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Abstract. In this paper, we study the following fractional Kirchhoff-type problem with
Liouville-Weyl fractional derivatives:

[
a+ b

( ∫
R(|u|

2 + |−∞Dβ
xu|2)dx

)ϱ−1
]
(xD

β
∞(−∞Dβ

xu) + u) = |u|2
∗
β−2u, in R,

u ∈ Iβ−(R),

where β ∈ (0, 1
2
), −∞Dβ

xu(·), xDβ
∞u(·) denote the left and right Liouville-Weyl fractional derivatives,

2∗β = 2
1−2β

is fractional critical Sobolev exponent a ≥ 0 and b > 0. Under suitable values of the
parameters ϱ, a and b, we obtain a non-existence result of nontrivial solutions of infinitely many
nontrivial solutions for the above problem.
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1. Introduction

The purpose of this article is to study the non-existence results for the following
fractional Kirchhoff-type equation with Liouville-Weyl fractional derivatives:
[
a+ b

( ∫
R(|u|

2 + |−∞Dβ
xu|2)dx

)ϱ−1
]
(xD

β
∞(−∞Dβ

xu) + u) = |u|2
∗
β−2u, in R,

u ∈ Iβ−(R),
(1.1)

where β ∈ (0, 1
2 ), −∞Dβ

xu(·), xDβ
∞u(·) denote the left and right Liouville-Weyl

fractional derivatives, 2∗β = 2
1−2β is fractional critical Sobolev exponent, a ≥ 0 and

b > 0.
The theory of fractional operators for a long time remained hidden from the

scientific community, with its pioneering works involving the integrals and fractional
derivatives of Liouville, Riemann, Grunwald-Letnikov and Riemann-Liouville [6,
10, 30]. Then, around 1974, at a conference at the University of New Haven, in
the United States, the first international conference on fractional calculus took
place [24]. From that moment on, fractional calculus began to be disseminated and
disseminated and countless fractional derivatives have been introduced, each one
with its importance and relevance in the field of fractional operators [1, 8, 9, 12,
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14, 17, 18, 19, 22]. We highlight in a special way, when it comes to applications in:
medicine, engineering, physics, biology among other areas [6, 10, 11, 13, 20, 23].

We note that when a = 1, b = 0, problem (1.1) boils down to a fractional
differential equation of the type

xD
β
+∞(−∞Dβ

xu) = g(u), in R,

which is a special case of the fractional advection-dispersion equation proposed by
Benson et. all. [3, 4, 5]. When β ∈ ( 12 , 1) several existence and multiplicity results
can be found in [25, 26] and the reference therein. Recently, the case β ∈ (0, 1

2 ) was
considered in [28, 29].

On the other hand, in these last years, the study of Kirchhoff problems with
fractional derivatives have been attracted the attention from many mathematicians.
For instance, Nyamoradi and Zhou [15] dealt with the existence of nontrivial solutions
for a Kirchhoff type problem with Liouville-Weyl fractional derivatives by using
minimal principle and Morse theory. Nyamoradi et. all. [16] studied a class of
Schrödinger-Kirchhoff equation with Liouville-Weyl fractional derivatives and obtain-
ed the existence and multiplicity of solutions by using mountain pass theorem and
the symmetric mountain pass theorem. Tayyebi and Nyamoradi [21] established
the existence and multiplicity of nontrivial solutions for a Kirchhoff equation with
Liouville-Weyl fractional derivatives by using symmetric mountain pass theorem,
Morse theory combined with local linking arguments and the Clark’s theorem.
The authors in [2] by using local linking arguments and Morse theory studied
the existence and multiplicity of solutions for a fractional Kirchhoff equation with
Liouville-Weyl fractional derivatives.

Since we did not find in the literature any paper dealing with problems involving
fractional derivatives and critical exponent, motivated by the previous works, in
the present paper we intend to show the non-existence results for problem (1.1) by
applying suitable variational arguments.

2. Preliminaries and main results

In this section, we recall some useful preliminaries which will play an important
role to solve the problem (1.1), and we state the main results of this work.

Definition 2.1. The left and right Liouville-Weyl fractional integrals of order 0 <

β < 1 on the whole axis R are defined by

−∞Iβxϕ(x) =
1

Γ(β)

∫ x

−∞
(x− ξ)β−1ϕ(ξ)dξ,(2.1)

xI
β
∞ϕ(x) =

1

Γ(β)

∫ ∞

x

(ξ − x)β−1ϕ(ξ)dξ.(2.2)

respectively, where x ∈ R.
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The left and right Liouville-Weyl fractional derivatives of order 0 < β < 1 on
the whole axis R are defined by

−∞Dβ
xϕ(x) =

d

dx
−∞I1−β

x ϕ(x),(2.3)

xD
β
∞ϕ(x) = − d

dx
xI

1−β
∞ ϕ(x).(2.4)

respectively, where x ∈ R.

