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Abstract. In this paper, based on the discretization method, we construct a new 2-parameter
regularly varying discrete distribution generated by Waring-type probability (2-RDWP). Some
useful plots are displayed for the model. From the mathematical point of view, to suggest 2-
RDWP as a new discrete probability distribution in bioinformatics, some statistical facts such as
unimodality, skewness to the right, upward/downward convexity, regular variation at infinity and
asymptotically constant slowly varying component are established for the model. We provide the
conditions of coincidence of solution for the system of likelihood equations with the maximum
likelihood estimators for the unknown parameters. Simulation studies are performed using the
Monte Carlo method and Nelder-Mead optimization algorithm to obtain maximum likelihood
estimations of the unknown parameters. Asymptotic expansion of the probability function with
two terms is considered, and then the moment’s existence of integer orders is investigated. Finally,
a real count data set is used to show the applicability of the new model compared to other models
in bioinformatics.
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1. Introduction

Probability distributions are commonly applied to describe phenomena in biomo-

lecular systems, bioinformatics, etc. Due to the usefulness of probability distributions

in bioinformatics, their mathematical theory is widely studied, and new discrete

distributions (frequency distributions) are developed. According to the variety,

diversity and complexity of real data sets in bioinformatics and biomolecular systems,

it is impossible to figure out and suggest a universal model suitable for all situations.

Hence, the interest in developing discrete distributions in bioinformatics and biomo-

lecular systems remain strong in probability and statistics.

Many discrete probability distributions have been introduced based on different

methods for the needs of bioinformatics systems. For a review of different methods,

see, for example, [3]. Let us point out two of the known producers as follows.
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Using the method of birth-death process, we refer the readers to, for example,

[2, 5, 13, 14, 15]. Besides the method of birth-death process, there are other methods,

in particular by discretization method which we refer to, for example, [6, 7, 8, 10].

The advantage of constructing new probability distribution is proposed to paramet-

ric ones because by changing the parameters, one hopes to find the best approximation

for the unknown model. Because of the wide variety of phenomena in bioinformatics,

we shall attempt to introduce new parametric distribution (based on discretization

method).

A continuous analog of the 2-parameter regularly varying Waring probability

was given by dediscretization method [1, 2, 9]. Its probability density function is

stated as

(1.1) fx(α) =
1

c(α)
× (r + x− 1)(r+x−1)

(q + x)(q+x)
, x ∈ (0,∞)

where α = (r, q) is the unkown parameter such that r > 0, q > 0. r is called

numerator parameter and q denominator parameter and q − r > 0. Also, c(α) is

the normalization factor and c(α) =
∫∞
0

(r+t−1)(r+t−1)

(q+t)(q+t) dy.

We note that the continuous analog of the 2-parameter regularly varying Waring

probability (1.1) is a continuous probability distribution. Here, let us call the model

(1.1) as Waring-type probability.

The novelty and the motivation to write this paper is to construct a new skewed

discrete probability model (frequency distribution) for the needs of biosystems

using (1.1). We use discretization method, and then study mathematical properties,

statistical inferences and applications.

2. The 2-RDWP distribution

The desired discrete probability distribution is possible to obtain using the

discretization method. We use a type of discretization of densities used by, for

example, Farbod [6, 8] and Farbod and Gasparian [10]. Let us consider the numerator

of (1.1) as follows:

(2.1) px(α) =
(r + x− 1)r+x−1

(q + x)q+x
, x > 0.

To have px(α) (2.1) as a probability mass function (pmf), we use discretization

method [6, 7, 8, 10] to get a new discrete probability distribution, denoted by gx(α),

with the following pmf:

(2.2) gx(α) =
(
d(α)

)−1 × (r + x− 1)r+x−1

(q + x)q+x
,
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where x = 1, 2, ..., and d(α) is the normalization factor (normalization constant)

given by

(2.3) d(α) =

∞∑
y=1

(r + y − 1)r+y−1

(q + y)q+y

and α = (r, q) is the unknown parameter such that r > 0 and q > r.

Remark 2.1. It is obvious that gx(α) ≥ 0 and also
∑∞

x=1 gx(α) = 1. Thus, function

(2.2) is a probability function and can be considered as a new pmf on the set of

positive integers x ∈ N+ = {1, 2, 3, ...}.

A probability measure (distribution function of random variable X) is given by

(2.4)

Fx(α) = P (X ≤ x) =
(
d(α)

)−1 ∑x
m=1 gm(α) =

(
d(α)

)−1 ∑x
m=1

(r+m−1)r+m−1

(q+m)q+m .

We call model (2.4) a "2-parameter regularly varying discrete distribution generated

by Waring-type probability"(in short, 2-RDWP). The pmf of 2-RDWP is given by

Eq.(2.2). This paper investigates some mathematical properties, statistical inferences

and applications for the model (2.2).

