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1. Introduction

Higman’s fundamental result establishing connection between group theory and

computability theory states: a finitely generated group G can be embedded in a

finitely presented group if and only if it is recursively presented [9]. The requirement

that G is finitely generated is not critical, and it can be replaced by the condition

that G has an effectively enumerable countable set of generators, see the remark

on p. 456 in [9].

Despite importance of this theorem, possibility of explicit embedding of any

recursively presented group into some finitely presented group is a less intelligible

issue, and it is open problem even for some well known groups. In particular,

construction of an explicit embedding of the additive group Q of rationals into a

finitely presented group was an open question mentioned by Bridson and de la Harpe

as “Well-known problem” 14.10 (a) in Kourovka notebook [12] and also announced

in [8]. Recently a direct solution to that problem was found by Belk, Hyde and

Matucci in [6]; and an algorithm how to build such an explicit embedding was

1The current work is supported by the 21T-1A213 grant of SCS MES RA.
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given in [17], without an explicit finitely presented group containing Q though. Also,

based on recent work [2]–[5] it is possible to embed Q as a center for a continuum

of non-isomorphic 2-generator groups. These along with some other remarks in the

literature [19, 1] motivate research on explicit embeddings of recursively presented

groups into finitely presented groups.

The key group-theoretic concept introduced in [9] is that of benign subgroup: a

subgroup H is benign in a finitely generated group G, if there is a finitely presented

overgroup K of G, and a finitely generated subgroup L of K such that G∩L = H.

Actually, the most part of [9] is dedicated to showing that if a subgroup H of a

specific type is benign in the free group G = ⟨a, b, c⟩ of rank 3, then applying some

specific kinds of operations to H (such as, the sequence building operation ωm, see

below) we again get a benign subgroup in G.

Denote by E the set of all functions f : Z → Z with finite supports. If f(i) = 0

for all i < 0 and i ≥ m (for a fixed m = 1, 2, . . .), then f can be recorded as a

sequence f = (j0, . . . , jm−1) assuming f(i) = ji for i = 0, . . . ,m− 1 [9]. Then the

following words are defined in the free group G = ⟨a, b, c⟩ with respect to f :

(1.1) bf = bj00 · · · bjm−1

m−1 and af = abf = b−1
f a bf

where bi = bc
i

for i = 1, . . . ,m − 1. Let Em be the subset of all functions f of

the above type. For any subset B of E denote AB = ⟨af | f ∈ B⟩, in particular,

AEm
= ⟨af | f ∈ Em⟩. See details and examples in [17].

For m and for any subset B ⊆ E the sequence building operation ωm is defined

on B as follows: ωm(B) consists of all f ∈ E for which for every i ∈ Z there exists a

sequence
(
f(mi + 0), . . . , f(mi +m − 1)

)
∈ B [9]. In other words, this operation

just constructs new sequences f by concatenation of some sequences of length m

picked from B. For details see [17], and also check Section 3 below where the new

sequence (3.4) is built from the sequences (6, 4, 5, 3), (7, 2, 4, 9) ∈ B and from the

zero sequence using ω4. Having the subgroup AB = ⟨af | f ∈ B⟩ of G one may

construct the subgroup AωmB = ⟨aωmB | f ∈ B⟩. And if B ⊆ Em, then AB ≤ AωmB,

see subsection 3.2 where samples of AB and Aω4B are given.

If for some B ⊆ E the group AB is benign in G for a given finitely presented

overgroup K holding G, and for the finitely generated subgroup L ≤ K, we stress

that by denoting K = KB and L = LB, and writing G ∩ LB = AB in KB. Clearly,

KB and LB may not be unique for a given B.

A main strategy of [9] is to start from a set B ⊆ E for which the subgroup AB

is benign in G, and to show that if a new set B′ is obtained from B by means of

certain operations, then AB′ also is benign in G. In this terms [9, Lemma 4.10]
4



ON BENIGN SUBGROUPS ...

states that if for the given B ⊆ E the subgroup AB is benign in G, then AωmB also

is benign in G for any m.

The objective of this note is to additionally show that if the respective groups KB

and LB can be constructed explicitly, then KωmB and LωmB can also be constructed

explicitly :

Theorem 1.1. Let B ⊆ E be a sequences set such that AB is benign in G and,

moreover, the respective finitely presented group KB and its finitely generated subgroup

LB are given explicitly. Then for any m = 1, 2, . . . the subgroup AωmB also is benign

in G, and the finitely presented group KωmB and its finitely generated subgroup

LωmB can also be given explicitly.

The promised explicit group KωmB is given in (5.9), LωmB is given in (5.10), while

the components Ψ, ∆̄, L′, etc., used in those formulas all are defined in Section 5

using some free constructions. And under explicitly given KB and LB one may

understand, say, their presentations with generators and defining relations.

The proof of this theorem occupies sections 3–5 below. In particular, in Section 3

we build an initial embedding construction in which AωmB is an intersection of G

with certain subgroup WB. As this construction is not yet finitely presented, we

in Section 4 suggest some auxiliary “nested” free constructions (such as (4.3)), and

using them we obtain the finitely presented KωmB in Section 5.

In order to avoid any repetition of material already published in [16, 17] or

elsewhere, we below often adopt constructions from other work. This makes parts

of the current text dependant on other articles, but the provided exact references,

we hope, alleviate any inconvenience.

2. Preliminary information

2.1. Free constructions. For background information on free products with amal-

gamation and on HNN-extensions we refer to [7] and [10]. Notations vary in the

literature, and to maintain uniformity we are going to adopt notations we used in

[16].

