальных степеней ионизации. На рис. 2 представлены

О ПРИРОДЕ ИЗЛУЧЕНИЯ ВСПЫШЕК ЗВЕЗД ТИПА UV СЕТІ

			_		_		
T.	91c	920	912	Ÿ1	Ψ2	λ ₁	λ,
4000	.13 -12**	.27 +2	.48 -7	.27	.51	.20 —6	-16 -6
6000	10 -6	.10 +4	.93 —3	.31	.53	.30 -2	-17 -6
8000	96 -4	.66 +4	.13	.35	.54	.40	.82 —1
10000	61 -2	.21 +5	.25 +1	.38	.55	.78 +1	.91 +1
12000	99 -1	45 +5	.18 +2	.41	.56	.57 +2	.12 +3
14000	.74	.80 -5	.75 +2	.44	.57	.23 +3	.76 +3
16000	.34 +1	.12 +6	.22 +3	.47	.57	.69 +3	.28 +4
18000	.11 -+ 2	.17 +6	.50 +3	.50	.58	.16 +4	.78 +4
20000	.30 -+-2	.23 +-6	.96 +3	.53	.58	.31 +4	.18 +5
20000	65 +2	.29 +-6	.17 +4	.55	.59	.55 +4	.36 +5
24000	13 +3	.35 -1-6	.26 +4	.58	.59	.85 +4	.61 +5
26000	.23 + 3	.41 +6	.38 +4	.60	.60	.13 +5	.99 +5
28100	.37 +3	.47 +6	.53 +4	.63	.60	.18 +5	.15 +6
30000	.56 +3	.53 +6	.70 +4	.65	.60	.24 +5	.21 +6
35000	.13 +4	.68 +6	.12 +5	. 71	.61	.43 +5	.43 +6
40000	.26 +4	.81 +6	.19 +5	.77	.62	.70 +5	.72 +6
45000	.43 +4	.94 +6	.26 +5	.81	.63	.99 +5	.11 +7
50000	.66 +4	.11 +7	.35 +5	.86	.64	.14 +6	.15 +7
60000	.12 +5	.13 +7	.51 +5	.98	.64	.21 +6	.24 +7
70000	.20 +5	.14 +7	.68 +5	.108 +1	.65	.30 +6	.34 +7
80000	.28 +5	.16 +7	.85 +5	.116 +1	.66	.38 +-6	.44 +7
90000	.37 +5	.17 +7	.10 +6	.125 +1	.67	.46 +6	.52 +7
100000	.47 +5	.18 +7	.11 +6	.129 +1	.67	.51 +6	.61 +7
110000	.56 +5	.18 +7	.13 +6	.140 +1	.67	.61 +6	.70 +7
120000	.66 +5	.19 +7	.14 +6	.148 +1	.67	.69 +6	.78 +7
130000	.75 +5	.19 +7	.15 +6	.156 - 1	.67	.75 +6	.86 +7
140000	.84 +5	.20 +7	.16 +6	.166 +1	.67	.82 +-6	.92 +7
150000	.93 +5	.20 +7	.17 +6	.174 +1	.67	.89 +6	.98 +7
						1.0	No. of Concession, Name

* $q_{1e}^* = q_{1e} \cdot 10^{13}$. * .13-12=0.13.10⁻¹².

255

Таблица 2

Рис. 1. Изменение T_e (штриховые линии), T_i , n_e/n_0 , n_2/n_0 , n_a/n_0 (сплошные линии) во времени. Номера вривых соответствуют номерам вариантов в табл. 1.

О ПРИРОДЕ ИЗЛУЧЕНИЯ ВСПЫШЕК ЗВЕЗД ТИПА UV СЕТІ 257

результаты вычислений $T_{e}(1)$, $T_{i}(2)$, $n_{e}/n_{0}(3)$, $n_{e}/n_{0}(4)$ для $(n_{e}/n_{0})_{0} = 0.1$ (штриховые линии) и для $(n_{e}/n_{0})_{0} = 0.01$ (сплошные линии). Видно, что чем больше начальная степень ионизации, тем быстрее устанавливается равновесие. Существенно, что при увеличении начальной степени ионизации на порядок максимальное значение степени ионизации в процессе высвечивания увеличивается лишь в 2 раза.

Рис. 2. Поведение T_e (1), T_i (2), n_e/n_0 (3), n_a/n_0 (4) в зависимости от ничальной степени ионизации: штриховые линии — для $(n_e/n_0)_0=0.1$, сплошные — для $(n_e/n_0)_0=0.01$, ($T_e=46\ 000\ ^{\circ}$ K, $T_e=6000\ ^{\circ}$ K, $n_0=6.4\cdot 10^{13}$).

Этим обстоятельством можно объяснить несколько большее значение электронной температуры для $(n_e/n_0)_0 = 0.1$, чем для $(n_e/n_0)_0 = 0.01$: в первом случае на ионизацию и возбуждение электронный газ тратит несколько меньшую энергию, чем во втором. Как видно из рис. 2, повышение степени ионизации атома водорода сопровождается некоторым повышением электронной температуры (для $(n_e/n_0)_0 = 0.01$ это выражено особенно явно), в то время как ионная температура уже значительно уменьшалась. Повышение средней энергии электронов в процессе ионизации связано с ионизацией водорода L_a -квантами. На рис. 3 представлены кривые высвечивания столба газа высотой 2000 км в фотометрических областях UBV. Энергия в области В получилась несколько меньшей, чем в области V. Это обусловлено видом функции $S(T_e)$, используемой в настоящей работе. Как отмечалось выше, при вычислении функции $S(T_e)$ не было учтено излучение в линиях, которые в основном находятся в фотометрической области В.

Из рис. З видно, что, в отличие от результатов [7], время возгорания вспышки значительно меньше времени угасания и составляет для принятой модели атмосферы несколько секунд. Это согласуется с рядом наблюдаемых вспышек. Поскольку в настоящее время не существует разработанной модели атмосфер этих звезд, а есть лишь некоторые оценки параметров хромосферы [5], то в данной задаче не имело смысла рассматривать градиент электронной температуры и степени ионизации (это привело бы к неоправданному увеличению числа параметров задачи).

t(cek)

Рис. 3. Кривые высвечивания столба газа с сечением в 1 см², нагретого ударной волной в фотометрических областях UBV.

Учет градиента плотности в среде позволил считать, что вспышка может быть обусловлена высвечиванием вещества за фронтом ударной волны. Этот механизм разогрева атмосферы звезды представляется наиболее естественным и в то же время объясняет многие характеристики вспышек (энергию, локальный характер вспышки, время возгорания и угасания). На рис. 4 проведено сравнение теоретических кривых высвечивания газа за фронтом классической ударной волны с наблюдаемыми кривыми блеска вспышек звезд типа UV Cet [13, 14]. Учитывая погрешности наблюдений, можно считать согласие вполне удовлетворительным.

Рассмотренная в настоящей работе скорость ударной волны обеспечила в максимуме блеска в области U энергию 4.10²⁶ эрг/сек, в предположении, что вспышка занимает половину поверхности эвезды.

Рис. 4. Сравнение теоретических кривых блеска (сплошные линии) высвечнвающегося газа за фронтом ударной волны с наблюдаемыми кривыми блеска (штриховые линии) вспышек звазд типа UVCet. 1, 2 — соответственно вспышки № 28 и № 3 из [13], 3 — из [14].

Задавая при расчетах различные скорости ударной волны, можно получить большой диапазон энергий излучения. Если объяснять вспышки звезя типа UV Cet высвечнванием газа за фронтом ударной водны, то мы должны наблюдать увеличение интенсивности эмиссионных линий различных элементов в последовательности, соответствующей глубине их образования. Спад интенсивности линий должен происходить в несколько иной последовательности. Действительно, температурное равновесие наступает довольно быстро, следовательно энергия электронов скоро становится меньше энергии, требуемой для ионизации и возбуждения атома гелия. По этой причине линии гелия должны уменьшить свою интенсивность до нормальной довольно быстро. Избыточное излучение в линиях водорода должно наблюдаться дольше, так как для атома водорода энергия возбуждения и ионизации значительно меньше, чем для гелия; в то же время некоторую роль в ионизации и возбуждения атома водорода играют Laкванты. Из-за диффузии La-квантов в среде должно долго наблюдаться избыточное излучение в линиях Са. Все это хорошо согласуется с наблюдениями.

Таким образом, рассматривая ударную волну в качестве механизма нагрева вещества в атмосферах звезд типа UV Cet, можно объяснить многие фотометрические и спектроскопические характеристики вспышек. Варьируя начальные данные расчета кривых высвечивания вещества и сравнивая теоретические кривые с наблюдаемыми, можно получить ряд сведений о строении хромосфер звезд типа UVCet, в частности о распределении по радиусу плотности вещества и степени его ионизации. Кроме того, при определенных начальных значениях степени ионизации и энергии ударной волны может быть снята существенная трудность небулярной модели вспышки, связанная с размером газового образования, ответственного за излучение.

Специальная астрофизическая обсерватория АН СССР

ON THE NATURE OF THE UV CETI-TYPE STARS FLARE RADIATION

A. A. KOROVYAKOVSKAYA

The radiation of the ionized hydrogen gas behind the shock-wave front propagating through the polytropic medium is considered. The theoretical light curves for the gas and those observed for flares of the UV Cet-type stars are in satisfactory agreement.

The diagrams are presented to show the time variations of the electron and ion temperatures, the degree of ionization and excitation, the number of L_2 -quanta behind the shock-wave front for different primary conditions.

ЛИТЕРАТУРА

- 1. Р. Е. Гершберг, Изв. КрАО, 32, 133, 1964.
- 2. Р. Е. Гершберг, Изв. КрАО, 38, 177, 1968.
- А. А. Коровяковская, Ю. П. Коровяковский, Астрофизические исследования (Изв. САО), 3, 1971 (в печати).
- 4. Р. Е. Гершберг, Диссертация, 1970.
- 5. Р. Е. Гершбері, Астрофизика, 6, 191, 1970.
- 6. J. L. Greenstein, H. Arp, Ap. J., 3, 149, 1969.
- 7. И. А. Климищин, Циркуляр ШАО, 6, 13, 1970.
- 8. A. Sakurai, Comm. pure appl. Math., 13, 353, 1960.
- 9 С. Б. Пикельнер, Изв. КрАО, 12, 93, 1954.
- 10. В. Г. Горбацкий, И. Н. Минин, Неста ционарные звезды, М., 1963.
- D. R. Bates, A. S. Kingston, R. W. P. McWhirter, Proc. Roy. Soc., A 267, 297, 1962.
- 12. А. А. Боярчук, Р. Е. Гершберг, Н. В. Годовников, Изв. КрАО, 38, 208, 1968.
- 13. S. Cristaldi, M. Rodono, IBVS, 526, 1972.
- 14. S. Cristaldi, M. Rodono, IBVS, 525, 1971.

АКЛЛЕМИЯ НАУК АРМЯНСКОЙ ССР АСТРОФИЗИКА

TOM 8

МАЙ, 1972

ВЫПУСК 2

ЭВОЛЮЦИЯ БЕЛОГО КАРЛИКА ПРИ АККРЕЦИИ БОГАТОГО ВОДОРОДОМ ВЕЩЕСТВА. I

Ю. Н. РЕДКОБОРОДЫЙ Поступила 1 ноября 1971

Рассмотрена вволюция гелневого белого карлика с равномерно возрастающей за счет аккреции водородной оболочкой. Расчеты проводились на основе метода Хениея в предположении квазистатичности аккреции. Построена эволюционная последовательность моделей, свидетельствующая о возникновении в нижних слоях водородной оболочки слоевого источника внергии, который оказывается термически нестабильным. Показано, что ускоренный рост температуры в слое горения водорода имеет место и после того, как скорость аккреции по каким-либо причинам резко уменьшится, если только масса накопленного водорода превышает некоторое критическое значевие. Полученные результаты можно связать с феноменами новых, повторных и карликовых новых, имеющих место в тесных двойных системах.

1. Введение. Исследование эволюции белых карликов, содержащих в оболочке водород, представляет значительный интерес. Соображения о возможной неустойчивости таких эвезд были высказаны в 1950 г. в работах Леду [1] и Ли [2]. Несколько позже Местелом [3] было сделано предположение о тепловой неустойчивости во внешних слоях белого карлика при наличии аккреции водорода и предложена упрощенная модель развития такой неустойчивости. В то время идея Местела не получила большого распространения и должным образом не развивалась. Интерес к этой гипотезе возродился в последние годы в связи с исследованиями причин переменности в тесных двойных системах. Однако в большинстве работ по аккреции белым карликом водорода [4-8], следуя Местелу [3], принят весьма упрощенный подход к проблеме: структура звезды в области слоевого источника энергии получается путем "сшивки" изотермического ядра и лучистой оболочки, используются приближенные формулы Крамерса для коэффициента поглощения, степенная зивисимость ядерного внерговыделения от температуры и нулевые граничные условия на поверхности звезды; тепловая задача рассматривается отдельно от гидростатической, подобно тому, как это делается в случае полностью вырожденных конфигураций.

Возможность развития термической неустойчивости при горении водорода на периферии белого карлика в конечном счете зависит от соотношения между скоростью локального нагревания и скоростью охлаждения вследствие как теплоотвода (резко возрастающего при заметном вырождении вещества — за счет электронной теплопроводности), так и возможного расширения оболочки (при недостаточном вырождении). Поскольку физические параметры вещества во внешних слоях белого карлика изменяются чрезвычайно быстро с глубиной, то ход эволюции звезды должен существенно зависеть от точного местоположения слоевого источника энергии. Введение же вышеупомянутых упрощающих предположений, оправданных при рассмотрении звезды в целом, в данном случае приводит к такому чрезмерному "огрублению" структуры внешних слоев белого карлика, что принципиальный вывод о наличии термической неустойчивости может оказаться необоснованным.

Таким образом, даже сам факт возможности теплового взрыва (не говоря уже о развитии его во времени) может быть установлен, как нам кажется, только при строгом подходе к решению задачи об аккреции водорода на белый карлик путем непосредственного решения системы уравнений внутреннего строения звезды с использованием точных выражений для энерговыделения [9, 10], новейших данных о коэффициентах поглощения [11] и электронном экранировании при термоядерных реакциях [12]. По возможности необходимо отказаться и от остальных упрощений, таких, например, как использование нулевых граничных условий, поскольку слоевой источник энергии располагается недалеко от поверхности звезды. Наиболее близко к выполнению такой программы подошли Джианноне и Вейгерт [4], однако серьезным недостатком их работы является использование нулевых граничных условий и учет эффекта экранирования по приближенным формулам Салпитера [13]. Кроме того, полученные в [4] результаты в значительной степени обесцениваются тем, что в работе использован первоначальный вариант таблиц Кокса и др. для непрозрачностей, оказавшийся ошибочным [14], и не учтены последние уточнения в скорости протон-протонной реакции [9].

В данной работе излагается метод расчета эволюционной последовательности моделей для белого карлика, на поверхности которого имеет место аккреция богатого водородом вещества, а также приводятся результаты расчетов этим методом эволюции белого карлика с гелиевым ядром и начальной массой $M = 0.5 M_{\odot}$ в случае $M = 10^{-9} M_{\odot}/20$ В отличие от работ [4—8] описываемый метод основан на численном решении исходной системы уравнений внутреннего строения звезды с ненулевыми граничными условиями и при значительно более точном учете всех эффектов тепловыделения и теплоотвода.

Помимо обычных допущений, которые делаются при расчетах сферически симметричных моделей звезд, мы используем следующие упрощающие предположения:

1) Принято, что приобретаемые звездой слои водорода являются оптически тонкими, так что кинетическая энергия упавшего на звезау вешества подвергается диссипации и переизлучается вовне (например, в рентгеновском диапазоне [5]). В таком случае мы имеем дело с квазистатической аккрецией, т. е. скорость вещества в момент присоединения к звезде можно считать равной нулю, так что в самых верхних слоях оболочки L const. Оценка показывает, что даже при невысоких темпах аккреции (10⁻⁹ Молод) поток кинетической энергии на поверхность белого карлика достигает значительной величины, однако приближение "медленной" аккреции оправдывается тем, что точный учет доли "переизлученной" кинетической энергии представляет собой весьма сложную задачу. С другой стороны, данное предположение согласуется с общепринятым квазистатическим приближением в теории внутреннего строения звезд, при котором динамический член в уравнении гидростатического равновесия считается равным нулю.

2) Согласно результатам работ [4, 8] промежуток времени, в течение которого может развиться термическая неустойчивость, составляет. величину $\tau \sim 10^6$ лет. С помощью известного соотношения $(\Delta l)^2 \sim D \cdot \tau$ (D— козффициент диффузии) нетрудно убедиться в том, что ширина Δl диффузионного "размытия" границы Не—Н за время τ много меньше толщины невырожденной оболочки, т. е. хорошим приближением является скачкообразное изменение химического состава на границе между веществом звезды и накопленным в результате аккрещии водородом.

3) Малость величины т по сравнению со временем "ядерной" эволюции звезд на главной последовательности позволяет пренебречь изменением химического состава за счет выгорания водорода. Действительно, как видно из приводимых ниже результатов, на протяжении всех расчетов в любой точке звезды удельная мощность энерговыделения с удовлетворяет неравенству

 $\varepsilon \ll \frac{E_*}{\Delta t}$,

(1)

где Δt — шаг по времени, отделяющий данную модель от предыдуцей; E_* — количество энергии, выделяющееся при полном превращении 1 г водорода в гелий. Следовательно, изменение концентрации водорода $|\Delta X| \sim (\epsilon/E_*) \Delta t \ll 1$.