The remaining sections of the paper can be summarized as follows. Section 3

presents some plots of pmf and log-log plot of the 2-RDWP model for different values

of parameters. Statistical facts, for our model, are verified for the mathematical

needs of bioinformatics in Section 4. In Section 5, we propose maximum likelihood

(ML) estimators of the 2-RDWP’s parameters, which are coincided with some

moment estimators. Section 6 uses the Monte Carlo method and Nelder-Mead

optimization algorithm to simulate for obtaining the ML estimations of parameters.

Section 7 gives an asymptotic expansion with two terms for the pmf, tail behavior of

distribution function, and also the moment’s existence of integer orders is investigated.

Section 8 presents application of the proposed model and compares it with other

rival models. The study is concluded in Section 9. Section 10 considers an Appendix

containing the pmfs of some rival models arising in bioinformatics.

3. Figures

This section presents two types of figures for the 2-RDWP model (2.2). To

depict figures, we need to consider the model’s pmf as truncated. First, some pmfs

for different possible values of parameters r and q are plotted in Figures 1(A-J).

Second, some log-log plots (ln gx(α) versus lnx) are displayed in Figures 2(A-J).

Figures 1(A-J) show skewness to the right and also unimodality of the pmf and

Figures 2(A-J) show the deviations of ln gx(α) versus lnx from the straight line,
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which is discussed in Section 4.

Рис. 1. Illustrations of the pmf of 2-RDWP model (2.2) for possible
values of two parameters r and q.
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Рис. 2. Illustrations of the log-log plot of 2-RDWP model (2.2) for
possible values of two parameters r and q.

4. Statistical facts

From the mathematical point of view, to suggest a discrete probability distribution

as a new model in bioinformatics, we need to verify some common statistical facts

(empirical facts) such as unimodality, skewness to the right, upward/downward

convexity, regularly varying at infinity, and slowly varying at infinity. In other

words, it was established that if a pmf (probability law) holds these statistical facts,

then the corresponding pmf could be a mathematical framework for bioinformatics

applications [2, 3, 5, 15]. So, to apply the 2-RDWP model (2.2) as a new probability

model in bioinformatics, we need to check out the validity of such known statistical

facts, mathematically, numerically and intuitively.

We notice that statistical facts (empirical facts) are common mathematical pro-

perties of the empirical frequency distributions (with complex forms and long right-

side tails) observed in bioinformatics data sets and are systematically reproducible

in biomolecular systems [2, 3, 5, 15].

4.1. Log-log plot. Biologists prefer to deal with log-log plot of distribution instead

of its shape [2]. One of the statistical facts is that log-log plot of discrete distributions

arising in bioinformatics systematically deviated from the straight line and shows
20



A NEW REGULARLY VARYING DISCRETE ...

upward/downward convexity [2, 3, 15]. It means that the deviations of log-log plot

of gx(α) from the straight line must be not too large.

Let us investigate the log-log plot of our model. Namely, we deal with ln gx(α)

versus lnx. We write the log-log plot of the model (ln gx(α) versus lnx) as follows:

(4.1)
ln gx(α)

lnx
=

(x+ r − 1) ln(x+ r − 1)− (x+ q) ln(x+ q)− ln(d(α))

lnx

It is obvious that, for sufficiently large x (sufficiently large x means x −→ ∞),

ln(x+ a) ≈ lnx (a is some real constant). Therefore from Eq.(4.1), for sufficiently

large x, we have

(4.2)
ln gx(α)

lnx
≈ r − q − 1− ln d(α)

lnx
.

Due to Eq.(4.2) we conclude that the deviations of ln gx(α) versus lnx from the

straight line constant = (r− q− 1) are small, at least for large values of x which it

turns out upward/downward convexity.

Remark 4.1. We note that there are not any specific definitions for upward/downward

convexity concept in bioinformatics and it is issue of the mathematical disciplines.

In other words, some of the peculiarities of the shapes of empirical frequency distributions

in bioinformatics are: upward/downward convexity, the only point where the frequency

distribution achieves it’s maximal value, etc. For more details about mathematical

and applied concepts of upward/downward convexity, we refer the readers to Astola

and Danielian [2, Sec.1.4, Sec.2.5].

Additionally, Figures 2(A-J) show the log-log plot of 2-RDWP with different

values of parameters. Figures 2(A-J) provide that the deviations of ln gx(α) versus

lnx from the straight line may be small, at least for some large values of x. From

Figures 2(A-J), we observed a significant shift and variation of the power law-like

right-side tail of the pmfs.

4.2. Regular variation. This subsection shows that the model gx(α) varies regularly

at infinity and also we present an asymptotically constant slowly varying component

for it. Compared to Astola and Danielian [2], let us state two definitions for our

model (2.2).

Definition 4.1. The frequency distribution gx(α) varies regularly at infinity with

exponent (−ρ) if it may be presented in the form

gx(α) = x−ρ ·R(x)(1 + o(1)), x −→ ∞, ρ ∈ (−∞,∞),

where R(x) > 0 for x = 1, 2, ..., and for κ = 2, 3, ..., limx−→∞
R(κx)
R(x) = κ−ρ.
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Definition 4.2. Let, for κ = 2, 3, ..., the limit exists

lim
x−→∞

R(κx)

R(x)
= 1

then gx(α) exhibits the asymptotically constant slowly varying component L if we

have

lim
x−→∞

R(x) = L ∈ (0,∞).

