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Abstract. In this paper, we study unicity of meromorphic functions concerning differential-
difference polynomials and mainly prove: Let ki, ka,--- ,kn be non-negative integers and k =
max{k1, ko, - ,kn}, let | be the number of distinct values of {0,c1,c2, - ,cn}, let s be the
number of distinct values of {c1,c2, - ,cn}, let f(z) be a non-constant meromorphic function of
finite order satisfying N(r, f) < mT(r, ), let mi(2),ma(2), - ,mn(2), a(z),b(z) be
small functions of f(z) such that a(z) # b(z), let (c1, k1), (c2,k2), -+, (cn, kn) be distinct and let
F(2) = my(2)f*D (z4c1)+ma(2) f*2) (z4co) +- - - +mn(2) fEn) (2 +¢,). If f(z) and F(z) share
a(z),b(z) CM, then f(z) = F(z). Our results improve and extend some results due to [T}, [I8] 20].
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1. INTRODUCTION AND MAIN RESULTS

In this paper, a meromorphic function always means meromorphic in the whole
complex plane. We use the following standard notations in value distribution theory,
see |7, 15, 16]: T'(r, f), N(r, f), m(r, f),- -

We denote by S(r, f) any quantity satisfying S(r, f) = o(T(r, f)) as r — oo
possible outside of an exceptional set E with finite logarithmic measure | pdr/r <
00. A meromorphic function «(z) is said to be a small function of f(z) if it satisfies
T(r,a) = S(r, f).

Let a(z) be a small function of both f(z) and g(2). If f(z) —a(z) and g(z) — a(z)
have the same zeros counting multiplicities (ignoring multiplicities), then we call
that f(z) and g(z) share a(z) CM (IM). Let N(r,a) be the counting function of

common zeros of both f(z) — a(z) and g(z) — a(z) with counting multiplicities. If

N (np i) N (ro ) = 2N () < 8(n) + S(n0)

then we call that f(z) and g(z) share a(z) CM almost.

IThis paper is supported by the NNSF of China(Grant No 12171127) and the NSF of Zhejiang
Province (LY21A010012).
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Let f(z) be a non-constant meromorphic function. Define

_ — log" T(r, f)
o) = Jig 220

by the order of f(z).

For a nonzero complex constant 7 € C, we define the difference operators of f(z)
as N f(z) = f(z+n) —f(2) and AR f(2) = Ay (AFT1f(2)), ke Nk > 2.

Let f(z) be a non-constant meromorphic function, let ng,n1, -+ ,n; be non-
negative integers, let cp,c1,- -+, ¢, be finite values, we call that M(f) = f™(z +
co)(f)™ (24 c1)--- (f®))™ (2 4 ¢;) is a differential-difference monomial, and its
degree ypr = ng +ny + -+ ng. Let H=a; Mi(f) + aaMa(f)+ -+ anMp(f) be
a homogeneous differential-difference polynomial, where a;1(z), a2(2), - ,a,(z) are
small functions of f(z) and yar, = Y, = -+ = Y, -

Let Npy(r, f) be the counting function for poles of f(z) with multiplicity < &
and let N (r, f) be the counting function for poles of f(z) with multiplicity > k.

Nevanlinna [7, [I5] [16] proved the famous five-value theorem.

Theorem A. Let f(z) and g(z) be two non-constant meromorphic functions, and
let a;(j = 1,2,---,5) be five distinct values on extend complex plane. If f(z) and
g(2z) share a;(j =1,2,---,5) IM, then f(z) = g(2).

Li and Qiao[1I] proved the five-small function theorem.

Theorem B. Let f(z) and g(z) be two non-constant meromorphic functions, and
let a;(z)(j =1,2,---,5) be five distinct small functions of both f(z) and g(z) (one
may be 0o). If f(z) and g(z) share a;(2)(j =1,2,---,5) IM, then f(z) = g(z).

In 1976, Rubel and Yang[I4] proved the following result.

Theorem C. Let f(z) be a non-constant entire function, and let a, b be two distinct
finite values. If f(z) and f'(z) share a,b CM, then f(z) = f'(2).