2. Основные уравнения. Физические условия в белом карлике. Если в качестве независимой переменной использовать массовую переменную ξ, то система уравнений структуры звезды принимает вид [15]

$$\frac{\partial P}{\partial \xi} + \frac{Gm\rho}{r^3} \frac{\partial r}{\partial \xi} = 0; \qquad (2)$$

$$\frac{dm}{d\xi} - 4\pi r^2 \rho \, \frac{\partial r}{\partial \xi} = 0; \tag{3}$$

$$\frac{\partial l}{d\xi} - \frac{dm}{d\xi} \left[\varepsilon - \frac{\partial E}{\partial t} - P \frac{\partial}{\partial t} \left(\frac{1}{\rho} \right) \right] = 0; \qquad (4)$$

$$\frac{\partial T}{\partial \xi} + \frac{6 x_0 l}{64 \pi \sigma T^3 r^3} \frac{\partial r}{\partial \xi} = 0 \qquad \text{при } \nabla > \nabla_{ax};$$

$$\frac{\partial E}{\partial \xi} + P \frac{\partial}{\partial \xi} \left(\frac{1}{\rho}\right) = 0 \qquad \text{при } \nabla \gg \nabla_{ax};$$
(5)

где

$$\Delta = \frac{3}{64\pi\sigma G} \frac{xlP}{mT^4};$$
(6)

 $m(\xi)$, $l(\xi, t)$ и $r(\xi, t)$ — масса, светимость и радиус для сферы, соответствующей некоторому значению ξ (в отличие от M, L и R — массы, светимости и радиуса звезды в целом); $\nabla_{\mathbf{x}}$ — адиабатический градиент (см. раздел 5). Величины P, E, \times и ε в (2)—(6) являются функциями ρ , T и химсостава (параметры X, Y,... считаются не зависящими от времени — см. выше).

а) Уравнение состояния. Оценка показывает, что в условиях белого карлика давлением излучения можно пренебречь, т. е.

$$P=P_i+P_e.$$

Величина P_i представляет собой давление идеального больцмановского газа ядер с молекулярным весом $\mu_i = (X + 1/4 Y)^{-1}$ [16], тогда как при вычислении давления электронов P_{\bullet} электронный газ рассматривается в общем случае как частично вырожденный и P_{\bullet} есть функция р, 7 и параметра вырождения 4, являющегося корнем уравнения [16, 17] .

$$\rho = \frac{4\pi}{h^3} \frac{2m_H}{1+X} (2m_* kT)^{3/2} F_{1/2}(\psi), \qquad (7)$$

где $F_{1,2}(\psi) - \phi$ ункция Ферми-Дирака индекса 1/2 (в глубоких слоях звезд учитывается возможность релятивистского вырождения).

б) Внутренняя энергия. Как известно [17], удельная внутренняя энергия связана с давлением и плотностью посредством соотношения

$$E = \frac{3}{2} \frac{P}{p}, \tag{8},$$

справедливого при любой степени вырождения электронного газа. Выражение для *E* несколько усложняется, когда у газа электронов становится заметной роль эффектов СТО. В этом случае

$$E=E_i+E_{e_1}$$

где E_t — удельная энергия больцмановского газа ядер, а в известном выражении для E_{\bullet} как функции ρ и параметров химсостава [17] необходимо исключить удельную энергию покоя электронов

$$m_e c^2 \frac{n_e}{\rho} = \frac{n_e c^2}{2m_H} (1 + X).$$
 (9)

в) Ядерные реакции. В интересующем нас диапазоне температур внерговыделение определяется реакциями горения водорода

$$\varepsilon = \varepsilon_{pp} + \varepsilon_{CNO}, \tag{10}$$

где в известном выражении для величины ε_{pp} , соответствующей протон-протонному циклу [10], численный ковффициент увеличен на 12.5%, в соответствии с результатами работы [9], а для поправочного множителя на экранирование f_{pp} используются результаты развитой в [12] теории эффекта электронного экранирования при термоядерных реакциях:

$$f_{pp} = \exp\left\{\frac{5\sqrt{2} e^{5/2}}{4k} \left(\frac{\pi m_e}{\hbar^8 m_H}\right)^{1/4} \frac{\rho^{1/4} (1+X)^{1/4}}{T}\right\}.$$
 (11)

Мощность энерговыделения по углеродно-азотному циклу ε_{CNO} рассчитывалась в соответствии с [10]; для поправочного множителя f_N имеем [12]

$$f_N = f_{pp}^7. \tag{12}$$

г) Непроврачность. Электронное вырождение существенно изменяет и процесс теплоотвода в белом карлике. Резкое возрастание влектронной теплопроводности приводит к тому, что, несмотря на пониженную непрозрачность вырожденного газа, перенос энергии путем теплопроводности становится порядка, а в недрах звезды — много больше лучистого. Для учета роли теплопроводности необходимо обычный коэффициент поглощения x, соответствующий лучистому переносу, заменить эффективным коэффициентом поглощения

$$x = \left(\frac{1}{x_r} + \frac{1}{x_s}\right)^{-1},\tag{13}$$

где

$$x_{\bullet} = \frac{16 \circ T^{3}}{3p\lambda_{\bullet}}, \qquad (14)$$

 λ_{\bullet} — теплопроводность электронного газа (теплопроводностью газа ядер можно пренебречь). Значения функции $x_r = x_r(\rho, T, X_t)$ вычислялись с помощью таблиц Кокса—Стюарта [11] путем двумерной линейной интерполяции lg x_r по lg ρ и lg T. Ввиду того, что x_e с наступлением вырождения возрастает очень резко, процедура интерполяции для x_e сопряжена со значительными погрешностями, и потому x_e определялось непосредственно по (14). Для вычисления $\lambda_e = \lambda_e$ (ρ, T, X_t) мы использовали зависимости, приведенные в работе [2] и полученные с помощью уравнения Больцмана в приближении парного столкновения.

3. Граничные условия. Уравнения (2)—(5) должны быть дополнены граничными условиями. Условия в центре очевидны:

$$r(\xi_0) = 0; \quad l(\xi_0) = 0,$$
 (15)

где t_0 соответствует центру звезды $(m(\xi_0) = 0)$. Выбор граничных условий на поверхности определяется тем, что в атмосфере звезды уравнение (5) уже неприменимо и должно быть заменено более сложным. Следовательно, если t_j соответствует поверхности $(m(\xi_j) = M)$, то наружные граничные условия для уравнений (2)—(5) должны быть заданы при некотором значении t_{j-1} , соответствующем более глубоким слоям звезды $(m(\xi_{j-1}) < M)$, где уже справедливо уравнение (5). При решении системы (2)—(5) релаксационным методом (см. ниже) наружные граничные условия целосообразно задавать в следующем виде [15]:

$$r(\xi_{I-1}) = \varphi_1(R, L);$$
(16)

ЭВОЛЮЦИЯ БЕЛОГО КАРЛИКА ПРИ АККРЕЦИИ

$$l(\xi_{j-1}) = \varphi_2(R, L);$$
 (17)

$$T(\xi_{I-1}) = \mathfrak{P}_{3}(R, L);$$
(18)

$$\rho(\xi_{J-1}) = \varphi_4(R, L),$$
 (19)

где R и L — радиус и светимость звезды. ξ_{J-1} — лагранжева координата, соответствующая оптической глубине, для которой уже справедливо уравнение (5). Точное определение функций $\varphi_i(R, L)$ является задачей теории звездных атмосфер. При расчете моделей звезд практически наиболее удобным представляется предварительное вычисление значений φ_i в определенных точках плоскости (R, L) с последующей интерполяцией для получения $\varphi_i(R, L)$ в нужной точке (R, L) [15].

Для определения функций $\varphi_i(R, L)$ мы использовали результаты работы А. Колесова [18] по теории водородных атмосфер белых карликов. Как показано в [18], при достаточно больших T_0 (температура на поверхности звезды) и невысоких g (ускорение силы тяжести на поверхности) условие гидростатического равновесия с хорошей точностью аппроксимируется более простым уравнением, численное интегрирование которого (при заданном значении T_0) позволяет получить модель водородной атмосферы белого карлика в следующем виде:

$$P(\tau) = \sqrt{g} \eta_1(\tau); \tag{20}$$

$$\rho(\tau) = \sqrt{g} \eta_2(\tau); \qquad (21)$$

$$T(\tau) = T_{\bullet} \left[\frac{3}{4} \left(q(\tau) + \tau \right) \right]^{1/4}, \qquad (22)$$

где т—средняя оптическая глубина; $q(\tau)$ —функция Хопфа; $g = GM/R^{2}$ ускорение силы тяжести на поверхност и звезды.

Таблицы функций $\eta_1(\tau)$ и $\eta_2(\tau)$ при $\tau = 0 + 10$ получены в [18] для трех значений температуры на поверхности: $T_0 = 12\,000$ °; 15000°; 20000°К. Нижняя граница водородной атмосферы, соответствующая $\tau = 10$, была выбрана в качестве слоя, в котором задаются граничные условия (16)—(19). Функция $\varphi_1(R, L)$ получалась следующим образом. За внешнюю поверхность звезды принят слой атмосферы, в котором

$$T(\tau_{\bullet}) = T_{\bullet}.$$

С помощью (22) можно получить, что т. = 0.64. Тогда геометрическая

8-212

267

высота Н атмосферы, как это следует из условия гидростатического равновесия, равна

$$H = \int_{0}^{H} dh = \frac{1}{g} \int_{P(\tau_{e})}^{P(10,0)} \frac{dP}{\rho} = \frac{R^{2}}{GM} \int_{P(\tau_{e})}^{P(10,0)} \frac{dP}{\rho}.$$
 (23)

Интеграл в (23) находился численным методом с помощью таблиц для $\eta_1(\tau)$ и $\eta_2(\tau)$ [18], причем, как видно из (20), (21) значения интеграла зависят только от величины T_0 , однозначно связанной с эффективной температурой T_0 , которая очевидным образом выражается через R, L. Следовательно, H = H(R, L) и

 $\varphi_1(R, L) = R - H(R, L),$ (24)

где H(R, L) определяется с помощью соотношения (23).

Поскольку в пределах атмосферы с хорошей точностью L = const, то для функции $\varphi_2(R, L)$, очевидно, имеем

$$\varphi_2(R, L) = L. \tag{25}$$

Функция $\varphi_3(R, L)$ тоже имеет достаточно простой вид. Действительно, с помощью (22) и соотношения

$$L=4\pi R^2 \sigma T_{\bullet}^2$$

получим

$$\varphi_3(R, L) = \left[\frac{3(q(10.0) + 10.0)}{16 \pi \sigma}\right]^{1/4} L^{1/4} R^{-1/2}.$$
 (26)

Согласно (21), для функции $p_4(R, L)$, представляющей собой плотность "на дне" атмосферы, можем написать

$$\varphi_4(R, L) = (GM)^{1/2} \eta_2(10.0) R^{-1}.$$
 (27)

Таким образом, функции $\varphi_2(R, L)$ и $\varphi_3(R, L)$ оказываются заданными аналитически. Что касается функций $\varphi_1(R, L)$ и $\varphi_4(R, L)$, то, пользуясь величиной $\int \frac{dP}{\rho}$ и $\eta_0(10)$ для трех значений T_0 и варьируя R, можно по (23), (24) и (27) построить на плоскости (R, L) сеть значений φ_1 и φ_4 , по которым с помощью двумерной интерполяции находятся $\varphi_1(R, L)$ и $\varphi_4(R, L)$.

ЭВОЛЮЦИЯ БЕЛОГО КАРЛИКА ПРИ АККРЕЦИИ

4. Метод расчета. Следуя [4], независимую переменную с мы вводим с помощью преобразования

$$\xi = \ln\left(1.00001 - \frac{M_r}{M}\right),\tag{28}$$

где M — масса звезды. Поскольку диапазоны изменения P, ρ и l по объему звезды слишком велики, то вместо втих величин использовались искусственные переменные

$$p \equiv P^{1/4}, \quad q \equiv \rho^{1/3}, \quad F \equiv \frac{l}{t^4}.$$
 (29)

Далее выбиралось некоторое разбиение интервала (ξ_0, ξ_J), соответствующее разбиению звезды на J тонких сферических слоев (J = 80 - -- 150) и система уравнений структуры звезды заменялась системой из 4J уравнений в конечных разностях [15], представляющей собой (в совокупности с граничными условиями) полную систему уравнений относительно переменных

$$r_0, \ldots, r_J, F_0, \ldots, F_J, T_0, \ldots, T_J, q_0, \ldots, q_J,$$
 (30)

описывающих структуру звезды.

Система уравнений в конечных разностях решалась релаксационным методом Хениея [15]. Все необходимые вычисления выполнялись с помощью ЭВМ "Минск-22". Расчет очередной модели начинается с выбора шага по времени Δt , определяющего увеличение массы звезды $\Delta M = M \Delta t$ (по сравнению с предыдущей моделью), где M — скорость аккреции. Программа расчета была построена таким образом, что модель звезды (30) на каждом этапе §эволюции вычислялась путем итераций, причем очередное приближение считалось окончательным, когда максимальная величина относительных поправок к значениям переменных (30) оказывалась не превосходящей значения $\varepsilon_{max} = 10^{-4}$.

5. Начальная модель. Особая ситуация возникает при построении начальной модели, так как описанный выше алгоритм предполагает известной предшествующую модель звезды. Исключение представляет собой химический состав недр звезды, поскольку рассматриваемый в данной работе белый карлик имеет весьма простую предысторию (тривиальное остывание гомогенной звезды). Еще одно существенное упрощение связано с тем, что химический состав возникающей в момент t = 0 у белого карлика водородной оболочки тоже-

269

Ю. Н. РЕДКОБОРОДЫЙ

можно считать неизменным на протяжении расчетов (см. выше). Таким образом, звезда представляется состоящей из двух гомогенных частей: "ядра" (1) и "оболочки" (2), в качестве химического состава которых мы выбрали, соответственно, смеси CSMIX X и CSMIX VI [11]:

$$X_1 = 0.000; \quad Y_1 = 0.996; \quad Z_1 = 0.004;$$

 $X_2 = 0.996; \quad Y_2 = 0.000; \quad Z_3 = 0.004.$
(31)

Трудности при вычислении остальных величин связаны с тем, что в начале расчетов совершенно отсутствует информация о величинах $\partial E/\partial t$ и $\partial/\partial t(1/2)$ в уравнении (4); с другой стороны, поскольку в этот момент $\varepsilon \equiv 0$, аппроксимация $\partial E/\partial t = \partial/\partial t (1/\rho) \simeq 0$ совершенно непригодна. Остроумный способ получения начальной модели белого карлика, использованный в работе [4], состоит в том, что вычисления начинают со стационарной гелиевой звезды (е ≠ 0) и затем от модели к модели формально "выключают" реакции горения гелия. В результате такой фиктивной "эволюции" звезда охлаждается к состоянию белого карлика, которое может быть использовано в качестве начального при дальнейших расчетах [4]. Одна из серии полученных таким путем в [4] гомогенных моделей (модель № 26 — см., [4], стр. 49) с "возрастом" $t = 1.43 \cdot 10^8$ лет (считая от момента полного выключения горения Не) была взята нами за основу при построении начальной модели в данной работе. Приведенная в [4] таблица недостаточно "подробна", и число слоев было увеличено (примерно в 6 раз) путем кубичной интерполяции. Кроме того, граничные условия на поверхности звезды предполагают наличие атмосферы из чистого водорода (см. выше), поэтому к звезде с помощью соотношений (16)-(19) была "пришита" соответствующая водородная атмосфера. Масса атмосферы, величину которой можно оценить, зная давление Р на уровне т = 10.0 (см. (20)), составляет ничтожную долю от массы звезды ($\leq 10^{-15}$), поэтому для всех рассчитываемых далее моделей было принято $\xi_{J-1} = \xi_J$. С целью устранения погрешностей, внесенных при интерполяции и т. д., было проведено "сглаживание" такой модели, состоящее в том, что описанным в разделе 4 методом, но при △М = 0 было сделано 5 шагов по времени-общей длительностью 6.3.10⁷ лет. Полученная таким образом слегка "остывшая" модель была, наконец, принята в качестве начальной. Эта модель имеет следующие основные параметры:

> $M = 0.5 M_{\odot};$ $L = 1.0337 \cdot 10^{32} \text{ spi/cex};$ lg $T_e = 4.2805;$ $R = 1.0580 \cdot 10^{8} \text{ cm}$

270

(32)

и отличается от приведенной в [4] модели несколько более высокой плотностью и более низкой температурой в центре.

Несмотря на то, что масса водородной оболочки у модели (32) весьма мала, введение атмосферы из водорода устраняет возможность возникновения вблизи поверхности звезды конвективной зоны, обусловленной неполной ионизацией Не. Температура "под атмосферой" уже такова, что можно считать гелий полностью ионизованным. Это позволяет максимально упростить вычисление адиабатического градиента, т. е. принять

$$\nabla_{aa} \equiv 0.4. \tag{33}$$

Дополнительным аргументом в пользу (33) является тот факт, что в горячих звездах главной последовательности неполная ионизация Не вообще не приводит к конвекции, а конвективная зона неполной ионизации Hell совсем незначительна [19].

6. Результаты расчетов. Ниже приводятся результаты расчетов эволюции белого карлика с начальной массой $M_0 = 0.5 M_{\odot}$ на стадии квазистатической аккреции водорода. Основная серия из 84 моделей была получена в предположении, что скорость прироста водородной оболочки постоянна и равна

$$\dot{M} = 10^{-9} M_{\odot} / \iota o g.$$
 (34)

Основные параметры полученных моделей, в том числе и возраст t, отсчитанный от момента начала аккреции t = 0, сведены в табл. 1 (T_H , ρ_H и ψ_H — соответственно, температура, плотность и параметр вырождения в самой нижней части водородной оболочки).

Как видно из табл. 1, расчеты охватывают период $T \sim 0.8 \cdot 10^{6}$ лет, ничтожный по сравнению со временем т охлаждения звезды в целом (~10⁸ лет). С другой стороны, согласно (34), полное изменение массы звезды за время T составляет $\Delta M \approx 0.8 \cdot 10^{-3} M_{\odot} \ll M_{0}$. Повтому возмущения в структуре глубоких недр звезды оказываются весьма незначительными. Например, изменения плотности и температуры в центре на протяжении расчетов составляют всего

$$\frac{\Delta \rho_{\mathbf{u}}}{\rho_{\mathbf{u}}} \sim 1^{\circ} /_{o}. \quad \frac{\Delta T_{\mathbf{u}}}{T_{\mathbf{u}}} \sim 0.1^{\circ} /_{o}.$$

Это отнюдь не относится к внешним слоям звезды, которые и являются далее основным объектом наших исследований.

271

а) Формирование слоевого энергоисточника. Аккреция приводит к значительному росту размеров белого карлика. Общее увеличение радиуса R звезды (к концу расчетов) составляет $\approx 55^{\circ}/_{\circ}$ по сравнению с начальной моделью, или $\approx 35^{\circ}/_{\circ}$ по сравнению с моделью I.