If any groups G and H have subgroups, respectively, A and B isomorphic under

φ : A → B, then the (generalized) free product of G and H with amalgamated

subgroups A and B is denoted by G ∗φ H (an alternative notation in the literature

being G ∗A=B H). When G and H are overgroups of the same subgroup A, and φ

is just the identical isomorphism on A, we write Γ = G ∗A H.

If G has subgroups A and B isomorphic under φ : A → B, then the HNN-

extension of the base G by some stable letter t with respect to the isomorphism φ
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is denoted by G ∗φ t. In case when A = B and φ is identity on A, we may write

Γ = G ∗A t. We also use HNN-extensions G ∗φ1,φ2,... (t1, t2, . . .) with more than one

stable letters, see [16] for details.

Our usage of the normal forms in free constructions is close to [7].

2.2. Benign subgroups and Higman operations. For detailed informaton on

bening subgroups we refer to Sections 3, 4 in [9], see also Section 3 in [16]. Higman

operations and their basic properties can be found in Section 2 in [9], see also

Section 3 in [16] and Section 2 in [17].

From definition of bening subgroup it is very easy to see that arbitrary finitely

generated subgroup H in any finitely presented group G is benign in G, for, the

group G itself acts as a finitely presented overgroup of G with a finitely generated

subgroup H, such that H ∩ H = H. We are going to often use this remark in the

sequel.

2.3. Subgroups in free constructions. The following two auxiliary facts are

adopted from [16], and they follow from more general Lemma 2.2 and Lemma 2.4

in [16].

Corollary 2.1 (Corollary 2.3 in [16]). Let Γ = G ∗A H, and let G′ ≤ G, H ′ ≤ H

be subgroups such that G′ ∩ A = H ′ ∩ A. Then for Γ′ = ⟨G′, H ′⟩ and A′ = G′ ∩ A

we have:

(1) Γ′ = G′∗A′ H ′, in particular, if A ≤ G′, H ′, then Γ′ = G′ ∗A H ′;

(2) Γ′ ∩ A = A′, in particular, if A ≤ G′, H ′, then Γ′ ∩ A = A ;

(3) Γ′ ∩ G = G′ and Γ′ ∩ H = H ′.

Corollary 2.2 (Corollary 2.5 in [16]). Let Γ = G∗At, and let G′ ≤ G be a subgroup.

Then for Γ′ = ⟨G′, t⟩ and A′ = G′ ∩ A we have:

(1) Γ′ = G′∗A′ t, in particular, if A ≤ G′, then Γ′ = G′ ∗A t;

(2) Γ′ ∩ A = A′, in particular, if A ≤ G′, then Γ′ ∩ A = A ;

(3) Γ′ ∩ G = G′.

Remark 2.1. It is easy to adapt Corollary 2.2 for the case of multiple stable

letters t1, . . . , tk which fix the same subgroup A in G. In such a case point (1)

in Corollary 2.2 will read: Γ′ = G′ ∗A′ (t1, . . . , tk) for Γ′ = ⟨G′, t1, . . . , tk⟩ and

A′ = G′ ∩ A. We are going to use this fact only once, in the proof of Lemma 5.4.

2.4. The “conjugates collecting” process. Let X and Y be some disjoint subsets

in any group G. Then any element w ∈ ⟨X,Y⟩ can be written as:

w = u · v = x±v1
1 x±v2

2 · · ·x±vk
k · v
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with some v1, v2, . . . , vk, v ∈ ⟨Y⟩, and x1, x2, . . . , xk ∈ X. The proof, examples and

variations of this fact can be found in Subsection 2.6 in [16]. We use the name

“conjugates collecting” just because we heavily used it in [16], and we need a name

to refer to (we were unable to find a conventional name to this in the literature).

3. The initial embedding construction

3.1. Construction of ∆. The free group ⟨b, c⟩ contains a free subgroup ⟨bi | i ∈ Z⟩
of infinite rank, which for any m = 1, 2, . . . decomposes into a free product Bm∗ B̄m

with Bm = ⟨. . . b−2, b−1; bm, bm+1, . . .⟩ and B̄m = ⟨b0, . . . , bm−1⟩.
Introducing three stable letters g, h, k, all fixing Bm, build the HNN-extension:

(3.1) Γ = ⟨b, c⟩ ∗Bm
(g, h, k).

Denote Ḡ = ⟨g, h, k⟩, and in analogy with bi, bf , af of (1.1) introduce hi = hki

, hf ,

and gf = ghf in the free group Ḡ. Fixing the subgroup R = ⟨gfb−1
f | f ∈ Em⟩ of Γ

by means of a new stable letter a build the HNN-extension Γ ∗R a.

The intersection ⟨b, c⟩ ∩R is trivial because the non-trivial words of type gfb
−1
f

generate R freely, and so any non-trivial word they generate must involve at least

one g, and hence it need to be outside ⟨b, c⟩. Then by (1) in Corollary 2.2 the

subgroup generated in Γ ∗R a by ⟨b, c⟩ together with a is equal to ⟨b, c⟩ ∗⟨b,c⟩ ∩R a =

⟨b, c⟩ ∗{1} a = ⟨b, c⟩ ∗ a which is the free group G = ⟨a, b, c⟩. So a, b, c generate a

free subgroup in Γ, and hence the map sending a, b, c to a, bc
m

, c can be continued

to an isomorphism ρ : G → ⟨a, bcm, c⟩. Identifying this ρ to a further stable letter r

we arrive to the final HNN-extension of this section:

(3.2) ∆ =
(
Γ ∗R a

)
∗ρ r =

((
⟨b, c⟩ ∗Bm

(g, h, k)
)
∗R a

)
∗ρ r.

