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Widespread rumoring can hinder 
attempts to make sense of what is going 
on during disaster scenarios. Understanding 
how and why rumors spread in these 
contexts could assist in the design of 
systems that facilitate timely and accurate 
sensemaking. We address a basic question 
in this line: To what extent does rumor 
evolution occur (1) through reliance on 
a centralized information source, (2) in 
parallel information silos, or (3) through 
a web of complex informational interac-
tions? We develop a conceptual model and 
associated analysis algorithms that allow 
us to distinguish between these possi-
bilities. We analyze a case of rumoring 
on Twitter during the Boston Marathon 
Bombing. We find that rumor spreading 
was predominantly a parallel process in this 
case, which is consistent with a hypothesis 
that information silos may under-lie the 
persistence of false rumors. Special attention 
towards detecting and resolving parallel 
information threads during collective 
sensemaking may hence be warranted.

Collective sensemaking is a central 
component of response to disaster 
scenarios. In these situations, accurate 
and efficient collective sensemaking can 
lead to life-saving information revelation, 
impacting both decision making and actions 

of affected populations. Communicating and 
interacting with others are key elements in 
the sensemaking process, where individuals 
and groups must collectively come to 
understand what is going on around them 
[30]. Today, collective sense-making 
increasingly occurs in online settings [15]; 
social me-dia platforms help facilitate 
crisis communication, but are also rife 
with misinformation [25, 38]. Building 
tools to improve collective sensemaking, 
particularly on social media, could therefore 
have a meaningful impact on peoples’ lives. 
To build functional tools, we must better 
understand how the complex process of 
collective sensemaking occurs in these 
settings.

Rumors can often align with attempts 
to understand unfold-ing events when 
information is scarce, and as such rumoring 
behavior is often considered a form of 
collective sensemak-ing [30]. Rumors—
defined as unverified information—often 
arise in situations characterized by extreme 
uncertainty and a lack of official information 
sources, as is the case in crisis contexts. 
Rumors provide explanations arising from 
the “col-lective sensibilities of the ... public” 
[6], lessening anxiety and restoring a sense 
of control in ambiguous conditions. Rumors 
are emblematic of collective sensemaking 
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Feature Meaning Example Tweet

boy Child was a boy, not a girl
Everyone is posting the little girl running 
saying 8 year old killed in
Boston marathon... It was an 8 year old 
boy that was killed guys..

charity Child was running for charity
So sad, this precious 8 year old was running in 
the Boston Marathon for
charity. #RIPBabyGirl http://t.co/
yldeNmxKYA

father
Child was waiting for father at 
the finish line

I thought it was an eight year old boy that 
was waiting for his father to
cross the line that died in Boston not a girl 
running herself

sandy
Child was running for Sandy 
Hook victims

R.I.P. to this 8yr old girl who died in Bostons 
explosions, while running
for the Sandy Hook kids. RT for respect. 
http://t.co/ZBhI4on7tN

spectator
Child was a spectator, not running 
in the race

Im pretty sure this lil girl wasnt running the 
marathon & died. Her tag
says 5k on it. Stop posting this picture. 
http://t.co/EoFmmnQHgG

young Child died
One of the casualties was an 8 year old girl 
running the marathon. The
theme was 26 miles for 26 victims. The things 
people do make me sick.

because in situa-tions in which this process 
occurs, people often cannot or do not 
distinguish facts from false rumors.

Studies of rumoring behavior have a long 
history in the social sciences; prior work has 
tended to focus on the process of rumor 
spreading and the subsequent changes in 
content that result from serial transmission 
[3]. Although scholars pro-posed specific 
mechanisms leading to this phenomena (e.g. 
the tendency for rumors to retain specific 
content (sharpen-ing) and lose other 
details (leveling)), empirical analysis of the 
collective sensemaking processes is lacking. 
Mapping how variations and permutations 
of rumor stories unfold and change over 

time could improve our understanding of 
col-lective sensemaking and our ability to 
facilitate efficient and accurate information 
gathering and decision making.

In this study, we focus on rumoring 
behavior immediately following the 2013 
Boston Marathon Bombing. We map the 
dynamics of collective sensemaking by 
exploring variations of a particular rumor 
story over time. Occurring simultaneously, 
as well as in sequence, distinct threads of 
communication composed into a complex 
and widespread false rumor about a young 
girl who died while running the marathon in 
support of the Sandy Hook school shooting 
victims.
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Inference algorithms take as input data 
that is as-sumed to be reflective of some 
underlying world state of inter-est. The 
algorithms then perform intermediary 
computations before arriving at final 
inferences.

Our approach is to map the information 
space of rumor-related discussion. From a 
computational point of view, it is natural to 
think of collective sensemaking as a form 
of inference from observations. Inference is 
the process of arriving at knowledge via the 
observation of data. For instance, one might 
wish to infer the parameters of a model, such 
as the value of the gravitational constant g 
in the Newtonian model of physics. In this 
illustrative hypothetical example we might 
attempt to find the gravitational constant 
that best explains trajectories of a set of 
falling objects we have observed. To find 
this best value of g, one common approach 
is to try a sequence of values and observe 
the explanatory power of each element in 
this sequence. However, such processes 
are often sensitive to the initial element of 
the sequence, or the sequence itself might 
involve random choices. Therefore running 
multiple sequences in parallel can improve 
the speed or accuracy of inference. In a more 
complex scenario, data may be distributed 
across different locations, and servers at 
each location must periodically communicate 
intermediate inferences with each other in 
a carefully designed distributed algorithm 
to ensure that final inferences are accurate. 
Figure 1 illustrates schematic diagrams 
of centralized, parallel, and distributed 
architectures for inference algorithms.

