
Известия НАН Армении, Математика, том 59, н. 2, 2024, стр. 35 – 55.

UNIQUENESS OF MEROMORPHIC FUNCTIONS WITH
RESPECT TO THEIR SHIFTS CONCERNING DERIVATIVES

X. H. HUANG

School of Mathematical Sciences, Shenzhen University, China
E-mail: 1838394005@qq.com

Abstract. An example in the article shows that the first derivative of f(z) = 2
1−e−2z sharing

0 CM and 1,∞ IM with its shift πi cannot obtain they are equal. In this paper, we study the
uniqueness of meromorphic function sharing small functions with their shifts concerning its k− th
derivatives. We use a different method from Qi and Yang [18] to improves entire function to
meromorphic function, the first derivative to the k − th derivatives, and also finite values to
small functions. As for k = 0, we obtain: Let f(z) be a transcendental meromorphic function of
ρ2(f) < 1, let c be a nonzero finite value, and let a(z) ̸≡ ∞, b(z) ̸≡ ∞ ∈ Ŝ(f) be two distinct small
functions of f(z) such that a(z) is a periodic function with period c and b(z) is any small function
of f(z). If f(z) and f(z + c) share a(z),∞ CM, and share b(z) IM, then either f(z) ≡ f(z + c) or

ep(z) ≡
f(z + c)− a(z + c)

f(z)− a(z)
≡

b(z + c)− a(z + c)

b(z)− a(z)
,

where p(z) is a non-constant entire function of ρ(p) < 1 such that ep(z+c) ≡ ep(z).
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1. Introduction and main results

Throughout this paper, we assume that the reader have a knowledge of the

fundamental results and the standard notations of the Nevanlinna value distribution

theory. See([6, 20, 21]). In the following, a meromorphic function f means meromorphic

in the whole complex plane. Define

ρ(f) = lim
r→∞

log+T (r, f)

logr
,

ρ2(f) = lim
r→∞

log+log+T (r, f)

logr

by the order and the hyper-order of f , respectively. When ρ(f) < ∞, we say f is

of finite order.

By S(r, f), we denote any quantity satisfying S(r, f) = o(T (r, f)), as r → ∞
outside of a possible exceptional set of finite logarithmic measure. A meromorphic

function a(z) satisfying T (r, a) = S(r, f) is called a small function of f . We denote

S(f) as the family of all small meromorphic functions of f which includes the

constants in C. Moreover, we define Ŝ(f) = S(f) ∪ {∞}. We say that two non-

constant meromorphic functions f and g share small function a CM(IM) if f−a and
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g−a have the same zeros counting multiplicities (ignoring multiplicities). Moreover,

we introduce the following notation: S(m,n)(a) = {z|z is a common zero of f(z +

c)− a(z) and f(z)− a(z) with multiplicities m and n respectively}. N (m,n)(r,
1

f−a )

denotes the counting function of f with respect to the set S(m,n)(a). Nn)(r,
1

f−a )

denotes the counting function of all distinct zeros of f−a with multiplicities at most

n. N (n(r,
1

f−a ) denotes the counting function of all zeros of f−a with multiplicities

at least n.

We say that two non-constant meromorphic functions f and g share small function

a CM(IM)almost if

N(r,
1

f − a
) +N(r,

1

g − a
)− 2N(r, f = a = g) = S(r, f) + S(r, g),

or

N(r,
1

f − a
) +N(r,

1

g − a
)− 2N(r, f = a = g) = S(r, f) + S(r, g),

respectively.

For a meromorphic function f(z), we denote its shift by fc(z) = f(z + c).

Rubel and Yang [19] studied the uniqueness of an entire function concerning its

first order derivative, and proved the following result.

Theorem A. Let f(z) be a non-constant entire function, and let a, b be two

finite distinct complex values. If f(z) and f ′(z) share a, b CM, then f(z) ≡ f ′(z).

Zheng and Wang [23] improved Theorem A and proved

Theorem B. Let f(z) be a non-constant entire function, and let a(z) ̸≡
∞, b(z) ̸≡ ∞ be two distinct small functions of f(z). If f(z) and f (k)(z) share

a(z), b(z) CM, then f(z) ≡ f (k)(z).

Li and Yang [15] improved Theorem B and proved

Theorem C. Let f(z) be a non-constant entire function, and let a(z) ̸≡
∞, b(z) ̸≡ ∞ be two distinct small functions of f(z). If f(z) and f (k)(z) share

a(z) CM, and share b(z) IM. Then f(z) ≡ f (k)(z).

Recently, the value distribution of meromorphic functions concerning difference

analogue has become a popular research, see [1, 2, 4 – 9, 12 – 14, 16 – 18].

Heittokangas et al [7] obtained a similar result analogue of Theorem A concerning

shifts.

Theorem D. Let f(z) be a non-constant entire function of finite order, let c be

a nonzero finite complex value, and let a, b be two finite distinct complex values. If

f(z) and f(z + c) share a, b CM, then f(z) ≡ f(z + c).

In [17], Qi-Li-Yang investigated the value sharing problem with respect to f ′(z)

and f(z + c). They proved
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Theorem E. Let f(z) be a non-constant entire function of finite order, and let

a, c be two nonzero finite complex values. If f ′(z) and f(z+ c) share 0, a CM, then

f ′(z) ≡ f(z + c).

Recently, Qi and Yang [18] improved Theorem E and proved

Theorem F. Let f(z) be a non-constant entire function of finite order, and let

a, c be two nonzero finite complex value. If f ′(z) and f(z + c) share 0 CM and a

IM, then f ′(z) ≡ f(z + c).

Of above theorem, it’s naturally to ask whether the condition 0, a can be replaced

by two distinct small functions, and f ′ can be replaced by f (k)?

In this article, we give a positive answer. In fact, we prove the following more

general result.

Theorem 1.1. Let f(z) be a transcendental meromorphic function of ρ2(f) < 1,

let c be a nonzero finite value, k be a positive integer, and let a(z) ̸≡ ∞, b(z) ̸≡ ∞ ∈
Ŝ(f) be two distinct small functions. If f (k)(z) and f(z+ c) share a(z),∞ CM, and

share b(z) IM, then f (k)(z) ≡ f(z + c).