3.2. Obtaining G ∩ WB = AωmB in ∆. For any subset B of E denote WB =

⟨gf, a, r | f ∈ B⟩, and show that in ∆ we have

(3.3) G ∩WB = AωmB.

Firstly notice that if Bm = B ∩Em, then ωm(B) = ωm(Bm). Hence we may without

loss of generality suppose B ⊆ Em below (if a short sequence contains less than m

integers, we can without loss of generality extend its length to m by adding some

extra 0’s at the end).

For arbitrary sequence f ∈ ωmB the element af = abf is inside WB. Let us

display this uncomplicated fact by a routine step-by-step construction example.

Let m = 4 and let (6, 4, 5, 3), (7, 2, 4, 9) ∈ B. Then by sequence building operations

ω4B contains the sequence, say,

(3.4) f = (0, 0, 0, 0, 7, 2, 4, 9, 0, 0, 0, 0, 0, 0, 0, 0, 6, 4, 5, 3, 7, 2, 4, 9).
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To show that abf ∈ WB start by the initial functions l1 = (7, 2, 4, 9) and l2 =

(6, 4, 5, 3) in B, and then use them by a few steps to arrive to the function f above.

We are going to use the evident fact that the relation (gfb
−1
f ) a = gfb

−1
f is equivalent

to agf = abf .

Step 1. Since l1 = (7, 2, 4, 9) is in B, then gl1 ∈ WB, and so agl1 = abl1 =

ab
7
0 b21b

4
2b

9
3 ∈ WB.

Step 2. Since bri = bρi = (bρ)(c
i) ρ

= (bc
4

)c
i

= bc
i+4

= bi+4, then conjugating the

above obtained element abl1 by r we get:(
abl1

)r
=

(
ar
)(b70 b21b

4
2b

9
3)

r

= ab
7
4 b25b

4
6b

9
7 = ab

0
0 b01b

0
2b

0
3 · b74 b25b

4
6b

9
7 = abl3 ∈ WB

for the sequence l3 = (0, 0, 0, 0, 7, 2, 4, 9).

Next, conjugating abl3 by gl2 we have:(
abl3

)gl2 = abl3 · gl2 = ab
7
4 b25b

4
6b

9
7 · gl2 .

Step 3. Each of stable letters g, h, k commutes with any bi for i < 0 or i ≥ m = 4,

and so gl2 commutes with b74 b
2
5b

4
6b

9
7 and so:

ab
7
4 b25b

4
6b

9
7 · gl2 = agl2 · b74 b25b

4
6b

9
7 .

Then once more applying step 1 to agl2 we transform the above to:(
agl2

)b74 b25b
4
6b

9
7 = ab

6
0 b41b

5
2b

3
3 · b74 b25b

4
6b

9
7 = abl4

for the sequence l4 = (6, 4, 5, 3, 7, 2, 4, 9). Then we repeat the above step 2 for

three times i.e., conjugate the above by r3 to get the element abl5 for the sequence:

l5 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 4, 5, 3, 7, 2, 4, 9).

Next apply step 3 and step 1 again to conjugate abl5 by gl1 . We get the element

abl6 for the sequence:

l6 = (7, 2, 4, 9, 0, 0, 0, 0, 0, 0, 0, 0, 6, 4, 5, 3, 7, 2, 4, 9).

Then we again apply step 2, i.e., conjugate abl6 by r to discover in WB the element

abf = af with the sequence f promised in (3.4) above.

Since such a procedure can easily be performed for an arbitrary f ∈ ωmB, we

get that AωmB ≤ WB. And since also AωmB ≤ G, we have AωmB ≤ G ∩WB.

Next assume some word w from WB = ⟨gf, a, r | f ∈ B⟩ is in G. Since w also is in

∆, it can be brought to its normal form involving stable letter r and some elements

from Γ∗L a. The latter elements, in turn, can be brought to normal forms involving

stable letter a and some elements from Γ. Then the latters can further be brought to

normal forms involving stable letters g, h, k and some elements from ⟨b, c⟩. That is,
8
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w can be brought to a unique “nested” normal form reflecting three “nested” HNN-

extensions in the right-hand side of (3.2). Let us detect the cases when it involves

nothing but the letters a, b, c. The only relations of Γ involve g, h, k, and they are

equivalent to agf = abf . Thus, the only way by which g, h, k may be eliminated

in the normal form is to have in w subwords of type g−1
f a gf = agf which can be

replaced by respective subwords abf ∈ G. If after this procedure some subwords gf

still remain, then three scenario cases are possible:

Case 1. The word w may contain a subword of type w′ = g−1
f ablgf for such an l

that l(i) = 0 for i = 0, . . . ,m−1. Check the example of step 1, when this is achieved

for l = l3 = (0, 0, 0, 0, 7, 2, 4, 9) and f = l2 = (6, 4, 5, 3). Then just replace w′ by

abl′ for an l′ ∈ ωmB (such as l′ = l4 = (6, 4, 5, 3, 7, 2, 4, 9) in our example).

Case 2. If w′ = g−1
f ablgf , but the condition l(i) = 0 fails for an i = 0, . . . ,m−1,

then gf does not commute with bl, so we cannot apply the relation agf = abf , and

so w /∈ G. Turning to example in steps 1–3, notice that for, say, f = (7, 2, 4, 9) ∈ B
we may never get something like a(gf )

2

=
(
ab

7
0 b21 b42 b93

)gf = a(b
7
0 b21 b42 b93)

2

because gf

does not commute with b0, b1, b2, b3. That is, all the new functions l we get are from

ωmB only.

Case 3. If gf is in w, but is not in a subword g−1
f ablgf , we again have w /∈ G,

unless all such gf trivially cancel each other.

