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1. Introduction

The notion of movability for metric compacta was introduced by K. Borsuk

[2] as an important shape invariant. The movable spaces are a generalization of

spaces having the shape of ANR’s. The movability assumption allows a series of

important results in algebraic topology (like the Whitehead and Hurewicz theorems)

to remain valid when the homotopy pro-groups are replaced by the corresponding

shape groups. The term "movability"comes from the geometric interpretation of

the definition in the compact case: if X is a compactum lying in a space M ∈ AR,

one says that X is movable if for every neighborhood U of X in M there exists a

neighborhood V ⊂ U of X such that for every neighborhood W ⊂ U of X there

is a homotopy H : V × [0, 1] → U such that H(x, 0) = x and H(x, 1) ∈ W for

every x ∈ V . One shows that the choice of M ∈ AR is irrelevant [2]. After the

notion of movability had been expressed in terms of ANR-systems for arbitrary

topological spaces [16], [17], it became clear that one could define it in arbitrary

pro-categories. The definition of a movable object in an arbitrary pro-category and

that of uniform movability were both given by Maria Moszyńska [20]. Uniform

movability is important in the study of mono- and epi-morphisms in pro-categories

and in the study of the shape of pointed spaces. In the book of Sibe Mardešić and
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Jack Segal [17] all these approaches and applications of various types of movability

are discussed.

Besides the classic case of movability pro-objects and shape objects, some notions

of movability for some morphisms appear in the papers of T. Yagasaki [28] and [29],

Z.Čerin [3], and D. A. Edwards and P. Tulley McAuley [6]. Unfortunately, these

approaches are just particular cases and they do not deal with the movability of

shape morphisms in the general case of an abstract shape theory.

Some categorical approaches to movability in shape theory were given by P.S.

Gevorgyan [7], [8], P.S. Gevorgyan and I. Pop [9], Avakyan and Gevorgyan [1], and

I. Pop [21], [23].

The idea of considering the notions of movability for abstract pro-morphisms

and shape morphisms came from the article [22] of the second author, in which the

notion of movability is defined for a covariant functor and for a natural transformation

(functorial morphism). Then, considering the inverse systems as functors and the

pro-morphisms as natural transformations, various types of movability can be obtained,

for pro-morphisms and shape morphisms, which is done in the papers of P.S.

Gevorgyan and I. Pop [10], [11], [12]. But what is achieved by introducing this

property? In short: if m : X → Y is a pro-morphism or a shape morphism and if X

or Y is a movable pro-object or a shape-object thenm is a movable morphism. And if

Y = X and m = 1X , then X is movable if and only if the morphism 1X is movable.

We see that the movability of morphisms (pro- or shape-) is a generalization of

the movability of objects in that category. And then, to obtain a theorem on the

morphism m, assuming that X or Y is movable, it may happen that the same result

should be obtained with the weaker condition that m be movable.

In the present paper we introduce and study the notions of movability for a

new type of pro-morphisms and shape morphisms associated with a category C and

a pair (C,D) respectively, namely belonging to a so called enriched pro-category

proJ -C, and respectively to the corresponding shape category ShJ(C,D) having as the

realizing subcategory the category proJ -D for (J,≤) a directed partially ordered

set, according to the article [27] by N. Uglešić.

Because by particularization of the set (J,≤) one can obtain the classical abstract

shape theory and the so-called coarse shape theory, the results of this article can

be considered as generalizations of the corresponding results from the papers [9],

[10], and [12].
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2. Enriched pro-category and J-shape category

In this section are given the notions and results from [27] necessary for the

approach of our paper. Other notions and necessary results from shape theory can

be found in the books [17] and [4].

Definition 2.1. Let C be a category, let X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M)

be inverse systems in C and let J = (J,≤) be a directed partially ordered set. A

J-morphism (of X to Y in C) is every triple (X, ((f jµ), ϕ),Y), denoted (f jµ, ϕ) :

X → Y, where ((f jµ), ϕ) is an ordered pair consisting of a function ϕ : M → Λ ,

called the index function, and, for each µ ∈ M , of a family (f jµ) of C-morphisms

f jµ : Xϕ(µ) → Yµ, j ∈ J , such that, for every related pair µ′ ≥ µ in M , there exists

a λ ∈ Λ, λ ≥ ϕ(µ), ϕ(µ′), and there exists a j ∈ J so that for every j′ ≥ j,

(2.1) f j
′

µ pϕ(µ)λ = qµµ′f j
′

µ′pϕ(µ′)λ,

i.e., makes the following diagram commutative

Xλ

pϕ(µ)λ

||

pϕ(µ′)λ

##
Xϕ(µ)

fj
′
µ

��

Xϕ(µ′)

fj
′

µ′

��
Yµ Yµ′

qµµ′oo

If the index function ϕ is increasing and, for every pair µ ≤ µ′, one may put

λ = ϕ(µ′), then (f jµ, ϕ) is said to be a simple J-morphism.

If, in addition,M = Λ and ϕ = 1Λ, then (f jλ, 1Λ) is said to be a level J-morphism.

Further, if the equality (2.1) holds for every j ∈ J , then (f jµ, ϕ) : X → Y is said

to be a commutative J-morphism.

Remark 2.1. a) The composition of two J-morphisms (f jµ, ϕ) : X = (Xλ, pλλ′ ,Λ) →
Y = (Yµ, qµµ′ ,M) and (gjν , ψ) : Y → Z = (Zν , rνν′ , N) is defined as (hjν , χ) : X →
Z, with χ = ϕ◦ψ and hjν = gjν ◦f

j
ψ(ν), j ∈ J , ν ∈ N . This composition is associative.

b) The identity J-morphism of the inverse system X = (Xλ, pλλ′ ,Λ) is (1jXλ , 1Λ) :

X → X with 1jXλ = 1Xλ for any j ∈ J , where 1Xλ is the identity morphism of Xλ

in the category C.

c) For a category C and a directed partially ordered set J there exists a category

invJ -C having the object class Ob(invJ -C) = Ob(inv-C) and the morphism class

Mor(invJ -C) of all sets (invJ -C)(X,Y) of all J-morphisms (f jµ, ϕ) of X to Y,

endowed with the composition and identities described in a) and b).
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Definition 2.2. A J-morphism (f jµ, ϕ) : X → Y of inverse systems in C is said to

be equivalent to a J-morphism (f ′
j
µ), ϕ

′) : X → Y, denoted by (f jµ, ϕ) ∼ (f ′
j
µ, ϕ

′),

if every µ ∈ M admits a λ ∈ Λ, λ ≥ ϕ(µ), ϕ′(µ), and a j ∈ J such that, for every

j′ ≥ j,

(2.2) f j
′

µ pϕ(µ)λ = f ′
j′

µ pϕ′(µ)λ,

i.e., makes the following diagram commutative

Xλ

pϕ′(µ)λ

��

pϕ(µ)λ // Xϕ(µ)

fj
′
µ

��
Xϕ′(µ)

f ′j′
µ

// Yµ

Remark 2.2. a) The defining equality (2.2) holds for every λ′ ≥ λ;

b) The relation ∼ is an equivalence relation on each set (invJ -C)(X,Y);

c) The equivalence class [(f jµ, ϕ)] of a J-morphism is denoted by f ;

d) Let (f j , ϕ), (f ′
j
µ, ϕ

′) : X → Y and (gjν , ψ), (g
′j
ν , ψ

′) : Y → Z be J-morphisms

of inverse systems in C. If (f jµ, ϕ) ∼ (f ′
j
µ, ϕ

′) and (gjν , ψ) ∼ (g′
j
ν , ψ

′), then (gjν , ψ)(f
j
µ, ϕ) ∼

(g′
j
ν , ϕ

′)(f ′
j
µ, ϕ

′);

e) By the above remarks one may compose the equivalence classes of J-morphisms

of inverse systems in C by means of any pair of their representatives, i.e., gf = h,

where h is the equivalence class of (hjν , h) = (gjν , ψ)(f
j
µ, ϕ) = (gjνf

j
g(ν), ϕψ). The

corresponding quotient category (invJ -C)/ ∼ is denoted by proJ -C. The morphisms

of this category are called J-pro-morphisms. There exists a subcategory (proJ -C)c ⊆
proJ -C determined by all equivalence classes having commutative representatives.