Remark 4.2. It is clear that Definition 4.2 is a particular case of Definition 4.1.

Thus, a function varying regularly at infinity with exponent ρ = 0 varies slowly at

infinity [2].

Let us establish the function gx(α) varies regularly at infinity with exponent (−ρ)
having −ρ = −(q+1− r). We propose theorem, remark and numerical example as

follows.

Theorem 4.1. The model gx(α) (2.2) varies regularly at infinity with exponent

(−ρ) and

(4.3) −ρ = −(q + 1− r) < −1.

Proof. From (2.2) and (2.3), for sufficiently large x, we get

(4.4) gx(α) ≈ (d(α))−1 · e−(q+1−r)x−(q+1−r) ≈ x−(q+1−r).

It follows from (4.4) that gx(α) (2.2) varies regularly at infinity if ρ = q+1− r > 1.

Theorem 4.1 is proved. □

Remark 4.3. From (4.4) and based on Remark 3, we observe that L = (d(α))−1 is

an asymptotically constant slowly varying component for the model gx(α) (2.2). In

other words, gx(α) exhibits the asymptotically constant slowly varying component

given by L = (d(α))−1.

Let us give a numerical example as follows.

Example 4.1. Let us compute the value of ρ corresponding to selected two parameters

r and q (used in Figures 1 and 2) by:

α = (0.4, 1.8), −ρ = −2.4 < −1
α = (0.9, 1.7), −ρ = −1.8 < −1
α = (1.4, 1.9), −ρ = −1.5 < −1
α = (3, 48), −ρ = −46 < −1
α = (0.7, 40), −ρ = −40.3 < −1
α = (0.6, 0.9), −ρ = −1.3 < −1
α = (2.5, 2.9), −ρ = −1.4 < −1
α = (15, 20), −ρ = −6 < −1
α = (20, 21), −ρ = −2 < −1
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We see that our numerical values are agreed with the variation of the value of

regular variation exponent (−ρ) and are met in the condition (4.3).

4.3. Unimodality. Unimodality is an essential feature for discrete distributions

arising in bioinformatics. For details about this, we refer the readers to, for example,

[2, 13, 14, 15]. In this subsection, we study such feature for the 2-RDWP model.

Compared to Bhati and Bakouch [4], let us give a proposition as follows.

Proposition 4.1. The pmf (2.2) is unimodal with mode value at x = 1.

Proof. Let us consider pmf (2.2) for the positive integer value of x. Then for

x ≥ 1, we get

(4.5)
dgx(α)

dx = d
dx

(
1

d(α) ·
(r+x−1)r+x−1

(q+x)q+x

)
= 1

d(α) ·
1(

(q+x)q+x
)2 · (r + x− 1)r+x−1 · (q + x)q+x ·

[
ln(r + x− 1)− ln(q + x)

]
.

It is obvious that for 0 < r < q

ln(r + x− 1)− ln(q + x) < 0.

So, we conclude that dgx(α)
dx given by (4.5) is always negative. It implies that gx(α)

decreases and takes its mode at x = 1. The proof is completed. □

In addition to Proposition 4.1, let us investigate unimodality as numerical. We

have a recursive formula given by

(4.6)
gx+1(α)

gx(α)
=

(r + x)r+x(q + x)q+x

(r + x− 1)r+x−1(q + x+ 1)q+x+1
, x = 1, 2, ....

Numerically, it can be shown that gx+1(α)
gx(α)

< 1. Let us have the following example.

Example 4.2. Let us consider some values of parameters (r = 0.7, q = 1) and

(r = 1.5, q = 2.5). From (4.6), we calculate gx+1(α)
gx(α)

, for x = 1, 2, 3, 4, 5, 6, in Table

1 as follows:

Таблица 1. The behavior of gx+1(α)
gx(α)

(4.6) for different values of
parameters r and q

α = (r, q) g2(α)
g1(α)

g3(α)
g2(α)

g4(α)
g3(α)

g5(α)
g4(α)

g6(α)
g5(α)

g7(α)
g6(α)

α = (0.7, 1) 0.46869 0.62523 0.70967 0.76288 0.79955 0.82638
α = (1.5, 2.5) 0.49602 0.59820 0.66569 0.71370 0.74962 0.77752
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From Table 1, we see that the expression, as in (4.6), increases when x increases

and also for x = 1, 2, 3, 4, 5, 6, the values gx+1(α)
gx(α)

< 1. Numerically, it seems

that gx(α) defined by (2.2) decreases and is downward convex. Automatically, the

unimodality of gx(α) is received.

Moreover, in Section 3, we plotted the pmf of 2-RDWP (2.2) for different values of

parameters. In other words, intuitively and from the graphical approach in Figures

1(A-J), it is readily seen that the pmf of 2-RDWP is unimodal. The modes are

observed for all plots in Figures 1(A-J) at x = 1.

