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1. INTRODUCTION

Higman’s fundamental result establishing connection between group theory and
computability theory states: a finitely generated group G can be embedded in a
finitely presented group if and only if it is recursively presented [9]. The requirement
that G is finitely generated is not critical, and it can be replaced by the condition
that G has an effectively enumerable countable set of generators, see the remark
on p. 456 in [9].

Despite importance of this theorem, possibility of explicit embedding of any
recursively presented group into some finitely presented group is a less intelligible
issue, and it is open problem even for some well known groups. In particular,
construction of an explicit embedding of the additive group Q of rationals into a
finitely presented group was an open question mentioned by Bridson and de la Harpe
as “Well-known problem” 14.10 (a) in Kourovka notebook [12] and also announced
in [8]. Recently a direct solution to that problem was found by Belk, Hyde and

Matucci in [6]; and an algorithm how to build such an explicit embedding was
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given in [I7], without an explicit finitely presented group containing Q though. Also,
based on recent work [2]-[5] it is possible to embed Q as a center for a continuum
of non-isomorphic 2-generator groups. These along with some other remarks in the
literature [19] [I] motivate research on explicit embeddings of recursively presented
groups into finitely presented groups.

The key group-theoretic concept introduced in [9] is that of benign subgroup: a
subgroup H is benign in a finitely generated group G, if there is a finitely presented
overgroup K of G, and a finitely generated subgroup L of K such that GNL = H.
Actually, the most part of [9] is dedicated to showing that if a subgroup H of a
specific type is benign in the free group G = (a,b, ¢) of rank 3, then applying some
specific kinds of operations to H (such as, the sequence building operation w,,, see
below) we again get a benign subgroup in G.

Denote by £ the set of all functions f : Z — Z with finite supports. If f(i) =0
for all i < 0 and ¢ > m (for a fixed m = 1,2,...), then f can be recorded as a
sequence f = (Jo,-..,Jm—1) assuming f(i) = j; for i =0,...,m — 1 [9]. Then the
following words are defined in the free group G = (a, b, ¢) with respect to f:

m

(1.1) by =0y bl and ap=a =b;laby

where b; = be' for i = 1,...,m — 1. Let &, be the subset of all functions f of
the above type. For any subset B of £ denote Az = (ay | f € B), in particular,
Ag,, = (as | f € Ey). See details and examples in [I7].

For m and for any subset B C £ the sequence building operation w,, is defined
on B as follows: w,, (B) consists of all f € &£ for which for every ¢ € Z there exists a
sequence (f(mi+0),..., f(mi+m—1)) € B [9]. In other words, this operation
just constructs new sequences f by concatenation of some sequences of length m
picked from B. For details see [17], and also check Section [3| below where the new
sequence is built from the sequences (6,4,5,3), (7,2,4,9) € B and from the
zero sequence using w,. Having the subgroup Ag = (ay | f € B) of G one may
construct the subgroup A, g = (aw, 8| f € B). And if B C &,,, then A < A, 5,
see subsection where samples of Az and A, are given.

If for some B C & the group Ap is benign in G for a given finitely presented
overgroup K holding G, and for the finitely generated subgroup L < K, we stress
that by denoting K = Kp and L = Lg, and writing G N Lg = Ag in Kg. Clearly,
Kp and L may not be unique for a given B.

A main strategy of [9] is to start from a set B C & for which the subgroup Ap
is benign in G, and to show that if a new set B’ is obtained from B by means of

certain operations, then Ap/ also is benign in G. In this terms [9, Lemma 4.10]
4



ON BENIGN SUBGROUPS ...

states that if for the given B C & the subgroup Ag is benign in G, then A,, g also
is benign in G for any m.

The objective of this note is to additionally show that if the respective groups K
and Lp can be constructed explicitly, then K, 5 and L,, g can also be constructed

explicitly:

Theorem 1.1. Let B C & be a sequences set such that A is benign in G and,
moreover, the respective finitely presented group Kg and its finitely generated subgroup
Lg are given explicitly. Then for anym =1,2,... the subgroup A, B also is benign
in G, and the finitely presented group K, g and its finitely generated subgroup

Ly, B can also be given explicitly.

The promised explicit group K, g is given in (5.9), L, 5 is given in , while
the components ¥, A, L', etc., used in those formulas all are defined in Section
using some free constructions. And under explicitly given K and Lz one may
understand, say, their presentations with generators and defining relations.

