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Abstract. In this paper, we will present the expression of meromorphic solutions on the
crossing differential or difference Malmquist systems of certain types using Nevanlinna theory. For
instance, we consider the admissible meromorphic solutions of the crossing differential Malmquist
system 

f ′
1(z) =

a1(z)f2(z) + a0(z)

f2(z) + d1(z)
,

f ′
2(z) =

a2(z)f1(z) + b0(z)

f1(z) + d2(z)
,

where a1(z)d1(z) ̸≡ a0(z) and a2(z)d2(z) ̸≡ b0(z).
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1. Introduction

The Malmquist theorem, originally published in [6], states that the Malmquist

type differential equation

(1.1) f ′(z) = R(z, f(z)),

where R(z, f(z)) is a rational function in z and f , admits a transcendental meromorphic

solution, then (1.1) reduces to a differential Riccati equation

(1.2) f ′(z) = a0(z) + a1(z)f(z) + a2(z)f(z)
2,

where ai(z)(i = 0, 1, 2) are rational functions. The original proof in [6] was independent

of Nevanlinna theory, however, Nevanlinna theory is an efficient method to prove

and generalize the above result, some details can be found in [4, Chapter 10]. We

assume that the reader is familiar with the basic notations of Nevanlinna theory,

see [3, 4, 5, 12].

To generalize the Riccati or Malmquist equations, as far as we know, Tu and

Xiao [7] firstly considered the meromorphic solutions of system of higher-order

algebraic differential equations, which will be called the crossing Malmquist systems

in the paper. Recently, there are some results for the meromorphic solutions of

1This work was partially supported by the NSFC (No.12061042) and the Natural Science
Foundation of Jiangxi (No. 20202BAB201003).
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several systems, see [9, 10]. We give the following presentation for our proceeding

consideration, which is a corollary of [7, Theorem 2], where the admissible meromorphic

solutions imply that the coefficients of the system are rational functions or small

functions with respect to f1(z) and f2(z).

Theorem A. If the following system
f ′
2(z) =

ap1
(z)f1(z)

p1 + · · ·+ a1(z)f1(z) + a0(z)

bq1(z)f1(z)
q1 + · · ·+ b1(z)f1(z) + b0(z)

,

f ′
1(z) =

cp2
(z)f2(z)

p2 + · · ·+ c1(z)f2(z) + c0(z)

dq2(z)f2(z)
q2 + · · ·+ d1(z)f2(z) + d0(z)

(1.3)

has a paired admissible meromorphic solution (f1, f2), then d1d2 ≤ 4, where di :=

max{pi, qi}, i = 1, 2.

Obviously, Theorem A can be viewed as the generalization of Malmquist theorem.

Moreover, the case q1 ≥ 1, q2 ≥ 1 can occur. See the example below given by Tu

and Xiao [7].

Example 1.1. (f1, f2) = (ez, e−z) is a paired entire solution of the crossing Malmquist

system

(1.4)


f ′
1(z) =

1

f2(z)
,

f ′
2(z) = − 1

f1(z)
.

Actually, all meromorphic solutions of (1.4) can be expressed by (f1, f2) =

(e
1
c z+d1 , e−

1
c z+d2), where ed1+d2 = c. From the two equations in (1.4), then f1f2 = c

follows immediately, where c is a non-zero constant. Thus, by f ′
1

f1
= 1

c , we get

f1 = e
1
c z+d1 , then f2 = e−

1
c z+d2 , where ed1+d2 = c.

We proceed to consider the admissible meromorphic solutions of the generalization

of the system (1.4) as follows

(1.5)


f ′
1(z) =

a1(z)f2(z) + a0(z)

f2(z) + d1(z)
,

f ′
2(z) =

a2(z)f1(z) + b0(z)

f1(z) + d2(z)
,

where a1(z)d1(z) ̸≡ a0(z) and a2(z)d2(z) ̸≡ b0(z). We obtain the following theorem.