4.4. Skewness to the right. One of the essential properties of discrete distributions

(frequency distributions) arising in biomolecular systems is the skewness to the right

of the pmf. This property has been discovered by experimental methods based on

the observation of various data sets of such systems. The conception of skewness

for biologists is based on intuition and the shapes of graphs of discrete distributions

[2, 3]. Section 3 displayed the plots of the pmf of 2-RDWP (2.2) for different possible

parameter values. Intuitively and from the graphical approach in Figures 1(A-J), it

can be observed that the pmf of 2-RDWP (2.2) is skewed to the right. Here, let us

have a numerical example.

Example 4.3. Let us have some real data that includes the number of proteins

assigned to Panther families or subfamilies as follows [18]:

1, 17, 11, 22, 16, 10, 61, 10, 12, 15, 22, 10, 5, 1, 33, 6, 11, 1, 5, 3, 2, 9, 22, 10,

3, 86, 1, 1, 15, 5, 8, 26, 2, 14, 2, 9, 62, 7, 114, 113, 20, 22, 14, 12, 13, 6, 24, 26,

22, 51, 56, 106, 59, 55, 29, 1, 141, 168, 607, 395, 616, 1, 7, 19, 3, 29, 59, 4, 4, 1,

3, 18, 60, 46, 11, 56, 269, 812.

The value of skewness for these data is 3.960.

The following mathematical result is received from Subsections 4.1 – 4.4.

Corollary 4.1. The common statistical facts (unimodality, skewness to the right,

upward/downward convexity, regular variation at infinity, asymptotically constant

slowly varying component) hold for the model gx(α) (2.2). Therefore, from the

mathematical point of view, the 2-RDWP model (2.2) may be considered as a new

regularly varying frequency distribution for the needs of large-scale biomolecular

systems, bioinformatics, etc. For details about this, see [2, 3, 5, 15].

5. On the ML estimators

This section gives ML estimators for the model (2.2). We get the conditions of

coincidence of solution for the system of likelihood equations with the ML estimators
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for the unknown parameters. Let us define the functions h(x;α) and t(x;α) by

h(x;α) = ln(r + x− 1) + 1, t(x;α) = −
(
ln(q + x) + 1

)
,

and hn(α) =
1
n

∑n
i=1 h(xi;α), tn(α) =

1
n

∑n
i=1 t(xi;α). We state a lemma for the

model (2.2).

Lemma 5.1. For model (2.2), we have the following

E
[
h(ξ;α)

]
<∞, E

[
t(ξ;α)

]
<∞,

where E[·] is the mathematical expectation.

Proof. Based on the definition of mathematical expectation, the proof is satisfied,

obviously.

From Lemma 5.1, and compared to Farbod and Gasparian [11], let us present

a theorem.

Theorem 5.1. The likelihood equations for obtaining the ML estimators of parameter

α with the model (2.2) have the following moments equations

(5.1)

 E
[
h(ξ;α)

]
= hn(α)

E
[
t(ξ;α)

]
= tn(α)

Proof. We consider the likelihood function L(Xn;α) =
∏n

i=1 gxi(α). The logarithm

of the likelihood function is given by

(5.2) l(Xn;α) = lnL(Xn;α) =

n∑
i=1

ln
(r + xi − 1)r+xi−1

(q + xi)q+xi
− n ln d(α)

If the following conditions hold

∂l(Xn;α)

∂r
= 0,

∂l(Xn;α)

∂q
= 0,

then the ML estimators of the parameters α = (r, q) exist.

Let us obtain derivatives by parameters r and q. We have

∂l(Xn;α)

∂r
=

n∑
i=1

(
ln(r + xi − 1) + 1

)
− n

1

d(α)

∂d(α)

∂r

where 1
d(α)

∂d(α)
∂r = E

[
h(ξ;α)

]
. From ∂l(Xn;α)

∂r = 0, we get E
[
h(ξ;α)

]
= hn(α).

Meanwhile, we have

∂l(Xn;α)

∂q
=

n∑
i=1

−
(
ln(q + xi) + 1

)
− n

1

d(α)

∂d(α)

∂q

where 1
d(α)

∂d(α)
∂q = E

[
t(ξ;α)

]
. From ∂l(Xn;α)

∂q = 0, we obtain E
[
t(ξ;α)

]
= tn(α).

The Theorem 5.1 is proved. □
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We aim to show that the solution α̂ of the system (5.1) is the ML estimator

of the parameter α. It is sufficient to establish that the matrix M̂n = (M̂n
ij)

2
i,j=1

with M̂n
ij = M̂n

ij(α̂), M̂
n
ij(α̂) =

∂2l(Xn;α)
∂r∂q |α=α̂ is negative definite. Let us state two

lemmas.