Example 1.1. [9] Let f(z) = 2
1−e−2z , and let c = πi. Then f ′(z) and f(z+c) share

0 CM and share 1,∞ IM, but f ′(z) ̸≡ f(z + c).

This example shows that for meromorphic functions, the conclusion of Theorem

1 doesn’t hold even when sharing ∞ CM is replaced by sharing ∞ IM when k = 1.

We believe there are examples for any k, but we can not construct them.

As for k = 0, Li and Yi [13] obtained

Theorem G. Let f(z) be a transcendental entire function of ρ2(f) < 1, let

c be a nonzero finite value, and let a(z) ̸≡ ∞, b(z) ̸≡ ∞ ∈ Ŝ(f) be two distinct

small functions. If f(z) and f(z + c) share a(z) CM, and share b(z) IM, then

f(z) ≡ f(z + c).

Remark 1.1. Theorem G holds when f(z) is a non-constant meromorphic function

of ρ2(f) < 1 such that N(r, f) = S(r, f).

Theorem H. [8] Let f(z) be a non-constant meromorphic function of finite

order, let c be a nonzero finite value, and let a(z) ̸≡ ∞, b(z) ̸≡ ∞ and d(z) ̸≡ ∞ ∈
Ŝ(f) be three distinct small functions such that a(z), b(z) and d(z) are periodic

functions with period c. If f(z) and f(z+c) share a(z), b(z) CM, and d(z) IM, then

f(z) ≡ f(z + c).

We can ask a question that whether the small periodic function d(z) of f(z) can

be replaced by any small function of f(z)?

In this paper, we obtain our second result.
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Theorem 1.2. Let f(z) be a transcendental meromorphic function of ρ2(f) < 1,

let c be a nonzero finite value, and let a(z) ̸≡ ∞, b(z) ̸≡ ∞ ∈ Ŝ(f) be two distinct

small functions of f(z) such that a(z) is a periodic function with period c and b(z)

is a small function of f(z). If f(z) and f(z + c) share a(z),∞ CM, and share b(z)

IM, then either f(z) ≡ f(z + c) or

ep(z) ≡ f(z + c)− a(z + c)

f(z)− a(z)
≡ b(z + c)− a(z + c)

b(z)− a(z)
,

where p(z) is a non-constant entire function of ρ(p) < 1 such that ep(z+c) ≡ ep(z).

We can obtain the following corollary from the proof of Theorem 1.2.

Corollary 1.1. Under the same condition as in Theorem 2, then f(z) ≡ f(z + c)

holds if one of conditions satisfies

(i) b(z) is a periodic function with period nc ;

(ii) ρ(b(z)) < ρ(ep(z));

(iii) ρ(b(z)) < 1.

Example 1.2. Let f(z) = ez

1−e−2z , and let c = πi. Then f(z + c) = −ez

1−e−2z , and

f(z) and f(z + c) share 0,∞ CM, but f(z) ̸≡ f(z + c).

Example 1.3. Let f(z) = ez, and let c = πi. Then f(z + c) = −ez, and f(z) and

f(z+ c) share 0,∞ CM, f(z) and f(z+ c) attain different values everywhere in the

complex plane, but f(z) ̸≡ f(z + c).

Above two examples of show that "2CM+1IM"is necessary.

Example 1.4. Let f(z) = ee
z

, then f(z + πi) = 1
eez

. It is easy to verify that f(z)

and f(z + πi) share 0, 1,∞ CM, but f(z) = 1
f(z+πi) . On the other hand, we obtain

f(z) = f(z + 2πi).

Example 1.4 tells us that if we drop the assumption ρ2(f) < 1, we can get

another relation.

By Theorem 1.1 and Theorem 1.2, we still believe the latter situation of Theorem

2 can be removed, that is to say, only the case f(z) ≡ f(z + c) occurs. So we raise

a conjecture here.

Conjecture. Under the same condition as in Theorem 1.2, is f(z) ≡ f(z + c) ?

2. Some lemmas

Lemma 2.1. [6] Let f be a non-constant meromorphic function of ρ2(f) < 1, and

let c be a non-zero complex number. Then

m(r,
f(z + c)

f(z)
) = S(r, f),
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for all r outside of a possible exceptional set E with finite logarithmic measure.

Lemma 2.2. [10, 20, 21] Let f1 and f2 be two non-constant meromorphic functions

in |z| <∞, then

N(r, f1f2)−N(r,
1

f1f2
) = N(r, f1) +N(r, f2)−N(r,

1

f1
)−N(r,

1

f2
),

where 0 < r <∞.

Lemma 2.3. [6] Let f be a non-constant meromorphic function of ρ2(f) < 1, and

let c be a non-zero complex number. Then

T (r, f(z)) = T (r, f(z + c)) + S(r, f),

for all r outside of a possible exceptional set E with finite logarithmic measure.

Lemma 2.4. Let f be a transcendental meromorphic function of ρ2(f) < 1 such

that N(r, f) = S(r, f), let c be a nonzero constant, k be a positive integer, and

let a(z) be a small function of f(z + c) and f (k)(z). If f(z + c) and f (k)(z) share

a(z),∞ CM, and N(r, 1
f(k)(z+c)−a(k)(z)

) = S(r, f), then T (r, ep) = S(r, f), where p

is an entire function of order less than 1.

Proof. Since f is a transcendental meromorphic function of ρ2(f) < 1, N(r, f) =

S(r, f), and fc and f (k) share a and ∞ CM, then there is an entire function p of

order less than 1 such that

fc − a = ep(f (k) − a
(k)
−c ) + ep(a

(k)
−c − a).(2.1)

Suppose on the contrary that T (r, ep) ̸= S(r, f).

Set g = f
(k)
c − a(k). Differentiating (2.1) k times we have

g = (ep)(k)g−c + k(ep)(k−1)g′−c + · · ·+ k(ep)′g
(k−1)
−c + epg

(k)
−c +B(k),(2.2)

where B = ep(a
(k)
−c − a).