Tabauna 1

No MOLONE	t.10 ⁻⁶ ()	M/M _O	lg T _H	lg P _H	ψ _H	L-10-31	lg T.
0	0	0.5000000	4.5040	-6.3227	_	10.337	4.2805
1	0.10	0.5001000	7.0395	+2.5053	0.468	12.739	4.2643
3	0.30	0.5003000	7.1348	2.9738	1.630	30,074	4.3524
22	0.49940	0.5004994	7.2060	3.1419	1.887	67.472	4.4332
.31	0.59940	0.5005994	7.2470	3.1853	1.809	92.820	4.4584
32	0.60940	0.5006094	7.2515	3.1884	1.794	95.933	4.4607
50	0,73690	0.5007369	7.3135	3.2124	1.512	201.940	4.5144
63	0.80590	0.5008059	7.3921	3.1777	0.945	346.530	4.5706
69	0.81130	0.5008113	7.4342	3.1382	0.600	488.511	4.5945
76	0.812380	0.5008124	7.4837	3.0891	0.213	527.815	4.6085
79	0.812585	005008124	7.5060	3.0671	0.049	509.875	4.6079
82	0.812665	0.5008124	7.5365	3.0368	-0.169	496.536	4.6065
84	0.812698	0.5008124	7.4748	2.9981	-0.439	489.194	4.6052
-							

Однако во внутренних слоях звезды изменения г не столь значительны и, более того, уже на небольшом удалении от поверхности dr/dt < 0. Очевидное объяснение этого состоит в том, что вещество звезды сжимается под действием веса присоединяемого водорода (dp/dt > 0). Эффект сжатия, совершенно ничтожный в центральных областях, особенно заметен на периферии, и это определяет ход дальнейшей эволюции. На рис. 1, иллюстрирующем изменение со временем радиуса r_н нижней границы водородной оболочки, видно, что уже на первых этапах аккреции граница Не-Н быстро перемещается вглубь - в область более высоких р и Т. На рис. 2 представлено распределение температуры во внешней части звезды на различных стадиях эволюции (цифры указывают номер модели, вертикальной чертой отмечено местоположение границы Не-Н). Как видно из рис. 1 и 2, растущая водородная оболочка играет роль "поршня", приводящего к сжатию и нагреву внешних слоев белого карлика. В результате такого процесса недра звезды (M_r/M \leq 0.995) становятся все более изотермичными, а зависимость $T(M_r/M)$ вскоре перестает быть монотонной (см. рис. 2). Максимум в распределении температуры, возникающий в модели 32 $(t = 0.6094 \cdot 10^{6} \text{ лет})$ при $(M_r/M)_m = 0.9988709$ (lg $T_m = 7.2515$, lg $\rho_{-} =$

= 3.1884, $\psi_m = 1.794$), располагается несколько выше нижней границы водорода $(M_r/M)_{H} = 0.9988318.$

Для исследования эволюции внешних слоев белого карлика удобно рассматривать зависимость $T_H(\rho_H)$, представленную на рис. 3 (T_H и ρ_H — температура и плотность на "дне" водородной оболочки); цифры указывают номер модели (см. табл. 1). Пунктирная кривая на рис. 3 соответствует результатам, полученным в работе [4]. Нетрудно видеть, что между моделями 3 и 31 сжатие вещества вблизи границы Не—Н является квазиадиабатическим: действительно, наклон соответствующей части кривой $T_H(\rho_H)$ весьма близок к характерному для адиабаты значению $((\partial \ln T)/(\partial \ln \rho))_{ax} = \gamma - 1 = 0.67$ (см. рис. 3). Об-

^{*}Рис. 1. Изменение со временем радиуса (r_H) и скорости перемещения (dr_H/dt) нижней границы водородной оболочки.

разование температурного максимума приводит к тому, что наряду с обычным потоком энергии к поверхности $(L_r > 0)$ возникает поток энергии в недра звезды $(L_r < 0)$. Однако решающую роль на данном этапе эволюции играет то обстоятельство, что существенный рост температуры имеет место в области с незначительным уже вырождением ($\psi \leq 2$), где электронная теплопроводность еще не настолько велика, чтобы воспрепятствовать дальнейшему повышению температуры. Хотя по мере опускания водорода в глубь звезды влияние теплопроводности электронами становится все более заметным, как видно из рис. 2, температурный максимум постепенно смещается от границы He—H в сторону менее вырожденных слоев — достигнутая температура оказывается все же достаточной для зажигания термоядерных реакций в нижней части водородной оболочки.

Резкое увеличение энерговыделения в в этой части звезды приводит к еще более крутому росту T_H на рис. 3, и нагрев приобретает ускоренный характер. Область интенсивного энерговыделения весьма узка — ее "полуширина" (по є) в модели 32 составляет около $10_0'$ от радиуса и менее $0.050_0'$ от массы звезды — и, как видно из рис. 2, имеет тенденцию к еще большей локализации в последующих моделях. Таким образом, вскоре после образования максимума в распределении температуры можно говорить о возникновении слоевого источника энергии, расположенного в нижней части водородной оболочки и соответствующего $p \sim 10^3 z/cm^3$. Максимум температуры и

M_r/M

Рис. 2. Распределение температуры во внешних слоях белого карлика на различных стадиях эволюции. Цифры увазывают номер моделя. Вертикальным штрихом отмечена граница Не—Н.

энерговыделения находится в непосредственной близости от границы He—H (см. рис. 2), так что используемые нами значения температуры T_H и плотности ρ_H в самом нижнем слое водорода довольно точно характеризуют физические условия в слоевом энергоисточнике.

6) Термическая неустойчивость во внешних слоях белого карлика. Как известно [4, 20], характер тепловой неустойчивости в слоевом источнике энергии зависит от степени вырождения вещества.

ЭВОЛЮЦИЯ БЕЛОГО КАРЛИКА ПРИ АККРЕЦИИ

Рис. 3. Зависимость температуры (T_H) от плотности (ρ_H) для нижней границы водородной оболочки. Цифрами отмечены номера моделей. Штрих-пунктиром указаны линии уровня параметра вырождения ψ . Пунктириая кривая соответствует результатам работы [4].

В предельном случае сильного вырождения имеет место неустойчивость типа "вспышки" (T > 0, $\rho \approx 0$). Если вырождение недостаточно сильное, то рост температуры сопровождается уменьшением плотности (T > 0, $\rho < 0$); при выполнении определенных условий [20] неустойчивость тонкого слоя горения может развиваться и в совершенно невырожденном газе.

Поскольку в данном случае степень вырождения в слоевом источнике энергии невелика, $\psi_H < 2$, (см. табл. 1), то неустойчивость типа вспышки весьма непродолжительна — плотность ρ_H достигает максимального значения lg $\rho_{H} = 3.2131$ и сохраняется таковой (с точностью до нескольких единиц последнего знака) примерно для моделей .50 ÷ 57, что соответствует ∆t ≈ 0.25 · 10⁵ лет. Условно "вспышкой" можно назвать период вволюции от модели 31 до модели 63, характеризующийся крутым ростом температуры и незначительным изменением плотности (рис. 3). Длительность этого периода составляет $\Delta t \approx 0.2 \cdot 10^6$ лет, что в 3 раза меньше длительности всей предшествующей эволюции после начала аккреции (табл. 1), тем не менее вспышка приводит к резкому возрастанию энерговыделения - от в≈1500 эрг/г.сек в модели 31 до е≈15000 эрг/г.сек в модели 63. Рост локальных значений светимости L, на внешней стороне слоевого энергоисточника уже опережает рост светимости звезды L. Это говорит о том, что значительная часть выделяющейся при термоядерных реакциях энергии аккумулируется в слоях вещества непосредственно над слоевым энергоисточником, что в свою очередь чрезвычайно способствует ускорению нагрева, т. е. развитию термической неустойчивости.

Значительное увеличение T при условии $\rho \approx \text{const}$ приводит к дальнейшему снятию вырождения и, как следствие этого, ресширению разогревающихся слоев: к концу вспышки ψ_H уменьшается почти в 2 раза по сравнению со значением ψ_H в модели 31, причем за счет того, что

$$\rho_H < 0$$

движение изображающей звезду точки (ρ_H , T_H) на рис. З как раз способствует наибыстрейшему падению ψ_H ("трек" на рис. З становится перпендикулярным линиям $\psi = \text{const}$). Однако с началом расширения оболочки рост температуры T_H не только приостанавливается, а, напротив, становится еще более ускоренным (табл. 1). Таким образом, вслед за авторами работы [4] мы можем сделать вывод, что вспышка имеет своим непосредственным продолжением неустой-

ЭВОЛЮЦИЯ БЕЛОГО КАРЛИКА ПРИ АККРЕЦИИ

чивость 2-го типа (см. выше), впервые изученную Шваришильдом и Хармом [20]. Возникновению такой неустойчивости способствует небольшая ширина возникающего при вспышке слоевого энергоисточника; интересно отметить, что дальнейшая эволюция приводит к еще большей локализации термической нестабильности (рис. 2). Развитие неустойчивости облегчается также тем, что при lg T > 7.3 главная роль в энерговыделении переходит от рр-реакций к реакциям углеродно-азотного цикла, гораздо более чувствительным к росту температуры и в большей степени подверженным эффекту экранирования [12]. Кроме того, снятие вырождения, приводящее к расширению и тем самым несколько "демпфирующее" неустойчивость, косвенно все же способствует развитию теплового взрыва, поскольку падение электронной теплопроводности уменьшает роль теплоотвода L- в недра звезды. Характерно, что температурный максимум (рис. 2), первоначально смещающийся в сторону меньших плотностей, в дальнейшем вновь приближается к границе водорода с гелием.

Важнейшая особенность развивающегося теплового взрыва состоит в том, что скорость энерговыделения в слое горения водорода систематически превышает теплоотвод, в том числе по направлению к поверхности звезды, несмотря на то, что локальная светимость L_r^+ на внешней стороне слоевого источника энергии очень быстро возрастает: в последней из рассчитанных моделей величина L_r^+ почти в 20 раз превышает светимость звезды L. Вследствие этого рост температуры T_H чрезвычайно быстро ускоряется со временем: величина

$$\tau = T_H/T_H$$

меняется от $\approx 10^{8}$ лет в модели 31 до $\approx 10^{5}$ лет в модели 63 и равна $\tau \approx 250$ лет в модели 84 (шаг по времени для этих моделей выбирался равным, соответственно, 10⁴; 0.5 · 10⁴ и 13 лет). Начиная с модели 75, шаг по времени $\Delta t < 100$ лет, так что в силу (34) $\Delta M < 10^{-7} M_{\odot}$, и поскольку вычисления производились на ЭВМ "Минск-22" (разрядная сетка — семь десятичных знаков), то расчет моделей 75 ÷ 84 выполнялся в предположении M = const. Сравнение моделей для $\Delta t \ge 100$ лет, рассчитанных при $\Delta M = \dot{M} \cdot \Delta t$ и при $\Delta M = 0$, показывает, что такое формальное "выключение" аккреции на последней стадии вычислений не сказывается, по-видимому, на точности расчетов теплового взрыва в нижней части водородной оболочки.

Вследствие ускоренности нагрева во времени среднее значение энерговыделения є в слое горения водорода оказывается весьма небольшим, так как, несмотря на то, что в конце расчетов с достигает

Ю. Н. РЕДКОБОРОДЫЙ

величин $\sim 10^7 \ 9pt/2 \cdot cek$, в подавляющей части полного времени эволюции значения ε невысоки. Это ведет, во-первых, к тому, что средняя величина потока энергии в недра знезды тоже незначительна и, как уже было отмечено, тепловой взрыв на поверхности ядра белого карлика индуцирует в его недрах лишь малые возмущения. Во-вторых, малость ε означает, что можно пренебречь выгоранием водорода в слоевом энергоисточнике и считать химический состав не зависящим от времени — как и было принято нами при расчетах.

Рассмотрим подробнее перемещения границы He—H. Как видно из рис. 1, на котором представлены в зависимости от времени радиус r_H и скорость dr_H/dt нижней границы H-оболочки, начальные стадии аккреции сопровождаются довольно быстрым движением водорода к центру белого карлика — скорость $dr_H/dt < 0$ и медленно падает со временем от $\approx -1.10^{-5}$ см/сек в моделях 1 и 2 до $\approx -1.10^{-6}$ см/сек в модели 50. Далее r_H достигает минимального значения, скорость $dr_H/dt \approx 0$ в модели 55 и развитие неустойчивости 2-го типа ($\rho < 0$) сопровождается ускоренным расширением, не успевающим, правда, значительно увеличить r_H (рис. 1).

Причиной, по которой вычисления были приостановлены на модели 84, оказалось не возрастание роли динамических эффектов (как предполагалось до начала расчетов), а трудности численного характера, связанные с ростом погрешностей округления при вычислении членов вида $\partial E/\partial t$ и $\partial/\partial t$ (1/ ρ) в уравнении (4).

Вследствие резкого возрастания температуры вблизи границы Не—Н температурный градиент в оболочке звезды на последних стадиях расчета весьма велик, и, начиная с модели 76, над слоевым источником энергии возникает зона конвективного равновесия, которая увеличивается в размерах от модели к модели, захватывая все более удаленные от центра части звезды.

Как видно из табл. 1, аккреция водорода приводит к весьма ощутимому росту светимости L и эффективной температуры белого карлика, максимальное изменение которых в процессе расчета составляет

 $\Delta \lg L \simeq 1.71; \quad \Delta \lg T_{\bullet} \simeq 0.328,$

что значительно превосходит соответствующие значения 0.945 и 0.203, полученные для аналогичного случая в работе [4]. Небольшое уменьшение L и T_{\bullet} на самых последних стадиях расчета (после модели 76), характерное и для моделей Джианноне и Вейгерта [4], можно отнести за счет некоторой некорректности вблизи поверхности звезды аппроксимации $\Delta M = 0$, используемой при малых Δt .

Отметим, что значительное увеличение радиуса звезды в процессе аккреции—отношение $(\Delta \ln R)/(\Delta \ln M)$ у нас составляет ≈ 205 (считая от модели 1), в отличие от ≈ 100 в работе [4] — можно сопоставить с наблюдательными данными: как известно, для Сириуса В наблюдения дают для R величины, почти вдвое превышающие теоретическое (чандрасекаровское) значение [21].

в) Эволюция при $\dot{M} \neq$ const. Описанные выше результаты получены при условии $\dot{M} =$ const, выбор которого продиктован прежде всего соображениями простоты. При $\dot{M} \neq$ const расчет по той же схеме не вызывает никаких принципиальных затруднений, однако в настоящее время трудно отдать предпочтение какой-либо конкретной зависимости $\dot{M}(t)$. Можно предполагать, что функция $\dot{M}(t)$ должна быть убывающей. Наиболее простым образом это может быть смоделировано "выключением" аккреции с какого-либо момента времени и исследованием дальнейшей эволюции звезды с M = const.

Результаты расчета таких дополнительных ветвей эволюции, имеющих началом модели 22, 31 и 50, представлены в таблицах 2—4.

№ моделя	t.10 ⁻⁶ (sem)	M/M _O	$\lg T_H$	lg P _H	Ψ _H	lg T.
22	0.4994+0	0.5004994	7.2060	3.1419	1.887	4.4332
22a	+ 0.25	13	7.2027	3.1453	1.923	4.4005
22b	+ 2.25		7.2017	3.1463	1.935	4.3961
22c	+10.00	19	7.2007	3.1488	1.952	4.3846
22d	+12.00	11	7.2003	3.1494	1.957	4.3842
220	+20.00	19	. 7.1999	3.1534	1.982	4.3829

Таблица 2

Как видно из табл. 4 и рис. 3, эволюция звезды в ветви 50—50 f приводит к дальнейшему увеличению интенсивности слоевого энерго-источника и развитию тепловой. неустойчивости (правда, со значительно меньшей скоростью, чем при расчетах с $M_i^2 = 10^{-9} M_{\odot}/10$ д). В случае 31—31d первоначальный рост T_H настолько замедляется (см. табл. 3), что можно сделать вывод об исчезновении термической неустойчивости и установлении стационарного состояния (отметим, что образование температурного максимума во внешней части звезды происходит между моделями 31 и 50—в модели 32). Что касается моделей 22—22е, то, как видно из табл. 2, на этом пути звезда просто охлаждается — правда, весьма медленно, так чтои здесь можно говорить о достижении некоторого стационарного состояния.

Tafada

Tabauna 4

№ модели	t.10 ⁻⁶ (sem)	<i>M/M</i> ⊙	lg T _H	lg P _H	Ψ _H	lg Te
31	0.5994+ 0	0.5005994	7.2470	3.1853	1.809	4.4584
31a	" + 1.00		7.2566	3.1769	1.714	4.4413
31b	+ 3.00		7.2588	3.1748	1.692	4.4433
31c	+10.00	13	7.2594	3.1750	1.689	4.4440
31d	+12.00		7.2594	3.1753	1.690	4.4440

Расчеты в дополнительных ветвях эволюции были приостановлены ввиду того, что при больших величинах t (см. табл. 2—4) химический состав уже нельзя считать постоянным, учет же этого сопряжен с коренной перестройкой программы расчета на ЭВМ. Тем

№ моделя	$t \cdot 10^{-6}$ (sem)	M/M _O	lg T _H	lg P _H	Ψ _H	lg T.
50	0.73690	0.5007369	8.3135	3.2124	1.512	4.5144
50a	, +0.0800	11	7.3286	3.1989	1.370	4.5144
50Ь	" +0.2021		7.3427	3.1855	1.240	4.5394
50c	" + 0.2521	*1	7.3470	3.1809	1.199	4.5439
50d	" +0.3521	19	7.3566	3.1709	1.110	4.5527
50e	" +0.4000	19	7.3621	3.1652	1.060	4.5568
50f	, +0.4300		7.3665	3.1605	1.020	4.5594

не менее полученные результаты позволяют нам заключить, что для рассмотренного гелиевого белого карлика ($M = 0.5 M_{\odot}$, $L = 1.0337 \cdot 10^{32}$ spi/cex, lg $T_{\bullet} = 4.2805$) возникновение термически нестабильного слоя горения водорода возможно лишь при условии, что масса накопленной в результате аккреции оболочки во всяком случае превышает "критическое" значение

$$(M_H)_{\rm sp} = 0.6 \cdot 10^{-3} M_{\odot}$$

соответствующее, примерно, модели 31 (см. рис. 3 и табл. 1).