Lemma 5.2. Consider the model (2.2). Assuming the solution α̂ of the system

(5.1) (if it exists) holds in the following conditions

(5.3)

 E
[
ψ(ξ;α)

]
= ψn(α)

E
[
η(ξ;α)

]
= ηn(α)

where

ψ(ξ;α) =
1

r + x− 1
, ψn(α) =

1

n

n∑
i=1

ψ(xi;α); η(ξ;α) = − 1

q + x
, ηn(α) =

1

n

n∑
i=1

η(xi;α).

Then, the elements of the matrix M̂n are as follows (V ar(·) is the variance and

Cov(·, ·) is the covariance):

M̂11 = −n V ar(h(ξ;α)),

M̂12 = M̂21 = −n Cov
(
h(ξ;α), t(ξ;α)

)
,

M̂22 = −n V ar(t(ξ;α)).

Proof. We obtain second derivatives of the logarithm of likelihood functions by

∂2l(Xn;α)

∂r2
= −n

( 1

d(α)

∂2d(α)

∂r2
−

( 1

d(α)

∂d(α)

∂r

)2)
+ nψn(α)

∂2l(Xn;α)

∂r∂q
=
∂2l(Xn;α)

∂q∂r
= −n

[ 1

d(α)

∂2d(α)

∂r∂q
−
( 1

d(α)

∂d(α)

∂r

)( 1

d(α)

∂d(α)

∂q

)]
∂2l(Xn;α)

∂q2
= −n

( 1

d(α)

∂2d(α)

∂q2
−
( 1

d(α)

∂d(α)

∂q

)2)
+ nηn(α)

After some simplification, we have

M11 = −n V ar
(
h(ξ;α)

)
− n

(
E
[
ψ(ξ;α)

]
− ψn(α)

)
M12 =M21 = −n Cov

(
h(ξ;α), t(ξ;α)

)
M22 = −n V ar

(
t(ξ;α)

)
− n

(
E
[
η(ξ;α)

]
− ηn(α)

)
With the help of (5.3) the proof of Lemma 5.2 is finished. □

Lemma 5.3. Consider the model (2.2). Under the conditions (5.3), the matrix M̂n

is negative definite.
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Proof. It suffices to show M̂n
11 < 0 and det(M̂n) > 0. From Lemma 5.2, it can

be concluded that M̂n
11 < 0. To show that det(M̂n) > 0 we give

det(M̂n) = M̂n
11M̂

n
22 − (M̂n

12)
2

In accord with the value of M̂n
11 , M̂n

22 , M̂n
12 and based on Cauchy-Bunyakovski-

Schwartz inequality the proof is completed. □

From Lemmas 5.2 and 5.3, the following result is given.

Corollary 5.1. Suppose that the solution of the system (5.1) satisfies the conditions

(5.3), then it coincides with the ML estimators of parameters.

6. ML estimaton and simulation

Based on systems (5.1) and (5.3), it is not easy to derive closed forms for

the solutions, analytically. So, we need to use a numerical method for the ML

estimations of unknown parameters. Compared to Farbod [8], Nelder-Mead optimi-

zation algorithm (or simplex search algorithm) is suggested. Let us notice that the

Nelder-Mead optimization algorithm is a free-derivative optimization method to

nonlinear optimization problems and is suggested to apply for models with more

than one parameter. This algorithm was introduced by Nelder and Mead [16]. See

also [17].

For sampling, a simple stochastic sampling with replacement with the probability

of variables is considered in which the probability of variables are probability

functions. Simulation studies are proposed using the Monte Carlo method [17] with

1000 iterations to calculate ML estimations, biases and mean square errors (MSEs).

Remark 6.1. First, we performed our simulation for the model (2.2). Based on

(2.2), our simulation works well when x = 1, 2, ..., xmax (xmax = 100). But we

have some computational problems for large values x, such as xmax = 150 and

bigger than 150. Let us notice that a type of function xx exists in our pmf’s form

(2.2), and hence it raises problems for simulations and numerical calculations when

x is large. For example, if x = 500, then using R statistical software (Version 4.2.2)

xx = 500500 = ∞. To solve this computational problem, without loss of generality

and after some mathematical simplification, our pmf (2.2) can be written as follows:

(6.1) g∗x(α) =
(∑∞

y=1

(
1+ r−1

y

)y(
y+r−1

)r−1(
1+ q

y

)y
(y+q)q

)−1

·
(
1+ r−1

x

)x(
x+r−1

)r−1(
1+ q

x

)x(
x+q

)q .

From Remark 6.1 and (6.1), we have the following corollary.

Corollary 6.1. It is readily seen that the pmf (2.2) equals the pmf (6.1). So, for

simulation studies, the pmf (6.1) is considered. In the formula (6.1), we need to have
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x as truncated. For simulation aims, let us set x = 1 to xmax (xmax = 10000).

Namely, we have x = 1, 2, ..., 10000 and y = 1, 2, ..., 10000.

