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The paper deals with the investigations of the behaviour and physical acceptability of the
spatially homogeneous and isotropic FLRW space-time filled with pressureless matter and Rényi
holographic dark energy under the Hubble's IR-cutoff in the framework of f (T, B) gravity. We have
calculated some cosmological parameters to study the astrophysical consequences of the constructed
model. We discussed their behaviour during the cosmic evolution, in particular, the statefinder and
EoS parameters. It is found that the constructed Rényi holographic dark energy model travels from
Phantom, CDM , and lastly enters & remains in Quintessence dark energy era with the increase
in redshift.
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1. Introduction. Cosmology aims to comprehend the universe on a large

scale. Over recent years, one of the greatest challenges faced by cosmologists is

to explain the nature and mechanism of cosmic acceleration [1-3], which has been

confirmed by some observational data such as type Ia supernova [4-7], baryon

acoustic oscillations (BAO) [8], weak lensing  [9] and large scale structure (LSS)

[10-12] etc. One of the key issues in modern cosmology and high-energy

theoretical physics has been determining the phenomenological explanation of

cosmic acceleration [13]. The dark energy (DE), which makes up 68.3% of the

exotic component and possesses negative pressure, is what drives the expansion

of the universe [14-17]. Modified theories of gravity offer an alternate way to study

the cosmos and its accelerating expansion. A few suitable properties of modified

theories of gravity are found in [18]. With modifications to the Einstein-Hilbert

action, several researchers have constructed many cosmological models in modified

theories of gravity, including  Rf  gravity [19-24],  Tf  gravity [25-30],  TRf  ,

gravity [31-33],  BTf  ,  gravity [34-36] etc. A comprehensive overview of modified

theories of gravity was already given by Nojiri et al. [37]. Recently, Shankaranarayanan

and Johnson [38] discussed modified theories of gravity: why, how and what. Also,

Olmo et al. [39] provided the models of stellar structure in modified theories of

gravity with their challenges and lessons.
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The holographic dark energy (HDE), one of numerous dynamical DE models,

has recently emerged as a viable tool for investigating the DE conundrum. The

proposal was based on the quantum properties of black holes, which have been

extensively researched in the literature [40,41] to study quantum gravity. The

particle horizon [42], Hubble's horizon 
1H  [43,44], conformal-age-like [45],

Granda-Oliveros [46,47], Ricci scalar radius [48] and event horizon [49] are the

different kinds of IR-cutoffs that have been used in HDE models in explaining

accelerating cosmic expansion which is compatible with the present astronomical

data. Presently, to discuss various cosmological phenomena, the Rényi, Tsallis and

Sharma-Mittal HDE models have been proposed [50,51]. These HDE models have

been examined under different IR-cutoffs by many eminent researchers [52-55]

etc. Recently, Nojiri et al. [56,57] showed that barrow entropic DE and different

faces of DE like Tsallis entropic DE, the Rényi entropic DE, and the Sharma-

Mittal entropic DE all can be regarded as different candidates for the generalized

HDE family, with respective holographic cutoffs. Additionally, Nojiri & Odintsov

[58,59] proposed the generalized HDE model where the IR-cutoff is identified with

the combination of the FRW universe parameters like the Hubble rate, particle

and future horizons, cosmological constant, the universe lifetime (if finite) and

their derivatives.

In recent studies, many cosmologists have constructed Rényi HDE models in

different modified gravity theories. Recently, Bharali and Das [60] constructed a

modified Rényi HDE cosmological model in  TRf  ,  theory of gravity. Also,

Wankhade et al. [61] developed Rényi HDE cosmological model in  Rf  gravity

with Hubble's IR-cutoff. Alam et al. [62] examined Rényi HDE and its behaviour

in  Gf  gravity. Bhardwaj et al. [63] established Rényi HDE models in teleparallel

gravity under Hubble's cutoff etc.

