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1. Introduction

Let N be the set of natural numbers and C = C ∪ {∞}. Throughout the paper

by meromorphic functions we shall mean it is meromorphic in the complex plane

and by L-functions we mean it is L-functions in the Selberg class which is defined

[7, 8] to be a Dirichelet series

(1.1) L(s) =
∞∑

n=1

a(n)

n−s

satisfying the following axioms:

• (i) Ramanujan hypothesis : a(n) ≪ nε for every ε > 0;

• (ii) Analytic continuation : There is a non-negative integer m such that

(s− 1)mL(s) is an entire function of finite order;

• (iii) Functional equation: L satisfies a functional equation of type

(1.2) ΛL(s) = ωΛL(1− s),

1The first author is thankful to the Department of Atomic Energy (DAE), India, for financial
support to pursue this work [No. 0203/13(41)/2021-R&D-II/13168]. The second author is
thankful to“Science and Engineering Research Board, Department of Science and Technology,
Government of India"for financial support to pursue this research work under the Project File No.
EEQ/2021/000316.
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where

(1.3) ΛL(s) = L(s)Qs
k∏

j=1

Γ(λjs+ νj),

with positive real numbers Q,λj and complex numbers νj , ω with Reνj ≥ 0

and |ω| = 1;

• (iv) Euler product hypothesis : logL(s) =
∞∑

n=1

b(n)
ns , where b(n) = 0 unless n

is a positive power of a prime and b(n) ≪ nθ for some θ < 1
2 .

This class includes many of the known entire Dirichlet series with Euler product,

including the Riemann zeta function and the Dirichlet L-functions. Since an L-

function can be analytically continued to a meromorphic function, the study of

uniquely determining an L-function, gradually moved towards uniquely determining

the L-functions with respect to the meromorphic functions having finitely many

poles. A lot of research has already been pursued by various researchers [7, 8, 6, 9, 3]

in this direction. Below we recall some of these results and the gradual development.

But before that, we recall some basic definitions. For standard notations of Nevanlinna

theory, we suggest our reader to follow [2].

Definition 1.1. [4, 5] Let k be a non-negative integer or infinity. For a ∈ C we

denote by Ek(a; f) the set of all a-points of f, where an a-point of multiplicity m is

counted m times if m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g), we say

that f , g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k.

Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also

we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)

respectively.

Definition 1.2. [4] For A ⊂ C we define Ef (A, k) = ∪a∈AEk(a; f), where k is a

non-negative integer or infinity. If Ef (A, k) = Eg(A, k), then we say that f and g

share the set A with weight k.

We write f , g share (A, k) to mean that f , g share the set A with weight k. We

say that f , g share a set A IM or CM if and only if f , g share (A, 0) or (A,∞)

respectively.

2. Gradual development and motivation

In 2010, B. Q. Li proved the following theorem.
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Theorem A. [6] Let a and b be two distinct finite values, and let f be a meromorphic

function in the complex plane such that f has finitely many poles in the complex

plane. If f and a non-constant L-function L share (a,∞) and (b, 0), then L = f .

In 2018, Yuan, Li and Yi [9] considered the uniqueness of L-functions with

meromorphic functions having finitely many poles under set sharing and proved

the following theorem.

Theorem B. [9] Let S = {ω1, ω2, ..., ωl}, where ω1, ω2, ..., ωl are all distinct zeros

of the polynomial P (ω) = ωn + aωm + b. Here l is a positive integer satisfying

1 ≤ l ≤ n, n and m are relatively prime positive integers with n ≥ 5 and n > m,

and a, b, c are nonzero finite constants, where c ̸= ωj for 1 ≤ j ≤ l. Let f be a non-

constant meromorphic function such that f has finitely many poles in the complex

plane, and let L be a non-constant L-function. If f and L share S CM and c IM,

then L = f.

In 2020, Kundu and Banerjee [3] considered the case c = 0 of Theorem B and

provided the following theorem.

Theorem C. [3] Let f be a meromorphic function in C with finitely many poles

and S be as defined in Theorem B. Here a, b are two non-zero constants and n,m

are relatively prime positive integers such that n > 2m. If f and a non-constant L

-function L share (S,∞) and (0, 0), then L = f .

Very recently, Banerjee and Kundu [1] proved the following result.

Theorem D. [1] Let S be defined as in Theorem B, f be a meromorphic function

having finitely many poles in C and let L be a non-constant L -function. Suppose

Ef (S, s) = EL(S, s) and for some finite c /∈ S, f and L share (c, 0). Also let ai(i =

1, 2, . . . , n − m) be the zeros of nzk + ma, where k = n − m(≥ 1) and denote

S′ = {a1, a2, . . . , an−m} .
I. Suppose c = 0.

When (i) s ≥ 2, n > 2m + 2 or (ii) s = 1, n > 2m + 3 or (iii) s = 0, n > 2m + 8;

then f ≡ L.

II. Suppose c ̸= 0.

(A) Let c ∈ S′. When l = n and (i) s = 1, n > 2k + 2 or (ii) s = 0, n > 2k + 5;

or when l = n − 1 and (i) s ≥ 2, n > 2k + 2 or (ii) s = 1, n > 2k + 3 or (iii)

s = 0, n > 2k + 8; then f ≡ L.

(B) Next let c /∈ S′. When (i) s ≥ 2, n > 2k + 4 or (ii) s = 1, n > 2k + 5 or (iii)

s = 0, n > 2k + 10; then f ≡ L.
66



UNIQUENESS OF L-FUNCTIONS AND ...

From the above discussion, one would naturally observe that in Theorem B-

D all the authors always considered the set S to be the zeros of the polynomial

P (z) = zn + azm + b. Now if we take m = n− 1, then the condition of Theorem C

and condition I of Theorem D become absurd; i.e., for m = n− 1 Theorem C and

I of Theorem D is not applicable. Also one can notice that all the authors always

considered a special class of meromorphic functions; i.e., they always considered

meromorphic functions having finitely many poles. Therefore the uniqueness of

L-functions with general meromorphic functions is yet to be dealt with. At this

moment naturally, the following two questions come into mind.