Let us consider the logarithm of the likelihood function (5.2). Based on (6.1)

and x = 1, 2, ..., 10000, the ML estimations, biases, and MSEs are calculated. To

simulation studies, we consider the values (r = 0.4, q = 0.6), (r = 1, q = 2), (r =

2.5, q = 3.2) as true values, different sample sizes n = 50, 100, 200, 500, 1000, 5000,

and using 1000 iterations.

Using R statistical software, the simulation results are given in Table 2. Our

simulation studies work well and have satisfactory results for the model. The differences

between real and estimated values of the parameters are small, in particular for large

sample sizes.

Table 2 shows that when the sample size n increases, bias and MSE decrease.

Moreover, from Table 2, we observe that when the true values of r and q are smaller

(also a small value of q−r), the results are better, i.e. biases and MSEs are smaller.

Let us notice that for the ML estimations, the conditions q̂ − r̂ > 0 and ρ̂ > 1 are

satisfied.

7. Asymptotic expansion

Considering that our proposed model has no closed form for the pmf, obtaining

some useful asymptotic expansion with two terms for the pmf is interesting. From

(2.2) and (6.1), we get

(7.1) gx(α) = (d(α))−1 · xr−q−1 ·
(
1+ r−1

x

)x(
1+ r−1

x

)r−1(
1+ q

x

)x(
1+ q

x

)q

We use two known asymptotic expansions as follows. For x −→ ∞, we have [5, 12]:

(7.2) (1 + c
x )

x = ec ·
(
1− c2

2x +O( 1
x2 )

)
.

Also, for x −→ 0 we have

(7.3) (1 + x)α = 1 + αx+O(x2).

From (7.2) and (7.3), the formula (7.1) may be given by

(7.4)

gx(α) = (d(α))−1 · xr−q−1 · er−q−1

(
1+ r−1

x

)x(
1+ r−1

x

)r−1(
1+ q

x

)x(
1+ q

x

)q

= (d(α))−1 · xr−q−1 · er−q−1 ·

(
1− (r−1)2

2x +O( 1
x2 )

)
(
1− q2

2x+O( 1
x2 )

) ·

(
1+

(r−1)2

x +O( 1
x2 )

)
(
1+ q2

x +O( 1
x2 )

)
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Таблица 2. Simulation results: The values of ML estimations
(r̂, q̂), biases, and
MSEs for the 2-RDWP model (6.1)

(r = 0.4, q = 0.6); x = 1, 2, ..., 10000
n (r̂, q̂) Bias MSE
50 (0.6156,0.8434) (0.2156,0.2434) (0.3234,0.4047)
100 (0.4844,0.6955) (0.0844,0.0955) (0.1013,0.1307)
200 (0.4318,0.6346) (0.0318,0.0346) (0.0420,0.0560)
500 (0.4108,0.6115) (0.0108,0.0115) (0.0150,0.0204)
1000 (0.4049,0.6051) (0.0049,0.0051) (0.0072,0.0098)
5000 (0.4002,0.6001) (0.0002,0.0001) (0.0014,0.0020)

(r = 1, q = 2); x = 1, 2, ..., 10000
n (r̂, q̂) Bias MSE
50 (1.4683,2.6768) (0.4683,0.6768) (1.9440,3.8043)
100 (1.1716,2.2475) (0.1716,0.2475) (0.4026,0.7901)
200 (1.0673,2.0963) (0.0673,0.0963) (0.1254,0.2417)
500 (1.0236,2.0330) (0.0236,0.0330) (0.0461,0.0872)
1000 (1.0158,2.0229) (0.0158,0.0229) (0.0227,0.0430)
5000 (1.0039,2.0051) (0.0039,0.0051) (0.0041,0.0079)

(r = 2.5, q = 3.2); x = 1, 2, ..., 10000
n (r̂, q̂) Bias MSE
50 (3.1808,3.9675) (0.6808,0.7675) (5.4404,6.8484)
100 (2.748,3.4778) (0.2480,0.2778) (1.3875,1.7214)
200 (2.6214,3.3357) (0.1214,0.1357) (0.5669,0.6986)
500 (2.5541,3.2609) (0.0541,0.0609) (0.2028,0.2494)
1000 (2.5367,3.2415) (0.0367,0.0415) (0.0992,0.1226)
5000 (2.5093,3.2102) (0.0093,0.0102) (0.0191,0.0238)

Let ρ = q + 1− r. From (7.4), we get

(7.5)
gx(α) ≈

(
d(α)

)−1 · x−ρ · e−ρ ×
(
1 + 1

2x

(
(r − 1)2 − q2

)
+

(
(r − 1)2 − q2

)
O( 1

x2 )
)

≈
(
d(α)

)−1 · x−ρ · e−ρ ·
(
1 + 1

2x

(
(r − 1)2 − q2

)
+O( 1

x2 )
)
.

7.1. Tail behavior. Using asymptotic expansions (7.2), (7.3) and based on (7.4),

let us propose tail behavior of distribution function Fx(α) (2.4) when x −→ ∞.