Theorem 1.1. The admissible entire solutions (f1, f2) of (1.5) satisfy one of the

following cases:

(i) If a1(z) = 0, d2(z) = 0, then f1(z) =
∫
(a0(z)+b0(z))dz
f2(z)+d1(z)

, where d′1(z) =

−a2(z).

(ii) If a1(z) = 0, d2(z) ̸= 0, then f1(z) + d2 =
∫
(a0(z)+b0(z)−a2(z)d2)dz

f2(z)+d1(z)
, where

d2(z) = d2 and d′1(z) = −a2(z).
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(iii) If a1(z) ̸= 0, d2(z) ̸= 0, then

f1(z) + d2(z) =

∫
(a0(z) + b0(z)− a1(z)d1(z)− a2(z)d2(z))dz

f2(z) + d1(z)
,

where d′1(z) = −a2(z) and d′2(z) = −a1(z).

The another example below, given by Gao [2], shows that the case d1d2 = 4 can

occur in Theorem A.

Example 1.2. (f1, f2) = ( 1
ez+1 ,

1
ez−1 ) is a paired meromorphic solution of the

crossing Malmquist system

(1.6)


f ′
1(z) =

−f2(z)
2 − f2(z)

(2f2(z) + 1)2
,

f ′
2(z) =

f1(z)
2 − f1(z)

(2f1(z)− 1)2
.

The system (1.6) has no any transcendental entire solutions. Otherwise, assume

that (f1, f2) are transcendental entire functions, using the Valiron-Mohon’ko theorem

[4, Theorem 2.2.5] and a basic formula T (r, f ′) ≤ T (r, f) + S(r, f) for an entire

function f , then

2T (r, f2) = T (r, f2
2 ) +O(1) = T (r, f ′

1) +O(1) ≤ T (r, f1) +O(1)

=
1

2
T (r, f2

1 ) +O(1) =
1

2
T (r, f ′

2) +O(1) ≤ 1

2
T (r, f2) +O(1),

thus T (r, f2) = O(1), which is impossible. We find that (f1, f2) = ( 1
1−ez ,−

1
ez+1 )

is also a paired meromorphic solution of (1.6). However, we have not obtained all

meromorphic solutions satisfying the system (1.6). Remark that all the above two

solutions (f1, f2) of (1.6) are meromorphic functions with no zeros. We obtain the

following theorem to describe the partial meromorphic solutions of (1.6).

Theorem 1.2. If f1(z) and f2(z) are two finite order meromorphic solutions of

(1.6) with no zeros and simple poles only, then f1(z) =
1

αez+1 and f2(z) =
1

αez−1 ,

where α is a non-zero constant.

Without loss of generalization, we rewrite (1.3) as follows

(1.7)


f ′
1(z) =

a2(z)f2(z)
2 + a1(z)f2(z) + a0(z)

b2(z)f2(z)2 + b1(z)f2(z) + b0(z)
,

f ′
2(z) =

c2(z)f1(z)
2 + c1(z)f1(z) + c0(z)

d2(z)f1(z)2 + d1(z)f1(z) + d0(z)
,

where ai(z), bi(z), ci(z), di(z)(i = 0, 1, 2) are small functions with respect to f1(z)

and f2(z). From Theorem A, we see that there are four cases for d1 and d2 as follows

(i) (d1, d2): (4,1), (1,4);

(ii) (d1, d2): (3,1), (1,3);
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(iii) (d1, d2): (2,2), (2,1), (1,2);

(iv) (d1, d2): (1,1).

Three new examples in the following remark with Example 1.1 and Example 1.2

show that there exist meromorphic solutions for all cases (i)− (iv) indeed.

Remark 1.1. For the case (d1, d2) = (4, 1), we see that

(f1(z), f2(z)) = (sec z, tan
z

2
)

solves the following system

(1.8)


f ′
1(z) =

2f2(z)(1 + f2(z)
2)

(1− f2(z)2)2
,

f ′
2(z) =

f1(z)

f1(z) + 1
.

For the case (d1, d2) = (3, 1), we see that (f1(z), f2(z)) =
(

ez

(ez−1)2 ,
1

ez−1

)
solves

the following system

(1.9)

{
f ′
1(z) = −f2(z)− 3f2(z)

2 − 2f2(z)
3,

f ′
2(z) = −f1(z).