Question 2.1. For m = n − 1, if a non-constant meromorphic function having

finitely many poles and an L-function share (S, t) and (c, 0), are they equal?

Question 2.2. If a general non-constant meromorphic function and an L-function

share (S, t) and (c, 0), then are they equal?

In this paper, we have answered the above two questions affirmatively. Not only

that by considering the polynomial P (z) = zn + azn−1 + b, we have shown the

uniqueness of a general non-constant meromorphic function with a non-constant

L-function when they share the set (S, t) and (η, 0), where η is the zero of P ′(z).

As a corollary of our main theorem, we have shown that our result not only fills the

gap of Theorem C and I of Theorem D for m = n−1 but also significantly improves

Theorem B-C and I of Theorem D.

3. Main result

Now we state the following theorem which is the main result of the paper.

Theorem 3.1. Let P (z) = zn + azn−1 + b, with n ≥ 3 and a, b are non-zero

constants such that the polynomial has no multiple zero. Suppose that f , L share

(S, t) and (η, 0), where t ∈ N ∪ {0}, S be the set of zeros of P (z), η be the zero

of P ′(z), f be a non-constant meromorphic function and L be a non-constant L-

function.

(I) Suppose η = 0. If

(i) t ≥ 5, with

• n > 2 + (2 + 3
n−2 )(1−Θ(∞; f));

(ii) t = 4, with

• n > max{2 + (2 + 3
n−2 )(1−Θ(∞; f)), 3};

• n = 3 and Θ(∞; f) > 5
6 ;
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(iii) t = 3, with

• n > max{2 + (2 + 3
n−2 ) (1−Θ(∞; f)) , 4};

• n = 4 and Θ(∞; f) > 11
23 ;

• n = 3 and Θ(∞; f) > 7
8 ;

(iv) t = 2, with

• n > 2 +
(
2 + 12

3n−8

)
(1−Θ(∞; f));

(v) t = 1, with

• n > max{2 + 5
2 + ( 6

n−3 )(1−Θ(∞; f)), 4};
• n = 4 and Θ(∞; f) > 13

17 .

(vi) t = 0, with

• n > max{2 +
(
4 + 14

n−4

)
(1−Θ(∞; f)), 4};

then we get f ≡ L.

(II) Suppose η ̸= 0. If

(i) t ≥ 2, with

• n > max{4 + 2(1−Θ(∞; f)), 4};
(ii) t = 1, with

• n > max{5 + 5
2 (1−Θ(∞; f)), 4};

(iii) t = 0, with

• n > max{8 + 4(1−Θ(∞; f)), 4};
then we get f ≡ L.

Corollary 3.1. Let P (z) = zn + azn−1 + b, with n ≥ 3 and a, b are non-zero

constants such that the polynomial has no multiple zero. Suppose that f , L share

(S, t) and (η, 0), where t ∈ N ∪ {0}, S be the set of zeros of P (z), η be the zero of

P ′(z), f be a non-constant meromorphic function having finitely many poles and L
be a non-constant L-function.

(I) Suppose η = 0. If (i) n ≥ 3 when t ≥ 2, (ii) n ≥ 4 when t = 1, (iii) n ≥ 5

when t = 0; then we get f ≡ L.

(II) Suppose η ̸= 0. If (i) n ≥ 5 when t ≥ 2, (ii) n ≥ 6 when t = 1, (iii) n ≥ 9

when t = 0; then we get f ≡ L.

Remark 3.1. In Corollary 3.1 one can observe that for η = 0 the least cardinality

of the set S is 3, 4 and 5 when t ≥ 2, t = 1 and t = 0 respectively, whereas in

Theorem D it was 5, 6 and 11. Again in Theorem C the cardinality 3 was achieved

in the case of CM sharing but from Corollary 3.1 the same is achieved for weight 2

only. Also in Theorem 3.1 we deal with general meromorphic functions instead of

meromorphic functions having finitely many poles. Therefore our result is not only

improved but also an extended version of Theorem B-C and I of Theorem D.
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4. Lemmas

In this section, we discuss some lemmas which will play key role to prove our

main result. For the convenience of the reader, let us shortly recall some definitions

and notations which will be required to prove the lemmas.

Definition 4.1. Let f be a meromorphic function. We denote the order of f by

ρ(f), where

(4.1) ρ(f) = lim sup
r→∞

log(T (r, f))

log r
.

By S(r, f) we mean any quantity satisfying S(r, f) = O(log(rT (r, f))) for all r

possibly outside a set of finite linear measure. If f is a function of finite order, then

S(r, f) = O(log r) for all r.

Definition 4.2. Let f and g be two non-constant meromorphic functions such that

f and g share (a, 0), where a ∈ C. Let z0 be an a-point of f with multiplicity p, an

a-point of g with multiplicity q. Then

• Nd(r, a; f) denotes the reduced counting function of those a-points of f and

g where p > q.

• N
1)
E (r, a; f) denotes the counting function of those a-points of f and g where

p = q = 1.

In the same way we can define Nd(r, a; g) and N
1)
E (r, a; g).

• N(r, a; f | = 1) denotes the reduced counting function of simple a-points of

f .

• N∗(r, a; f, g) denotes the reduced counting function of those a-points of f

and g where p ̸= q. Clearly N∗(r, a; f, g) = N∗(r, a; g, f) = Nd(r, a; f) +

Nd(r, a; g).

• N(r, a; f |≥ m) denotes the reduced counting function of those a points of

f whose multiplicities are not less than m.

• N(r, a; f | g ̸= b1, b2, . . . , bq) denotes the counting function of those a-

points of f , counted according to multiplicity, which are not the bi-points of

g for i = 1, 2, . . . , q; where a, b1, b2, . . . , bq ∈ C.

Definition 4.3. Let f(z) be a non-constant meromorphic function in the complex

plane and a ∈ C. Then

Θ(a, f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)
.