It is easy to see that g ̸≡ 0. Then we rewrite (2.2) as

1− B(k)

g
= Dep,(2.3)

where

D = e−p[(ep)(k)
g−c

g
+ k(ep)(k−1) g

′
−c

g
+ · · ·

+ k(ep)′
g
(k−1)
−c

g
+ (ep)

g
(k)
−c

g
].(2.4)

Since f is a transcendental meromorphic function with ρ2(f) < 1 and f (k) and fc

share ∞ CM, we can see from N(r, f) = S(r, f), Lemma 2.1 and Lemma 2.3 that

(1 + o(1))N(r, f) + S(r, f) = N(r, fc) = N(r, f (k)),
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and on the other hand

kN(r, fc) +N(r, fc) = N(r, f (k)c ), N(r, fc) = N(r, f (k)) = N(r, f),

which follows from above equalities that N(r, f (k)) = N(r, f
(k)
c ) + S(r, f), and

thus we can know that g and g−c share ∞ CM almost. It is easy to see from the

assumption fc and f (k) share ∞ CM that there exists no simple pole point of fc.

Now we estimate N(r,
g
(i)
−c

g ). Let z0 be a pole of f with multiplicity n, than z0 is

a pole of g with multiplicity n + 2k, and also z0 is a pole of g(i)−c with multiplicity

n + k + i. Then we can see that z0 is a zero point of g
(i)
−c

g with k − i. Let z1 be

a pole of fc with multiplicity m, then z1 is a pole of g with multiplicity m + k,

and also z1 is a pole of g(i)−c with multiplicity m + i. Then we can see that z1 is a

zero point of g
(i)
−c

g with k − i. Note that N(r, 1

f
(k)
c −a(k)

) = N(r, 1g ) = S(r, f), then

N(r,
g
(i)
−c

g ) = S(r, f), and hence

T (r,D) ≤
k∑

i=0

(T (r,
(ep)(i)

ep
) + T (r,

Ci
kg

(k−i)
−c

g
)) + S(r, f)

≤
k∑

i=0

(S(r, ep) +m(r,
g
(i)
−c

g−c
) +N(r,

g
(i)
−c

g
)) + S(r, f)

= S(r, ep) + S(r, f),(2.5)

where Ci
k is a combinatorial number. By (2.1) and Lemma 2.1, we get

T (r, ep) ≤ T (r, fc) + T (r, f (k)) + S(r, f) ≤ 2T (r, f) + S(r, f).(2.6)

Then it follows from (2.5) that T (r,D) = S(r, f). Next we discuss two cases.

Case 1. e−p −D ̸≡ 0. Rewrite (2.3) as

gep(e−p −D) = B(k).(2.7)

We claim that D ≡ 0. Otherwise, using the Lemma 2.8 to e−p, we get

m(r,
1

e−p −D
) +N(r,

1

e−p −D
) = T (r, e−p)

≤ N(r, e−p) +N(r,
1

e−p
) +N(r,

1

e−p −D
)

+ S(r, ep) = N(r,
1

e−p −D
) + S(r, f) ≤ T (r, e−p) + S(r, f),

that is to say

T (r, ep) = T (r, e−p) +O(1) = N(r,
1

e−p −D
) + S(r, f)

and

N(r,
1

e−p −D
) = N1(r,

1

e−p −D
) + S(r, f).
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It follows form above two equalities that

T (r, ep) = N1(r,
1

e−p −D
) + S(r, f).

Because the numbers of zeros and poles of B(k) are S(r, f), we can see from (2.7)

and N(r, f) = S(r, f) that the multiplicities of poles of g are almost 1. And then

N(r, f) + kN(r, f) = N(r, g) + S(r, f) = N(r,
1

e−p −D
) + S(r, f)

= N1(r, f) + S(r, f) ≤ N(r, f) + S(r, f) = S(r, f).

it follows from above that N(r, 1
e−p−D ) = S(r, f). Then by Lemma 2.8 in the

following we can obtain

T (r, ep) = T (r, e−p) +O(1)

≤ N(r, e−p) +N(r,
1

e−p
) +N(r,

1

e−p −D
)

+ S(r, ep) = S(r, f),(2.8)

which contradicts with present assumption. Thus D ≡ 0. Then by (2.7) we get

g = B(k).(2.9)

Integrating (2.9), we get

fc = ep(a
(k)
−c − a) + P + a,(2.10)

where P is a polynomial of degree at most k − 1. (2.10) implies

T (r, fc) = T (r, ep) + S(r, f).(2.11)

Substituting (2.9) and (2.10) into (2.1) we can obtain

ep(a
(k)
−c − a) + P = ep+p−cL−c,(2.12)

where L−c is the differential polynomial in

p′−c, . . . , p
(k)
−c , a−2c − a−c, (a−2c − a−c)

′, . . . , (a−2c − a−c)
(k),

and it is a small function of f(z + c). On the one hand

2T (r, ep) = T (r, e2p) = m(r, e2p) ≤ m(r, ep+p−c) +m(r,
ep

ep−c
) ≤ T (r, ep+p−c) + S(r, f).

(2.13)

On the other hand, we can prove similarly that

T (r, ep+p−c) ≤ 2T (r, ep) + S(r, f).(2.14)

So

T (r, ep+p−c) = 2T (r, ep) + S(r, f).(2.15)

By (2.11), (2.12) and (2.15) we can get T (r, ep) = 2T (r, ep) + S(r, f), which is

T (r, ep) = S(r, f), a contradiction.
41



X. H. HUANG

Case 2. e−p − D ≡ 0. Immediately, we get T (r, ep) = S(r, f), but it’s

impossible.

Of above discussions, we conclude that T (r, ep) = S(r, f). □

Lemma 2.5. Let f be a transcendental meromorphic function of ρ2(f) < 1 such

that N(r, f) = S(r, f), let k be a positive integer and c ̸= 0 a complex value, and

let a ̸≡ ∞ and b ̸≡ ∞ be two distinct small functions of f . Suppose

L(fc) =

∣∣∣∣ fc − a a− b
f ′c − a′ a′ − b′

∣∣∣∣
and

L(f (k)) =

∣∣∣∣ f (k) − a a− b
f (k+1) − a′ a′ − b′

∣∣∣∣ ,
and fc and f (k) share a,∞ CM, and share b IM, then L(fc) ̸≡ 0 and L(f (k)) ̸≡ 0.