This means, if w ∈ G, then elimination of g, h, k turns w to a product of elements

from ⟨r⟩ and of some abf for some f ∈ ωmB (a also is of that type, as (0) ∈ B).

Now apply 2.4 for X = {abf | f ∈ ωmB} and Y = {r} to state that w is a product

of some power ri and of some elements each of which is an abf conjugated by a

power rni of r. These conjugates certainly are in ωmB (see step 2 above), and so

w ∈ G if and only if i = 0, i.e., if w ∈ AωmB.

Hence, equality (3.3) is established for any subset B of E .

Remark 3.1. However, (3.3) cannot yet guarantee that AωmB is benign in G as

soon as AB is benign in G, because the group ∆ in (3.2) is not finitely presented,

and its subgroup WB = ⟨gf, a, r | f ∈ B⟩ may not be finitely generated, when B is

infinite. The sections below will add these missing features replacing ∆ by a much

bulkier construction.

4. Auxiliary free constructions

In this section we generalize some of the results in Section 3 in [9]. Hence, the

lemmas below may be of some independent interest also.
9
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For any subgroup A of an arbitrary group G the well known equality G∩Gt = A

holds in the HNN-extension G ∗A t. It trivially follows, say, from uniqueness of the

normal form in G ∗A t. We need the following generalization of this fact:

Lemma 4.1. Let A1, . . . , Ar be arbitrary subgroups in a group G. Then the following

equality holds in the HNN-extension G ∗A1,..., Ar
(t1, . . . , tr):

(4.1) G ∩Gt1··· tr =
⋂ r

i=1 Ai.

Proof. Choose a transversal TAi to Ai in G, i = 1, . . . , r. Take any g ∈ G,

and show that if gt1··· tr ∈ G, then g is inside each of Ai. Write g = a1l1 where

a1 ∈ A1 and l1 ∈ TA1
. In turn, a1 can be written as a1 = a2l2 where a2 ∈ A2 and

l2 ∈ TA1
. This process can be continued for A3, . . . , Ar. (the case when some of ai

or li, i = 1, . . . , r, are trivial is not ruled out). Since the inverse t−1
i of the stable

letter ti also fixes Ai, calculation of the normal form for gt1··· tr can be started via

the following steps:

(4.2)

gt1··· tr = t−1
r · · · t−1

1 a1l1 t1 · · · tr

= t−1
r · · · t−1

2 a1t
−1
1 l1 t1 · · · tr

= · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

= ar t
−1
r lr t

−1
r−1lr−1 · · · l3 t−1

2 l2 t
−1
1 l1 t1 · · · tr

The above belongs to G only if it contains no stable letters ti. But the last line of

(4.2) does not contain t1 only when l1 = 1, hence t−1
1 l1 t1 = 1, and t−1

2 l2t
−1
1 l1 t1 t2 =

t−1
2 l2 t2. Then to exclude t2 we must have l2 = 1, hence t−1

2 l2 t2 = 1. At the end we

get (4.2) reduced to art
−1
r lrtr = ar where lr = 1, and therefore ar ∈

⋂ r
i=1 Ai.

On the other hand, any g ∈
⋂ r

i=1 Ai is fixed by each of ti, and so gt1···tr = g ∈ G,

and thus,
⋂ r

i=1 Ai ⊆ G ∩Gt1···tr . □

Another proof of this lemma could be deduced from Corollary 2.1 and Corollary 2.2

(in a manner rather similar to the proof of Lemma 4.3 below), but we prefer this

version as it follows from more basic properties already.

Later we are going to use a specific free construction built for a system of

groups via HNN-extensions and free products with amalgamation. Namely, let

G ≤ K1, . . . ,Kr be arbitrary groups such that Ki ∩ Kj = G for any distinct

indices i, j = 1, . . . , r. If in each Ki we pick a subgroup Li, and denote G∩ Li = Ai,

i = 1, . . . , r, we can build the following “nested” free construction:

(4.3) Θ =
(
· · ·

((
(K1 ∗L1

t1) ∗G (K2 ∗L2
t2)

)
∗G (K3 ∗L3

t3)
)
· · ·

)
∗G (Kr ∗Lr

tr).

By these notations:

10
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Lemma 4.2. In the free construction Θ the following equality holds:

⟨G, t1, . . . , tr⟩ = G ∗A1,..., Ar
(t1, . . . , tr).

Proof. Applying induction over r we for r = 2 have to display ⟨G, t1, t2⟩ =

G ∗A1, A2 (t1, t2) in Θ = (K1 ∗L1 t1) ∗G (K2 ∗L2 t2).

In K1 ∗L1 t1 we by (1) in Corollary 2.2 have ⟨G, t1⟩ = G ∗G∩L1 t1 = G ∗A1 t1.

Similarly, ⟨G, t2⟩ = G ∗A2
t2 in K2 ∗L2

t2. And since in Θ the intersection of both

⟨G, t1⟩ and ⟨G, t2⟩ with G clearly is G, we apply (1) in Corollary 2.1 to get:

⟨G, t1, t2⟩ =
〈
⟨G, t1⟩, ⟨G, t2⟩

〉
= (G ∗A1 t1) ∗G (G ∗A2 t2).

But the above amalgamated free prodcut is noting but G ∗A1, A2
(t1, t2), which is

trivial to see by listing all the defining relations of both constructions: relations of G

followed by relations stating that t1 fixes the A1 and t2 fixes A2 (plus the relations

identifying both copies of G, if we initially assume them to be disjoint).

Next assume the proof is done for r − 1, i.e.,

⟨G, t1, . . . , tr−1⟩ = G ∗A1,..., Ar−1 (t1, . . . , tr−1).