In the case of collective sensemaking, 
individuals are observ-ing and participating 
in discussion about a rumor on social 
features identified in our tagging procedure.

media; they are forming beliefs or opinions 
based on their ob-servations and interactions. 
Given that this process frequently occurs 
across geographically distributed participants, 
it is nat-ural to ask whether the collective 

sensemaking we observe in these situations 
is consistent with processes of parallel or 
distributed inference. Abstracting this process 
may then al-low us to draw on a variety 
of inference procedures that have been 
studied in the vast literature on optimization 
and ma-chine learning to develop more 
precise mathematical models of collective 
sensemaking (e.g., [5, 16, 21, 29]).

BACKGROUND
Rumoring Behavior on Social Media
Early work on rumors studied the 

motivation for rumors, when and how they 
propagate, and how representations of infor-
mation mutate as a rumor evolves through a 
population [2, 7, 27]. Recent work extends 
theories of rumoring to online environments, 
categorizing prominent attributes of rumors 
in social media platforms [6, 22, 38]. The 
relationship between attributes of this sort 
and the propensity for a rumor to spread 
has also been studied [20, 33]. Other works 
have looked at how information propagates 
through social networks without attending 
to how the representations of information 
change [4, 8, 10, 12, 37].

In closely related recent work, 
researchers examined how memes evolved 
through news articles [31] and how rumors 
evolved through the network of Facebook 
posts [1, 11]. This prior work focused on 
understanding the details of how rumors 
mutate individually, as well as how 
those mutations and the attributes of the 
resulting rumors were related to their 
propa-gation rates, but this prior work also 
identified points when distinct rumors or 
rumor variants merged together. Ultimately 
our results are largely consistent with the 
related results of this prior research, but 
our focus is on the information processing 
implications rather than the implications for 
genetic models of memetics.

To the best of our knowledge, none of 
this prior empirical work has attempted to 
infer the dependencies between rumor or 
con-versation threads in order to measure 
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the extent of parallel and distributed 
information processing occurring during 
collective sensemaking. Our work also 
contrasts with the closely related prior work 
on rumor evolution on Facebook in the of 
the rumor we study. Prior work has focused 
on quoted text and edits between quotes. 
This choice for large-scale data analysis but 
limited the types that could be studied and 
the contextual detail that brought to bear in 
understanding this phenomenon use a semi-
automated coding system using regular 
sions to tag conceptual content of tweets 
associated rumor we study, and hence we 
can study the process tive sensemaking at 
a different level of analysis.

to using quotes, we are able to observe 
conceptual rather than just textual changes, 
and our methods ble to any social media 
rumor rather than just copy-reposts.

Social Computation
Our work also connects to a growing 

literature that to conceptualize human 
groups and social systems tion processing 
systems [9, 13, 17, 18, 19]. While behavior 
and collective sensemaking have been 
formally in computational terms previously 
(e.g., [ best of our knowledge, ours is 
the first work that explicit information 
processing model in order to stand observed 
rumoring behavior, and among the so for 
collective sensemaking behavior (cf. [32]). 
many formal models of rumor behavior 
exist, including bodies of literature on 
cultural diffusion [14] and algorithms [28], 
but the formal models in this area that are 
connected with data tend to lack coherent 
interpretations as systems that actually 
perform information processing, and the 
models that do have interpretations as 
information processing systems tend to 
be divorced from empirical data. The 
present work marries a formal information 
processing view of social systems with the 
empirical study of rumoring behavior and 
collective sensemaking.

ARCHITECTURES OF SOCIAL 

COMPUTATION
In designing software systems, one of the 

basic architectural decisions to be made first 
is whether the system will be imple-mented 
in a centralized, parallel, or distributed 
manner. This choice involves deciding not 
only whether to use multiple processing 
units but also how and when multiple 
processing units would communicate with 
each other during computation (typically 
either not at all or through shared memory 
in the parallel case, or through message 
passing in a prespecified network structure 
in the distributed case).

When viewing social phenomena 
through the lens of compu-tation, it is also 
natural to ask in which of these capacities 
a phenomenon is operating. In the social 
context, the ques-tion is fundamentally 
about the complexity of the patterns of 
information flow between people. However, 
it is difficult to disassociate the terms parallel 
and distributed information processing from 
the algorithmic techniques typically associ-
ated with those areas in computer science. 
Our first step is therefore to achieve a level 
of conceptual clarity around what it means 
for an arbitrary information processing 
system to be operating in a centralized, 
parallel, or distributed capacity. This 
characterization obviously must be general 
enough so that it can apply to systems of 
people, who are clearly not

Informational dependency graphs 
associated with centralized, parallel, 
and distributed computation. The nodes 
represent computation blocks and the edges 
informational de-pendencies. The dotted 
lines show the downstream “influence 
cones” of the highlighted blue nodes—the 
set of nodes that their computation affects. 
Centralized computation is asso-ciated with 
sharp cones in an information pipeline. 
Parallel computation is associated with non-
intersecting information silos. Distributed 
computation displays intersecting cones 
that form an information web.
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arranged according to the typical 
architectures of centralized, parallel, or 
distributed software.

