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Free interfacial and edge vibrations of a closed cylindrical shell composed of
finite orthotropic momentless cylindrical shells with variable curvature and
different elastic properties are studied. It is assumed that the ends of shell are
free.
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Introduction. Investigation of free vibrations of composed shells plays
an important role in the studies of dynamics of deformable solid bodies.
Such studies are required by the needs of the theory itself and by
practical needs of different branches of engineering industry,
construction, instrument-engineering, seismic survey, etc. [1]. In many
cases the objects of investigations are finite thin-walled composed
cylindrical shells with variable curvature. For such shells much attention
is attracted to the investigation of free vibrations localized near the ends
of the shells, i.e. edge vibrations, and vibrations localized near the
interface of material properties, i.e. interfacial vibrations. The
investigation of elastic surface waves was initiated by the pioneering
work of Lord Rayleigh [2], where the existence of the elastic waves
propagating along the free boundary of semi-infinite space with

62


mailto:ghulgr@yahoo.com

amplitude strongly damping with the depth was shown. Such waves that
appear in elastic bodies with different geometries are usually called
Rayleigh type surface waves. The waves localized near the free edges of a
semi-infinite plate and the waves in semi-infinite cylindrical shells
damping from free edges along the generator, are also called Rayleigh
type surface waves [3], [4]. The problems of the existence of free
vibrations damping from free ends of momentless cylindrical shells along
its generators are studied in [5,6-9].

The investigation of free interfacial vibrations was initiated by the
Zilbergreit, et al. [10], and Getman, et. al. [11], where Stoneley wave
analogues were investigated [12]. In paper [10] transverse vibrations
running along the contact line of two semi-infinite plates and
concentrated close to it are studied. In paper [11] the plane interfacial
vibrations near the interface of two joined semi-strips with different
elastic properties are investigated. Later, Kaplunov, et al. [13], [14], using
the special asymptotic method studied the free interfacial vibrations of
composed circular cylindrical shells [13] as well as the shells of
revolution [14].

In the present paper free interfacial and edge vibrations of momentless
close cylindrical shell, composed of finite orthotropic cylindrical shells
with different elastic properties are studied. The dispersion equations to
determine the appropriate frequencies of interfacial and edge vibrations
of closed composed momentless cylindrical shell with variable curvature
are obtained. An asymptotic link between dispersion equations of the
considered problem and the analogous problem for plate-strip, composed
of orthotropic plate-strips with different elastic properties are
established. Also, an asymptotic link between dispersion equations of the
considered problem and the problem of interfacial vibrations of semi-
infinite and infinite composed cylindrical shells are established. The
derived dispersion equations and related asymptotic formulae can be
used for controlling the spectrum of frequencies of the stated problem by
varying the geometry of the shell and mechanical properties of materials.
In particular, one can control the spectrum by shifting either the origin
of the spectrum or the points of condensation from the undesirable
resonance region [15].

1. Statement of the problem and some mathematical features. Free
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interfacial and edge vibrations of closed cylindrical shell composed of
finite orthotropic momentless cylindrical shells with different elastic
coefficients are considered. The choice of the coordinate system and the
possible shell form are shown in Fig. 1.

. 0
Fig. 1
Here o is the orientated length of the generatrix —1? < <I1®, and
a =0 corresponds to the interface of material properties separation. S is
the length of the arc of the directing curve 0<B<s, where s is the
complete length of the directing curve. It is supposed that the square of

curvature of the composed cylindrical shell can be presented as Fourier
series:

RZ:kZ(%O+Zrmcoskmﬂj 0<pB<s, k=27, DIty k<40 (1.1)
m—1 S ma

Note that depending on the curvature of the directing curve the
values of k , may be multiple of the presented ones .

For o =0 full contact conditions are set. All the values corresponding
to the right shell (0<a<I®) on (Fig.1) are marked with superscript (1).
Similarly, for the left shell (-1® < <0) superscript (2) is used.
The equations corresponding to momentless classical theory of
orthotropic cylindrical shells are used for describing vibrations of shells
as given below [16]

o2 o2 \82U(r) B auin
_pgn 0 _po U (gmg0)U2” Bl T oo
152 66 5 ( 12 66 laaé‘ﬂ R o 1
~(8Y N AL A R LA NG KT G IO (1.2)
12 66 /80(5,5 66 aaz 22 aﬂz 22 aﬁ R 2

—%a;—;—%a;—f:+%u§” =2, (r=12)

Here u{,u{”,u{” (r=12) are the projections of the displacement
vector to the directions of «,f and the normal to the shell surface,
respectively. R™'=R™(f) is the radius of the curvature of the directing

curve; A" = p(V@?, where o is the angular frequency of free vibrations,
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and p"(r=12) are the densities of the materials; Bigr)(r =1,2) are the
coefficients of elasticity of the composed shell. The boundary conditions
have the form [16]

Tl(l) lo=T1" |a 00 S lo= 5% ucor U o= U g U |,c=US |, (1.3)

-0, —0,r=12 (1.4)

6a Bf” B,B B oOa

where T, S{),r=12, are tangential normal and shear forces,

a=(-1)" 10 a=(-n1®

respectively:
Tl(r) _ thI) ﬁul(r) Bl(r) au(r) £ , 31(5) _ hBég) aufr) N 8u§r) (15)
oa Bl(r) op R o  Oa
where h is the thickness of shell. Relations (1.3) and (1.4) are full contact
conditions at «=0 and free ends conditions at a=I1%a=-?®

respectively (Fig. 1).

It is known that any boundary-value problem originated from the
system of equations (1.2) (with fixed index(r)) has a continuous
spectrum band, coinciding with the segment 0<A"” <2{’, which is the
range of function [9]

Q(8,0") = _ By AR (B)sin‘ 9" |
B (BY sin* 0" + BYY cos' 9 + (A" - 2BB{Y) cos’ 6" sin?* 67 (1.6)
0<p<s, 0<d" <2z, AV =BYBY —(BY) r=12

Note, that the appearance of the continuous spectrum band is the
result of violation of ellipticity of system (1.2) by Douglas-Nierenberg
and it is not related to boundary conditions ([17], p. 97).