In this paper, we have taken up our study of the cosmological model in the

framework of  BTf  ,  gravity. The  BTf  ,  gravity has been established by

Bahamonde et al. [64] as the precise relationship between very popular  Rf  and

 Tf  gravity. In this new theory, the boundary term B is taken into account,

which is the difference between the Ricci scalar R and torsion scalar T given by

R = -T + B. This relation between R, T and B is regarded as one of the basic

equations of general theory of relativity and its teleparallel equivalent. Bahamonde

et al. [65] explored the validity of laws of thermodynamics, and Zubair et al. [66]

derived the energy constraints for de Sitter (exponential), power-law, CDM  and

Phantom models, in the framework of  BTf  ,  gravity. Bahamonde and Capozziello

[67] adopted the Noether symmetry approach to study dynamical systems and

explored cosmological solutions. Capozziello et al. [68] derived gravitational waves

(GW's) for  BTf  ,  gravity and obtained the different polarization states of GW's.

Paliathanasis and Leon [69] investigated the dynamics of  BTf  ,  gravity in a
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spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) universe, by apply-

ing the approach which is more general than that of Hubble's normalization and

they found that Minkowski space-time as an exact solution for the field equation

described by a stationary point. Rivera et al. [70] explored the possibility of using

cosmographic parameters in terms of the derivatives of scale factor as tools for

investigating the behaviour of cosmological models in  BTf  ,  gravity.

Motivated by the above discussion, in this paper, we investigate the physical

acceptability of the Rényi HDE model in  BTf  ,  gravity under Hubble's IR-cutoff

by considering the scale factor obtained by Pawar et al. [71]. The paper has been

organized as follows: In section 2, we present the general framework of  BTf  ,

gravity in brief. The metric and field equations are given in section 3. In section

4, we obtain the solutions of field equations. We discuss the physical acceptability

of the  BTf  ,  Renyi HDE model under Hubble's IR-cutoff in section 5. At the

end, conclusions are presented in section 6.

2. The framework of f  (T, B) gravity. In this section, we discuss the

basic notions of  BTf  ,  gravity and its field equations as per the description given

in [64,67].

The action for  BTf  ,  gravity is given as

 
, 

 , 4

2 







 xdL

k

BTf
eS m (1)

where  BTf  ,  is the function of the torsion scalar T and of the boundary term

  eeTB 
 2 . L

m
 is the matter Lagrangian, Gk  82 , G is the Newtonian

gravitational constant, and the speed of light c is taken as 1. Here e represents

the determinant of tetrad,  ie  i.e., gee i   ; T  is the torsion vector given

by 
 TT , where the torsion tensor 

T  is the antisymmetric part of Weitzenbocks

connection ii eW    defined as

iiiii eeWWT   (2)

The contorsion tensor is the difference between the Levi-Civita and Weitzenbocks

connection and is defined by

 . 
2

1 









  TTTK (3)

A new tensor, 
S , is constructed from the torsion and contorsion tensors for

a better understanding of the definition of the scalar equivalent to the curvature

scalar of Riemannian geometry as follows,

 . 
2

1 









 � TTKS (4)

The torsion scalar T which is similar to the scalar curvature R in GTR is defined
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by

. 



 TST (5)

The scalar curvature R and the torsion scalar T are connected by the relation,

. BTR  (6)

By varying the action given in the equation (1) w.r.t. the tetrad field, the field

equations are obtained as

   
, 164

4422
































eefSTef

feSeSffeeBffefe

T

Ti
i

TBBBB

(7)

where 



  i

ie  is the standard energy-momentum tensor.

3. Metric and field equations in f(T, B) gravity. We consider the

spatially flat FLRW line element in the form:

   , 222222 dzdydxtadtds  (8)

where a(t) is the scale factor of the universe.

Then the set of diagonal tetrads related to the metric (8) is

        ,  ,  ,  1,diag tatataei  (9)

The determinant of a matrix (9) is

 . 3 tae  (10)

The components of field equation (7), the Ricci scalar R, the torsion scalar T

and boundary term B, for the line element (8) are calculated in [65-67] as

  , 
2

1
33233 22  kffHfHffH BBTB
 (11)

   , 
2

1
2233 22 pkfffHffHH BTTB   (12)

, 612 2 HHBTR  (13)

, 6 2HT  (14)

 , 36 2HHB   (15)

where aaH   is the Hubble's parameter and the overhead dot represents the

differentiation w.r.t. the cosmic time t.