From (2.2), we get

(7.6) 1− Fx(α) = P (X > x) =

∞∑
m=x+1

gx(α)

By substituting (7.4) and (7.5) into (7.6), when x −→ ∞, we have

(7.7) 1− Fx(α) ≈
(
d(α)

)−1
e−(q+1−r)

∞∑
m=x+1

m−(q+1−r).

The following corollary is given.
29



D. FARBOD

Corollary 7.1. It follows from (7.7) that the condition (4.3) must be met.

7.2. Moments. It is known that some moments are undefined for every power

law-like distribution. We investigate the moment’s existence of the model (2.2). To

do that, using asymptotic expansion (7.5), we shall propose the moment’s existence

of integer orders of the 2-RDWP model (2.2). Let ρ = q + 1− r.

From (7.5), it is readily seen that the first-order moment of X is finite if q−r > 1

(or equivalently ρ > 2). In other words, for model (2.2):

E(X) <∞, if ρ > 2.

For the second-order moment, it is easy to see that

E(X2) <∞, if ρ > 3.

Hence, the variance for the model (2.2) is also finite if ρ = q + 1− r > 3. In other

words, we have

V ar(X) = E(X2)− E2(X) <∞, if ρ > 3.

In the general case, if q − r > j then

E(Xj) <∞, j = 1, 2, ...; if ρ > j + 1.

Corollary 7.2. Assume that X is a regularly varying random variable with a

distribution (2.2) and index ρ. Then the moment of order j is infinite if ρ ≤ j + 1.

Moreover, evaluating the mean and variance of the model (2.2) for practical

needs is of interest. From the proposed asymptotic expansion (7.5), we can present

an approximate form with two terms for the mean and variance. Let us obtain mean

as a practical form for the truncated function with two terms as

(7.8)

E(X) =
∑∞

x=1 gx(α) ≈ (d(α))−1e−ρ
[∑∞

x=1 x
−ρ+1 + 1

2 ((r − 1)2 − q2)
∑∞

x=1 x
−ρ

]
.

Compared to Astola and Danielian [2, p.29], we have

(7.9)


∑∞

x=1 x
−ρ = 1

Γ(ρ−1) limλ−→1

∫ 1

0
ln(1− λt)(ln 1

t )
ρ−2 dt

t∑∞
x=1 x

−ρ+1 = 1
Γ(ρ−2) limλ−→1

∫ 1

0
ln(1− λt)(ln 1

t )
ρ−3 dt

t

where 0 < λ < 1 is some small constant and Γ(·) is the Gamma function. Substituting

(7.9) into (7.8), an approximate form with two terms for the mean is given in

the practical form and integral representation. Similarly, we can provide integral

representations for the second order moment and also variance.
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8. Application to data and comparison

As we pointed out in Section 2 and verified in Section 4, our new discrete

distribution (2.2) may be considered in bioinformatics, biosystems, etc. Let us fit

our model with a real count data set (Example 4.3) and then compare it with the

other models in bioinformatics. Again, for simulation and fitting aims, we consider

the pmf form (6.1).

The given real data set is the number of proteins in a biological system. In other

words, we consider some real data that includes the number of proteins assigned to

Panther families or subfamilies (see Subsection 4.4, Example 4.3). These data are

collected from Venter et al. [18].

For these 78 data (data used in the Example 4.2), using (6.1) we obtain the

ML estimations for two parameters r and q. ML estimations are given by r̂ =

9.620101, q̂ = 10.378817. It implies −ρ̂ = −1.758716 < −1. In addition, lnL =

−357.063 and p-value=0.713. Based on the Kolmogorov-Smirnov test and the 2-

RDWP model, the p-value equals 0.713, which is a good fit for such real data.

Additionally, based on some well-known statistical criteria such as:

Akaike information criterion (AIC) is given by AIC = 2 lnL + 2k where

k the number of parameters in the model; − lnL is the maximized value of the

likelihood function for the estimated model; AIC with corrected (AICc) is given by

AICc = AIC + 2k2+2k
n−k−1 where n is the sample size; and p-value, we compare

the 2-RDWP with other discrete models arising in bioinformatics, such as the

one-parameter skewed discrete Levy distribution (DLD) (10.1) [7], one-parameter

skewed Power-Law (PL) model (10.2) [2], one-parameter truncated skewed discrete

stable distribution (T-SDSD) (10.3) [8], one-parameter truncated skewed discrete

stable distribution (T-DSD) (10.4) [8], and two-parameter truncated skewed discrete

stable distribution (T-2SDSD) (10.5) [8], all having support on the set of positive

integers, i.e. x ∈ N+ = {1, 2, 3, ...}.
Using R statistical software, our results are presented in Table 3. It can be

observed from Table 3 that the 2-RDWP model has the smallest − lnL, AIC, AICc,

and the largest p-value. Accordingly, we can conclude that the 2-RDWP model

provides the best fit among the compared models (DLD, PL, T-SDSD, T-DSD and

T-2SDSD models). The pmfs of DLD, PL, T-SDSD, T-DSD and T-2SDSD are given

in Section 10 (Appendix).
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Таблица 3. Comparing results for 2-RDWP, DLD, PL, T-SDSD,
T-DSD, and T-2SDSD models for data of Example 4.2