ЭВОЛЮЦИЯ БЕЛОГО КАРЛИКА ПРИ АККРЕЦИИ

Автор выражает глубокую благодарность В. В. Порфирьеву за интерес к работе и за полезные замечания, сделанные при обсужде--нии полученных результатов.

Главная астрономическая обсерватория АН УССР

THE EVOLUTION OF WHITE DWARF WITH ACCRETION OF HYDROGEN RICH MATTER. I.

Yu. O. REDKOBORODY

An evolutionary sequence was calculated for a white dwarf on which a hydrogen rich envelope is assumed to increase with time. The stellar models have been computed by integrating numerically the system of stellar structure equations by means of the Henyey method. An accretion of matter was assumed to be quasistatic. Near the point of the chemical discontinuity a temperature maximum is shown to be built up, after hydrogen is ignited a thin shell energy source is formed. The new shell source is thermally unstable. The resulting thermal runaway was followed numerically. The burning of the hydrogen is shown to become unstable when the mass of the hydrogen envelope exceeds some critical value.

ЛИТЕРАТУРА

- 1. P. Ledoux, E. Sauvenier-Goffin, Ap. J., 111, 611, 1950.
- 2. T. D. Lee, Ap. J., 111, 625, 1950.
- 3. L. Mestel, M.N., 112, 583, 1952.
- 4. P. Giannone, A. Weigert, Z. Astrophys., 67, 41, 1967.
- 5. W. K. Rose, Ap. J., 152, 245, 1968.
- 6. W. C. Saslow, M.N., 138, 337, 1968.
- 7. S. Hayakawa, D. Sugimoto, Astrophys. Space Sci., 1, No. 2, 1968.
- 8. L. Secco, Pubbl. Oss. Astr. Padova, No. 145, 1968.
- 9. J. N. Bahcall, R. M. May, Ap. J., 152, No. 1, L. 17, 1968.
- 10. Landolt-Börnstein, Num. data and functional relations in sci. and. techn., New series, I, Springer-Verlag, 1965.
- 11. А. Н. Коко, Дж. Н. Стюарт, Научи. янформ. АСАН СССР, вып. 15, М., 1969.
- 12. В. В. Порфирьев, Ю. Н. Редкобородый, Астрофизика, 5, 393, 1969.
- 13. E. Salpeter, Austr. J. Phys., 7, 373, 1954.
- 14. J. Baerentzen, Ap. J., 151, No. 3, Part 2, 1968.
- 15. L. G. Henyey, J. E. Forbes, N. L. Gould, Ap. J., 139, No. 1, 1964.
- 16. М. Шварцшильд, Строение и эволюция звезд, ИЛ, М., 1967.
- 17. Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика, Наука, М., 1964.

- 18. А. К. Колесов, Астрон. ж., 41, 2, 1964. 19. В. Г. Горбацкий, А. К. Колесов, Астрофизики, 2, стр. 273, 1966.
- M. Schwarzschild, R. Hārm, Ap. J., 142, 855, 1965.
 L. Mestel, Stellar Structure, ed. by L. H. Aller and D. B. McLaughlin, University of Chicago Press, 1965, p. 298.

АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 8

МАЙ, 1972

выпуск 2

АТМОСФЕРА НЕВРАЩАЮЩИХСЯ БАРИОННЫХ ЗВЕЗД

Г. С. СААКЯН, Д. М. СЕДРАКЯН Поступила 29 февраля 1972

Для горячих барионных звезд предложена модель атмосферы, состоящая из протонно-влектронного газа и излучения. При светимостях $L\approx 1.3\cdot 10^{38}$ *эрг/сек* $M=M_{\odot}$, $R\approx 10$ км и поверхностная температура $T_R\approx 2\cdot 10^7$ °K) получается достаточно протяженная атмосфера: у поверхности звезды плотность частиц $n\approx 7.10^{18}$ см⁻³, а на расстоянии 10^3 км $n\approx 7\cdot 10^{12}$ см⁻³. Такая атмосфера, по-видимому, существует у пульсаров.

1. За последние десять лет была проделана большая работа в области теории сверхплотных небесных тел [1, 2]. Были исследованы свойства вещества при чрезвычайно больших плотностях, рассчитаны параметры звездных конфигураций, состоящих из вырожденной электронно-ядерной плазмы и вырожденного барионного газа. Конфигурация с центральной плотностью порядка ядерной в основном состоит из вырожденного барионного газа (нуклоны, гипероны) со сравнительно небольшой примесью лептонов (электроны и отрицательные мюоны), необходимой для обеспечения стабильности первых. Именно по этой причине, взамен традиционного названия нейтронной звезды, для подобных небесных тел мы считаем целесообразным употребить название барионной звезды, как более правильно отражающее физическое содержание этих объектов.

В центральной части звезды, заполненной барионным газом и называемой барионным ядром, сосредоточена значительная часть массы. В слое, где плотность массы находится в интервале $3 \cdot 10^{11} < \rho < < 2 \cdot 10^{13}$ г см⁻³, вещество состоит из свободных нейтронов, атомных ядер и электронов ("Aen"-фаза вещества). Масса и толщина его 9-212 малы по сравнению с массой и толщиной барионного ядра. В оболочке звезды, где $\rho \ll 3 \cdot 10^{11} \ \iota \ cm^{-3}$, вещество состоит из атомных ядер и свободного вырожденного электронного газа. Масса и толщина оболочки также малы по сравнению с соответствующими величинами барионного ядра. Разумеется, описанная выше картина имеет место, когда центральная плотность выше ядерной. При плотностях $3 \cdot 10^{11} + 2 \cdot 10^{13} \ \iota \ cm^{-3}$ мы будем иметь звезду с центральным массивным ядром, состоящим из нейтронов, ядер и электронов, а при $\rho \ll 3 \cdot 10^{12} \ \iota \ cm^{-3}$ — конфигурации белых карликов.

В численных расчетах характеристик барионных конфигураций было установлено, что у поверхности плотность массы быстро падает на несколько порядков на расстоянии порядка сантиметров, т. е. они обладают резко выраженной границей. Таким образом, складывается впечатление, что барионные звезды лишены сколько-нибудь заметной атмосферы. С другой стороны, пульсары, которые, как известно, отождествлены с барионными звездами, очевидно, должны обладать богатой атмосферой с толщиной, превышающей их радиус (без этого трудно представить те сложные физические явления, которые разыгрываются в пространстве вокруг звезды при распространении электромагнитных волн). В настоящей статье мы преследуем цель разрешить эту неувязку.

2. Прежде чем приступить к исследованию вопроса атмосферы, отметим некоторые важные свойства вещества оболочки. Здесь, в наиустойчивом состоянии вырожденной Ae-плазмы, массовое число A и заряд eZ ядер являются функцией плотности, а именно, у поверхности мы имеем ядра с параметрами A = 56, Z = 26 (железо), а в конце этой фазы — A = 122, Z = 39. Наличие легких ядер исключено, если звезда просуществовала достаточно долго после своего образования. Ниже предполагается именно такой химический состав вещества оболочки, в которой нет легких ядер.

Исходя из простых соображений, легко убедиться, что если на поверхности не изменять химический состав вещества и предположить непрерывное падение плотности, то действительно эти тела должны обладать резкой границей. Это непосредственно следует из барометрической формулы

$$n_A(x) = n_A(0) e^{-t},$$

(1)

где $n_A(0)$ — плотность ядер на некоторой небольшой глубине у самой.

284

поверхности, x — высота слоя, l — характерное расстояние, на котором плотность испытывает существенное изменение

$$l = \frac{R^2 kT}{Gm_A M} = 0.11 \frac{M_{\odot} R_6^2}{M} T_1.$$
 (2)

Здесь M и R — масса и радиус звезды, $R_{\rm g} = 10^{-6}R$, T — температура, $T_{\gamma} = 10^{-7}T$, k — постоянная Больцмана. Как видим, эффективная толщина поверхностного слоя оказывается порядка одного миллиметра (на расстоянии x = 5 см плотность уменьшается в 10^{80} раз), если считать $M/M_{\odot} \approx R_{\rm g} \approx T_{\gamma} \approx 1$ (что является разумным). В случае водородной оболочки l может достигать нескольких сот метров, и применение формулы (1), строго говоря, не корректно, вследствие заметного изменения температуры вдоль этого слоя.

Можно построить модели атмосфер барионных конфигураций для различных химических составов. Здесь будет рассмотрена модель плазменной атмосферы, состоящей из протонов, электронов и электромагнитного излучения. В отсутствие вращения мы имеем следующие уравнения для атмосферы:

$$\frac{dP}{dr} = -\frac{GM}{r^2}\rho,\tag{3}$$

$$\frac{dT}{dr} = -\frac{3\lambda L}{16\pi ac} \frac{\rho}{r^2 T^3},\tag{4}$$

r — расстояние от центра звезды, M — масса, L — светимость, a — постоянная Стефана-Больцмана, $\chi = 0.38$ — непрозрачность, обусловленная томсоновским рассеянием излучения, P — давление, ρ — плотность массы,

$$P = 2knT + \frac{1}{3}aT^{4},$$

$$\rho = m_{p}n + \frac{a}{c^{4}}T^{4}.$$
(5)

Плазма предполагается квазинейтральной, $n_e \simeq n_p \equiv n$. Мы предполагаем $T \leq 10^7$, что дает возможность не учитывать нейтринный канал потерь энергии.

Разделим уравнение (3) на (4)

$$\frac{dP}{dT} = \frac{16\pi acG}{3\chi} \frac{M}{L} T^3.$$
(6)

Интегрируем это уравнение, предполагая, что в атмосфере нет источ-

ников внергии, т. е. L = const и изменение, вносимое атмосферой в массу звезды, очень мало

$$P=\frac{4\pi \, acG}{3\%}\,\frac{M}{L}\,T^{*}+C,$$

где C — постоянная интегрирования. Из очевидного требования равенства нулю давления при T = 0 следует, что C = 0. Итак,

$$P = \frac{4\pi acG}{3\chi} \frac{M}{L} T^4.$$
(7)

Сравнивая выражения давления в формулах (5) и (7), можно определить зависимость плотности частиц в плазме от температуры:

$$n=\frac{a\varepsilon}{6k}T^2,$$
 (8)

где введено обозначение

$$e = \frac{L_m M}{L M_{\odot}} - 1, \qquad L_m = \frac{4 \pi G M_{\odot} c}{\chi} = 1.32 \cdot 10^{36} \frac{9 p_2}{ce\kappa}. \tag{9}$$

Теперь определим зависимость температуры от расстояния. Для полной плотности массы имеем

$$\rho = \frac{am_{p^{2}}}{6k} T^{3} + \frac{a}{c^{2}} T^{4}.$$
 (10)

Подставим это выражение р в уравнение (4),

$$\frac{dT}{dr} = -\frac{c_1 + c_2 T}{r^2},$$
 (11)

где

$$c_{1} = \frac{\chi_{m_{p}eL}}{32 \pi ck} = 1.54 \cdot 10^{-21} eL,$$

$$c_{2} = \frac{3\chi L}{16 \pi c^{3}} = 8.39 \cdot 10^{-34} L.$$
(12)

Проинтегрируем уравнение (11) и потребуем непрерывность температуры на поверхности звезды,

$$T(r) = \left(T_R + \frac{c_1}{c_2}\right) \exp\left[-\frac{c_2}{R}\left(1 - \frac{R}{r}\right)\right] - \frac{c_1}{c_2},$$
 (13)

$$\frac{c_1}{c_2} = \frac{m_p c^*}{k} \frac{e}{6} = 1.82 \cdot 10^{12} e_*$$
(14)

286

АТМОСФЕРА НЕВРАШАЮЩИХСЯ БАРИОННЫХ ЗВЕЗД

Из (8) следует, что параметр в может иметь только положительные значения. Потребовав выполнения условия в ≥ 0, из (9) получим

$$L \leqslant \frac{M}{M_{\odot}} L_{m} = 1.32 \cdot 10^{38} \frac{M}{M_{\odot}}.$$
 (15)

Этот результат означает, что для каждой барионной звезды с заданной массой существует максимальное значение светимости ML_m/M_{\odot} . Ниже мы снова вернемся к этому вопросу.

Для всех барионных конфигураций отношение с₂/R является малой величиной

$$\frac{c_s}{R} = \frac{3\chi L}{16\pi c^3 R} = 8.39 \cdot 10^{-40} \frac{L}{R_s} \ll 1.$$
(16)

Это обстоятельство позволяет в (13) экспоненту разложить в ряд. Оставляя первые два члена разложения, получаем

$$T(r) = T_R \left[1 - c_s \left(1 - \frac{R}{r} \right) \right], \tag{17}$$

где

$$c_3 = \frac{c_3}{R T_R} \left(T_R + \frac{c_1}{c_3} \right)$$
(18)

Подставляя (17) в (8), находим зависимость плотности частиц от г

$$n(r) = n_R \left[1 - c_s \left(1 - \frac{R}{r} \right) \right]^3,$$
 (19)

где n_р — плотность протонов (электронов) на дне атмосферы

$$n_R = \frac{\alpha \varepsilon}{6k} T_R^3 = 9.14 \cdot 10^{21} \varepsilon T_7^3 (R).$$
 (20)

Решения (17) и (19) ранее были получены в работе [11], в связи с исследованием вопроса медленного истечения вещества атмосферы у звезд с массами $M > 10 M_{\odot}$.

3. Из (19) для толщины атмосферы $l = R_1 - R$ (R_1 — расстояние, на котором плотность обращается в нуль, или можно сказать $n (R_0)/n_R \ll 1$) имеем

$$l = \frac{R}{c_1 - 1}.$$
 (21)

Определим отношение плотностей энергий излучения и вещества

$$\frac{\rho_r}{c^2\rho_m} = \frac{aT^4}{m_p nc^2} = \frac{6k}{m_p c^2} \frac{T(r)}{\varepsilon} = 5.5 \cdot 10^{-6} \frac{T_7}{\varepsilon}.$$
 (22)
Ниже будет показано, что наименьшее значение параметра є равно $5 \cdot 10^{-5} T_{\tau}(R)R_{\bullet}$, следовательно $\rho_r/(c^{2}\rho_m) \ll 0.1$, т. е. в атмосфере барионной звезды везде $\rho_r \ll c^{2}\rho_m$. Отношение давлений равно

$$\frac{P_m}{P_r} = \frac{2knT}{aT^4/3} = \varepsilon.$$
(23)

Таким образом, вдоль атмосферы отношение давлений вещества и излучения постоянно и равно в. При $L < L_m \approx 1.32 \cdot 10^{38}$ давление вещества больше давления излучения, а при $L \approx L_m$ решающим является давление излучения.

Определим массу атмосферы

$$M_{\rm ar.} = 4\pi m_p \int_{R}^{R_1} n(r) r^3 dr, \qquad (24)$$

где $R_1 = R + l$ — наружный радиус; массой, обусловленной излучением, мы пренебрегли. Подставляя сюда выражение n(r) из (19) и интегрируя, находим

$$M_{ar.} = \frac{2\pi m_{p}a\epsilon}{3k} R^{3} T_{R}^{3} \left(c_{3}^{3} \ln \frac{c_{3}}{c_{3}-1} - c_{3}^{2} - \frac{1}{2} c_{3} - \frac{1}{3} \right),$$

$$\frac{2\pi m_{p}a}{3k} R^{3} T_{R}^{3} = 1.92 \cdot 10^{17} R_{6}^{3} T_{7}^{3}.$$
(25)

Таким образом, задача атмосферы решена: структура атмосферы зависит от трех параметров, а именно: массы M, радиуса R и светимости L (поверхностная температура T_R является функцией светимости).

Рассмотрим структуру атмосферы для различных значений светимости или эквивалентного ей параметра г. Из (21) видно, что $c_3 \ge 1$, при $c_3 < 1$ найденные внешние решения не имеют физического смысла. Учитывая (14) и (18), легко показать, что при допустимых значениях параметра c_3 всегда $T_R \ll c_1/c_2$ (случай $T_R > c_1/c_2$ приводит к результату $c_3 = c_2/R < 1$) и, следовательно,

$$c_{\mathfrak{s}} = \frac{c_{\mathfrak{l}}}{R T_{R}} = 1.54 \cdot 10^{-34} \frac{\varepsilon L}{T_{\mathfrak{l}} R_{\mathfrak{s}}} =$$

$$= \begin{cases} 2.03 \cdot 10^{4} \frac{M}{M_{\odot} T_{\mathfrak{l}} R_{\mathfrak{s}}}, & \text{при } L \ll L_{m}, \varepsilon \gg 1 \\ 2.03 \cdot 10^{4} \frac{\varepsilon}{T_{\mathfrak{l}} R_{\mathfrak{s}}}, & \text{при } L \simeq L_{m}, \varepsilon \lesssim 1. \end{cases}$$

$$(26)$$

288

Отсюда видно, что при $\varepsilon \gg 1$ ($P_m \gg P_r$ — случай "холодных" конфигураций) параметр c_3 также велик и не зависит от значения светимости. В этом случае толщина атмосферы намного меньше радиуса звезды:

$$l = \frac{R}{c_1} \approx 50 \frac{M_{\odot}}{M} R_6^2 T_7 \quad CM. \tag{27}$$

Если $M/M_{\odot} \sim T_{\tau} \sim R_{s} \sim 1$, толщина атмосферы порядка 50 см. Согласно (25), при $c_{3} \gg 1$ масса равна величине

$$M_{a\tau} := \frac{16\pi}{3?} R^2 = 4.4 \cdot 10^{12} R_6^2, \qquad (28)$$

которая очень мала по сравнению с массой звезды. При получении втой формулы было принято $L = \pi a c R^2 T_R^4$.