It is well known that the ellipticity of the system is not sufficient for
correct formulation of Dirichlet problem even in the case of
homogeneous systems [19-22]. In order to the problem (1.2)-(1.4) has

nontrivial solution it is necessary to impose additional algebraic
conditions along the boundary of the shell and the interface of materials.
This condition is called condition of complementation or Shapiro-
Lopatinsky condition [9,19-22]. In analogy with [20] one can show that
the Shapiro-Lopatinsky condition on the interface of materials has the
form
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Q(,B,/l(l),ﬂ(z)) _ 1 ﬁ/lmQ(Z) (,8,1(2)) +£
s¥(p,2%)5 (p,27) B Byg
G+ 0 + i) + P - (1.7)

pere pere
—2[71‘%”—5(1)—“ 17 - |#0, 0<B<s,

/I(Z)Q(l) (ﬂ, ﬂ(l)) n

(8,9) ) (8,19)
QU (8. A™) =B (7 - BER*(8)+BHAV (BYA” - AR (8))
S(r)(ﬂ,/”t(r)) — Bﬁ)ﬂ(r) —ANR-2 (B).

Note, that for boundary conditions (1.4) the Shapiro-Lopatinsky
condition is satisfied out of the range [0,AY/p®1U[0,4?/p®]. This fact
can be proved analogously, as in [9]. Therefore, the Shapiro-Lopatinsky
condition of problem (1.2)- (1.4) has the form (1.7).

Let us denote the range of ®’ where Q(8,A%7,4?)=0 as Q,.

(1.8)

The following statement is true: the spectrum of frequencies of
problem (1.2)- (1.4) our of the range [0,/ /p"10[0,491p?P]UQ,
consists of 1solated free frequencies of finite multiplicity [17], [22].

2. Derivation and analysis of dispersion equations. For further
calculations it is convenient to reduce the system of equations (1.2) to the
system of equations

BY ow®  BE) w®  BE A0 ot

O == — -2 2 T2 RO
B, Ja Bl 0adp B’ Bee O
Oy B o°w® +A(') ~BOBY &*w™ . B A0 aw®
B op°  BUWBY 0a’0p BY BY 0B @2.1)
BY 1 au” 1 auf” w "

(r)
- + = wor=12
B{Y R? 6« R? 9 R®* BY)

where W =u{” /R, and operators I'"”'(r =1,2) have the form

o' A" -2BYB{ o BS, o

at OIG) 2~22 TR Apd T

oa BUBY  oa’0p?  BY 0B 2.2)
Bl + B yn 0° | BRH+BE ;m 0° | (A7)

876y © oa® ' BUEY ¢ o0p® BB
The solution of the system (2.1) is searched in the form
u” =exp(CD)" k) O_u sinkmp), uf” =exp(1)" xVka)(O_ v coskmp)

m=1 m=1

"=

w =kexp(CD)" 7 Pka) O W sinkmp), r=1,2

m=1

(2.3)
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Substitute expressions (2.3) into system (2.1). From the first two
equations (2.1) by equalizing the corresponding coefficients of the
obtained trigonometric series we get

COUM = (—1)" 7VaPw®, OV —mpOw® | r=1,2

m m 1 m 3

ayy’ =%(;{m)2 + zl%f; m? + :ﬂ) "), ") = kf;;g) 24)
b = A(V)B;ég;% () - Bf”( )
céP=(z<f>>“——r)Bl<rz>BBi%B‘” m* (")’ +—B“BE>B () (x )+

+(m? = (7")? )[Bf” Bf” S (0" j m =1+

From the third equation of system (2.1) by considering the
relationship (2.4) and the rule for multiplying the trigonometric series
([23], p- 592) we come to an infinite systems of equations

Z(rn—m - rn+m)Air)Wr(1r) Bé? (U(r)) W(r) =0, m= 1—|—OO r=12 (25)

AD =p"cV PO =cl? + " - BY /B (#)?al”, n=1+0 (2.6)
n n n n n 1 d .
From the rule of multiplication of trigonometric series for h>0 we

have r, =r, . Since in the region of determination of A" we have

A" =0(/n*) then | A" |<+oo. Taking into account representation
n=1

(1.1), we have
ZlAﬁr)l(l A m|)<3(|r0|/2+2|r I)(ZIAS” ) <+e0 (2.7)

n,m=1 m=1

Hence, infinite determinants of systems (2.5) at A [0, 471, r=12 in
the range of definition of coefficients (2.6) belong to the class of
concurrent determinants known as normal determinants [24]. In order to
systems (2.5) have nontrivial solutions, it is necessary and sufficient, that
their determinants be equal to zero

DO((x ™), (7")%, BY, B, BY, B 1y, byevo i) =0, 1 =12 (2.8)

Assume, that 4, 4" (r=12) are different roots of equations (2.8) with
positive real parts, then " =—, 40 —_ " are other roots of equations
(2.8), as well. Then, let us consider the solution of problem (1.2)- (1.4) in
the form
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ul” —ZZexp(( D" 7{"keul) sinkmgp, us"? —ZZGXD(( D" x{ ke coskmz @

Jlml j=1m=1 )

w = kZZexp(( D" #Vka)wl) sinkmp, r =1,2

j=1m=1
Here u{?,v{) are the values of u,(nrj),v(r), and (W) w,..wi,...) j=12

are solutions of system (2.5) at »© = 4 j=14, r=12, respectively. Taking

into account boundary conditions (1.3)-(1.4) and relations (2.4) we come
to the totality of systems of equations