2.1. Fractional space of Sobolev type. By argument in [29], we will look for
weak solutions of the problem (1.1) hence the natural setting involves the fractional
space of Sobolev type Iβ−(R) defined as

Iβ−(R) = {u ∈ L2(R) : −∞Dβ
xu ∈ L2(R)}

endowed with the scalar product

⟨u, v⟩β =

∫
R
u(x)v(x)dx+

∫
R

−∞Dβ
xu(x) · −∞Dβ

xv(x)dx

and norm

∥u∥β =
(∫

R
u2dx+

∫
R
|−∞Dβ

xu(x)|2dx
)1/2

.

It is well known that (Iβ−(R), ⟨., .⟩β) is a Hilbert space. Moreover, for β ∈ (0, 1
2 ) we

have the continuous embedding

(2.5) Iβ−(R) ↪→ Lp(R) for every p ∈ [2, 2∗β ],

where 2∗β = 2
1−2β is the fractional critical Sobolev exponent.

In the case a = 1, b = 0, the problem (1.1) will be transformed into the following
critical problem with Liouville-Weyl fractional derivatives:

xD
β
∞(−∞Dβ

xu) + u = |u|2
∗
β−2u, in R.(2.6)

Set

Sβ := inf
u∈Iβ−(R)\{0}

∫
R(|u|

2 + |−∞Dβ
xu|2)dx(∫

R |u(x)|2
∗
βdx

) 2
2∗
β

.(2.7)

For any ε > 0, we can define ũ(x) as uε(x) =
√
εũ
(
x
ε

)
, where ũ(x) is a minimizer

for Sβ . Clearly, uε(x) is also a minimizer for Sβ , satisfying (2.6) and∫
R
(|uε|2 + |−∞Dβ

xuε|2)dx =

∫
R
|uε(x)|2

∗
βdx = S

2∗β
2∗
β
−2

β .(2.8)

Now, under suitable values of the parameters a, b and ϱ, we state the main results
of this paper as follow:

Theorem 2.1. Suppose that ϱ > 1 and β ∈ (0, 1
2 ). Then, problem (1.1) has no

nontrivial solution under one of the following conditions:
(i) ϱ =

2∗β
2 , a = 0 and b > S−ϱ

β ;
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(ii) ϱ =
2∗β
2 , a > 0 and b ≥ S−ϱ

β ;

(iii) ϱ >
2∗β
2 , a, b > 0 satisfy

2a(ϱ− 1)

2ϱ− 2∗β

 (2ϱ− 2∗β)bS

2∗β(ϱ−1)

2∗
β
−2

β

a(2∗β − 2)


2∗s−2

2(ϱ−1)

> 1;

(iv) ϱ = 1+2β
1−2β , a, b > 0 satisfy 1 < 4abSϱ+1

β .

Theorem 2.2. Suppose that ϱ > 1 and β ∈ (0, 1
2 ). Then the following properties

hold:
(i) ϱ ̸= 2∗β

2 , a = 0 and b > 0, then problem (1.1) has infinitely many positive
solutions and these solutions are

b
1

2∗
β
−2ϱS

2∗β(ϱ−1)

(2∗
β
−2ϱ)(2∗

β
−2)

β uε for any ε > 0.

(ii) ϱ =
2∗β
2 , a > 0 and b < S−ϱ

β , then problem (1.1) has infinitely many positive
solutions and these solutions are given by(

a

1− bSϱ
β

)
uε for any ε > 0.

(iii) ϱ >
2∗β
2 , a, b > 0 satisfy

(2.9)
2a(ϱ− 1)

2ϱ− 2∗β

 (2ϱ− 2∗β)bS

2∗β(ϱ−1)

2∗
β
−2

β

a(2∗β − 2)


2∗β−2

2(ϱ−1)

= 1,

then problem (1.1) has infinitely many positive solutions and these solutions are a(2∗β − 2)

(2ϱ− 2∗β)bS

2∗
β
(ϱ−1)

2∗
β
−2

β


1

2(ϱ−1)

uε for any ε > 0.

3. Proof of the main results

In this section, we deal with the proof of Theorems 2.1 and 2.2. Let us introduce
the energy functional associated with problem (1.1):

J(u) =
a

2
∥u∥2β +

b

2ϱ
∥u∥2ϱβ − 1

2∗β

∫
R
|u(x)|2

∗
βdx,(3.1)

which is well-defined for each u ∈ Iβ−(R). We know that J ∈ C1(Iβ−(R). Moreover,
it is easy to see that a weak solution of problem (1.1) is a critical point of the
functional J .