The proof of this theorem occupies sections below. In particular, in Section
we build an initial embedding construction in which A, 5 is an intersection of G
with certain subgroup Wg. As this construction is not yet finitely presented, we
in Section [4] suggest some auxiliary “nested” free constructions (such as ), and
using them we obtain the finitely presented K, 5 in Section

In order to avoid any repetition of material already published in [I6, [I7] or
elsewhere, we below often adopt constructions from other work. This makes parts
of the current text dependant on other articles, but the provided exact references,

we hope, alleviate any inconvenience.

2. PRELIMINARY INFORMATION

2.1. Free constructions. For background information on free products with amal-
gamation and on HNN-extensions we refer to [7] and [I0]. Notations vary in the
literature, and to maintain uniformity we are going to adopt notations we used in
[16].

If any groups G and H have subgroups, respectively, A and B isomorphic under
¢ : A — B, then the (generalized) free product of G and H with amalgamated
subgroups A and B is denoted by G *, H (an alternative notation in the literature
being G x4—p H). When G and H are overgroups of the same subgroup A, and ¢
is just the identical isomorphism on A, we write ' = G x4 H.

If G has subgroups A and B isomorphic under ¢ : A — B, then the HNN-
extension of the base G by some stable letter ¢ with respect to the isomorphism ¢

5
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is denoted by G *, t. In case when A = B and ¢ is identity on A, we may write
I' = G x4 t. We also use HNN-extensions G #,, ,,... (t1,%2,...) with more than one
stable letters, see [16] for details.

Our usage of the normal forms in free constructions is close to [7].

2.2. Benign subgroups and Higman operations. For detailed informaton on
bening subgroups we refer to Sections 3, 4 in [9], see also Section 3 in [16]. Higman
operations and their basic properties can be found in Section 2 in [9], see also
Section 3 in [I6] and Section 2 in [I7].

From definition of bening subgroup it is very easy to see that arbitrary finitely
generated subgroup H in any finitely presented group G is benign in G, for, the
group G itself acts as a finitely presented overgroup of G with a finitely generated
subgroup H, such that H N H = H. We are going to often use this remark in the

sequel.

2.3. Subgroups in free constructions. The following two auxiliary facts are
adopted from [16], and they follow from more general Lemma 2.2 and Lemma 2.4
in [I6].

Corollary 2.1 (Corollary 2.3 in [16]). LetT' = G x4 H, and let G’ < G, H < H
be subgroups such that G'N A= H' N A. Then forTV=(G',H') and A’ =G'Nn A
we have:

(1) TV = G xa H', in particular, if A< G, H', thenT' = G' x4 H';

(2) !N A=A, in particular, if A< G, H', then TN A= A;

B I'NG=G and "N H=H'.

Corollary 2.2 (Corollary 2.5 in [16]). LetT' = Gxat, and let G' < G be a subgroup.
Then for TV = (G',t) and A’ = G' N A we have:

(1) TV = G'* 4 t, in particular, if A< G, thenT' = G' x4 t;

(2) TN A=A, in particular, if A< G, thenT'N A= A;

B)I'nG=G".

Remark 2.1. It is easy to adapt Corollary for the case of multiple stable
letters tq,...,t; which fix the same subgroup A in G. In such a case point
in Corollary will read: TV = G' %4/ (t1,...,tg) for TV = (G’ ty,...,t;) and
A’ =G'Nn A. We are going to use this fact only once, in the proof of Lemma |5.4

2.4. The “conjugates collecting’ process. Let X and ) be some disjoint subsets
in any group G. Then any element w € (X,9)) can be written as:

_ _ Fvy Fwvs +og
W=u-v=2I] Xy 2Ty " v

6
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with some v1,va, ..., vk, v € (), and z1, T2, ...,z € X. The proof, examples and
variations of this fact can be found in Subsection 2.6 in [I6]. We use the name
“conjugates collecting” just because we heavily used it in [I6], and we need a name

to refer to (we were unable to find a conventional name to this in the literature).

3. THE INITIAL EMBEDDING CONSTRUCTION

3.1. Construction of A. The free group (b, ¢) contains a free subgroup (b; | i € Z)
of infinite rank, which for any m = 1,2, ... decomposes into a free product By, * By,
with By, = (...b_2,b_1; by, bma1,-..) and By, = (b, ..., by_1)-

Introducing three stable letters g, h, k, all fixing B,,,, build the HNN-extension:

(3.1) T = (b,¢) s, (9,h k).

Denote G = (g, h, k), and in analogy with b;, by, ay of introduce h; = h’“i hy,
and gy = g"/ in the free group G. Fixing the subgroup R = (gfb;1 | f€&n) of T
by means of a new stable letter a build the HNN-extension I xg a.