This category is isomorphic to the quotient category (invJ -C)c/ ∼. Also pro-C =

(inv-C)/ ∼ can be considered as a subcategory of (proJ -C)c and, consequently as a

subcategory of proJ -C
f) Now using the fact that if (Λ,≤) is a directed set and (M,≤) is a cofinite

directed set, then every function ϕ : M → Λ admits an increasing function ϕ′ :

M → Λ such that ϕ ≤ ϕ′ (see [17], Ch.I, §1.2, Lemma 1), it can be proved that: if

f : X = (Xλ, pλλ′ ,Λ) → Y = (Yµ, qµµ′ ,M) is a morphism in proJ -C, with (M,≤)

cofinite, then f admits a simple representative (f ′
j
µ, ϕ

′) : X → Y ([27], Lemma 6).

g) There exists a covariant functor I ≡ IJC : pro-C → proJ -C, by: I(X) = X, for

every inverse system X in C, and if f ∈ pro-C(X,Y) and f = [(fµ, ϕ)], then I(f) =

[(f jµ, ϕ)] ∈ (proJ -C)(X,Y), where for each µ ∈ M , f jµ = fµ for all j ∈ J . Thus,

every induced J-morphism is commutative, and therefore IJC : pro-C → (proJ -C)c ⊆
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proJ -C. It is easy to see that this functor is faithful ([27], Theorem 1), but it is not

full ([27], Remark 2).

h) Every inverse system X in C is isomorphic in proJ -C to a cofinite inverse

system X′.

An important theorem is the following ([27], Theorem 2; [17], Ch.I, §1.3, Theorem 3):

Theorem 2.1. Let f : X → Y ∈ (proJ -C)(X,Y). Then there exist inverse systems

X′ and Y′ in C having the same cofinite index set (N,≤), there exists a morphism

f ′ : X′ → Y′ having a level representative (f ′
j
ν , 1N ) and there exists isomorphisms

i : X → X′ and j : Y → Y′ of proJ -C such that the following diagram in proJ -C
commutes

X

i
��

f // Y

j

��
X′

f ′
// Y′

Remark 2.3. a) If J = {1}, then pro(1)-C = pro-C;

b) If (J,≤) = (N,≤), then proN-C = pro∗-C is the pro-category obtained from

the category (inv∗-C) with so-called, ∗-morphisms [14];

c) If J is a directed partially ordered set having maxJ , then proJ -C ∼= pro-C.

The "inclusion"functor I : pro-C → proJ -C is a category isomorphism;

d) If J and K are finite directed partially ordered sets, then there exist the

isomorphisms: proJ -C ∼= proK-C ∼= pro-C;

e) If there exists maxJ , then for every L there exists the canonical inclusion

functor I : proJ -C → proL-C keeping the objects fixed;

f) Let J be a well ordered set and let K be a directed partially ordered set, both

without maximal elements, such that there exists an increasing function ϕ : J → K

such that ϕ[J ] is cofinal in K. Then there exists a functor T : proJ -C → proK-C
which keeps the objects fixed and does not depend on ϕ. Furthermore, for every

pair X and Y of inverse systems in C, X ∼= Y in proJ -C iff X ∼= Y in proK-C.

Remark 2.4. A proJ -C category is called an enriched pro-category. An enriched pro-

category is interesting and useful by itself because, in general, it divides (classifies)

the objects into larger classes (isomorphisms types) than the underling pro-category

pro-C. In addition, with the help of such an enriched pro-category one can construct

in the usual way a corresponding J-shape theory.

Definition 2.3. A J-pro-morphism f : X → Y is said to be proJ -D equivalent to

a J-pro-morphism f ′ : X′ → Y′, denoted by f ∼ f ′, if there exist two canonical
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isomorphisms i : X → X′ and j : Y → Y′ of pro-D such that the following diagram

in pro-D commutes:

X

f

��

i // X′

f ′

��
Y

j
// Y′

The equivalence class of a J-pro-morphism f : X → Y is denoted by ⟨f⟩.

Remark 2.5. If f ∼ f ′ and g ∼ g′, then gf ∼ g′f ′, so the composition ⟨g⟩⟨f⟩ = ⟨gf⟩
is well defined.

Definition 2.4. For a pair of categories (C,D) with D a dense full (equivalent, full

and pro-reflective, [26]) subcategory of C, the (abstract) J-shape category ShJ(C,D) is

defined as follows. The objects of this category are all the objects of C. A morphism

F ∈ ShJ(C,D)(X,Y ) is the (proJ -D)-equivalence class ⟨f⟩ of a J-morphism f : X →
Y of proJ -D for an arbitrary choice of D-expansions p : X → X, q : Y → Y. In

other words, a J-shape morphism F : X → Y is given by a diagram

X

f
��

X

F
��

poo

Y Y
q
oo

The composition of two J-shape morphisms F : X → Y , F = ⟨f⟩ and G : Y → Z,

G = ⟨g⟩, is defined by representatives, i.e., GF : X → Z, GF = ⟨gf⟩.
The identity J-shape morphism on an object X, 1X : X → X, is the (proJ -D)-

equivalence class ⟨1X⟩ of the identity morphism 1X of X in proJ -D.

Since ShJ(C,D)(X,Y ) ≈ proJ -D(X,Y) is a set, the J-shape category ShJ(C,D) is

well defined, and that its realizing category is proJ -D.

An interesting particular case of J-shape morphism is the following: If f : X → Y

is a morphism in the category C and p : X → X, q : Y → Y are D-expansions, then

there exists a morphism f : X → Y in proJ -D, such that the following diagram in

proJ -C commutes:

X

f
��

X

f

��

poo

Y Y
q
oo

This is a result of the definition of an expansion, [17] (Ch. I, §2.1). If we take other

D-expansions p′ : X → X′, q′ : Y → Y′, we obtain another morphism f ′ : X′ → Y′

in proJ -D, such that f ′p′ = q′f . And because (f ′i)p = f ′p′ = q′f = jqf = (jf)p,
37



P. S. GEVORGYAN, I. POP

which implies f ′i = jf , such that f ∼ f ′ in proJ -D, and in this way we can associate

with every f ∈ C(X,Y ) a proJ -D-equivalence class ⟨f⟩, i.e., a J-shape morphism

F ∈ ShJ(C,D)(X,Y ).

