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1. Introduction

The present paper is concerned with the following general parametric estimation

problem. Let θ := (θ1, . . . , θp) ∈ Θ ⊂ Rp be an unknown vector parameter appearing

(a) in the probability density of some random variable X, or (b) in the finite-

dimensional probability densities of a random process {X(t), t ∈ U}, where U = R
in the continuous-time (c.t.) case and U = Z in the discrete-time (d.t.) case. The

problem of interest is to estimate the value of the parameter θ based on the sample

XT , where in case (a) XT := {X1, . . . , XT }, X1, . . . , XT being T independent

observations of the random variable X, and in case (b) XT is an observed finite

realization of the process X(t): XT := {X(t), t ∈ DT }, where DT := [0, T ]

in the c.t. case and DT := {1, . . . , T} in the d.t. case. The usual methods of

constructing estimators of the unknown parameter θ used in mathematical statistics

(for example, the method of moments, the maximum likelihood method, the least-

squares method, the Whittle method, etc.), as a rule, require finding the roots

of some system of (possibly non-linear) estimating equations with respect to the

unknown θ = (θ1, . . . , θp) of the form:

(1.1) Fi(XT , θ) = 0, i = 1, . . . p,
20
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where Fi(θ) := Fi(XT , θ) are certain functionals of XT depending on θ.

The classical estimation methods often lead to estimators with good asymptotic

properties. For example, in many cases one can prove that for sufficiently large

values T there exist, with probability near 1, a root θ̂T of the system of estimating

equations (1.1) which is a consistent estimator of θ, that is, p − limT→∞θ̂T =

θ0, where p − lim denotes the limit in probability, and θ0 ∈ Θ is the unknown

true value of the parameter θ. Moreover, under broad regularity conditions, the

classical estimation methods often lead to τT -consistent and asymptotically normal

estimators, where τT is a comparatively rapidly increasing function. (Recall that

for a non-random function τT = τ(T ) increasing without bound as T → ∞, we

say that the statistic θ̂T is a τT -consistent estimator for θ if the distribution of the

random vector τT (θ̂T −θ0) converges (as T → ∞) to a non-degenerate distribution.

These classical estimation methods, however, have two disadvantages. First, it is

only for relatively simple situations that the system of estimating equations (1.1) has

an explicit solution, and finding the roots of the system (1.1) often turns out to be

very hard problem. Second, for the roots to be consistent, the estimating equations

need to behave well throughout the parameter set. Another issue that arise in the

statistical analysis of stationary models is that the data are frequently tapered

before calculating the statistic of interest, and the statistical inference procedure,

instead of the original data XT , is based on the tapered data: Xh
T := {hT (t)X(t), t ∈

DT }, where hT (t) := h(t/T ) with h(t), t ∈ R being a taper function.

Therefore it is of considerable interest to find more easily constructed (simplified)

estimators θ̌T that are asymptotically statistically equivalent to θ̂T , that is, having

the same asymptotic (as T → ∞) properties as the estimator θ̂T . The problem of

constructing simplified estimators with good asymptotic properties based on the

standard (non-tapered) data XT goes back to the classical work of Le Cam [16],

and then it was developed by Dzhaparidze [8, 9] (see also Beinicke and Dzhaparidze

[1] and Dzhaparidze [10]).

In this paper we focus on the Whittle estimation method of the spectral parameters

of stationary models with tapered data. We provide sufficient conditions for the

tapered Whittle estimator to be
√
T -consistent and asymptotically normal. Then

we construct simplified Whittle estimators based on the tapered data, and show that

under broad regularity conditions on the spectral density of the model the Whittle

estimator and the simplified Whittle estimator are asymptotically statistically equi-

valent, in the sense that these estimators possess the same asymptotic properties.
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The processes considered will be discrete-time and continuous-time Gaussian, linear

or Lévy-driven linear processes with memory.

2. The model

We will consider here stationary processes possessing spectral density functions,

and will distinguish the following three models.