We consider the matter distribution as a combination of pressureless matter

and isotropic DE in the form

    , DEm
  (16)

where  m
  and  DE

  are the energy-momentum tensors of pressureless matter
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and isotropic DE, respectively, given by

  ,   uum
m

(17)

    ,   gpuup DEDEDE
DE

(18)

where m  is the matter-energy density, DE  and DEp  are respectively the energy

density and pressure of HDE fluid,  1 0, 0, ,0u , where u  is the four-velocity

vector of the fluid with 1
uu .

The EoS parameter of HDE is defined as

. 
DE

DE
DE

p


 (19)

Parameterization of the energy-momentum tensor of dark energy  DE
  leads to

         ,  , , ,1 DEzDEyDExDE
DE  (20)

where  xDE ,  yDE ,  zDE  are the directional EoS parameters on x, y and

z  axis respectively.

Then the field equations (11) and (12) with the energy-momentum tensor (16)

(for 12 k ) become

    , 
2

1
33233 2

DEmBBTB ffHfHffH   (21)

   , 
2

1
2233 2

DEDEBTTB fffHffHH   (22)

We consider the  BTf  ,  gravity model of the form [34,67] as

  ,  , nm TBBTf  (23)

where  ,  , m and n are constants.

For this model it was already shown in [72] that for m < 0, the Friedmann

equations will be affected mostly in the accelerating late-time universe, whereas

the same situation will be for m > 0 at early time, when boundary contribution

is zero.

By the use of (23), the field equations (21) and (22) becomes

   

  DEm
nm

mmnm

TB

BHmBHBmmTnBmH



 

2

1

313233 12112 

(24)

       

    . 
2

1
1

2112233

2

232112

DEDE
nmm

mnnm

TBBBmm

BBmmmTHTnnTnBmHH













(25)
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Using (14) and (15) in (24) and (25) we obtain

         
   nn

mm
DEm

Hn

HHHmHHHHHm

21

22221

6213

633613







 
(26)

       
    

     . 32126

3362

663
316

2221

322

22
321

HHnHn

HHHHHmm

HHHHHHm
HHm

nn

mm
DEDE































(27)

4. Solutions of the field equations. In order to solve the field equations

completely, we consider the power law relation of an average scale factor a as

described by Pawar et al. [71] as

















21

2ta (28)

where   and   are constants.

Using (28), the metric (8) becomes

 . 222

1

222 dzdydxtdtds 















(29)

The metric potential of this model assumes a constant value at t = 0 and do not

vanish for any t and 0 , 0 . Hence the model is free from any type of

singularities for finite values of t.

Now, we define and calculate some cosmologically important physical and

kinematical parameters.

The spatial volume V is

. 

23

23















 taV (30)

The average Hubble's parameter H is

  , 
3

1
2321



t

t

a

a
HHHH


(31)

where H
1
, H

2
, H

3
 are the directional Hubble's parameters.

The mean anisotropy parameter A
m
 is

, 01
3

1 3

1

2














i

i
m

H

H
A (32)

because H
i
 = H = a, for i = 1, 2, 3.

The expansion scalar   and the shear scalar 2  are respectively, obtained as
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, 
3

3
2 ;


 


t

t
Hu (33)

. 0
2

3 22  HAm (34)

The deceleration parameter q is obtained as

. 1
1

1
22 taH

a

Hdt

d
q





(35)

The expressions (28), (30), (31), (33) and (35) show that the a, V, H,   and

q are all time-dependent. The scale factor, spatial volume and deceleration

parameter have non-zero constant values, whereas Hubble's parameter and expan-

sion scalar have zero values, at t = 0. Thus the universe starts to expand with a

very small constant volume which increases with time, which is very clear from

Fig.1. Furthermore, from expression (35) it is observed that the decelerating or

accelerating phase of cosmic expansion depends upon the values of   and  .

We obtained the accelerating expansion of the universe for    21- t . The graph

of the deceleration parameter versus cosmic time is depicted in Fig.2. It is observed

from the figure that 1q  for t = 0, and it increases with time and becomes

constant at nearly -0.5 (approx.), which shows the accelerating expansion of the

universe throughout the evolution.