4 RW (2) 4 (2) 4 (l) (2) 4 (2)
Z Rij Wi B Z W@ = Rz W+ Bee Z e =
o m " , @ 0, C(l) <2>
RS o Rs) @ _ SR o_N Ri) @
_ 4 _
an)"" +ZC(2)W Zc(l)w Z c =0, m=L+e
i=1 ~mj j=1 ~mj :1
S R(r) M ywr) S R(r) My
r ry r r) _ _
' C(r) —Lexp@{Mwy) =0, Zc(f) exp(z{”)wy) =0, r=12
j=1 ~mj j=1 ~mj
(2.10)
(r) B
Rl(r) (! r)) a(r) BlZ 2N _ P12 ()
! . BH M gH ™ (2.11)
Rg) r)(a(r) b(r)) R(") (f)ar(nfj)’ Rz(l? — b(f_)

and a{),b{), c{) are the values of ay M b, ¢ from (2.4) at ™ = z\"
respectively. In order to the union of systems of equations (2.10) has a
solution, it is sufficient that the totality of equations

A, =exp(-zM -2, - 2,2 -2,P)d_ =0, m=1+00

2.12)

RY  RY RPeT  RYeT R -cRY —cRPe" -cRYe

RY  RY -REe R dRY  dRY -dR{e -dRPe™

RY  RY R’ Rt RDRY R -REe™

I - (F:)ﬁ)zm gﬁl{m Rﬁ)gp Ri?ﬁf” -RY -RE Rt -RPe?
ROe*  R@e* RS RY 0 0 0 0
R -RPe®  RY RY ¢ 0 0 0

0 0 0 0 ~cRPet” —cRPe®’ - R? —cRY

0 0 0 0 dRPet” dRPe” —dR®  —dRY

2.13)

where ¢=B{?/BY,d =Bé§)/Bé16)’ has ®” solution out of the range
[0,A9/ p®1U[0, A2/ p(z)]qu. Numerical analysis  shows, that

determinant (2.13) becomes small, when any two roots of equations (2.8)
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become close to each other. It makes the calculations very difficult and
may bring to the appearance of false solutions of equations (2.12). It turns
out that the multiplier in (2.13) that tends to zero when the roots
approach each other may be isolated. Performing elementary actions
over the columns of determinant (2.13) we get

Ay =S X)) ¥ exp(-? - 20—~ 2O)Detfmy |
(2.14)
where the elements m;;are given in Appendix 1. Equations (2.12) are
equivalent to equations
8 —
Det”mij”i’j:l =0, m=1+w (2.15)

Equations (2.15) are dispersion equations of the problem (1.2)-(1.4).
For 1® — o0 equations (2.15) have the form

. 2 _
Det||mij||?j:l = Det]jm, ":31:1 Det||mij||:;77”88 + ;O(exp(zgz))) =0, m=L+o (9 1¢)

Therefore, for I -« equations (2.15) split into equations

Det|my|" " =0, m=1+e (2.18)

Equations (2.17) are dispersion equations of interfacial and boundary
vibrations of a closed semi-infinite composed cylindrical shell, with a
free edge at o =1%.

Equations (2.18) are generalized Rayleigh's dispersion equations for
semi-infinite closed cylindrical shell, made of material (2), and with a
free edge at a =-1? (p. [7-9)).

For I — o the equations (2.17) get the form

2 —
1> 0(exp@)) =0, m=1+ (2.19)

=1

6 j=3.4
Det||mij ||

i=5,6

j=1,2,5

oo, ~oefn)

ij=1 i=1,2,3,4

Hence, for 1) — wequations (2.17) split into the equations

Dethij Hj:1'2’5'6 -0, m=1+40 (2.20)

i=1,2,3,4
j=3.4 —
Det”min_ =0, m=1+00
i=5,6 (2.21)
Equations (2.20) are dispersion equations of interfacial vibrations of a
closed infinite composed cylindrical shell. Equations (2.21) are
generalized Rayleigh's dispersion equations for a semi-infinite closed
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cylindrical shell, made of material (1), and with a free edge at o =1% (p.
[7-9]). Note, that

-34
Deth - =KP HD,xD, xP), Deth —chy)(nr(n?),fo),ng))

s s

K sy, X1(r) x§7) =8 (") (") +5z(r) XxOx +657 (47)7 + (§7)?) + 6™ r =12
s _ BB - (Bf?)z[ A BY (r))zJ

G C .
50 = (Y2 By A" BY(A" - B[)Bg —B;/Bgr) ()2
(BY)? (BY)? "
3(r) — BI(E)AU) ( ) ( (n(r)) ) 3{ ) _ Bl(g)Bég)(Bl(g) + Bé?)( (r))4(1_(77(r))2)
a)?).
(BY)’ (BY)’

Taking into account (2.16), (2.19) and (2.22) equations (2.15) may by
written in the form

Det“mu‘"? j=1 =KP D x® xP) KP (52, Xl(Z),XEZ))-Det”mij||j:l‘2'5'6

i=1,2,3,4

2.0(exp()+ D 0(exp@?)) =0, m=1+ (2.23)

=1 =1

For large 1 and 1® equations (2.15) split into the equations

j=1,2,5,6 —_
KGR 6 x§0) =0, KP (D 2, %) =0, Detfmy || " /=0, m=1+c0

I () | (2)

Thus, for large | and ' vibrations of the composite cylindrical shell
may be divided into Rayleigh type boundary vibrations at the end-walls
a=1Yand a=-1%0of the shell and interfacial vibrations at interface
a =0 of the shell material properties.

In general, the solution of equations (2.8) is a difficult problem. That is
why, for the establishment of asymptotic formulas for dispersion
equations (2.15) we consider the following particular cases.