Basic Framework
We first suppose that information 

processing, whether in soft-ware or 
in society, consists of compositions of 
“computation blocks”. In the case of social 
computation, a block might be a single person 
thinking about a single fact. In the context 
of our work, each computation block will 
be associated with a new inference event. 
These computation blocks are composed 
via informational dependencies, in which 
the output of one com-putation block 
is communicated as input into another 
block. In the social case, an informational 
dependency could arise from one person 
communicating an inference to another 
per-son. An informational dependency 
could also occur between one person 
thinking about a fact at one point in time 
and the same person rethinking that fact at 
a later point in time with the benefit of the 
inferences gleaned on the first occasion. The 
distinction between centralized, parallel, 
and distributed pro-cessing can then be 
understood in terms of the structure of 
the network of informational dependencies 
between computation blocks. These graph 
structures are illustrated in Figure 2.

Before describing each of these structures 
in turn, it is worth noting that unlike in 
software systems, where all engaged pro-
cessing units play a functional role in the 
computation, social systems may also have 
people that perform actions that are not 
functionally relevant to the computation 
effectively embodied by the system. For 
example, a person may participate in a system 
by passively consuming the news. These 
tangential actors are informationally passive, 
and while they enrich the system, they will 
not affect its computational architecture.

Centralized Processing
Centralized processing is characterized by 

chain-structured informational dependency 

graphs. Centralized algorithms for inference 
typically involve a single processor taking 
data obser-vations and gradually updating 
inferences based on that data (in a series of 
computation blocks). In the social context, 
one example of a centralized collective 
sensemaking phenomenon would be a crowd 
of people passively consuming news from a 
single source, perhaps one that updates its 
stories over time. The computation blocks in 
this case are found within the news source, 
and the passive observers are excluded 
from the infor-mation architecture.

Parallel Processing
Parallel processing is characterized by tree-

structured infor-mational dependency graphs. 
Parallel algorithms for infer-ence typically 
involve multiple processors running isolated 
instances of an identical algorithm. While 
atypical for parallel inference algorithms, 
we also treat spawning child processes, e.g. 
that run replicated computation starting at 
the last ob-served parent state, as included 
within the scope of parallel architectures. In 
the social context, parallel processing could 
occur through multiple people actively 
engaging with news from a single source 
by modifying that news according to their 
own experiences. Parallel processing could 
also occur through distinct groups of people 
passively consuming news from single distinct 
sources. Or parallel processing could oc-cur 
through people interpreting a situation using 
their own experiences without reference to 
information from others.

As is evident in these examples, parallel 
processing can be associated with rigid 
“information silos”. From a technical point of 
view, in a parallel process, the descendants 
of two computation blocks with no path 
between them form distinct information 
silos. No two downstream computation 
blocks from each of those parent blocks 
will share new information between them.

Distributed Processing
Distributed processing is characterized 

by trellis-structured informational 
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dependency graphs, i.e., directed acyclic 
graphs. Distributed algorithms for inference 
mainly involve periodi-cally reciprocally 
sharing intermediary processed data or 
in-ferences between processors. In the 
social context, distributed processing could 
occur if people integrate information from 
multiple news sources or synthesize ideas 
heard from multiple people.

MODELING COLLECTIVE SENSEMAKING
The goal of our work is to understand 

the extent to which observed processes of 
collective sensemaking on social me-dia are 
centralized versus parallel or distributed. If 
people mainly draw upon a single global 
source for their information about a particular 
scenario, and only copy, embellish, or re-
fine that information privately, collective 
sensemaking would appear essentially like 
a centralized process. If individuals or small 
groups mostly replicate or refine distinct 
non-interacting threads, the process would 
appear essentially parallel. If mul-tiple 
threads exist and continuously interact with 
each other,

An illustration of our conceptual model 
of collective sensemaking/rumor spreading. 
Computation occurs at the boxed individuals 
who create new hypotheses. Each utterance 
shown in the figure would be an observation 
in our dataset.

the process would be truly distributed. 
Each of these poten-tial conclusions suggests 
different classes of algorithms to look 
towards in further work developing models 
of collective sensemaking as inference.

To grapple with these questions, we 
suppose that the problem of collective 
sensemaking can be viewed as one of 
inferring an unknown present state of 
the world. We suppose that the state of 
the world can be represented by a binary 
vector of features. For example, in a disaster 
context, some features might be “there 
was a tornado”, “there is a fire”, “someone 
has died”, et cetera. We also suppose that 
people communicate hypotheses about 

the world, again represented as binary 
vectors consist-ing of the features of the 
world state (e.g., using the features above, 
(1,1,0) indicates a hypothesis that there was 
a tornado and there is a fire, but nobody 
has died). Collective sensemak-ing involves 
the process of propagating, augmenting, 
refining, merging, supporting, and 
extinguishing these candidate hy-potheses. 
We will define one thread in a process of 
collective sensemaking as the collected 
expressions of one candidate hypothesis (a 
particular combination of nonzero features).

To simplify the analysis, we assume 
that individual features or combinations 
of features are only discovered once, and 
all other occurrences of those features or 
combinations are copies or modifications of 
those first occurrences. While this simplify-
ing assumption likely misses the complexity 
of real-world col-lective sensemaking, 
where truly independent sources could 
post essentially identical observations 
for example, the as-sumption allows us 
to begin to map a very complicated phe-
nomena. Our conceptual model is illustrated 
in Figure 3.