Обсудим теперь случай больших светимостей $L \approx L_m$. Правильное представление о них можно составить на примере предельного случая $c_3 = 1$, $\varepsilon \simeq 5 \cdot 10^{-5} T_7 R_8$. Как видно из (17) и (19), для такой звезды

$$T(r) = T_R \frac{R}{r}; \quad n(r) = n_R \frac{R^3}{r^3}.$$
 (29)

Поверхностная температура в этом случае приблизительно равна $T_{2} \approx 2$. У поверхности мы имеем

$$n_R = 9.14 \cdot 10^{31} \varepsilon T_7^3 \approx 4.5 \cdot 10^{17} R_s T_7^4 \approx 7.2 \cdot 10^{18}$$
(30)

(предполагается $R_{\rm s} \approx 1$; $T_{\rm q} \approx 2$), а на расстоянии $R_{\rm s} = 100$ плотность частиц равна 7.10¹² см⁻³. Именно такая атмосфера и светимость $L \approx 10^{36}$ эрі/сек предполагаются для молодых пульсаров [3—5]. Не следует, конечно, думать, что атмосфера максимально яркой барионной звезды простирается до бесконечности. За радиус атмосферы естественно принять то расстояние R_1 , где плотность падает до значения $1.02 \cdot 10^{-24}$ г см⁻³ [5], имеющегося в межзвездном пространстве. Если $R_{\rm s} \sim 1$ и $T_{\rm q} \sim 2$, такая оценка приводит к результату

$$R_1 = R \left(1.64 n_R\right)^{1/3} \approx 9.04 \cdot 10^{11} \left(R_{\rm g} T_{\eta}\right)^{4/3} \approx 2.3 \cdot 10^{11} \ cm. \tag{31}$$

Посмотрим, какова масса атмосферы.

$$M_{\rm ar.} = 4\pi R^3 m_p n_R \ln \frac{R_1}{R} \approx 48 \pi R^3 m_p n_R \approx 2 \cdot 10^{15} \, \imath. \tag{32}$$

Несколько слов о звездах, соответствующих промежуточному интервалу $5 \cdot 10^{-5} T_7 R_8 < \varepsilon \leq 1$. Заменив в (26) L на $L_m M/M_{\odot}$, получим

$$c_{3} = 1.54 \cdot 10^{-34} \frac{\epsilon L_{m} M}{R_{\rm s} T_{\rm T} M_{\odot}} = 2 \cdot 10^{4} \frac{\epsilon}{T_{\rm T} R_{\rm s}} \frac{M}{M_{\odot}}$$

Тогда, в соответствии с (21), при $T_{\tau} \approx 1$, $M \approx M_{\odot}$, $R_{s} \approx 1$ имеем

$$l \simeq \frac{10^6}{2 \cdot 10^{4_5} - 1}$$
 (33)

Когда $\varepsilon \gtrsim 1$, получаем $l \sim 50/\varepsilon$, а при $\varepsilon = 10^{-1}$, 10^{-2} , 10^{-3} , 10^{-4} , соответственно, l = 5 м, 50 м, 0.5 км, 5 км. При дальнейшем уменьшении с излучение сильно увеличивает размеры атмосферы до размеров $l \approx 2 \cdot 10^6$ км, когда $\varepsilon \rightarrow 5 \cdot 10^{-5}$.

Одной из важных характеристик атмосферы звезды является ее оптическая толщина

$$\alpha = \int_{R}^{\infty} \lambda \rho dr = \lambda m_{\rho} \int_{R}^{\infty} n(r) dr.$$

Учитывая (29), для конфигураций с предельно большим значением светимости $L = L_m M/M_{\odot}$ получаем

$$\tau = \frac{2}{3} \frac{a \chi R^2}{GM} T_R^4 = 0.144 R_6^2 T_7^4 (R) \left(\frac{M}{M_\odot}\right)^{-1}.$$
 (34)

В табл. 1 приведены значения оптических толщин шести барионных конфигураций, принадлежащих устойчивой ветви кривой $M(\eta)$ (здесь $\eta = \operatorname{arctg} \lg \rho_c / \rho_1$, $\rho_c - плотность в центре звезды,$ $<math>\rho_1 = 3.62 \cdot 10^{14} \ \iota/cm^3 - плотность ядерного вещества)$ [7], вычисленные по формуле (34) в предположении $T_R = 10^7$. По-видимому, было бы более близким к истине считать, что для первых двух конфигураций поверхностная температура чуть меньше, а для последних четырех чуть больше значения $T_\eta(R) = 1$, т. е., по всей вероятности, оптическая толщина (34) – порядка единицы. Истинные значения светимости L и температуры T_R , очевидно, можно получить только путем решения внутренней задачи с учетом возможных источников энергии [8, 9].

Предполагаемая здесь модель атмосферы горячей барионной звезды с $\varepsilon \ll 1$ в общих чертах совпадает с той, которая предполагалась в ряде попыток объяснения явления пульсара. Однако, прежде чем претендовать на то, что нами построена модель атмосферы для пульсаров. необходимо учесть структурные эффекты, обусловленные вращением и мощным магиитным полем, которое безусловно имеется у них. И, пожалуй, наиболее важным является вопрос о запасах энергии и способах ее трансформации в электромагнитное излучение, обеспечивающее столь высокую светимость. Уместно заметить, что не все горячие барионные звезды могут быть пульсарами. Таковыми, по-видимому, являются только те, которые вращаются достаточно быстро, обладают мощным магнитным полем и, наконец, в атмосфере которых давление излучения превышает давление вещества, т. е. $\varepsilon < 1$. Следовательно, барионные звезды могут иметь и другие примечательные проявления.

> Таблица 1 ОПТИЧЕСКАЯ ТОЛЩИНА РЯДА УСТОЙЧИВЫХ БАРИОННЫХ конфигураций с предельной светимостью. В ПРЕДПОЛОЖЕНИИ Т_Р≈10⁷ °К -0.56 -0.4 0.18 0.37 0.59 0.78 η 0.125 0.136 0.639 0.984 M/Mo 1.39 1.55

> > 1.38

0.429

1.32

0.255

1.19

0.147

1.15

0.123

26.4

802

R.

Ŧ

6.63

46.5

Из табл. 1 видно, что у наиболее плотных барионных звезд. оптическая толщина меньше единицы, то есть у них атмосфера прозрачна. В таких случаях величина T, фигурирующая в наших формулах, строго говоря, не имеет смысла обычной температуры, а скорее является параметром, определяющим давление излучения. В работе [10] было показано, что температура определяется через оптическую толщину по формуле $T = T_1 \tau^{1/2}$, где T_1 — температура фотосферы на глубине $\tau = 1$.

4. В заключение рассмотрим модель атмосферы с конвективным равновесием. С этой целью нужно (4) заменить уравнением

$$\frac{dT}{dr} = \left(1 - \frac{1}{\gamma}\right) \frac{T}{P} \frac{dP}{dr},\tag{35}$$

где $\tau = c_p/c_v = 5/3$. Давление излучения считается малым по сравнению с давлением вещества. Из (35) получается уравнение адиабаты

$$P = A T^{\overline{(\gamma-1)}},$$

$$n=\frac{A}{2k}T^{\frac{1}{1-1}},$$

где A — постоянная, встречающаяся в уравнениях адиабаты. Градиент давления равен

$$\frac{dP}{dr} = -\frac{Gm_pM}{r^3} n = -A \frac{Gm_pM}{2k} \frac{1}{r^3} T^{\overline{1-1}}.$$

Исключая из (35) давление и его градиент, находим

$$\frac{dT}{dr} = -\frac{\gamma - 1}{\gamma} \frac{GMm_p}{2kr^2}$$

Отсюда

 $T(r) = T_R \left\{ 1 - c_1 \left(1 - \frac{R}{r} \right) \right\}, \tag{36}$

где

$$c_4 = \frac{\gamma - 1}{2\gamma} \frac{GMm_p}{kRT_R} \approx 3.2 \cdot 10^4 \frac{M}{M_{\odot}} \frac{1}{R_s T_{\gamma}} \gg 1.$$

Высота конвективной атмосферы порядка (ср. с (21))

$$l \sim \frac{R}{c_4} \approx 31 \frac{M_\odot}{M} R_6^2 T_{\eta}. \tag{37}$$

Принимая $R_{\rm s}T_{\rm q}\sim 1$, приходим к результату

 $l \approx 31 R_{\rm s} cm$.

Таким образом, толщина конвективной атмосферы в лучшем случае может достичь нескольких метров.

В заключение заметим, что при светимостях $L \approx 10^{31} spi/cek$ протяженная атмосфера может образоваться и у белых карликов. Для этого необходимо, чтобы параметр

$$c_{\mathfrak{z}} = 20.3 \frac{M}{M_{\odot} T_{\mathfrak{s}} R_{\mathfrak{s}}}$$

(см. формулу (26)) имел значение, достаточно близкое к единице. Это условие вполне может реализоваться у горячих белых карликов при наличии соответствующих источников внутренней энергии. Вопрос источников энергии сверхплотных небесных тел будет рассмотрен нами отдельно.

292

АТМОСФЕРА НЕВРАЩАЮЩИХСЯ БАРИОННЫХ ЗВЕЗД

Авторы признательны академику В. А. Амбарцумяну за неоднократные обсуждения и ценные замечания. Мы благодарны также участникам семинара кафедры теоретической физики Ереванского государственного университета за обсуждения.

Ерованский государственный университет

THE ATMOSPHERE OF NON-ROTATING BARYON STARS

G. S. SAHAKIAN, D. M. SEDRAKIAN

A model of hot baryon star atmosphere, composed of electronproton gas and radiation, is considered. When the luminosity is of the order of $L = 1.38 \cdot 10^{38} \text{ erg/sec}$ ($M = M_{\odot}$, R = 10 km and the surface temperature $T_R = 2 \cdot 10^7$ °K we get a sufficiently extended atmosphere. The density of particles on the surface is $n = 7 \cdot 10^{18} \text{ cm}^{-3}$ and on a distance of the order of 10^3 km , is $n = 7 \cdot 10^{18} \text{ cm}^{-3}$. These characteristics of the atmosphere coincide with those of the pulsars.

ЛИТЕРАТУРА

- Я. Б. Зельдович, И. Д. Новиков, Релятивистская астрофизика, Наука, М., 1967.
 Г. С. Саакян, Равновесные конфигурации вырожденных газовых масс, Наука, М., 1972.
- 3. В. В. Виткевич, Сб. "Пульсары", Мир, М., 1971,
- 4. В. Л. Гинзбург, УФН, 97, 601, 1969; 103, 393, 1971.
- 5. T. Gold, Nature, 221, 25, 1969.

6. К. У. Аллен, Астрофизические величны, ИЛ, М., 1960.

- 7. Г. С. Саакян, Ю, Л. Вартанян, Астрон. ж., 41, 193, 1964.
- 8. Г. С. Саакян, Р. М. Авакян, Астрон. ж. 1972, (в печати).
- 9. Г. С. Саакян, Р. М. Авакян, Астрофизика 1972, (в печати).
- 10. N. A. Kosirev, M. N., 94, 430, 1934.
- 11. Г. С. Бисноватый-Козан, Я. Б. Звльдович, Астрон. ж., 45, 241, 1968.

АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 8

МАЙ, 1972

выпуСК 2

ФАЗОВОЕ РАЗМЕШИВАНИЕ ВТОРОГО РОДА В ЗВЕЗДНЫХ СИСТЕМАХ. II

Л. П. ОСИПКОВ Поступила 16 декабря 1970

Размешивание второго рода исследуется для случая, когда фазовое пространство системы представимо в виде набора влошенных друг в друга торов. Геометрические соображения позволяют оценить характерное время размешивания второго рода. Оказывается, что для звезд в сферических системах, движущихся по сильно вытянутым орбитам с большой внергией, размешивание происходит за время порядка (L³/8GM)^{1/2}, где L-характерный размер системы, М-ее масса. Для систем, допускающих интеграл Линдблада-Оорта, вертикальное размешивание не происходит.

1. Характерное время размешивания второго рода. В предыаущей работе [7] было введено представление о фазовом размешивании второго рода в звездных системах, вызванном тем, что средняя скорость движения на каждой изолирующей инвариантной поверхности неодинакова для разных поверхностей. В данной работе делается попытка количественно оценить характерное время такого размешивания.

Сделаем следующие предположения.

I. Фазовое пространство представимо в виде объединения непересекающихся связных изолирующих интегральных поверхностей, каждая из которых образует одно эргодическое множество. Тем самым исключаются (ради простоты рассуждений) случаи, названные Контопулосом [9] "квази-изолирующими".

II. Каждая такая поверхность изоморфна 2-мерному тору в 3-мерном эвклидовом пространстве. Тогда при соответствующем выборе координат ее уравнение записывается в виде

$$x^{1} = (s + s \cos \psi) \cos \varphi$$
$$x^{3} = (s + s \cos \psi) \sin \varphi$$
$$x^{3} = s \sin \psi$$

III. Размешивание первого рода отсутствует, точнее $\varphi = \lambda_{\varphi}(s)$, $\psi = \lambda_{\psi}(s)$, где частоты обращения λ_{φ} , λ_{ψ} не зависят от координат (φ , ψ) точки на поверхности тора.

Вследствие размешивания те секущие набора торовых поверхностей, которые первоначально были прямыми $\psi = \text{const}$ (или $\varphi = \text{const}$), будут со временем закручиваться. Рассмотрим два сколь угодно близких тора радиусов s_1 и $s_2 = s_1 + \Delta s$. С точностью до величин порядка $0 (\Delta s)$ можно считать, что первоначальная прямая $\psi = \text{const}$ останется в окрестности этих торов прямой, но повернется за время t на угол $a (s_1, t)$. Зная функцию $a (s_1, t)$, можно в принципе найти и $t (a, s_1)$ тот промежуток времени, за который прямая в окрестности данного тора повернется на заданный угол a. Эту величину и можно принять для оценки скорости размешивания второго рода.

Рассмотрим движущуюся точку $M_1(t)$ на первой поверхности с координатами $\varphi^1(t) =: \lambda_{\varphi}^1 \cdot t$, $\psi^1(t) = \lambda_{\varphi}^1 \cdot t$, где $\lambda_{\varphi}^1 = \lambda_{\varphi}(s_1)$, $\lambda_{\varphi}^1 = \lambda_{\varphi}(s_2)$, а начальные условия выбраны так, что при t=0 $\varphi_1 = 0$, $\psi_1 = 0$. Точно так же для точки $M_2(t)$ на второй поверхности

$$\varphi^{\mathbf{2}}(t) = \lambda_{\varphi}^{2} \cdot t = \varphi^{\mathbf{1}}(t) + \left(\frac{d\lambda_{\varphi}}{ds}\right)^{\mathbf{1}} \cdot t \cdot \Delta s + 0 \ (\Delta s),$$

$$\psi^{\mathbf{2}}(t) = \lambda_{\varphi}^{2} \cdot t = \psi^{\mathbf{2}}(t) + \left(\frac{d\lambda_{\varphi}}{ds}\right)^{\mathbf{1}} \cdot t \cdot \Delta s + 0 \ (\Delta s).$$

Подставляя эти величины в уравнение поверхности (1) при $s = s_1$ и $s = s_1 + \Delta s$, получим декартовы координаты точек $M_1(t)$ и $M_2(t)$. Рассмотрим еще третью точку $M_3(t) = (\overline{s} \cos \varphi^1(t), \overline{s} \sin \varphi^1(t), 0)$. Очевидно, что $\overrightarrow{M_1M_2} \cdot \overrightarrow{M_1M_3} = |\overrightarrow{M_1M_2}| \cdot |\overrightarrow{M_1M_3}| \cdot \cos \alpha (s_1, t)$, а тогда после элементарных преобразований получается что

$$\operatorname{tg}^{\mathbf{s}} \alpha \left(s_{1}, t \right) = t^{2} \cdot \left\{ s_{1}^{2} \left[\left(\frac{d^{2} \psi}{ds} \right)^{1} \right]^{2} + \left(s_{1} \cos \psi^{1} \left(t \right) + \widetilde{s} \right) \left[\left(\frac{d^{2} \psi}{ds} \right)^{1} \right]^{2} + 0 \left(\Delta s \right) \right\}.$$

Таким образом, для определения $t(\alpha, s_1)$ получается трансцендентное уравнение. Для характеристики размешивания можно использовать верхнюю границу этой величины. Обозначая $tg^2 \alpha = D^2$, мы можем считать, что размешивание до заданной степени происходит за время

296

(1)

$$T_m = D \cdot \left[s^2 \cdot \left(\frac{d\lambda_{\varphi}}{ds} \right)^2 + (s - s)^2 \cdot \left(\frac{d\lambda_{\varphi}}{ds} \right)^2 \right]^{-1/2}.$$
 (2)

При использовании (2) можно положитъ D порядка нескольких единиц. Введем отношение частот обращения $\gamma(s) = \frac{\lambda_{\psi}(s)}{\lambda_{\psi}(s)}$ и перейдем от s к новой независимой переменной $J = \pi s^2$, тогда (2) перепишется ввиде

$$T_{m}^{2} = \frac{D^{8}}{K}$$

$$K = 4J \left[s^{2} + \gamma^{2} \left(\tilde{s} - s\right)^{2}\right] \cdot \left(\frac{d\lambda_{\psi}}{dJ}\right)^{2} + \left[2\gamma\lambda\psi\left(\frac{d\gamma}{dJ}\right)\left(\frac{d\lambda_{\psi}}{dJ}\right) + \lambda_{\psi}^{2}\left(\frac{d\gamma}{dJ}\right)^{2}\right] (\tilde{s} - s)^{2}.$$

$$(2')$$

Если на самом деле ϕ , ψ зависят от (ϕ , ψ) и на торовой поверхности происходит размешивание первого рода, то можно думать, что если $T_m > T = \min\left(\frac{2\pi}{\lambda_{\phi}}, \frac{2\pi}{\lambda_{\psi}}\right)(\lambda_{\phi}, \lambda_{\psi}$ теперь — средние значения $\dot{\phi}, \dot{\psi}$), то фактическое время полного перемешивания $T_0 \in [T, T_m]$, если же $T_m < T$, то могут быть случаи, когда $T_0 > T_m$.

2. Фавовое пространство сферических звездных систем. Применим (2) к простейшим звездным системам, в первую очередь к сферическим системам. Пусть r — расстояние от центра системы до звезды, R, T — радиальная и поперечная компоненты скорости, U(r) потенциал. Интегралы энергии и кинетического момента записываются в виде [6]

$$R^{2} + \frac{h^{2}}{r^{2}} - 2U(r) = 2E, \quad rT = h.$$

Фиксируем вектор полного кинетического момента и, вводя полярные координаты в плоскости орбиты (r, φ) , рассмотрим вслед за Линден-Беллом [12] (R, r, φ) как цилиндрические координаты точки в 3-мерном фазовом пространстве. Как известно, интеграл энергии определяет в этом пространстве поверхность вращения, изоморфную тору, а в плоскости (R, r) каждому E соответствует своя замкнутая (для ограниченных орбит) кривая [6, 8].