If one defines SJ(X) = X, X ∈ ObC, and SJ(f) = F = ⟨f⟩, f ∈ C(X,Y ), we

obtain a covariant functor SJ ≡ SJ(C,D) : C → ShJ(C,D), called (abstract) J-shape

functor.

Theorem 2.2 ([27], Theorem 5). Let D be a full and pro-reflective subcategory

of C and J a directed partially ordered set. Then, for every pair P,Q ∈ ObD, the

following statements are equivalent:

(i) P and Q are isomorphic objects of D, P ∼= Q in D ⊆ C;

(ii) P and Q have the same shape, Sh(P ) = Sh(Q), i.e., P ∼= Q in Sh(C,D);

(iii) P and Q have the same J-shape, ShJ(C,D)(P ) = ShJ(C,D)(Q), i.e., P ∼= Q in

ShJ(C,D).

Theorem 2.3 ([27], Corollary 2). Let C a category and D a full and pro-reflective

subcategory. Then

(i) Sh(C,D) = Sh
{1}
(C,D);

(ii) Sh∗(C,D) = ShN(C,D), where Sh∗(C,D) is the coarse shape category [14];

(iii) If J is a directed partially ordered set having maxJ , then ShJ(C,D)
∼= Sh(C,D).

3. Movability and uniform movability properties for J-morphisms

All sets of indices of inverse systems are supposed to be cofinite directed sets.

This condition is not restrictive (cf. [17], Ch.I, §1.2).

First we recall from [17] the notions of movable and uniform movable inverse

systems.

An object X = (Xλ, pλλ′ ,Λ) of pro-C is movable provided every λ ∈ Λ admits a

λ′ ≥ λ (called a movability index of λ) such that each λ′′ ≥ λ admits a morphism

r : Xλ′ → Xλ′′ of C which satisfies

(3.1) pλλ′′ ◦ r = pλλ′ ,

i.e., makes the following diagram commutative

Xλ′
pλλ′ //

r
""

Xλ

Xλ′′

pλλ′′

<<

An object X = (Xλ, pλλ′ ,Λ) of pro-C is called a uniform movable if every λ ∈ Λ

admits a λ′ ≥ λ (called a uniform movability index of λ) such that there is a
38



MOVABILITY OF MORPHISMS IN AN ENRICHED ...

morphism r : Xλ′ → X in pro-C satisfying

(3.2) pλ ◦ r = pλλ′ ,

where pλ : X → Xλ is the morphism of pro-C given by 1λ : Xλ → Xλ.

Definition 3.1. Let X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M) be inverse systems

in a category C and (f jµ, ϕ) : X → Y be a J-morphism of inverse systems. We say

that the J-morphism (f jµ, ϕ) is movable (J-movable) if every µ ∈M admits λ ∈ Λ,

λ ≥ ϕ(µ) and j ∈ J , such that each µ′ ∈M , µ′ ≥ µ, and j′ ≥ j admit a morphism

uj
′
: Xλ → Yµ′ in the category C, which satisfies

(3.3) f j
′

µ ◦ pϕ(µ)λ = qµµ′ ◦ uj
′
,

i.e., makes the following diagram commutative

Xϕ(µ)

fj
′
µ // Yµ

Xλ

pϕ(µ)λ

OO

uj
′
// Yµ′

qµµ′

OO

The pair of indices (λ, j) is called a J-movability pair of µ with respect to the

J-morphism (f jµ, ϕ).

The composition f jµ ◦pϕ(µ)λ for λ ≥ ϕ(µ) is denoted by f jµλ (cf. [17], Ch.II, §2.1).

With this notation the relation (3.3) becomes

f j
′

µλ = qµµ′ ◦ uj
′
.

Note that if (λ, j) is a J-movability pair of µ with respect to (f jµ, ϕ), then so is

any pair (λ̃, j̃), with λ̃ ≥ λ and j̃ ≥ j.

Example 3.1. Let (X) be a rudimentary system in the category C and (f jµ, ϕ) :

(X) → Y = (Yµ, qµµ′ ,M), ϕ(µ) = 1,∀µ ∈ M , a J-morphism of inverse systems. It

is not hard to verify that (f jµ, ϕ) is movable.

More generally, if we consider a morphism (f jµ, ϕ) : X = (Xλ, pλλ′ ,Λ) → Y =

(Yµ, qµµ′ ,M) such that there exists λM ∈ Λ satisfying λM ≥ ϕ(µ) for any µ ∈ M ,

then (f jµ, ϕ) is J-movable. Indeed, for an arbitrary index µ ∈ M and µ′ ≥ µ there

exists j ∈ J such that for j′ ∈ J , j′ ≥ j, we have f j
′

µ ◦pϕ(µ)λM = qµµ′◦f j
′

µ′◦pϕ(µ′)λM =

qµµ′ ◦ uj′ , where uj
′
= f j

′

µ′ ◦ pϕ(µ′)λM is a morphism from XλM to Yµ′ . So, (λM , j)

is a J-movability pair for µ ∈M .

Remark 3.1. a) If J = {1}, that is, invJ -C = inv-C, then the condition of movability

for a morphism of inverse systems (fµ, ϕ) : X → Y is written as fµ ◦pϕ(µ)λ = qµµ′u,
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for a λ ∈ Λ, λ ≥ ϕ(µ), µ′ ≥ µ, and u : Xλ → Yµ′ a morphism in C. And this

is the definition of movability for an usual morphism of inverse systems (cf. [10],

Definition 2.2).

b) If (J,≤) = (N,≤), i.e., invJ -C = inv∗-C, the condition of movability for a

∗-morphism (fnµ , ϕ) : X → Y is the following: every µ ∈M admits λ ∈ Λ, λ ≥ ϕ(µ)

and n ∈ N, such that each µ′ ∈ M , µ′ ≥ µ, and m ≥ n, admit a morphism

um : Xλ → Yµ′ in the category C, which satisfies

(3.4) fmµ ◦ pϕ(µ)λ = qµµ′ ◦ um.

Proposition 3.1. An inverse system X = (Xλ, pλλ′ ,Λ) is movable if and only if

the identity J-morphism (1jXλ , 1Λ) is movable.

Proof. If λ′ is a movability index of λ with respect to X, then a pair (λ′, j),

j ∈ J , is a J-movability pair for λ with respect to the identity J-morphism, and

conversely. □

Theorem 3.1. Let X = (Xλ, pλλ′ ,Λ), Y = (Yµ, qµµ′ ,M), Z = (Zν , rνν′ , N) be

inverse systems in the category C and let (f jµ, ϕ) : X → Y, (gjν , ψ) : Y → Z

be J-morphisms of inverse systems. If (gjν , ψ) is movable, then the composition

(hjν , χ) = (gjν , ψ) ◦ (f jµ, ϕ) is also a movable J-morphism.