For the case (d1, d2) = (2, 1), we see that (f1(z), f2(z)) = ( 1
ez−1 , e

z) solves the

following system

(1.10)


f ′
1(z) =

−f2(z)

(f2(z)− 1)2
,

f ′
2(z) =

1 + f1(z)

f1(z)
.

The examples on (d1, d2) = (1, 4), (1, 3), (1, 2) can be constructed easily by the above.

Gao [1, Theorem 1.2] obtained a difference version of Theorem A as follows.

Theorem B. If the following system
f2(z + c1) · · · f2(z + cn) =

ap1(z)f1(z)
p1 + · · ·+ a1(z)f1(z) + a0(z)

bq1(z)f1(z)
q1 + · · ·+ b1(z)f1(z) + b0(z)

,

f1(z + d1) · · · f1(z + dm) =
cp2(z)f2(z)

p2 + · · ·+ c1(z)f2(z) + c0(z)

dq2(z)f2(z)
q2 + · · ·+ d1(z)f2(z) + d0(z)

(1.11)

has a paired admissible meromorphic solution (f1, f2), where f1 and f2 are all

meromorphic functions with hyper-order less than one. Then d1d2 ≤ nm, where

di := max{pi, qi}.
86



CROSSING MALMQUIST SYSTEMS ...

Gao [1] also obtained that (ez, e−z) is a paired transcendental meromorphic

solution of the crossing difference Malmquist system

(1.12)


f1(z + 1)f1(z − 1) =

1

f2(z)2
,

f2(z + 1)f2(z − 1) =
1

f1(z)2
.

Our proceeding theorem shows that all transcendental entire solutions with finite

order of (1.12).

Theorem 1.3. The transcendental entire solutions with finite order of (1.12)

should satisfy one of the following two cases:

(i) (f1(z), f2(z)) =
(
eαz+β , e−αz+ν

)
, where ν + β = kiπ and k is an integer;

(ii) (f1(z), f2(z)) =
(
e

B
4 z2+A+B

2 z+D, e−
B
4 z2−A+B

2 z+H
)
, where B

2 + 2D + 2H =

2kiπ and k is an integer.

2. Lemmas

To prove Theorem 1.1, we need the following modification of Hayman inequality

which relates to the zeros of f and f (n) − b, where b is a non-zero small function

with respect to f .

Lemma 2.1. [11] Let f(z) be a transcendental meromorphic function satisfying

N

(
r,

1

f

)
= S(r, f).

For any small functions b(z)( ̸≡ 0) of f , then

N

(
r,

1

f (n) − b

)
̸= S(r, f).

In order to prove Theorem 1.2, we need the following lemma, which can be found

in [8, Theorem 1.1].

Lemma 2.2. Let f and g be transcendental entire functions with finite order, such

that f and g′ share 0 CM, g and f ′ share 0 CM. Then f and g satisfy one of the

following three cases:

(1) f = γg, where γ is a non-zero constant;

(2) f = λ sin(az + b) and g = γ cos(az + b), where a, b, λ, γ are constants with

aλγ ̸= 0 and λ = iγ2;

(3) fg = βf ′g′, where β is a non-zero constant.
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3. Proofs of Theorems

Proof of Theorem 1.1. Firstly, rewrite (1.5) into

(3.1)


f ′
1(z)− a1(z) =

b1(z)

f2(z) + d1(z)
,

f ′
2(z)− a2(z) =

b2(z)

f1(z) + d2(z)
,

where b1(z) = a0(z)− a1(z)d1(z) and b2(z) = b0(z)− a2(z)d2(z).

Using Valiron-Mohon’ko theorem [4, Theorem 2.2.5], we have

T (r, f2(z)) + S(r, f2(z)) = T (r, f ′
1(z)) ≤ 2T (r, f1(z)) + S(r, f1(z))

≤ 2T (r, f ′
2(z)) ≤ 4T (r, f2(z)) + S(r, f2(z)).