In 1992, Zheng and Wang[I9] proved:

Theorem D. Let f(z) be a non-constant entire function, and let a(z),b(z) be two
distinct small functions of f(z). If f(z) and f'(z) share a(z),b(z) CM, then f(z) =
7(2).
In 1995, Fang[5] proved the following theorem.
Theorem E. Let f(z) be a non-constant meromorphic function such that N(r, f) =
S(r, f), let n be a positive integer, let a,b be two distinct finite complex values, and
let F(2) = f(2)+a1(2) fPD(2) 4+ +an(2)f(2), where ay(2),a2(2), -+, an(z)
are small functions of f(z). If f(z) and F(z) share a,b CM almost, then f(z) =
In 2006, Chen[I] studied the case of meromorphic function satisfying N(r, f) <
1

g7 (7, f), and proved the following result.
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Theorem F. Let n be a posz’tive integer, let f(z) be a non-constant meromorphic
function satisfying N(r, f) < 8n+17 T(r, f), and let a(z),b(z) be two distinct small
functions of f(2), and let F(z) = f(2) +a1(2) f" VD (2) + -+ an(2) f(2), where
a1(2),a2(2), - ,an(2) are small functions of f(z). If f(z) and F(z) share a(z),b(2)
CM, then f(z) = F(z).

Recently, a number of articles focused on value distribution in shifts or difference
operators of meromorphic functions. In particular, some papers studied the unicity
of meromorphic functions sharing values with their shifts or difference operators
(see [3, 14, 6, O] 121 T3], 20]).

In 2011, Heittokangas et al.[9] proved the following result.

Theorem G. Let f(z) be a non-constant entire function of finite order, let n be
a nonzero constant, and let a,b be two distinct finite values. If f(z) and f(z +n)
share a,b CM, then f(2) = f(z +n).

In 2014, Zhang and Liao[20] proved the following result.

Theorem H. Let f(z) be an entire function of finite order, let n be a nonzero
constant, and let a,b be two distinct finite values. If f(z) and A, f(z) share a,b
CM, then f() = Dy f(2).

Liu et al.[I2] replaced A, f(z) by the general difference polynomial and proved

the following result:
Theorem 1. Let f(z) be a non-constant entire function of finite order, let n be a
positive integer, let a(z), b(z) be be two distinct small functions of f(z), and let
F(z)=mif(z4+c1)+maf(z+co)+ -+ mpf(z+c¢n), where my,ma, -+ ,m, are
nonzero complex numbers and c1,co,- -+ , ¢, are distinct finite values. If f(z) and
F(z) share a(z),b(z) CM, then f(z) = F(z).

In 2017, Yang and Liu[I8] extended Theorem J and proved the following theorem.
Theorem J. Let f(z) be a mon-constant meromorphic function of finite order,
let n be a positive integer, let a(z),b(z) be two distinct small functions of f(z),
let my,mo, -+ ,my, be nonzero complex numbers, let c1,ca, - ,c, be distinct finite

complex numbers, and let
F(z)y=mif(z4+c1) +maf(z+c2) + - +muf(z+cpn).

If f(z) and F(2) share a(z), b(z) CM almost and N(r, f) < 7=T(r, f), then f(z) =

In this paper, we extend and improve the above results.

Theorem 1.1. Let ki, ko, - , ky be non-negative integers and k = max{ky, ko, - -,
kn}, letl be the number of distinct values of {0, ¢1,¢a, -+ ,cn}, let s be the number of
distinct values of {c1,ca, -+ ,cn}, let f(z) be a non-constant meromorphic function
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of finite order satisfying N(r,f) < mT(r, ), let my(2), ma(z), -,

my(2), a(2),b(z) be small functions of f(z) such that a(z) Z b(z), let (¢1,k1),(c2, k2),
-+, (cn, kn) be distinct and let

(1.1) F(z) = mi(2)f*) (2 + e1) + ma(2) [P (2 + ea) + -+ ma(2) FF) (2 + c).

If f(2) and F(z) share a(z),b(z) CM, then f(z) = F(z).

Remark 1.1. Letl=s=1,k=n,0=c¢;y =cy =--+- = ¢,, then Theorem 1 is also

valid. If F/(2) = f™(2)4a1(2) f™ D (2)+ - -+an(2) f(2), where a1 (2), as(2) - -, an(2)
are small functions of f(z). Then by Theorem 1.1 we get Theorem F.