Firstly, we give the proof of Theorem 2.1.
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Proof of Theorem 2.1. Suppose that u ∈ Iβ−(R)\{0} is a solution of (1.1). Hence,
(i) from (2.7), we have

S
−

2∗β
2

β ∥u∥2ϱβ = S−ϱ
β ∥u∥2ϱβ < b∥u∥2ϱβ =

∫
RN

|u(x)|2
∗
βdx ≤ S

−
2∗β
2

β ∥u∥2
∗
β

β = S
−

2∗β
2

β ∥u∥2ϱβ .

which gives a contradiction. Then, (i) holds true.
(ii) In view of (2.7), one can get

S
−

2∗β
2

β ∥u∥2ϱβ = S−ϱ
β ∥u∥2ϱβ ≤ b∥u∥2ϱβ < a∥u∥2β + b∥u∥2ϱβ =

∫
RN

|u(x)|2
∗
βdx ≤ S

−
2∗β
2

β ∥u∥2ϱβ ,

which is impossible. Then, (ii) is satisfied.
(iii) Using the Young’s inequality and (2.7), we can get

S
−

2∗β
2

β ∥u∥2
∗
β

β = S
−

2∗β
2

β ∥u∥
2ϱ−2∗β
ϱ−1

β ∥u∥
ϱ2∗β−2ϱ

ϱ−1

β

≤ a∥u∥2β +
2∗β − 2

2(ϱ− 1)

(
2a(ϱ− 1)

2ϱ− 2∗β

)−
2ϱ−2∗β
2∗
β
−2

S
−

(ϱ−1)2∗β
2∗
β
−2

β ∥u∥2ϱβ

< a∥u∥2β + b∥u∥2ϱβ

=

∫
RN

|u(x)|2
∗
βdx ≤ S

−
2∗β
2

β ∥u∥2
∗
β

β ,

which leads to a contradiction. So, (iii) is verified.
(iv) From geometric-arithmetic inequality and (2.7) one can get

∥u∥ϱ+1
β < 2

√
abS

ϱ+1
2

β ∥u∥ϱ+1
β ≤ (a∥u∥2 + b∥u∥2ϱ)S

ϱ+1
2

β

≤ S
ϱ+1
2

β

∫
R
|u(x)|2

∗
βdx ≤ S

ϱ+1
2

β S
−

2∗β
2

β ∥u∥2
∗
β

β = ∥u∥ϱ+1
β

a contradiction. Hence, we get the result (iv). □

Secondly, we give the proof of Theorem 2.2. To this end, for any ε > 0, we set

(3.2) vε,β(x) = ϑ
1

2∗
β
−2uε(x),

and it is a positive solution of (2.6). So, vε,s satisfies

ϑ(xD
β
∞(−∞Dβ

xvε,β) + vε,β) = |vε,β |2
∗
β−2vε,β , in R.(3.3)

Then, if

ϑ = a+ b
(∫

R
(|vε,β |2 + |−∞Dβ

xvε,β |2)dx
)ϱ−1

,(3.4)

we can deduce that vε,β is a solution of (1.1). Since uε satisfies (2.8), then by
inserting (3.2) into (3.4) we can infer that

ϑ = a+ bS

2∗β(ϱ−1)

2∗
β
−2

β ϑ
2(ϱ−1)

2∗
β
−2 .(3.5)

Furthermore, if ϑ ∈ (0,+∞) is a solution of (3.5), then vε,β is a solution of problem
(1.1).
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Proof of Theorem 2.2. (i) If ϱ ̸= 2∗β
2 , then 2(ϱ−1)

2∗β−2 ̸= 1. So, if a = 0, (3.5) has
solution

ϑ = b

2∗β−2

2∗
β
−2ϱS

2∗β(ϱ−1)(2∗β−2)

(2∗
β
−2)(2∗

β
−2ϱ)

β .

Hence, in view of (3.2) we get the result (i).
(ii) If ϱ =

2∗β
2 , then 2(ϱ−1)

2∗β−2 = 1. So, (3.5) is equivalent to

ϑ = a+ bSϱ
βϑ,(3.6)

and then ϑ = 1
1−bSϱ

β
> 0. Hence, by (3.2) it follows that (ii) holds true.

(iii) If ϱ >
2∗β
2 , then 2(ϱ−1)

2∗β−2 > 1. Define

φ(ϑ) := aϑ−1 + bS

2∗β(ϱ−1)

2∗
β
−2

β ϑ

2ϱ−2∗β
2∗
β
−2

which implies that

φ(ϑ) = 1 iff ϑ solves (3.5).(3.7)

We can easily see that φ(ϑ) achieves its minimum at

ϑ0 =

 a(2∗β − 2)

(2ϱ− 2∗β)bS

2∗
β
(ϱ−1)

2∗
β
−2

β


2∗β−2

2(ϱ−1)

and

min
ϑ>0

φ(ϑ) = φ(ϑ0) =
2a(ϱ− 1)

2ϱ− 2∗β

 (2ϱ− 2∗β)bS

2∗β(ϱ−1)

2∗
β
−2

β

a(2∗β − 2)


2∗β−2

2(ϱ−1)

.