DATA
The dataset we analyze consists of 

observations of collec-tive sensemaking 
unfolding during the 2013 Boston Marathon 
Bombing. On April 15, 2013 two bombs 
were detonated near the finish line of the 
Boston Marathon. Hundreds of spectators 
and runners were injured by the blasts, 
and three individuals were killed. In the 
week that followed, police launched a sig-
nificant manhunt for two suspects, during 
which time social media users collectively 
attempted to help apprehend the sus-pects. 
Several rumors propagated during this time, 
including the case study in this paper. A plot 
of the temporal dynamics and frequency 
of the observed instances of each rumor 
thread. There is one row for each rumor 
thread, and one point for each tweet.

Collection
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The data we analyze was collected in a 
prior study by using the Twitter Streaming 
API with the search terms “blast”, “boston”, 
“bomb”, “explosion”, and “marathon” [22]. 
Data collection began a few hours after the 
explosion of the first bomb and continued 
for seven days; some periods of observation 
have missing data due to rate limits of the 
Twitter API. Prior work has examined this 
data, identifying multiple rumor stories and 
qualitatively coding individual tweets based 
on their relevance to each rumor [22, 35, 38].

Tagging
Although the dataset we use was studied 

in prior work, we enrich the data by adding 
feature tags to 4,826 tweets asso-ciated 
with one larger rumor story. These tags 
correspond to “features” in our conceptual 
model. We focus on the “Girl Running” 
rumor, which contained claims and 
references to a young girl who was killed 
while running the marathon in honor of the 
victims of the 2012 shooting at the Sandy 
Hook elementary school in Newtown, CT. 
We focus on this rumor because it is well-
defined while still containing interesting 
complexity in the number of distinct ideas 
present in the con-versation. We use 4,826 
distinct tweets identified as related to this 
rumor (via manual coding in prior work).

In an iterative and collaborative process, 
we compiled a list of distinct information 
features within the larger rumor story. Two 
authors of the present work took a random 
sample of 100 of these tweets, examining 
each tweet individually to identify and note 
new information that was being introduced 
into the rumor landscape. Using a list of 
keywords and phrases to identify each 
of these features, and after discussion 
among the research team, a consensus 
was reached about the set of appropriate 
features. Throughout this process, the level 
of detail of the features was refined. For 
example, two features that overlapped 
conceptually and empirically would likely 
be merged into a single feature; other cases 

were separated into multiple more specific 
features. For each feature, a reg-ular 
expression-based query was developed to 
automatically retrieve and identify tweets 
from the dataset related to that par-ticular 
rumor feature. Finally, some irrelevant and 
unreliable features were removed prior to 
analysis. The resulting set of

Distribution of the logarithm of the 
volume (number of tweets) of each thread. 
(b) Distribution of the number of features 
associated with each thread. (c) Histogram 
of the times at which we first observe an 
instance of each thread. (d) Histogram of 
the duration of each thread.

The time a thread first appeared versus 
its ultimate total tweet volume. (Right) The 
duration of time over which we observe a 
thread versus its total volume.

features identified in this process, along 
with basic descrip-tions and example tweets, 
is shown in Table 1. We consider a single 
thread of discussion to be the set of tweets 
associated with a particular combination of 
these features.

Descriptive Statistics
This dataset consists of 27 distinct 

rumor threads. In this section we present 
visualizations of basic descriptive statistics 
of these threads to provide context for 
our analysis. The time stamps of all tweets 
associated with the 27 threads are shown 
in Figure 4. Immediately this plot begins 
to hint at the structure of collective 
sensemaking in this case. We see that there 
are three threads that dominate in terms of 
the volume of tweets, and tweets associated 
with each of these three threads occur 
throughout our observation window. Figure 
5 displays the distribution of tweet volume 
by thread as a histogram, again showing 
that most threads have low volume. We 
also observe that most threads have an 
intermediate number of features associated 
with them. Figure 5 also shows that most 
observed threads are created early, and last 
only a short time. Figure 6 shows that the 
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most popular threads tend to be introduced 
earlier, and the length of time a thread 
exists appears to have an exponential 
relationship with the total volume of tweets 
associated with it. These results indicate the 
early-comers are likely to persist and enjoy 
widespread attention.

METHODS
Our main goal is to evaluate the degree to 

which rumoring behavior and by extension 
the collective sensemaking process observed 
in this case displays signatures consistent 
with cen-tralized, parallel, or distributed 
information processing. We combine 
quantitative and qualitative assessment 
of the rumor threads in this analysis to 
give insight into how communication was 
unfolding over time. For the quantitative 
component of

our analysis, we develop an automated 
method for classifying threads into different 
types of dependencies, associated with 
either centralized, parallel, or distributed 
computation.1 For the qualitative component 
of our analysis, we look at example tweets 
from threads associated with different 
types of depen-dencies, drawing on expert 
knowledge of this particular case study. 
Our qualitative component adds richness 
and context for our observed results, 
increasing understanding as well as lending 
face validity to quantitative results.

Analysis Approach
To understand whether threads are formed 

in a centralized, parallel, or distributed 
manner we attempt to reconstruct the 
dependency structure between threads. 
Given our conceptual model we firstly 
suppose that any tweet that consists entirely 
of a previously observed combination of 
features belongs to the thread associated 
with that combination. When we see a 
tweet with a new combination of features, 
all of which are features that have been 
observed previously, we can deduce that 
this tweet must have been derived from 
some prior thread or threads. There are 

two possibilities in this case. If that specific 
combination of features has appeared as a 
subset of a combination of features that 
appeared in a single previous tweet, then 
the new thread could have been formed by a 
dele-tion event. If that specific combination 
of features has never appeared at all in any 
previous tweet, then the new thread must 
be from a merge of two prior threads. For 
example, if we observe the threads (1,1,0) 
and (1,0,1), and then later observe (1,1,1), 
this latter thread could have been due to a 
merge of these two earlier threads. Finally, 
when we find a new feature together with 
an otherwise old combination of features, 
we can think about this tweet as forming 
from a mutation event. Since all tweets we 
analyze were detected as associated with 
the Girl Running rumor, we treat threads 
that consist of completely novel features as 
mutations on the base thread (0; 0; : : : ; 0).