Hence, we assume that S(r) := S(r, f1(z)) = S(r, f2(z)). We will discuss four

cases for the entire functions f1(z) and f2(z) below.

Case 1. If a1(z) = 0, d2(z) = 0, then

(3.2) N

(
r,

1

f2(z) + d1(z)

)
= N(r, f ′

1(z)) + S(r) = S(r),

N

(
r,

1

f ′
2(z)− a2(z)

)
= N(r, f1(z)) + S(r) = S(r),

which can be written as

(3.3) N

(
r,

1

(f2(z) + d1(z))′ − d′1(z)− a2(z)

)
= S(r).

By Lemma 2.1, (3.2) and (3.3), for avoiding a contradiction, then d′1(z) = −a2(z)

holds. In this case, from (3.1), we have

(3.4)


f ′
1(z) =

b1(z)

f2(z) + d1(z)
,

f ′
2(z) + d′1(z) =

b2(z)

f1(z)
.

It follows from (3.4),

(3.5)

{
f ′
1(z)f2(z) + f ′

1(z)d1(z) = b1(z),

f ′
2(z)f1(z) + d′1(z)f1(z) = b2(z).

Summing the two equations in (3.5), we get

(f1(z)(f2(z) + d1(z)))
′ = b1(z) + b2(z),

thus

f1(z) =

∫
(b1(z) + b2(z))dz

f2(z) + d1(z)
=

∫
(a0(z) + b0(z))dz

f2(z) + d1(z)
.
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Case 2. If a1(z) = 0, d2(z) ̸= 0, then we affirm that d2(z) must be a constant.

From the second equation of (3.1), we have

N

(
r,

1

f1(z) + d2(z)

)
= S(r).

From the first equation of (3.1), we have

N

(
r,

1

f ′
1(z)

)
= N

(
r,

1

(f1(z) + d2(z))′ − d′2(z)

)
= S(r),

for avoiding a contradiction, we have d2(z) must be a constant d2. Furthermore,

the second equation of (3.1) shows that

N

(
r,

1

f ′
2(z)− a2(z)

)
= N

(
r,
f1(z) + d2(z)

b2(z)

)
= S(r),

which implies that

(3.6) N

(
r,

1

(f2(z) + d1(z))′ − d′1(z)− a2(z)

)
= S(r).

The first equation of (3.1) shows also that

(3.7) N

(
r,

1

f2(z) + d1(z)

)
= S(r).

By Lemma 2.1, (3.6) and (3.7), −d′1(z)−a2(z) = 0 holds for avoiding a contradiction,

that is d′1(z) = −a2(z), so we have

(3.8)


f ′
1(z) =

b1(z)

f2(z) + d1(z)
,

f ′
2(z) + d′1(z) =

b2(z)

f1(z) + d2
.

It follows from (3.8), we get(
(f1(z) + d2)(f2(z) + d1(z))

)′

= b1(z) + b2(z),

thus

f1(z) + d2 =

∫
(b1(z) + b2(z))dz

f2(z) + d1(z)
=

∫
(a0(z) + b0(z)− a2(z)d2)dz

f2(z) + d1(z)
.

Case 3. If a1(z) ̸= 0, d2(z) = 0, then (3.1) changes into

(3.9)


f ′
1(z)− a1(z) =

b1(z)

f2(z) + d1(z)
,

f ′
2(z)− a2(z) =

b2(z)

f1(z)
,

where b1(z) = a0(z) − a1(z)d1(z) and b2(z) = b0(z). The first equation of (3.9)

implies that

N

(
r,

1

f ′
1(z)− a1(z)

)
= S(r),
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the second equation of (3.9) implies that

N

(
r,

1

f1(z)

)
= S(r).

By Lemma 2.1 and the above two equations, we get a contradiction.

Case 4. If a1(z) ̸= 0, d2(z) ̸= 0, then

N

(
r,

1

f ′
2(z)− a2(z)

)
= N

(
r,
f1(z) + d2(z)

b2(z)

)
= S(r),

N

(
r,

1

f2(z) + d1(z)

)
= N

(
r,
f ′
1(z)− a1(z)

b1(z)

)
= S(r).