The intersection (b,c) N R is trivial because the non-trivial words of type ¢ fb]71
generate R freely, and so any non-trivial word they generate must involve at least
one g, and hence it need to be outside (b,c). Then by in Corollary the
subgroup generated in I' +g a by (b, c) together with a is equal to (b,c) *pcynra =
(b,c) x{13 a = (b,c) * a which is the free group G' = (a,b,c). So a,b, c generate a
free subgroup in T, and hence the map sending a, b, ¢ to a,b®, ¢ can be continued
to an isomorphism p : G — (a, bel c). Identifying this p to a further stable letter r

we arrive to the final HNN-extension of this section:
(3.2) A= (Txga)*,r= (((b, c) #p,, (9,h,k)) *r a) *p T

3.2. Obtaining G N Wi = A, 5 in A. For any subset B of £ denote Wi =
(95, @, | f € B), and show that in A we have

(3.3) GNWp=A,, B

Firstly notice that if B,, = BNE,,, then w,,(B) = wy(B,,). Hence we may without
loss of generality suppose B C &, below (if a short sequence contains less than m
integers, we can without loss of generality extend its length to m by adding some
extra 0’s at the end).

For arbitrary sequence f € w,,B the element a; = a’ is inside Wg. Let us
display this uncomplicated fact by a routine step-by-step construction example.
Let m =4 and let (6,4,5,3), (7,2,4,9) € B. Then by sequence building operations
w4 contains the sequence, say,

(3.4) f=1(0,0,0,0, 7,2,4,9, 0,0,0,0, 0,0,0,0, 6,4,5,3, 7,2,4,9).
7
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To show that a® € Wpy start by the initial functions I, = (7,2,4,9) and I, =
(6,4,5,3) in B, and then use them by a few steps to arrive to the function f above.
We are going to use the evident fact that the relation (g fbjil) “ =g fb]71 is equivalent
to a9 = a’.

Step 1. Since I; = (7,2,4,9) is in B, then g;, € Ws, and so a9 = ab =
abg b2b3b3 c Wps.

Step 2. Since b = b = (b”)(ci)p = (bc4)ci = b = b;,4, then conjugating the

bll

above obtained element a”1 by r we get:

b9 bYbIbY - bY b2bgb2

T =a" € Wp

r bg b3b3b3) " 7 p2pdp0
(abzl) _ (ar)( 0b1b2b3) " BIB2050 _

for the sequence I3 = (0,0,0,0, 7,2,4,9).

big

Next, conjugating a”'s by g;, we have:

7121419
(ablg)gm — abl3'9l2 — ab4 bsbgbs Yy

Step 3. Each of stable letters g, h, k commutes with any b; for ¢ < 0 or i > m = 4,

and so g, commutes with bj b2b3b2? and so:

7127419 7127479
ab4 b5bgb7 - g1y = q92 - b b5b6b7.

Then once more applying step 1 to a9z we transform the above to:

(aglz)bl bEbobT _ bo bib3bd  bTb2bib2 _ b,

for the sequence Iy = (6,4,5,3, 7,2,4,9). Then we repeat the above step 2 for

three times i.e., conjugate the above by r3 to get the element a”s for the sequence:
ls = (0,0,0,0, 0,0,0,0, 0,0,0,0, 6,4,5,3, 7,2,4,9).

Next apply step 3 and step 1 again to conjugate a’s by g;,. We get the element

abs for the sequence:
ls =(7,2,4,9, 0,0,0,0, 0,0,0,0, 6,4,5,3, 7,2,4,9).

Then we again apply step 2, i.e., conjugate a”s by r to discover in Wy the element
a’ =a ¢ with the sequence f promised in above.

Since such a procedure can easily be performed for an arbitrary f € w,,B, we
get that A, g < Wi. And since also A, g < G, we have A, 5 < GNWg.

Next assume some word w from Wi = (g, a, 7 | f € B) isin G. Since w also is in
A, it can be brought to its normal form involving stable letter r and some elements
from I" %y, a. The latter elements, in turn, can be brought to normal forms involving
stable letter a and some elements from I'. Then the latters can further be brought to

normal forms involving stable letters g, h, k and some elements from (b, ¢). That is,
8
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w can be brought to a unique “nested” normal form reflecting three “nested” HNN-
extensions in the right-hand side of . Let us detect the cases when it involves
nothing but the letters a, b, c. The only relations of I' involve g, h, k, and they are
equivalent to a9/ = ab . Thus, the only way by which g, h, k may be eliminated
in the normal form is to have in w subwords of type g}lagf = a9/ which can be
replaced by respective subwords a’s € G. If after this procedure some subwords g
still remain, then three scenario cases are possible:

Case 1. The word w may contain a subword of type w' = g?lablgf for such an [
that [(¢) = 0 for i = 0,...,m—1. Check the example of step 1, when this is achieved
for Il =13 = (0,0,0,0, 7,2,4,9) and f = Iy = (6,4,5,3). Then just replace w’ by
a’ for an I’ € w,,B (such as I’ = Iy = (6,4,5,3, 7,2,4,9) in our example).