3. Particular cases. Case a): R2(8)=0(r,=0,m=0+x). In the
expressions (1.2)-(1.5) we formally put R™*(#)=0 everywhere. As a
result, we obtain a system of equations of small planar vibrations of
orthotropic plates [25]

2,,(n 2,,(r)

B A

2,,(n)
~(B B LBl T8y aa;z - 20

where u”,u{” (r=12) are tangential displacement components of the

8u2

(B BTy

a u(r)
(r)
— Bss

(3.1)
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middle plane point. B{’(r=1,2) are the coefficients of elasticity of plates.
A9 =pNe?, where o is the angular frequency of free vibrations.
p"(r=12) are the densities of the materials. All the values for the right
plate (0<a <I®) are marked with superscript (1), and the values for the
left plate (—1” < <0) are marked with superscript (2).

Fig. 2

The question of the existence of planar interfacial and edge vibrations
of the composed plate-layer (Fig. 2) is investigated. It is assumed, that
a(-1® <a <19y and p(—0 < B <o) are rectilinear orthogonal coordinates
of the middle surface point of the plate-layer (Fig. 2). At the interface of
material property (a¢=0) a full contact takes place. The boundary
conditions have the form

T c0=T? lcor S& lico= 52 lucor U |oco=1? |00 U |,=UP |,y (B.2)

() (r) A, (r) (r) (r)
o | o, M, Mo —0,r=12  (33)
80[ Bll aﬂ |a:(_1)r71|(r) aﬁ aa a:(_l)f*1|(f)
7 thl(r) aul(r) " Bl(g) auér) 1 s — hBM au_l(r)Jr@u_ér) (3.4)
! ‘ 6a  BY o - L o oa

where h is the thickness of plate. The relations (3.2) express the
conditions of full contact at a =0, (3.3) are conditions of free edges at
a=-1? and a=1?. The solution of system (3.1), with wave number
m is searched in the form

u{" =ul sinkmgexp(C1)" y“kmea), ul” =v coskmpBexp(1)" y"kma),r =12 (3.5)
where k=n,2n/s, n,eN and sis any positive number. Substituting

expressions (3.5) in system (3.1), we obtain the system of equations

Jo - @ +ircay v <o

(r

r r r A
(Bl(l)(y( ))2 - Bée) +

m2k?

(3.6)

20
(- By B2 -8+ AL o
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Equalizing the determinant of system (3.6) to zero, we get
characteristic equations

] ; -2BYBY 2 B +BE ‘
C[(n) :(y( ))4 e 66 (y( ))2+ 11 o 66 (77( )) (y( ))2+
Bll BGG Bl (3 7)
BY B '
+(L-(r)? )[ —=t (né!’)z}
By BY
0] AD o _n" 1 o0
; = ; r=12; m=1+o0 3.8
(") = " BGQ ' = (3.8)

Let y!", j=12 be different roots of equation (3.7) with positive real
parts, then y{? =—y{ yi"=_y{0 r=12 are other roots of equation (3.7).
As a solution of equations (3.6) one can take

r r + Bgg r r r s _aa

U( ) — ( l) y( )%, ( ) (yﬁ )) Bl(,—) (1 (77( )) )’ J :1’4 (39)

The solution of problem (3.1)-(3.4) is searched in the form

u{” = Zu Dl exp(1)" y“kma)sin kmp,

4 (3.10)
uf? = viowiD exp(D)" y{ kma)coskmp, r =1,2
-1

Taking into account boundary conditions (3.2), (3.3) we obtain the

following system of equations

4
O @)\ (2) _ OO @@ _
Zpl Wj (1)ZP1 wi? =0, > Pw + (1)ZP21 W

l j=1 j=1 66 j=1

4 4
Zp(l)w(l) +Zp3(J7-)W(2) 0, Zp4(})w(l) ZP4(J_2)W§2)=0
‘:1 = = = (3.11)
Zpl(Jl) expE®)wi =0, zpa) expP)wid =
j=1 j=1

4

Z PP expE?)w® =0, (1) Z P2 expE?)w® =

=1 66 j=1

r B1 Bl(r r )
Plﬂ-”—Bl(r) (V") + Bf( ~)) P =y () + a0 Bff & o))

80 4 80 ! (3.12)

" _ynbe () 2
F’sf—y{ﬁ, RS =(y")? - Bf”( -())

Producing elementary actions over the columns of the determinant of
system (3.11) and setting it to zero, we obtain dispersion equations
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«|I8 _
= (y§ —y®)2(y — y@y2 exp(z® - 2§ - (2)—Z§Z))Det“mij“__ (=0, m=L+o
ij=

(3.13)
where the elements m; are given in Appendix 2.

Therefore, dispersion equations (3.13) are equivalent to equations

Det”mu“lr =0, m=1+o0 (3.14)
Equations (3.14) are dispersion equations of problem (3.1)-(3.3).
For 1® — oo we have asymptotic formulae

178

Det”mIJ H

DethUH +iO(expz§2)), m =1+ (3.15)
=1

ij=1 i=7,8 ij=1

Therefore, for 1 >« equations (3.14) split into the totality of
equations

-0, m=1+0; Deth,,“ =0, m=Ltwo, (3.16)

The first equatlons of (3.16) are Rayleigh's equations for a semi-
infinite plate made of material (2) and with a free edge at a=-1®. The
second equations of (3.16) are dispersion equations of semi-infinite
composed plate with a free edge at o =—1V.