Proof. Suppose that L(fc) ≡ 0, then we can get f ′
c−a′

fc−a ≡ a′−b′

a−b . Integrating both

side of above we can obtain fc − a = C1(a− b), where C1 is a nonzero constant. So

by Lemma 2.3, we have T (r, f) = T (r, fc) + S(r, f) = T (r, C(a− b) + a) = S(r, f),

a contradiction. Hence L(fc) ̸≡ 0.

Since f (k) and fc share a CM and b IM, and f is a transcendental meromorphic

function of ρ2(f) < 1 such that N(r, f) = S(r, f), then by the Lemma 2.8, we get

T (r, fc) ≤ N(r,
1

fc − a
) +N(r,

1

fc − b
) +N(r, fc) + S(r, f)

= N(r,
1

f (k) − a
) +N(r,

1

f (k) − b
) + S(r, f)

≤ 2T (r, f (k)) + S(r, f).(2.16)

Hence a and b are small functions of f (k). If L(f (k)) ≡ 0, then we can get f (k)−a =

C2(a − b), where C2 is a nonzero constant. And we get T (r, f (k)) = S(r, f (k)).

Combing (2.16) we obtain T (r, f) = T (r, fc)+S(r, f) = T (r, C(a−b)+a) = S(r, f),

a contradiction. □

Lemma 2.6. Let f be a transcendental meromorphic function, let kj(j = 1, 2, . . . , q)

be distinct constants, and let a ̸≡ ∞ and b ̸≡ ∞ be two distinct small functions of

f . Again let dj = a− kj(a− b) (j = 1, 2, . . . , q). Then

m(r,
L(fc)

fc − a
) = S(r, f), m(r,

L(fc)

fc − dj
) = S(r, f).

for 1 ≤ i ≤ q and

m(r,
L(fc)fc

(fc − d1)(fc − d2) · · · (fc − dm)
) = S(r, f),

where L(fc) is defined as in Lemma 2.5, and 2 ≤ m ≤ q.
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Proof. Obviously, we have

m(r,
L(fc)

fc − a
) ≤ m(r,

(a′ − b′)(fc − a)

fc − a
) +m(r,

(a− b)(f ′c − a′)

fc − a
) = S(r, f),

and
L(fc)fc

(fc − d1)(fc − d2) · · · (fc − dq)
=

q∑
i=1

CiL(fc)

fc − di
,

where Ci =
dj∏

j ̸=i

(di−dj)
are small functions of f . By Lemma 2.1 and above, we have

m(r,
L(fc)fc

(fc − d1)(fc − d2) · · · (fc − dq)
) = m(r,

q∑
i=1

CiL(fc)

fc − di
)

≤
q∑

i=1

m(r,
L(fc)

fc − di
) + S(r, f) = S(r, f). □(2.17)

Lemma 2.7. Let f and g be are two non-constant meromorphic functions such

that N(r, f) = S(r, f), and let a ̸≡ ∞ and b ̸≡ ∞ be two distinct small functions of

f and g. If

H =
L(f)

(f − a)(f − b)
− L(g)

(g − a)(g − b)
≡ 0,

where

L(f) = (a′ − b′)(f − a)− (a− b)(f ′ − a′)

and

L(g) = (a′ − b′)(g − a)− (a− b)(g′ − a′).

And if f and g share a,∞ CM, and share b IM, then either 2T (r, f) = N(r, 1
f−a )+

N(r, 1
f−b ) + S(r, f), or f = g.

Proof. Integrating H which leads to
g − b

g − a
= C

f − b

f − a
,

where C is a nonzero constant.

If C = 1, then f = g. If C ̸= 1, then from above, we have
a− b

g − a
≡ (C − 1)f − Cb+ a

f − a
,

and

T (r, f) = T (r, g) + S(r, f) + S(r, g).

It follows that N(r, 1
f−Cb−a

C−1

) = N(r, 1
a−b ) = S(r, f). Then by Lemma 2.8 in the

following,

T (r, f) ≤ N(r, f) +N(r,
1

f − a
) +N(r,

1

f − Cb−a
C−1

) + S(r, f)

≤ N(r,
1

f − a
) + S(r, f) ≤ T (r, f) + S(r, f),
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and

T (r, f) ≤ N(r, f) +N(r,
1

f − b
) +N(r,

1

f − Cb−a
C−1

) + S(r, f)

≤ N(r,
1

f − b
) + S(r, f) ≤ T (r, f) + S(r, f),

that is T (r, f) = N(r, 1
f−a ) + S(r, f) and T (r, f) = N(r, 1

f−b ) + S(r, f), and hence

2T (r, f) = N(r, 1
f−a ) +N(r, 1

f−b ) + S(r, f). □

Lemma 2.8. [22] Let f(z) be a non-constant meromorphic function, and let aj ∈
Ŝ(f) be q distinct small functions for all j = 1, 2, . . . , q. Then

(q − 2− ϵ)T (r, f) ≤
q∑

j=1

N(r,
1

f − aj
) + S(r, f), r ̸∈ E,

for all r outside of a possible exceptional set E with finite logarithmic measure.

Remark 2.1. Lemma 2.8 is true when ∞, a1, a2, · · · , aq ∈ Ŝ(f) with S(r, f) in our

notation, in other words, even if exceptional sets are of infinite linear measure. But

they are not of infinite logarithmic measure.

Lemma 2.9. [11] Let f and g be two non-constant meromorphic functions. If f and

g share 0, 1,∞ IM, and f is a bilinear transformation of g, then f and g assume

one of the following six relations: (i) fg = 1; (ii) (f −1)(g−1) = 1; (iii) f +g = 1;

(iv) f = cg; (v) f−1 = c(g−1); (vi) [(c−1)f+1][(c−1)g−c] = −c, where c ̸= 0, 1

is a complex number.

Lemma 2.10. [3] Let f , F and g be three non-constant meromorphic functions,

where g = F (f). Then f and g share three values IM if and only if there exist an

entire function h such that, by a suitable linear fractional transformation, one of

the following cases holds:

(i) f ≡ g;

(ii) f = eh and g = a(1 + 4ae−h − 4a2e−2h) have three IM shared values a ̸= 0,

b = 2a and ∞;

(iii) f = eh and g = 1
2 (e

h + a2e−h) have three IM shared values a ̸= 0, b = −a and

∞;

(iv) f = eh and g = a+ b− abe−h have three IM shared values ab ̸= 0 and ∞;

(v) f = eh and g = 1
b e

2h − 2eh + 2b have three IM shared values b ̸= 0, a = 2b and

∞;

(vi) f = eh and g = b2e−h have three IM shared values a ̸= 0, 0 and ∞.