Case 2. If w' = g;lablgf, but the condition I(¢) = 0 fails foran i =0,...,m—1,
then g does not commute with b;, so we cannot apply the relation a9/ = abs, and
so w ¢ G. Turning to example in steps 1-3, notice that for, say, f = (7,2,4,9) € B
we may never get something like al9r)’ = (abg bi b bg)gf: a®3 1 b255)” hecause gy
does not commute with by, b1, ba, b3. That is, all the new functions [ we get are from
wm B only.

Case 3. If g¢ is in w, but is not in a subword g]lablgf, we again have w ¢ G,
unless all such gy trivially cancel each other.

This means, if w € G, then elimination of g, h, k turns w to a product of elements
from (r) and of some a’# for some f € w,,B (a also is of that type, as (0) € B).
Now apply for X = {a% | f € w,uB} and Y = {r} to state that w is a product
of some power r* and of some elements each of which is an a®/ conjugated by a
power r™ of r. These conjugates certainly are in w,,B (see step 2 above), and so
w € G if and only if i =0, i.e., if w e A, 5.

Hence, equality is established for any subset B of £.

Remark 3.1. However, cannot yet guarantee that A, 5 is benign in G as
soon as Ag is benign in G, because the group A in is not finitely presented,
and its subgroup Wi = (g4, a, v | f € B) may not be finitely generated, when B is
infinite. The sections below will add these missing features replacing A by a much

bulkier construction.

4. AUXILIARY FREE CONSTRUCTIONS

In this section we generalize some of the results in Section 3 in [J]. Hence, the

lemmas below may be of some independent interest also.
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For any subgroup A of an arbitrary group G the well known equality GNGt = A
holds in the HNN-extension G 4 t. It trivially follows, say, from uniqueness of the

normal form in G %4 t. We need the following generalization of this fact:

Lemma 4.1. Let Ay, ..., A, be arbitrary subgroups in a group G. Then the following
equality holds in the HNN-extension G *a,, . a, (t1,...,tr):

(4.1) GNGh -t =(_, A,

Proof. Choose a transversal T4, to 4; in G, i = 1,...,r. Take any g € G,
and show that if gt % € @, then g is inside each of A;. Write g = a,l; where
a1 € Ay and [y € Ty,. In turn, a; can be written as a; = asly where as € As and
la € Ty,. This process can be continued for As, ..., A,. (the case when some of a;
or l;, i =1,...,r, are trivial is not ruled out). Since the inverse t;l of the stable

t

letter ¢; also fixes A;, calculation of the normal form for g**" ! can be started via

the following steps:

gtl...t,,, _ t*]- .. -t;lalll ty-- -ty

T

=ttt ettty

(4.2)

=apt ot ey Dty Mot oty
The above belongs to G only if it contains no stable letters ¢;. But the last line of
does not contain ¢; only when /1 = 1, hence tflll t1 =1, and t;llgtflll t1tg =
t;llg to. Then to exclude to we must have I, = 1, hence t;llz to = 1. At the end we
get reduced to a,t; tl,t, = a, where [, = 1, and therefore a, € ﬂ;zl A;.

On the other hand, any g € (;_, 4; is fixed by each of ¢;, and so g "' = g € G,
and thus, I_, 4; CGNG i, O

Another proof of this lemma could be deduced from Corollary[2.I]and Corollary[2.2]
(in a manner rather similar to the proof of Lemma below), but we prefer this
version as it follows from more basic properties already.

Later we are going to use a specific free construction built for a system of
groups via HNN-extensions and free products with amalgamation. Namely, let
G < Ki,...,K, be arbitrary groups such that K; N K; = G for any distinct
indices 4,5 = 1,...,r. If in each K; we pick a subgroup L;, and denote GN L; = A;,

i=1,...,7r, we can build the following “nested” free construction:

(4.3) ©= ( (((Kl 1, 1) *a (Ko 1, t2)) *a (K3 *p, t3)) ) xq (K *r, tr).