(a) Discrete-time linear model. The process {X(t), t ∈ Z} is a discrete-time linear

process of the form:

(2.1) X(t) =

∞∑
k=−∞

a(t− k)ξ(k),

∞∑
k=−∞

|a(k)|2 < ∞,

where {ξ(k), k ∈ Z} ∼ WN(0,1) is a standard white-noise, that is, a sequence

of orthonormal random variables. The spectral density f(λ) of X(t) is given by

formula:

(2.2) f(λ) =
1

2π

∣∣∣∣∣
∞∑

k=−∞

a(k)e−ikλ

∣∣∣∣∣
2

=
1

2π
|â(λ)|2, λ ∈ [−π, π].

In the case where ξ(k) is a sequence of Gaussian random variables, the process X(t)

is Gaussian.

(b) Continuous-time linear model. The process {X(t), t ∈ R} is a continuous-time

linear process of the form:

(2.3) X(t) =

∫
R
a(t− s)dξ(s),

∫
R
|a(s)|2ds < ∞,

where {ξ(s), s ∈ R} is a process with orthogonal increments and E|d ξ(s)|2 = ds.

The spectral density f(λ) of X(t) is given by formula:

(2.4) f(λ) =
1

2π

∣∣∣∣∫
R
e−iλta(t)dt

∣∣∣∣2 =
1

2π
|â(λ)|2, λ ∈ R.

In the case where ξ(s) is a Gaussian process, the process X(t) is Gaussian.

(c) Lévy-driven linear model. We first recall that a Lévy process, {ξ(s), s ∈ R} is

a process with independent and stationary increments, continuous in probability,

with sample-paths which are right-continuous with left limits and ξ(0) = ξ(0−) = 0.

The Wiener process {B(s), s ≥ 0} is a typical example of centered Lévy processes.

A Lévy-driven linear process {X(t), t ∈ R} is a real-valued c.t. stationary process

defined by (2.3), where ξ(s) is a Lévy process satisfying the conditions: Eξ(s) = 0,

Eξ2(1) = 1 and Eξ4(1) < ∞. In the case where ξ(s) = B(s), X(t) is a Gaussian

process.

The function a(·) in representations (2.1) and (2.3) plays the role of a time-

invariant filter, and the linear processes defined by (2.1) and (2.3) can be viewed
22



SIMPLIFIED WHITTLE ESTIMATORS ...

as the output of a linear filter a(·) applied to the process {ξ(u), u ∈ U}, called the

innovation or driving process of X(t).

3. Data tapers and the tapered periodogram

In this section we introduce the data tapers and tapered periodogram. Our

inference procedures will be based on the tapered data Xh
T :

(3.1) Xh
T := {hT (t)X(t), t ∈ DT },

where DT := [0, T ] in the c.t. case and DT := {1, . . . , T} in the d.t. case, and

(3.2) hT (t) := h(t/T )

with h(t), t ∈ R being a taper function to be specified below.

For k ∈ N := {1, 2, . . .}, denote by Hk,T (λ) the tapered Dirichlet type kernel,

defined by

(3.3) Hk,T (λ) :=


∑T

t=1 h
k
T (t)e

−iλt in the d.t. case,∫ T

0
hk
T (t)e

−iλtdt in the c.t. case,

and put

(3.4) Hk,T := Hk,T (0).

Define the finite Fourier transform of the tapered data (3.1):

(3.5) dhT (λ) :=


∑T

t=1 hT (t)X(t)e−iλt in the d.t. case,∫ T

0
hT (t)X(t)e−iλtdt in the c.t. case.

and the tapered periodogram IhT (λ) of the process X(t):

IhT (λ) :=
1

CT
dhT (λ)d

h
T (−λ),(3.6)

where

(3.7) CT := 2πH2,T (0) = 2πH2,T ̸= 0.

Notice that for non-tapered case (h(t) = I[0,1](t)), we have CT = 2πT .

Throughout the paper, we will assume that the taper function h(·) satisfies the

following assumption.

Assumption 3.1. The taper h : R → R is a continuous nonnegative function of

bounded variation and of bounded support [0, 1], such that Hk ̸= 0, where

(3.8) Hk := lim
T→∞

(1/T )Hk,T , and Hk,T is as in (3.4).