Observe that 0 ≤ Θ(a, f) ≤ 1.
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For two non-constant meromorphic functions F and G, set

(4.2) H =

(
F

′′

F ′ − 2F
′

F − 1

)
−

(
G

′′

G′ − 2G
′

G− 1

)
,

and

(4.3) Φ =
F ′

F − 1
− G′

G− 1
.

Lemma 4.1. [10] Let F , G share (1, 0) and H ̸≡ 0. Then

N
1)
E (r, 1;F ) = N

1)
E (r, 1;G) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 4.2. Let f be a non-constant meromorphic function and L be an non-

constant L-function sharing a set S IM, where |S| ≥ 3. Then ρ(f) = ρ(L) = 1.

Furthermore, S(r, f) = O(log r) = S(r,L).

Proof. Proceeding in a similar method as done in the proof of Theorem 5, [9,

see p. 6], we can obtain ρ(f) = ρ(L) = 1. So we omit it.

Since ρ(f) = ρ(L) = 1, so from the definition of S(r, f) we get S(r, f) = O(log r) =

S(r,L). □

Lemma 4.3. Let f , g be two non-constant meromorphic functions sharing (1,t),

where t ∈ N ∪ {0}. Then

N(r, 1; f) +N(r, 1; g) ≤ N
1)
E (r, 1; f) + (1− t)N∗(r, 1; f, g) +N(r, 1; f).

Proof. Since f and g share (1, t), we observe that

N(r, 1; f) +N(r, 1; g) = 2N(r, 1; f).

Case-I : Suppose t ≥ 2.

Let z0 be a 1 point of f with multiplicity p and a 1 point of g of multiplicity q.

Since f and g share (1, t), therefore p ≤ t implies p = q.

Subcase - I : When p ≤ t. If p = 1, then z0 is counted once in both N
1)
E (r, 1; f)

and N(r, 1; f). On the other hand z0 is not counted in N∗(r, 1; f, g). Again if p ̸= 1,

then z0 is counted p times (i.e., at least 2 times) in N(r, 1; f) and in this case z0

is not counted in N
1)
E (r, 1; f) and N∗(r, 1; f, g). Therefore z0 is counted at least 2

times in N
1)
E (r, 1; f) + (1− t)N∗(r, 1; f, g) +N(r, 1; f).

Subcase - II : When p ≥ (t+1). If p = q, then z0 is counted p time (i.e., at least 3

times) in N(r, 1; f) and z0 is not counted in N
1)
E (r, 1; f) and N∗(r, 1; f, g). When p ̸=

q, then z0 is counted (1−t) times in (1−t)N∗(r, 1; f, g) and counted p times (i.e., at

least t+1 times) in N(r, 1; f) and z0 is not counted in N
1)
E (r, 1; f); i.e., z0 is counted
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at least (1− t)+ (t+1) = 2 times in N
1)
E (r, 1; f)+ (1− t)N∗(r, 1; f, g)+N(r, 1; f).

Now since z0 is counted two times in N(r, 1; f) + N(r, 1; g). Therefore in any sub

case we have

N(r, 1; f) +N(r, 1; g) ≤ N
1)
E (r, 1; f) + (1− t)N∗(r, 1; f, g) +N(r, 1; f).

Case-II : Suppose t = 1.

Then clearly

N(r, 1; f) ≤ N(r, 1; f | = 1) +N(r, 1; f) = N
1)
E (r, 1; f) +N(r, 1; f).

Therefore, for t = 1

N(r, 1; f) +N(r, 1; g) ≤ N
1)
E (r, 1; f) + (1− t)N∗(r, 1; f, g) +N(r, 1; f).

Case-III : Suppose that t = 0. Let z0 be a 1 point of f with multiplicity p and

a 1 point of g of multiplicity q. If p = q = 1, then z0 is counted 2 times in both

2N(r, 1; f) and N
1)
E (r, 1; f)+ (1− t)N∗(r, 1; f, g)+N(r, 1; f), as N∗(r, 1; f, g) does

not count z0. If p = 1, q ̸= 1, then also z0 is counted 2 times in both 2N(r, 1; f) and

N
1)
E (r, 1; f) + (1− t)N∗(r, 1; f, g) +N(r, 1; f), as in this case N

1)
E (r, 1; f) does not

count z0. Finally if p ̸= 1, then z0 is counted at least 2 times in (1− t)N∗(r, 1; f, g)+

N(r, 1; f) and z0 is not counted in N
1)
E (r, 1; f).

Therefore, for t = 0,

N(r, 1; f) +N(r, 1; g) ≤ N
1)
E (r, 1; f) + (1− t)N∗(r, 1; f, g) +N(r, 1; f).

And hence in any case,

N(r, 1; f) +N(r, 1; g) ≤ N
1)
E (r, 1; f) + (1− t)N∗(r, 1; f, g) +N(r, 1; f). □

Lemma 4.4. Let P (z) = zn+azn−1+b, with n ≥ 3 and a, b are non-zero constants

such that the polynomial has no multiple zero and S be the set of all zeros of P (z).

Define

F =
fn + afn−1

−b
and G =

L+ aLn−1

−b
(4.4)

and

(4.5) P
′
(z) = n

2∏
i=1

(z − ηi)
qi ,

where η1 = 0, η2 = a(n−1)
n , q1 = n− 2 and q2 = 1.

Let f be a non-constant meromorphic functions and L be a non-constant L-

function such that f,L share (S, t) and ηj IM and if Φ ̸≡ 0 then

N(r, ηj ; f) ≤
1

qj
[N∗(r, 1;F,G) +N(r,∞; f)] +O(log r).
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Proof. By the given condition clearly F and G share (1, t). Also by (4.5) we have

F ′ = −n

b

2∏
i=1

(f − ηi)
qi f ′ and G′ = −n

b

2∏
i=1

(L − ηi)
qi L′.