Lemma 2.11. [10, 20, 21] Let f and g be two non-constant meromorphic functions,

and let ρ(f) and ρ(g) be the order of f and g, respectively. Then ρ(fg) ≤ max{ρ(f), ρ(g)}.
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Remark 2.2. We can see from the proof that Lemma 2.9 [11] and Lemma 2,10

[20] are still true when f and g share three value IM almost.

3. The proof of Theorem 1.1

If fc ≡ f (k), there is nothing to prove. Suppose fc ̸≡ f (k). Since f is a non-

constant meromorphic function of ρ2(f) < 1, fc and f (k) share a,∞ CM, then we

get

f (k) − a

fc − a
= eh,(3.1)

where h is an entire function, and it is easy to know from (2.1) that h = −p.
Since f is a transcendental meromorphic function of ρ2(f) < 1 and f (k) and fc

share ∞ CM, we can see from Lemma 2.1 and Lemma 2.3 that

(1 + o(1))N(r, f) + S(r, f) = N(r, fc) = N(r, f (k)),

which implies

N(r, f) = S(r, f).

Furthermore, from the assumption that f (k) and fc share a and ∞ CM and b IM,

then by Lemma 2.1, Lemma 2.8 and above equality, we get

T (r, fc) ≤ N(r,
1

fc − a
) +N(r,

1

fc − b
) +N(r, fc) + S(r, f)

= N(r,
1

f (k) − a
) +N(r,

1

f (k) − b
) + S(r, f)

≤ N(r,
1

fc − f (k)
) + S(r, f) ≤ T (r, fc − f (k)) + S(r, f)

≤ m(r, fc − f (k)) +N(r, fc − f (k)) + S(r, f)

≤ m(r, fc) +m(r, 1− f (k)

fc
) +N(r, fc) + S(r, f) ≤ T (r, fc) + S(r, f).

That is

T (r, fc) = N(r,
1

fc − a
) +N(r,

1

fc − b
) + S(r, f).(3.2)

By (3.1) and (3.2) we have

T (r, fc) = T (r, fc − f (k)) + S(r, f) = N(r,
1

fc − f (k)
) + S(r, f).(3.3)

and by Lemma 2.1,

T (r, eh) = m(r, eh) = m(r,
f (k) − a

(k)
−c + a

(k)
−c − a

fc − a
) ≤ m(r,

a
(k)
−c − a

fc − a
)

+m(r,
f (k) − a

(k)
−c

f
(k)
c − a(k)

) +m(r,
f
(k)
c − a(k)

fc − a
) ≤ m(r,

1

fc − a
) + S(r, f).(3.4)
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Then it follows from (3.1) and (3.3) that

m(r,
1

fc − a
) = m(r,

eh − 1

f (k) − fc
) ≤ m(r,

1

f (k) − fc
) +m(r, eh − 1) ≤ T (r, eh) + S(r, f).

(3.5)

Then by (3.4) and (3.5)

T (r, eh) = m(r,
1

fc − a
) + S(r, f).(3.6)

On the other hand, (3.1) can be rewritten as

f (k) − fc
fc − a

= eh − 1,(3.7)

which implies

N(r,
1

fc − b
) ≤ N(r,

1

eh − 1
) + S(r, f) = T (r, eh) + S(r, f).(3.8)

Thus, by (3.2), (3.6) and (3.8)

m(r,
1

fc − a
) +N(r,

1

fc − a
) = N(r,

1

fc − a
) +N(r,

1

fc − b
) + S(r, f)

≤ N(r,
1

fc − a
) +N(r,

1

eh − 1
) + S(r, f)

≤ N(r,
1

fc − a
) +m(r,

1

fc − a
) + S(r, f),

which implies

N(r,
1

fc − a
) = N(r,

1

fc − a
) + S(r, f).(3.9)

And then

N(r,
1

fc − b
) = T (r, eh) + S(r, f).(3.10)

Set

φ =
L(fc)(fc − f (k))

(fc − a)(fc − b)
,(3.11)

and

ψ =
L(f (k))(fc − f (k))

(f (k) − a)(f (k) − b)
.(3.12)

It is easy to know that φ ̸≡ 0 because of Lemma 2.5 and f ̸≡ f (k). We know that

N(r, φ) ≤ N(r, f) = S(r, f) by (3.11). By Lemma 2.1 and Lemma 2.6 we have

T (r, φ) = m(r, φ) +N(r, φ) = m(r,
L(fc)(fc − f (k))

(fc − a)(fc − b)
) + S(r, f)

≤ m(r,
L(fc)fc

(fc − a)(fc − b)
) +m(r, 1− f (k)

fc
) + S(r, f) = S(r, f),

that is

T (r, φ) = S(r, f).(3.13)
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Let d = a− j(a− b)(j ̸= 0, 1). Obviously, by Lemma 2.1 and Lemma 2.6, we obtain

m(r,
1

fc
) = m(r,

1

(b− a)φ
(
L(fc)

fc − a
− L(fc)

fc − b
)(1− f (k)

fc
))

≤ m(r,
1

φ
) +m(r,

L(fc)

fc − a
− L(fc)

fc − b
)

+m(r, 1− f (k)

fc
) + S(r, f) = S(r, f).(3.14)

and

m(r,
1

fc − d
) = m(r,

L(fc)(fc − f (k))

φ(fc − a)(fc − b)(fc − d)
)

≤ m(r, 1− f (k)

fc
) +m(r,

L(fc)fc
(fc − a)(fc − b)(fc − d)

)

+ S(r, f) = S(r, f).(3.15)

Set

ϕ =
L(fc)

(fc − a)(fc − b)
− L(f (k))

(f (k) − a)(f (k) − b)
.(3.16)

We discuss two cases.

