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covariance matrix increases as more securities are included. In this study, we present a solution
to address the issue of dimensionality by directly computing the VaR of a portfolio using a single
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1. Introduction

The computation of portfolio value-at-risk (VaR) typically involves a strict al-

gorithm that assumes a distribution close to normal and incorporates a correlation

matrix of security returns.

However, a challenge arises due to the increasing dimensionality of the covariance

matrix, resulting in exponential computational burden with the inclusion of each

new security (see [1]). In this paper, we propose an alternative calculation algorithm

that assumes a Gaussian distribution of returns, while significantly reducing the

computational burden. We examine this straightforward method and explore vari-

ations, focusing primarily on the maximum absolute difference between the two

approaches. Initially, we investigate the maximum deviation in the case of positively

correlated securities, followed by a general analysis encompassing various scenarios.

Existing literature primarily emphasizes the reduction of computational burden

through simplification of matrix-based calculations. As our primary concern is a

single quantity, it is more feasible to approximate the VaR itself. Other authors

1The research of the second author is partially supported by the Mathematical Studies Center
at Yerevan State University
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concentrate on improved methods of estimating VaR when the underlying distri-

bution deviates from the Gaussian assumption (as seen in [2]). While we do not

delve into these alternative approaches for computing VaR in portfolios with a

sum of lognormal distributions, it may prove effective to incorporate third and

fourth moments (see [3]). Given that we primarily deal with the sum of lognormal

distributions, we employ existing approximation methods. Specifically, we utilize

the Fenton-Wilkinson approximation ([4, 5]) due to its simplicity, although more

accurate approximations exist (see [6, 7]). Remarkably, our findings indicate that

the simple Fenton-Wilkinson approximation sufficiently approximates VaR under

the assumption of normality.

The paper is organized as follows. In Section 2, we introduce the general framework

and the proposed method. Section 3 analyzes the maximum potential difference,

and finally, we conclude with a discussion of our results.

2. VaR computation and approximation

We deal with only two subsequent periods of time. Here we consider mixture of

n securities represented by geometric Brownian motions

(2.1) S(t) =

n∑
i=1

wiSi(t)

with wi ≥ 0,
∑n

i=1 wi = 1, and Si(t), i = 1, n are processes satisfying the following

stochastic differential equations (SDE).

(2.2) dSi(t) = µiSi(t)dt+ σiSi(t)dWi(t)

with Wi(t) ∼ N(0, t) not necessarily independent Brownian motions, i.e. for each i,

Wi(t+ 1)−Wi(t) ∼ N(0, 1) iid for each t ∈ {1, 2, ...} 2 with correlation coefficients

(2.3) ρi,j(t) = corr(Wi(t),Wj(t))

As we deal with only two periods (t = 0, 1) and having no randomness in period 0,

we take

(2.4) ρi,j(t) = ρij

Thus Si(t), i = 1, n have log-normal distribution

Si(t) = Si(0)e
(µi−σ2

i /2)t+σiWi(t)

Si(t) ∼ LogN

(
lnSi(0) +

(
µi −

σ2
i

2

)
t, σ2

i t

)(2.5)

2Note that we consider only discrete points of time. However, initially the Brownian motion
should be defined on continuous domain. We are only interested in two periods t = 0, 1
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The log-returns we denote by Xi(t) for individual stock, and X(t), for portfolio.

Xi(t) = ln

(
Si(t+ 1)

Si(t)

)
, Xi(t) ∼ N

(
µi −

σ2
i

2
, σ2

i

)
(2.6)

Note that correlation of log-returns is also ρ(Xi(t), Xj(t)) =: ρXi,Xj = ρij , thus

yielding the following vector-distribution.

(2.7)

(X1(t), ..., Xn(t)) ∼ N

µ =


µ1 − σ2

1

2
...

µn − σ2
n

2

 ,Σ =

 σ2
1 . . . σ1σnρ1n
...

. . .
...