Corollary 1.1. Let k = 0, let f(z) be a non-constant meromorphic function
of finite order, let n be a positive integer, let a(z), b(z) be be two distinct small
functions of f(z), let my,ma, -+ ,my, be nonzero complex numbers, let ¢y, c¢a,- -+ ,cp

be distinct finite complex numbers, and let

F(z)=mif(z+c1) +maf(z4+c2) + - +muf(z+cn).
If f(2) and F(z) share a(z), b(z) CM almost and N(r, f) < ﬁT(r7 f), then
f(2) = F(2).

By Corollary 1.1, we get Theorem J.

The following example illustrates that the condition
1
N f) < 5 T(r, f)

(lk+1+2s—1)+1
is necessary in Theorem 1.1.

e*teq1

Example 1.1. Let f(z) = ezﬂ and F(z) = f(z) = f(z+¢c) = f(z+2¢) = -7,

ez

where ¢ = mi. It is easy to see that f(z) and F(z) share 1,—1 CM. But f(2) # F(z).

Theorem 1.2. Let F(z),l,k,s be the same as Theorem 1, let f(z) be a non-
constant meromorphic function of finite order satisfying Nyy(r, f) < mT(r, ),
and let a(z),b(z) be distinct small functions of f(z). If f(2) and F(2) share a(z),b(z), oo
CM, then f(z) = F(z).

The following example illustrates that the condition
1
Ny(r ) < 5 T(r,f)

(lk+1+25s—1)
is necessary in Theorem 1.2.

Example 1.2. Let f(z) = <L and F(z) = f(2) + f(z+¢) — f(z +2¢) — f(z +

e*—1

3¢) — f(z +4¢) = — £ where ¢ = 2mi. It is easy to see that f(z) and F(z) share

er—17

1,—1,00 CM. But f(z) # F(z).
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Theorem 1.3. Let f(2) be a non-constant meromorphic function of finite order,
let a(2),b(z) be two distinct small functions of f(z), and let H(f) be a homogeneous
differential-difference polynomial of f with deg H = m. If f™(z)(m > 2) and H(f)
share a(z),b(z),00 CM, then f™(z) = H(f).

2. SOME LEMMAS
For the proof of our results, we need the following lemmas.

Lemma 2.1. [7, [I5, [16]. Let f(z) be a non-constant meromorphic function, and
let a;(z)(i = 1,2) be two distinct small functions of f(z). Then

_ _ 1 — 1
T(r, f) §N(r,f)+N(r,f_a1) +N(T’f—a2> + S(r, f).

Lemma 2.2. [I7]. Let f(z) be a non-constant meromorphic function, and let

a;i(2)(i =1,2,3) be three distinct small functions of f(z). Then for any 0 <e <1,
_ I 1
27(r, f) SN )+ Y N (15— ) + T, f) + S(r, f).
i=1 f-a

Lemma 2.3. [2]. Let f(z) be a non-constant meromorphic function of finite order,

and let ) be a non-zero finite complex number. Then
N(r,f(z+mn) = N(r, f(2)) + S(r, f).

Lemma 2.4. [2,8, [10]. Let f(z) be a non-constant meromorphic function of finite

order, let k be a positive integer and let n be a non-zero finite complex number.

Then
f“”) ( f(Z+77)>
mlr,— | =S(,f), m|r =S(r, f).
(n I ) =stms) ) = s
Lemma 2.5. [5]. Let f(z) and g(z) be two non-constant meromorphic functions
satisfying
1 1
N )+ 8 (70 7) = S). N + 8 (n2 ) = 50.0).

If f(2) and g(z) share 1 CM almost, then either f(2)g(z) =1 or f(z) = g(z).
Lemma 2.6. [7, [I5 16]. Let f(z) be a non-constant meromorphic function, let

n(> 2) be a positive integer, and let a1(2),a2(2) - - - an(z) be distinct small functions
of f(z). Then

1 1 1 1
m<r’f_a1>+.“+m(r’f—an> gm(r,jr_(ll+...+f_an>+5(7’,f).
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Lemma 2.7. [I6]. Let k be a positive integer and let f(z) be a meromorphic function
such that f*)(2) #0. Then

T(r, f®)) <T(r, f) + kN(r, f) + S(r, f),

N (n f(l,f)) <N (r, }) +EkN(r, f) + S(r, f).