Case 1 ϕ ≡ 0. Integrating the both sides of (3.16) which leads to

fc − a

fc − b
= C

f (k) − a

f (k) − b
,(3.17)

where C is a nonzero constant. Then by Lemma 2.7 we get

2T (r, fc) = N(r,
1

fc − a
) +N(r,

1

fc − b
) + S(r, f),(3.18)

which contradicts with (3.2).

Case 2 ϕ ̸≡ 0. By (3.3), (3.13) and (3.16) we can obtain

T (r, fc) = T (r, fc − f (k)) + S(r, f) = T (r,
ϕ(fc − f (k))

ϕ
) + S(r, f)

= T (r,
φ− ψ

ϕ
) + S(r, f) ≤ T (r, φ− ψ) + T (r, ϕ) + S(r, f)

≤ T (r, ψ) + T (r, ϕ) + S(r, f) ≤ T (r, ψ) +N(r,
1

fc − b
) + S(r, f).(3.19)

On the other hand,

T (r, ψ) = T (r,
L(f (k))(fc − f (k))

(f (k) − a)(f (k) − b)
)

= m(r,
L(f (k))(fc − f (k))

(f (k) − a)(f (k) − b)
) +N(r, ψ)

≤ m(r,
L(f (k))

f (k) − b
) +m(r,

fc − f (k)

f (k) − a
) +N(r, f) + S(r, f)

≤ m(r,
1

fc − a
) + S(r, f) = N(r,

1

fc − b
) + S(r, f).(3.20)
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Hence combining (3.19) and (3.20), we obtain

T (r, fc) ≤ 2N(r,
1

fc − b
) + S(r, f).(3.21)

If a(k)−c ≡ a, then by (3.1) and Lemma 2.1 we can get

T (r, eh) = m(r, eh) = m(r,
f (k) − a

(k)
−c

fc − a
)

≤ m(r,
f (k) − a

(k)
−c

f
(k)
c − a(k)

) +m(r,
f
(k)
c − a(k)

fc − a
) = S(r, f).(3.22)

It follows from (3.10), (3.21), (3.22) and Lemma 2.3 that T (r, f) = T (r, fc) +

S(r, f) = S(r, f). It’s impossible.

If a(k)−c ≡ b, then by (3.10), (3.21) and and Lemma 2.1,

T (r, fc) ≤ m(r,
1

fc − a
) +N(r,

1

f (k) − b
) + S(r, f)

≤ m(r,
f (k) − a

(k)
−c

f
(k)
c − a(k)

) +m(r,
f
(k)
c − a(k)

fc − a
) +m(r,

1

f (k) − b
)

+N(r,
1

f (k) − b
) + S(r, f) ≤ T (r, f (k)) + S(r, f),

which implies

T (r, fc) ≤ T (r, f (k)) + S(r, f).(3.23)

Lemma 2.3 implies

T (r, f (k)) ≤ T (r, f) + kN(r, f) + S(r, f) = T (r, fc) + S(r, f),(3.24)

and it follows from the fact fc and f (k) share a CM and b IM, (3.2) and (3.23) that

T (r, f (k)) = T (r, fc) + S(r, f)

= N(r,
1

fc − a
) +N(r,

1

fc − b
) + S(r, f)

= N(r,
1

f (k) − a
) +N(r,

1

f (k) − b
) + S(r, f).(3.25)

By Lemma 2.1, Lemma 2.8, (3.2) and (3.25), we have

2T (r, f (k)) ≤ N(r,
1

f (k) − a
) +N(r,

1

f (k) − b
) +N(r,

1

f (k) − d
) +N(r, f (k))

+ S(r, f) ≤ 2T (r, f (k))−m(r,
1

f (k) − d
) + S(r, f)

Immediately,

m(r,
1

f (k) − d
) = S(r, f).(3.26)
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By the First Fundamental Theorem, Lemma 2.1, Lemma 2.2, (3.14), (3.25),

(3.26) and f is a transcendental meromorphic function of ρ2(f) < 1, we obtain

m(r,
fc − d

f (k) − d
) ≤ m(r,

fc
f (k) − d

) +m(r,
d

f (k) − d
) +O(1)

≤ T (r,
fc

f (k) − d
)−N(r,

fc
f (k) − d

) + S(r, f)

= m(r,
f (k) − d

fc
) +N(r,

f (k) − d

fc
)−N(r,

fc
f (k) − d

) + S(r, f)

≤ N(r,
1

fc
)−N(r,

1

f (k) − d
) +N(r, f (k))−N(r, f) + S(r, f)

= T (r,
1

fc
)− T (r,

1

f (k) − d
) + S(r, f)

= T (r, fc)− T (r, f (k)) + S(r, f) = S(r, f).

Thus

m(r,
fc − d

f (k) − d
) = S(r, f).(3.27)

It’s easy to see that N(r, ψ) = S(r, f) and (3.12) can be rewritten as

ψ = [
a− d

a− b

L(f (k))

f (k) − a
− b− d

a− b

L(f (k))

f (k) − b
][
fc − d

f (k) − d
− 1].(3.28)

Then by Lemma 2.6, (3.27) and (3.28) we can get

T (r, ψ) = m(r, ψ) +N(r, ψ) = S(r, f).(3.29)

By (3.2), (3.19) and (3.29) we get

N(r,
1

fc − a
) = S(r, f).(3.30)

Moreover, by Lemma 2.1, (3.2), (3.25) and (3.30), we have

m(r,
1

(fc − a)(k)
) = m(r,

1

f
(k)
c − bc

) = m(r,
1

f (k) − b
) + S(r, f) = S(r, f),(3.31)

and it follows from above, (3.6) and (3.10) that

N(r,
1

fc − b
) = m(r,

1

fc − a
) + S(r, f)

≤ m(r,
1

(fc − a)(k)
) +m(r,

(fc − a)(k)

fc − a
) + S(r, f) = S(r, f).(3.32)

Then by (3.2), (3.30), (3.32) and Lemma 2.3, we obtain

T (r, f) = T (r, fc) + S(r, f) = N(r,
1

fc − a
)

+N(r,
1

fc − b
) + S(r, f) = S(r, f),(3.33)

which implies T (r, f) = S(r, f), a contradiction.
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So by (3.6), (3.10), (3.21), the First Fundamental Theorem, Lemma 2.8 and