Proof. Recall that by definition of the composition of J-morphisms we have

χ = ϕ ◦ ψ and hjν = gjν ◦ f
j
ψ(ν). If (gjν , ψ) is movable, and if (µ, j) is a J-movability

pair of an index ν ∈ N , then for any index ν′ ∈ N , ν′ ≥ ν, there is an index j ∈ J

and a morphism uj
′
: Yµ → Zν′ , j′ ≥ j, such that gj

′

ν ◦ qψ(ν)µ = rνν′ ◦ uj′ or the

next diagram is commutative

Yψ(ν)
gj

′
ν // Zν

Yµ

qψ(ν)µ

OO

uj
′
// Zν′

rνν′

OO

Now consider λ ∈ Λ such that λ ≥ ϕ(µ), λ ≥ ϕ(ψ(ν)), and f j
′

ψ(ν) ◦ pϕ(ψ(ν))λ =

qψ(ν)µ ◦f j
′

µ ◦pϕ(µ)λ. Consider the morphism u′
j′
= uj

′ ◦f j′µ ◦pϕ(µ)λ : Xλ → Zν′ . For

this morphism we obtain: rνν′◦u′j
′
= (rνν′◦uj′)◦fµ◦pϕ(µ)λ = gν◦qψ(ν)◦f j

′

µ ◦pϕ(µ)λ =

gν ◦ f j
′

ψ(ν) ◦ pϕ(ψ(ν)) = hj
′

ν ◦ pχ(ν)λ, i.e., the following diagram is commutative
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Xχ(ν)

hj
′
ν // Zν

Xλ

pχ(ν)λ

OO

u′j′
// Zν′

rνν′

OO

Thus, (hjν , χ) is a movable J-morphism. □

Corollary 3.1. Let X = (Xλ, pλλ′ ,Λ) be an arbitrary inverse system and Y =

(Yµ, qµµ′ ,M) be a movable inverse system. Then any J-morphism (f jµ, ϕ) : X → Y

is movable.

Proof. Since (f jµ, ϕ) = (1jYµ , 1M )◦(f jµ, ϕ) and (1jYµ , 1M ) : Y → Y is a movable J-

morphism by Proposition 3.1, then (f jµ, ϕ) is also J-movable according to Theorem

3.1. □

Theorem 3.2. Let X = (Xλ, pλλ′ ,Λ), Y = (Yµ, qµµ′ ,M), Z = (Zν , rνν′ , N) be

inverse systems in the category C, and let (f jµ, ϕ) : X → Y, (gjν , ψ) : Y → Z be

J-morphisms. If (f jµ, ϕ) is movable, then the composition (hjν , χ) = (gjν , ψ) ◦ (f jµ, ϕ)
is also a movable J-morphism.

Proof. For a given index ν ∈ N , consider a movability pair (λ, j) of ψ(ν),

λ ≥ ϕ(ψ(ν)), with respect to (f jµ, ϕ). Let us prove that (λ, j) is a movability pair of

ν with respect to the J-morphism (hjν , χ).

Let ν′ ∈ N , ν′ ≥ ν, be any index and let µ′ ≥ ψ(ν′), ψ(ν) be an index such that

for j′ ≥ j

rj
′

νν′ ◦ gj
′

ν′ ◦ qψ(ν′)µ′ = gj
′

ν ◦ qψ(ν)µ′ .

By the J-movability of (f jµ, ϕ) : X → Y, for qψ(ν)µ′ there exists a morphism

uj
′
: Xλ → Yµ′ such that

f j
′

ψ(ν) ◦ pϕ(ψ(ν))λ = qψ(ν)µ′ ◦ uj
′
.

Define U j
′
: Xλ → Zν′ by

U j
′
= gj

′

ν′ ◦ qψ(ν′)µ′ ◦ uj
′
.

Now we have: rj
′

νν′ ◦ U j
′
= rj

′

νν′ ◦ gj
′

ν′ ◦ qψ(ν′)µ′ ◦ uj′ = gj
′

ν ◦ qψ(ν)µ′ ◦ uj′ = gj
′

ν ◦
qψ(ν)µ ◦ f j′µ ◦ pϕ(µ)λ = gj

′

ν ◦ f j
′

ψ(ν) ◦ pχ(ν)λ = hj
′

ν ◦ pχ(ν)λ. □

Corollary 3.2. Let X = (Xλ, pλλ′ ,Λ) be a movable inverse system and let Y =

(Yµ, qµµ′ ,M) be an arbitrary inverse system. Then any J-morphism (f jµ, ϕ) : X →
Y is movable.
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Proof. Since (f jµ, ϕ) = (f jµ, ϕ)◦(1
j
Xλ
, 1Λ) and the identity J-morphism (1jXλ , 1Λ) :

X → X is movable by Proposition 3.1, then (f jµ, ϕ) is also J-movable according to

Theorem 3.2. □

Corollary 3.3. Let X = (Xλ, pλλ′ ,Λ) be a movable inverse system in the category

C. If an inverse system Y = (Yµ, qµµ′ ,M) is J-dominated by X, i.e., there exist two

J-morphisms (f jµ, ϕ) : X → Y and (gjλ, ψ) : Y → X such that (f jµ, ϕ) ◦ (gjλ, ψ) =

(1jYµ , 1M ), then Y is movable.

Proof. By hypothesis and Proposition 3.1, (1jXλ , 1Λ) is J-movable. Then by the

equality (1jXλ , 1Λ) ◦ (g
j
λ, ψ) = (gjλ, ψ) and by Theorem 3.1 it follows that (gjν , ψ) is

J-movable. Hence, the composition (f jµ, ϕ) ◦ (g
j
λ, ψ) = (1jYµ , 1M ) is also J-movable

by Theorem 3.2. Therefore, Proposition 3.1 implies that Y is a movable inverse

system. □

Remark 3.2. Corollary 3.3 is a generalization of a classical result for the movability

of inverse systems [17] (Ch. II, §6.1, Theorem 1) here with a proof based on the

J-movability property of J-morphisms.

Definition 3.2. Let X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M) be inverse systems in

a category C and let (f jµ, ϕ) : X → Y be a J-morphism. We say that the J-morphism

(fµ, ϕ) is uniformly movable(J-uniformly movable) if every µ ∈ M admits λ ∈ Λ,

λ ≥ ϕ(µ) and j ∈ J such that for j′ ≥ j there is a J-morphism of inverse systems

uj′ : Xλ → Y satisfying

(3.5) f j
′

µλ = qµ ◦ uj
′

i.e., the following diagram commutes

Xλ

fj
′
µλ //

uj
′
  

Yµ

Y

qµ

>>

where f j
′

µλ = f j
′

µ ◦ pϕ(µ)λ and qµ : Y → Yµ is the J-morphism of inverse systems

given by 1jYµ : Yµ → Yµ.

The pair (λ, j) is called a J-uniform movability pair of µ with respect to (f jµ, ϕ).

Remark 3.3. If (λ, j) is a J-uniform movability pair, then so is any pair (λ̃, j̃),

λ̃ ≥ λ, j̃ ≥ j.

Remark 3.4. Note that the J-morphism uj
′
: Xλ → Y determines for every µ1 ∈M

a morphism uj
′

µ1
: Xλ → Yµ1

in C such that for µ1 ≤ µ2 we have qµ1µ2
◦ uj′µ2

= uj
′

µ1
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and uj
′

µ = f j
′

µλ. In particular, for µ′ ∈M , µ′ ≥ µ, we have qµµ′ ◦ uj
′

µ′ = uj
′

µ = f j
′

µλ, so

that J-uniform movability of J-morphisms implies J-movability.

Proposition 3.2. An inverse system X = (Xλ, pλλ′ ,Λ) is uniformly movable if

and only if the identity J-morphism 1X = (1jXλ , 1Λ) is J-uniformly movable.