σ1σnρ1n . . . σ2
n


 ,

where µ is vector of means and Σ is covariance matrix. From (2.1) and (2.7), the

portfolio VaR (the quantile of portfolio return X(t)), have the following form

V aRX =

n∑
i=1

wiSi(0)

(
µi −

1

2
σ2
i

)
+zα/2

√√√√√√(w1S1(0), ..., wnSn(0)) · Σ ·

 w1S1(0)
...

wnSn(0),


where V aRX is value at risk for given portfolio, and zα/2 is quantile of standard

normal distribution (with probability P (X ≤ zα/2) = 1− α
2 ) (see [1, 2]). Note that

S(t) in (2.1), is distributed as sum of lognormal distributions, i.e.

(2.8) S(t) ∼
n∑

i=1

wiLogN

(
lnSi(0) +

(
µi −

σ2
i

2

)
t, σ2

i t

)
By Fenton - Wilkinson ([3, 4]) approximation we have

(2.9) S(t) ∼approx LogN(µz(t);σ
2
z(t)) ∼: S̃(t),

where

σ2
z(t) =

1(∑n
i=1 wi

(
Si(0) + (µi − 1

2σ
2
i )
)
e

σ2
i
t

2

)2 ·

t n∑
i,j=1

ρSijσiσjwiwj

(
Si(0) + (µi −

1

2
σ2
i )

)(
Sj(0) + (µj −

1

2
σ2
j )

)
e

σ2
i t+σ2

j t

2


µz(t) = ln

(
n∑

i=1

wi

(
Si(0) + (µi −

1

2
σ2
i )

)
e

σ2
i t

2

)
− σ2

z(t)

2

(2.10)

Let’s approximate X(t) with return of S̃(t), X̃p(t) := ln

(
S̃(t+1)

S̃(t)

)
, with

(2.11) X̃p(t) ∼ N(µz(t+ 1), σ2
z(t+ 1))−N(µz(t), σ

2
z(t))

To completely determine the distribution, we additionally need covariance

C(t) = Cov
(
ln ˜S(t+ 1); ln S̃(t)

)
= E

(
ln ˜S(t+ 1) · ln S̃(t)

)
−E

(
ln ˜S(t+ 1)

)
·E
(
ln S̃(t)

)
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with E(ln S̃(t)) = µz(t). To find covariance C(t) we use formula for exponential

terms. So let’s consider E(eln S̃(t+1) · eln S̃(t)) .

(2.12) E
(
eln S̃(t+1) · eln S̃(t)

)
= eµz(t)+µz(t+1)+

σ2
z(t)+σ2

z(t)+2C(t)

2

On the other hand

(2.13) E
(
elnS(t+1) · elnS(t)

)
= E

(
n∑

i=1

wiSi(t) ·
n∑

i=1

wiSi(t)

)

The covariance may be approximated by 3

C(t) ≈ ln

(
E

(
n∑

i=1

wiSi(t) ·
n∑

i=1

wiSi(t)

))
−µz(t)−µz(t+1)− 1

2
σ2
z(t)−

1

2
σ2
z(t+1).

Hence we have the following approximate distribution

(2.14) X̃p(t) ∼approx N
(
µz(t+ 1)− µz(t), σ

2
z(t+ 1) + σ2

z(t)− 2C(t)
)

The idea is to approximate portfolio VaR using quantile of approximate distribution

of Xp(t) (for 2 consecutive days t = 0; t+ 1 = 1).