For 1® oo, the second equations from (3.16) have asymptotic
representation

~1i=3.4 j=1,2,5,6

Det|m; H

ij=1 i=5,6 i=1,2,3,4

2 [
+> 0(expz’), m=Ltwo (3.17)
=1

Therefore, at 1® o and 1” -« equations (3.14) have asymptotic
representation

D 13,4D j=7.8 D j=1,2,5,6
Eth'J Hlj—l i=5,6 tH i=7,8 et” i=1,2,3,4
(3.18)
> 0(exp@E?) + > 0(xpE®),  m -1
i=1 ji=1
Det j1256 B(l) Bl(l) B&) Bl(z) Bé? @ 1
i1234 RO &) 0] (77m M)y M=1+0
B Bl Bll Bll
=34 _B® BY + B KO (7®)
i=5,6 B® B® 2 \m
11 11
(3.19)

2 2 2
1=78 _ (Bée))z Bl(Z) + Bée) Kéz)(ﬂ(z))
Np@ 2 m
ST
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2
B(Z)
Lo ) = K(l)(n(l’)Q(z)(n(Z))Jf(B(l) KPR P) +
66

B( 1),,1 2 1 2),,(2 2 2
+B&)Hy{)y§> Ellm( ()’ )][yl”yé) 211(2)(1 % )J+

FOE 08 AN + -y )

Q) =yl + Bf”( —(0)), r=12
AP
() (7,1 (r)

KO = -0 gogm
Dispersion equations (3.14) have the form

2 2
- B B | BY (BY+BR BY +BR ) ), oy @ @y (0 @
1:_[8(1) W B(l) B(z) KZ (Um )KZ (77m )L(nm s )+
11 11 11 11

—mam ) j )2y ys r=12

ZZ:O(exngl)) + ZZ:O(exngz))z 0, m=1+o0
= =
(3.20)

Therefore, for | - wand |I® — o dispersion equations of problem
(3.1)-(3.3) split into the totality of equations

KP ) =0, KP@P)=0, Lo .n?)=0, m=Leo (3:21)

The first two equations of (3.21) are Rayleigh's equations for semi-
infinite orthotropic plates, made of materials (1) and (2) on free edges at
a=1Pand a=-1?, respectively [7-9]. The third equation of (3.21) is the
analogous of Stoneley's dispersion equation for a composed infinite plate
[13],[31,[4].

Thus, planar vibrations of a composed plate-strip with free edges may
be separated on the boundary vibrations of Rayleigh types and
interfacial vibrations of Stoneley type.

| @

Note, that in dispersion equations L(z®,7?)=0, m=1+x the
elasticity coefficients of the left and right plates and the corresponding
roots of characteristic equations (3.7) enter in a symmetric way. Thus, for
example, if the left plate (superscript (2)) is softer (i.e.
PP 1pW <<1, B? 1B <<1,i,j=126), than the right one, then we can
write

L@z i) = QP UK, () + O(BE 1BR) +0(p® 1 p¥)}=0  (3.22)

Therefore, the existence of interfacial vibrations of a composed plate

depends on the existence of the boundary vibrations of the right
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semi-infinite plate with a free edge [7-8]: i.e. it is obvious that there are
interfacial vibrations. If B{?/B{" ~1,ij=126; p”/p" ~1, then there is a
small chance for the existence of interfacial vibrations.

Case b): R =k, /2 (r, =0,m=1-+w0), i.e. we have momentless elastic
circular closed composed cylindrical shell. In this case the systems (2.5)
have the form

(LA -2 866 )W =0, m=1,+o, r =12 (3.23)
Therefore, equations (2.8) split into two totalitis of equations

rL,P{" -2 ‘gf)c”( M2 =0, m=1+o0, r=12 (3.24)

or equatlons
A AD ~2B0BY
(r) (r) 2
(( R Bf”BéQZJ(Z H’”( 878y " ¢2)

B1(r)+Bee 0 (r)) A+ Bé?BéQ ro (7 (r)) +
T B0 Bl‘”B“’

(r) B(f)r I
NG ))[ Bl (- 22 —°]=o, m=ien, r=12
S T

In this case, for finding dimensionless characteristics of free

frequencies 7" (r=12) in dispersion equations (2.15) expressions
X = 0 m, X7 = 47 /m are used, where y{" and x{" are the roots of
equations (3.25) with positive real parts. For a circular cylindrical shell
we set k=n,2z/s, nyeN, where s is the full length of the directing
circle.

For r, -0 equations (3.25) become

(Z(r))4 _(A( )Bl(r)il((r))B(G) m* - Bl( )B—l(kr)B% (n(r))zj(l(r))z +

+(m? —(n")? )(

(77“)) =0, m=1+w, r=12 (3.26)
T

These equations are characteristic equations of systems describing
planar vibrations of a composed plate-strip (at k=n,2z/s, nye N, where

s is an arbitrary positive number). The roots z/m of equations (3.26)

(n ygr)

dispersion equations (2.15) the following asymptotic formulae are valid
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with positive real parts are denoted by y Then, in this case, for



Bl 81(2 B 81(2) ’ 1)/ (o 2)
1= (B ilB )(B 1 )] (N()(né)).N( (ﬂm)))ZDEI m; +
12 12
0(fo/(2m2))=0, m =1+
(3 27)
; ; B(r)A(r) (r) r) " B(r B(r

N()(ﬂr(n))Z (éz(r))g +Bl ( (Ber)l)?’ 66 22)(77m )2 (3.28)

11 1

From equation (3.27) it follows, that for r,/m” —0 the equations (2.15)
transform into equations (3.14).

Thus, equations (3.27) establish the asymptotic connection between
the dispersion equations of the considered problem and analogous
problem for a composed plate-strip.

For 1®¥ 50 and 1® -« and by taking into account (3.18)-
(3.20),(3.27), dispersion equations (2.15) in this case may be written in

the form
DetH M( (l)(n(l))N(2)(77(2)))2K(l)(n(l))K(Z)(77(2))L(77(1) (2))+
L (3.29)
2 —
O[z:]zJ+ZO(EXP(Z?))HZO(GXD(ZEZ’))=o, m=1 1o
= =1

From (3.29) it follows, that for r,/m?>—0, 1® >wand 1? -
dispersion equations (2.15) split into equations (3.21). Therefore, for
small r,/m’ and large 19,1® the roots of equation (3.21) are the
approximate values of roots of equations (2.14) (see Tables 1,2).