Lemma 2.8. [1]. Let 0 < X < 1 and let f(z) and g(z) be two meromorphic

functions satisfying
N(r, f) < AT(r, f), N(r,g9) <A(r,g).

If f(2) and g(z) share 0, 1 CM almost, and

5= N0+ N(r1) _2-8)
oo T(r, f) + T(r,g) 3 7

where I C [0,00) is a set of infinite linear measure, then ﬁ — gfl

= d, where

c(#£0),d are two constants.
By imitating the proof of Lemma 2.8, we can prove the following lemma.

Lemma 2.9. Let 0 < XA < 1 and let f(z) and g(z) be two meromorphic functions
satisfying

N(r, f) < XT(r, f), N(r,g) < XT(r,g).
If f(2) and g(z) share 0, 1, oo CM almost, and

— N(r,0)+ N(r,1) _2—2A

AT )+ Tng) 3

where I C [0,00) is a set of infinite linear measure, then ﬁ — £ = d, where
c(#£0),d are two constants.
Lemma 2.10. Let k, | be non-negative integers. Then

M 12: i 42125 - ?3 = 522 j: ;lii - ;i(’“ >1,0>1),

@) 195llkkt2455lz_—2443 < ;ZZ :[ 32; - Zg(k >0,0>2),

o SO T

Ol = = A = = CELUL)
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3. PROOF OF THEOREMS

Proof of Theorem 1.1. Set

(31) o) =4
(3.2) G@:Zgjij

Since f(z) and F(z) share a(z),b(z) CM, we know that g(z) and G(z) share 0, 1
CM almost.
It follows from ({3.1)) and (3.2)) that

(3.3) T(r,g) =T(r, f)+S(r, [),
(3.4) T(r,G)=T(r,F)+ S(r, f),
(3.5) N(r,g) = N(r, f) + S(r, f).

Hence, by (L)), and Lemma 2.3, we get
(3.6) N(r,G) =N(r,F)+ 5(r, f) < s (N(r, ) + kN(r, f)) + S(r, f).
It follows that
(3.7) T(r,F) < (s+sk)T(r,f)+ S(r, f).
Hence, we obtain
S(r,g) = S(r, f),S(r, f) = 5(r,g),
S(r,F) = S(r, f),S(r,G) = S(r, f).

Since g(z) and G(z) share 0, 1 CM almost, we have

N (T’Fl—f> + S(r, f)
ST(T’,F*f)#’S(T,f)

m(r,F—f)+N(r,F—f)+S(r,f)

Nmm+NmngN(nG1)+smﬂ

IN

(3.8)

It follows from Lemmas 2.3 and 2.4 that
F—7

(39)  m(r.F—f) <m ( ) il £)+ S(r, £) < mir, ) + S, f).

(3.10)  N(r,F —f) <IN(r, f®) + S(r, ) <U(N(r, f) + kN(r, f)) + S(r, f).
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By "" and N(T, f) S mT(T, f), we obtain

N(r,0)+ N(r,1) <m(r, f) +1 (N(r7 f) +EN(r, f)) +S(r, f)
<T(r,f)+ (1 —=1+1k)N(r, )+ S(r, f)

9k +9]l +16s — 8
=2 T f) + S f).

(3.11) 8(lk+1+2s—1)+1

IN

By Nevanlinna’s first fundamental theorem and (3.11)), we have

AT (r, f) = 2T(r,g) + S(r, f) = T <7~, ;) LT (r, - !

<N(r,0) + N(r, 1) +m (r, ;) +m (ng%) +5(r, f)

9lk + 91 + 165 — 8

1 1
(312) <8(lk+l+2s—1)+1T(r’f)+m(r’f—a>+m(r’f—b>+S(T’ )

Set

a1(z) =m1a®™ (z + ¢1) + maa® (2 + c2) + -+ mpa®(z + ¢),
(3.13) by (2) =mib* ) (2 4 ¢1) + mab®D) (2 + cp) 4 - - - + mpbF) (2 + ).

By Lemma 2.4, we obtain

—a —-b
m(r,};_a1> =S(r, f), m(r,Ff_b1> = S(r, f).