Для исследования размешивания удобно перейти от (r, R) к канонически сопряженным переменным типа "угол—действие" (см. например, [4]) (ψ , J). Положим Л. П. ОСИПКОВ

$$J(E) = \frac{1}{2\pi} \oint R(r, E) dr = \frac{1}{\pi} \int_{r}^{s} \sqrt{2E + 2U(r) - \frac{h^{3}}{r^{3}}} dr,$$

$$\psi(r, E) = \frac{2\pi}{T_{\psi}(E)} \int_{r}^{s} \frac{dr}{R(r, E)},$$

где r₁ — меньший, а r₂ — больший корни уравнения

$$\frac{h^2}{r^2}-2U(r)-2E=0$$

(т. е. перицентр и апоцентр [4, 6]),

$$T_{\psi}(E) = 2 \int_{r_{1}}^{r_{2}} \frac{dr}{\sqrt{2E + 2U(r) - h^{2}/r^{2}}}$$
(4)

(3)

— период колебаний звезды в плоскости (R, r), J(E) — площадь, заключенная внутри кривой в плоскости (R, r), соответствующей данному E.

Рассмотрим (φ , ψ) в качестве угловых координат точки на поверхности изовнергетического тора. Уравнения движения по втой поверхности

$$\varphi = \frac{h}{r^{2}(E, \psi)}, \qquad \dot{\psi} = \frac{2\pi}{T_{\psi}(E)},$$

откуда получаем уравнение фазовой траектории $(d\varphi/d\psi) = h/r^2 (T_{\psi}(E)/2\pi)$ и пятый интеграл движения

$$\varphi_0 = \varphi - h \int_{r_1}^{r_2} \frac{dr}{r^3 \sqrt{2E + 2U(r) - h^3/r^3}}$$

который, как строго доказал Линден-Белл [12], не является изолирующим. С помощью теоремы Лиувилля можно найти, что инвариантный элемент торовой поверхности $dm(\varphi, \psi) = (1/h) d\varphi d\psi$, тогда мера всего тора $M = 4\pi^2/h$. Найдем средние частоты обращений по φ, ψ , определяемые соотношениями $\lambda_{\varphi} = \int \varphi dm/M$, $\lambda_{\varphi} = \int \psi dm/M$. В силу уравнений движения

$$\lambda_{\psi} = \frac{2\pi}{T_{\psi}(E)}, \qquad \lambda_{\psi} = \frac{2h}{T_{\psi}(E)} \int \frac{(1/r^3) dr}{\sqrt{2E + 2U(r) - h^3/r^2}}$$

ФАЗОВОЕ РАЗМЕШИВАНИЕ В ЗВЕЗДНЫХ СИСТЕМАХ. II

Отношение частот колебаний

$$\gamma = \frac{\lambda_{\pi}}{\lambda_{\pi}} = \frac{h}{\pi} \int \frac{(1/r^{2}) dr}{\sqrt{2E + 2U(r) - h^{2}/r^{2}}} \,.$$
(5)

Как доказал Контопулос [8], $\gamma \in [1/2, 1]$, причем $\gamma = 1$ соответствует случаю, когда масса системы сосредоточена в центре, а $\gamma = 1/2 -$ однородной сфере. (5) можно получить и более непосредственным путем [4, 8]:

Итак, фазовое пространство сферических звездных систем (при фиксированном интеграле кинетического момента) удалось представить в виде набора торов, уравнения которых можно записать в виде (1), где $s^2 = (1/\pi) \int (E)$, а \tilde{s} можно положить равным $s (r_2 + r_1)/(r_2 - r_1)$. Тогда s/s будет характеризовать эксцентриситет орбит, являющийся адиабатическим инвариантом [13].

3. Размешивание в сферических системах. Используя (3)—(5), можно вычислить T_m . В силу (4) для любой функции f(E)

$$\frac{df}{dJ}=\frac{2\pi}{T_{\psi}(E)}\frac{df}{dE}.$$

Тогда (2') можно переписать в виде

$$T_m^2 = \frac{D^3 T_{\psi}^2}{K},$$

$$K = 16\pi^2 f^2 \left\{ \left[1 + 4\gamma^2 \frac{r_1^2}{(r_2 - r_1)^2} \right] \left(\frac{d\lambda_{\psi}}{dE} \right)^2 + 4\lambda_{\psi} \frac{r_1^2}{(r_2 - r_1)^2} \left(\frac{d\gamma}{dE} \right) \times \left[2\gamma \left(\frac{d\lambda_{\psi}}{dE} \right) + \lambda_{\psi} \left(\frac{d\gamma}{dE} \right) \right] \right\}$$

Таким образом, $T_m - функционал потенциала <math>U(r)$ и функция интегралов E, h. Для конкретной оценки необходимо при заданном потенциале вычислить $T_{\psi}(E, h)$, J(E, h), $\gamma(E, h)$ по формулам (3)—(5). В некоторых случаях эти функции удается выразить через элементарные (изохронная модель Энона [10]) или свести к эллиптическим интегралам (сферическая модель с потенциалом Паренаго (см. [6]) и другие).

Здесь же ограничимся качественным анализом простейших случаев. Ясно, что когда и $\lambda_{\psi}(d\gamma/dE)$, и $(d\lambda_{\psi}/dE)$ малы, то размешивание будет происходить медленно, а когда велики, то быстро. Пусть 10—212

299

(6)

 $(r_3 - r_1) \ll r_1$ (орбиты мало вытянуты) и $d\gamma/dE \simeq 0$, тогда при $D = 2\pi\gamma$ получим, что

$$T_m \simeq \frac{(r_2 - r_1)^2}{r_1 R(E, h, r)}$$

где $r \in [r_1, r_3]$, или, так как орбиты мало отличаются от круговых, можно считать, что $T_m/T_{\psi} \simeq (r_2 - r_1)/r_1 \ll 1$.

Теперь рассмотрим случай сильно вытянутых орбит. Для самых грубых оценок можно положить $r_1/(r_2-r_1) \simeq 0$, $r_2 \simeq L$, где L — характерный размер системы, тогда

$$T_{\psi} \simeq \frac{2L}{(2E+2U(L_1)-h^2/L_1^2)^{1/2}}, \quad L_1 < L_2$$

причем будем считать, что $\frac{h^4}{L_1^2 U(L_1)} \simeq 0$, а $U(L_1) \simeq U(L) \simeq \frac{GM}{L}$, где M по порядку величины совпадает с массой системы, так что $T_{\psi} \simeq 2 \left(\frac{L^3}{2EL+GM}\right)^{1/2}$. Оценивая аналогичным образом J, λ_{ψ} , полу-

чим

$$T_m^2 = \frac{D^2}{8\pi^2} \frac{L^3}{EL + GM}$$

Отсюда видно, что чем меньше L и больше M, то есть чем более масса системы сосредоточена в центре, тем быстрее происходит размешивание второго рода. Так как E < 0, то, отбрасывая член EL, мы получим нижнюю границу T_m , равномерную для всей системы и фактически мало отличающуюся от действительного значения (так как для звезд с $r_s \simeq L E$ велико):

$$T_m \simeq \frac{D}{\sqrt{8}\pi} \sqrt{\frac{L^3}{GM}}.$$
 (7)

При $D = 8\pi \approx 25$ T_m совпадает с рассмотренным Г. М. Идлисом [1] "временем однократного перемешивания". Такая величина может быть получена разными способами [1, 6, 11, 14] и, вероятно, действительно характеризует темп действия регулярных сил [6]. Но в упомянутых выше работах речь идет, как правило, о достижении системой состояния, стационарного в регулярном поле, то есть (по терминологии, введенной в [7]) о сильном размешивании первого рода. При исследовании же размешивания второго рода можно положить Dна порядок меньше, например, взять $D = \pi$, тогда

$$T_m \simeq \sqrt{\frac{L^3}{8GM}}$$
 (7')

Тогда для шаровых скоплений T_m порядка 10⁸ лет, если же (с известными оговорками) применить (7') к Галактике, то $T_m \simeq 10^7$ лет, то есть размешивание второго рода происходит практически мгновенно и, вероятно, быстрее, чем размешивание первого рода.

4. Размешивание в сплющенных звездных системах. Здесь мы рассмотрим системы, у которых потенциал имеет вид $U(\rho, z) = U_1(\rho) + U_2(z) + o(z^3)$. Пусть $(\rho, \vartheta, z) - цилиндрические координаты звезды, а <math>(P, \Theta, Z)$ — соответствующие проекции скорости. В силу аддитивной формы потенциала можно использовать следующие три интеграла (см., например, [5, 6]):

$$\rho \Theta = h, \quad P^2 + \frac{h^2}{\rho^2} - 2U_1(\rho) = 2E,$$

 $Z^2 - 2U_2(z) = 2K.$

Рассмотрим экваториальную плоскость системы и 3-мерное пространство (р, ϑ , P). Фиксируем значения K, h, тогда каждому E соответствует свой инвариантный тор^{*}. Заменой $r \rightarrow \rho$, $\varphi \rightarrow \vartheta$, $R \rightarrow P$ большая часть результатов разделов 2 и 3 переносится на данный случай. В частности, неизолирующий интеграл, зависящий от ϑ , будет

$$\theta_0 = \vartheta - h \int_{\rho_1}^{\rho} \frac{d\rho}{\rho^2 \sqrt{2E + 2U_1(\rho) - h^2/\rho^2}}$$

Если $U_2(z) = -\frac{1}{2} C^2 z^2$ (С — параметр Кузмина), то пятый, так-

же неизолирущий интеграл

$$J_{s} = \frac{1}{C} \arcsin\left(\frac{C}{\sqrt{2K}}z\right) - \int_{\rho_{1}}^{r} \frac{d\rho}{P(E, \rho)} = \frac{z}{\sqrt{2K}} + \int_{\rho_{1}}^{r} \frac{d\rho}{P(E, \rho)} + 0(z^{s}),$$

тогда инвариантная мера на торе

$$dm\left(\vartheta,\,\psi\right)=\frac{\left(1+0\left(z\right)\right)d\vartheta d\psi}{\sqrt{2K(2K+2U_{3}(z))}}=\frac{1}{2K}\left(1+0\left(z\right)\right)d\vartheta b\psi,$$

• Здесь предполагается, что огибающая на диаграмме Линдблада не имеет точек возврата [5]. а мера всего тора $M = (2\pi^3/K) + 0$ (z). Все дальнейшие рассуждения проводятся так же, как и для сферических систем.

Теперь зафиксируем h, E и рассмотрим 4-мерное сопутствующее фазовое пространство (p, P, z, Z). Вместо каждой пары (p, P), (z, Z) введем канонические "действия" и "углы":

$$J_{\rho} = \frac{1}{\pi} \int_{\rho_{1}}^{\rho} P(E, \rho) d\rho, \qquad \psi_{\rho} = \frac{2\pi}{T_{\rho}} \int_{\rho_{1}}^{\rho} \frac{d\rho}{P(E, \rho)}$$
$$J_{s} = \frac{1}{\pi} \int_{\sigma_{1}}^{\sigma} Z(K, z) dz, \qquad \psi_{s} = \frac{2\pi}{T_{s}} \int_{\sigma_{1}}^{\sigma} \frac{dz}{Z(K, z)},$$

где $\rho_{1,2}$ —корни уравнения $P(E, \rho) = 0$, а $z_1 = -z_2$ —уравнения Z(K, z) = 0, $T_{\rho} = 2\pi d \int_{\rho} / dE$, $T_s = 2\pi d \int_s / dK$. Положив $s = (\pi^{-1} \int_{\rho} (E))^{1/2}$, $s = (\pi^{-1} \int_{\rho} (K))^{1/2}$, мы придем к соответствующему каждому K своему инвариантному тору (1). Так как $dT_{\rho}/ds = 0$, то (2) упрощается, и аналогично (6) получаем

$$T_m = \frac{D T_s^2}{4\pi f_s} \left(\frac{d\lambda_s}{dK}\right)^{-1}.$$

Если $U_2 = -\frac{1}{2} C^2 z^2$, то $\lambda_s = C^{-1} = \text{const}$, то есть оказывается, что для

самых сплющенных подсистем Галактики размешивание в указанном смысле отсутствует. Этот вывод связан исключительно с квадратичной формой потенциала и не относится к менее сплющенным подсистемам, для которых в качестве квази-интеграла можно использовать, например, первые члены ряда Контопулоса.

Случай квадратичного интеграла, изученного Г. Г. Кузминым [2], можно исследовать аналогичным образом, так как и тогда переменные разделяются [4, 15].

5. Заключение. Фазовое пространство звездных систем не сводится только к разобранным выше случаям. Даже для сферических систем осталось неисследованным размешивание на поверхностях разных h, но одного E.

Для вращающихся систем главная трудность — это неясность в проблеме третьего интеграла. Если будет строго доказано существование "квазиизолирующих" интегралов [9], точнее, эргодических прослоек в фазовом пространстве, то в них разница между размешива-

ФАЗОВОЕ РАЗМЕШИВЛНИЕ В ЗВЕЗДНЫХ СИСТЕМАХ. II 303

ниями первого и второго рода сотрется. Само образование таких прослоек, вероятно, является следствием разрушения инвариантных поверхностей при возмущении потенциала, причем наличие или отсутствие размешивания второго рода должно иметь важное значение для втих процессов.

Существование спектра "дисперсионных" орбит [5] и медленное затухание вблизи последних колебаний фазовой плотности [3], вероятно, указывает на то, что для плоских подсистем хотя размешивание первого рода и не происходит, но будет весьма своеобразное размешивание второго рода, приводящее к образованию "дисперсионных" колец в обычном пространстве.

Для мало вытянутых орбит вблизи центра системы, вероятно, размешивание второго рода очень слабо. Согласно разделам 3 и 4, величина T_m для разных подсистем Галактики существенно различна. Повтому в следующей части работы будут даны более детальные вычисления T_m для различных инвариантных поверхностей.

Заметим, наконец, что в разделах 3 и 4 ведущую роль играет величина J(E), являющаяся, как и s/s, адиабатическим инвариантом [4] и "сохраняющаяся вечно" при $d\lambda_{\psi}/dJ \neq 0$. Повтому предложенная теория в первом приближении применима и к медленно меняющимся системам.

Ленинградский государственный унверситет

THE PHASE MIXING OF THE SECOND KIND IN STELLAR SYSTEMS. II

L. P. OSSIPKOV

The phase-mixing of the second kind is studied for the case when the phase-space is represented as the set of tori enclosed into each other. The characteristic time of the mixing is estimated on the basis of geometric considerations. In case of spherical systems it is found to be of the order of $(L/8GM)^{1/2}$ for stars of high energy whose orbits are rather elongated (L - characteristic size of the system, M-its mass). For systems admitting the Lindblad-Oort third integral the mixing is absent.

л. п. осипков

ЛИТЕРАТУРА

- 1. Г. М. Идлис, ДАН СССР, 122, 997, 1958; Труды Астрофиз. ин-та АН КазССР, 1, 9, 1961.
- 2. Г. Г. Кузмин, Публ. Тартуской АО, 32, 332, 1953.
- 3. Г. Г. Куямин, Сообщ. Тартуской АО, № 6, 19, 1963.
- 4. Л. Д. Ландау, Е. М. Лифшиц, Моханика, изд. 2, Наука, М., 1965.
- 5. Б. Линдблад, Сб. "Строение звездных систен", ИЛ, М., 1962, стр. 39.
- 6. К. Ф. Огородников, Динамика звездных систем, ГИФМА, М., 1958.
- 7. Л. П. Осилков, Астрофизика, 8, 139, 1972; Астрон. цирк., № 623, 1, 1971.
- 8. G. Contopoulos, Z. Astrophys., 35, 67, 1954.
- 9. G. Gontopoulos, Ap. J., 138, 1297, 1963.
- 10. M. Hénon, Ann. Astrophys., 22, 126; 491, 1959.
- 11. M. Hénon, Ann. Astrophys., 26, 62, 1965.
- 12. D. Lynden-Bell, M. N., 127, 1, 1962.
- 13. D. Lynden-Bell, Observatory, No 932, 23, 1963.
- 14. D. Lynden-Bell, M. N., 136, 101, 1967.
- 15. A. Ollongren, BAN, 16, 241, 1962.

АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 8

МАЙ, 1972

выпуск 2

ИЗМЕНЕНИЕ СКОРОСТИ ЗВЕЗДЫ КАК ЧИСТО РАЗРЫВНЫЙ СЛУЧАЙНЫЙ ПРОЦЕСС. III. ЗВЕЗДЫ РАЗЛИЧНЫХ МАСС В РАССЕЯННОМ СКОПЛЕНИИ

В. С. КАЛИБЕРДА, И. В. ПЕТРОВСКАЯ Поступила 12 июля 1971

В схеме чисто разрывного случайного процесса рассматривается эволюция функции распределения скоростей группы звезд, погруженных в рассеянное звездное скопление. Масса рассматриваемой звезды предполагается равной половине средней массы звезды в скоплении. В результате численного решения второго уравнения Колмогорова—Феллера получена функция распределения скоростей звезд рассматриваемой группы в различные моменты времени, а также скорость диссипации этих звезд и уносимая ими энергия. Результаты, полученные в схеме чисто разрывного случайного процесса, для квазистационарного состояния, сравниваются с решением уравнения Фоккера—Планка (непрерывный случайный процесс) Спитцера к Харма.

В ряде предыдущих работ было предложено рассматривать изменение характеристик движения звезды в звездной системе под действием иррегулярных сил как чисто разрывный марковский процесс. Этот процесс описывается уравнениями Колмогорова—Феллера [1]. Если пренебречь регулярным потенциалом звездной системы, то для исследования изменения модуля скорости звезды достаточно второго уравнения Колмогорова—Феллера, приближенный метод решения которого предложен в [1—3]. В предыдущих работах этот метод используется для описания эволюции функции распределения скоростей группы звезд, погруженных в рассеянное звездное скопление, причем в [2] масса m_1 каждой звезды рассматриваемой группы преднолагается равной средней массе звезды в скоплении: $m_1 = m$, в [4] (часть I настоящей работы) предполагается $m_1 = 0$, а в [5] (часть II) $m_1 = 2m$.