(2.15) V aRXp
= µz(t+ 1)− µz(t) + S(0)zα/2

√
σ2
z(t+ 1) + σ2

z(t)− 2C(t)

For t = 0, we have the following (by (2.10))

σ2
z(0) =

1(∑n
i=1 wi

(
Si(0) + (µi − 1

2σ
2
i )
))2 · 0 = 0

µz(0) = ln

(
n∑

i=1

wi

(
Si(0) + (µi −

1

2
σ2
i )

))(2.16)

So for t=0 we have random variable with 0 variance, which is obvious as nothing

is random in that period. For t+1=1 we have:

σ2
z(1) =

1(∑n
i=1 wi

(
Si(0) + (µi − 1

2σ
2
i )
)
e

σ2
i
2

)2 ·

 n∑
i,j=1

ρijσiσjwiwj

(
Si(0) + (µi −

1

2
σ2
i )

)(
Sj(0) + (µj −

1

2
σ2
j )

)
e

σ2
i
2 e

σ2
j
2


µz(1) = ln

(
n∑

i=1

wi

(
Si(0) + (µi −

1

2
σ2
i )

)
e

σ2
i
2

)
− σ2

z(1)

2

(2.17)

3It is indeed approximation, as in (2.12), S̃(t) is used, while in (2.13) S(t).
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Note that as one of our random variables has 0 variance the covariance can be taken

to be 0. So we have:

V aRXp
= ln

(
n∑

i=1

wi

(
Si(0) + (µi −

1

2
σ2
i )

)
e

σ2
i
2

)
− ln

(
n∑

i=1

wi

(
Si(0) + (µi −

1

2
σ2
i )

))
−

− 1

2
σ2
z(1) + zα/2

(
n∑

i=1

wiSi(0)

)√
σ2
z(1).

Hereafter, we will consider only risk neutral pricing, i.e. µi =
1
2σ

2
i .

3. Difference in methods

We claim that difference between V aRXp and V aRX is not big, in sense that

there exist C such that ∣∣∣∣V aRXp
− V aRX

V aRX

∣∣∣∣ < C

for any correlation coefficients ρij with i ̸= j; i, j = 1, n and any weights wi in risk

neutral setting. Or at least we attempt to prove similar result4.

Remark 3.1. We don’t yet know if C depends on general structure of ρ-s and σ-s,

or is there any absolute constant. At least we will try to show the existence of some

bounds. Also note that while we may not come to theoretically small C, in practice

C is quite small.

For the risk-neutral pricing (i.e. taking µi =
1
2σ

2
i ) we obtain

V aRX = zα/2

√√√√√√(w1S1(0), ..., wnSn(0)) · Σ ·

w1S1(0)
...

wnSn(0)


V aRXp = ln

(
n∑

i=1

wiSi(0)e
σ2
i
2

)
− ln

(
n∑

i=1

wiSi(0)

)
−

− 1

2

1(∑n
i=1 wiSi(0)e

σ2
i
2

)2

 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

+

zα/2

(
n∑

i=1

wiSi(0)

)√√√√√√ 1(∑n
i=1 wiSi(0)e

σ2
i
2

)2

 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2



(3.1)

Let’s first consider the case where we deal only with non-negative correlations, i.e.

ρij ≥ 0.

4No formal derivations of approximation were given originally for log-normal approximation
with Fenton-Wilkinson. So some computational comparisons had been done later, see [6].
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3.1. First bounds. We have the following obvious (quite loose) bound for the

fourth term of V aRXp in (3.1)

zα/2

∑n
i=1 wiSi(0)∑n

i=1 wiSi(0)e
σ2
i
2

√√√√√
 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

 ≤

zα/2

∑n
i=1 wiSi(0)∑n

i=1 wiSi(0)e
σ2
i
2

e
σ2
max
2 V aRX ≤ V aRXe

σ2
max
2 −σ2

min
2

(3.2)

And similarly

zα/2

∑n
i=1 wiSi(0)∑n

i=1 wiSi(0)e
σ2
i
2

√√√√√
 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

 ≥

zα/2e
−σ2

max
2

√√√√√
 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

 ≥ V aRXe
σ2
min
2 −σ2

max
2

(3.3)

Considering the first three terms of V aRXp
in (3.1), and using the same argumentation

we have the following bounds

ln

∑n
i=1 wiSi(0)e

σ2
i
2∑n

i=1 wiSi(0)