Again by (1) in Corollary 2.2 write ⟨G, tr⟩ = G ∗G∩Lr
tr = G ∗Ar

tr. We have

⟨G, t1, . . . , tr−1⟩ and ⟨G, tr⟩ both intersect with G in G, and we by (1) in Corollary 2.1

get:

⟨G, t1, . . . , tr⟩ =
(
G∗A1,..., Ar−1

(t1, . . . , tr−1)
)
∗G (G∗Ar

tr) = G∗A1,..., Ar
(t1, . . . , tr).

□

Remark 4.1. The reader familiar with more general interpretations of free products

with amalgamation (see Neumann’s fundamental survey [18]) would notice that Θ

in (4.3) is noting but the free product of the HNN-extensions Ki ∗Li
ti with an

amalgamated subgroup G. Indeed, the defining relations of this product can well

be listed in an order matching the sintaxis of (4.3). Using the terms of [18] would

allow us to avoid the bulky formula of (4.3), but it would require to involve here

some new elements from [18] which would make the construction more complicated.

An immediate consequence of the above lemmas is:

Corollary 4.1. If the subgroups A1, . . . , Ar are benign in a finitely generated group

G, then their intersection
⋂ r

i=1 Ai also is benign in G. Moreover, if the finitely

presented groups Ki with their finitely generated subgroups Li can be given for each

Ai explicitly, then the finitely presented K with its finitely generated subgroup L can

be given for this intersection explicitly.
11
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Proof. By hypothesis we have some finitely presented overgroups K1, . . . ,Kr

of G and finitely generated L1, . . . , Lr such that Li ≤ Ki and G ∩ Li = Ai for

each i = 1, . . . , r. Then the free construction Θ of (4.3) is finitely presented, since

to the finitely many relations of Ki we only add the relations stating that ti fixes

the finitely many generators of Li, plus (if needed) relations identifying the finitely

many generators of all copies of G in Ki ∗Li ti, i = 1, . . . , r.

By Lemma 4.2 Θ contains the finitely generated subgroup ⟨G, t1, . . . , tr⟩ =

G ∗A1,..., Ar
(t1, . . . , tr), and by Lemma 4.1 we in that group have G∩L =

⋂ r
i=1 Ai

for the finitely generated subgroup L = Gt1··· tr. □

Lemma 4.3. Let A1, . . . , Ar be arbitrary subgroups in a group G. Then in the

HNN-extension G ∗A1,..., Ar
(t1, . . . , tr) the following equality holds:

(4.4) G ∩
〈⋃ r

i=1 Gti
〉
=

〈⋃ r
i=1 Ai

〉
.

Proof. For simplicity write the proof for the case r=3. Set T = ⟨A1, A2, A3⟩.
By Lemma 4.2:

G ∗A1, A2, A3
(t1, t2, t3) =

(
(G ∗A1

t1) ∗G (G ∗A2
t2)

)
∗G (G ∗A3

t3).

G ∗A1
t1 contains G ∗A1

Gt1 , and in this subgroup we by (3) in Corollary 2.1 have

⟨T,Gt1⟩ ∩ G = T . For the same reason ⟨T,Gt2⟩ ∩ G = T . Noticing ⟨T,Gt1, Gt2⟩ =〈
⟨T,Gt1⟩, ⟨T,Gt2⟩

〉
and applying to it (2) of Corollary 2.1 inside the group (G ∗A1

t1) ∗G (G ∗A2
t2) we have ⟨T,Gt1, Gt2⟩ ∩ G = T . Since also ⟨T,Gt3⟩ ∩ G = T , we

again by (2) have 〈
⟨T,Gt1, Gt2⟩, ⟨T, Gt3⟩

〉
∩G = T.

But since

T ≤ ⟨Gt1, Gt2, Gt3⟩,

it remains to notice 〈
⟨T,Gt1, Gt2⟩, ⟨T, Gt3⟩

〉
= ⟨Gt1, Gt2, Gt3⟩. □

Corollary 4.2. If the subgroups A1, . . . , Ar are benign in a finitely generated

group G, then their join
〈⋃ r

i=1 Ai

〉
also is benign in G. Moreover, if the finitely

presented groups Ki with their finitely generated subgroups Li can be given for each

Ai explicitly, then the finitely presented K with its finitely generated subgroup L can

be given for this join explicitly.

Proof. Using the same constructions and notations as in the proof of Corollary 4.1

just notice that Θ is finitely presented, the join L =
〈⋃ r

i=1 Gti
〉

is finitely generated,

and G ∩ L =
〈⋃ r

i=1 Ai

〉
by Lemma 4.3. □

12
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5. Adding finite presentation to the construction

5.1. The HNN-extension Ξm. In free group ⟨b, c⟩ we for any integer m can define

a pair of isomorphisms ξm and ξ′m via:

(5.1) ξm(b) = b−m+1, ξ′m(b) = b−m and ξm(c) = ξ′m(c) = c2.

It is easy to verify that ξm(bi) = b2i−m+1 and ξ′m(bi) = b2i−m. The pair ξm, ξ′m can

be used to define the HNN-extension

Ξm = ⟨b, c⟩ ∗ξm,ξ′m
(tm, t′m).

Here tm, t′m are any stable letters, and the subscript m is used to stress the correlation

with ξm, ξ′m, as below we are going to use this construction for multiple values of

m.

Lemma 5.1. In the above notations we for any m have:

⟨b, c⟩ ∩ ⟨bm, tm, t′m⟩ = ⟨bm, bm+1, . . .⟩,

⟨b, c⟩ ∩ ⟨bm−1, tm, t′m⟩ = ⟨bm−1, bm−2, . . .⟩.