From the above respective expressions the Hubble's parameter and the expan-

sion scalar seem to be decreasing functions of cosmic time. Additionally, the mean

anisotropy parameter and the shear scalar are zero throughout the evolution of

the universe, which describes that the universe is isotropic and shear-free.

On solving (26) and (27) with the use of (31), we obtain the matter-energy

density and the EoS parameter of DE in terms of the energy density of DE in

the form.

Fig.1. Variation of a spatial volume V vs cosmic time t for 50.  and 0050. .
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   

   
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n
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DEm

ttntt
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Diagnostic statefinder parameters:

The pair of state finder parameters {r, s} is defined in [73] and their values

are obtained as follows:
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For different DE models, the different sets of values of the pair are mentioned

Fig.2. Variation of a deceleration parameter q vs cosmic time t for 50.  and 0050. .
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below:

- For CDM  model: (r = 1, s = 0),

- For SCDM model: (r = 1, s = 1),

- For HDE model: (r = 1, s = 2/3),

- For CG model: (r > 1, s < 0),

- For Quintessence model: (r < 1, s > 0).

Fig.3 depicts the variation of state finder parameter s versus cosmic time t

for 50.  and 0050. . It is observed that the parameter s lie between 0.1

and 0.35 throughout the evolution of the universe. However, for the above

mentioned values of   and   we get the value of a parameter r = 0 for all t.

Thus the model so derived here is the Quintessence model.

In the next section, we consider Rényi holographic DE as a candidate of DE's

and discuss the physical acceptability of the corresponding model under Hubble's

IR-cutoff.

5. Physical acceptability of Rényi HDE model with Hubble's IR-

cutoff. The energy density of Rényi HDE formulated in [74] is as follows:

  12

2

2

1
8

3 



 L

L

d
DE (40)

with the constants d and  .

Here, we consider the candidate for the IR-cutoff as Hubbles horizon i.e.
1 HL .

So from (40), the Rényi HDE density under the Hubble horizon cutoff is

obtained as

. 1
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Fig.3. Variation of statefinder parameter s vs cosmic time t  for 50.  and 0050. .
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Now we use the relation between the average scale factor and the redshift z , which

is given by

  . 1 1 za (42)

The equations (28) and (42) yield the time-redshift relation as

   . 1
21221   zt (43)

Thus, with the use of (43), we obtain the Hubble's parameter in terms of z  as

     . 11
212223   zzH (44)

Using (44) in (41), we get the energy density of Rényi HDE under Hubble's cutoff

as
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The graphical behaviour of the energy density of Rényi HDE under Hubble's IR-

cutoff versus redshift for the appropriate choice of constants is depicted in Fig.4,

in which it is observed that the energy density of Rényi HDE increases with an

increase in redshift throughout the evolution.

From (36) and (37), with the use of (43) and (45), we obtain the energy

density of pressureless matter and the EoS parameter of Rényi HDE under the

Hubble's cutoff respectively as

Fig.4. Variation of Rényi HDE density with Hubble's IR-cutoff vs redshift for d = 2, 50. ,

0050.  and 6 .
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The graphical behaviour of the EoS parameter of Rényi HDE density with

Hubble's IR-cutoff versus redshift for the appropriate choice of constants is shown

in Fig.5. From the figure it is observed that we live in a phantom-dominated

Fig.5. Variation of EoS parameter of Rényi HDE density with Hubble's IR-cutoff vs redshift
for d = 2, 50. , 0050. , 6 , 10. , 010. , m = 0.001 and n = 1.
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universe since the constructed model corresponds to 1DE  for 2501 .z  .

Later on, it is also observed that 1DE  for 250.z   which demonstrates that

the universe passes through CDM  epoch and lastly for all z.  250  the universe

enters in Quintessence era i.e. 1DE  and remains in the Quintessence DE

region, since the EoS parameter lies in 820900 .. DE   which is relatively

close to CDM  region. These observations are fairly supported by [60,62,75,76].

For a late epoch the statefinder diagnostic parameters validated the observation.