Thus we see that

(4.6) Φ =
−n
∏2

i=1 (f − ηi)
qi f ′

b(F − 1)
−

−n
∏2

i=1 (L − ηi)
qi L′

b(G− 1)
.

Let z0 be a zero of f−ηj with multiplicity r and a zero of L−ηj with multiplicity v.

Then that would be a zero of Φ of multiplicity µ = min {qjr + r − 1, qjv + v − 1} ≥
qj . So by a simple calculation we can write

N (r, ηj ; f) = N (r, ηj ;L) ≤
1

µ
N(r, 0; Φ) ≤ 1

µ
T (r,Φ)

≤ 1

µ
[N(r,Φ) + S(r, F ) + S(r,G)]

≤ 1

µ

[
N∗(r, 1;F,G) +N(r,∞;F ) +N(r,∞;G)

]
+ S(r, F ) + S(r,G)

≤ 1

qj

[
N∗(r, 1;F,G) +N(r,∞; f) +N(r,∞;L)

]
+ S(r, f) + S(r,L).

Now using Lemma (4.2) and the fact that N(r,∞;L) = O(log r), we have

N (r, ηj ; f) = N (r, ηj ;L) ≤
1

qj

[
N∗(r, 1;F,G) +N(r,∞; f)

]
+O(log r). □

Lemma 4.5. Let F ∗− 1 = an
n∏

i=1

(f −wi) and G∗− 1 = an
n∏

i=1

(L−wi), where f be

a non-constant meromorphic function, L be an non-constant L-function, an, wi ∈
C−{0} for all i ∈ {1, 2, . . . , n}. Further suppose that F ∗ and G∗ share (1, t), where

t ∈ N ∪ {0} and ηj ̸= wi for i = 1, 2, · · · , n. Then

Nd(r, 1;F
∗) ≤ 1

t+ 1

[
N(r, ηj ; f) +N(r,∞; f)−N1(r, 0; f

′)
]
+O(log r),

where N1(r, 0; f
′) = N(r, 0; f ′|f ̸= 0, η1, w1, w2, ..., wn). Similar expression also

holds for Nd(r, 1;G
∗).
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Proof. Since F ∗ and G∗ share (1, t), in view of Lemma (4.2) and N(r,∞;L) =
O(log r), we find by using first fundamental theorem that

Nd(r, 1;F
∗) ≤ N(r, 1;F ∗| ≥ t+ 2) ≤ 1

t+ 1

[
N(r, 1;F ∗)−N(r, 1;F ∗)

]
≤ 1

t+ 1

[
n∑

i=1

(
N(r, wi; f)−N(r, wi; f)

)]

≤ 1

t+ 1
[N(r, 0; f ′|f − ηj ̸= 0)−N1(r, 0; f

′)]

≤ 1

t+ 1

[
N(r, 0;

f ′

f − ηj
)−N1(r, 0; f

′)

]
≤ 1

t+ 1

[
T (r,

f ′

f − ηj
)−N1(r, 0; f

′)

]
+O(1)

≤ 1

t+ 1

[
N(r,∞;

f ′

f − ηj
)−N1(r, 0; f

′)

]
+ S(r, f)

≤ 1

t+ 1

[
N(r,∞; f) +N(r, ηj ; f)−N1(r, 0; f

′)
]
+O(log r).

This proves the lemma. □

Remark 4.1. Let F and G be defined by (4.4). If F , G share (1, t) and f , L share

ηj IM, then using Lemma (4.4) and Lemma (4.5), in view of N(r,∞;L) = O(log r),

we get

N∗(r, 1;F,G) = Nd(r, 1;F ) +Nd(r, 1;G)

≤ 1

t+ 1

[
N (r, ηj ; f) +N(r,∞; f) +N (r, ηj ;L)

]
+O(log r)

≤ 2

t+ 1
N (r, ηj ; f) +

1

t+ 1
N(r,∞; f) +O(log r)(4.7)

≤ 2

qj(t+ 1)

[
N∗(r, 1;F,G) +N(r,∞; f)

]
+

1

t+ 1
N(r,∞; f) +O(log r).

This implies that(
1− 2

qj(t+ 1)

)
N∗(r, 1;F,G) ≤ (2 + qj)

qj(t+ 1)
N(r,∞; f) +O(log r)

((t+ 1)qj − 2)N∗(r, 1;F,G) ≤ (2 + qj)N(r,∞; f) +O(log r).(4.8)

Lemma 4.6. Let P (z) = zn+azn−1+b, with n ≥ 3 and a, b are non-zero constants

such that the polynomial has no multiple zero. Suppose that f , L share (S, t) and

(η, 0), where t ∈ N ∪ {0}, η be the zero of P ′(z), f be a non-constant meromorphic

function and L be a non-constant L-function. Further suppose that

(4.9)

F =
fn + afn−1

−b
= −1

b
fn−1(f + a) and G =

Ln + aLn−1

−b
= −1

b
Ln−1(L+ a).

When η = 0 and
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(i) t ≥ 5, with

• n > 2 + (2 + 3
n−2 )(1−Θ(∞; f));

(ii) t = 4, with

• n > max{2 + (2 + 3
n−2 )(1−Θ(∞; f)), 3};

• n = 3 and Θ(∞; f) > 5
6 ;

(iii) t = 3, with

• n > max{2 + (2 + 3
n−2 ) (1−Θ(∞; f)) , 4};

• n = 4 and Θ(∞; f) > 11
23 ;

• n = 3 and Θ(∞; f) > 7
8 ;

(iv) t = 2, with

• n > 2 +
(
2 + 12

3n−8

)
(1−Θ(∞; f));

(v) t = 1, with

• n > max{2 + 5
2 + ( 6

n−3 )(1−Θ(∞; f)), 4};
• n = 4 and Θ(∞; f) > 13

17 .