Observe that in the c.t. case we have Hk =
∫ 1

0
hk(t)dt.
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Remark 3.1. The data taper h(t) normally has a maximum at t = 1/2 and

decreases smoothly to zero as t tends to 0 or 1. For the d.t. case, an example of a

taper function h(t) satisfying Assumption 3.1 is the Tukey-Hanning taper function

h(t) = 0.5(1− cos(πt)) for t ∈ [0, 1]. For the c.t. case, a simple example of a taper

function h(t) satisfying Assumption 3.1 is the function h(t) = 1− t for t ∈ [0, 1].

The benefits of tapering the data have been widely reported in the literature

(see, e.g., Brillinger [2], Dahlhaus [3]–[6], Dahlhaus and Künsch [7], Ginovyan and

Sahakyan [13, 14], Guyon [15], and references therein). For example, data-tapers

are introduced to reduce the so-called ’leakage effects’, that is, to obtain better

estimation of the spectrum of the model in the case where it contains high peaks.

Tapering also can be used to reduce the so-called ’trough effects’, that is, to obtain

better estimator of the spectrum in the case where it contains strong troughs.

Other application of data-tapers is in situations in which some of the data values

are missing. Also, the use of tapers leads to bias reduction, which is especially

important when dealing with spatial data. In this case, the tapers can be used to

fight the so-called ’edge effects’ (for details see Dahlhaus [5, 6], and Ginovyan and

Sahakyan [14]).

4. Estimation of linear spectral functionals

Linear and non-linear functionals of the periodogram play a key role in the

parametric estimation of the spectrum of stationary processes, when using the

minimum contrast estimation method with various contrast functionals (see, e.g.,

Ginovyan and Sahakyan [14], and references therein). The result that follow is used

to prove consistency and asymptotic normality of the minimum contrast estimators

based on the Whittle functionals for linear models with tapered data. Specifically,

we are interested in the nonparametric estimation problem, based on the tapered

data (3.1), of the following linear spectral functional:

(4.1) J = J(f, g) :=

∫
Λ

f(λ)g(λ)dλ,

where g(λ) ∈ Lq(Λ), 1/p + 1/q = 1. Here, and in what follows, Λ = R in the c.t.

case, and Λ = [−π.π] in the d.t. case.

As an estimator Jh
T for functional J(f), given by (4.1), based on the tapered

data (3.1), we consider the averaged tapered periodogram (or a simple ’plug-in’

statistic), defined by

Jh
T = J(IhT , g) :=

∫
Λ

IhT (λ)g(λ)dλ,(4.2)
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where IhT (λ) is the tapered periodogram of the process X(t) given by (3.6). We

will refer to g(λ) and to its Fourier transform ĝ(t) as a generating function and

generating kernel for the functional Jh
T , respectively. To state the corresponding

results we first introduce the following assumptions.

Assumption 4.1. The spectral density f and the generating function g are such

that f, g ∈ L1(Λ) ∩ L2(Λ) (f, g ∈ L2(Λ) in the d.t. case) and g is of bounded

variation.

Assumption 4.2. (A) (d.t. case). The spectral density f and the generating

function g are such that f ∈ Lp(Λ) (p ≥ 1) and g ∈ Lq(Λ) (q ≥ 1) with 1/p+1/q ≤
1/2.

(B) (c.t. case). The spectral density f and the generating function g are such that

f ∈ L1(Λ) ∩ Lp(Λ) (p ≥ 1) and g ∈ L1(Λ) ∩ Lq(Λ) (q ≥ 1) with 1/p+ 1/q ≤ 1/2.

(C) (c.t. Lévy-driven case). The filter a and the generating kernel ĝ are such that

a ∈ L2(Λ) ∩ Lp(Λ) and ĝ ∈ Lq(Λ) with 1 ≤ p, q ≤ 2 and 2/p+ 1/q ≥ 5/2.