Set

F a1 b1
W(F,a1,b1)=| F' a} ¥
F'odl W

By Lemma 2.4, we have

314 m (r, W) — S0 ), m (r, W) — S(r, f).

If W(F,a1,b1) = 0, then b; = kay, where k is a nonzero constant. Obviously,
W(F,a1) # 0, where

F a

W (F,a1) = ’ P a’i ‘

Then by Lemma 2.4, we have

(3.15) m <r, W) =S(r,f), m (r, Vm> =S(r, f).
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By (3.3), (3.15)), Lemmas 2.3, 2.4 and 2.6, we obtain

W(F,a1) W(F,a1) 1
Sm <7', F*CLl + F—kal ) tm (T’ W(F,a1)> +S(7",f)
<T(r,W(F,a1))+ S(r, f)
<T(r,e1F' +coF )+ S(r, f) <T(r,F)+ N(r,F)+ S(r, f)
(3.16)

<T(r,F)+ il

8(lk+1+2s—1)+1
where ¢; and ¢ are small functions of f.
If W(F,ay,b1) £ 0, then by (3.14), Lemmas 2.4 and 2.6, we have

1 1
m<r’f—a>+m(r’f—b>

gm<r,Ff—Zl)+m<r,l;—bbl>+m<r,F1a1>+m(r,F1bl>+S(r,f)
1 1
<m<r7F—a1+F—b1>+S(r’f)
W(F,a1,b1)  W(F,a1,b) 1
m(’”’ F—a | F—b >+m<r’W(F,a1,b1))+S(r’f)
T(va(Faalabl))+S(T7f)
T(r,di F" + doF' + d3F) + S(r, f) < T(r,F) +2N(r, F) + S(r, f)
17)
T?"J*")—l—8

T(r, f)+5(r f),

IA

A A

(
2s

(lk+1+2s—1)+1

where dy, do and ds are small functions of f.

It follows from ([3.16]) and (3.17)), we deduce that

1 1
m(r,fa)—i—m(r,fb)

2s
1 <T(r,F
(3.18) ST B+ S i s+ 1

By (312) and (B18), we have
9lk + 91 + 165 — 8
2T (r, ) <
) <SS rir D11
2s
Uk +1+2s5—1)+1
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that is
Tk + 704+ 14s — 6
8(lk+1+2s—1)+1

Taking \ = m Then by (1), (2) of Lemma 2.10, (3.11), (3.19) and
N(r, f) < mT( f), we get

(3.19)

T(r,f) <T(r,F)+ S(r, f).

mN(7‘,())—|—N(r,1)_m N(r,0) + N(r,1)
Tr_g;o T(ng) + T(r7 G) o r—>ooT('r, f) -+ T(’f‘, F) + S(T7 f)

SHEPASS8 T (1, f) + S(r, f)
< lim

ST, f) + S T (r, )+ S(r. )

(3.20) o k49141658 _ 16lk+161+325—22 2 8)
' 151k + 151 +30s — 13~ 24(lk+1+2s—1)+3 3

Hence, by Lemma 2.8, we have

1 c
- _ —d
G-1 g-1 ’

(3.21)

where ¢(# 0),d are two constants. Now we consider two cases.
Case 1. d = 0. Hence

g—1
c

(3.22) G = +1.

Next, we consider three subcases.

Case 1.1. N(r,0) # S(r, ).

Thus there exists zg such that g(z9) = G(z29) = 0. It follows from that
g9(z) = G(2).

Case 1.2. N(r,0) = S(r, f), N(r,1) # S(r, f).

Obviously,

1 1
3.23 N — | =N — .
o2 (a) =)
Suppose that ¢ # 1. Then by (3.3)), (3.5) and (3.23)), we obtain

T(r, f)=T(r,g)+ S(r, f)
<N (r, ;) LN (r, ghc) + N(r,g) + S(r, f)

<N (r, ;) +N (7", é) +N(r, f)+S(r, f)
1
S8(lk+l+2s—1)+1
It follows T'(r, f) < S(r, f), a contradiction. So ¢ = 1, that is g(z) = G(z).
Case 1.3. N(r,0) = S(r, f), N(r,1) = S(r, f).
95
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By (3.3), (3.5) and Lemma 2.1, we have

T(r, f)=T(r,g) +S(r. f)
1
<N (r,g_1> + N (r,g) + N(r,g)+S(r, f)
<N(r,1)+ N(r,0) + N(r, f) + S(r, f)

1
S8(ll-c+l+25_1)+1T(7"f)+5(7"7f)~

It follows T'(r, f) < S(r, f), a contradiction.
Case 2. d # 0. In the following, we consider two subcases.
Case 2.1. £ # 1,0.