В предлагаемой части III рассматриваются звезды, массы которых вдвое меньше средней массы: $m_1 = 0.5 m$. При этом, как и в

[2, 4, 5], предполагается, что характеристики звездного поля не изменяются со временем, а распределение скоростей звезд поля является сферическим максвелловским.

Согласно результатам работ [2—5], функцию распределения скоростей рассматриваемой группы звезд можно приближенно представить в виде отрезка ряда

$$\varphi(x, \theta, y) = \sum_{j=1}^{n} C_{j}(x) e^{-\mu_{j}\theta} Y_{j}(y), \qquad (1)$$

где θ — безразмерное время, x — модуль скорости звезды в начальный момент времени $\theta = 0$ в единицах средней квадратичной скорости звезд поля \overline{v} , $y = \frac{v}{v}$ — модуль скорости звезды в момент θ ,

$$\theta = \frac{t}{t_0}, \qquad t_0 = \frac{v^3}{G^2 \overline{m}^2 D}, \qquad (2)$$

D — плотность звездного поля.

В (1) µ, и Y_I(y) — собственные значения и соответствующие собственные функции оператора

$$AY = -\int_{0}^{y_{1}} Y(z) \Phi_{1}(z, y-z) dz + Y(y) \int_{0}^{\infty} \Phi_{1}(y, z-y) dz, \quad (3)$$

 $y_1 = 2$ — средняя по скоплению критическая скорость, выраженная в единицах \overline{v} , причем Y(0) = Y(2) = 0. Ядро Φ_1 , дающее вероятность перехода для звезд с массой $m_1 = 0.5 \,\overline{m}$, приводится в [6] (формулы I—II).

Все собственные значения получаются положительными. Наименьтему собственному значению расответствует собственная функция $Y_1(y)$, представляющая собой функцию распределения скоростей звезд с массами $m_1 = 0.5 m$ при $t \to \infty$, т. е. после достижения скоплением состояния, квазистационарного в целом. Нормированная функция

$$Y_{1}^{(0)}(y) = \frac{Y_{1}(y)}{\int_{0}^{2} Y_{1}(y) \, dy}$$
(4)

приводится в табл. 1.

Функции распределения скоростей звезд различных масс в квазистационарном звездном скоплении, полученные в работах [4, 5, 7] и

ИЗМЕНЕНИЕ СКОРОСТИ ЗВЕЗДЫ КАК СЛУЧАЯНЫЯ ПРОЦЕСС. III 307

в настоящей работе, представлены на рис. 1. Для случаев $m_1 = 0$, $m_1 = \overline{m}/2$ и $m_1 = \overline{m}$ приводятся функции распределения скоростей Спитцера и Харма [8], полученные в результате решения уравнения Фоккера—Планка, т. е. в схеме непрерывного случайного процесса.

Таблица							
y	$Y_{1}^{(0)}(y)$	y	$Y_{1}^{(0)}(y)$	y	$Y_{1}^{(0)}(y)$		
0.0	0.0000	0.7	0.7061	1.4	0.6668		
0.1	0.0716	0.8	0.7686	1.5	0.5771		
0.2	0.1760	0.9	0.8090	1.6	0.4697		
0.3	0.2932	1.0	0.8268	1.7	0.3559		
0.4	0.4121	1.1	0.8193	1.8	0.2391		
0.5	0.5242	1.2	0.7889	1.9	0,1198		
0.6	0.6238	1.3	0.7384	2.0	0.0000		

Случай $m_1 = 2m$ в [8] не рассматривался, поэтому на рис. 1 для сравнения приводится результат Спитцера и Харма для $m_1 = 1.4m$ (наиболее массивные массы, рассмотренные в [8]). Значения средней скорости и средней квадратичной скорости по отношению к средней квадратичной скорости звезд поля, а также дисперсии полученных распределений приводятся в табл. 2. Некоторое размывание наших функций по сравнению с результатами Спитцера и Харма для более массивных звезд объясняется учетом в схеме чисто разрывного случайного процесса близких взаимодействий, вызывающих существенные изменения модуля скорости звезды.

Для вычисления функции распределения скоростей звезд с $m_1 = \overline{m}/2$ в различные моменты времени в формуле (1) было принято n = 5. Козффициенты $C_1(x)$ определяются по функции распределения скоростей рассматриваемой группы звезд при t = 0. На рис. 2 представлена эволюция распределения скоростей группы звезд, начальные скорости которых в момент t = 0 были равномерно распределены в интервале 0.75 v - 1.25v, а на рис. 3—аналогичные данные для звезд с начальными скоростями в интервале 1.25v - 1.65v. Время, указанное на рисунках, выражено в единицах времени релаксации: типичного рассеянного скопления $\tau = 0.01 t_0$.

В. С. КАЛИБЕРДА, И. В. ПЕТРОВСКАЯ

Обе группы звезд при $t \approx 20$ с достигают квазистационарного состояния, при котором их функция распределения скоростей изменяется гомологично вследствие диссипации, т. е. в формуле (1) все слагаемые, начиная со второго, пренебрежимо малы в сравнении с

Рис. 1. Функции распределения скоростей звезд различных масс в квазистадионарном скоплении; 1—чисто разрывный случайный процесс, 2—данные Спитцера и Харма [8].

первым. Таким образом, звезды с массами $m_1 = m/2$ приобретают квазистационарное распределение скоростей за то же время, что и звезды средней массы $(m_1 = m)$, обладающие тем же начальным распределением скоростей [2]. Как показано в [4, 5], у звезд нулевой массы этот переход совершается за яремя $\sim 5\tau$, а у звезд с $m_1 = 2m$ —за время $\sim 50\tau$, т. е. время установления квазистационарного состояния тем больше, чем больше масса рассматриваемых звезд.

ИЗМЕНЕНИЕ СКОРОСТИ ЗВЕЗДЫ КАК СЛУЧАЙНЫЙ ПРОЦЕСС. III 309

В качестве дополнительной иллюстрации этого результата на рис. 4 представлен переход к квазистационарному состоянию группы звезд с массами $m_1 = \overline{m}/2$, функция распределения скоростей которых в начальный момент t = 0 совпадала с квазистационарным законом

Y

Рис. 2. Функция распределения скоростей в различные моменты времени группы звезд с массами $m_1 = 0.5 \text{ m}$.

распределения скоростей звезд массы $m_1 = 2\overline{m}$ [5]. На рис. 5 для сравнения представлен переход к квазистационарному распределению группы массивных звезд с $m_1 = 2\overline{m}$, у которых в качестве начального принято распределение скоростей, совпадающее с распределением скоростей звезд $m_1 = \overline{m}/2$ в квазистационарном состоянии. Более легкие звезды, как это следует из рис. 4, совершают переход от начальной функции распределения к квазистационарному закону за время $\sim 6\tau$, а более массивные (рис. 5)—за время $\sim 40\tau$, т. е. в 6 раз медленнее. При этом, ввиду того, что в обоих случаях в качестве начального распределения взята гладкая функция, этот переход совершается быстрее, чем в рассмотренных ранее случаях, когда начальные скорости звезд предполагались равномерно распределенными в некотором промежутке.

Рис. 3. Функция распределения скоростей в различные моженты времени группы звезд с массами $m_1 = 0.5 \,\overline{m}$.

В табл. З приводится доля звезд с массой $m_1 = m/2$, диссипирующих за время релаксации τ , и доля энергии этих звезд, уносимая ими за время релаксации τ , а также доля энергии этих звезд, уносимая ими за время τ , вычисленная по формулам (12)—(14) работы [5].

В работах [2, 4, 5, 7] в качестве ядра оператора (3) использовалось выражение для вероятности перехода, полученное Т. А. Агекяном [9]. Проверка показала, что в формуле (78) работы [9] была допущена опечатка, а именно, вероятность перехода для звезд нулевой массы $m_1 = 0$ следует увеличить в два раза. После исправле-

ИЗМЕНЕНИЕ СКОРОСТИ ЗВЕЗДЫ КАК СЛУЧАЙНЫЙ ПРОЦЕСС. III 311

ния диссипация и доля уносимой энергии, приведенные в [4] для звезд нулевой массы, увеличиваются вдвое, и примерно в два раза

		-		Таблица 2
	m ₁ =0	$m_1=0.5m$	$m_1 = m$	$m_1 = 2m$
$\left(\frac{z}{N}\frac{dN}{dt}\right)_{t=\infty}$	0.1542 (0.205 SH)	0.291 (0.0615 SH)	0.01038 (0.0114 SH)	0.00582
$\left(\frac{z}{E}\frac{dE}{dt}\right)_{t=-1}$	0.0254	0.00556	0.00187	0.000536
$\sqrt{\overline{g^2}}$	1.41	1.10	1.07	0.947
$\overline{(y-\overline{y})^2}$	0,122 (0.145 SH)	0.176 (0.154 SH)	0.175 (0.127 SH)	0.178

ускоряется эволюция функции распределения скоростей рассматриваемых звезд. При этом характер изменения со временем функции

Рис. 4. Фуниция распределения скоростей в различные моменты времени группы звезд с массами $m_1=0.5\,\overline{m}$, начальное распределение которых совпадает с кназистационарным распределением скоростей звезд массы $m_1=2\,\overline{m}$.

распределения скоростей остается прежним, а уменьшается лишь масштаб времени. Квазистационарное состояние достигается группами

<u>t</u>		dN dt	$-\frac{\tau}{2E}\frac{dE}{dt}$	
	0.75 <x<1.25< th=""><th>1.25<x<1.65< th=""><th>0.75<x<1.25< th=""><th>1.25<x<1.65< th=""></x<1.65<></th></x<1.25<></th></x<1.65<></th></x<1.25<>	1.25 <x<1.65< th=""><th>0.75<x<1.25< th=""><th>1.25<x<1.65< th=""></x<1.65<></th></x<1.25<></th></x<1.65<>	0.75 <x<1.25< th=""><th>1.25<x<1.65< th=""></x<1.65<></th></x<1.25<>	1.25 <x<1.65< th=""></x<1.65<>
4	0.0148	0.0424	0.000231	0.00480
5	0.0172	0.0396	0.000324	0.00448
6	0.0192	0.0375	0.000779	0.00420
10	0.0245	0.0328	0.00188	0.00345
20	0.0284	0.0296	0.00264	0.00288
30	0.0290	0.0292	0.00276	0.00280
40	0.0291	0.0291	0.00278	0.00278

звезд нулевой массы, рассматриваемыми в [4], за время ~ 5-, а не 10-, как указано в [4].

Доля диссипирующих звезд и доля уносимой внергии при $t=\infty$, т. е. в квазистационарном состоянии, для звезд различных масс при-

Рис. 5. Функция распределения скоростей в различные моменты времени группы звезд с массами $m_1=2m$, начальное распределение которых совпадает с квазистационарным распределением звезд массы $m_1=0.5m$.

ИЗМЕНЕНИЕ СКОРОСТИ ЗВЕЗДЫ КАК СЛУЧАЙНЫЙ ПРОЦЕСС. III. 313

водятся в табл. 2, при этом для звезд нулевой массы приведены исправленные значения. Как и следовало ожидать, диссипация и вынос энергии легких звезд происходят быстрее, чем массивных. В табл. 2 приводятся также эначения доли диссипирующих звезд, полученные Спитцером и Хармом в [8]. Диссипация по Спитцеру и Харму получается несколько больше, чем в нашем случае. Это, по-видимому, объясняется тем, что в [8] не учитывался эффект кратности далеких сближений и поэтому их роль оказалась завышенной.

Аенинградский государственный университет

THE VELOCITY VARIATION OF STAR AS A PURELY DISCONTINUOUS RANDOM PROCESS. III. THE STARS OF DIFFERENT MASSES IN OPEN CLUSTER

V. S. KALIBERDA, I. V. PETROVSKAYA

The evolution of the velocity distribution function of a group of stars in open cluster is considered as a purely discontinuous random process. The mass of the star under consideration is proposed to be half the average mass of a cluster star. Using the second. Kolmogorov—Feller equation the velocity distribution function of considered stars, the escape rate and the amount of energy, taken away by the dissipated stars are found for different moments of time. The results for the quasi-stationary state are compared with the solution of Fokker-Plank equation by Spitzer and Harm (a continuous random process).

ЛИТЕРАТУРА

1. И. В. Петровская, Астрон. ж., 46, 824, 1969.

2. И. В. Петровская, Астрон. ..., 46, 1220, 1969.

3. И. В. Петровская, Астрон. ж., 48, 309, 1971.

4. В. С. Калиберда, И. В. Петровская, Астрофизика, 6, 135, 1970.

5. В. С. Калиберда, И. В. Петровская, Астрофизика, 7, 663, 1971.

6. В. С. Калиберда, Астрон. ж., 48, 969, 1971.

7. В. С. Калиберда, Астрон. ж., 47, 960, 1970.

8. L. Spitzer, R. Harm, Ap. J., 127, 544, 1958.

9. Т. А. Азекян, Астрон. ..., 36, 41, 1959.

АКАДЕМИЯ НАУК АРМЯНСКОЙ ССР

АСТРОФИЗИКА

TOM 8

МАЙ, 1972

выпуск 2

к динамике гравитирующих систем на нейтринном фоне вселенной

Т. Б. ОМАРОВ

Поступила 16 сентября 1971 Пересмотрена 7 декабря 1971

Рассматривается гравитационное влияние однородного нейтринного моря расширяющейся Вселенной в динамике выделившейся на его фоне пары квазиточечных тел. На основе "близкой" интегрируемой задачи предложены соотношения, описывающие общие свойства и характер поведения изучаемой системы. В частности, показано, что если в относительном движении двух тел по орбите вллиптического типа оскулирующий период обращения в впоху t₀ (один из моментов прохождения через перицентр) намного меньше значения самого времени t₀, отсчитываемого от момента сингулярности (плотность фонового субстрата становится бесконечной), то влияние нейтронного моря может сводиться к систематическому возмущению только положения перицентра.

В динамике некоторых объектов Метагалактики может, в принципе, оказаться существенным гравитационное влияние труднонаблюдаемых форм материи. Как полагают Фодор, Кёвеши и Маркс [1, 2], источником такого гравитационного поля для больших скоплений галактик могли бы быть нейтрино. Вопрос о нейтринном фоне во Вселенной рассматривался впервые в работе Понтекорво и Смородинского [3]. Согласно предложенной ими гипотезе флуктуации, приведшей к существованию местных скоплений вещества и антивещества, плотность энергии нейтрино — антинейтрино (зарядово-симметричный фон) должна была бы когда-то в прошлом намного превышать плотность энергии нуклонов и, возможно, продолжает превышать ее и в современную впоху. Большую плотность нейтрино можно также ожидать в рамках теории Вайнберга о существовании вырожденного нейтринного моря Вселенной [4, 5]. В уже упоминавшихся работах Фодора, Кёвеши и Маркса рассмотрены неоднородности в плотности 11-212

нейтринного моря, обусловленные большими скоплениями масс, и соответствующие избытки плотности интерпретированы как возможные факторы, поддерживающие стабильность гравитирующих систем. Ниже мы рассмотрим гравитационное влияние самого невозмущенного моря нейтрино в динамике выделившейся на его фоне простейшей небесно-механической схемы — бинарной системы.

Следуя Мак-Кри и Милну, гравитационное поле однородного субстрата с давлением *Р* может быть описано в рамках классической механики и ньютоновской теории тяготения заменой плотности материи δ на величину $\delta + 3P/c^8$ [6]:

$$\frac{d^2R}{dt^2} = -\frac{4}{3}\pi GR\left(\delta + \frac{3P}{c^2}\right) = -\frac{4\pi G}{c^2}R(\varepsilon + 3P), \qquad (1)$$

где R — радиус произвольного сферического объема, содержащего данное количество сохраняющихся частиц субстрата, ε — плотность внергии, c — скорость света.

Для фона нейтрино

$$P = \frac{1}{3} \varepsilon = \frac{1}{3} \delta c^2 \qquad (2)$$

и в этом случае в уравнении (1) имеем

$$\frac{s+3P}{c^2} = \frac{2s}{c^2} = 2\delta,$$
(3)

так что фактическая сила гравитационного воздействия нейтринного моря однородной модели мира вдвое больше по сравнению с величиной силы, соответствующей при заданной плотности распределения массы полю тяготения обычного вещества [7].

Выделив теперь на рассматриваемом гравитирующем фоне систему двух взаимно притягивающихся квазиточечных тел постоянной суммарной массы *M*, обратимся к уравнению их относительного движения с учетом отмеченной Радзиевским специфики квазиупругого поля сил — движение одного тела по отношению к другому происходит так, как если бы с последним был совмещен центр квазиупругого притяжения [8]:

$$\frac{d^{2}r}{dt^{2}} = -GM\frac{r}{r^{2}} - \frac{8}{3}\pi Ga(t)r.$$
 (4)

Если плотность доминирующего фона нейтрино в апоху to равна со-

316

ответствующему критическому значению $\delta_0 = 3H_0^2/8\pi G$ (H_0 —значение постоянной Хаббла), то изменение о происходит по закону [7]

$$\hat{o} = \frac{3}{32\pi G t^a} \tag{5}$$

Имея в виду, что к тому же частное выражение плотности (5) практически является универсальным на ранних стадиях развития всех типов "горячей" модели мира [7], его мы примем для определения аналитической структуры нестационарной квазиупругой силы уравнения движения (4):

$$\frac{d^2 r}{dt^2} = -GM \frac{r}{r^3} - \frac{1}{4t^2} r.$$
 (6)

В связи с космогоническим характером самой постановки вопроса представляется важным иметь хотя бы ориентировочные аналитические оценки, описывающие основные тенденции в поведении динамической системы (б), и здесь обращает на себя внимание следующая интегрируемая проблема.

Рассмотрим относительное движение двух квазиточечных тел на фоне гравитирующего вещества мира Эйнштейна—де Ситтера [7, 9] —равномерно распределенной и изотропно расширяющейся пылевидной (отсутствует давление) материи с плотностью

$$\delta = \frac{1}{6\pi G t^2} \,. \tag{7}$$

Соответствующее уравнение имеет вид

$$\frac{d^3r}{dt^2} = -GM \frac{r}{r^3} - \frac{2/9}{t^2} r, \qquad (8)$$

где *М* — суммарная масса взаимодействующих тел. В результате замены переменных

$$\vec{r} = r_0 t_0^{-2/3} t^{1/3} \vec{\rho}, \quad t = (\tau/3)^3$$
 (9)

уравнение (8) приобретает вид

$$\frac{d^2 \rho}{d\tau^2} = -\alpha \tau \frac{\rho}{\rho^3}, \quad \alpha = GMt_0^2/3r_0^3 \tag{10}$$

со следующей взаимосвязью начальных условий:

$$\tau_0 = 3t_0^{1/3}, \quad \dot{\rho_0} = t_0^{1/3} \frac{r_0}{r_0}, \quad \left(\frac{d\rho}{d\tau}\right)_0 = -\frac{1}{3} \frac{r_0}{r_0} + \frac{t_0}{r_0} \left(\frac{dr}{dt}\right)_0 \quad (11)$$

(индекс "нуль" приписывается значениям фигурирующих у нас величин в некоторую впоху t_0).