Denote

(4.3) e(h) := lim
T→∞

TH4,T

H2
2,T

,

where Hk,T is as in (3.4), and

(4.4) σ2
h(J) := 4πe(h)

∫
Λ

f2(λ)g2(λ)dλ+ κ4e(h)

[∫
Λ

f(λ)g(λ)dλ

]2
,

where κ4 is the fourth cumulant of ξ(1).

The proof of the next theorem can be found in Ginovyan and Sahakyan [13] (see

also Ginovyan [11]).

Theorem 4.1. Let the functionals J := J(f, g) and Jh
T := J(IhT , g) be defined by

(4.1) and (4.2), respectively. Then under Assumptions 3.1, 4.1 and 4.2 the following

asymptotic relation holds:

(a) E(Jh
T )− J → 0 as T → ∞.

(b) T 1/2
[
E(Jh

T )− J
]
→ 0 as T → ∞.

(c) lim
T→∞

TVar(Jh
T ) = σ2

h(J),

(d) T 1/2
[
Jh
T − J

] d→ η as T → ∞,

where E[·] is the expectation operator, the symbol d→ stands for convergence in

distribution, and η is a normally distributed random variable with mean zero and

variance σ2
h(J) given by (4.4).
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5. The Whittle estimation procedure

We assume here that the spectral density f(λ) belongs to a given parametric

family of spectral densities F := {f(λ, θ) : θ ∈ Θ}, where θ := (θ1, . . . , θp) is an

unknown parameter and Θ is a subset of the Euclidean space Rp. The problem

of interest is to estimate θ on the basis of the tapered data (3.1), and investigate

the asymptotic (as T → ∞) properties of the suggested estimators. We use here

the Whittle estimation method to estimate θ. This method, originally devised

by P. Whittle for d.t. stationary processes (see Whittle [17]), is based on the

smoothed periodogram analysis on a frequency domain, involving approximation of

the likelihood function and asymptotic properties of empirical spectral functionals.

The Whittle procedure of estimation of a spectral parameter θ based on the tapered

sample (3.1) is to choose the estimator θ̂T,h to minimize the weighted tapered

Whittle functional:

(5.1) UT,h(θ) :=
1

4π

∫
Λ

[
log f(λ, θ) +

IhT (λ)

f(λ, θ)

]
· w(λ) dλ,

where IhT (λ) is the tapered periodogram of X(t), given by (3.6), and w(λ) is a weight

function (that is, w(−λ) = w(λ), w(λ) ≥ 0, w(λ) ∈ L1(R)) for which the integral

in (5.1) is well defined. In the d.t. case as a weight function we take w(λ) ≡ 1. In

the c.t. case, an example of common used weight function is w(λ) = 1/(1+λ2). So,

the Whittle estimator θ̂T,h of θ based on the tapered sample (3.1) is defined by

(5.2) θ̂T,h := Argmin
θ∈Θ

UT,h(θ),

where UT,h(θ) is given by (5.1). Thus, the tapered Whittle estimator θ̂T,h of θ is

the root of the following system of estimating equations:

Fh,i(θ) = FT,h,i(θ) := (∂/∂θi)UT,h(θ)

=
1

4π

∫
Λ

[
(∂/∂θi) log f(λ, θ) + IhT (λ)(∂/∂θi)f

−1(λ, θ)
]
· w(λ) dλ = 0, i = 1, . . . , p.

(5.3)

The tapered Whittle estimator θ̂T,h of θ possesses good asymptotic properties. To

state these properties of θ̂T,h, we first introduce the following set of assumptions.

Assumption 5.1. The true value θ0 of the parameter θ belongs to a compact set Θ

in the p-dimensional Euclidean space Rp, and f(λ, θ1) ̸= f(λ, θ2) whenever θ1 ̸= θ2

almost everywhere in Λ with respect to the Lebesgue measure.

Assumption 5.2. The functions f(λ, θ), f−1(λ, θ) and (∂/∂θk)f
−1(λ, θ), k =

1, . . . , p, are continuous in (λ, θ).
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Assumption 5.3. The functions f := f(λ, θ) and g := w(λ)(∂/∂θk)f
−1(λ, θ)

satisfy Assumption 4.1 for all k = 1, . . . , p and θ ∈ Θ.