Model lnL k AIC AICc p-value
2-RDWP -357.063 2 718.126 718.286 0.713

DLD -360.51055 1 723.0211 723.07373 0.04948
PL -366.2436 1 734.4872 734.53983 0.01773

T-SDSD -362.7622 1 727.5244 727.57703 0.09018
T-DSD -360.57675 1 723.1535 723.20613 0.1746

T-2SDSD -360.55815 2 725.1163 725.2763 0.1723

9. Conclusions

In this paper, using the discretization methods, we formulated a new skewed

regular varying discrete distribution, the so-called 2-RDWP, given by Eq.(2.2).

Some plots for the pmf and log-log plots of the model have been illustrated for

the different values of parameters satisfying the condition in Eq.(4.3). Figures 1(A-

J) indicated the pmfs for the used parameters are skewed to the right and unimodal

with mode value at x = 1. Significantly, Figures 1(A-J) showed that the length and

shape of the right-side tails varied with parameter value changes. Figures 2(A-J)

established the log-log plots of the 2-RDWP (2.2). The log-log plots of Figures 2(A-

J) illustrated that the right-side tails could significantly deviate from the straight

line, at least for large values of observed x.

The known common statistical facts (empirical facts), including unimodality,

skewness to the right, upward/downward convexity, stability by estimated parameters

values, regular variation at infinity and asymptotically constant slowly varying

component, have been proved for the 2-RDWP model. Hence, mathematically, we

concluded that our model (2.2) could be used as a new probability distribution for

the needs of bioinformatics and biomolecular systems.

ML estimators have been obtained based on some moment equations. The condi-

tions of coincidence of solution for the system of likelihood equations with the ML

estimators for the parameters have been proposed. Based on Monte Carlo method

and Nelder-Mead optimization algorithm simulation studies have been given to get

ML estimations, biases and MSEs. Simulation studies presented satisfactory results.

We noted that for simulation aims, instead of Eq.(2.2), we considered the pmf in

Eq.(6.1). The ML estimations r̂ and q̂ have met in the conditions, namely based on

simulation studies q̂ − r̂ > 0 and ρ̂ > 1.

An asymptotic expansion with two terms for the pmf (2.2) has been given. Using

asymptotic expansions, we proposed tail behavior of distribution function. Also, we
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investigated the moment’s existence of integer orders. Then, based on asymptotic

expansion, useful formulas for the mean and variance in the truncated forms have

been provided.

Finally, we successfully applied 2-RDWP to a real data set. Based on well-known

statistical criteria, we compared our results for the proposed model with other

known models in biosystems. Our model gives better results than the other models

for this real data set (Table 3).

The 2-RDWP model has a long right-side tail and power law-like behavior. It

can be helpful in biomolecular systems, bioinformatics and other areas such as

economics and physics.

10. Appendix

We present the pmfs of some rival models, used in Table 3. The pmf of the

one-parameter DLD model is given by [7]

(10.1) px(γ) =
x− 3

2 exp(− γ
2x )∑∞

y=1 y− 3
2 exp(− γ

2y )
, x = 1, 2, ...; γ > 0.

The pmf of the one-parameter PL model is as [2]

(10.2) px(ν) =
x−ν∑∞

y=1 y−ν , x = 1, 2, ...; ν > 1.

The pmf of T-SDSD when 0 < θ < 1, and x = 1, 2, . . . , is given by [8]

(10.3) px(θ, 1) =
Γ(θ+1)x−θ−1 sin(πθ)− 1

2Γ(2θ+1)x−2θ−1 sin(2πθ)∑∞
y=1

(
Γ(θ+1)y−θ−1 sin(πθ)− 1

2Γ(2θ+1)y−2θ−1 sin(2πθ)

) .
The pmf of T-DSD when 0 < θ < 2, and x = 1, 2, . . . , is given by [8]

(10.4) px(θ, 0) =
Γ(θ+1)x−θ−1 sin(πθ

2 )− 1
2Γ(2θ+1)x−2θ−1 sin(πθ)∑∞

y=1

(
Γ(θ+1)y−θ−1 sin(πθ

2 )− 1
2Γ(2θ+1)y−2θ−1 sin(πθ)

) .
The pmf of T-2SDSD when 0 < θ < 2, 0 < β < 1, and x = 1, 2, . . . , is given by [8]

(10.5) px(θ, β) =
Γ(θ+1)x−θ−1 sin(

πθ(1+β)
2 )− 1

2Γ(2θ+1)x−2θ−1 sin(πθ(1+β))∑∞
y=1

(
Γ(θ+1)y−θ−1 sin(

πθ(1+β)
2 )− 1

2Γ(2θ+1)y−2θ−1 sin(πθ(1+β))

) .
Code availability. All computational, fitting and simulation studies have been

done using R statistical software. The R codes are available from the author upon

request.
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