Remark 2.1 we can get

T (r, fc) ≤ 2m(r,
1

fc − a
) + S(r, f) ≤ 2m(r,

1

f (k) − a
(k)
−c

)

+ S(r, f) = 2T (r, f (k))− 2N(r,
1

f (k) − a
(k)
−c

) + S(r, f)

≤ N(r,
1

f (k) − a
) +N(r,

1

f (k) − b
) +N(r,

1

f (k) − a
(k)
−c

)

+N(r, f (k))− 2N(r,
1

f (k) − a
(k)
−c

) + S(r, f)

≤ T (r, fc)−N(r,
1

f (k) − a
(k)
−c

) + S(r, f),

which implies that

N(r,
1

f (k) − a
(k)
−c

) = S(r, f).(3.34)

Consequently, Lemma 2.1 and Lemma 2.3 can deduce

N(r,
1

f (k) − a
(k)
−c

) = N(r,
1

f
(k)
c − a(k)

) = S(r, f).

Then applying Lemma 2.4, we have T (r, eh) = T (r, ep) + O(1) = S(r, f), and it

follows from (3.10) and (3.21) we can get T (r, f) = T (r, fc) + S(r, f) = S(r, f), a

contradiction. This completes the proof of Theorem 1.

4. The Proof of Theorem 1.2

If f(z) ≡ f(z + c), there is nothing to do. Assume that f(z) ̸≡ f(z + c). Since

f(z) is a transcendental meromorphic function of ρ2(f) < 1, f and f(z + c) share

a(z),∞ CM, then there is a nonzero entire function p(z) of order less than 1 such

that
f(z + c)− a(z)

f(z)− a(z)
= ep(z),(4.1)

then by Lemma 2.1 and a(z) is a periodic function with period c,

T (r, ep) = m(r, ep) = m(r,
f(z + c)− a(z + c)

f(z)− a(z)
) = S(r, f).(4.2)

On the other hand, (4.1) can be rewritten as

f(z + c)− f(z)

f(z)− a(z)
= ep(z) − 1,(4.3)

and then we get

N(r,
1

f(z)− b(z)
) ≤ N(r,

1

ep(z) − 1
) = S(r, f).(4.4)
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Denote N(m,n)(r,
1

f(z)−b(z) ) by the zeros of f(z) − b(z) with multiplicities m and

the zeros of fc(z)− b(z) with multiplicities n, where m,n are two positive integers.

Thus, we can obtain

N(r,
1

f(z)− b(z)
) =

n∑
k=2

N(1,k)(r,
1

f(z)− b(z)
) +

m∑
l=2

N(l,1)(r,
1

f(z)− b(z)
)

+

m∑
l=2

n∑
k=2

N(l,k)(r,
1

f(z)− b(z)
) ≤ N(r,

1

f(z)− b(z)
) +mN(r,

1

f(z + c)− b(z)
)

+N(r,
1

ep(z) − 1
) ≤ (m+ 1)N(r,

1

f(z)− b(z)
) + S(r, f) = S(r, f),

(4.5)

that is

N(r,
1

f(z + c)− b(z + c)
) = N(r,

1

f(z)− b(z)
) = S(r, f).(4.6)

Similarly, we also have

N(r,
1

f(z + c)− b(z)
) = S(r, f).(4.7)

Set

ψ(z) =
f(z + c)− b(z + c)

f(z)− b(z)
.(4.8)

It is easy to see that

N(r,
1

ψ(z)
) ≤ N(r,

1

f(z + c)− b(z + c)
) +N(r, b(z)) = S(r, f),(4.9)

N(r, ψ(z)) ≤ N(r,
1

f(z)− b(z)
) +N(r, b(z)) = S(r, f).(4.10)

Hence by Lemma 2.1 and above,

T (r, ψ(z)) = m(r, ψ(z)) +N(r, ψ(z)) = S(r, f)(4.11)

According to (4.1) and (4.8),we have

(ep(z) − ψ(z))f(z) + ψ(z)b(z) + a(z)− b(z + c)− a(z)ep(z) ≡ 0.(4.12)

We discuss following two cases.

Case 1 ep(z) ̸≡ ψ(z). Then by (4.2), (4.11) and (4.12) we obtain T (r, f) =

S(r, f), a contradiction.

Case 2 ep(z) ≡ ψ(z). Then by (4.1) we have

f(z + c) = ep(z)(f(z)− a(z)) + a(z),(4.13)

and

N(r,
1

f(z + c)− b(z)
) = N(r,

1

f(z)− a(z) + a(z)−b(z)
ep(z)

) = S(r, f).(4.14)
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If b(z) is a periodic function of period c, then by (4.12) we can get ep(z) ≡ 1,

which implies f(z) ≡ f(z + c), a contradiction. Obviously, a(z)− a(z)−b(z)
ep(z)

̸≡ a(z).

Otherwise, we can deduce a(z) ≡ b(z), a contradiction.

Next, we discuss three subcases.

Subcase 2.1 a(z) − a(z)−b(z)
ep(z)

̸≡ b(z) and a(z) − a(z)−b(z)
ep(z)

̸≡ b(z − c). Then

according to (4.6), (4.7),(4.14) and Lemma 2.8, we can get

T (r, f(z)) ≤ N(r,
1

f(z)− a(z)− a(z)−b(z)
ep(z)

) +N(r,
1

f(z)− b(z)
)

+N(r,
1

f(z)− b(z − c)
) + S(r, f) = S(r, f),(4.15)

that is T (r, f(z)) = S(r, f), a contradiction.

Subcase 2.2 a(z)− a(z)−b(z)
ep(z)

≡ b(z), but a(z)− a(z)−b(z)
ep(z)

̸≡ b(z− c). It follows

that ep(z) ≡ 1. Therefore by (4.1) we have f(z) ≡ f(z + c), a contradiction.

Subcase 2.3 a(z)− a(z)−b(z)
ep(z)

≡ b(z), a(z)− a(z)−b(z)
ep(z)

≡ b(z− c). It follows that

ep(z) ≡ 1. Therefore by (4.1) we have f(z) ≡ f(z + c), a contradiction.