(vi) t = 0, with

• n > max{2 +
(
4 + 14

n−4

)
(1−Θ(∞; f)), 4};

or, η ̸= 0 and

(i) t ≥ 2, with

• n > 4 + 2(1−Θ(∞; f));

(ii) t = 1, with

• n > 5 + 5
2 (1−Θ(∞; f));

(iii) t = 0, with

• n > 8 + 4(1−Θ(∞; f));

we get 1
F−1 = A

G−1 +B, where A(̸= 0), B ∈ C.

Proof. According to the assumptions of the lemma, we clearly have F , G share

(1, t) and f , L share (η, 0). Here

F ′ = −1

b
fn−2(nf + a(n− 1))f ′ = −n

b
fn−2

(
f − a(1− n)

n

)
f ′

and

G′ = −1

b
Ln−2(nL+ a(n− 1))L′ = −n

b
Ln−2

(
L − a(1− n)

n

)
L′.

Now consider H as given by (4.2) for F and G. Firstly we suppose that H ̸≡ 0.

Now we distinguish the following cases.

Case 1. Φ ≡ 0.

Then by integrating we get, (F − 1) = A(G − 1), where A(̸= 0) ∈ C. Therefore,

F ′ = AG′ and F ′′ = AG′′. Which implies that H ≡ 0. Which is a contradiction.

Case 2. Φ ̸≡ 0.
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First let us assume that η = η1 = 0. Then clearly q1 = n−2. Also let η2 = a(1−n)
n .

Since H ̸≡ 0, it can be easily verified that H has only simple poles and these poles

come from the following points.

(i) η2 -points of f and L.

(ii) η1-points of f and L having different multiplicity.

(iii) Poles of f and L.

(iv) 1 -points of F and G having different multiplicities.

(v) Those zeros of f ′ and L′, which are not zeros of
∏2

i=1 (f − ηi) (F − 1) and∏2
i=1 (L − ηi) (G − 1) respectively. Therefore we obtain

N(r,H) ≤ N (r, η2; f) +N (r, η2;L) +N(r,∞; f) +N(r,∞;L)(4.10)

+N∗ (r, η1; f,L) +N∗(r, 1;F ,G) +N0 (r, 0; f
′) +N0 (r, 0;L′) ,

where N0 (r, 0; f
′) and N0 (r, 0;L′) denotes the reduced counting functions of those

zeros of f ′ and L′, which are not zeros of
∏2

i=1 (f − ηi) (F−1) and
∏2

i=1 (L − ηi) (G−
1) respectively.

Using the second fundamental theorem, we get,

(n+ 1)T (r, f) ≤ N(r, 1;F) +
∑2

i=1 N (r, ηi; f) +

+N(r,∞; f)−N0 (r, 0; f
′) + S(r, f),(4.11)

and

(n+ 1)T (r,L) ≤ N(r, 1;G) +
∑2

i=1 N (r, ηi;L) +

+N(r,∞;L)−N0 (r, 0;L′) + S(r,L).(4.12)

Now combining (4.11) and (4.12) with the help of Lemmas (4.1) – (4.4) and then

using N(r,∞;L) = O(log r), and (4.10) we get,

(n+ 1){T (r, f) + T (r,L)} ≤ N(r, 1;F) +N(r, 1;G) +
2∑

i=1

[
N (r, ηi; f) +N (r, ηi;L)

]
+[N(r,∞; f) +N(r,∞;L)]−N0 (r, 0; f

′)−N0 (r, 0;L′) + S(r, f) + S(r,L)

≤ N
1)
E (r, 1;F) + (1− t)N∗(r, 1;F ,G) +N(r, 1;F ) +
2∑

i=1

[N(r, ni; f) +N(r, ηi;L)] +N(r,∞; f)−N0(r, 0; f
′)−N0(r, 0;L) + O(log r)
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≤
[
N (r, η2; f) +N (r, η2;L)

]
+N(r,∞; f) +N∗(r, η1; f,L)(4.13)

+ N∗(r, 1;F ,G) +N0(r, 0; f
′) +N0(r, 0;L′) + (1− t)

N∗(r, 1;F ,G) +N(r, 1;F) +

2∑
i=1

[N(r, ni; f) +N(r, ηi;L)]

+N(r,∞; f)−N0(r, 0; f
′)−N0(r, 0;L′) +O(log r)

≤ 2
[
N (r, η2; f) +N (r, η2;L)

]
+ 2N(r,∞; f) + 3N(r, η1; f)

+N(r, 1;F) + (2− t)N∗(r, 1;F ,G) +O(log r)

≤ 2{T (r, f) + T (r,L)}+ 2N(r,∞; f) +
3

n− 2
[N∗(r, 1;F ,G)

+N(r,∞; f)] + nT (r, f) + (2− t)N∗(r, 1;F ,G) +O(log r)

≤ 2{T (r, f) + T (r,L)}+ (2 +
3

n− 2
)N(r,∞; f) +

3

n− 2
N∗(r, 1;F ,G)

+nT (r, f) + (2− t)N∗(r, 1;F ,G) +O(log r)

≤ (2 + n)T (r, f) + (2 +
3

n− 2
)N(r,∞; f) + 2T (r,L)

+(2 +
3

n− 2
− t)N∗(r, 1;F ,G) +O(log r).

Therefore,

nT (r,L) ≤ T (r, f) + T (r,L) + (2 + 3
n−2 )N(r,∞; f) +

+(2 + 3
n−2 − t)N∗(r, 1;F ,G) + O(log r).(4.14)

In a similar manner, we get

nT (r, f) ≤ T (r, f) + T (r,L) + (2 + 3
n−2 )N(r,∞; f) +

+(2 + 3
n−2 − t)N∗(r, 1;F ,G) + O(log r).(4.15)

Let T (r) = max{T (r, f) , T (r,L)}. Then from (4.14) and (4.15) we get,

nT (r) ≤ 2T (r) + (2 + 3
n−2 )N(r,∞; f) +(4.16)

+(2 + 3
n−2 − t)N∗(r, 1;F ,G) +O(log r).