Each of these types of dependencies 
are associated with cen-tralized, parallel, 
or distributed processing. Centralized and 
parallel processing would consist only of 
mutations and dele-tions events since in 
these forms of computation there is either 
only a single thread or multiple non-
interacting threads. Dis-tributed processing 
would also include merge events between 
threads since it consists of multiple 
interacting threads of com-putation.

Even with the deductions just described, 
there is still ambiguity in the dependency 
structure between threads. This ambiguity 
arises from cases where a thread could have 
been formed either by a deletion event or a 
merge event. For example, if a tweet with 
features (1; 1; 1; 1) exists already, as well as 
tweets with features (1; 0; 0; 0) and (0; 1; 
0; 0), then a new tweet with features (1; 1; 
0; 0) could have been a refinement of the 
first thread, or a merge of the second and 
third threads. We resolve these ambiguities 
in three different ways, detailed below. We 
use three different methods in order to 
provide a more robust analysis.
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1The code for our quantitative analysis 
is online at https://github.com/pkrafft/
Centralized-Parallel-and-Distributed-
Information-Processing-during-Collective-
Sensemaking.orithm 1 Merge Event Lower

Counting Thread Types
Our first two methods of resolving 

ambiguous dependencies establish lower 
and upper bounds on the number of merge 
events that could have occurred between 
threads. Establishing a merge event lower 
bound (MELB) provides the most severe 
test within the confines of our conceptual 
model of whether distributed processing 
is occurring at all in the collective sense-
making event we study. The purpose of the 
lower bound is to avoid overestimation and 
a false positive declaration of dis-tributed 
information processing. To establish a lower 
bound on the number of merge events, we 
simply attribute thread creation to deletion 
events whenever there is a case where a 
thread could have formed from either 
a deletion or a merge event. Therefore, 
with this method, merge events are likely 
undercounted. Obtaining a merge event 
upper bound (MEUB) allows us to avoid a 
false negative declaration of distributed 
information processing. To establish an 
upper bound, we at-tribute any thread 
creation to merge events whenever there 
is a case where a thread could have formed 
either from a deletion or a merge event. 
Pseudocode for these two methods is shown 
in Algorithms 1 and 2.

Inferring Dependencies
Our third method resolves the same 

ambiguity in a different way. This method 
first defines a set of three atomic actions 
that can be composed to lead to new 
threads. The first action consists of merging 
all of the features of two threads, the sec-
ond action consists of deleting one feature 
from one thread, and the third action 
consists of creating a new feature on one 
thread. These actions can be composed any 
number of times in the creation of a new 

thread, but this method assumes that newly 
observed threads were formed by the 
minimal number of actions upon previously 
existing threads. When this heuris-tic does 
not completely determine a single set of 
potential dependencies (for example, if a 
new thread could have been formed by 
a single deletion from an old thread, or a 
single merge of two old threads), then the 
dependency set with the highest mean tweet 
volume among the potential dependencies

Counts of the different thread 
dependency types. One thread (with zero 
features) represents discussion detected 
as relating to the rumor not displaying 
distinctive features.

with minimal edit distance is chosen. 
The algorithm we wrote for identifying the 
set of simplest dependencies for each new 
thread is a complex recursive algorithm, and 
hence we omit a description of its details 
due to space limitations. This method not 
only allows us to count the number of times 
each type of dependency occurred, it also 
allows us to identify which specific prior 
threads likely contributed to a new thread. 
Thus we can directly reconstruct and 
examine a specific plausible dependency 
structure of threads using this method.

RESULTS
The descriptive statistics we examined 

of our dataset already indicated that 
multiple prominent threads of discussion 
were occurring simultaneously during the 
propagation of the Girl Running rumor. 
This finding suggests that collective 
sense-making in this case was either 
primarily parallel or primarily distributed. 
Distinguishing between these two 
possibilities requires examining how the 
main threads of discussion might have 
arisen. Beyond the major two or three 
threads of discus-sion, there were also a 
substantial number of threads with a lower 
volume of tweets associated with them. 
We are also in-terested in examining the 
common dependency patterns among these 



160

lower volume threads. The results from 
counting the number of instances of each 
possible type of dependency are shown in 
Table 2. A visualization of specific inferred 
depen-dencies between threads is shown in 
Figure 8.

Parallel Information Processing
Threads with single dependencies tend 

to have higher log volume than threads 
with multiple dependencies. Each point in 
each plot is a single thread.

that our third method for inferring 
dependencies also supports this 
interpretation.