Proof. Suppose X is uniformly movable. Let λ ∈ Λ. Note that a uniform

movability index λ′ ≥ λ together with j ∈ J arbitrary constitutes a pair (λ′, j) of

J-uniform movability of λ with respect to the identity 1X = (1jXλ , 1Λ). Conversely,

suppose 1X : X → X is a uniformly movable J-morphism. Note that for any λ ∈ Λ

if (λ′, j) is a J-uniform movability pair of λ with respect to 1X, then λ′ is a uniform

movability index of λ for X. □

Example 3.2. Let (X) be a rudimentary system in the category C. It is easy to

see that any J-morphism of inverse systems (f jµ) : (X) → Y = (Yµ, qµµ′ ,M) is

J-uniformly movable.

More generally, if we consider a J-morphism (f jµ, ϕ) : X = (Xλ, pλλ′ ,Λ) → Y =

(Yµ, qµµ′ ,M) such that there exists λM ∈ Λ satisfying λM ≥ ϕ(µ) for any µ ∈ M ,

then (f jµ, ϕ) is J-uniformly movable. Indeed, it is not difficult to verify that for any

index µ ∈M , a J-uniformly movable pair is (λM , j), for an arbitrary j ∈ J .

Theorem 3.3. Let X = (Xλ, pλλ′ ,Λ), Y = (Yµ, qµµ′ ,M), Z = (Zν , rνν′ , N) be

inverse systems in the category C and (f jµ, ϕ) : X → Y, (gjν , ψ) : Y → Z morphisms

of inverse systems. If (gjν , ψ) is J-uniformly movable, then the composition (hjν , χ) =

(gjν , ψ) ◦ (f jµ, ϕ) is also a J-uniformly movable morphism.

Proof. We use the notations from the proof of Theorem 3.1 replacing rνν′ :

Zν′ → Zν by rν : Z → Zν and uj
′
: Yµ → Zν′ by uj

′
: Yµ → Z. Then we have

gj
′

ν ◦ qψ(ν)µ = rj
′

ν ◦ uj
′
. And by defining u′j′ = uj

′ ◦ f j
′

µλ : Xλ → Z, we obtain

rν ◦ u′j′ = hj
′

νλ. □

Corollary 3.4. Let X = (Xλ, pλλ′ ,Λ) be an arbitrary inverse system and let

Y = (Yµ, qµµ′ ,M) be a uniformly movable inverse system. Then any J-morphism

(f jµ, ϕ) : X → Y is J-uniformly movable.

Proof. Since (f jµ, ϕ) = 1JY ◦ (f jµ, ϕ) and 1JY : Y → Y is J-uniformly movable by

Proposition 3.2, then (f jµ, ϕ) is also uniformly movable according to Theorem 3.3.

Theorem 3.4. Let X = (Xλ, pλλ′ ,Λ), Y = (Yµ, qµµ′ ,M), Z = (Zν , rνν′ , N) be

inverse systems in the category C and let (f jµ, ϕ) : X → Y, (gjν , ψ) : Y → Z be

morphisms of inverse systems. Suppose that (f jµ, ϕ) is J-uniformly movable. Then

the composition (hjν , χ) = (gjν , ψ) ◦ (f jµ, ϕ) is also a uniformly movable morphism.
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Proof. Using the notations from the proof of Theorem 3.2, there exists uj
′
:

Xλ → Y, such that f j
′

ψ(ν)λ = qψ(ν) ◦ uj
′
. Then for Uj′ : Xλ → Z, Uj′ = gj

′

ν ◦ uj′ ,
we have hj

′

νλ = gj
′

ν ◦ f j
′

ψ(ν)λ = rν ◦Uj′ . □

Corollary 3.5. Let X = (Xλ, pλλ′ ,Λ) be uniformly movable inverse system and let

Y = (Yµ, qµµ′ ,M) be an arbitrary inverse system. Then any J-morphism (f jµ, ϕ) :

X → Y is uniformly movable.

Proof. Since (f jµ, ϕ) = (f jµ, ϕ)◦ (1
j
Xλ
, 1Λ) and the identity J-morphism (1jXλ , 1Λ)

is uniformly movable by Proposition 3.2, then (f jµ, ϕ) is also J-uniformly movable

according to Theorem 3.4. □

Corollary 3.6. Let X and Y be inverse systems in the category C. Suppose that X

is uniformly movable and Y is J-dominated by X. Then Y is uniformly movable.

Proof. We use the notations from Corollary 3.3. By hypothesis and Proposition

3.2, (1jXλ , 1Λ) is J-uniformly movable. Then by the equality (1jXλ , 1Λ) ◦ (gjν , ψ) =

(gjν , ψ) and by Theorem 3.3 we have that (gjν , ψ) is J-uniformly movable. Hence,

by Theorem 3.4 the composition (f jµ, ϕ) ◦ (gjλ, ψ) = (1jYµ , 1M ) is also J-uniformly

movable. Finally, using Proposition 3.2 we conclude that Y is a uniformly movable

inverse system. □

4. Co-movability properties for J-morphisms

Definition 4.1. Let X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M) be inverse systems

in a category C and let (f jµ, ϕ) : X → Y be a J-morphism in C. We say that the

(fµ, ϕ) is a co-movable J-morphism provided every µ ∈M admits λ ∈ Λ, λ ≥ ϕ(µ)

and j ∈ J (the pair (λ, j) being called a co-movability pair of µ relative to (f jµ, ϕ))

such that each λ′ ≥ ϕ(µ) and j′ ∈ J , j′ ≥ j admit a morphism rj
′
: Xλ → Xλ′ of C

which satisfies

(4.1) f j
′

µλ = f j
′

µλ′ ◦ rj
′
,

i.e., makes the following outside diagram commutative

Yµ

Xϕ(µ)

fj
′
µ

OO

Xλ

fj
′
µλ

EE

pϕ(µ)λ

<<

rj
′

// Xλ′

pϕ(µ)λ′

cc
fj

′

µλ′

YY

44



MOVABILITY OF MORPHISMS IN AN ENRICHED ...

Definition 4.2. Let X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M) be inverse systems

in a category C and let (f jµ, ϕ) : X → Y be a J-morphism of inverse systems. We

say that the (f jµ, ϕ) is a uniformly co-movable J-morphism provided every µ ∈ M

admits λ ∈ Λ, λ ≥ ϕ(µ) and j ∈ J (the pair (λ, j) being called a uniform co-

movability pair of µ relative to (f jµ, ϕ)) such that, for j′ ∈ J , j′ ≥ j, there is a

morphism rj
′
: Xλ → X of inverse systems satisfying

(4.2) f j
′

µλ = f j
′

µ ◦ rj
′
,

i.e., makes the following outside diagram commutative

Yµ

Xϕ(µ)

fj
′
µ

OO

Xλ

fj
′
µλ

EE

pϕ(µ)λ

<<

rj
′

// X

pϕ(µ)

bb
fj

′
µ

XX

where f j
′

µ = f j
′

µ ◦ pϕ(µ).

Remark 4.1. Note that the morphism rj
′
: Xλ → X is given by some morphisms

rj
′

λ′ : Xλ → Xλ′ such that if λ′1 ≤ λ′2 then rj
′

λ′
1
= pλ′

1λ
′
2
◦ rj

′

λ′
2
. The relation f j

′

µλ =

f j
′

µ ◦rj′ means f j
′

µλ = f j
′

µ ◦rj
′

ϕ(µ). Therefore, λ′ ≥ ϕ(µ) implies f j
′

µλ = f j
′

µ ◦pϕ(µ)λ′◦rj
′

λ′ =

f j
′

µλ′ ◦rj
′

λ′ . In this way we have that uniform J-co-movability implies J-co-movability.