− 1

2

1(∑n
i=1 wiSi(0)e

σ2
i
2

)2

 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

 ≥

1

2
σ2
min − 1

2
eσ

2
max−σ2

min

 n∑
i,j=1

ρijσiσjwiwj


which in turn, using the following σ2

max ≥
∑n

i,j=1 ρijσiσjwiwj ≥ σ2
min, we give

ln

∑n
i=1 wiSi(0)e

σ2
i
2∑n

i=1 wiSi(0)

− 1

2

1(∑n
i=1 wiSi(0)e

σ2
i
2

)2

 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

 ≥

1

2
σ2
min − 1

2
σ2
maxe

σ2
max−σ2

min

(3.4)

Similarly one can derive

ln

∑n
i=1 wiSi(0)e

σ2
i
2∑n

i=1 wiSi(0)

− 1

2

1(∑n
i=1 wiSi(0)e

σ2
i
2

)2

 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

 ≤

1

2
σ2
max − 1

2
σ2
mine

σ2
min−σ2

max

(3.5)
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Combining (3.2), (3.3), (3.4) and (3.5), we obtain the following bound
1

2
σ2
min − 1

2
σ2
maxe

σ2
max−σ2

min + V aRXe
σ2
min
2 −σ2

max
2 ≤ V aRXp

≤1

2
σ2
max − 1

2
σ2
mine

σ2
min−σ2

max + V aRXe
σ2
max
2 −σ2

min
2

(3.6)

Note that this bound is indeed loose, as right side can get quite big thanks to

exponent, while the left side can be quite small. Also note that, if σi = σmax = σmin,

we retrieve V aRXp
= V aRX .

3.2. Bounds for positive correlations. The better bound stated in the following

proposition can be obtained. First let’s make some notations value of portfolio

V P :=
∑n

i=1 wiSi(0) and

(3.7) σ2
wS :=

∑n
i,j=1 wiwjσiσjSi(0)Sj(0)∑n

i,j=1 wiwjSi(0)Sj(0)

Proposition 3.1. The following inequality holds if we assume non-negative correlations:

1

2
σ2
min − 1

2

(
1

zα/2

)2(
1

V P

)2

V aR2
X

2σ2
max − σ2

min

σ2
wS

+ V aRX ≤ V aRXp
≤

1

2
σ2
max − 1

2

(
1

zα/2

)2(
1

V P

)2

V aR2
X + V aRX

√
2σ2

max − σ2
min

σ2
wS

(3.8)

Proof. We make use of Holder’s inequality for left part, and Abel’s inequality

for right part (3.8).

Lemma 3.1. For positive values of xi and wi, the following inequality is true.

(3.9)
∑n

i=1 xiwie
xi∑n

i=1 wiexi
≥
∑n

i=1 xiwi∑n
i=1 wi

.

Proof. We define

(3.10) H(a) =

∑n
i=1 xiwie

axi∑n
i=1 wieaxi

and consider its derivative with respect to a.

(3.11) H ′(a) =

(∑n
i=1 x

2
iwie

axi
)
· (
∑n

i=1 wie
axi)− (

∑n
i=1 xiwie

axi)
2

(
∑n

i=1 wieaxi)
2

Due to Holder’s inequality the numerator is non-negative. Indeed, denote

(3.12) ak = xke
axk
2
√
wk; bk = e

axk
2
√
wk

Then the numerator is exactly(
n∑

k=1

ak

)2( n∑
k=1

bk

)2

−

(
n∑

h=1

ahbh

)2

≥ 0.

By exactly the same technique, one can show that the following lemma is also true.
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Lemma 3.2. For positive values of xi and wi and for some strictly increasing

function f(x), the following inequality holds.

(3.13)
∑n

i=1 xiwie
f(xi)∑n

i=1 wief(xi)
≥
∑n

i=1 xiwi∑n
i=1 wi

This inequality is enough to show the first part of (3.8).