By these notations:

10
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Lemma 4.2. In the free construction © the following equality holds:
<G,t1, e ,tr> = G *Al,...,AT (tl, . ,tr).

Proof. Applying induction over r we for r = 2 have to display (G,t1,t2) =
G *a,, 4, (t1,t2) iIn © = (K4 1, t1) *q (K2 %1, t2).

In Ky %1, t1 we by in Corollary have (G,t1) = G*gnp, t1 = G *4, t1.
Similarly, (G, t2) = G x4, to in K5 1, t5. And since in O the intersection of both
(G,t1) and (G, ts) with G clearly is G, we apply in Corollary to get:

(G, t1,ta) = ((G 1), (G ta)) = (G *a, 1) ¥c (G *a, t2).

But the above amalgamated free prodcut is noting but G 4, 4, (¢1,t2), which is
trivial to see by listing all the defining relations of both constructions: relations of G
followed by relations stating that ¢; fixes the A; and ¢ fixes Ao (plus the relations
identifying both copies of G, if we initially assume them to be disjoint).

Next assume the proof is done for r — 1, i.e.,
(Gitr, .oy te1) =G ay A, (B, te1).

Again by in Corollary write (G,t,.) = G *gnr, tr = G *4,t.. We have
(G,t1,...,tr—1) and (G, t,) both intersect with G in G, and we by (1] in Corollary
get:

<G,t1, . ,tr> = (G*A1,...,Ar71 (tl7 L. ,tr,l)) *@G (G*Ar tr) = G*A1,~.7Ar (tl, . ,tr).

O

Remark 4.1. The reader familiar with more general interpretations of free products
with amalgamation (see Neumann’s fundamental survey [18]) would notice that ©
in is noting but the free product of the HNN-extensions K; *r, t; with an
amalgamated subgroup G. Indeed, the defining relations of this product can well
be listed in an order matching the sintaxis of . Using the terms of [I8] would
allow us to avoid the bulky formula of , but it would require to involve here

some new elements from [I8] which would make the construction more complicated.
An immediate consequence of the above lemmas is:

Corollary 4.1. If the subgroups Ay, ..., A, are benign in a finitely generated group
G, then their intersection (\,_, A; also is benign in G. Moreover, if the finitely
presented groups K; with their finitely generated subgroups L; can be given for each
A; explicitly, then the finitely presented K with its finitely generated subgroup L can

be given for this intersection explicitly.
11
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Proof. By hypothesis we have some finitely presented overgroups Ki, ..., K,
of G and finitely generated Lq,...,L, such that L, < K; and GNL; = A; for
each ¢ = 1,...,r. Then the free construction © of is finitely presented, since
to the finitely many relations of K; we only add the relations stating that ¢; fixes
the finitely many generators of L;, plus (if needed) relations identifying the finitely
many generators of all copies of G'in K *p, t;, 1 =1,...,7.

By Lemma © contains the finitely generated subgroup (G,ti,...,t.) =
G*a,,. A, (t1,...,t.), and by Lemmawe in that group have GNL =(\]_, A;
for the finitely generated subgroup L = G tr, O

Lemma 4.3. Let Aq,..., A, be arbitrary subgroups in a group G. Then in the
HNN-extension G %4, .. a, (t1,...,t,) the following equality holds:

(4.4) GN(Uiz 6) = (Ui 4i)-

Proof. For simplicity write the proof for the case r=3. Set T' = ( Ay, As, A3).
By Lemma [1.2}

G *A1,A27A3 (t1,t2,t3) = ((G *Al tl) *G (G *Az tg)) *q (G *Aa tg).

G * 4, t; contains G *4, G, and in this subgroup we by in Corollary have
(T,G") NG = T. For the same reason (T, G'?) N G = T. Noticing (T, G", G*?) =
((T,G"),(T,G")) and applying to it of Corollary inside the group (G #4,
t1) *¢ (G *a, t2) we have (T,G",G*2) NG = T. Since also (I,G*) NG =T, we
again by have
(T,G",G"),(T, G®*))NG =T.
But since
T < (G"™,G"™, G"),

it remains to notice

((T,G1,G2), (T, G')) = (G",G™,G"). O

Corollary 4.2. If the subgroups Ai,..., A, are benign in a finitely generated
group G, then their join <U::1 AZ-> also is benign in G. Moreover, if the finitely
presented groups K; with their finitely generated subgroups L; can be given for each
A; explicitly, then the finitely presented K with its finitely generated subgroup L can

be given for this join explicitly.