Remark 4.2. If (λ, j) is a co-movability (uniform co-movability) pair of µ relative

to the J-morphism (f jµ, ϕ) then so is any pair (λ̃, j̃), with λ̃ ≥ λ and j ≥ j.

Definition 4.3. A J-morphism (f jµ, ϕ) : ((Xλ, ∗), pλλ′ ,Λ) → ((Yµ, ∗), qµµ′ ,M) of

pointed sets is said to have the Mittag-Leffler property provided every µ ∈ M

admits a pair (λ, j), λ ≥ ϕ(µ), j ∈ J , (an ML pair for µ with respect to (f jµ, ϕ)),

such that for any λ′ ∈ Λ, with λ′ ≥ λ, and j′ ≥ j one has

(4.3) f j
′

µλ′(Xλ′) = f j
′

µλ(Xλ).

Note that if J = {1} and (f jµ, ϕ) is replaced by 1(X,∗) we obtain the Mittag-Leffler

property for an inverse sistems in the category Set∗ (cf. [17], Ch. II, §6.2).

Theorem 4.1. A J-morphism of inverse systems of pointed sets is co-movable if

and only if it has the Mittag-Lefler property.

Proof. Let (f jµ, ϕ) : ((Xλ, ∗), pλλ′ ,Λ) → ((Yµ, ∗), qµµ′ ,M) be a J-morphism with

the Mittag-Leffler property. Then for µ ∈ M there is a ML pair (λ, j), λ ≥ ϕ(µ)
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such that (4.3) holds for each λ′ ≥ λ and j′ ≥ j. We can prove that (λ, j) is a

co-movability pair of µ with respect to (f jµ, ϕ). If λ′ ≥ ϕ(µ) and λ′ ≥ λ, the relation

(4.3) defines a map of pointed sets rj
′
: (Xλ, ∗) → (Xλ′ , ∗) such that f j

′

µλ′ ◦rj
′
= f j

′

µλ.

For any other λ′′ ≥ ϕ(µ), one choose λ′′′ ≥ λ′′, ϕ(µ) and consider r′j
′
: Xλ → Xλ′′′

such that f j
′

µλ′′′ ◦ r′j
′
= f j

′

µλ. Then the composition rj
′
:= pλ′′λ′′′ ◦ r′j

′
satisfies the

relation f j
′

µλ′′ ◦ rj
′
= f j

′

µλ′′ ◦ pλ′′λ′′′ ◦ r′j
′
= f j

′

µλ′′′ ◦ r′j
′
= f j

′

µλ.

Conversely, let (f jµ, ϕ) be a co-movable J-morphism. Let µ ∈M and λ ∈ Λ with

λ ≥ ϕ(µ) and j ∈ J a co-movability pair of µ with respect to (f jµ, ϕ). Then, for

λ′ ≥ λ and j′ ≥ j there exists rj
′
: (Xλ, ∗) → (Xλ′ , ∗) such that f j

′

µλ′ ◦ rj
′
= f j

′

µλ.

This implies the inclusion f j
′

µλ(Xλ) ⊆ f j
′

µλ′(Xλ′). The converse inclusion follows

from the relation f j
′

µλ ◦ pλλ′ = f j
′

µλ′ . □

Proposition 4.1. Let X = (Xλ, pλλ′ ,Λ) and Y = (Yµ, qµµ′ ,M) be inverse systems

in a the category C and let (f jµ, ϕ) : X → Y be a J-morphism of inverse systems. If

X is a movable (uniformly movable) inverse system and Y is an arbitrary inverse

system, then (f jµ, ϕ) is a co-movable (uniformly co-movable) J-morphism.

Proof. It is easy to prove that if µ ∈ M and λ ∈ Λ is a movability (uniform

movability) index for ϕ(µ), then a pair (λ, j) with an arbitrary j ∈ J is a co-

movability (uniform co-movability) pair for µ with respect to the J-morphism

(f jµ, ϕ). □

Theorem 4.2. An inverse system X = (Xλ, pλλ′ ,Λ) is movable (uniformly movable)

if and only if the identity J-morphism 1JX is co-movable (uniformly co-movable) for

an arbitrary directed partially ordered set J .

Proof. IfX is movable (uniformly movable), then by Proposition 4.1 the morphism

1JX is co-movable (uniformly co-movable). Conversely, let 1JX be a co-movable (uniformly

co-movable) J-morphism and let (λ′, j) be a co-movability (uniform co-movability)

pair of a given λ ∈ Λ with respect to 1JX = (1Xλ , 1Λ). It is easy to verify that λ′ is

a movability (uniform movability) index of λ for the inverse system X. □

Using Theorems 4.1, 4.2 and Proposition 4.1, we obtain the following corollary

(see [17], Ch. II, §6.2, Corollary 4).

Corollary 4.1. An inverse system of pointed set (X, ∗) is movable if and only if it

has the Mittag-Leffler property, in particular, if all bonding functions are surjective.

The following theorem is a generalization of Proposition 4.1.

Theorem 4.3. Let X = (Xλ, pλλ′ ,Λ), Y = (Yµ, qµµ′ ,M), Z = (Zν , rνν′ , N) be

inverse systems in the category C and let (f jµ, ϕ) : X → Y, (gjν , ψ) : Y → Z be
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J-morphisms. Suppose that (f jµ, ϕ) is co-movable (uniformly co-movable). Then the

composition (hjν , χ) = (gjν , ψ) ◦ (f jµ, ϕ) is also a co-movable (uniformly co-movable)

J-morphism.

Proof. At first we note that hjνλ = gjν ◦ f
j
ψ(ν)λ. Then if (λ, j) is a co-movability

pair for ψ(ν), we have f j
′

ψ(ν)λ = f j
′

ψ(ν)λ′ ◦ rj
′
, for λ′ ≥ λ and j′ ≥ j. By this we

have hj
′

νλ = gj
′

ν ◦ f j
′

ψ(ν)λ′ ◦ rj
′
= hj

′

νλ′ ◦ rj
′
, which is the condition of co-movability for

J-morphism (hjν , χ). For the property of uniform co-movability the proof is similar.

□

Remark 4.3. The assertion of Corollary 3.1 in the case of co-movability of J-

morphisms is false even if J = {1}. To show this, consider the following inverse

sequences of groups:

G = (Gn, pnn′),where Gn = Z and pnn′(m) = 2n
′−nm;

H = (Hn, qnn′),where Hn = ⊕nZ = Z⊕ . . .⊕ Z and

qnn+1(m1, . . . ,mn′) = (m1, . . . ,mn′−n)

The pro-group H is movable (see [17], Ch.II, §6.1, Example 2).

Now consider the following morphism (fn, 1N) : G → H with

fn : Gn → Hn, fn(m) = (2n−1m, 2n−2m, . . . , 2m,m).