Examples
We look at three examples of threads 

with dependencies and dynamics that 
indicate parallel processing. As has been 
previ-ously noted in investigations of the 
rumor studied here [22], and as confirmed 
by our quantitative analysis, this rumor 
con-sisted mainly of two threads. One 
thread involved reports that a young girl 
had died in the 2013 Boston Marathon 
Bomb-ing, possibly while running in 
the marathon. In our data, this thread is 
associated with the “young” feature. Since 
this thread consists only of a single feature, 
the only possible ways in which it could 
have been created are through a deletion 
event of a more complicated thread, or 
through an innovation on top of the general 
discussion thread (that has no features). Our 
quantitative analysis reveals that “young” 
was indeed an innovation without prior 
dependencies beyond the general dis-
cussion around the event. Looking at the 
actual text of the tweets in our dataset, 
the first tweet we observe referencing this 
thread is the following: “RT @XXX: An eight 
year old girl who was doing an amazing 
thing running a marathon, was killed. I cant 
stand our world anymore”.2

The main variant of this thread, which 
has been recognized in prior work [22], 
involved reports that the young girl who 
had died was running in memory of the 

victims of the Sandy Hook school shooting. 
In our data, this thread is associated with 
the “young,sandy” combination of features. 
Since this thread has two features, and 
since we can confirm that the “young” 
thread existed first within our tweets, the 
“young,sandy” thread could have been 
formed either by a merge of the “young” 
thread and a separate “sandy” thread, or it 
could have formed from a simplification of 
a more complex thread, or from a mutation 
of the “young” thread.

Our dependency inference method 
indicates that the “young,sandy” thread 
was in fact formed by a mutation of the 
“young” thread. That is, the first appearance 
of the “sandy” feature co-appeared with 
the “young” feature. The first tweet we 
observe with this combination was “RT @
XXX: + Boston Marathon Bombing has me 
sobbing a fucking river. An 8 year old, a 
little girl who was running for Sandy Hooks,

2The first such tweet we observed was 
a retweet. This is either because the rumor 
was propagating earlier than the beginning 
of the data collection or because Twitter 
API rate limits led the data collection to 
miss the earliest tweet.

...” and we have no clear references to 
Sandy Hook be-fore this tweet. However, 
we do observe earlier references to the 
little girl who died having been running for 
char-ity. The first such tweet we observe 
(classified as in the “young,charity” thread) 
was “So sad, this precious 8 year old was 
running in the Boston Marathon for charity. 
#RIP-BabyGirl http://t.co/yldeNmxKYA”. 
It could therefore be that “young,sandy” 
mutated from this thread rather than the 
“young” thread alone.

In either case, all of these threads have 
single dependencies among the existing 
threads of discussion, and hence are char-
acteristic of parallel information processing. 
Participants in the online discussion appear 
to have seen prior reports in a single thread 
and introduced variants of the rumors that 
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then propagated in parallel.
One final piece of evidence that supports 

the fact that these threads were indeed 
propagating in parallel highly isolated 
threads of discussion is that eventually 
(indeed actually rather early on) threads 
appeared that identified the rumor about 
the young girl as being false. For instance, 
this tweet appeared al-most immediately 
after the first instance of the “young” 
thread that we observed, “Just wanna 
tell you that you have to qualify for the 
Boston Marathon so a 8 year old wouldnt be 
running!!!! that picture isnt of the girl!!!”, 
and a number of similar sub-sequent tweets 
also appeared. Yet the main rumor threads 
persisted despite these denials.

Distributed Information Processing
While the few threads that include the 

vast majority of tweets we observe appear 
to be associated with parallel information 
processing, we also find signatures of 
distributed information processing in the 
tail of the discussion activity. As shown in 
Table 2 we identify at least ten threads, a 
substantial proportion of the total number 
of threads we observe, that cannot have 
been formed by deletions from or mutations 
of prior threads. This 40% or so of threads 
do not constitute a large volume of tweets, 
but they may shed light on how some 
people access the information available 
during collective sensemaking, and they 
highlight the complexity in the details of 
the collective sensemaking process.

Examples
We examine two examples of inferred 

merge events to check whether these 
cases appear to be legitimate rather than 
artifacts of the tagging procedure or of our 
inference procedure. The first example 
occurs between the threads “young,boy” 
and “young,sandy”, which appear to merge 
into “young,sandy,boy”. Here are the tweets 
associated with “boy” that appear before 
the first appearance of “young,sandy,boy”:

“Everyone is posting the little girl 

running saying 8 year old killed in Boston 
marathon... It was an 8 year old boy that 
was killed guys..”

“RT @XXX: For those seeing photo of 
8 yr old girl running with claims that she 
died: CNN has reported it was an 8 yr old 
BOY wh ...”

The next tweet with a “boy” feature 
is then in the “young,sandy,boy” thread: 
“HES A BOY @XXX: R.I.P. to the 8 year-
old girl who died in Bostons explosions, 
while running for the Sandy Hook kids. 
#prayforb...”

Clearly this tweet has integrated 
information about the boy who died while 
spectating with an observation of the Sandy 
Hook thread. The “young,boy” thread also 
continues in paral-lel with tweets such as 
the following:

“Just sayin it was an 8 year old boy that 
died, not a girl, for all those who posted 
a picture of a little girl running #GodBless 
#Boston”

“RT @XXX: Is this true? CNN says it was a 
boy RT @XXX: Girl, 8, died in #Boston while 
running ...”

And eventually we see another 
“young,sandy,boy” instance: “An 8 year old 
girl died, and an 8 year old boy in Boston 
today. And they both were running in 
honor of sandy hook. Like really?”

Another merge event we observe occurs 
between the “young,boy” and “spectator” 
threads. Here we find a refer-ence to the 
fact that the girl people had been talking 
about could not have been running in the 
marathon because of her age, as well as a 
reference to the report that a young boy had 
died, not a girl: “It was a boy that died not 
the 8 year old girl.. plus she wasnt running 
you need to be 18 to run the marathon. 
#prayforboston”

These threads, though comparatively 
low in volume, indicate that some people 
are paying attention to multiple parallel 
threads that are occurring, and integrating 
information from across them into new 
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threads. Again, however, these merge 
events appear primarily to create new 
parallel threads rather than extinguishing 
old threads.