By (3), (3-3), (-6), (B-11) and Lemma 2.2, we have

2T (r, f) = 2T (r, g) + S(r, )

<N(rnl) 4w r,% +N n% +N(r,g) +5(r, f)
g 9-1 g-(1-3%)

<N(r,0) + N(r,1) + N(r.g) + N(r, G) + 51, f)

9k + 91 +16s — 8 —
ST Tr e 1 D)+ G+ DN )+ kNG )+ S0 )
<91k+91+175+5k—7
S 8(lk+l4+2s—1)+1

T(r, f)+ S(r, f).

It follows T'(r, f) < S(r, f), a contradiction.
Case 2.2. § = 1. Hence ¢ = d(d # 0),

1 dg(?)
G(z)—1 g(z) -1

(3.24)

Obviously N(r,0) = S(r, f). Otherwise, there exists zg such that g(zp) = G(20) = 0.
Thus by (3.24) G(z9) = o0, a contradiction. If d # —1, then we have

T(r, f)=T(r,g)+5(r f)

SNQ¥>+N<n11>+Nmm+ﬂnnSNmﬂ+smn
g 9~ a1
1

<
“8(lk+1+2s—1)+1

T(r, )+ S(r, f).

It follows T'(r, f) < S(r, f), a contradiction.
If d = —1, then by (3.24]), we obtain g(z)G(z) = 1. Thus, we have
(b—a)*(f —a)
F-a ’
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By Nevanlinna’s first fundamental theorem and (3.25)), we have

2T(r, f) <

: f:Z) +m<1;__2) +S(r, f)

(
<m (r,F_al) —&—m(r,(}l__;L) + N(r, F)+ S(r, f)
(

f1a> + N(r,F)+ S(r, f)

<T(r, f) + N(r, F) +5(r, f).

It follows that

T(r,f) <N(r,F)+5(r, f)

<s(N(r,f) + kN(r, f)) + S(r, f)

s+ sk
<
STtz —p il HHSmD),

that is T'(r, f) < S(r, f), a contradiction.

Combining Case 1 with Case 2, we deduce that g(z) = G(z). It follows that
f(2) = F(z). This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Set
f(z) —a(z) F(z) —a(z)
b(z) —a(z)’ b(z) —a(z)
By f(#) and F(z) share a(z),b(z),00 CM, we know that ¢g(z) and G(z) share 0, 1,
oo CM almost.
We prove Theorem 1.2 by contradiction, suppose that f(z) #Z F(z), that is g(z) #
G(z). Let

9(z) = G(z) =

Glg—-1)
g(G—1)

Obviously, we know that ¢(z) # 0, oo, and

(3.26) b=

va)HVOé)Smw+ﬂn®Smﬁ~
By , we have

(3.27) g—G=(6—1)g(G-1).
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Let zp be a common pole of both g(z) and G(z) with multiplicity m > 2. Since
g(z) and G(z) share co CM almost, then by (3.27), we know that z is the zero of
¢(z) — 1 with multiplicity at least m.

Next, we consider two cases.

Case 1. ¢'(2) Z 0, by , Lemma 2.7 and Ny)(r, f) < mT(r, 1), we
obtain

N(T7f) :N(Thg) =N1)(r,g) +N(2(Tvg)

1 1
Ssurrirm T+ (ng )+ 56)
1 1 _
< TN+ 2N (n g ) + 2500+ S00)
1

SShT izl +8rg).