Since

N

(
r,

1

(f2(z) + d1(z))′ − d′1(z)− a2(z)

)
= S(r),

by Lemma 2.1, we obtain −d′1(z) − a2(z) = 0 for avoiding a contradiction, that is

d′1(z) = −a2(z). In addition,

N

(
r,

1

f ′
1(z)− a1(z)

)
= S(r),

N

(
r,

1

f1(z) + d2(z)

)
= S(r),

we can have d′2(z) = −a1(z). Thus, we have

(3.10)


f ′
1(z) + d′2(z) =

b1(z)

f2(z) + d1(z)
,

f ′
2(z) + d′1(z) =

b2(z)

f1(z) + d2(z)
.

From (3.10), we get(
(f1(z) + d2(z))(f2(z) + d1(z))

)′

= b1(z) + b2(z),

thus

f1(z) + d2(z) =

∫
(b1(z) + b2(z))dz

f2(z) + d1(z)

=

∫
(a0(z) + b0(z)− a1(z)d1(z)− a2(z)d2(z))dz

f2(z) + d1(z)
.

The proof of Theorem 1.1 is completed.

Proof of Theorem 1.2. Since f1(z) and f2(z) are meromorphic solutions with

finite order of (1.6) with no zeros and simple poles only, then we assume that

f1(z) = 1
g1(z)

and f2(z) = 1
g2(z)

, where g1(z) and g2(z) are entire functions with

finite order. Thus, the system (1.6) means that

(3.11)


g′1(z) =

1 + g2(z)

(2 + g2(z))2
g21(z),

g′2(z) =
g1(z)− 1

(2− g1(z))2
g22(z).

90



CROSSING MALMQUIST SYSTEMS ...

From the above system and g1, g2 are entire functions with simple zeros only, then

we see that g1 and 2+g2 have the same zeros and same multiplicities, g2 and 2−g1

have the same zeros and same multiplicities. Hence, we assume

(3.12)

{
g1(z) = eP (z)(2 + g2(z)),

g2(z) = eQ(z)(2− g1(z)),

and

(3.13)

{
g′1(z) = e2P (z)(1 + g2(z)),

g′2(z) = e2Q(z)(g1(z)− 1),

where P (z) and Q(z) are polynomials. Then, we rewrite (3.13) as

(3.14)


(g1(z)− 1)′

1 + g2(z)
= e2P (z),

(1 + g2(z))
′

g1(z)− 1
= e2Q(z).

From (3.14), we can get that (g1 − 1)′ and 1 + g2 share 0 CM , (1 + g2)
′ and g1 − 1

share 0 CM . By Lemma 2.2, then we discuss three cases for g1 and g2 below.

Case 1. g1 − 1 = γ(1 + g2), where γ is a non-zero constant, e2P (z) = γ2e2Q(z).

Substitute g1 − 1 = γ(1 + g2) into (3.12), we have

(3.15)

{
γ(1 + g2) + 1 = eP (z)(2 + g2),

g2 = eQ(z)[2− γ(1 + g2)− 1],

we see that (3.15) is represented by

(3.16)


eP (z) =

γ(1 + g2) + 1

2 + g2
,

eQ(z) =
g2

1− γ(1 + g2)
.

(i) If eP (z) = γeQ(z), then we have

(3.17)
γ(1 + g2) + 1

2 + g2
=

γg2
1− γ(1 + g2)

.

Then

(3.18) γg22 + 2γg2 = −γ2g22 − 2γ2g2 − γ2 + 1.

So we obtain γ = −1, then g1 = −g2 follows. However, in this case, the first equation

of (3.11) reduces into

g′1(z) =
1− g1

(2− g1)2
g21 ,

which has no any transcendental entire solutions by Malmquist theorem.

(ii) If eP (z) = −γeQ(z), then

(3.19)
γ(1 + g2) + 1

2 + g2
=

−γg2
1− γ(1 + g2)

.
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Then

(3.20) −γg22 − 2γg2 = −γ2g22 − 2γ2g2 − γ2 + 1.