6. Conclusions. In this work, authors have investigated the behaviour of the

Rényi HDE model in  BTf  ,  gravity under the Hubble's IR-cutoff by considering the

power law form of an average scale factor obtained by Pawar et al. [71]. We have

considered the spatially flat FLRW cosmological model and the   nm TBBTf  ,

gravity formalism. The physical acceptability of the model has been checked with

the help of statefinder diagnostic and the EoS parameter of the model. The values

of some physical and geometrical parameters and their graphical behaviour with

time and redshift are obtained.

From the expressions of cosmological parameters and their graphical behaviour

at 50.  and 0050. , it is observed that the constructed model starts to expand

with a very small constant volume which increases with the increasing cosmic

time. The model experiences an accelerating expansion throughout its evolution.

It is observed that the model is isotropic and shear-free. The values of diagnostic

statefinder parameters (r < 1, s > 0) confirms the constructed model is in Quin-

tessence region.

The energy density of Rényi HDE model under Hubble's IR-cutoff is found

to be increasing with an increase in redshift throughout its evolution. Furthermore,

from the observations of the EoS parameter it is been found that initially, we

live in a phantom-dominated universe, later on for a short period the universe

passes through CDM  epoch and lastly, it enters and remains in the Quintessence

DE era in which the values of EoS parameter are relatively close to CDM

region, which is as expected from the statefinder diagnostics parameter. The results

so obtained are fairly supported by [60,62,75,76]. Thus the derived Rényi HDE

model of the universe under Hubble's IR-cutoff in  BTf  ,  gravity is found

physically acceptable.
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ÔÈÇÈ×ÅÑÊÀß ÏÐÈÅÌËÅÌÎÑÒÜ ÃÎËÎÃÐÀÔÈ×ÅÑÊÎÉ
ÌÎÄÅËÈ ÒÅÌÍÎÉ ÝÍÅÐÃÈÈ ÐÅÍÜÈ ÏÐÈ ÎÁÐÅÇÊÅ

ÕÀÁÁËÀ Â ÃÐÀÂÈÒÀÖÈÈ f (T, B)

Í.Ò.ÊÀÒÐÅ1, Ê.ÏÀÂÀÐ2, À.Ê.ÄÀÁÐÅ3

Ñòàòüÿ ïîñâÿùåíà èññëåäîâàíèþ ïîâåäåíèÿ è ôèçè÷åñêîé ïðèåìëåìîñòè

ïðîñòðàíñòâåííî îäíîðîäíîãî è èçîòðîïíîãî ïðîñòðàíñòâà-âðåìåíè FLRW,

çàïîëíåííîãî ìàòåðèåé áåç äàâëåíèÿ è ãîëîãðàôè÷åñêîé òåìíîé ýíåðãèåé Ðåíüè

ïðè ÈÊ-ïîðîãå Õàááëà â ðàìêàõ ãðàâèòàöèè  BTf  , . Ðàññ÷èòàíû íåêîòîðûå

êîñìîëîãè÷åñêèå ïàðàìåòðû äëÿ èçó÷åíèÿ àñòðîôèçè÷åñêèõ ñëåäñòâèé ïîñòðîåííîé

ìîäåëè. Îáñóæäàåòñÿ èõ ïîâåäåíèå â õîäå ýâîëþöèè, â òîì ÷èñëå, ïàðàìåòðû

îïðåäåëèòåëÿ ñîñòîÿíèÿ è ïàðàìåòðû EoS. Îáíàðóæåíî, ÷òî ïîñòðîåííàÿ ãîëîãðà-

ôè÷åñêàÿ ìîäåëü òåìíîé ýíåðãèè Ðåíüè "ïóòåøåñòâóåò" èç Ôàíòîìà, CDM  è,

íàêîíåö, âõîäèò è îñòàåòñÿ â ýðå òåìíîé ýíåðãèè Êâèíòýññåíöèè ñ óâåëè÷åíèåì

êðàñíîãî ñìåùåíèÿ.

Êëþ÷åâûå ñëîâà: ãðàâèòàöèÿ  BTf  , , ãîëîãðàôè÷åñêàÿ òåìíàÿ ýíåðãèÿ

Ðåíüè, îáðåçàíèå Õàááëà, êðàñíîå ñìåùåíèå
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