Case c): RZ2=k2(r,/2+rcoskp), r, =0, m=2+0, ie. we have a
noncircular composed closed cylindrical shell (with k=2z/s, where s
is the full length of the directing curve). In this case the systems of
equations (2.5) have the form

LR, +rDp 4 £PD o0 =0, m=1-+0, r=12 (3.30)
@, —w“)/c“) i) =r,P" — 2B (n")*C /B (3.31)

Since the determinants of systems (3.30) are of the normal type, then
in order to find a non-trivial solution, we equalize them to zero

DO((x")". (7). B B, . By Big 1o, 1) =0, r =12 (3.32)

Solutions (y”)? of equations (3.32) can be obtained in analogous way
as in [6-9].

The following statement is valid: for fixed m=>2 and at A [0, A7,
equations (3.32) have formal solutions of the form
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) =) + i + B+ f =12, r =12 (3.33)
where {0 (j=12) are the roots of the equation r) =0 (ie. the

equations (3.25) with positive real parts) and

POMPOLD 4 PO O

m-1"m+1m+1 m+1"m-1m-1

(r) _
O =

, j=12, r=12 (3.34)
NI ORI
m-1m-1"m+1m+1"mm

) _ 0

2= xmj

where rn(]QI is the derivative of 'l with respect to (™).

Thus, in this case, for finding the coefficients of damping
kz{”/m (j=12) the approximate formulae may be used

20 1m= (0 1m)? + oDk Im?)2, (j=12) (3.44)

Equations (2.15) are used for finding the corresponding characteristics
of free frequencies 7 /m.

4. Numerical investigation. In Tables 1,2 using dispersion equations
(2.15), (3.14) dimensionless characteristics of free frequencies 7®/m and
characteristics of damping coefficients of the corresponding forms
kz{”/m (j=12) depending on m,a,b are given for closed cylindrical shells
with directing curves

x=acost, y=bsint,a=2b=15,a=2b=1. (4.1)

In Tables 1, 2 the results of calculations for three cases (1, 2, 3) are
given for  RZ=k*(f,/2+rcoskp); R?Z=k’r,/2, R?=0, respectively,
applied to composed cylindrical shells with directions (4.1), and made of
boroplate and paper with mechanical parameters [16], [26]:

Boroplate: p® =2.10%e/% E® = 2.646-10" H/ »? E{Y =1.323-10°H 1 /2,

G® =9.604-10°H /%, v =0.2,v{¥ =0.01, (4.2)

Paper: p® =0.16x2/m% E? =2.95281.10° H/ m* E{?) = 2.2106-10° H / 1,

G® =97707610°H /1, vI? =vPEP JEP v{? =0.23, (4.3)
and with geometrical parameters: in Table 1: a=2,b=1.5s=5.52587
(half of the length of ellipse),
k=4rls, r,=0.273895 r, =0.033796, 19 =1 =151® =|@ =25 ; in  Table 2:

a=2b=1 s=4.8442 (half of the length of ellipse),
k=4z/s, 1r,=0.407139, r,=0229356, 1@ =1? =15 10 =1® =25,

The following quantities are taken as the characteristics of the
attenuation factors
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kz® /m=+minfkRe z /m,kRe 7 /m}, ky? /m=+minfk Re {2 /m, kRe z{ Im} (4.4)

In equalities (4.4) the sign plus corresponds to interfacial vibrations
near the interface material properties o =0, and the sign minus
corresponds to Rayleigh type near the end-wall of the shell o =1® and
a=-1?. Note, that »® and 7® are related as follows

(2 :ﬁBL(? ® (4.5)
e |

In Tables 1,2 after the characteristics of free frequencies the type of
surface waves is given: ¢(r), r=1,2 denotes Rayleigh waves near the end-
wall of the component of cylindrical shell with index (“r”), “in” denotes
interfacial vibrations, “iq” denotes those coefficients of damping which
are pure image. The data for the case 3 is given for those wave numbers,
which are given in tables. For small wave numbers they may differ from
the presented numbers. Here s=4.

Table 1
“%2) Case 1 Case 2
m ; @ : ® Kz /m ®
kz%im  ky$?Im 7% /m Kyg” /m 0 n*Im
-0.1223 Iq 0.96470 -0.1231 iq 0.96424 e(1)
20 - - - 0.0322 1.4657 0.99765 in
iq -0.8585 32.5583 Iq -0.8585 32.5583 e(2)
0.96423
-0.1231 1:5; e(1) -0.1231 ﬁggg 0.96423 e(1)
21 0.0554 _ 0.99301 in 0.0609 ._ 0.99153 in
iq 08587 32,5571 Iq 08587 32,5577 e(2)
17 e(2)
15 0.96420
1.7839 ’ 1.7838
01232 7 e(1) 0.1232 |aes  0.96420e(1)
100 0.0838 _ 0.98380 in 0.0838 ._ 0.98380 in
iq 0.8598 32.5548 Iq 0.8597 32.5548 e(2)
e(2)
1.8184 0.96420
01232 e e(1) 0.1232 18184  0.96420 e(1)
250 0.0841 _ 0.98369 in 0.0841 1.8187 0.98369 in
iq 0.8598 32(;?25)48 Iq -0.8598 32.5548 e(2)
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k ;(él) /m-=-
0.1702 ky® Im=2.5295 n® 1 m =0.96420 e(1)
m | Cae3 | ky®/m=0116  ky{? /m=25225 n® /m=0.98367 in
(2) _
. kyo" /m=-1.1877 M |m 325548 e(2)
k)(é ' Im =iq
0.96424
-0.1231 Iq e(1) -0.1230 iq 0.96428 e(1)
20 - - - 0.0280 1.4659 0.99823 in
Iq -0.8585 325580 Iq -0.8585 32,5580 e(2)
e(2)
0.96423
1.4722 e(1)
. 01281 e 099320 -0.1231 14707 0.96423 (1)
ol 21 | 00546 ) o 0.0664 1.4800 0.99168 in
Iq 0.8586 325577 Iq -0.8586  32.5577 e(2)
e(2)
0.96420
-0.1232 1'3222 0 ;;13)80 -0.1232 17838 0.96420 (1)
100 | 0.0838 - o 0.0832 1.7853 0.98380 in
Iq 0.8597 125549 Iq -0.8597  32.5549 e(2)
e(2)
0.96420
-0.1232 1'212‘7} e(1) -0.1232 1.8184  0.96420 (1)
250 | 0.0841 © 0.98369 0.0841 1.8187 0.98369 in
Iq in Iq -0.8598 32.5548 e(2)
08598 32,5548 (2)
ky®Im=-01702  ky$? /m=2.5295 @ /M -0.96420 e(1
A0 =-0. X0 =2. n =0. e(1)
Case 3 ky®/im-01163  ky$®/m-2s225 7 /m-098367in
ky® Im=iq ky? Im=-08598 7" /m=325548¢(2)