So we obtain γ = 1, then g1 − g2 = 2 follows. From the first equation of (3.12), we

see eP (z) ≡ 1. Thus, the first equation of (3.14) also implies that

(1 + g2)
′

1 + g2
= 1,

so g2 = αez − 1, where α is a non-zero constant. Then g1 = αez + 1.

Case 2. If g1 − 1 = λ sin(az + b) and 1 + g2 = γ cos(az + b), where a, b, λ, γ

are constants with aλγ ̸= 0 and λ = iγ2, then e2P (z) = γ2e2Q(z) follows by (3.13).

From (3.12), we have

(3.21)


eP (z) =

1 + iγ2 sin(az + b)

1 + γ cos(az + b)
,

eQ(z) =
γ cos(az + b)− 1

1− iγ2 sin(az + b)
.

(i) If eP (z) = γeQ(z), then

1 + iγ2 sin(az + b)

1 + γ cos(az + b)
=

γ(γ cos(az + b)− 1)

1− iγ2 sin(az + b)
.

Thus

γ4 sin2(az + b) + 1 = −γ3 sin2(az + b) + γ3 − γ,

which is impossible for the reason that there is no γ satisfying{
γ4 = −γ3,

γ3 − γ = 1.

(ii) If eP (z) = −γeQ(z), we have

1 + iγ2 sin(az + b)

1 + γ cos(az + b)
=

−γ(γ cos(az + b)− 1)

1− iγ2 sin(az + b)
.

Then

(3.22) γ4 sin2(az + b) + 1 = γ3 sin2(az + b)− γ3 + γ,

which is also impossible for the reason that there is no γ satisfying

(3.23)

{
γ4 = γ3,

− γ3 + γ = 1.

Case 3. If (g1 − 1)(1 + g2) = β(g1 − 1)′(1 + g2)
′ = βg′1g

′
2, where β is a non-zero

constant, we have e2P (z)+2Q(z) = 1
β := τ2. From (3.12), we have

(3.24)

{
g1 = −eP (z)+Q(z)g1 + 2eP (z)+Q(z) + 2eP (z),

g2 = −eP (z)+Q(z)g2 − 2eP (z)+Q(z) + 2eQ(z).
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If τ ̸= −1, we have

(3.25)


g1 =

2τ + 2eP (z)

1 + τ
,

g2 =
−2τ + 2eQ(z)

1 + τ
.

Substitute (3.25) into the first equation of (3.13), we have

2P ′(z)

1 + τ
= eP (z)

(
1 +

−2τ + 2eQ(z)

1 + τ

)
.

The above equation implies that 1 + −2τ
1+τ = 0, that is τ = 1 and eP (z)+Q(z) = 1,

thus P (z) = z + b, where b is a constant. In the same way, substitute (3.25) into

the second equation of (3.13), we have

2Q′(z)

1 + τ
= eQ(z)

(
2τ + 2eP (z)

1 + τ
− 1

)
.

The above equation implies that 2τ
1+τ − 1 = 0, that is τ = 1 and eP (z)+Q(z) = 1,

thus Q(z) = z + a, where a is a constant. However, this is in contradiction with

eP (z)+Q(z) = 1, so this case is omitted.

If τ = −1, from the two equations in (3.24), we have eP (z)+Q(z) = −1, eP (z) = 1

and eQ(z) = −1. From the first equation of (3.12), we have g1 = 2 + g2. Thus, the

first equation of (3.14) also implies that

(1 + g2)
′

1 + g2
= 1,

so g2 = αez − 1, where α is a non-zero constant. Then g1 = αez + 1. The proof of

Theorem 1.2 is completed.