Thus, we have
1
(lk+1+2s—1)
Case 2. ¢/(z) =0, that is ¢(2) = ¢. If ¢ = 1, then by (3.26)), we get g(z) = G(z), a
contradiction. If ¢ # 1, then by f((é’;j; = ¢, we know that (3.28) is valid also.
By means of (3), (4) of Lemma 2.10 and Lemma 2.9, it is easy to prove Theorem

1.2 by imitating the proof of Theorem 1.1 and replacing (3.11]), (3.19)) and ([3.20)

respectively with the following three formulas:

(3.28) N(r, f) < 5 T(r, f)+ S(r, f).

N(r,0)+ N(r,1) <m(r, f) +1 (N(r7 f) +EN(r, f)) +S(r, f)
<T(r,f)+ (1 —=1+1k)N(r, f)+ S(r, f)

61k + 61 + 105 — 6
SEUhrir2s—1) L0 )50 ]).

Alk + 41+ 8s — 4
5(k +1+2s—1)

T(r,f) <T(r, )+ 5(r, f).

mN(T’O)JFN(T’l)fm N(r,0)+ N(r,1)
=T (r,g) + T(r,G) 77630 T(r,f)+T(r,F)+ S(r, f)

SRS T(r f) + S(r, f)
< lim

— lk+41+8s—
T f) + Siiraen L f) + 80, f)
6lk + 60+ 10s — 6 10lk + 100 +20s — 12 2 —2)

~9lk+19l+185s—9 151k + 151+ 30s — 15 3
Proof of Theorem 1.3. Set

_fm—alz)
9 = e = ate)
98



UNICITY OF MEROMORPHIC FUNCTIONS ...

H —a(z)

b(z) —a(z)’
By f™ and H share a(z),b(z),00 CM, we know that g(z) and G(z) share 0, 1, oo

CM almost. Next, we consider two cases.

G(z) =

Case 1. a(z) =0, b(z) Z 0. In the following, we consider two subcases.
Case 1.1. N(r, &) # S(r,G). From the conditions of Theorem 1.3, we have

(3.29) N(r,0) — N(r,0) # S(r,G) + S(r,g).

G' (2
Set ¥(z) = 1_(§(i)
theorem, we get

(2) # 0, then by Nevanlinna’s first fundamental

N(r.0) = N(r.0) <N ) < T(04) + O(1)
=m(r,y) + N(r,v) + O(1) = S(r,G) + S(r,9),

which contradicts with(3.29). Hence ¢(z) = 0, we get G(z) — 1 = ¢(g(z) — 1). By
([3:29), we know that there exists zq satisfying g(z0) = G(z9) = 0. Hence ¢ = 1, that
is g(z) = G(z). It follows f™(z) = F(z).

Similarly, N(r,G) = S(r,G) and N(r,g) = S(r, g).

Case 1.2. N(r, &) = S(r, G).

Obviously, N(r, %) = S(r,g), by Lemma 2.5, N(r, %) + N(r,G) = S(r,G),
N(ﬁg) + N(r,g) = S(r,g). It follows from g( ) and G(z) share 1 CM almost,

that g(2)G(z) = 1, we have f™F = b?, that is Hence, we get

fr = o

(3.30) m (n ]f;) =m (n flfm) =2mT(r, f) + S(r, f),

it follows from m (7“, fim) < S(r, f) and that T'(r, f) = S(r, f), a contradiction.
Case 2. a(z) # 0.
In the following, we consider two subcases.
Case 2.1. a(z) £ 0,b(z) £ 0.
Let f™(z) # F(z), by Lemma 2.2, we have

1 W — 1 - 1
<7f'm>+N(T7f )—l—N(r,fma)—i—N(r,fmb)

er(r, f™) + S(r, f™)

1 1 m m
N (7“, f’”) +N (7“, fm—F) +eT(r, f™)+ S(r, f™)
T(r, f™)+T(r, f" = F)+eT(r, f™) + S(r, f7)

)

~
Z
IA

2T (

)

IN

IN

T(r, f") +T(r, ) +eT(r, f7) + 50, f™)

IA
/\S\HS\HS\H + 2\

3=

FLbe) (™) + 50 7).
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Let ¢ = 1 < 1 and m > 2. It follows that T(r, f™) < S(r, f™), a contradiction.
Case 2.2. a(z) £ 0,b(z) = 0.
By using the same argument as used in Case 1, we obtain a contradiction. So
f™(z) = H (f(2)). This completes the proof of Theorem 1.3.
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