Proof. For any integer m and i we have btmi = ξm(bi) = b2i−m+1 and b
t′m
i =

ξ′m(bi) = b2i−m from where we collect:

. . . btmm−2=bm−3, btmm−1=bm−1, btmm =bm+1, btmm+1=bm+3, btmm+2=bm+5, . . .

. . . b
t′m
m−2=bm−4, b

t′m
m−1=bm−2, b

t′m
m =bm, b

t′m
m+1=bm+2, b

t′m
m+2=bm+4, . . .

(5.2)

The action of t−1
m and t′

−1
m can be deduced from the list above. From (5.2) it is

straightforward that each of bm, bm+1, . . . indeed is in ⟨bm, tm, t′m⟩. Say, bm+8 =

b
t′m
m+4 = b

t′2m
m+2 = b

t′3m
m+1 = b

tm·t′3m
m ∈ ⟨bm, tm, t′m⟩.

And on the other hand, bringing any word w on letters bm, tm, t′m to the normal

form in HNN-extension Ξm we first have to do cancellations like t−1
m bmtm = bm+1,

and t′
−1

m bmt′m = bm. Repeated applications of such steps may create in w some

new letters bm, bm+1, . . . so that we may also have to do “reverse” cancellations like

tmbm+1t
−1
m = bm, tmbm+3t

−1
m = bm+1, etc... or t′mbmt′

−1
m = bm, t′mbm+2t

′−1
m =

bm+1, etc... That is, bringing w to normal form we never get a bi outside ⟨bm, bm+1, . . .⟩.
If, in addition, w is in ⟨b, c⟩, then the normal form we obtained should contain no

letters t±1
m or t′

±1
m . That is, if w is in ⟨b, c⟩, it in fact is in ⟨bm, bm+1, . . .⟩, and we

have ⟨b, c⟩ ∩ ⟨bm, tm, t′m⟩ = ⟨bm, bm+1, . . .⟩.
The second equality stated by the lemma is proved analogously. □

Rules (5.1) define isomorphisms inside the free group G = ⟨a, b, c⟩ of rank

3 also, and we can define the HNN-extension G ∗ξm,ξ′m
(tm, t′m) which is noting

13
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but the ordinary free product ⟨a⟩ ∗ Ξm. Since G = ⟨a⟩ ∗ ⟨b, c⟩ and the subgroup

⟨b, c⟩∩⟨bm, tm, t′m⟩ = ⟨bm, bm+1, . . .⟩ involves no occurrence of the letter a, we from

Lemma 5.1 deduce:

Lemma 5.2. In the above notations we for any m have:

G ∩ ⟨bm, tm, t′m⟩ = ⟨bm, bm+1, . . .⟩,

G ∩ ⟨bm−1, tm, t′m⟩ = ⟨bm−1, bm−2, . . .⟩.

5.2. Some special benign subgroups. With above information we obtain three

types of benign subgroups:

Corollary 5.1. In the above notations for any integer m:

(1) ⟨bm, bm+1, . . .⟩ is benign in ⟨b, c⟩ for the finitely presented group Ξm and its

3-generator subgroup ⟨bm, tm, t′m⟩,
(2) ⟨bm−1, bm−2, . . .⟩ is benign in ⟨b, c⟩ for the finitely presented group Ξm and

its 3-generator subgroup ⟨bm−1, tm, t′m⟩,
(3) Bm = ⟨. . . b−2, b−1; bm, bm+1, . . .⟩ is benign in ⟨b, c⟩ for the finitely presented

group

Θm =
(
Ξm ∗⟨bm,tm,t′m⟩ x

)
∗⟨b,c⟩

(
Ξ0 ∗⟨b−1,t0,t′0⟩ x

′)
and its 4-generator subgroup Pm =

〈
⟨b, c⟩x, ⟨b, c⟩x′

〉
.

Proof. Points (1) and (2) directly follow Lemma 5.1.

Bm is the (free) product of ⟨bm, bm+1, . . .⟩ and ⟨b−1, b−2, . . .⟩. Hence, point (3)

follows from Lemma 4.3 and Corollary 4.2 for r = 2, G = ⟨b, c⟩, K1 = Ξm, K2 = Ξ0,

L1 = ⟨bm, tm, t′m⟩, L2 = ⟨b−1, t0, t
′
0⟩, A1 = ⟨bm, bm+1, . . .⟩, A2 = ⟨b−1, b−2, . . .⟩.

Then Θm is noting but the group Θ from (4.3). □

Now we are able to replace our initial Γ from (3.1) by a finitely presented

alternative:

(5.3) Γ̄ = Θm ∗Pm
(g, h, k)

with fixing action for g, h, k on the finitely generated subgroup Pm.

Lemma 5.3. In above notations the following equalities hold in Γ̄:

(1) ⟨b, c⟩ ∩ Pm = Bm,

(2) ⟨b, c, g, h, k⟩ = Γ.

Proof. The first point follows fom (3) in Corollary 5.1 (it holds in Θm, as it

holds in Γ̄). Next ⟨b, c, g, h, k⟩ = ⟨b, c⟩ ∗⟨b,c⟩ ∩Pm
(g, h, k) = Γ by (1) in Corollary 2.2

and Remark 2.1. □

14
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5.3. Presenting R as a join of benign subgroups. Following the original steps

in subsection 3.1 we now would have to build the HNN-extension Γ̄ ∗R a by fixing

the subgroup R = ⟨gfb−1
f | f ∈ Em⟩ of Γ̄ by some stable letter a. But since R is

not finitely generated, that HNN-extension would not be finitely presented, and we

need some extra complications to arrive to a finitely presented free construction.