Proof of Theorem 1.3. If (f1(z), f2(z)) is the paired transcendental entire solutions

of the complex difference system (1.12), then we have f1(z) and f2(z) must have

no zeros, thus we assume that f1(z) = eh1(z) and f2(z) = eh2(z), where h1(z) and

h2(z) are non-constant polynomials. So

(3.26)

{
eh1(z+1)eh1(z−1) = e−2h2(z),

eh2(z+1)eh2(z−1) = e−2h1(z),

it follows

(3.27)

{
h1(z + 1) + h1(z − 1) + 2h2(z) = 2kiπ,

h2(z + 1) + h2(z − 1) + 2h1(z) = 2miπ,

where k,m are integers. Shifting forward and backward on (3.27), we have

(3.28)

{
h1(z + 2) + h1(z) + 2h2(z + 1) = 2kiπ,

h2(z + 2) + h2(z) + 2h1(z + 1) = 2miπ,
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and

(3.29)

{
h1(z) + h1(z − 2) + 2h2(z − 1) = 2kiπ,

h2(z) + h2(z − 2) + 2h1(z − 1) = 2miπ.

The first equation of (3.28) and the first equation of (3.29) can be rewritten as

follows

(3.30)

{
2h2(z + 1) = −h1(z + 2)− h1(z) + 2kiπ,

2h2(z − 1) = −h1(z − 2)− h1(z) + 2kiπ.

Combining the above system (3.30) and the second equation of (3.27), we have

2(2miπ − 2h1(z)) = 4kiπ − 2h1(z)− h1(z + 2)− h1(z − 2),

thus, we have

(3.31) h1(z + 2) + h1(z − 2)− 2h1(z) = 4kiπ − 4miπ.

From (3.31), we also have

h1(z + 2)− h1(z) = h1(z)− h1(z − 2) + 4kiπ − 4miπ,

which implies that

F (z + 2) = F (z) + 4kiπ − 4miπ

by letting F (z) = h1(z)− h1(z − 2). We discuss two cases below.

Case 1. If m = k, then F (z) must be a periodic function with period 2, thus F (z)

is a non-zero constant 2α for the reason that h1(z) is a non-constant polynomial.

Thus h1(z)− h1(z − 2) = 2α, it follows h1(z) = αz + β.

Case 2. If m ̸= k, then F (z) must be a non-constant linear polynomial, that is

F (z) = Bz + A. Thus, h1(z) − h1(z − 2) = Bz + A, B ̸= 0. In this case, we have

h1(z) is a linear polynomial when B = 0 and is a polynomial with degree two when

B ̸= 0, we assume that h1(z) =
B
4 z

2 + A+B
2 z +D, where D is any constant.

Using the similar method as above, we also obtain

(3.32) h2(z + 2) + h2(z − 2)− 2h2(z) = 4miπ − 4kiπ,

which implies that

h2(z + 2)− h2(z) = h2(z)− h2(z − 2) + 4miπ − 4kiπ,

it follows

G(z + 2) = G(z) + 4miπ − 4kiπ

by letting G(z) = h2(z)−h2(z− 2). There are two cases to be discussed as follows.

Case 1. If m = k, then G(z) must be a periodic function with period 2, thus G(z)

is also a non-zero constant 2µ. Then h2(z)−h2(z−2) = 2µ, that is h2(z) = µz+ν.
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Case 2. If m ̸= k, then G(z) must be a non-constant linear polynomial, that is

G(z) = Ez + F . Thus, h2(z) − h2(z − 2) = Ez + F , E ̸= 0. In this case, we have

h2(z) is a linear polynomial when E = 0 and is a polynomial with degree two when

E ̸= 0, we assume that h2(z) =
E
4 z

2 + E+F
2 z +H, where H is any constant.

We also remark that the degree of h1(z) and h2(z) are equal. Substitute h1(z) =

αz + β and h2(z) = µz + ν into the first equation of (3.27), we have µ = −α and

ν + β = kiπ. Substitute h1(z) =
B
4 z

2 + A+B
2 z +D and h2(z) =

E
4 z

2 + E+F
2 z +H

into the system of (3.27), we have E = −B, F = −A, B
2 + 2D + 2H = 2kiπ,

E
2 + 2D + 2H = 2miπ and B = 2kiπ − 2miπ. The proof of Theorem 1.3 is thus

completed.
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