Assumption 5.4. The functions f , g, a := a(λ, θ) and b := ĝ, where g is as in

Assumption 5.3, satisfy Assumption 4.2.

Assumption 5.5. The functions (∂2/∂θk∂θj)f
−1(λ, θ) and (∂3/∂θk∂θj∂θl)f

−1(λ, θ),

k, j, l = 1, . . . , p, are continuous in (λ, θ) for λ ∈ Λ, θ ∈ Nδ(θ0), where Nδ(θ0) :=

{θ : |θ − θ0| < δ} is some neighborhood of θ0.

Assumption 5.6. The matrices

W (θ) := ∥wij(θ)∥, A(θ) := ∥aij(θ)∥, B(θ) := ∥bij(θ)∥, i, j = 1, . . . , p(5.4)

are positive definite, where

wij(θ) =
1

4π

∫
Λ

∂

∂θi
ln f(λ, θ)

∂

∂θj
ln f(λ, θ)w(λ)dλ,(5.5)

aij(θ) =
1

4π

∫
Λ

∂

∂θi
ln f(λ, θ)

∂

∂θj
ln f(λ, θ)w2(λ)dλ,(5.6)

bij(θ) =
κ4

16π2

∫
Λ

∂

∂θi
ln f(λ, θ)w(λ)dλ

∫
Λ

∂

∂θj
ln f(λ, θ)w(λ)dλ,(5.7)

and κ4 is the fourth cumulant of ξ(1).

The next theorem, which was proved in Ginovyan [12], contains sufficient conditions

for the tapered Whittle estimator θ̂T,h to be
√
T -consistent and asymptotically

normal.

Theorem 5.1. Suppose that Assumptions 3.1 and 5.1–5.6 are satisfied. Then the

Whittle estimator θ̂T,h of an unknown spectral parameter θ based on the tapered

data (3.1) is
√
T -consistent and asymptotically normal, that is,

T 1/2
(
θ̂T,h − θ0

)
d→ Np (0, e(h)Γ(θ0)) as T → ∞,(5.8)

where Np(·, ·) denotes the p-dimensional normal law, d→ stands for convergence in

distribution, and

Γ(θ0) = W−1(θ0) (A(θ0) +B(θ0))W
−1(θ0).(5.9)

Here the matrices W, A and B are defined in (5.4)-(5.7), and the tapering factor

e(h) is given by formula (4.3).

Remark 5.1 (The variance effect). Since tapering of the data, roughly speaking,

reduces the effective length of the data, it is not surprising that the corresponding

tapered estimators, generally, will have larger variances than their non-tapered

counterparts. Specifically, using the Cauchy-Schwartz inequality for the tapering
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factor e(h) (defined by formula (4.3)) we have e(h) ≥ 1, and the equality is attained

in the non-tapered case, that is, for h(t) = I[0,1](t). Thus, the use of tapers, generally,

will result in an efficiency loss. However, as it was observed by Dahlhaus (see [6],

p.161), ’it is not correct to conclude from this that tapering always increases the

variance of the estimators’, because a taper function h can be chosen to satisfy

e(h) = 1. Moreover, in the classical asymptotic setting, for d.t. Gaussian processes

it is possible to choose the taper function h(t) so that the corresponding tapered

estimator will be asymptotically Fisher-efficient (for details see Dahlhaus [4, 6],

Ginovyan and Sahakyan [14]).

6. The Le Cam-Dzhaparidze simplified estimators

We describe here the Le Cam-Dzhaparidze approach of constructing simplified

estimators in the general setting (see Le Cam [16] and Dzhaparidze [8, 9]).

We first introduce the following set of assumptions (see Dzhaparidze [8]). In what

follows, τT = τ(T ) stands for a non-random function increasing without bound as

T → ∞.

Assumption 6.1. The system of estimating equations (1.1) has a root θ̂T which

is a consistent estimator of θ, that is, p− limT→∞θ̂T = θ0.