Proof. Consider only the last part of V arXp
with zα/2, in (3.1).

A := zα/2

(
n∑

i=1

wiSi(0)

)√√√√√√ 1(∑n
i=1 wiSi(0)e

σ2
i
2

)2

 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2



= zα/2

(
n∑

i=1

wiSi(0)

)
∑n

i,j=1 ρijwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2(∑n

i=1 wiSi(0)e
σ2
i
2

)2

∑n
i,j=1 ρijσiσjwiwjSi(0)Sj(0)e

σ2
i
2 e

σ2
j
2∑n

i,j=1 ρijwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2




1/2

For which using the inequality once and as soon as ρ-s are positive, we have

A ≥zα/2

(
n∑

i=1

wiSi(0)

)
∑n

i,j=1 ρijwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2(∑n

i=1 wiSi(0)e
σ2
i
2

)2

[∑n
i,j=1 ρijσiσjwiwjSi(0)Sj(0)∑n

i,j=1 ρijwiwjSi(0)Sj(0)

])1/2

Note that here we have used the (3.13) twice 5. Let’s do it once more

A ≥zα/2

(
n∑

i=1

wiSi(0)

)
∑n

i,j=1 wiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2(∑n

i=1 wiSi(0)e
σ2
i
2

)2 ·

∑n
i,j=1 ρijwiwjSi(0)Sj(0)e

σ2
i
2 e

σ2
j
2∑n

i,j=1 wiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

[∑n
i,j=1 ρijσiσjwiwjSi(0)Sj(0)∑n

i,j=1 ρijwiwjSi(0)Sj(0)

]
1/2

5We used it once for sum with i-s and once for sum with j-s.
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and using Lemma 3.2 once more (again two times)6, for the first term in square

root we have

A ≥V aRX

∑n
i,j=1 ρijwiwjSi(0)Sj(0)e

σ2
i
2 e

σ2
j
2∑n

i,j=1 wiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2

·

∑n
i,j=1 σiσjwiwjSi(0)Sj(0)∑n
i,j=1 ρijwiwjSi(0)Sj(0)

)1/2

= V aRX

(3.14)

where the equality can be easily checked, just by multiplying sums.

For the next part of inequality we will make use of Abel’s inequality. Denoting

xw =
∑

wixi, the following lemma holds.

Lemma 3.3. For positive values wi, the following inequality is true

(3.15)
∑n

i=1 xiwie
xi∑n

i=1 wiexi
·
∑n

i=1 wi∑n
i=1 xiwi

≤ |maxxi|+R

xw

with R = maxxi −minxi.

Without loss of generality, we can assume that xi are in increasing order. Hence,

by Abel’s inequality (see [8]), we have

(3.16)
n∑

i=1

xiwie
xi ≤ (|xn|+ xn − x1)max

j

j∑
i=1

wie
xi = (|xn|+ xn − x1)

n∑
i=1

wie
xi

Thus it will yield∑n
i=1 xiwie

xi ·
∑n

i=1 wi∑n
i=1 wiexi ·

∑n
i=1 xiwi

≤
(|xn|+ xn − x1)

∑n
i=1 wie

xi ·
∑n

i=1 wi∑n
i=1 wiexi ·

∑n
i=1 xiwi

=
(|xn|+ xn − x1)

∑n
i=1 wi∑n

i=1 xiwi
=

|maxxi|+R

xw

(3.17)

Using this inequality and considering A again, we obtain

A = zα/2

(
n∑

i=1

wiSi(0)

)
∑n

i,j=1 ρijσiσjwiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2(∑n

i=1 wiSi(0)e
σ2
i
2

)2


1/2

≤ zα/2


∑n

i,j=1 ρij
σiσj

2 wiwjSi(0)Sj(0)e
σ2
i
2 e

σ2
j
2(∑n

i=1 wiSi(0)e
σ2
i
2

)2 ·
(
∑n

i=1 wiSi(0))
2∑n

i,j=1 ρij
σiσj

2 wiwjSi(0)Sj(0)

 n∑
i,j=1

ρij
σiσj

2
wiwjSi(0)Sj(0)