Again from (4.13) we get

(n+ 1){T (r, f) + T (r,L)} ≤
[
N (r, η2; f) +N (r, η2;L)

]
+N(r,∞; f)
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+N∗(r, η1; f,L) + N∗(r, 1;F ,G) + (1− t)N∗(r, 1;F ,G) +N(r, 1;F)

+

2∑
i=1

[N(r, ni; f) +N(r, ηi;L)] +N(r,∞; f) +O(log r)

≤
[
N (r, η2; f) +N (r, η2;L)

]
+N(r,∞; f) +Nd(r, η1; f)

+Nd(r, η1;L) + N∗(r, 1;F ,G) + (1− t)N∗(r, 1;F ,G)

+N(r, 1;F) + [N(r, n2; f) +N(r, η2;L)] +N(r, n1; f)

+N(r, η1;L) +N(r,∞; f) +O(log r)

≤ 2{T (r, f) + T (r,L)}+ 2N(r,∞; f) + (2− t)N∗(r, 1;F ,G)

+nT (r, f) +N2(r, η1; f) +N2(r, η1;L) +O(log r)

≤ (n+ 3)T (r, f) + 3T (r,L) + 2N(r,∞; f)

+(2− t)N∗(r, 1;F ,G) +O(log r)

nT (r,L) ≤ 2T (r, f) + 2T (r,L) + 2N(r,∞; f) +

+(2− t)N∗(r, 1;F ,G) +O(log r).(4.17)

In a similar manner, we get

nT (r, f) ≤ 2T (r, f) + 2T (r,L) + 2N(r,∞; f) +

+(2− t)N∗(r, 1;F ,G) +O(log r).(4.18)

Then combining (4.17) and (4.18) we get

nT (r) ≤ 4T (r) + 2N(r,∞; f) + (2− t)N∗(r, 1;F ,G) +O(log r).(4.19)

Subcase 2.1. When t ≥ 5 or t = 4 with n ≥ 4, we get from (4.16) that

nT (r) ≤ 2T (r) + (2 +
3

n− 2
)N(r,∞; f) +O(log r);

i.e.,

nT (r) ≤ (2 + (2 +
3

n− 2
)(1−Θ(∞; f)) + ϵ)T (r) +O(log r),

which is a contradiction for n > 2 + (2 + 3
n−2 )(1−Θ(∞; f)).

When t = 4 and n = 3, we get from (4.16) that

(4.20) 3T (r) ≤ 2T (r) + 5N(r,∞; f) +N∗(r, 1;F ,G) +O(log r).

Now from (4.8) we get, N∗(r, 1;F,G) ≤ N(r,∞; f) + O(log r). Hence (4.20) gives

T (r) ≤ 6(1−Θ(∞; f)+ϵ)T (r)+O(log r), which is a contradiction as Θ(∞; f) > 5
6 .

Subcase 2.2. When t = 3 and n ≥ 5, we get from (4.16) that

nT (r) ≤ 2T (r) + (2 +
3

n− 2
)N(r,∞; f) +O(log r);
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i.e.,

nT (r) ≤ (2 + (2 +
3

n− 2
) (1−Θ(∞; f) + ϵ))T (r) +O(log r),

which is a contradiction for n > 2 + (2 + 3
n−2 )(1−Θ(∞; f)).

When n = 4, we get from (4.16) that

(4.21) 4T (r) ≤ 2T (r) +
7

2
N(r,∞; f) +

1

2
N∗(r, 1;F ,G) +O(log r).

Now using (4.8) in (4.21) we get,

4T (r) ≤ 2T (r) +

(
7

2
+

1

3

)
N(r,∞; f) +O(log r);

i.e.,

4(r) ≤ 2T (r) +
23

6
(1−Θ(∞; f) + ϵ)T (r) +O(log r),

which is a contradiction for Θ(∞; f) > 11
23 .

When t = 3 and n = 3 from (4.16) we get

3T (r) ≤ 2T (r) + 5N(r,∞; f) + 2N∗(r, 1;F ,G) +O(log r).

Now using (4.8) we get 3T (r) ≤ 2T (r) + 8N(r,∞; f) +O(log r); i.e.,

3T (r) ≤ 2T (r) + 8(1−Θ(∞; f) + ϵ)T (r) +O(log r);

which is a contradiction for Θ(∞; f) > 7
8 .

Subcase 2.3. When t = 2, from (4.8) we get

(3n− 8)N∗(r, 1;F ,G) ≤ nN(r,∞; f) +O(log r).

Since (3n− 8) > 0, we get

(4.22) N∗(r, 1;F ,G) ≤ n

3n− 8
N(r,∞; f) +O(log r).

Now from (4.16) using (4.22) we get

nT (r) ≤ 2T (r) + (2 +
3

n− 2
)N(r,∞; f) +

3

n− 2
N∗(r, 1;F ,G) +O(log r)

≤
(
2 +

(
2 +

12

3n− 8

)
(1−Θ(∞; f) + ϵ)

)
T (r) +O(log r),

which is a contradiction for n > 2 +
(
2 + 12

3n−8

)
(1−Θ(∞; f).

Subcase 2.4. When t = 1, n ≥ 5 then (2n− 6) > 0.

Therefore from (4.8) we get

(4.23) (2n− 6)N∗(r, 1;F ,G) ≤ nN(r,∞; f) +O(log r).
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Now from (4.16) using (4.23), we get

nT (r) ≤ 2T (r) + (2 +
3

n− 2
)N(r,∞; f) + (1 +

3

n− 2
)N∗(r, 1;F ,G) +O(log r),

≤ 2T (r) +

(
2 +

1

2
+

6

n− 3

)
(1−Θ(∞; f) + ϵ)T (r) +O(log r)

which is a contradiction for n > 2 + 5
2 + ( 6

n−3 )(1−Θ(∞; f)).

When t = 1 and n = 4, we get from (4.8) that

(4.24) N∗(r, 1;F ,G) ≤ 2N(r,∞; f) +O(log r).