DISCUSSION
The results presented above explore 

collective sensemaking during the 2013 
Boston Marathon Bombing. The evidence 
we examined suggested that collective 
sensemaking in this case contained both 
parallel and distributed information 
processing. These results have implications 
for understanding collective sensemaking in 
the context of crisis events.

Sources of Parallel and Distributed 
Processing

Given the observed high degree of 
parallelism in this case study of collective 
sensemaking, as well as some degree 
of dis-tributed information processing, 
it is important to consider how these 
components (and their combination) may 
arise in social media systems; collective 
sensemaking in online environments may 
well be constrained by the features of the 
platforms used. In this case, the structure 
of collective sensemaking during extreme 
events is driven primarily by the affordances 
and lim-itations of the platform interface 
itself. Twitter, for example, allows users to 
search for distinct content of interest using 
key-words or hashtags. Search results then 
display tweets associ-ated with distinct 
subsets of the larger discussion surrounding 
this rumor, and the event itself. Users can 
also receive content through pre-existing 
or newly formed social relationships (i.e. 
follower ties). Alternate mechanisms of 
exposure might be third-party platforms, 
or even word-of-mouth.

A reconstruction of the dependencies 
between threads of the rumor we study. 
Each horizontal line is a thread, with the 
thickness of the line being monotonically 
related to the volume of tweets associated 
with the thread.

Given the similarity between the 

language used in affirming and denying 
tweets (e.g. copy and pasting an affirming 
tweet and adding a denial of the content 
at the beginning or end), and given how 
persistent the dominant threads were even 
in the face of conflicting information, 
the limited display of infor-mation in the 
interface seems unlikely to represent the 
whole story. It is likely extremely difficult 
for users to have a com-plete and accurate 
picture of all rumor-related conversation 
in the total information space; users 
instead see a very spe-cific, potentially 
biased, subset of crisis communication. It is 
unsurprising then, given these features of 
the communication channel, that multiple 
parallel discussions may exist.

Another source of parallelism is 
suggested when examining the text of the 
example tweets, as well as referencing prior 
work about rumoring during crisis events, 
specifically on social media platforms. Social 
media posts persist, though perhaps not 
visibly, and can be “re-discovered” at much 
later time points. Users who may have 
missed detailed rumor discussion, and even 
resolution of uncertainty within the rumor, 
can re-introduce rumors by re-posting 
outdated content. Indeed, prior work has 
observed cases of rumor resurgence [4, 22].

Moreover, rumor-related messages 
often contain references to external 
sources, such as mass media outlets. In the 
case reviewed here, for example, a large 
portion of the conversa-tion surrounding 
denials of the Girl Running rumor explicitly 
referenced content from CNN which noted 
it was actually a young boy who was killed 
while spectating. Each individual thread of 
discussion we examined was centralized 
by defini-tion since they consisted of the 
same information content. It is possible 
that distinct threads obtain their coherency 
from some centralized, external information 
source such as CNN. Some amount of 
parallelism could therefore be due to 
different people attending to difference 
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news outlets.
Finally, there has been continued 

interest in the ability of the distributed 
crowd on social media platforms to engage 
in crisis response and recovery activities, 
coordinating aid activities, situational 
awareness, crisis mapping, donations, etc. 
[23, 24, 36, 34]. Distributed information 
processing could arise from the coordinated 
actions of populations that have prior 
experience with crowdwork and crisis 
participation, and who are tweeting about 
various different discussion threads.

Relation to Theories of Rumoring
It is also interesting to consider how our 

information pro-cessing perspective relates 
to traditional characterizations of rumoring 
processes such sharpening and leveling, 
as well as other social phenomena such 
as information silos and echo chambers. 
Deletion events can likely be viewed as 
sharpen-ing or leveling. Merge events, 
mutations, and innovations are probably 
related to “assimilation”. Echo chambers and 
the spread of false news could potentially 
be exacerbated by parallel rumoring while 
potentially being mitigated by central-ized 
or distributed rumoring. Future work could 
study these connections in more depth.

Implications for Design
Research that improves our 

understanding of collective sense-making, 
and the types of information processing that 
accom-pany it, has many implications for 
the design of systems to help facilitate these 
processes. For example, making observed 
parallel processing visible to users could 
help online crowds transition from parallel 
to centralized or distributed systems for 
collective sensmaking, perhaps increasing 
efficiency and allowing human resources to 
be directed at multiple tasks rather than 
multiple versions of the same task.

Prior work has often focused on building 
systems to detect rumors (e.g. [26]). Less 
attention has been paid to building systems 
that help facilitate collective sensemaking 

and rumor-ing behavior itself. Such work 
could aid in crisis response, allowing online 
crowds to reach consensus or at least 
collective understanding of appropriate 
response actions. These systems could 
also assist in decision making by directly 
facilitating communication and interaction 
that builds understanding and awareness 
of crisis situations and how events unfold. 
Our study represents just one step in this 
direction.

Methodological Limitations
One limitation of our study is in the 

raw data itself. The dataset was collected 
using Twitter’s Streaming API, and using 
par-ticular keyword searches. Hence, it 
is likely the case we only have a sample 
(albeit a large sample) of the full set of 
tweets discussing this rumor. If multiple 
threads were introduced close together in 
time, lacking comprehensive coverage of all 
tweets could disrupt the dependencies we 
infer.