1/2

6Note that numerator of expression in square brackets with zα/2 is V aRX itself.
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Using Lemma 3.3 for first two fractions, we come to the following result:

A ≤ zα/2

√√√√√
 n∑
i,j=1

ρijσiσjwiwjSi(0)Sj(0)

 max (σiσj) + (σ2
max − σ2

min)

2σ2
wS

(3.18)

or

(3.19) A ≤ V aRX

√
max (σiσj) + (σ2

max − σ2
min)

2σ2
wS

For the third term V aRXp
in (3.1), note that expression in square brackets is bigger

than ( 1
zα/2

V aRX)2 for positive correlations, we obtain

V aRXp ≥ ln

∑n
i=1 wiSi(0)e

σ2
i
2∑n

i=1 wiSi(0)

−

1

2

(
1

zα/2

)2(
1

V P

)2

V aR2
X

max (σiσj) + (σ2
max − σ2

min)

2σ2
wS

+ V aRX

≥1

2
σ2
min − 1

2

(
1

zα/2

)2(
1

V P

)2

V aR2
X + V aRX

(3.20)

and lastly the main formula can be derived.

1

2
σ2
min − 1

2

(
1

zα/2

)2(
1

V P

)2

V aR2
X

2σ2
max − σ2

min

σ2
wS

+ V aRX ≤ V aRXp
≤

1

2
σ2
max − 1

2

(
1

zα/2

)2(
1

V P

)2

V aR2
X + V aRX

√
2σ2

max − σ2
min

σ2
wS

3.3. Bounds for general case. The following result is immediate consequence of

above results. One can prove it by separating the stock considered into two groups:

positively correlated and negatively, in the following sense. Taking ρ+ = {ij|ρij =

ρji > 0} and ρ− = {ij|ρij = ρji < 0}, other indices does not contribute to sum and

using this grouping, we get the following result.

Proposition 3.2. The following inequality holds:

1

2
σ2
min − 1

2

(
1

zα/2

)2(
1

V P

)2

V aR2
X max

(
1,

2σ2
max − σ2

min

σ2
wS

)

+V aRX min

(
1,

√
2σ2

max − σ2
min

σ2
wS

)
≤ V aRXp

≤ 1

2
σ2
max − 1

2

(
1

zα/2

)2(
1

V P

)2

·

· V aR2
X min

(
1,

2σ2
max − σ2

min

σ2
wS

)
+ V aRX max

(
1,

√
2σ2

max − σ2
min

σ2
wS

)
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4. Discussion and conclusion

Our calculations have revealed tighter bounds, in scenarios involving either solely

positive correlation or both positive and negative correlations. This could be attri-

buted to the relatively small magnitudes of the volatilities themselves, suggesting

the potential for the derivation of improved bounds. Nevertheless, for portfolios

with relatively confined volatility values, the current bounds prove sufficiently tight.

It is worth noting that enhancing these bounds is primarily contingent on the

theoretical justification of the proposed methodology. Computations indicate signifi-

cantly tighter real bounds. For a three-stock portfolio, this translates to approxima-

tely 0.5 − 0.9% of the Gaussian-VaR value, or roughly 0.1 − 0.2% of the portfolio

value. As the number of stocks increases, the disparity diminishes gradually. It is

crucial to emphasize that the pursuit of better bounds is rooted in the theoretical

validation of the proposed procedure.

For the above case compared to Gaussian-VaR, our lower bound deviates by

no more than 0.00025%, showcasing its robustness. However, the upper bound

exhibits a substantial discrepancy of up to 7.5%, a noteworthy disparity. From

an empirical standpoint, particularly in domains where non-gaussian behavior may

dominate, our methodology could yield significant differences. However, as of now,

such disparities have not been observed in the context of stock portfolios.
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