Assumption 6.2. For θ ∈ Θ the derivatives F (k)
i (θ) = (∂/∂θk)Fi(θ), i, k = 1, . . . p,

exist, and for any arbitrarily small ε > 0 and δ > 0

(6.1) P
(
|F (k)

i (θ0)− wik(θ0)| < ε
)
≥ 1− δ,

where Fi(θ) is as in (1.1) and W (θ) := ∥wik(θ), i, k = 1, . . . , p∥ is a non-random

matrix, which is non-degenerate for θ = θ0.

Assumption 6.3. The second derivatives F
(k,j)
i (θ) = (∂2/∂θk∂θj)Fi(θ) exist,

which are continuous for θ ∈ Θ and i, k, j = 1, . . . , p, and such that for any

arbitrarily small δ > 0 and some M < ∞,

(6.2) P
(
|F (k,j)

i (θ)| < M
)
≥ 1− δ.

Assumption 6.4. Along with (6.1), for sufficiently large T , the following stronger

inequality holds:

(6.3) P
(√

τT |F (k)
i (θ0)− wik(θ0)| < ε

)
≥ 1− δ.

Assumption 6.5. There exists a random matrix D∗ := ∥d∗ik∥, i, k = 1, . . . , p, such

that for any arbitrarily small ε > 0 and δ > 0, the inequality

(6.4) P (
√
τT |d∗ik − dik(θ0)| < ε) ≥ 1− δ
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holds for sufficiently large T and all i, k = 1, . . . , p, where dik(θ0) are the elements

of the matrix D(θ0) := W−1(θ0), and W (θ) is as in Assumption 6.2.

Theorem 6.1 (Dzhaparidze [8]). Let F(θ) be a p-dimensional vector with elements

Fi(θ), i = 1, . . . p, F(θ) be a matrix with elements F
(k)
i (θ) i, k = 1, . . . p, and θ∗T

be an arbitrary τ∗T -consistent estimator of θ, where
√
τT /τ

∗
T → 0 as T → ∞. The

following assertions hold:

(a) Under Assumptions 6.1-6.3 the estimator θ̌1,T := θ∗T − F−1(θ∗T )F (θ∗T ) is

asymptotically equivalent to θ̂T in the sense that

p− lim
T→∞

τT

(
θ̂T − θ̌1,T

)
= 0.

(b) Under Assumptions 6.1-6.5 the estimators of the form θ̌T := θ∗T −D∗F (θ∗T )

are asymptotically equivalent to θ̂T in the sense that

p− lim
T→∞

τT

(
θ̂T − θ̌T

)
= 0.

Remark 6.1. Comparing assertions (a) and (b) of Theorem 6.1 one easily sees

that if D∗ = F−1(θ∗T ), then the estimator θ̌1,T coincides with θ̌T .

7. Simplified Whittle estimators for spectral parameters with

tapered data

As it was stated above (see Theorem 5.1), the tapered Whittle estimator θ̂T,h of

θ possesses good asymptotic properties, that is, the estimator θ̂T,h is
√
T -consistent

and asymptotically normal. Moreover, for d.t. Gaussian models it is also asymptoti-

cally Fisher-efficient (see Remark 5.1).

However, generally, the estimating equations (5.3) are non-linear, and it is a

challenging problem to find the estimator θ̂T,h. So, it is important finding simpler

estimators of the parameter θ having the same asymptotic properties as θ̂T,h. The

estimators proposed here are asymptotically equivalent to the estimator θ̂T,h under

rather broad regularity conditions on the spectral density function f(λ, θ).

Theorem 7.1. Let Fh(θ) be a p-dimensional vector with elements Fi,h(θ) (i =

1, . . . p) given by (5.3), θ∗T,h be an arbitrary τ∗T -consistent estimator of θ, where
4
√
T/τ∗T → 0 as T → ∞, and let D∗ := ∥d∗ik∥, i, k = 1, . . . , p, be a random matrix

whose elements d∗ik satisfy the condition (6.4). Then under assumptions of Theorem

5.1 the estimators of the form

(7.1) θ̌T,h := θ∗T,h −D∗Fh(θ
∗
T,h)

are asymptotically equivalent to the tapered Whittle estimator θ̂T,h in the sense that

p− lim
T→∞

√
T
(
θ̂T,h − θ̌T,h

)
= 0.
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Proof. The result we deduce from Theorem 6.1 by using Theorem 4.1. We show

that the Assumptions 6.2–6.4 are satisfied for functions Fh,i(θ) (i = 1, . . . p).