Our tagging procedure also introduces 
a potential source of error. Features were 
manually curated through an extensive and 
resource intensive procedure, but ultimately 
the features associated with specific tweets 
were determined automatically via regular 
expressions and are therefore noisy. Tagging 
is susceptible to both false positives and 
false negatives; errors could disrupt our 
inferred dependencies for the same reason 
that missing tweets do.

We also need to consider possible error 
due to our modeling assumptions. The 
main modeling assumption we leverage is 
that features are only innovated once. This 
assumption is almost certainly not met, but 
it may be approximately satisfied if most 
people get their information from looking 
at what others say rather than investigating 
the event independently, or if each feature 
is innovated by a single source external to 
the platform (such as a news source). If this 
assumption is not satisfied, then we may 
inappropriately infer merge events when 
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none have actually occurred. Without this 
assumption, then, apparent merge events 
between threads could also be attributable 
to a thread rediscovering a feature contained 
in a separate thread, rather than having an 
actual interaction with that thread.

While strong assumptions simplify 
models and limit their im-mediate 
application in real-world settings, they 
also provide necessary parsimony when 
exploring complex phenomena. Moreover, 
the qualitative analysis used to augment 
our quan-titative findings helps to evaluate 
the impact of all of these limitations. By 
carefully checking the inferences from our 
quantitative analysis against prior work 
and against the text of the tweets in the 
raw data, we can gain confidence in our 
conclusions. Future work could examine 
probabilistic models that account for gaps 
in our data, for unreliable features, and for 
varying probabilities of different features 
being discovered independently in order to 
relax our modeling assumptions and assign 
probabilities to merge events.

Finally, we must be careful not to 
generalize too readily from the single Girl 
Running rumor that we study. The amount 
of parallel and distributed information 
processing that we observe could be tied 
to the type of rumor we chose to study 
(a clearly false rumor that was likely 
intentionally started by a person who knew 
it to be untrue). Further, many of the 
affirming permutations around this rumor 
were likely purposeful mis-information, so 
the sensemaking process was mostly around 
questioning/correcting the rumor. Future 
work could conduct the type of analysis 
we have performed here with a broader set 
of rumors.

CONCLUSIONS
In this work we present a new way 

to analyze and characterize individual 
rumoring scenarios. Our conceptual model 
opens the door to richer mathematical 
models of rumor spreading than currently 

exist. Our analysis methods and conceptual 
model also lead to inferential capabilities 
and attendant visual-izations that could 
be leveraged immediately in a system for 
collective sensemaking.

We illustrate these techniques using data 
from a rumor that has been extensively 
analyzed previously using mixed-method, 
interpretivist research methods, including 
detailed qualita-tive analysis in conjunction 
with temporal signatures [22, 35, 38]. This 
prior work serves as a comparison for the 
current work, allowing us to demonstrate 
how our new methodologi-cal approach 
leads to additional insights about how the 
rumor changed over time, and providing 
insight into why it kept propagating (widely) 
after it had been corrected. This prior work 
also demonstrates that this rumor is similar 
in temporal signature shape to the majority 
of Twitter rumors, and highly representative 
of one of three Twitter rumor types.

Our substantive finding that rumoring in 
the case we studied was largely centralized 
and parallel may be central to explain-ing 
why rumors resurface even after they have 
been corrected, but is also interesting in 
its own right. Given that the rumoring 
process could easily have been highly 
distributed, some under-lying forces must 
be favoring centralized and parallel rumor 
evolution. Future work could identify these 
underlying forces. Finally, future work could 
compare how the prominence of different 
dependency types and the underlying 
forces leading to them vary across different 
types of rumors or different social media 
and interaction contexts.
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ԿԵՆՏՐՈՆԱՑՎԱԾ, ԶՈՒԳԱՀԵՌ ԵՎ ՏԱՐԱԾՎԱԾ ՏԵՂԵԿԱՏՎՈՒԹՅԱՆ  
ՄՇԱԿՄԱՆ ԳՈՐԾԸՆԹԱՑԸ ՀԱՎԱՔԱԿԱՆ ԻՄԱՍՏԱՎՈՐՄԱՆ ԸՆԹԱՑՔՈՒՄ

ՊԻՏԵՐ ԿՐԱՖԹ
Մասաչուսեթսի Տեխնոլոգիայի համալսարան

ՔԵՅԹԼԻՆ ԶՈՒ, ԻԶԱԲԵԼ ԷԴՎԱՐԴՍ
Վաշինգթոնի համալսարան

ՔԵՅԹ ՍԹԱՐԲԸՐԴ
Մագիստրոս, Քեմբրիջի համալսարան

Հոդվածում ներկայացվում են աղետների ժամանակ հավաստի տեղեկատվության 
տարածման խոչընդոտները, վերհանվում են դրանց պատճառները, փորձ է արվում 
տալու լուծումներ՝ հասարակությանը խուճապից զերծ պահելու համար: Մասնավորապես 
նշվում է զանգվածային բամբասանքների և կեղծ տեղեկատվության բացասական ազդե­
ցության հետևանքների մասին: Այդ հարցում մեծ ազդեցություն ունեն սոցիալական 
ցանցերը, որոնց վերլուծությունն էլ հեղինակներին թույլ է տալիս ալգորիթմների միջո­
ցով կատարել հաշվարկներ, առաջ քաշել վարկածներ և հնարավորինս պակասեցնել 
ապատեղեկատվության ռիսկերը: 