Умножая уравнение (10) векторно на р слева и интегрируя, получаем

$$[\vec{p} \times d\vec{p}/d\tau] = \vec{C}, \qquad (12)$$

где C — постоянный вектор. Используя аналогичным образом вектор $2 d\rho/d\tau$ в качестве множителя скалярного произведения, имеем

$$\left(\frac{d\rho}{d\tau}\right)^{2} - \frac{2\alpha\tau}{\rho} = h, \qquad (13)$$

где введено обозначение

$$h = -2 \int \frac{\alpha}{\rho} d\tau.$$
 (14)

Следуя Гельфгату, систему уравнений (12) и (13) интегрируем в полярных координатах р и в вектор-функции р с одновременным привлечением вместо т величины (14) как независимой переменной [10]:

$$\rho = -2h \left(C_1 J_{-1/3}^2 + C_2 J_{1/3}^2 + C_3 J_{-1/3} J_{1/3} \right), \tag{15}$$

$$\vartheta - \vartheta_0 = i \ln \frac{2C_1 J_{-1/3} + (C_3 - \sqrt{C_3^2 - 4C_1 C_2}) J_{1/3}}{2C_1 J_{-1/3} + (C_3 + \sqrt{C_3^2 - 4C_1 C_2}) J_{1/3}},$$
(16)

ат = $h^2 [C_1 (J_{-1/3}^2 + J_{2/3}^2) + C_2 (J_{1/3}^2 + J_{-2/3}^2) + C_3 (J_{-1/3} J_{1/3} - J_{-2/3} J_{2/3})],$ (17) где $J_s - \phi$ ункции Бесселя первого рода порядка v = -1/3, 1/3, -2/3,2/3 с аргументом z вида

$$z = i h^{3/2} / 6a, \tag{18}$$

а C_1 , C_3 и C_3 — постоянные интегрирования, связанные соотношением

$$C_3^2 = 4C_1C_2 - \frac{\pi^2 C^2}{3(6\alpha)^2}.$$
 (19)

318

Возвращаясь теперь к интересующей нас эдесь динамической системе (б) и сопоставляя ее с уравнением (8), нетрудно усмотреть, что фигурирующие в них квазиупругие силы отличаются только постоянным множителем порядка единицы, и соответственно может быть предложена аппроксимация общих тенденций и характера поведения втой системы полученными выше результатами (9)—(19).

С точки зрения указанной аппроксимации должно иметь место, в частности, следующее свойство решения уравнения (б): если период

$$P_{0} = \frac{2\pi r_{0}^{3/2}}{\sqrt{GM_{0}}}$$
(20)

оскулирующего кругового движения в эпоху to

$$\left(\frac{dr}{dt}\right)_0^2 = \frac{GM}{r_0}, \quad \left(\frac{dr}{dt}\right)_0 = 0$$
(21)

намного меньше значения самого времени t_0 , отсчитываемого от момента сингулярности ($\delta = \infty$),

$$P_0 \ll t_0, \tag{22}$$

то соответствующее этим начальным условиям возмущение в радиусвекторе $\delta r = r - r_0$ не содержит векового члена.

Обратимся прежде всего к начальному $(t = t_0)$ значению промєжуточной переменной h, определяемому формулами (11) и (13):

$$h_0 = \frac{1}{9} - \frac{2}{3} \frac{t_0}{r_0} \left(\frac{dr}{dt}\right)_0 + \frac{t_0^2}{r_0^2} \left(\frac{dr}{dt}\right)_0^s - 6\alpha.$$
(23)

В силу выражений (10), (11), (20), (21) и (23), имеем

$$h_0 = \frac{1}{9} - 3a, \quad 3a = \left(\frac{2\pi t_0}{P_0}\right)^2,$$
 (24)

так что с учетом соотношения (22) аргумент функций Бесселя (18) в момент $\tau_0 = 3t_0^{1/3}$ действителен и отрицателен, причем

$$|z_0| = |ih_0^{3/2}/6\alpha| \gg 1.$$
 (25)

Поскольку отмеченное свойство исходного значения величины (18) может быть распространено на все последующие моменты τ (как видно из формулы (14), *h* является убывающей функцией τ , причем в рассматриваемом случае $h_0 < 0$), то в равенствах (15) и (17) восполь-

зуемся соответствующими асимптотическими разложениями функций Бесселя [11]

$$J_{*} \sim e^{\left(v+\frac{1}{2}\right)\pi t} \left(\frac{2}{\pi z}\right)^{1/2} \left[\cos\left(z+\frac{1}{2}v\pi+\frac{1}{4}\pi\right)\sum_{m=0}^{\infty}\frac{(-1)^{m}\left(v,\ 2m\right)}{(2z)^{2m}}-\frac{1}{(2z)^{2m}}\right] \\ -\sin\left(z+\frac{1}{2}v\pi+\frac{1}{4}\pi\right)\sum_{m=0}^{\infty}\frac{(-1)^{m}\left(v,\ 2m+1\right)}{(2z)^{2m+1}},$$
(26)

где имеются в виду порядки v = -1/3, 1/3, -2/3, 2/3. Ограничившись главными членами этих представлений, положим

$$J_{\nu} = e^{\left(\nu + \frac{1}{2}\right)\pi i} \left(\frac{2}{\pi z}\right)^{1/2} \cos\left(z + \frac{1}{2}\nu\pi + \frac{1}{4}\pi\right), \quad (27)$$

откуда следует, что

$$J_{-1/3}^2 + J_{2/3}^2 = e^{\frac{1}{3}\pi t} \frac{2}{\pi z},$$
 (28)

$$J_{1/3}^2 + J_{-2/3}^2 = -e^{\frac{2}{3}\pi t} \frac{2}{\pi z}$$
(29)

И

$$J_{-1/3} J_{1/3} - J_{-2/3} J_{2/3} = -\frac{1}{\pi_Z}$$
(30)

Соответственно

$$a\tau = \frac{h^{*}}{\pi z} \left(2C_{1}e^{\frac{1}{3}\pi t} - 2C_{2}e^{\frac{2}{3}\pi t} - C_{3} \right)$$
(31)

или, принимая во внимание формулу (18), имеем

$$h = -\frac{\pi^{2}\tau^{2}}{36\left(2C_{1}e^{\frac{1}{3}\pi t} - 2C_{2}e^{\frac{2}{3}\pi t} - C_{3}\right)^{2}} = \frac{h_{0}}{\tau_{0}^{2}}\tau^{2}.$$
 (32)

Далее, подставляя выражение (27) в равенство (17), получаем

$$\rho = -\frac{24\alpha}{\pi \sqrt{-h}} \left[C_1 e^{\frac{1}{3}\pi i} \cos^2\left(z + \frac{\pi}{12}\right) - C_2 e^{\frac{2}{3}\pi i} \cos^2\left(z + \frac{5\pi}{12}\right) - C_3 \cos\left(z + \frac{\pi}{12}\right) \cos\left(z + \frac{5\pi}{12}\right) \right]$$
(33)

Возвращаясь теперь на основе соотношений (9), (18), (32) и (33) к исходным переменным, находим

$$r = -\frac{24\pi r_0}{t_0^{1/3}\pi \sqrt{-h_0}} \left[C_1 e^{\frac{1}{3}\pi t} \cos^2\left(Bt + \frac{\pi}{12}\right) - C_2 e^{\frac{2}{3}\pi t} \cos^2\left(Bt + \frac{5\pi}{12}\right) - C_3 \cos\left(Bt + \frac{\pi}{12}\right) \cos\left(Bt + \frac{5\pi}{12}\right) \right],$$
(34)

где введено обозначение

$$B_{i} = \frac{ih_{0}^{3/2}}{6at_{0}}$$
(35)

Таким образом, в рамках условий (21) и (22) определяемая формулами (9)—(19) величина r является периодической функцией времени. Как и следовало ожидать, в пределе при $t_0 \rightarrow \infty$ период T функции (34) стремится к классическому выражению:

$$\lim_{t_0 \to \infty} T = \lim_{t_0 \to \infty} \left(-\frac{\pi}{B} \right) = \frac{2\pi r_0^{3/2}}{\sqrt{GM}}.$$
 (36)

Нетрудно усмотреть, что отмеченное выше частное свойство аппроксимирующих соотношений (9)—(19) может быть распространено и на случай движения, принадлежащего в впоху t₀ вллиптическому типу

$$\left(\frac{dr}{dt}\right)_{0}^{2} - \frac{2GM}{r_{0}} < 0, \quad \left(\frac{dr}{dt}\right)_{0}^{2} = GM\left(\frac{2}{r_{0}} - \frac{1}{a_{0}}\right), \quad r_{0} = \frac{a_{0}\left(1 - e_{0}^{2}\right)}{1 + e_{0}\cos\varphi_{0}}, \quad (37)$$

если при этом имеют место следующие соотношения:

$$\left(\frac{dr}{dt}\right)_{0} = \sqrt{\frac{GM}{\alpha_{0} (1-e_{0}^{2})}} e_{0} \sin \varphi_{0} = 0, \quad \frac{2\pi \alpha_{0}^{3/2}}{\sqrt{GM_{0}}} \ll t_{0}.$$
(38)

В самом деле, в силу формул (14), (23), (37) и (38), имеем

$$-ih^{3/2}/6a \gg 1, \tag{39}$$

так что, следуя и здесь асимптотическим представлениям (26)—(30), получим соотношение вида (34) с новой системой постоянных. Этот результат может быть интерпретирован как отсутствие векового эффекта в возмущении оскулирующего эксцентриситета [12]

$$e = \sqrt{1 + \frac{k^2}{G^2 M^2} \left[\left(\frac{dr}{dt} \right)^2 + \frac{k^2}{r^2} - \frac{2GM}{r} \right]},$$
 (40)

соответствующего динамической системе (6) с начальными условиями (37) и (38) при учете ее интеграла кинетического момента

$$[r \times dr/dt] = \overline{\text{const}} = \overline{k}, \qquad (41)$$

т. е. если в относительном движении двух тел по орбите эллиптического типа оскулирующий период обращения в эпоху t_0 (один из моментов прохождения через перицентр) намного меньше значения самого времени t_0 , отсчитываемого от момента сингулярности ($\delta = \infty$), то с точки зрения принятой аппроксимации гравитационное влияние нейтринного моря может сводиться к систематическому возмущению только положения перицентра.

Нетрудно продолжить аналогичный анализ общих аппроксимирующих соотношений (9)—(19) применительно и к другим частным условиям для динамической системы (6).

Астрофизический институт АН Каз. ССР

ON THE DYNAMICS OF GRAVITATING SYSTEMS AGAINST THE NEUTRINO BACKGROUND OF THE UNIVERSE

T. B. OMAROV

The gravitational influence of a homogeneous neutrino sea of a expanding Universe is considered in the dynamics of a pair of quasi-pointed bodies against its background. On the basis of "close" integrable problem correlations describing common properties and the character of behaviour of the system under consideration are proposed. Specifically it is shown that if in a relative motion of two bodies along the orbit of elliptical type the osculating period of circulation in epoch t_0 (a moment of the passages through the pericenter) is considerably less than the value of moment t_0 itself counted off from the singularity moment (density of a substratum of background becomes infinite), the influence of neutrino sea can be reduced to the systematic perturbation of only the position of the pericenter.

ЛИТЕРАТУРА

- 1. L. Fodor, Z. Kövesy, G. Marx, Acta Phys. Hung., 17, 171, 1964.
- 2. G. Marx, Acta Phys. Hung., 22, 59, 1967.
- 3. Б. М. Понтекорео, Я. А. Смородинский, ЖЭТФ, 41, 239, 1961.

гравитирующие системы на нейтринном фоне

- 4. S. Weinberg, Nuovo Cimento, 25, 15, 1962.
- 5. S. Weinberg, Phys. Rev., 128, 1457, 1962.
- 6. W. Mc. Crea, E. Milne, Quart. J. Math., 5, 73, 1934.
- 7. Я. Б. Зельдович, И. Д. Новиков, Релятивистская астрофизика, Наука, М., 1967,
- 8. В. В. Радзиевский, Астрон. ж., 31, 436, 1954.
- 9. A. Einstein, W. de Sitter, Proc. Nat. Acad. Sci., 18, 213, 1932; А. Эйнштейн, Собрание научных трудов, 2, 396, Наука, М., 1966.
- 10. Б. Е. Гельфиат, Бюлл. ин-та теор. астр., 7, 354, 1959.
- 11. Г. Ватсон, Теория бесселевых функций, т. І, ИА., М., 1949.
- 12. Г. Н. Дубошин, Небесная механика, Наука, М., 1968.

виктор алексеевич домбровский

1 февраля 1972 г. скоропостижно скончался член редакционной коллегии журнала "Астрофизика", директор Астрономической обсерватории Ленинградского университета, профессор Виктор Алексеевич Домбровский.

В его лице советская астрофизика потеряла одного из своих выдающихся деятелей, энергичного наблюдателя и талантливого воспитателя молодых научных кадров.

В. А. Домбровский родился 30 сентября 1913 г. в древнем русском городе Ростове Ярославской губернии. Здесь он окончил среднюю школу, в которой занимался математикой под рудоводством замечательного педагога — своего отца. Отец же привил ему интерес и любовь к астрономии. В 1931 г., желая специализироваться по астрономии, В. А. Домбровский поступил на физико-математический факультет Ленинградского университета. По окончании университета он остался на кафедре астрофизики, связав с ней всю свою дальнейшую деятельность. Виктор Алексеевич начал научную работу еще в студенческие годы. Его первым увлечением были переменные звезды. Затем им были выполнены ценные исследования по фотометрии туманностей. Особенно же значительных результатов он достиг, когда приступил к изучению небесных тел поляриметрическим методом. Для выполнения поляриметрических наблюдений В. А. Домбровский создал весьма совершенную методику, которая использовалась как им самим, так и его учениками. Этим было положено начало в разработке нового направления астрофизических исследований в нашей стране.

Широко известны работы В. А. Домбровского, посвященные поляризации света звезд и туманностей. Ему (одновременно с М. А. Вашакадзе) принадлежит одно из виднейших астрономических открытий середины нашего века — обнаружение поляризации Крабовидной туманности.

Менее известно, что еще раньше, одновременно с американскими исследователями, на основании своих фотографических наблюдений, проведенных в Бюракане, В. А. Домбровский, пришел к выводу о наличии поляризации света у некоторых горячих гигантов. Эти результаты им были опубликованы. Однако его большая требовательность к точности наблюдений была причиной того, что он сам считал независимо произведенное другими астрономами фотовлектрическое открытие этого явления более убедительным.

Большой заслугой В. А. Домбровского, как директора Астрономической обсерватории ЛГУ, была постройка астрофизической станции вблизи Бюраканской обсерватории. Установленные здесь инструменты оригинальной конструкции дали возможность вести фотометрические и поляриметрические наблюдения различных объектов, из которых особый интерес представляют наблюдения квазаров и ядер галактик. В последние годы на этой станции были начаты работы по исследованию свечения звезд в недоступной ранее инфракрасной области спектра.

В. А. Домбровский был членом Астрономического совета АН СССР, руководителем рабочей группы по внегалактической астрофизике, членом Ученого совета Пулковской обсерватории.

Как человек, Виктор Алексеевич отличался большой широтой интересов. Он понимал и ценил музыку, литературу, искусство. Он много путешествовал по стране, относясь с особым вниманием к ее историческим памятникам. Любимыми спутниками его жизни были книги.

Безвременная смерть Виктора Алексеевича Домбровского — большая потеря для нашей науки и для всех тех, кто его знал и работал вместе с ним.

CONTENTS

GALAXIES WITH ULTRAVIOLET CONTINUUM. V.	
B. Ye. Markarian, V. A. Lipovetsky	155
ON THE NATURE OF GALAXIES WITH ULTRAVIOLET CONTINUUM. I. PRINCIPAL SPECTRAL AND COLOUR CHARACTERISTICS B. Ye. Markarian	165
THE SPECTRA OF MARKARIAN GALAXIES, V.	
M. A. Arakelian, E. A. Dibay, V. F. Yesipov	177
HYDROGEN LINES IN THE SPECTRUM OF MARKARIAN 6 GALAXY DU- RING ITS ACTIVITY V. I. Pronik, K. K. Chuvaev	187
LIGHT SCATTERING IN A HOMOGENEOUS SPHERE · · · · V. V. Sobolev	197
NONCOHERENT SCATTERING. III. N. B. Yengibarian, 'A. G. Nikughossian	213
ON THE POSSIBILITY OF ACCELERATION OF MATTER IN HOT STARS BY ABSORPTION IN SPECTRAL LINES I. F. Malov	227
ON DIFFUSION OF RADIATION IN STELLAR SHELL EXPANDING WITH CONSTANT VELOCITY	235
ON THE NATURE OF THE UV CETI-TYPE STARS FLARE RADIATION A. A. Korovyakovskaya	247
THE EVOLUTION OF WHITE DWARF WITH ACCRETION OF HYDROGEN RICH MATTER. I	261
THE ATMOSPHERE OF NON-ROTATING BARYON STARS G. S. Sahakian, D. M. Sedrakian	283
THE PHASE MIXING OF THE SECOND KIND IN STELLAR SYSTEMS. II. L. P. Ossipkov	295
THE VELOCITY VARIATION OF STAR AS A PURELY DISCONTINUOUS RANDOM PROCESS. III. THE STARS OF DIFFERENT MASSES IN OPEN CLUSTER V. S. Kaliberda, I. V. Petrovekaya	305
ON THE DYNAMICS OF GRAVITATING SYSTEMS AGAINST THE NEU- TRINO BACKGROUND OF THE UNIVERSE • • • • • • T. B. Omarov	315