By condition (2.9) we have φ(ϑ0) = 1, and from (3.7) we get that ϱ0 is a solution
of (3.5). From (3.2), we have the result (iii).
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derivative”, Frac. Cal. Appl. Anal. 10.3, 249 – 267 (2007).
[13] R. Magin, Fractional Calculus in Bioengineering, part 3, Critical Reviews in Biomedical

Engineering 32.34 (2004).
[14] A. A. Nori, N. Nyamoradi, N. Eghbal, “Multiplicity of solutions for Kirchhoff fractional

differential equations involving the Liouville-Weyl fractional derivatives”, J. Contemp. Math.
Anal. 55, no. 1, 13 – 31 (2020).

[15] N. Nyamoradi and Y. Zhou, “Existence of solution for a Kirchhoff type fractional differential
equations via minimal principle and morse theory”, Topological Methods in Nonlinear
Analysis, 46, no. 2, 617 – 630 (2015).

[16] N. Nyamoradi, Y. Zhou, E. Tayyebi, D. Ahmad and A. Alsaedi, Nontrivial Solutions for Time
Fractional Nonlinear Schrödinger-Kirchhoff Type Equations, Discrete Dynamics in Nature
and Society, 2017, 9281049 (2017).

[17] D. Oliveira, J. Vanterler da C. Sousa and G. Frederico, “Pseudo-fractional operators of variable
order and applications”, Soft Computing 26.10, 4587 – 4605 (2022).

[18] D. Oliveira and E. Capelas de Oliveira. On a Caputo-type fractional derivative. Adv. Pure
Appl. Math. 10.2 (2019): 81-91.

[19] D. Oliveira and E. Capelas De Oliveira, “Hilfer–Katugampola fractional derivatives”, Comput.
Appl. Math. 37.3, 3672 – 3690 (2018).

[20] V. Tarasov, Handbook of Fractional Calculus with Applications, 5, Berlin, de Gruyter (2019).
[21] E. Tayyebi and N. Nyamoradi, Existence of Nontrivial Solutions for Kirchhoff Type Fractional

Differential Equations with Liouville-Weyl Fractional Derivatives, J. Nonlinear Funct. Anal.
2018, Article ID 19 (2018).

[22] D. Tavares, R. Almeida, and D. M. Torres, “Caputo derivatives of fractional variable order:
numerical approximations”, Commun. Nonlinear Sci. Numer. Simul. 35, 69 – 87 (2016).

[23] J. Tenreiro Machado, F. Mainardi, and V. Kiryakova, “Fractional calculus: Quo vadimus?
(Where are we going?)”, Frac. Cal. Appl. Anal. 18.2, 495 – 526 (2015).

[24] J. Tenreiro Machado, V. Kiryakova and F. Mainardi, “Recent history of fractional calculus”,
Commun. Nonlinear Sci. Numer. Simul. 16.3, 1140 – 1153 (2011).

[25] C. Torres, “Ground state solution for differential equations with left and right fractional
derivatives”, Math. Meth. Appl. Sci. 38, 5063 – 5073 (2015).

[26] C. Torres Ledesma, “Existence and symmetric result for Liouville-Weyl fractional nonlinear
Schrödinger equation”, Commun Nonlinear Sci Numer Simulat 27, 314 – 327 (2015).

[27] C. Torres Ledesma and J. Vanterler da C. Sousa, “Fractional integration by parts and Sobolev-
type inequalities for ψ-fractional operators”, Math. Meth. Appl. Sci. 45, 9945 – 9966 (2022).

[28] C. E. Torres Ledesma, “Fractional Hamiltonian systems with vanishing potentials”, Progr.
Fract. Differ. Appl. 8, no. 3, 1 – 19 (2022).

[29] C. E. Torres Ledesma, H. C. Gutierrez, J. A. Rodriguez, Z. Zhang, “Evennon-increasing
solution for a Schrödinger type problem with Liouville-Weyl fractional derivative”, Computat.
Appl. Math. 41 (404) (2022) doi:10.1007/s40314-022-02124-6.

[30] J. Vanterler da C. Sousa and E. Capelas de Oliveira, “On the ψ-Hilfer fractional derivative”,
Commun Nonlinear Sci Numer Simulat 60, 72 – 91 (2018).

Поступила 17 февраля 2023
После доработки 23 июня 2023

Принята к публикации 15 июля 2023

90


	1. Introduction
	2. Preliminaries and main results
	2.1. Fractional space of Sobolev type

	3. Proof of the main results
	Acknowledgments

	Список литературы