First, applying Theorem 4.1(a) we easily conclude that for k, j = 1, . . . , p,

lim
T→∞

E0

[
U

(kj)
T,h (θ0)

]
= wkj(θ0) =

=
1

4π

∫
Λ

∂

∂θk
ln f(λ, θ0)

∂

∂θj
ln f(λ, θ0)w(λ)dλ,(7.2)

where E0[ξ] stands for expectation with respect to probability P0, corresponding

to spectral density f(λ, θ0), and U
(kj)
T,h (θ) = (∂2/∂θk∂θj)UT,h(θ) with UT,h(θ) as in

(5.1) (for details see Ginovyan [12]).

Next, by applying Theorem 4.1(c), for the variance of U (kj)
T,h (θ0) (k, j = 1, . . . , p),

we have

lim
T→∞

√
TVar

(
U

(kj)
T,h (θ0)

)
= 0.(7.3)

Therefore, by Chebyshev’s inequality it follows that, for sufficiently large T ,

(7.4) P
(

4
√
T |F (k)

h,i (θ0)− wik(θ0)| < ε
)
≥ 1− δ,

where ε > 0 and δ > 0 are arbitrary small numbers. Hence, Assumption 6.4 is

satisfied with τT =
√
T . Since the matrix W (θ) := ∥wik(θ), i, k = 1, . . . , p∥ is

assumed to be non-degenerate for θ = θ0, Assumption 6.2 also holds. Finally, using

Theorem 4.1(a) and (c), we easily infer that the function

F
(kj)
T,h,i(θ) =

1

4π

∫
Λ

IhT (λ)
∂3

∂θi∂θk∂θj
f−1(λ, θ)w(λ)dλ

satisfies Assumption 6.3. Thus, the result follows from Theorem 6.1(b). □

Corollary 7.1. Let F(θ) be a matrix with elements F
(k)
h,i (θ) (i, k = 1, . . . p). Then

under the conditions of Theorem 7.1 the estimator

(7.5) θ̌1,T,h := θ∗T,h −F−1(θ∗T,h)Fh(θ
∗
T,h),

is also asymptotically equivalent to the estimator θ̂T,h.

Corollary 7.2. Assume that for θ ∈ Θ there exist continuous derivatives (∂/∂θi)wk,j(θ)

(i, k, j = 1, . . . , p) satisfying |(∂/∂θi)wi,k(θ)| < C, where the constant C does not

depend on θ. Then under the conditions of Theorem 7.1, the estimator

(7.6) θ̌2,T,h := θ∗T,h −W−1(θ∗T,h)Fh(θ
∗
T,h),

is also asymptotically equivalent to the estimator θ̂T,h.

Indeed, applying the theorem on the mean we easily conclude that the elements

of the matrix D(θ∗T,h) = W−1(θ∗T,h) satisfy the condition (6.4), and hence may be

chosen as the d∗i,k.
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Remark 7.1. It is easy to see that, similar to the non-tapered case (see Dzhaparidze

[8]), the estimators θ̌1,T,h and θ̌2,T,h can be constructed comparatively easily. In

fact, to find them it is necessary to have available some τ∗T -consistent estimator

with 4
√
T/τ∗T → 0 as T → ∞ and to determine the matrices F−1(θ) and W−1(θ),

respectively. Observe also that the estimators θ̌T,h, θ̌1,T,h and θ̌2,T,h are of interest

only if it is too difficult to solve the system of estimating equation (5.3) directly

for practical use. In the cases where the equations in (5.3) are linear (and so easily

solved), then clearly the estimator θ̌1,T,h coincides with θ̂T,h.
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