Proof. Using the same constructions and notations as in the proof of Corollary [.1]
just notice that © is finitely presented, the join L = < Ui, Gti> is finitely generated,

and GNL=(J,_; A;) by Lemma O
12
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5. ADDING FINITE PRESENTATION TO THE CONSTRUCTION

5.1. The HNN-extension Z,,. In free group (b, ¢) we for any integer m can define
a pair of isomorphisms &, and &/, via:
(5.1) En(d) =bomi1, En(0) =bm and &n(c) =§,(c) =
It is easy to verify that &, (b;) = b2;—m+1 and &, (b;) = baj—m,. The pair &,,, ], can
be used to define the HNN-extension

Em = <b, C> *me&n (tm,t;n).

Here t,,,, t],, are any stable letters, and the subscript m is used to stress the correlation
with &,,&),, as below we are going to use this construction for multiple values of

m.

Lemma 5.1. In the above notations we for any m have:
(b,e) N by timstry) = (b b1, - )5
<b, C> N <bm_1, tm, tfm> = <bm_1, bm_g, .. >

Proof. For any integer m and i we have b = &,,(b;) = ba;j—pm41 and bzm =
&, (b;) = bai—m from where we collect:
(5.2)
b =bpg, B =by1, b =bpgr, b =bmgs, b o =Dbmys,...
t) t! t! t! t!
~~-bn;n,2:bm—4, b,ntllf:l:bm_Q, bnql:bm, b,rgl+1:bm+2, bﬁ+2:bm+4,...

The action of ¢,;! and ¢ ' can be deduced from the list above. From (5.2) it i

m

=
»n

straightforward that each of by, byy1,... indeed is in (by,, tm, th,). Say, bynis =
fqi"’+4 = gﬂz = bfﬁﬂ = b%n't;f € (bt thy)-

And on the other hand, bringing any word w on letters by, tm,, t,, to the normal
form in HNN-extension =,, we first have to do cancellations like t,_nlbmtm =bm+1,
and t;n_lbmt{n = b,,. Repeated applications of such steps may create in w some
new letters by, by+1, - .. so that we may also have to do “reverse” cancellations like
b1t = by tmbmastt = b, etc. or ) bt/ ot = b, b byt =
bm+1, etc... That is, bringing w to normal form we never get a b; outside (b, byt1, - - -)-
If, in addition, w is in (b, c), then the normal form we obtained should contain no
letters t£! or £/ That is, if w is in (b, ¢), it in fact is in (bp,bmy1,...), and we
have (b, c) N (by, b, tr,) = by Dt 1, - - -

The second equality stated by the lemma is proved analogously. ([

Rules define isomorphisms inside the free group G = (a,b,c) of rank

3 also, and we can define the HNN-extension G *¢,, ¢ (tm,t;,) which is noting
13
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but the ordinary free product (a) * =,,. Since G = (a) * (b,c) and the subgroup
(b, ) N byt th,) = (biny g1, - - -) involves no occurrence of the letter a, we from
Lemma [5.T] deduce:

Lemma 5.2. In the above notations we for any m have:
Gn <bm7 tm, t;n> = <bm7 bYrL-i-l? .- ~>7
Gn <bm—17 25 t{m> = <bm—1a bm—2; e >

5.2. Some special benign subgroups. With above information we obtain three

types of benign subgroups:

Corollary 5.1. In the above notations for any integer m:
(1) (b, bimt1,--.) s benign in (b, c) for the finitely presented group =, and its
3-generator subgroup (bpy,tm,th,),
(2) (bym—1,bm—2,...) is benign in (b, c) for the finitely presented group Z,, and
its 3-generator subgroup (bym—1,tm,th,),
(3) By = {...b_2,b_1; bim,bm1,...) is benign in (b, c) for the finitely presented
group

Om = (B * (bt ) T) *(bc) (E0 *(b 110,85 )

and its 4-generator subgroup P, = <<b7 &), (b, c>x'>'

Proof. Points and directly follow Lemma

B,, is the (free) product of (b,,,bnm+1,-..) and (b_1,b_o,...). Hence, point
follows from Lemmaand Corollaryfor r=2G=(bc), K1 =Z2,, K;s =E,
Ly = (b, tm,tl,), Lo = (b_1,t0,t0), A1 = (b, bmt1s ...y, A2 = (b_1,b_9,...).
Then ©,, is noting but the group © from . O

Now we are able to replace our initial I' from by a finitely presented

alternative:
(5.3) L=06, *p,, (9, k)

with fixing action for g, h, k on the finitely generated subgroup P,,.