Conclusion: In this paper it is shown that at the interface of materials
properties of a composed momentless finite cylindrical shell with
arbitrary plane direction, vibrations damping from the line of the
material section along its generatrices may exist. It is shown, that near
the free end-wall of the cylindrical shell waves of Rayleigh type may
appear. It is shown that the frequencies of free interfacial and boundary
vibrations of a composed cylindrical shell consisted of finite orthotropic
momentless cylindrical shells with different elastic coefficients are
determined from equations (2.15). Also, for a circular cylindrical shell
the coefficients of damping y are determined from equations (3.25), and
for a plate they are determined from equations (3.26). The frequencies of
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free interfacial vibrations of a composed plate-strip are determined from
equations (3.14). The existence of interfacial and boundary vibrations
depends on the curvature of the directing curve, elasticity coefficients,
materials density and the length of the component shells. For large wave
numbers m or for a small curvature of the directing curve all the
characteristics of free interfacial and boundary vibrations of momentless
closed cylindrical shell tend to the characteristics of a planar interfacial
vibrations of a plate-strip. Numerical analysis shows that with increasing
the square of curvature of the directing curve of a cylindrical shell the
first frequencies of interfacial and boundary vibrations appear for larger
mand higher corresponding frequencies. The damping of vibrations

depends on materials properties and geometrical parameters.
Table 2
|(%2) Case 1 Case 2
Tl g®m ky@/m 7@ /m k@im o ky@im o p®/m
-0.1404 iq 0.96424 (1) | -0.1405 17270 0.96423 e(1)
24 - - - - - -
iq -0.8568 325730 e(2) Iq 0.9735  32.5707 e(2)
i 1.741
-0.1404 . 71? . 096423 e(1) | -0.1405 . 2793 0.96423 e(1)
25 | 0.0213 ! 0.99922 in 0.0613 ° 0.99342 in
i 2.5571 e(2 I 2. 2
1%5 iq 0.8576 32.5571 e(2) q 0.9781 32.5669 e(2)
-0.1405 é'giz 0.96420 e(1) | -0.1405 ;832 0'93‘;%;(()1)
100 | 0.0955 " 0.98385 in 0.0954 "~ o
q 0.8597 32:3548 ¢(2) Iq 0.9807 32.5548 e(2)
-0.1405 é'gzgg 0.96420 e(1) | -0.1405 ;8;83 0.96420 e(1)
250 | 0.0959 " 0.98370 in 0.0959 "~ 0.98370 in
iq 0.8598 32.5548 e(2) Iq 0.9808 32.5548 e(2)
kz® /m=-0.1702 kyPIm=25225  ®/m=0.96420 e(1)
m | Case3 kz$)/m=0.1163 ky$? Im=2.5225 7™ /m=0.98367 in
kr$ Im=iq ky?Im=-1.1877  p®/m=32.5548 e(2)
-0.1404 iq 0.96424 e(1) | -0.1407 iq 0.96412 e(1)
24 - - - - - -
iq 09774  32.5581e(2) Iq 09793 325707 e(2)
-0.1404 iq 0.96423 e(1) | -0.1404 iq 0.96423 ¢(1)
25 | 0.0144 1.7162 0.99964in | 00612  1.6799 0.99345 in
iq -0.9794 32.5580 e(2) Iq -0.9794  32.5578 e(2)
25 -0.1405 2.0195 0.96420 e(1) | -0.1405 igi;g’ 0.96420 e(1)
250 100 | 0.0955 2.0216 0.98385in | 0.0955 ) 0.98386 in
iq -0.9807 325550 e(2) Iq 0.9807 32.5550 e(2)
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-0.1405 20705  0.96420e(1) | -0.1405 ;8;85 0.96420 e(1)
250 | 0.0959 2.0709 0.98370in | 0.0959 . 0.98370 in
iq -0.9807 325548 ¢(2) 4 (og07 32.55480 e(2)
ky® /m=-0.1702 ky$? Im=2.5225 7™ /m=0.96420 e(1)
Case 3 ky& /m=0.1163 kyd? Im=2.5225 7® /m=0.98367 in
Ky Im=iq kz$? Im=-09807 1™ /m=3255480 e(2)

Appendix 1. Analytical expressions for elements of matrix m; of
(2.14) are as follows

AD B )R M)
1 ), 0 )
my;=RY, m;, = (—_ 258 () |02 +x6%), myg = mlleXp(Zl( )>

B (BY)
m14_m12exp( (1))+ my (22’1, ms=-B{ IBYRY, 27 =—kmx"17), j=12;r=12
M6 :_ﬁ[ A(ZZ) — Bl(§ ZBGE (2)) J( "’Xz )
CRHRNCR
m,; = —mysexp(z{”), myg =—mgexps?) —my[z22{7];