Now from (4.16) using (4.24), we get

4T (r) ≤ 2T (r) +
7

2
N(r,∞; f) +

5

2
N∗(r, 1;F ,G) +O(log r)

≤ 2T (r) +
17

2
(1−Θ(∞; f) + ϵ)T (r) +O(log r),

which is a contradiction for Θ(∞; f) > 13
17 .

Subcase 2.5. When t = 0, n ≥ 5 then (n− 4) > 0.

Therefore from (4.8), we get

(4.25) (n− 4)N∗(r, 1;F ,G) ≤ nN(r,∞; f) +O(log r).

Now from (4.16) using (4.25), we get

nT (r) ≤ 2T (r) + (2 +
3

n− 2
)N(r,∞; f) + (2 +

3

n− 2
)N∗(r, 1;F ,G) +O(log r)

≤ 2T (r) +

(
4 +

14

n− 4

)
(1−Θ(∞; f) + ϵ)T (r) +O(log r),

which is a contradiction for n > 2 +
(
4 + 14

n−4

)
(1−Θ(∞; f)).

Next suppose that η = η2(̸= 0). Hence q2 = 1. Then proceeding similarly as we

have done above for (4.16) and (4.19) we can easily get the following

(4.26) nT (r) ≤ 2T (r) + 5N(r,∞; f) + (5− t)N∗(r, 1;F ,G) +O(log r)

and

nT (r) ≤ 4T (r) + 2N(r,∞; f) + (2− t)N∗(r, 1;F ,G) +O(log r).(4.27)

Subcase 2.6. When t ≥ 2, we get from (4.27) that

nT (r) ≤ 4T (r) + 2N(r,∞; f) +O(log r);

i.e.,

nT (r) ≤ (4 + 2(1−Θ(∞; f)) + ϵ)T (r) +O(log r),
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which is a contradiction for n > 4 + 2(1−Θ(∞; f)).

Subcase 2.7. When t = 1, then from (4.7) we get

(4.28) N∗(r, 1;F ,G) ≤ N(r, η; f) +
1

2
N(r,∞; f) +O(log r).

Now from (4.27) using (4.28), we get

nT (r) ≤ 4T (r) + 2N(r,∞; f) +N∗(r, 1;F ,G) +O(log r)

≤ 5T (r) +
5

2
(1−Θ(∞; f) + ϵ)T (r) +O(log r),

which is a contradiction for n > 5 + 5
2 (1−Θ(∞; f)).

Subcase 2.8. When t = 0, then from (4.7) we get

(4.29) N∗(r, 1;F ,G) ≤ 2N(r, η; f) +N(r,∞; f) +O(log r).

Now from (4.27) using (4.29), we get

nT (r) ≤ 4T (r) + 2N(r,∞; f) + 2N∗(r, 1;F ,G) +O(log r)

≤ 8T (r) + 4(1−Θ(∞; f) + ϵ)T (r) +O(log r),

which is a contradiction for n > 8 + 4(1−Θ(∞; f)).

Thus we see from above that H ≡ 0. Hence on integration, we obtain

1

F − 1
=

A

G − 1
+B,

where A(̸= 0), B ∈ C. □

Lemma 4.7. Let F and G be defined by (4.9), then FG ̸= a, where a is non-zero

complex constant.

Proof. On the contrary, suppose that FG = ζ ̸= 0. Then

(4.30) fn−1(f + a)Ln−1(L+ a) = ζb2 = ζ1(say) ̸= 0.

Let α1 = 0 and α2 = −a. Then it is clear from (4.30 ) that each αi-point of f is a

pole of L and vice-versa.

Let z0 be a α2 point of L of multiplicity r, then it will be a pole of f of multiplicity

ν, such that r = νn. Since ν ≥ 1, so r ≥ n ; i.e., 1
r ≤ 1

n . Similar argument can

be made for α1 point of L. Now using the second fundamental theorem in view of
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N(r,∞;L) = O(log r) we get

T (r,L) ≤ N(r, α1;L) +N(r, α2;L) +N(r,∞;L) + S(r,L)

≤ 2

n
T (r,L) +O(log r),

which is a contradiction as n ≥ 3. □

5. Proof Of the theorems

Proof of Theorem 3.1 Let f be a non-constant meromorphic function and L
be a non-constant L-function. Suppose Ef (S, t) = EL(S, t) and Ef (η, 0) = EL(η, 0)

where t ∈ N∪{0} and η is the zero of P ′(z). Consider F and G as defined by (4.9).

Therefore in view of the Lemma 4.6 we get

(5.1)
1

F − 1
=

A

G − 1
+B,

where A(̸= 0), B ∈ C. Hence we have

(5.2) T (r,F) = T (r,G) +O(1).

Since

(5.3) T (r,F) = nT (r, f) +O(1) and T (r,G) = nT (r,L) +O(1).

So (5.2) implies that

(5.4) T (r, f) = T (r,L) +O(1).

Case 1. If B ̸= 0. Then from (5.1) we get,

(5.5) F =
(B + 1)G + (A−B − 1)

BG + (A−B)
.

Subcase 1.1. If B ̸= −1. Then from (5.5) we get,

(5.6) F =
(B + 1)

(
G − B−A+1

B+1

)
B
(
G − B−A

B

) .

Now clearly, B−A+1
B+1 ̸= B−A

B , as if B−A+1
B+1 = B−A

B then A = 0, which is absurd.

Subcase 1.1.1. If B − A ̸= 0. Then from (5.6) it is clear that N
(
r, B−A

B ;G
)
=

N(r,∞;F).
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Now using second fundamental theorem, (5.4) and N(r,∞;L) = O(log r) we get,

T (r,G) ≤ N(r, 0;G) +N

(
r,
B −A

B
;G
)
+N(r,∞;G) + S(r,G)

≤ N(r, 0;L) +N(r,−a;L) +N(r,∞; f) +N(r,∞;L) + S(r,G)

≤ 2T (r,L) + (1−Θ(∞; f) + ϵ)T (r, f) + S(r,G)

≤ (3−Θ(∞; f) + ϵ)T (r,L) + S(r,G)

≤
(
3−Θ(∞; f) + ϵ

n

)
T (r,G) + S(r,G),

which is a contradiction.