Lemma 5.3. In above notations the following equalities hold in T
(1) (bye)N P, = By,
(2) (byc,g,h,k) =T

Proof. The first point follows fom in Corollary (it holds in ©,,, as it
holds in I'). Next (b, ¢, g, h, k) = (b,¢) *p.cn p,, (9,h,k) =T by in Corollary
and Remark 211 O

14
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5.3. Presenting R as a join of benign subgroups. Following the original steps
in subsection we now would have to build the HNN-extension I g a by fixing
the subgroup R = <gfbj71 | f € &) of T by some stable letter a. But since R is
not finitely generated, that HNN-extension would not be finitely presented, and we
need some extra complications to arrive to a finitely presented free construction.

Denote the subgroup ®,,, = (bg,...,bm_1,9,ho,-..,hm_1) in T', and notice that:

Lemma 5.4. ®,, is freely generated by 2m+1 elements by, ..., bym—1,9,hoy- .., hm_1
inT.

Proof. Firstly, B,, = (bg,...,bn,_1) has trivial intersection with P,, because
in Lemma implies B,,, N P,, < (Bm N (b, c>) NP, =B,N ((b, c)n Pm) =
B,, N B, = frm[o]—— due to (B,,, By,) = By * B,,. Therefore, we in [ by
in Corollary 2.2] and by Remark [2.1] have:

<b07 i ~7b’m—17 gah7k> = Bm*B’m n Pm(ga h7k) = Bm*frm[o]——(gaha k) = Bm*<gvh7k>

which simply is a free group of rank m + 3. Since hg,...,h,_1 generate a free
subgroup inside (g, h, k), they together with by, ..., b, _1 generate a free subgroup
(of rank 2m + 1) inside (by, ..., bm—1, g, h, k). |

Next we need a series of auxiliary benign subgroups inside I'. Foran s = 1,...,m
and for a sequence f = (jo,...,Js_2,7s—1) € E denote fT = (Jo,...,Js_2, js_1+1)
in &, i.e., to get fT we just add 1 to the last coordinate of f. In these notations
for any f the group I' contains the elements 9+ b;ll 'gfl, such as, ghgh?hghg obgl .
g~ hohih3hs for f = (2,5,3,7) with s = 4. Denote:

Ve, = (g7 b0 -g7" | fE€0) =

pio. pis—2pts—1t 4 _pio. L pts—2ptsm1 . .
:<g o s—2 Ms—1 'bs—l'g 0 s—2 s ‘ZO"')ZS—Q)ZS—l ey,

and establish a property for Vg :

Lemma 5.5. Vg, is a benign subgroup in T for the some explicitly given finitely

presented group and its finitely generated subgroup.

Proof. By Lemma [5.4] for any s = 1,...,m the elements bs_1,9, ho,...,hs_1
are free generators for the (s+ 2)-generator subgroup (bs_1,9, ho, ..., hs—1) of @,.

Hence, each of the following maps A; ; can be continued to some isomorphism on
15
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<bs_1,g, ho, ey h3_1>5
(

5.4
)\5—1,0 sends bs—lvgahoa"'7h8—27hs—l to bs—17gh07h07'"7hs—25h5—1;
A5—1,1 sends bs—lvg;hOa“-ahs—%hs—l to bs—laghlvhgl7~-~7hs—2ahs—1;

hs_ hs_
Ms—1,s—1 sends bs_1,g,h0s--- P9 hs 1 tO be_1,g" 1 hg T At e
In particular, for m = 1 the map A ¢ sends b, g, ho to bg, g, ho; for m = 2 the map
>\1,0 sends bl?.q’ hOa hl to blaghovh()? hl and )\1,1 sends b17g7 h07 hl to b17ghlahgl7h17
etc...

Introducing for each isomorphism A, ; a respective stable letter /; ; we construct
the HNN-extension:

As = f *)\571, 0y cor sAs—1, s—1 (lsfl, (ORI lsfl, 871)
for each of s=1,...,m.
The effects of conjugation by elements ls_1,0,...,ls—1, s—1 on the products G+

S__ll -gj?l is very easy to understand: Is_; ; just adds 1 to the ¢’th coordinate of f,
say, for s =4, f =(2,5,3,7) and I3 2 = l4_1,3-1 we have:
(5.5)
ls, ho\2 (1 ha\% 3,8 _h22h2537
(ngr' b3_1 'gf_l) 3,2 _ (ghg)(ho ) (h’l ) h; hg b3_1 A (gh2) (ho ) (hl ) h hg

ho-hy 'h2hahy *hShah3h§

-1 -1 7
H _b3—1 g ho-hy "hihahy "hihoh3hy

=9
_ R ot gl e,
where f' = (2,5,3+1,7) = (2,5,4,7). In particular, actions of the above letters /; ;
keep the elements from Vg, inside Vg, .