We can verify that in this way we obtain a level morphism of pro-groups. Indeed,

(fn◦pnn′)(m) = fn(2
n′−nm) = (2n−12n

′−nm, 2n−22n
′−nm, . . . , 2·2n

′−nm, 2n
′−nm) =

= (2n
′−1m, 2n

′−2m, . . . , 2n
′−n+1m, 2n

′−nm)

and

(qnn′◦fn′)(m) = qnn′(2n
′−1m, 2n

′−2m, . . . , 2m,m) = (2n
′−1m, 2n

′−2m, . . . , 2n
′−nm).

So fn ◦ pnn′ = qnn′ ◦ fn′ and hence, (fn, 1N) : G → H is a level morhism of

pro-groups.

Now the condition of co-movability (4.1) for the morphism (fn, 1N) becomes

fnn′ = fnn′′ ◦ r or fn ◦ pnn′ = fn ◦ pnn′′ ◦ r.

Consider the last relation written for n = 1 and n′′ = n′ + 1:

(f1◦p1n′)(m) = (f1◦p1n′+1◦r)(m) ⇔ 2n
′−1m = 2n

′
r(m) ⇔ m = 2·r(m) ⇔ r(m) =

m

2

for any m ∈ Z, which is impossible because r is an endomorphism of Z. Thus, the

morphism (fn, 1N) is not co-movable although H is movable.
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In addition, by Proposition 4.1, we conclude that G is not movable (the result

also proved in [17], Ch.II, §6.1).

Remark 4.4. Since Corollary 3.1 is a consequence of Theorem 3.1, Remark 4.3

suggests that a result for the properties of co-movability and uniform co-movability

analogous to that from Theorem 3.1 for movability and uniform movability is false.

But imposing for (f jµ, ϕ) to be a J-isomorphism, we obtain a positive result.

Theorem 4.4. Let X = (Xλ, pλλ′ ,Λ), Y = (Yµ, qµµ′ ,M), Z = (Zν , rνν′ , N) be

inverse systems in a category C. Let (f jµ, ϕ) : X → Y be a J-isomorphism and let

(gjν , ψ) : Y → Z be a (uniformly) co-movable J-morphism. Then the composition

(hjν , χ) = (gjν , ψ) ◦ (f jµ, ϕ) is also a (uniformly) co-movable J-morphism.

Proof. Without loss of generality, we can assume that ϕ : Λ →M is an increasing

function [17] (Ch.I, §1.2, Lemma 2). Since (f jµ, ϕ) : X → Y be a J-isomorphism we

can also assume that ϕ is a bijection. Let (f ′
j
λ, ϕ

′) : Y → X, where ϕ′ = ϕ−1, be

an inverse J-morphism of (f jµ, ϕ).

Now suppose that (gjν , ψ) is a co-movable J-morhiasm. To prove that the composition

(hjν , χ) = (gjν , ψ) ◦ (f jµ, ϕ) is also a co-movable J-morphism, consider an arbitrary

ν ∈ N and take a co-movability pair (µ, j) of ν with respect to J-morphism (gjν , ψ).

Let’s prove that (ϕ(µ), j) is a co-movability pair of ν with respect to J-morphism

(hjν , χ). Consider any λ′ ≥ χ(ν), χ(ν) = ϕ(ψ(ν)). Note that ϕ′(λ′) ≥ ψ(ν) because

ϕ′ is an increasing function. Hence, for any j′ ≥ j there exists a morphism rj
′
:

Yµ → Yϕ′(λ′) in the category C satisfying the relation

(4.4) gj
′

νµ = gj
′

νϕ′(λ′) ◦ r
j′ , i.e., gj

′

ν ◦ qψ(ν)µ = gj
′

ν ◦ qψ(ν)ϕ′(λ′) ◦ rj
′
.

Now define the morphism Rj
′
: Xϕ(µ) → Xλ′ by

(4.5) Rj
′
= f ′

j′

λ′ ◦ rj
′
◦ f j

′

µ

and prove that hj
′

νϕ(µ) = hj
′

νλ′ ◦Rj
′
, i.e.,

(4.6) gj
′

ν ◦ f j
′

ψ(ν) ◦ pϕ(ψ(ν))ϕ(µ) = gj
′

ν ◦ f j
′

ψ(ν) ◦ pϕ(ψ(ν))λ′ ◦Rj
′
.

Indeed, by (4.4) and (4.5), one has

gj
′

ν ◦ f j
′

ψ(ν) ◦ pϕ(ψ(ν))λ′ ◦Rj
′
= gj

′

ν ◦
(
f j

′

ψ(ν) ◦ pϕ(ψ(ν))λ′

)
◦ f ′j

′

λ′ ◦ rj
′
◦ f j

′

µ =

= gj
′

ν ◦
(
qψ(ν)ϕ′(λ′) ◦ f j

′

ϕ′(λ′)

)
◦ f ′j

′

λ′ ◦ rj
′
◦ f j

′

µ = gj
′

ν ◦ qψ(ν)ϕ′(λ′) ◦ 1Yϕ′(λ′) ◦ r
j′ ◦ f j

′

µ =

= gj
′

ν ◦ qψ(ν)µ ◦ f j
′

µ = gj
′

ν ◦ f j
′

ψ(ν) ◦ pϕ(ψ(ν))ϕ(µ).

So, the composition (hjν , χ) = (gjν , ψ) ◦ (f jµ, ϕ) is co-movable. In the same way one

can prove the case of uniform co-movability. □
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5. Properties of movability and co-movability for J-pro-morphisms

Proposition 5.1. Let (f jµ, ϕ), (f ′
j
µ, ϕ

′) : X = (Xλ, pλλ′ ,Λ) → Y = (Yµ, qµµ′ ,M) be

two equivalent J-morphisms of inverse systems.

(i) If the J-morphism (f jµ, ϕ) is movable (uniformly movable) then the J-morphism

(f ′
j
µ, ϕ

′) is also movable (uniformly movable).

(ii) If the J-morphism (f jµ, ϕ) is co-movable (uniformly co-movable) then the

J-morphism (f ′
j
µ, ϕ

′) is also co-movable (uniformly co-movable).

Proof. (i) Suppose that (f jµ, ϕ) is J-movable and (f jµ, ϕ) ∼ (f ′
j
µ, ϕ

′). We need to

prove that (f ′jµ , ϕ
′) is also J-movable.

Let µ ∈ M be any index. Consider a movability pair (λ, j) of µ with respect to

J-morphism (f jµ, ϕ). There is no loss of generality in assuming that λ ≥ ϕ(µ), ϕ′(µ)

and

(5.1) f jµ ◦ pϕ(µ)λ = f ′jµ ◦ pϕ′(µ)λ.

Consider any µ′ ≥ µ. By assumption for any j′ ≥ j there is a morphism uj
′
:

Xλ → Yµ′ such that

(5.2) f j
′

µλ = qµµ′ ◦ uj
′
.

Then by (5.1) and (5.2) we have

f ′j
′

µλ = f ′j
′

µ ◦ pϕ′(µ)λ = f j
′

µ ◦ pϕ(µ)λ = f j
′

µλ = qµµ′ ◦ uj
′

which means that (λ, j) is also movability pair of µ with respect to J-morphism

(f ′jµ , ϕ
′).

The case of uniform movability is proved similarly.

(ii) Let µ ∈ M be any index and let (λ, j) be a co-movability pair for µ with

respect to J-morphism (f jµ, ϕ). We can assume that λ ≥ ϕ(µ), ϕ′(µ) and (5.1) holds.