Denote the subgroup Φm = ⟨b0, . . . , bm−1, g, h0, . . . , hm−1⟩ in Γ̄, and notice that:

Lemma 5.4. Φm is freely generated by 2m+1 elements b0, . . . , bm−1, g, h0, . . . , hm−1

in Γ̄.

Proof. Firstly, B̄m = ⟨b0, . . . , bm−1⟩ has trivial intersection with Pm because

(1) in Lemma 5.3 implies B̄m ∩ Pm ≤
(
B̄m ∩ ⟨b, c⟩

)
∩ Pm = B̄m ∩

(
⟨b, c⟩ ∩ Pm

)
=

B̄m ∩ Bm = frm[o]−− due to ⟨Bm, B̄m⟩ = Bm ∗ B̄m. Therefore, we in Γ̄ by (1)

in Corollary 2.2 and by Remark 2.1 have:

⟨b0, . . . , bm−1, g, h, k⟩ = B̄m∗B̄m ∩ Pm
(g, h, k) = B̄m∗frm[o]−−(g, h, k) = B̄m∗⟨g, h, k⟩

which simply is a free group of rank m + 3. Since h0, . . . , hm−1 generate a free

subgroup inside ⟨g, h, k⟩, they together with b0, . . . , bm−1 generate a free subgroup

(of rank 2m+ 1) inside ⟨b0, . . . , bm−1, g, h, k⟩. □

Next we need a series of auxiliary benign subgroups inside Γ̄. For an s = 1, . . . ,m

and for a sequence f = (j0, . . . , js−2, js−1) ∈ Es denote f+ = (j0, . . . , js−2, js−1+1)

in Es, i.e., to get f+ we just add 1 to the last coordinate of f . In these notations

for any f the group Γ̄ contains the elements gf+· b−1
s−1 ·g

−1
f , such as, gh

2
0h

5
1h

3
2h

8
3 · b−1

3 ·
g−h2

0h
5
1h

3
2h

7
3 for f = (2, 5, 3, 7) with s = 4. Denote:

VEs =
〈
gf+ · b−1

s−1 · g
−1
f | f ∈ Es

〉
=

=
〈
gh

i0
0 ···h

is−2
s−2 h

is−1+1

s−1 · b−1
s−1 · g

−h
i0
0 ···h

is−2
s−2 h

is−1
s−1 | i0 . . . , is−2, is−1 ∈ Z

〉
,

and establish a property for VEs :

Lemma 5.5. VEs
is a benign subgroup in Γ̄ for the some explicitly given finitely

presented group and its finitely generated subgroup.

Proof. By Lemma 5.4 for any s = 1, . . . ,m the elements bs−1, g, h0, . . . , hs−1

are free generators for the (s+2)-generator subgroup ⟨bs−1, g, h0, . . . , hs−1⟩ of Φm.

Hence, each of the following maps λi, j can be continued to some isomorphism on
15
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⟨bs−1, g, h0, . . . , hs−1⟩:
(5.4)
λs−1, 0 sends bs−1, g, h0, . . . , hs−2, hs−1 to bs−1, g

h0 , h0, . . . , hs−2, hs−1;

λs−1, 1 sends bs−1, g, h0, . . . , hs−2, hs−1 to bs−1, g
h1 , hh1

0 , . . . , hs−2, hs−1;

...
...

...

λs−1, s−1 sends bs−1, g, h0, . . . , hs−2, hs−1 to bs−1, g
hs−1 , h

hs−1

0 , . . . , h
hs−1

s−2 , hs−1.

In particular, for m = 1 the map λ0,0 sends b0, g, h0 to b0, g
h0 , h0; for m = 2 the map

λ1,0 sends b1, g, h0, h1 to b1, g
h0 , h0, h1 and λ1,1 sends b1, g, h0, h1 to b1, g

h1 , hh1
0 , h1,

etc...

Introducing for each isomorphism λi, j a respective stable letter li, j we construct

the HNN-extension:

Λs = Γ̄ ∗λs−1, 0, ... ,λs−1, s−1
(ls−1, 0, . . . , ls−1, s−1)

for each of s = 1, . . . ,m.

The effects of conjugation by elements ls−1, 0, . . . , ls−1, s−1 on the products gf+ ·
b−1
s−1 · g

−1
f is very easy to understand: ls−1, i just adds 1 to the i’th coordinate of f ,

say, for s = 4, f = (2, 5, 3, 7) and l3, 2 = l4−1, 3−1 we have:

(5.5)(
gf+ · b−1

3 · g−1
f

)l3, 2
=

(
gh2

)(hh2
0

)2(
h
h2
1

)5
h3
2 h8

3 · b−1
3 ·

(
gh2

)−(
h
h2
0

)2(
h
h2
1

)5
h3
2 h7

3

= gh2·h−1
2 h2

0h2h
−1
2 h5

1h2h
3
2h

8
3 · b−1

3 · g−h2·h−1
2 h2

0h2h
−1
2 h5

1h2h
3
2h

7
3

= gh
2
0h

5
1h

4
2h

8
3 · b−1

3 · g−h2
0h

5
1h

4
2h

7
3 = gf ′ + · b−1

3 · g−1
f ′ ∈ VE4

where f ′ = (2, 5, 3+1, 7) = (2, 5,4, 7). In particular, actions of the above letters li, j
keep the elements from VEs inside VEs .

For the sequence f0 = (0, . . . , 0) ∈ Es we have g
f+
0

· b−1
s−1 · g

−1
f0

= ghs−1 · b−1
s−1 · g−1.