Subcase 2.4 a(z)− a(z)−b(z)
ep(z)

̸≡ b(z) and a(z)− a(z)−b(z)
ep(z)

≡ b(z − c). It is easy

to see that
a(z)− b(z)

a(z − c)− b(z − c)
= ep(z).(4.16)

Furthermore, (4.12) implies

a(z + c)− b(z + c)

a(z)− b(z)
= ep(z),(4.17)

a(z)− b(z)

a(z − c)− b(z − c)
= ep(z−c).(4.18)

It follows from (4.16) and (4.18) that

ep(z) = ep(z+c).(4.19)

By (4.1), (4.8) and (4.19), we know that f(z) and f(z+nc) share a(z) and ∞ CM,

so we set

F (z) =
f(z)− a(z)

b(z)− a(z)
, G(z) =

f(z + nc)− a(z)

b(z + nc)− a(z + nc)
.(4.20)

Since f(z) and f(z+nc) share a(z) and ∞ CM, and (b(z), b(z+nc) CM, so F (z) and

G(z) share 0,∞ CM almost, and 1 CM almost. We claim that F is not a bilinear

transform of G. Otherwise, we can see from Lemma 2.9 that if (i) occurs, we have

N(r, f(z)) = N(r, F (z))+S(r, f) = S(r, f), then by Remark 1 and Theorem G, we

get f(z) ≡ f(z + c), a contradiction.

If (ii) occurs, we have N(r, f(z)) = N(r, F (z)) + S(r, f) = S(r, f), then by

Remark 1 and Theorem G, we get f(z) ≡ f(z + c), a contradiction.
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If (iii) occurs, we have

N(r,
1

f(z)− a(z)
) = S(r, f), N(r,

1

f(z)− b(z)
) = S(r, f).(4.21)

Then it follows from above, a(z) − a(z)−b(z)
ep(z)

̸≡ a(z), a(z) − a(z)−b(z)
ep(z)

̸≡ b(z) and

Lemma 2.8 that T (r, f) = S(r, f), a contradiction.

If (iv) occurs, we have F (z) ≡ jG(z), that is

b(z + nc)− a(z + nc)

b(z)− a(z)
= j(

f(z + nc)− a(z)

f(z)− a(z)
),(4.22)

where j ̸= 0, 1 is a finite constant. Then it follows from above, (4.17) and (4.19)

that enp(z) = jenp(z), therefore we have j = 1, a contradiction.

If (v) occurs, we have

N(r,
1

f(z)− a(z)
) = S(r, f).(4.23)

Then by Lemma 2.8, (4.7), (4.14) and b(z − c) ̸≡ a(z), we obtain T (r, f) = S(r, f),

a contradiction.

If (vi) occurs, we have

N(r, f(z)) = N(r, F (z)) + S(r, f) = S(r, f),(4.24)

and hence we can see from Theorem G and Remark 1 that f(z) ≡ f(z + c), a

contradiction.

Therefore, F (z) is not a linear fraction transformation of G(z). If b(z) is a small

function with period nc, that is b(z + (n− 1)c) ≡ b(z − c), we can set

D(z) = (f(z)− b(z))(b(z + nc)− b(z + (n− 1)c))

− (f(z + nc)− b(z + nc))(b(z)− b(z − c))

= (f(z)− b(z − c))(b(z + nc)− b(z + (n− 1)c))

− (f(z + nc)− b(z + (n− 1)c))(b(z)− b(z − c))

If D(z) ≡ 0, then we have f(z + nc)− b(z − c) ≡ −(f(z)− b(z − c)). And thus we

know that f(z) and f(z + nc) share a(z), b(z − c) and ∞ CM. We suppose

F1(z) =
f(z)− a(z)

b(z − c)− a(z)
, G1(z) =

f(z + nc)− a(z)

b(z − c)− a(z)
.(4.25)

Then we know that F1(z) and G1(z) share 0, 1,∞ CM almost and G1(z) = −F1(z).

So by Lemma 2.10, we will obtain either N(r, f(z)) = N(r, F1) + S(r, f) = S(r, f),

but in this case, according to Theorem G and Remark 1, we can deduce a contradiction.

Or F1(z) = G1(z), that is f(z) ≡ f(z + nc). Therefore, we obtain f(z) ≡ b(z − c),

that is T (r, f(z)) = S(r, f), a contradiction.
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Hence D(z) ̸≡ 0, and by (4.7)-(4.8), (4.14) and Lemma 2.1, we have

2T (r, f(z)) = m(r,
1

f(z)− b(z)
) +m(r,

1

f(z)− b(z − c)
) + S(r, f)

= m(r,
1

f(z)− b(z)
+

1

f(z)− b(z − c)
) + S(r, f)

≤ m(r,
D(z)

f(z)− b(z)
+

D(z)

f(z)− b(z − c)
) +m(r,

1

D(z)
) + S(r, f)

≤ m(r,D) +N(r,D) ≤ m(r, f(z)) +N(r, f(z)) + S(r, f)

= T (r, f) + S(r, f),(4.26)

which implies T (r, f) = S(r, f), a contradiction.

By (4.16) we have
∆cb(z)

1− ep(z)
+ b(z) = a(z).(4.27)

Combining (4.18) and the fact that a(z) is a small function with period c, we can

get
∆cb(z + c)

1− ep(z)
+ b(z + c) = a(z).(4.28)

According to (4.27) and (4.28), we obtain

ep(z) =
b2c(z)− bc(z)

∆cb(z)
.(4.29)

So if ρ(b(z)) < ρ(ep(z)), we can follows from (4.28) and Lemma 2.11 that

ρ(ep(z)) = ρ(
b2c(z)− bc(z)

∆2
cb(z)

) ≤ ρ(b(z)) < ρ(ep(z)),(4.30)

which is a contradiction.

If ρ(b(z)) < 1, we claim that p(z) ≡ B is a non-zero constant. Otherwise, the

order of right hand side of (4.28) is 0, but the left hand side is 1, which is impossible.

Therefore, by (4.1) we know that f(z + c) − a(z) = B(f(z) − a(z)), and then by

Lemma 2.10 we will get N(r, f) = S(r, f), so by Theorem G and Remark 1 we can

obtain f(z) ≡ f(z + c), a contradiction.

This completes Theorem 1.2.
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