For the sequence fo = (0,...,0) € & we have 9yt b;ll ~g]701 = ghs-1. b;ll gt
Applying the conjugate collection process of subsectionfor x=/ ghkl-b;_l1 g1}
and for Q) = {ls_1,0,.-.,ls—1, s—1} we see that any element w from (X,9)) < A, is
a product of elements of g s bs__l1 . gj?l (for certain sequences f € &) and of certain
powers of the stable letters Is_; ¢,...,ls—1, s—1. And w is inside T if and only if all
those powers are cancelled out in the normal form, and w in fact is in Vg,, that is,
denoting L, = (g"s—1- b;ll g7 ls—1.0y-005ls-1, s—1,) We have:

rn L, = Vgs,
i.e., Vg, is benign in T for the above finitely presented group A, and for its (s + 1)-

generator subgroup L. O

Lemma 5.6. R = <gfbj71 | f € En) is a benign subgroup in T for some explicitly
given finitely presented group and its finitely generated subgroup.
16
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Proof. First show that R is generated by its m+1 subgroups (g), Ve,,..., Vg, ..
For each s = 1,...,m denote Zg, = (gbe71 | f € &s). In these notation R is noting
but Zg, for s =m. It is easy to see that (Zg,_,,Ve,) = Zg, for each s (when s = 1,

then take (g) as Zg,), see details in [I7] based on an original idea from [9]. Then:

Ze, = (Zg

m

Ve,) = Ze, 5 Ve 1 Ve,) == {9),Ver,-- - Ve, 1, Ve, )

m—17

By Lemma each V¢_ is benign I for an explicitly given finitely presented group
A, and its finitely generated subgroup L. And the finitely generated (g) is clearly
benign in I' for the finitely presented group Ag = I' and its finitely generated
subgroup Lo = {(g).

It remains to load these components into Corollary and into to get the
following finitely presented overgroup holding I':

(5.6) © = ( (((AO k1o t0) #0 (Mg, 1)) #r (Mg %1, tQ)) ) w0 (A *2.. t),

and its finitely generated subgroup @ = (I'*o,... T'tm). O

5.4. Proof for Theorem [I.1l Now we can use the above constructions to finish
the main proof. The last two steps of the construction in Section [3] are effortless
to mimic. As © of is finitely presented, and @ is finitely generated, the HNN-
extension © *qg a is finitely presented. Inside e) *g a the elements a, b, c generate the
same free subgroup discussed in Section [3} and we can again define an isomorphism

p sending a, b, ¢ to a,b, ¢ together with the finitely presented analog of A from

B2
(5.7) A= (0xga)x,r

For any B C &,, we in analogy with Sectioncan denote W = (gf, a, r | f € B) in

A. Since each gy, a, r from A, in fact, is from A already, we in A have the analog

of (3.3)) also:
(5.8) GNWp=A4A,, 8-

Since Ag is benign in G, by Theorem hypothesis there is a finitely presented
(explicitly given) overgroup Kp of G with a finitely generated subgroup Lz so that
GNLg=Agin Kg.

As A was built purely via free constructions in which we are in position to
control which new elements (such as, stable letters) to adjoin, we can make sure no
element of A outside G is contained in Kz, and hence, we can construct the finitely

presented amalgamated product A xg Kg.
17
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The subgroup Ag is benign also in A. Indeed, the group A xg Kp is finitely
presented, and to its subgroup Lp = ( Ag, Lg) we may apply in Corollary
to get AN Lg = Ag, because Ag NG = Ag and Ly NG = Ag.

Next, being finitely generated (b,c) is benign in A for the finitely presented A
and for the finitely generated (b, ¢), see remark in subsection

Hence by Corollary the join (Ag, (b,c)) = Wp is benign in A. As its finitely

presented overgroup we may take:
\IJ = ((A *G KB) *LB y) *A (A *(b,c) y/)

(see ([£.3)), and as a finitely generated subgroup we may take L' = (AY, Ay/>.
G clearly is benign in A. Hence by (5.8) and by Corollary the intersection
GNWp = A,, 5 is benign in A for the finitely presented group:

(59) meg = (\I/ xr, Z) *A (A *G Z/),
and its finitely generated subgroup:
(5.10) Ly, 5=A,

ie, AN Ly, B = A, Bin K, 5. But since G < A and Au,.B < G, we conclude
that G N Ly, B = Au,,5 also holds in K, 5.
This completes the proof of Theorem
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