Applying the conjugate collection process of subsection 2.4 for X = {ghs−1·b−1
s−1·g−1}

and for Y = {ls−1, 0, . . . , ls−1, s−1} we see that any element w from ⟨X,Y⟩ ≤ Λs is

a product of elements of gf+·b−1
s−1 ·g

−1
f (for certain sequences f ∈ Es) and of certain

powers of the stable letters ls−1, 0, . . . , ls−1, s−1. And w is inside Γ̄ if and only if all

those powers are cancelled out in the normal form, and w in fact is in VEs
, that is,

denoting Ls = ⟨ghs−1 · b−1
s−1 · g−1, ls−1, 0, . . . , ls−1, s−1, ⟩ we have:

Γ̄ ∩ Ls = VEs ,

i.e., VEs
is benign in Γ̄ for the above finitely presented group Λs and for its (s+1)-

generator subgroup Ls. □

Lemma 5.6. R = ⟨gfb−1
f | f ∈ Em⟩ is a benign subgroup in Γ̄ for some explicitly

given finitely presented group and its finitely generated subgroup.
16
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Proof. First show that R is generated by its m+1 subgroups ⟨g⟩, VE1
, . . . , VEm

.

For each s = 1, . . . ,m denote ZEs = ⟨gfb−1
f | f ∈ Es⟩. In these notation R is noting

but ZEm
for s = m. It is easy to see that ⟨ZEs−1

, VEs
⟩ = ZEs

for each s (when s = 1,

then take ⟨g⟩ as ZE0
), see details in [17] based on an original idea from [9]. Then:

ZEm
= ⟨ZEm−1

, VEm
⟩ = ⟨ZEm−2

, VEm−1
, VEm

⟩ = · · · =
〈
⟨g⟩, VE1

, . . . VEm−1
, VEm

〉
.

By Lemma 5.5 each VEs is benign Γ̄ for an explicitly given finitely presented group

Λs and its finitely generated subgroup Ls. And the finitely generated ⟨g⟩ is clearly

benign in Γ̄ for the finitely presented group Λ0 = Γ̄ and its finitely generated

subgroup L0 = ⟨g⟩.
It remains to load these components into Corollary 4.2 and into (4.3) to get the

following finitely presented overgroup holding Γ̄:

(5.6) Θ̄ =
(
· · ·

((
(Λ0 ∗L0 t0) ∗Γ̄ (Λ1 ∗L1 t1)

)
∗Γ̄ (Λ2 ∗L2

t2)
)
· · ·

)
∗Γ̄ (Λm ∗Lm

tm),

and its finitely generated subgroup Q =
〈
Γ̄ t0 , . . . , Γ̄ tm

〉
. □

5.4. Proof for Theorem 1.1. Now we can use the above constructions to finish

the main proof. The last two steps of the construction in Section 3 are effortless

to mimic. As Θ̄ of (5.6) is finitely presented, and Q is finitely generated, the HNN-

extension Θ̄∗Q a is finitely presented. Inside Θ̄∗Q a the elements a, b, c generate the

same free subgroup discussed in Section 3, and we can again define an isomorphism

ρ sending a, b, c to a, bc
m

, c together with the finitely presented analog of ∆ from

(3.2):

(5.7) ∆̄ =
(
Θ̄ ∗Q a

)
∗ρ r.

For any B ⊆ Em we in analogy with Section 3 can denote WB = ⟨gf, a, r | f ∈ B⟩ in

∆̄. Since each gf , a, r from ∆̄, in fact, is from ∆ already, we in ∆̄ have the analog

of (3.3) also:

(5.8) G ∩WB = AωmB.

Since AB is benign in G, by Theorem 1.1 hypothesis there is a finitely presented

(explicitly given) overgroup KB of G with a finitely generated subgroup LB so that

G ∩ LB = AB in KB.

As ∆̄ was built purely via free constructions in which we are in position to

control which new elements (such as, stable letters) to adjoin, we can make sure no

element of ∆̄ outside G is contained in KB, and hence, we can construct the finitely

presented amalgamated product ∆̄ ∗G KB.
17
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The subgroup AB is benign also in ∆̄. Indeed, the group ∆̄ ∗G KB is finitely

presented, and to its subgroup LB = ⟨AB, LB⟩ we may apply (3) in Corollary 2.1

to get ∆̄ ∩ LB = AB, because AB ∩G = AB and LB ∩G = AB.

Next, being finitely generated ⟨b, c⟩ is benign in ∆̄ for the finitely presented ∆̄

and for the finitely generated ⟨b, c⟩, see remark in subsection 2.2.

Hence by Corollary 4.2 the join
〈
AB, ⟨b, c⟩

〉
= WB is benign in ∆̄. As its finitely

presented overgroup we may take:

Ψ =
(
(∆̄ ∗G KB) ∗LB y

)
∗∆̄

(
∆̄ ∗⟨b,c⟩ y′

)
(see (4.3)), and as a finitely generated subgroup we may take L′ =

〈
∆̄y, ∆̄y′〉

.

G clearly is benign in ∆̄. Hence by (5.8) and by Corollary 4.1 the intersection

G ∩WB = AωmB is benign in ∆̄ for the finitely presented group:

(5.9) KωmB = (Ψ ∗L′ z) ∗∆̄ (∆̄ ∗G z′),

and its finitely generated subgroup:

(5.10) LωmB = ∆̄z z′
,

i.e., ∆̄ ∩ LωmB = AωmB in KωmB. But since G ≤ ∆̄ and AωmB ≤ G, we conclude

that G ∩ LωmB = AωmB also holds in KωmB.

This completes the proof of Theorem 1.1.
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