Subcase 1.1.2. If B −A = 0. Then from (5.6) we get,

(5.7) F =
(B + 1)

(
G − 1

B+1

)
BG

.

Now it is clear from (5.7) that N
(
r, 1

B+1 ;G
)
= N(r, 0;F) and N(r, 0;G) = N(r,∞;F).

Now using second fundamental theorem, (5.4) and N(r,∞;L) = O(log r) we get,

T (r,G) ≤ N(r, 0;G) +N

(
r,

1

B + 1
;G
)
+N(r,∞;G) + S(r,G)

≤ N(r,∞; f) +N(r, 0; f) +N(r,−a; f) +N(r,∞;L) + S(r,G)

≤ 2T (r, f) + (1−Θ(∞; f) + ϵ)T (r, f) + S(r,G)

≤ (3−Θ(∞; f) + ϵ)T (r,L) + S(r,G)

≤
(
3−Θ(∞; f) + ϵ

n

)
T (r,G) + S(r,G),

which is a contradiction.

Subcase 1.2. If B = −1. Then from (5.5) we get,

(5.8) F =
A

−G +A+ 1
.

Subcase 1.2.1. If A ̸= −1. Then from (5.8) it is clear that N (r, (A+ 1);G) =
N(r,∞;F).

Now using second fundamental theorem, (5.4) and N(r,∞;L) = O(log r) we get,

T (r,G) ≤ N(r, 0;G) +N (r, (A+ 1);G) +N(r,∞;G) + S(r,G)

≤ N(r, 0;L) +N(r,−a;L) +N(r,∞; f) +N(r,∞;L) + S(r,G)

≤ (3−Θ(∞; f) + ϵ)T (r,L) + S(r,G)

≤
(
3−Θ(∞; f) + ϵ

n

)
T (r,G) + S(r,G),
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which is a contradiction.

Subcase 1.2.2. If A = −1. Then from (5.8) we get,

FG = 1,

which is a contradiction in view of Lemma (4.7).

Case 2. If B = 0. Then from (5.1) we get,

(5.9) G − 1 = A(F − 1).

Subcase 2.1. A ̸= 1. Then from (5.9) we get,

(5.10) AF = G − (1−A).

Suppose η is not an e.v.P. of f and L. Then there exists z0 such that f(z0) =

L(z0) = η.

Let ξ = −1

b
ηn−1(η + a). Then clearly F (z0) = G(z0) = ξ and since P (z) has only

simple zeros, we have ξ ̸= 1.

Now from (5.10) we get,

(ξ − 1)(A− 1) = 0,

which is a contradiction.

Now let η be an e.v.P of L and hence it will be an e.v.P of f also.

Subcase 2.1.1. Suppose that η = 0. Then 0 is an e.v.P of f and L.

Again, it is clear from (5.10) that N (r, (1−A);G) = N(r, 0;F).

Now using second fundamental theorem, (5.4) and N(r,∞;L) = O(log r) we get,

T (r,G) ≤ N(r, 0;G) +N (r, (1−A);G) +N(r,∞;G) + S(r,G)

≤ N(r, 0;L) +N(r,−a;L) +N(r, 0; f) +N(r,−a; f) +N(r,∞;L) + S(r,G)

≤ T (r,L) + T (r, f) + S(r,G) ≤
(
2

n

)
T (r,G) + S(r,G),

which is a contradiction as n ≥ 3.

Subcase 2.1.2. let η ̸= 0, then using second fundamental theorem, (5.4) and

N(r,∞;L) = O(log r) we get,

T (r,G) ≤ N(r, 0;G) +N (r, (1−A);G) +N(r,∞;G) + S(r,G)

≤ N(r, 0;L) +N(r,−a;L) +N(r, 0; f) +N(r,−a; f) +N(r,∞;L) + S(r,G)

≤ 2T (r,L) + 2T (r, f) + S(r,G) ≤
(
4

n

)
T (r,G) + S(r,G),

which is a contradiction as n ≥ 5.
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Subcase 2.2. A = 1 and hence F = G. That is, we get

−1

b
fn−1(f + a) = −1

b
Ln−1(L+ a)(5.11)

=⇒ (fn − Ln) + a(fn−1 − Ln−1) = 0.(5.12)

Let h = f
L . Then from (5.11) we get,

(5.13) L(hn − 1) + a(hn−1 − 1) = 0.

If h ̸= 1, then we can write (5.13) as

(5.14) L = −a
(h− v)(h− v2)...(h− vn−2)

(h− u)(h− u2)...(h− un−1)
,

where u = exp(2πi/n) and v = exp(2πi/(n − 1)). Noting that n and (n − 1) are

relatively prime positive integers, then the numerator and denominator of (5.14)

have no common factors. Since L can have atmost one pole in the complex plane,

hence whenever n ≥ 3 we can see that there exists at least one distinct roots of

hn = 1 such that they are Picard exceptional values of h.

Subcase 2.2.1. When η = 0; i.e., f and L share (0, 0), then from (5.11) it is

clear that f and L have same zeros and poles with counting multiplicity. Therefore,

h is an entire function with no zeros; i.e., when n ≥ 3 there are at least two Picard

exceptional value of h, and so it follows by (5.14) that h and thus L are constants,

which is impossible.

Therefore, we must have h = 1; i.e., f = L.

Subcase 2.2.2. When η ̸= 0, for n ≥ 5 there are at least three Picard exceptional

value of h, and so it follows by (5.14) that h and thus L are constants, which is

impossible.

Therefore, we must have h = 1; i.e., f = L.

Proof of Corollary 3.1 If f be a meromorphic function having finitely many

poles, then we have

(5.15) Θ(∞; f) = 1.

Therefore using (5.15), the desired results follow from the proofs of Theorem 3.1.
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