Now we prove that (λ, j) is also a co-movability pair of µ with respect to (f ′jµ , ϕ
′).

Let λ′ ≥ ϕ′(µ) be any index and let λ′′ be an index with λ′′ ≥ λ′, ϕ(µ) which satisfies

(5.3) f j
′

µ ◦ pϕ(µ)λ′′ = f ′j
′

µ ◦ pϕ′(µ)λ′′

for given j′ ≥ j. By assumption there is a morphism rj
′
: Xλ → Xλ′′ such that

(5.4) f j
′

µλ = f j
′

µλ′′ ◦ rj
′
.

Define the morphism Rj
′
: Xλ → Xλ′ by

(5.5) Rj
′
= pλ′λ′′ ◦ rj

′
.
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By (5.1), (5.3), (5.4), and (5.5) one has

f ′j
′

µλ′ ◦Rj
′
= f ′j

′

µλ′ ◦ pλ′λ′′ ◦ rj
′
= f ′j

′

µ ◦ pϕ′(µ)λ′ ◦ pλ′λ′′ ◦ rj
′
=

= f j
′

µ ◦ pϕ(µ)λ′′ ◦ rj
′
= f j

′

µ ◦ pϕ(µ)λ = f ′j
′

µ ◦ pϕ′(µ)λ = f ′j
′

µλ,

which is the condition for co-movability for the J-morphism (f ′
j
µ, ϕ

′). The case of

uniform movability can be proved similarly. □

Thanks to Proposition 5.1, we can give the following definition.

Definition 5.1. (i) A J-pro-morphism fJ : X → Y is called movable (uniformly

movable) if fJ admits a representation (f jµ, ϕ) which is J-movable (uniformly J-

movable).

(ii) A J-pro-morphism fJ : X → Y is called co- movable (uniformly co-movable)

if fJ admits a representation (f jµ, ϕ) which is J-co-movable (uniformly J-co-movable).

The next theorem follows from Theorems 3.1, 3.2, 3.3, 3.4 and Corollaries 3.1,

3.2, 3.4, 3.5.

Theorem 5.1. A (pre- or post-) composition of an arbitrary J-pro-morphism with

a movable (uniformly movable) J-pro-morphism is a movable (uniformly movable)

J-pro-morphism. In particular, if X or Y is a movable (uniformly movable) inverse

system, then fJ : X → Y is a movable (uniformly movable) J-pro-morphism.

Taking into account Corollaries 3.3 and 3.6, we obtain

Proposition 5.2. Let X and Y be J-pro-morphisms. If Y is a movable (uniformly

movable) and X is dominated by Y in proJ -C, then X is also movable (uniformly

movable).

The following theorem is an immediate consequence of Theorem 4.3

Theorem 5.2. Let X, Y, Z be inverse systems in the category C and let fJ : X →
Y, gJ : Y → Z be J-pro-morphisms in proJ -C. If fJ is a co-movable (uniformly co-

movable) J-pro-morphism, then the composition hJ = gJ ◦ fJ is also a co-movable

(uniformly co-movable) J-pro-morphism.

Remark 5.1. It follows from the example from Remark 4.3 that if gJ is a co-movable

J-pro-morphism and fJ is an arbitrary J-pro-morphism, then the composition hJ =

gJ ◦ fJ is not necessarily a co-movable J-pro-morphism.

However, the following theorem is true (follows from Theorem 4.4).
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Theorem 5.3. Let X, Y, Z be inverse systems in the category C and let fJ : X →
Y, gJ : Y → Z be J-pro-morphisms in proJ -C. If gJ is a co-movable (uniformly

co-movable) J-pro-morphism and fJ is a J-pro-isomorphism, then the composition

hJ = gJ ◦ fJ is a co-movable (uniformly co-movable) J-pro-morphism.

6. Properties of movability and co-movability for J-shape morphisms

Consider (C,D) a pair of categories with D a dense subcategory of C. If X,Y ∈
ObC and p : X → X, q : Y → Y are D-expansions, then by Remark 2.4 and

Definitions 2.3 and 2.4, a J-shape morphism from X to Y is an equivalence class

⟨f⟩ of a J-pro-morphism f : X → Y.

Theorem 6.1. In the above conditions, let p′ : X → X′ and q′ : Y → Y′ be

other D-expansions of X and Y , respectively. If the J-pro-morphisms f : X → Y,

f ′ : X′ → Y′ define the same J-shape morphism F : X → Y and if f is a movable

(uniformly movable) J-pro-morphism, then f ′ is the same.

Proof. By Definition 2.3 there exists a commutative diagram

X

f

��

i // X′

f ′

��
Y

j
// Y′

where i and j are J-pro-isomorphisms. If f is a movable (uniformly movable), then

by Theorem 5.1 the composition j◦f is J-movable (uniformly J-movable). Therefore,

by the same theorem, f ′ = (j ◦ f) ◦ i′−1 is J-movable (uniformly J-movable). □

Definition 6.1. A J-shape morphism F : X → Y is called movable (uniformly

movable) if it can be represented by a movable (uniformly movable) J-pro-morphism

f : X → Y, F = ⟨f⟩.

Theorem 6.2. With the notation from Theorem 6.1, if f is a co-movable (uniformly

co-movable) J-pro-morphism, then f ′ is the same.

Proof. As above we have j◦ f = f ′ ◦ i. If f is co-movable (uniformly co-movable),

then by Theorem 5.2, the composition j ◦ f is co-movable (uniformly co-movable).

Then f ′ = (j ◦ f) ◦ i−1 is co-movable (uniformly co-movable) by Theorem 5.3. □

Definition 6.2. A J-shape morphism F : X → Y is called co-movable (uniformly

co-movable) if it can be represented by a co-movable (uniformly co-movable) J-pro-

morphism f : X → Y, F = ⟨f⟩.
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Remark 6.1. All properties of movability (uniform movability) and co-movability

(uniform co-movability) of J-morphisms and J-pro-morphisms of inverse systems

can be transferred to appropriate properties for J-shape morphisms and for morphisms

in the category C of a shape theory ShJ(C,D). For example, by Theorems 5.1, 5.2,

and 5.3 we obtain the following theorem.

Theorem 6.3. (i) A (pre-or post-) composition of an arbitrary J-shape morphism

with a movable (uniformly movable) J-shape morphism is a movable (uniformly

movable) J-shape morphism. In particular, if X or Y is a movable (uniformly

movable) object, then any J-shape morphism F : X → Y is movable (uniformly

movable);

(ii) Let F : X → Y , G : Y → Z be J-shape morphisms in the J-shape category

ShJ(C,D). If F is co-movable (uniformly co-movable), then the composition H = G◦F
also is co-moavble (uniformly co-movable).

(iii) If F : X → Y is a J-shape isomorphism and G : Y → Z is a co-

movable (uniformly co-movable) J-shape morphism, then H = G◦F is a co-movable

(uniformly co-movable) J-shape morphism.
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[14] N. Kocieć Bilan and N. Uglešić, “The coarse shape”, Glas. Mat., 42(62), 145 – 187 (2007).
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[16] S. Mardešić and J. Segal, “Movable compacta and ANR-systems”, Bull. Acad. Polon. Sci. Sér.

Sci. Math. Astronom. Phys., 18, 649 – 654 (1970).
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