Al
1 a 1 ) )42
my, = Rél)’ My, = (1) (1) (( 1 )) +(X( )) + X( )X( ))+ BlZ @) 22 (ﬂr(n))
BOB( BE
1 1)L 2 )5 (2
my; = _leeXp(Zl ) My, =—M,, exp(z( - le[Zl( )Z( 1, m,s = Bée) / Bée) Rél)
B[ A® @12 (y(232 @y, By +Bf @
My = B(l) sz)B(z) ((Xl ) +(X2 ) + X X )+T( ) (215)
My; =—Myg EXp(Zl ), Myg = —Myg eXp(Zgz)) - m25[21(2)2£2)].
1
_RO . - BE 02, @@y, B, n®
m31_ 31 m32 - (1) ((Xl ) +(X ) +X X )+ (l) (1)( )
B/ BY ' BU
1 1.0 2
My, = _msleXp(Zl )s Mgy =—My, eXp(Z( ) - m31[z( )Z( 1, Mg = Rs(l)
32 (@ @ 2 () B(Z) )
m36 (2) ((Xl ) +(X2 ) XX )+ (2) (2) ( )
Bi1 Bir' Bil
2 2 2)_(2)7.
My7 = —Mgg eXp(Zl( ), Mag = —Mgg eXp(Zé ))_m35[21( )Zé T
()] Op®
1 A” —-B;B 1 1
my, = Rzgl)’ my, = Tl)%(xl( )+ Xg )
B(7 Bse
1 ). 2
Mys = m41eXp(Z1 Y), My, =My, exp(z( )+ m41[21( )Z( ], Mys = Rz(ll)

2 2
AP -BPBR o @
Oae 4 TX)
B11 Bes

2 2 2)_(2)1.
My7 =—Mys eXp(Zl( ), Myg =—Myg exp(zg ) _m45[21( )Zé aF

Mye =—
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Mgy =Mz, Mgy =My, Mgg=My,, My,=m,, Mg; =0, j=5678

Mgy =Myg, Mgy =My, Mgy =My, Mgy =My, Mg; =0, j=56,7.8;

my; =0, J=1234, Mg =M, Myg=Myg My =Myg, Mg=M;

Mg; =0, J=1234, Mg =mMm,;, Mgg=Myg, Mgy =My, Mgg=My;

1272471 = Kl (exp(e”) - exp (" -2

" =n 1y X = 0V m; i r=12;

Appendix 2. Analytical expressions for elements of matrix m; of (3.13)

are as follows

. . BY P .. .
_pl _ B (L, _ 1 _ 1 e
my, =Py, m;, = @(Yf V4 yS )), my; = my; exp(z”), my, =mpexp(@”) +my[z7{]

(2)
e = Ell1 PM l Bj(f) (y1(2) + y§2))' my; = mlseXp(Zl(z))n Myg = Myg exp(éz)) + mls[zl(z)zéz)]
1
* A(l) - Bl(l) B(l) * *
— @ Q) (1) — O
=Py, my,= W —(1))* + Y5 myg = —myiexp(z”)
1 Bge
* * B
My, = —My,exp(z5”) —m; [2172"], myg = 25 PY

B (1)

x Bé?[ A?-BPBR (2)(2)
My = & — ) +YiY;
()] (2)p(2)
Bse B/1'Bgs
* * 2 * * 2 * r(2)5(2)1.
my, = _mzseXp(Zl( M, Myg = _mzanp(Zé - m25[21( )Zé 7;
< _ow .+ _BP+BR . - @y « Oy _ m* [7D5O
Mgy = Ry, m32:T’ Myg = —My; €XP(Zy”), My =—Myy €XP(Z3°) —May[2,775]
11 (3.17)
59+ 5
By

1 1)) * e 1 * o 1 1)@
My, = P41 , My, = (y( )+ yé )) Myz3 = m4leXp(21( ), Myy = My, eXp(Z( )+ m41[21( )Z( al

Mas =Py, Mg = My =-miexp?), miy =-mi;exp(el?) ~milz?27);
Mys = ~PY, mye = _(yl(Z) +y5? )' M, = MysexXpz?), Mg = msexp(zs?) + m[222{7];
Mgy =Myg, Mgy =My, Mgy =My, Mgy =My, Mg =0, j=5678;

Mgy = Mys, Mg, =My, Mgy =My, Mgy =M, m;j =0, j=56,78

My =0, j=12,3,4, Mg =My, Myg =My, My, = Mg, Mg =My

m*- =0, j=1234, Mgs=m,;, Mgs=Myg, Mgy =My, Myg =My

[2{725"]=—-kmI® (exp) —exp@ ) /(" - 2); 2" =—ymKkIV | j=12;r=12.
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Zknwgnuynud £ judwjulut §npoipjut thwl widndbun
quiuughtt  punubph  ubhwlwb htnbkpdu b Eqpuyht
wnwnwinwlubpp, npp punugws L Gpiynt Eppwynp, wmwppbp
wnwdquljuwinipjutt  hwwnlnipniuttp niubkgnn  oppnwpny
quiuughtt punuuptbphg: Gupwnpynud k, np punuuph dwypbkpb
wquun ke

PE3IOME
COBCTBEHHBIE UHTEP®EVICHBIE Y1 KPAEBBIE KOJIEBAHUA
BESMOMEHTHOW ITUJIMHIPUYECKOY OBOJIOYKU
ITEPEMEHHOW KPYBU3HBI CO CBOBOIHEIMU TOPITAMU
I.P. I'YJITA3APAH, JI.T. I'Y/ITA3APAH

Hccnemytorcsa cobcTBeHHBIe MHTepdeiCHBIe U KpaeBble KojaeOaHUA
6e3MOMEHTHO! 3aMKHYTOM IIMIMHIPUYECKOH OOOJIOYKH IepeMeHHOMH
KPDUBU3HBI, COCTaBJI€HHOM M3 JBYX KOHEYHBIX OPTOTPOIIHBIX
IUINHAPUYECKUX OOOJOYeK C PpasHBIMH YIPYTUMH CBOMCTBAMHU.
[Tpenmonaraercs, 9TO TOPI[bI 0O0JIOYKY CBOOOHBL.
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